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Abstract

In the maritime context, to cover large area for surveillance, search and recovery
missions, there is no better alternative to onboard autonomous aerial visual in-
telligence. However most computer vision algorithms struggles with small object
detection which is a key challenge to solve for aerial visual autonomy. This thesis
explores the development of techniques for detecting small objects in maritime
context using deep learning. The primary objective is to improve surveillance and
monitoring capabilities in maritime activities without huge computational over-
head, where small objects play a significant role. Two approaches are presented:
altitude aware dynamic spatial tiling for improving accuracy and reducing mem-
ory demand. Additionally, an anomaly based detector for semi supervised object
detection.

The dynamic tiling approach involves spatially scaling the input images and
then dividing the input image into smaller tiles, allowing for more focused de-
tection and tracking of small objects. The proposed system architectures and the
findings from field experiments demonstrate significant effectiveness of this ap-
proach for small object detection and faster inference.

In the second approach, a VAE (Variational Autoencoder) anomaly detector is
employed to identify anomalous regions within the maritime scene. This method
helps identify regions of interest (ROIs), aided with another input tiling technique
we developed, this significantly enhance the efficiency of small object detection.
The training process and performance evaluation of this approach are thoroughly
discussed, including a comparison with traditional methods such as OpenCV.

The results obtained from both approaches showcase their potential in accu-
rately detecting small objects in maritime context.
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Sammendrag

I maritim sammenheng finnes det ikke noe bedre alternativ enn autonom visuell
intelligens om bord for å dekke store områder for overvåkings-, søke- og gjenop-
prettingsoppdrag. De fleste datasynalgoritmer sliter imidlertid med deteksjon av
små objekter, noe som er en viktig utfordring å løse for visuell autonomi fra luften.
Denne avhandlingen utforsker utviklingen av teknikker for deteksjon av små ob-
jekter i maritim kontekst ved hjelp av dyp læring. Det primære målet er å forbedre
overvåkings- og kontrollfunksjonene i maritime aktiviteter uten store beregning-
sutgifter, der små objekter spiller en viktig rolle. To tilnærminger presenteres: høy-
debevisst dynamisk romlig flislegging for å forbedre nøyaktigheten og redusere
minnebehovet. I tillegg presenteres en anomalibasert detektor for semiovervåket
objektdeteksjon.

Den dynamiske fliseleggingstilnærmingen innebærer romlig skalering av in-
ngangsbildene og deretter inndeling av inngangsbildet i mindre fliser, noe som
muliggjør mer fokusert deteksjon og sporing av små objekter. De foreslåtte sys-
temarkitekturene og resultatene fra felteksperimenter viser at denne tilnærmin-
gen er svært effektiv for deteksjon av små objekter og raskere inferens.

I den andre tilnærmingen brukes en VAE-anomalidetektor (Variational Au-
toencoder) til å identifisere avvikende regioner i den maritime scenen. Denne
metoden bidrar til å identifisere interessante regioner (ROI-er), og ved hjelp av
en annen flisleggingsteknikk som vi har utviklet, forbedrer dette effektiviteten ved
deteksjon av små objekter betydelig. Opplæringsprosessen og ytelsesevaluerin-
gen av denne tilnærmingen diskuteres grundig, inkludert en sammenligning med
tradisjonelle metoder som OpenCV.

Resultatene fra begge metodene viser at de har potensial til å detektere små
objekter i maritim kontekst.

(Translated with www.DeepL.com/Translator)
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Chapter 1

Introduction

1.1 Background and Motivation

Autonomous launch and recovery of small underwater vehicles is an important ca-
pability to enable one form of large-scale, scalable systems in the ocean. One possi-
ble design would consider an autonomous surface vessel (ASV) that services small
vehicles by recharging them and transferring data. This ASV would directly launch
and recover small vehicles. Alternatively, an unmanned aerial vehicle (UAV) could
be used as an intermediate vehicle to launch and recover the underwater asset.
Both cases could use visual detection and homing onto a floating payload waiting
for recovery.

While the initial inspiration stems from this, this thesis explores the fundamental
challenges pertaining to aerial small object detection in the maritime context and
investigates methods that can be applied to many scenarios requiring autonomous
aerial visual intelligence.

1.2 Problem Statement

In UAV-based SAR (search and recovery), object detection(reliably fast) is the
main challenge. SOT deep learning models suffer in this task mainly for two rea-
sons,

1. From High altitudes, the “pixel-print”(relative pixel area) of objects is very
small compared to the whole image.

2. A specialized model like in [1] (YOLO-fine) which is optimized for small
objects will start suffering when the UAV will descend for recovering the
target as it will get bigger (larger “pixel print”).

Most modern object detection algorithms are based on CNNs. In deeper lay-
ers, the characteristics of smaller objects vanish, thereby making it harder for the
detector to pick them out. For Example, A 640p image is scaled down to about
20p in the hidden layers of YOLOv5’s backbone[2]. Small objects will have few

1



2 S. Ahmed: Maritime Small Object Detection

features, which means their features will vanish in a deeper network and never
be recognized.

Figure 1.1: Small Object Detection Benchmark, adopted from [3].

As shown in [3], the SOTA performance of small objects is significantly less
than medium and large objects. If an object has dimensions 32 x 32px in an image
of 1024 x 1024px, and if we divide the image into 4 tiles of 512 x 512px, then if
we compare the area of the objects in both cases, in 1st case (original image), the
object occupies 0.098% of the original image area, whereas in the 2nd case, the
object occupies 0.39% of the split image patch.

In field robotics, If we consider practical implementation, for example in a
UAV, we have to find out a method of inputting high-resolution images to the DL
models without exceeding memory and computational constraints.

1.3 Main Contributions

This master thesis presents a comprehensive investigation into maritime aerial
small object detection. Through extensive research, data collection, analysis, and
experimentation, this study has made several significant contributions to the field.

This thesis is the continuation of the work from the specialization project
where we investigated the challenges with maritime autonomous visual intelli-
gence and found that there is a necessity in terms of datasets for maritime vision-
based learning. We also reached the conclusion that altitude-aware tiled-based
object detection can benefit especially in small object detection.

Based on the leanings from the specialization project, we conducted several
experiments to build upon our hypothesis and two small field trials which con-
firmed the hypothesis.

Later we investigated two deep-learning-based methods for small object de-
tection/localization and classification in combination with a novel altitude-aware
dynamic scaling and tiling that addresses the issue of memory constraints in prac-
tical implementation.

We also propose a two-stage object detection framework that loosely decou-
ples the object localization and classification problem and allows for adaption
into domain/application-specific combinations of multiple deep-learning models
or heuristic methodologies.
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1.4 Thesis Outline

This thesis is structured as follows:

Chapter 2: Background
Covers related work, and introduces relevant theory for this thesis.

Chapter 3: Methodology
Describes the proposed system architecture, datasets, and experimental setup

and explains training and testing of the system.

Chapter 4: Results
Describes the results of the experiments.

Chapter 5: Discussion
Contains a discussion of the choice of training data, and the system architec-

ture. The experimental results, consistency with related work, and fulfillment of
the research objectives are also discussed.

Chapter 6: Conclusion and Further Work
Concludes the work, and proposes areas that could be further explored.





Chapter 2

Background

This chapter covers relevant theoretical aspects related to the thesis.

2.1 Relevant Theories and Definitions

2.1.1 Object Detection and Tracking

Object Detection

Object detection is one of the most common machine vision tasks. It is the pro-
cess of both localizing and identification of any object in an image or video frame.
When an object is recognized, bounding boxes are drawn around it, allowing us
to determine where it is in (or how it moves through) a scene. Image classification
involves assigning a class label to an image, whereas object localization involves
drawing a bounding box around one or more objects in an image. Object detec-
tion is more challenging and combines these two tasks and draws a bounding
box around each object of interest in the image and assigns them a class label.
Together, all of these problems are referred to as object recognition. Empirically
it is done by computing a mathematical filter to remove the background or iso-
late the target object with its geometric properties(edges, colors, textures, etc).
In machine learning, it is done by training a neural network or model to learn
these features from example/training data. Traditionally in machine learning, ob-
ject detection was solved using two-stage detectors like rcnns for example, the
first stage was used to detect regions of Interest and the second stage was used to
classify them([4]). That approach was accurate but quite slow. Currently, the most
popular solutions are single-stage detectors like YOLO: You Only Look Once [5] or
SSD: Single shot multibox detector [6], they are the perfect compromise between
speed and accuracy.

Object Tracking

Tracking is essentially looking at subsequent frames of the video and determining
whether the object that is seen in the first frame is the same that is seen on the next

5



6 S. Ahmed: Maritime Small Object Detection

frame. There are different types of trackers. Some of them use neural networks,
and some of them are based on calculating the intersection over the union (IoU)
between the frames. Regardless of the type, the result is usually the same, a unique
object ID assigned to every bounding box [7].

2.1.2 Maritime Aerial Object detection

Unmanned Aerial Vehicles (UAV) are a common choice for moderately high-fidelity
surveillance of sea surface with high-resolution cameras. But the problem arises
for autonomous operation in object detection algorithms as images/videos taken
from high altitude has a significantly low subject-to-background ratio. Due to
computational constraints, input images for typical machine learning models are
scaled down (ranging from 600 to often as low as 32 pixels). In that case, the tar-
get objects are spread across only several pixels in the overall image losing most
of the features necessary for detection.

Additionally, there is the problem of varying object sizes depending on the
altitude of the UAV, i.e., locating from a high altitude and then approaching to
recovery. In that case, the object size dramatically increases in subsequent frames
which also poses a problem for the detection algorithms.

Another problem with marine scenarios is that the environment is highly dy-
namic and there is high variance in color and sea state(wave patterns, etc). This is
often the motivation for using thermal cameras instead of RGB(visual light) imag-
ing. However, they come with their own set of limitations such as low fidelity, los-
ing important features based on object colors(in RGB spectrum), covariance with
environmental temperature, and reflective objects, etc.

Ground Sample Distance (GSD)

The term "ground sampling distance" describes how much a single photograph
covers ground or surface area while it is in flight. This distance is the amount of
ground the drone covers per image while flying a mapping flight with the camera
pointed downward (nadir position). GSD is the amount of facade surface area
covered by a single image taken when flying vertically and mapping a skyscraper
or facade. GSD is commonly expressed as cm/pixel. This is a reference to how
much ground or surface area a drone image covers.

GSD =
Sensor Width × Working Distance

Focal Length × Image Width
(2.1)

The greater the image resolution and the more details that can be seen in the
photos, the lower the GSD.

In simple terms, it is another interpretation of FOV in the context of aerial or
satellite imaging.
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Figure 2.1: Ground Sampling Distance taken from [8]

Tiling

Tiling is a generic preprocessing block that clips rasters into rectangle-shaped tiles.
Tiling is especially important for large raster datasets that should be broken up
into more manageable pieces to fit into memory and to improve performance.

Figure 2.2: Image broken into tiles, taken from [9]

YOLOv5

YOLOv5 is an unofficial release of the YOLO family. It is essentially a Pytorch im-
plementation of the official YOLOv4 [10] model which was built on the darknet
framework. YOLOv5 is not considered part of the official YOLO series but was
heavily inspired by the original one-stage YOLO architecture. Compared to previ-
ous versions, the YOLOv5 has a CSP backbone and PA-NET neck [11]. The major
improvements include mosaic data augmentation and auto-learning bounding box
anchors.
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Figure 2.3: YOLOv5x architecture taken from [12]

Bounding Box Anchors

State-of-the-art object detection models like EfficientDet and YOLO employ an-
chor boxes as a starting point to predict and locate objects within an image frame.
The process involves creating many anchor boxes, usually rectangles of different
scales and shapes that might fit the target objects. They may start from the centre
or around the image space and then the model predicts offsets from these boxes
to generate candidate boxes. A loss function is calculated based on a ground truth
example, and the probability of overlap between a predicted offset box and a real
object is determined determined by IoU. If the probability exceeds set threshold,
the prediction is factored into the loss function. Through a gradual process of
rewarding and penalizing predicted boxes, the models are trained to accurately
localize true objects in the image. [13]
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2.2 Literature Review

2.3 Literature Review

Different studies have been done over the years to investigate object detection
at tracking at the sea surface. [14] proposed an unmanned autonomous deploy-
ment and recovery mechanism using UAV and USV. They experimented with ac-
tive payload (the MUGs latch onto the UAV with EPM), GPS data, and are marked
with Aruco Tags with specific colors for better detection and pose-distance esti-
mation for recovery. They also conduct the experiment under the constraint that
the weather is favorable and adequate visibility is ensured. While this systems-
of-systems can be further enhanced with smarter payload design, i.e. short-range
wireless communication between the UAV and the payload for precise recovery/latch-
ing, this approach will not work in the case of passive payloads i.e, in the case of
MUGs that are out of battery or no GPS, unreadable Tags due to waves or weather
conditions, or in case of generalized floats with no active marker or homing de-
vice. Additionally, to make their landing and launching of the UAV from the USV
more robust, a gimbal-stabilized landing dock can be incorporated similarly to
[15].

In ([16]), they proposed a complete framework for UAV-based object detection
and tracking using thermal cameras and filter-based image segmentation for ob-
ject detection. They achieved this by extending their previous work on automatic
object detection and tracking ([17]) and georeferenced object detection using
onboard thermal cameras on small fixed-wing UAVs ([18]). For object detection,
they took a similar approach as [19] which is essentially a low pass gradient filter
with a threshold. For classification, they used a feature vector containing observed
object area, perceived average object temperature, and the first invariant Hu mo-
ment([20]) for 5 classes. They used Kalman filter-based tracking and a global
nearest-neighbor approach for data association. They achieve very good results
using only classical approaches.

in[21], they conducted a comparison study of object detectability under differ-
ent circumstances between Visible camera image vs thermal camera image. They
used a convolutional filter(Sobel filter) and showed how different pre-processing
i.e. RGB to greyscale conversion method using all channels or a single channel,
noise reduction can significantly affect the result as well as the filters (kernel size)
depending on the size and color of the objects. As the authors suggested, it’s rea-
sonable to believe that a Deep Learning model or CNN-based classifiers could be
used in determining detectability.

Due to the low fidelity of thermal images, although they often work better in
detecting, pose estimation for tracking becomes difficult. This is only exacerbated
by the fast dynamics of the UAV motion which leads to higher degrees of un-
certainty in its pose estimates and consequently the tracking result ([22]). They
propose a Schmidt-Kalman filter-based tracking system for UAV with a thermal
camera where they try to mitigate the negative effects originating from the uncer-
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tainty in sensor pose in tracking.

In [23], they proposed a Deep Learning based fusion technique between ther-
mal and visible light images and showed that it achieves state-of-the-art perfor-
mance in object assessment visual quality. This technique can be evaluated in the
context of Marine applications if a suitable data set is available.

In ([24]), they proposed an update to YOLOv3([25]) with a multi-dilated
module between the convolution unit and the receptive field for improving the
detectability of very tiny objects for real-time object detection in UAV scenarios.
They showed that their implementation is 2.69% faster than the original YOLOv3.
They implemented a path aggregation module for fusing the semantic information
in a deeper layer with detailed information in earlier layers. YOLO(You Only Look
Once) models are single-shot CNN models, they do classification and bounding
box regression at the same time based on the current input. Since they are com-
putationally lightweight, they do it on every input frame and achieve the effect of
real-time tracking.
Although most segmentation models like YOLO were initially created for RGB
images, recently a lot of studies have been adopting them for thermal infrared
(TIR) images. In ([26]), they trained 15 different configurations of YOLO models
on thermal images and then used the best-performing model for object detec-
tion on TIR videos from UAVs. The authors concluded in favor of qualitative and
quantitative evaluation of objection detection from TIR images and videos using
deep-learning models.
Many recent studies have attempted to do fusion between visible light camera(RGB)
and Thermal camera images to capture both low details and high-contrast features
from the thermal camera and high details low contrast RGB images. This should
potentially help the DL models to classify and segment better.
In ([27]), they proposed MFGNet, a novel dynamic modality-aware filter genera-
tion module to boost communication between visible and thermal data by adap-
tively adjusting the convolutional kernels online for various input images in prac-
tical tracking. They also introduced a direction-aware target-driven attention net-
work for global search which can further improve the final tracking performance.
While typical trackers are developed based on RGB cameras, including binary
classification-based, siamese matching-based, and correlation filter-based track-
ing which all have static kernels. According to ([27]), the static kernels limits the
typical RGB-T models in their final tracking performance. In ([28]), they looked
into existing Deep learning based RGB-T trackers and made a survey with which
they are aiming to provide as a look-up-table for other researchers in the domain.
They made a comparative study among the existing RGB-T architectures, on sev-
eral challenging benchmarks with statistics. They recommend encoding temporal
information in the tracking/detection architectures plays a major role in perfor-
mance.
In [29], they developed several ways of generating synthetic IR images using
the AIR-Sim simulator engine and CycleGAN. They also propose an Illumination
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Awareness Network (IAN) which connects two YOLOv4 models trained respec-
tively on RGB and IR datasets and fused together/filtered out in the decision
layers. But their experiment does not provide satisfactory results in fusion, and
not in synthetic IR-only benchmarks. They conclude that this is due to the lack of
features in the synthetic IR images as they are generated from RGB images.
In ([30]), they propose a novel attention-based deep fusion network for RGBT
salient object detection. They adopt a strategy of multi-layer feature fusion where,
they use two VGG16 networks to extract RGB and thermal infrared features re-
spectively, which can preserve RGB and thermal infrared features before upsam-
pling. Their comparison experiments demonstrate that their method performs
best over all the state-of-the-art methods with the most evaluation metrics. How-
ever, in development and real application, there are not enough curated(aligned
and annotated) RGB-T datasets. In practice, capturing images from two spatially
separated cameras with different FOVs will always have alignment as well. In
([31]), they address this issue by proposing a novel deep correlation network,
which builds the correspondences between modalities from the spatial, feature,
and semantic levels, for weakly alignment-free RGBT SOD which should reduce
human labor and save time and cost. They introduced Modality Alignment Module
(MAM) to handle the problem of spatial misalignment of two modalities. By im-
plicitly learning spatial affine transform and dynamically generating intermediate
representation, MAM can robustly capture the spatial correlation of two modal-
ities in challenging scenarios and a novel bi-directional decoder to enable the
model to have a great ability for information selection and suppression.
[32] conducted research on physics based image correction (scaling) for ben-

thic image image segmentation task and showed performance gain on transfer
learning. They also showed that fidelity loss due to image scaling has less per-
formance penalty compared to the performance gain achieved by the scale cor-
rection. This is specially interesting for us since we are also going to explore the
premise of sacrificing fidelity to reduce computational overhead in one of our ap-
proaches.

However, in [33], they proposed a Variational Auto Encoder(VAE) based anomaly
detector for a semi supervised object detection pipeline for underwater image seg-
mentation. They used VAE to detect objects in images as an anomaly and used
latent space clustering to automate thresholding and finally used heuristic filters
to suppress noise and extract ROI mask for segmentation. This can be beneficial
in some maritime object detection applications as there is a stark scarcity of an-
notated dataset for developing supervised machine learning algorithms. We shall
explore this approach as well in this thesis.
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Methodology

Amongst all methods for the detection of small objects, tiling [34] seems to be
the simplest and most affordable (computationally) way to solve this problem of
object detection in UAV-based SAR.

One drawback of the tiling is that it will increase the inference/detection time
(reduce the fps). For n tiles, at least n2 tiled patches (more if we need overlapping
tiles) need to be passed through the model. But, at high altitudes, an UAV’s camera
with a fixed FOV will cover a larger area,[35] resulting in the object being in the
frame for a longer duration, therefore, compensating for the low fps.

Figure 3.1: UAS field of view geometry, adopted from [35].

Whereas in low altitudes (i.e., while trying to hone onto the target), the object
is already closer (higher object-to-background ratio), we can reduce the tiling
factor (number of patches) and increase the fps which is more important now.

Therefore, the number of tiles, tiling factor n at a given moment would be a
function of the UAV’s altitude, camera characteristics, and target object size.

13
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n= f (al t i tude, camera FOV, tar get ob jec t size) (3.1)

With an RGBT setup, we can even upgrade the tiling-based system using dy-
namic patching. The low-fidelity but high contrast Thermal images can help us de-
termine the potential location of objects in the image. Instead of tiling the whole
image, we can select patches from these Regions of interest (RoI). Although it
makes the detector technically a two-stage OD. Depending on the ROI extraction
methode used, this approach can potentially run faster than the 1st method as we
are now saving a lot of inference time in the 2nd stage by only looking into the
potential portion of the high-resolution image.

3.1 Field experiment

On March 24, 2023, we conducted a small field trial to collect some aerial data
in the Trondheim Fjord in front of the NTNU Trondheim Biologiske Stasjon. The
weather was cloudy with light wind, hence a relatively calm water surface.

We used a DJI Phantom 4 to capture video clips at varying altitudes keeping
the target objects (two A0-sized red buoys) in the frame. The video was captured
in 4K (3840×2160, 30fps), camera facing downwards.

Figure 3.2: Target Object (A0 Buoy) dimension.

3.1.1 Experiment setup

For data pre-processing and annotation, we used [36] and extracted 2916 frames
from the video. For this experiment, only 224 images were cherry-picked (includ-
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ing augmentations) and annotated with bounding boxes. Figure 3.3 shows the
overview of the dataset. We used ROBOFLOW 2.0 OBJECT DETECTION (FAST)

Figure 3.3: Dataset overview.

(pre-trained on COCO) [36] to train on our small dataset for 203 epochs. Concerns
regarding over-fitting were ignored since we were only interested in detectability
vs spatial scale of the image performance.

3.1.2 Key Observations

We can see that the size of the object with respect to the background matters
significantly regardless of the resolution/fidelity (high altitude = low fidelity) of
the image. Below is the example with an image taken roughly at 52m altitude and
the detection performance (model input size 640x640) with a varying factor of
crop ratio.

Figure 3.4: Original image 3840p at 52m altitude: No Detection.

For an input frame of original 4k resolution, the model cannot detect anything.
The object occupies only 18x18p which is ~0.004% of the image area (Figure 3.4).
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Figure 3.5: Original image cropped at 1920p. Class: Buoys, confidence: 17%.

Similarly, on Figure 3.5, the object-to-background ratio is ~0.02%, and the model
can barely detect it with a confidence of 17%.

Figure 3.6: Original image cropped at 960p. Class: Buoys, confidence: 57%.

The model detects with its highest confidence in Figure 3.6 where the object-
to-background ratio is ~0.06%.

We can also see a decrease in the confidence score when the object-to-background
ratio starts getting bigger. However, in Figure 3.7, we also see that the effect of
50% low fidelity is not that significant compared to the effect of spatial scaling.
Interestingly, in Figure 3.8(a) where the object-to-background ratio is ~1% the
model classifies it as a boat. In Figure 3.8(b), full resolution 4K image, boat size
306x150p, the object-to-background ratio is similar, ~0.55%.



Chapter 3: Methodology 17

(a) Original image cropped at 480p:
Class: Buoys, confidence: 49%

(b) Cropped at 480p and resized to
240p: Class: Buoys, confidence: 42%

Figure 3.7: Same spatial scaling: Original fidelity (left) vs Low fidelity(right).

(a) Original image cropped at 240p: De-
tected Class: Boat, confidence: 38%

(b) Original image 3840p at 50m alti-
tude: Class: Boat, confidence: 32%

Figure 3.8: Same spatial scaling: Buoy (left) vs Boat(right).

3.1.3 Field Experiment Takeaways

This simple test confirms the hypothesis about benefiting from a two-stage object
detection where the first stage would produce potential ROI and the 2nd stage
will work on those “zoomed/cropped” sections of the image.

It’s also important to note that from a high-altitude aerial image, a lot of the ob-
ject fidelity is lost and presumably, the model is only learning to identify “anomaly”
on the water surface and deciding a label based on the size(background-to-object
ratio) of it since it does not have enough information to accurately discern a class
label. This also makes sense if we look at the model architecture of most modern
OD (Object Detection) models, for example in [2] uses predefined anchor boxes
of different scales.

Therefore, it would be necessary to train and infer the model(2nd stage OD)
with the roughly same size(background-to-object ratio), in other words, spatial
scaling.
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3.2 Proposed System Architectures

Figure 3.9 shows the two proposed pipelines. Figure 3.9a presents the workflow
of a single-stage OD with the proposed Dynamic Tiling(Spatial scaling and tiling).
Figure 3.9b proposes an alternative to the first approach where we decouple the
detection and recognition tasks into two stages.

(a) Dynamic Tiling (one stage detector)

Figure 3.9: Proposed high level System Architectures/pipelines.
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(b) Dynamic patching (two stage detector)

Figure 3.9: Proposed high level System Architectures/pipelines.
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3.3 Dataset

For experimenting and development, we selected the SeaDronesSee Dataset [37].
It is the first large-scale annotated (including camera metadata like altitude and
gimbal angles/camera orientations ) UAV-based dataset of swimmers in open wa-
ters. The class labels are swimmers (swimmers with and without life jackets),
life saving appliances, boat(speed boat), buoy(green and red), and jet-ski. The
dataset offers several challenges, i.e., object detection, single-object tracking, and
multi-object tracking. We only used the Object Detection v2 for our purposes.
This set contains around 8.9K Training, 1.5K validation and 3.7K test images and
annotations in COCO-json format [38]. A detailed overview of the dataset is also
attached at Appendix A.

The authors have a brief description in their website about the data acquisition
process. We got further insight from the annotation files which also contains image
meta data in for most of the images. Presumably, the images were captured using
a DJI Mavic series quad copter (4k resolution image frames extracted from video)
from altitude ranging between 9-140 meters, and a Trinity F90 series fixed wing
drone which produced (in the training and validation sets) two types (mostly high
altitude) images: i. 3172 images of 5456x3632 pixels (20M) resolution without
altitude information, ii. 500 RGB images from a Multi-spectral camera of size
around 1230x 930 pixels(altitude range from 20-259 meters, but mostly 200+).
See Figure 3.10.

Upon careful visual inspection of apparent object size(dimensions in pixels)
of (i.e., the boats) known objects, and comparing them between other images,
using Equation (3.2) which is based on simplified pinhole camera model [39], we
estimated that the 20M images are mostly take from altitude beyond 200 meters.

Real Height =
Image height ×Ob ject distance

f ocal leng th
(3.2)

3.4 Approach 1: Dynamic Tiling

Figure 3.9a illustrates the basic premise of the dynamic tiling concept in a easy to
understand manner. However, the actual implementation is a little different. Be-
cause of the way GPU’s micro architectures and memory busses are designed, most
CNN based deep-learning models on GPU work faster (optimally) at fixed(specific)
sizes of input images. For example, in case of [40], the authors recommend input
sizes that are multiple of 32 in their paper presentation. Furthermore, with a vary-
ing size of input image, it increases the chance of run-time GPU crashing due to
memory overflow.

In [35], they showed an optimal/minimum image resolution p̂ can be cal-
culated based on altitude h, camera apparatus: FOV ϕ̂ (degrees), target objects
dimension ob j, recognition criterion (minimum pixel print) rec, and proposed
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(a)

(b)

Figure 3.10: Dataset Image Altitudes
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the following equation:

p̂ = 2h tan
�

ϕ̂

2

�
√

√ rec
ob j

(3.3)

Now, using Equation (3.3), instead of directly calculating n, we can first down
scale the UAV image frame to the minimum/appropriate dimension (based on
DORI, Jonson’s[41], [42] or some other criterion based on experiments) at any
particular altitude(or altitude range). And then perform a predefined fixed-sized
(based on UAV’s onboard computer’s memory capacity) sliding window/sliced
inference. In our implementation, we are using SAHI (Slicing Aided Hyper Infer-
ence) [43] with YOLOv5 [2] backend. The same authors published SAHI [44],
a vision library for large-scale object detection and instance segmentation which
provides most of the tools for segmented inference and result aggregation out of
the box. Figure 3.11 shows a block diagram of the implemented pipeline. Here
P1, P ′2, ..Pl are the tiles/patches generated by SAHI during inference.

Figure 3.11: Implemented System architecture: Altitude Aware Tiled Inference.
Modified from [43]

How SAHI works: The input image I is divided into N xN overlapping patches
P1, P ′2, ..Pl . Object detection is then performed on each patch separately. The pre-
dictions from the overlapping patches are merged back into the original size using
Non-Maximum Suppression (NMS). During NMS, boxes with Intersection-over-
Union (IoU) ratios higher than a specified threshold Tm are matched, and detec-
tions with detection probability lower than Td are discarded.

The authors of SAHI also maintained that, when the patch size is decreases(more
tiles in same image area), it also increases the chance of larger objects not fitting
entirely within a single patch, which hurts performance. We can interpret this in
our context that, when an UAV is decreasing altitude, for example, homing onto
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a floating asset for recovery, the apparent pixel-print of the will be increasing,
therefore, simple fixed number tiling will hurt performance.

To mitigate this problem, in this experiment, we will investigate the efficacy
of our proposed altitude aware Dynamic Spatial Scaling(DSS) using the SAHI
framework.

3.4.1 Dataset Preprocessing

As the ground truth annotations for the test set is withheld by the organizers, we
skipped the original test set, merged the train and validation sets and created a
new train-val-test split (70%-20%-10%) using Roboflow [36]. A detailed overview
of the dataset used is attached in Appendix A.

Training sets Preprocessing

For the training and validation sets, the images were tiled in 4(2x2) images with-
out applying any other augmentations using Roboflow. Then we filtered the gen-
erated images so that at least 80% of the image segments contains objects. Fig-
ure 3.12 shows the result of the described steps. Note that this process also gen-
erated tiled test sets which was discarded.

Figure 3.12: Preprocessing of Training sets

Test set Preprocessing

First we generate Table 3.1 using Equation (3.3) for an object of size 0.48 m2 (typi-
cal human size, 0.3m x 1.6m ) and considering the detection criterion to minimum
80 pixels2 as suggested on [35]. Although, later we will see why this is not a uni-
versal criterion and depends on application domain and model architecture, for
this experiment, we will continue using this as the base line.

Since our dataset is not uniform and contains images of different sizes and
qualities, and to simplify things, we scale the original images (of our test set) into
multiple fixed bins based on Table 3.1 but constrained by actual image quality/res-
olution and generate two test sets. Table 3.2 shows the details of the produced two
test set’s after image scaling.
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Table 3.1: Minimum image sizes (in pixels) at different altitudes

Altitude p̂ p̂ (DJI) p̂ (trinity)
(meters) (trinity 20M) (MAVIC 4K) (Multispectral RGB)

FOV 73◦ FOV 65◦ FOV 50◦

10 191 164 95
20 382 328 190
30 573 493 285
. . . .
. . . .
240 4585 3947 2284
250 4776 4112 2379

Table 3.2: Test Set Image Size Scaling (in pixels)

Image source Image Size Altitude Scaled V1 Altitude Scaled V2

Trinity 1330x930 0-50 640x480
Multispectral 50-150 1152x864 0-150 1152x864
RGB 150+ 1664x1248 150+ 1664x1248

DJI Mavic 3840x2160 0-50 640x360 0-30 640x360
4K 50-90 1152x648 30-60 1152x648

90-110 1664x936 60-90 1664x936
110-130 2176x1224 90-120 2176x1224
130-150 2688x1512 120-150 2688x1512

Trinity (20M) 5456x3632 missing 3712x2470 missing 4224x2816
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Figure 3.13 shows the object area(pixel-print) comparison between the orig-
inal and the two scaled versions of the test set. From Figure A.1, we know that
most of our annotated objects are from swimmer class, hence small objects. How-
ever, from the annotation histogram in Figure 3.13b, we can see that around 40%
of the annotations in the original dataset (test set) are in medium group. This
indicate high scale variance of apparent object sizes in the pictures. After scaling
(DSS), We can see that most of the objects are now small objects and the small-
medium-large distribution did not change much between our two test sets, and
the pixel-print distribution is more inline with the physical size of the objects.

(a) Original

Figure 3.13: Test set’s annotation area. Left: Scaled v1, Right: Scaled v2.
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(b) Original

Figure 3.13: Test set’s annotation area. Left: Scaled v1, Right: Scaled v2.
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3.4.2 Model Selection

We selected YOLOv5 [2] as our object detection model for this experiment. This
could be done using any of the SOTA object detection models, but we decided
to use YOLOv5 as it is one of the best OD models. It is actively maintained, easy
to implement, supports a variety of OD tasks including Bounding box detection,
classification, segmentation and most importantly, has built-in support for SBCs
like Raspberry Pi and NVIDIA Jetson for field deployment in the future.

3.4.3 Training

We are using the s (small) variant of YOLOv5 model, with the official Checkpoints
(predefined weights with 300 epochs on COCO dataset) named “YOLOv5s”. Fig-
ure 3.14 shows benchmarks for some of the official models.

Figure 3.14: YOLOv5 official (pre-trained) models, figure taken from [2]

We trained the pre-trained yolov5s model for 200 epochs using the default
configuration at 640 pixels resolution (image’s longest side resized at 640 keeping
aspect ratio). Since our training datasets are 2x2 tiled, essentially, we trained the
model at 1280p resolution of the input images(regardless of their source) and 2x
scale of their original pixel-print in the source images. Although, tiled training
does not directly translate to resolution scaling, it at least enabled the model to
see much finer details at the training resolution(640) which would have been
lost due to down sampling, i.e., 5456x3632 images from 200+meters altitude,
down sampled to 640x426 will not have any discernible features to detect the
swimmers. We did not strictly (Dynamically) scale the training sets as YOLOv5
is to some extent scale invariant by design thanks to its normalized auto-anchor
algorithm and mosaic augmentation. Figure 3.15d shows how the training input
is augmented into mosaics of random scales. The authors claims, this helps the
model to learn to recognise same objects at different scales [12].

Mosaic Augmentation (YOLOv5): According to the YOLOv5 developers [2],
each time an image is loaded for training, online imagespace and colorspace
augmentations are applied in the trainloader (training dataloader) to present a
new and unique augmented Mosaic (original image + 3 random images). Mosaics
are created randomly ensuring that images are never presented twice in the same
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way.
Training statistics: Figure 3.15 shows the taring matrices over 200 epochs.

The F1-confidence graph in Figure 3.15b looks good for all classes except “life-
saving-appliances” and we will discuss about it further in the discussion section.
However, if we look at the confusion matrix Figure 3.15c, we see that our model
is also detecting a lot of false positives for “swimmer” class, one of the smallest
classes in terms of object size. The consequences of this will be apparent in Sec-
tion 4.1.

(a) Training epochs

(b) F1-confidence score(training) (c) Confusion Matrix(training)

Figure 3.15: YOLOv5s Training statistics (200 epochs). mAP50= 0.69, mAP0.5 :
0.95= 0.45 on validation set
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(d) Training time Mosaic augmentation(Exhibit: 16 samples from training batch 1)

Figure 3.15: YOLOv5s Training statistics (200 epochs)
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3.5 Approach 2: Dynamic Patching using Anomaly Detec-
tor

This experiment will focus on the first stage/part of the proposed 2-stage small
object detection pipeline (Figure 3.16).

Figure 3.16: VAE Anomaly detector based two stage Detection.

The aim of this experiment is to train an anomaly detector with “background”
images of marine aerial view and use it to identify objects as “anomalies” in the
scene. The intuition is that since we have a scarcity of maritime aerial image
datasets and in those datasets, objects are sparse in the spatial dimension, mean-
ing, we have (relatively) a lot more information about the water surface than
the target objects. Due to the nature of this outlier detection algorithm, the semi-
supervised approach can also solve or at least ameliorate one of the most hindering
challenge of Maritime Deep-learning application, not having annotated dataset.

3.5.1 Experiment Setup

The original dataset is in COCO format.

Dataset Pre-Processing

First, the dataset was converted into YOLOv5 format using a Python script and
then uploaded into Roboflow. All the images contain at least one object in them,
but sparsely distributed (most of the image area is background). Therefore it was
faster and easy to just slice/cut the images into pieces to get some images with no
objects. The images were tiled into 2x2 blocks (same as Section 3.4.1). Then we
divided the tiled images into three sets: i. Inlier set (Background Images contain-
ing only water surface), ii. Outlier set (Images containing at least on object) and
iii. Mixed set (containing both background and images with objects).
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3.5.2 Model Description(VAE anomaly detector)

Alibi Detect library [45] in TensorFlow was used to streamline the training and
for its dynamic thresholding features.

We trained our VAE model with only Inlier set so that the encoder part of
the model learns how to compress the information into the latent vector which is
commonly referred as “code” without loosing the most essential features and at
the same time, the Decoder part learn to reconstruct the original image based on
the information from the compressed latent vector. The difference between the
input image and the reconstructed image is the loss of the model and the model
learns to minimize it. Since we are only feeding it inlier images(background), it
optimizes, or we can say learns the non-linear mapping from image space to latent
space and back to image space but only for background images.

Therefore, when we feed any image containing objects, the model can not
properly encode and therefore also decode that region of the image and the recon-
struction loss around that portion of the image becomes significantly higher. After
thresholding and a little bit post processing(smoothing/blurring/max-pooling),
this reconstruction loss tensor gives us our 2D mask for object localization or seg-
mentation depending on the application.

We can potentially feed the VAE network with the mixed set where we know
the inlier to outlier ratio and calculate the threshold value online. Although, in
our experiment, the builtin threshold function of alibi-detect did not perform that
well. Presumably, this is due to the fact that it computes the threshold based on
per pixel value but we provided inlier to outlier ratio based on image counts.

VAE Network

After several trials, we decided to use the following CNN based encoder-decoder
network (Figure 3.17) for our VAE model considering the memory limitation on
our development computer. Please note that, this may not be the best/optimal
configuration for this task. An optimal network size could be determined, for ex-
ample, through a grid search on the model and tuning the input size and latent
size as hyper-parameters as shown in [33].

Dataloader with Input Scaling

Unlike fully convolutional networks (i.e., yolov5, FCNN, RCNN etc), the VAE has
dense/fully connected layers at the end of its CNN encoder and beginning of its
Decoder. The downside is that, The VAE network can not be scaled at runtime
like FCNN or YOLO and the input size has to be fixed. This can be a problem if
the images are from multiple source like we have in our dataset or if we want
to optimally train/run our model on different computers with different memory
capacity. To streamline our development process, across multiple work stations
(i.e., different lab PCs with different GPU or Google Colab) we decided to go with
a smaller VAE Network, only 64x64 input size. Normally, this would be too small
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(a) Encoder Network

(b) Decoder Network

Figure 3.17: VAE model details
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for the images to have any features for small objects. However, in our custom
dataloader, we are chopping the images into predefined tiles/patches i.e., 2x2,
3x3, and 4x4 patches similar to the first approach (Section 3.4) but based on
image resolution instead of altitude. We are then feeding the pieces to the network
as a batch. On different machines, one would only change the batch size to fully
utilize the GPU rams. Table 3.3 shows the scaling bins and resulting number of
patches generated.

Table 3.3: Dataloader Image Scaling and patching

Input Size Scaled Size No. of Patches

(shorter side in Pixels) (w/64 x h/64)
128-256 128 4
256-512 256 16
512+ 512 64

This allowed us to use the same network on all devices and achieve a pseudo
scalability. Figure 3.18 illustrates the input scaling and patching pipeline. On the
output side, we essentially do the same in reverse and unpatchify the results. Un-
like OD models like YOLOv5, here, we can create any (reasonable) number of
patches without thinking about cutting the objects. Since our VAE model is object
agnostic, it can still detect parts of the object in the patches as anomaly without
performance penalty. This also allowed us to avoid overlapping patches which in
turns also helps performance (inference speed).

We could also employ the altitude aware spatial scaling approach (Section 3.4)
here and check whether it makes much difference. This shall be explored in a
future project.

Figure 3.18: Input scaling and patched batching
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3.5.3 Training

For training the model, we took 999 images from the inlier dataset and this gener-
ated a training set of ∼16K patches of shape (64,64,3). The images were sampled
manually to make sure that the training set contains background images over a
varied weather and lighting condition (i.e., water color, reflections, wave). Sim-
ilarly, we sampled 125 outlier images for our test set and for thresholding, 275
from the mixed set with a 200:75 inlier to outlier ratio (∼30% images with at
least one object).

We have trained the network for 50 and 100 epochs with our proposed scaling
algorithm. We are also going to present some test examples without the scaling
mechanism.

Test Case 1

20 epochs training with 128x128 pixels input and 1024 latent size.
Inlier samples(train+val set): 999 images of clean water of different colors(resized

to input shape) Outlier sample(test set): 100 images with objects.

Test Case 2 and 3

50 and 100 epochs training with 64x64 pixels input and 1024 latent size. Patching
enabled (∼16K patches).

Thresholding and filtering (ROI Extraction)

Compared max pooling, knn and different heuristic filters on the VAE results using
[46] for ROI mask extraction.



Chapter 4

Results

4.1 Approach 1: Dynamic Tiling (DSS)

For benchmarking, we first ran our YOLOv5s model with the test set’s original
images in default model resolution (640px). This is our baseline 1 for evalua-
tion. To compare how the model would perform in best case (without resource
constraints), we also ran the model in full image resolution. Then we ran our
model on the two test sets (Scaledv1 AND Scaledv2) with SAHI enabled (shown
as DSS+SAHI). SAHI was configured with default parameters (640x640 pixels
tiles/slices, 20% overlap). We also ran a test on the original images with only
SAHI to compare inference time (average fps was calculated for all 1075 test set
images) and this is our baseline 2.

Figure 4.1 shows the evaluation results for full resolution, resized(640pixels)
and spatially scaled(ours) inputs. These are standard coco evaluation plots gen-
erated by coco error analysis tool. The left column shows the precision-vs-recall
curve, where the area under the curves are mean average precision (mAP) over dif-
ferent IoU thresholds. For example, c75 means mAP at IoU=0.75. Sim(supercategory
false positives (fps) ignored.) score can be ignored here as all our target classes
were annotated under the same supercategory in the annotation files (happened
during conversion from original to yolov5 format in roboflow). Or we can simply
consider it as a detection score here(all target classes considered same). On the
right column, we can see the same scores in a bar-chart and detailed for small,
medium and large objects (according to ground truth annotation pixel areas). Ta-
ble 4.1 shows the scores for all the five test set experiments and their average
fps.

Figure 4.2 shows a FPS vs mAP comparison for all the test cases.
From Table 4.1, we can see that our proposed method brings significant perfor-

mance gain compared to our baseline 1 score which performs poorly as expected.
Most notably, for small objects, it also out performs the SAHI baseline which has
the overall best performance in terms of inaccuracies. Large and medium size an-
notations are only a small portion of our dataset, and all models did relatively well
on them. The greatest improvement our proposed method brings is in terms of in-
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Figure 4.1: Test set performance Matrices; Original image: full resolution(top),
Original image: resized @640(mid), Scaledv2: DSS+SAHI@640 (ours)(bot).

Table 4.1: Mean average precision values and (average)fps calculated on out test
sets. The bottom two rows are scores for our proposed method. Red colored are
indicative of bad performance while green remarks improvement

Setup mAP mAP50 mAP50 mAP50 mAP50 FPS
small medium large (avg)

Original image(full res) 0.29 0.52 0.21 0.71 0.91 0.64
Original image(640px) 0.16 0.35 0.34 0.88 1.00 7.00
Original image(SAHI) 0.34 0.62 0.42 0.75 0.91 0.60
ScaledV1(DSS+SAHI) 0.25 0.48 0.45 0.68 0.97 2.60
ScaledV2(DSS+SAHI) 0.27 0.52 0.47 0.73 0.97 1.87



Chapter 4: Results 37

(a) all sizes

(b) small targets

Figure 4.2: FPS vs mAP comparison
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ference time. We can see from Figure 4.2 and Table 4.1 that while we are within
comparable range in terms of mAP, or even out performing every other methods
for Small objects, we are doing it in 269% and 374% faster than SAHI. We also see
a positive co-relation with larger recognition criterion (minimum pixel print) and
greater accuracy, albeit at the cost of slower speed. ScaledV2 performs slightly
better than ScaledV1 but also 27% slower.
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4.2 Results: Anomaly Detector

For evaluating the anomaly detector, we test our model with a hand-picked set of
test images from the test set ensuring a wide variety of lighting, different image
source and object sizes are present. Figure 4.3 shows the preliminary result of
the VAE before implementing input scaling. We can see that model is only able to
reconstruct the average color of the input image and the outlier score is not that
good for small objects.

4.2.1 VAE Outputs

Figure 4.3: anomaly detection result for Test Case 1 (input scaling disabled, input
size 128,128,3 pixels)

Figure 4.4 and Figure 4.5 shows the VAE outputs on our test images after
50 and 100 epochs of training with input scaling and patched batching enabled.
we can see that the reconstruction image looks much more realistic for the inlier
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part. However, we did not observe any performance difference between these two
models. Both were reliably able to detect small objects or even very small part of
an object (Figure 4.7 first row).

Figure 4.4: Test case2 VAE(50 epochs) results. The last two rows are images from
outside the dataset to show robustness

We can also see the model was robust enough to perform relatively well on
two random images from the internet.

4.2.2 Comparison with OpenCV

Figure 4.6 shows an example on two images and compares with simple OpenCV
edge detection. Here we can see the justification of a computationally expensive
deep learning model instead of normal heuristic filters. While our model per-
formed consistently in two images with a very different lighting and water con-
dition, the openCV filter(ostu) fails miserably in one of the images while being
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Figure 4.5: Test case3 VAE(100 epochs) results. The last two rows are images
from outside the dataset to show robustness
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almost perfect on the 2nd image. This goes to show that, huristic approaches are
cheaper and faster but does not adopt well in dynamic conditions.

Figure 4.6: Comparison of our VAE model(100epochs) with OpenCV(otsu)
filter(right-most column)

4.2.3 ROI extraction

We did not implement the complete pipeline for the two stage object detection,
however propose a very simple and inexpensive max-pooling operation for ex-
tracting ROI coordinates. We show the result of our simple ROI extraction method
using Maxpooling in Figure 4.7. For an object detection task, this should be enough
to extract image coordinates of high probability locations or hot-spots. We can
later decide an optimal patch size based on our altitude aware scaling functions
depending on target object size and camera specifications.

Thresholding and Filters for post-processing

In Figure 4.8 we show a comparison for Maxpooling vs k-NN clustering and Me-
dian blurring. Notice that while k-nn is bringing in some noise suppression, me-
dian blurring is suppressing a lot of noises, but it is also pulling the outlier peak
down.

Binary Mask extraction Using OpenCv filters

Figure 4.9 shows sample outputs of different OpenCV thresholding filters which
can be useful in case of segmentation based tasks. In our tests, we see that Yen and
Triangle performs most consistently across different examples. However, Triangle
method often generates more false positives than Yen and Yen often misses small
objects.
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Figure 4.7: ROI heat-map generation using Max-pooling

Figure 4.8: Comparing max-pooling vs k-NN clustering vs Median blur(used in
[33]) for noise/artifact suppression
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Figure 4.9: Visual comparison of different thresholding filters in OpenCV for bi-
nary mask extraction



Chapter 5

Discussion

5.1 Approach 1: Result analysis

In our experiment we were able to clearly demonstrate the efficacy of our pro-
posed altitude aware dynamic spatial scaling and the benchmark results were in
per with our hypothesis. However, we could not compare them against other pa-
pers as we have customized our dataset and re-balanced the test-val-train split.
Therefore we only highlight the relative performance gain of our approach rather
than comparing with SOTA benchmarks. This is also because of the fact that a
good deep learning model needs careful hyper parameter tuning to achieve best
performance. Since we were dealing with several architecture, it would simply be
too time and resource consuming to individually tune the detection models for
each approach and then benchmark. To save time and resource exhaustion, we
trained the YOLOv5s model with default configuration and relatively small input
resolution. This has lead to the overall low mAP score for all the benchmarks.
Revisiting the training statistics and training confusion matrix, we know that our
detection model had bad score for swimmers and life saving appliances classes.
This is the reason our best test scores are still far below SOTA benchmarks which
one might expect from a SOTA model. However, as our intention was to not give
any particular algorithm advantage over the others, conduct a fair apple to apple
comparison, and show a algorithmic supremacy under similar constraints, we be-
lieve it was a fair experiment. Another point to note that, our dataset, although
one of the best (of the very few) maritime object detection datasets out their, the
mixture of multiple image sources of very different image quality, class imbalance,
missing metadata, samples with redacted pixels, altitude imbalance all has con-
tributed adversely in the development process and goes to show that there is a
huge lack of dataset choices for Maritime computer vision development.
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5.2 Approach 2: Result analysis

In this experiment, we wanted to explore an alternative way for maritime ob-
ject detection. Our experiments shows promising results and a clear indication of
potentials. Although this might not be applicable for real-time missions on UAVs
due to high computational requirement, in some offline or ground-linked applica-
tions, this approach can mitigate the lack of supervised learning’s biggest hurdle,
annotated data.

The authors of our dataset did not intend it for segmentation based applica-
tions and we did not have ground truth annotations for such application. There-
fore, we did only manual benchmarking in the result analysis and did not pro-
vide any typical benchmarking matrices. Furthermore, our pseudo input scaling
mechanism, which steamed from the development hurdle, proved to be a simple
and effective tool. This shall be further investigated and we should also combine
our Dynamic scaling technique with this approach to see if any potential benefit
comes out of it. We kept the VAE model relatively simple, and did not do any hyper
parameter search for optimal latent code size. This can potentially increase per-
formance and reduce memory overhead. As this was an additional exploration on
top of the first approach, we only intended for this experiment to be a preliminary
investigation for a future work. However, the promising results from this relatively
non-exhaustive experiments warrants a through investigation in the future.



Chapter 6

Conclusion

The overall goal of this thesis was to research the fundamental challenges with
maritime small object detection and investigate possible solution with deep learn-
ing based approaches. We proposed two high level object detection pipelines and
through extensive experiment, proposed a novel altitude aware dynamic spatial
scaling technique that allows us to use SOTA deep learning framework for mar-
itime aerial object detection. In our experiment including one small field trial, we
were able to show significant performance gain while solving the constraint on
memory requirement for field applications. Our proposed algorithm was able to
beat SOTA frameworks by a clear margin in our benchmarks. We were also able to
increase detection accuracy for small objects while reducing detection time (fps
gain) and memory overhead.

Additionally we also investigated a semi-supervised anomaly detection based
object detection approach which addresses the lack of annotated dataset in mar-
itime context. We were again able to show positive outcome. As a byproduct, we
also developed a input patching/tiling mechanism that gives us a pseudo scal-
ability on rigid deep learning models like the VAE used in this thesis. This also
improved our models ability to detect anomaly(object) even for very small ob-
jects on aerial images.

6.1 Future Work

The first natural continuation of this thesis would be to develop the architecture
further and conduct field experiments with SBCs. In this thesis, to maintain con-
sistency and comparability, we only used one model (YOLOv5), we should also
explore other deep-learning models. As our proposed framework is architecture
agnostic, there is an opportunity to integrate with SOTA vision libraries or de-
velop a standalone platform like SAHI. We should also investigate this technique
to general aerial vision application as this solves or at least paves a way to handle a
fundamental challenge regarding small object detection on real-time application.

Furthermore, in the maritime context, we need to explore our anomaly based
object detection approach with thermal and hyper-spectral images as most field
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application in the recent time are equipped with these advanced cameras but
deep-learning based research is still lacking behind other areas. Although this was
part of our intended area of investigation of this thesis to explore deep learning
algorithm with thermal+visual light imagery, due to unavailability of a dataset
in due time, we could not explore this area. This would be an important inves-
tigation to do qualitative analysis whether sophisticated deep learning algorithm
brings significant performance gain in thermal maritime images or heuristic ap-
proaches are still superior.

Furthermore, a lot of practical challenges needs to be addressed before using
these methods in field applications.
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Appendix A

Dataset Insights

(a) Dataset Overview (b) Annotation Heatmap (all classes)

(c) Histogram of Object Count by Image (d) Image dimensions

Figure A.1: Dataset Insights (generated by [36])
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(e) Image Altitudes

Figure A.1: Dataset Insights (generated by [36])



Appendix B

Link to project Code

https://github.com/ahmadSum1/NTNU_mscThesis
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Appendix C

Maritime Datasets Review

Over the course of this thesis and the specialization project we explored many of
the contemporary computer vision datasets intended for maritime applications.
Below is a list of some of the most prominent maritime datasets:

• SeaDronesSee [37]

◦ Object Detection V1 and V2(Used in this thesis)
◦ Single-Object Tracking
◦ Multi-Object Tracking
◦ Multi-Spectral Object Detection Dataset
◦ Synthetic SeaDronesSee dataset

• The Seagull dataset [47]
• MODS Obstacle Detection and Segmentation Benchmark [48]
• MOBDrone: a Drone Video Dataset for Man OverBoard Rescue [49]
• Other maritime dataset

◦ Horizon detection Ground Truth and videos for Mar-DCT dataset [50]
◦ Horizon detection Ground Truth and videos for Buoy dataset [51]
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