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Preface

This master’s thesis is written as part of the study program Engineering and ICT at the
Norwegian University of Science and Technology (NTNU). The thesis aims to analyze
different dynamic positioning observer designs utilizing derivative free optimization for
autotuning. During offshore operations, the DP systems are critical for maintaining the
position and heading of marine vessels, and a reliable observer is needed for the safe and
efficient operation of these.

All model-scale tests have been performed using the Department of Marine Technologies
testing facility, the Marine Cybernetics Laboratory. This thesis presents a literature review
of observers and derivative free optimization, a comparative study of different observer
designs, and a methodology for autotuning observers. The observers are tested using the
model scale vessel C/S Arctic Drillship, C/S Enterprise, and C/S Jonny, located in the
marine cybernetics laboratory, demonstrating the practical application of the observers.

i



Abstract

The Marine Cybernetics Laboratory (MC-Lab) has a growing fleet of cybership vessels used
in masters thesis and Ph.D. research. The thesis compares Dynamic Positioning Observer
(DPO) algorithms relevant to the cybership models, including robust bias estimation and
wave filtering capability. The method is implemented in the MC-Lab, focusing on the
experimental model vessel C/S Arctic Drillship.

The thesis considers the Linear Time-Varying Kalman Filter (LTV-KF), the nonlinear
passive observer, an observer design based on the small-gain principle, and an observer
design based on the Lyapunov transformation. A particular focus on the observer al-
gorithm based on the small-gain principle. Furthermore, the wave filtering properties
are the only component of the nonlinear passive observer that is used. The observer
algorithms’ stability properties and manual tuning guidelines are investigated.

A Graphical User Interface (GUI) is added as an addition to the Human Machine Interface
(HMI) of CSAD. The new GUI allows the operator to monitor and interact with the
system. It includes realtime plotting of the actual, estimated, and desired position and
heading. It also contains functionality to tune observers in realtime and is fully integrated
with the CSAD ROS stack for use in Hardware-in-the-Loop (HIL) and model-scale testing.

The observers are tuned using Particle Swarm Optimization (PSO), not relying on the
derivative of the objective function. The deterministic observers use the injection gains
as optimization parameters, and the LTV-KF uses the process-noise covariance matrix Q.
The integral of absolute error (IAE) is selected as the Performance Indicator (PI) used as
the objective function.

The observers are tested using a 4-corner test and a 2-step 3 DOF transient maneuver
defined as a combined motion test. The tests were implemented in Python and run
using the Robotic Operating System (ROS) to function in realtime. Position and heading
signal dropouts were used in combination with the combined motion test to test the
deadreckoning capability of the observers.

When operating in calm waters, the performance of all the observers was similar. However,
the thesis concludes that the LTV-KF is the best performing observer for CSAD regarding
the accuracy and deadreckoning capability when operating in rough and very rough sea
states. The observer design based on the small-gain principle was implemented for CSE
and CSJ with a good position and heading estimation but was only tested in calm water.

ii



Sammendrag

Det Marin Kybernetikk Laboratorium (MC-Lab) har en voksende flate av kyberskip som
brukes til masteroppgaver og doktorgradsforskning. Denne master oppgaven sammen-
ligner Dynamisk Posisjonering Observer (DPO) algoritmer som er aktuelle for kyberskip-
modellene, med egenskaper som robust estimering av bias og evne til bølgefiltrering. Met-
oden er implementert I MC-Lab, med spesielt fokus p̊a modellb̊aten C/S Arctic Drillship.

Oppgaven vurderer Lineær Tids-Varierende Kalman Filter (LTV-KF), den ikke lineære
passive observeren, et observer design basert p̊a small-gain prinsippet og et observer
design basert p̊a Lyapunov transformasjon. Det legges spesielt vekt p̊a observer algor-
itmen basert p̊a small-gain prinsippet. Videre brukes bare bølgefiltreringsegenskapene til
den ikke-lineære passive observeren. Stabilitetsegenskapene til observer algoritmene og
retningslinjer for manuell justering av observer parameter undersøkes.

Et Grafisk Brukergrensesnitt (GUI) er lagt til i Menneske Maskin Grensesnittet (HMI)
til CSAD. Det nye GUI-et lar operatøren overv̊ake og samhandle med systemet. Det
inkluderer sanntidsplotting av faktisk, estimert og ønsket posisjon og retning. Det in-
neholder ogs̊a funksjonalitet for å justere observere i sanntid og er fullt innlemmet med
CSAD sin ROS-stakk for bruk i Hardware-in-the-Loop (HIL) og modell tester.

Observer parameterne blir justert automatisk ved hjelp av Partikkel Sverm Optimalisering
(PSO), uten å være avhengig av den deriverte til m̊alfunksjonen. De deterministiske
observerne benytter justerings parameteren som optimaliseringsparametere, mens LTV-
KF bruker kovariansmatrisen for prosess støy Q. Integral til Absolutt Feil (IAE) er valgt
som Ytelsesindikator (PI) og brukes som m̊alfunksjon.

Observerne blir testet ved hjelp av en 4-hjørne-test og en 2-trinns transiente manøver i 3
frihetsgrader som er definert som en kombinert bevegelse test. Testene ble implementert
i Python og kjørt ved hjelp av Robot Operativ System (ROS) for å fungere i sanntid.
Tap av posisjon og retnings signal ble brukt i kombinasjon med den kombinerte bevegelses
testen for å teste observerne sin deadreckoning-evne.

Ved operasjon i rolig farvann, var prestasjonen til alle observatørene relativt lik. Imidlertid
konkluderer oppgaven med at LTV-KF er observeren med best ytelse for CSAD med hen-
syn til nøyaktighet og deadreckoning-evne n̊ar man opererer i grov sjø. Observer designet
basert p̊a small-gain prinsippet ble implementert for CSE og CSJ med god posisjons- og
retningsestimering, men ble bare testet i rolig vann.

iii
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Chapter 1
Introduction

1.1 Motivation

The field of autonomy has made significant progress in the last decade. Great advances in
artificial intelligence and machine learning in parallel with computational power continue
to grow rapidly. It has made fully autonomous vehicles a feasible concept, not just in the
automotive industry but also in the maritime sector. Projects such as the fully autonomous
container vessel Yara Birkeland, and autonomous ferries in Stockholm orchestrated by
Zeabus, demonstrate the potential of autonomous vessels.

Although significant progress has been made, an autonomous marine system is highly
reliant on a solid Dynamic Positioning (DP) system to perform its tasks. The Dynamic
Positioning Observer (DPO) plays a central role in the DP system, providing state estim-
ations that are accurate and reliable based on knowledge of the system and measurements
of its input and output.

Observers are well-known in control theory, and there exist a number of papers presenting
different observer algorithms and designs tested for DP. The Kalman filter was presented by
Grimble et al. (1980) and the Extended Kalman Filter (EKF) by Balchen et al. (1976) and
Saelid et al. (1983). Afterward, experimental results of a DP system using an EKF were
presented by Tannuri and Morishita (2006). The nonlinear passive observer was presented
by T. I. Fossen and Strand (1999) and tested in a full-scale experiment on a supply vessel.
However, there are few papers with a careful comparison of the different observers used
in DP. T. I. Fossen and Strand (1999) argued how the nonlinear passive observer had
some benefits compared to the EKF, including having fewer tuning parameters and being
proven Uniformly Globally Exponentially Stable (UGES).

This thesis aims to conduct a comparative study of different DP observers, evaluating
their strengths and weaknesses using both numerical experiments and model-scale tests
in the Marine Cybernetics Laboratory (MC-Lab). Specifically, the thesis will examine
the performance of the four DPO: the Kalman filter, a nonlinear passive observer, an
observer design based on the small gain principle, and an observer design based on a
Lyapunov proof, not including a wave filter. The performance of the observers is measured
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through different Performance Indicators (PI) concerning the observers’ accuracy, ease of
implementation, ease of tuning, and stability properties. In order to tune each observer as
fairly as possible, a Derivative Free Optimization (DFO) is used. Manual tuning is only
used to find initial conditions for the DFO.

1.2 Objectives and scope

The objective of the thesis is to study and compare observers and find a baseline observer
that can be used in the MC-Lab for the model-scale vessels C/S Arctic Drillship (CSAD),
C/S Enterprise (CSE), and C/S Jonny (CSJ). CSAD is prioritized in the comparison of
the observer, while only minor resources is put to test CSJ and CSE. In addition, the
objective includes developing an autotuning module to compare and tune the observers
efficiently. The high-fidelity simulator package MCSimPython is used for experiments.

The scope of the thesis has been to

• Perform a background and literature review to provide information and relevant
references on the MC-Lab, Robot Operating System (ROS), observer algorithms
and DFO.

• Further development of the simulation environment MCSimPython. MCSimPython
has been integrated with ROS using ROS wrappers and is improved to be able to
perform experiments in realtime. Furthermore, a Graphic User Interface (GUI) is
implemented for the Human Machine Interface (HMI) of the system with a focus on
DPO tuning and monitoring.

• The observer designs stability properties are studied, and manual tuning guidelines
are established for the following DPO designs: DPO design based on small-gain con-
dition and Lyapunov transformation reported by R. Skjetne (2022), a Linear Time
Varying Kalman Filter (LTV-KF), Nonlinear passive observer as presented by T. I.
Fossen (2021). The two observers proposed by R. Skjetne (2022) is more carefully
examined in this thesis than the LTV-KF and the nonlinear passive observer.

• The Particle Swarm Optimisation (PSO) algorithm is used for autotuning observers.
It has been chosen based on Løv̊as (2019) work. It has been tweaked to be able to
autotune DPOs.

• Measures to evaluate the performance of the DPOs are proposed. model-scale ex-
periments at MC-Lab are performed with and without waves to generate relevant
datasets to run the observers on – using a default DP control law and baseline DPO.

• Observers are compared and contrasted, considering a cost function, ease of tuning,
complexity of implementation, and their deadreckoning capability.

• After making conclusions from the comparison, new experiments are performed in
MC-Lab, with the best performing DPO in the control loop. In addition, the per-
formance of the small-gain principle based observer design is tested on CSE and
CSJ.
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Limitations of the thesis:

1. model-scale tests were performed in the MC-Lab with CSAD, a 1:90 scale model.

(a) Qualisys, the Motion Capture (MoCap) system, is very precise and has little
noise. However, the cameras of the system cover only a small part of the basin,
resulting in a small tracking area.

(b) The duration of the test for the full-scale vessel would be 10 times longer.

(c) Environmental forces such as wind and current were not present in the simula-
tions or model-scale tests.

(d) The thrusters of CSAD do not have a proper thrust to rpm mapping, and
their performance is dependent on the voltage of the batteries. This affects the
accuracy of the actual thruster load produced, given as input to the observer.

2. CSJ was not ready for model-scale experiments until the beginning of June due to
a lack of parts, which resulted in little time to perform model-scale tests.

3. The fairness of the DFO tuning of stochastic versus deterministic observers is hard
to determine due to structural differences. Resulting in an autotuning that might
favor one over the other.

1.3 Contributions

• An autotuning module has been created in Python for offline tuning of both determ-
inistic and stochastic observers.

• A modular motion control system has been implemented for CSAD in ROS Melodic
using ROS wrappers. The observers deliver accurate estimates with a simple PID
controller, a third-order reference filter with feasible velocity constraints, and a
pseudo-inverse thrust allocation algorithm with magnitude constraints.

• A GUI based on QT for the HMI of the DP system has been implemented. It makes
tuning of observers easier and gives the operator ability to interact, monitor and
log the operation. It plots actual and estimated position and attitude, actual and
command thruster loads, and desired position from the guidance system. There is
also made visualization of each thruster’s angle, position, and load magnitude.

• An observer has been tuned and adapted to the ROS control system of CSE and the
new vessel CSJ, which was added to the fleet of MC-Lab in 2023.

1.4 Outline

Chapter 1 introduces the thesis to the reader and describes its motivation, objective,
scope, and contributions.

Chapter 2 provides relevant background information regarding observers, DFO, ROS,
and MC-Lab.
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Chapter 3 presents the experimental setup, including an Simulation Verification Model
(SVM) for the simulator and the Observer Design Model (ODM) used for observer design.
Afterward, a description of the tests conducted, sea states used, and an overview of the
software is presented.

Chapter 4 presents the problem formulation of the thesis.

Chapter 5 presents the DP system used for testing. This includes a third-order reference
model, a PID controller, a pseudo-inverse thrust allocation algorithm, and HMI.

Chapter 6 presents all the DPOs and suggests tuning rules that provide boundaries for
the gains that make the system stable. Observers included are the LTV Kalman filter, the
nonlinear passive observer, a small-gain principle observer design, and a Lyapunov based
observer design.

Chapter 6 details how DFO is used for autotuning of the observers. The optimization
problem is formulated, boundaries are set, and PI is chosen.

Chapter 7 presents the results from the desktop study with autotuned observers per-
formed on real data collected from MC-Lab using the LTV-KF as baseline observer. The
study compares their accuracy in calm waters, in rough seas, and in very rough seas.
Results from autotuning of both deterministic and stochastic observers are presented.

Chapter 8 presents results from further model-scale tests in the laboratory with the
autotuned LTV-KF on CSAD and the small-gain based observer design on CSE and CSJ.

Chapter 9 presents the conclusion and further work.
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Chapter 2
Background and literature review

The content of this chapter is reproduced from the author’s project report (Midtun et al.
2022). It contains relevant background information for DPO, DFO, MC-Lab, and ROS.

2.1 Dynamic positioning observers

Filtering and state estimation are important features of a DP system due to the nature
of the measurement signal. All states of the system are not necessarily measured, and the
signals might be noisy, impacting the controller performance if no precautions are taken.
The observer is a state estimator, both reconstructing non-measured states and filtering
out noise.

This thesis focuses on conventional observer design for free-floating surface vessels operat-
ing at zero and low-speed tracking. It is assumed that the vessels are metacentric stable,
which implies that there exist restoring forces in heave, roll, and pitch. The motions in
these Degrees of Freedom (DOF) can be modeled as damped harmonic oscillators with a
small amplitude and a zero mean. The observer design only models the motions in surge,
sway, and yaw. The primary purposes of the observer in the positioning system are:

• Position and velocity estimation. Assuming that only the position and heading of
the vessel are measured, the observer needs to estimate the velocity for the feedback
controller. In addition, it should remove the measurement noise from the position
and heading signals.

• Bias estimation. The observer model does not perfectly model all the effects on the
vessel, resulting in a steady-state offset in the velocity estimates. The bias term is
used to counteract the unmodeled effects and slowly varying environmental forces
removing the offset. In addition, the bias can be included in a feedforward term in
the controller.

• Dead Reckoning. The DP system gathers information about its position and heading
with sensors. However, all equipment will fail in relation to a failure rate. A sudden
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dropout of the control system might lead to dangerous situations when in operation
if no substitute signal replaces it. The DP system enters dead reckoning when
the position and heading measurements are no longer available, and the observer
estimates a new signal by applying model-based filters. The signal will work as a
replacement until the measured signal is restored.

• Wave filtering. The input signal to the feedback controller should not include the
Wave Frequency (WF) motion. The observer excludes this from the position and
heading signals by including a wave-induced motion model, obtaining a wave filter.
A. Sørensen (2018), defines wave filtering as:

Definition 2.2.1: Wave filtering can be defined as the reconstruction of the Low Frequency
(LF) motion components from noisy measurements of position and heading by means of
analog or digital filters. In addition to this, if an observer (state estimator) is used, noise-
free estimates of the non-measured LF velocities can be produced. This is crucial in ship
motion control systems since the WF part of the motion should not be compensated for
by the positioning system. If the WF part of the motion enters the feedback loop, this will
cause unnecessary wear and tear of the actuators and increase the fuel consumption.

2.2 Derivative free optimisation

According to Audet and Kokkolaras (2016), BlackBox or DFO are often the only two
viable tools for the engineer working on a simulation-based design. DFO refers to math-
ematical optimization methods that do not utilize the derivative of the objective function.
These methods are used for problems where the partial derivatives are not defined or not
available (Audet and Kokkolaras 2016). Gradient approximation is another method, but
it may not be worth the effort due to the amount of computing power needed to approx-
imate the gradient. Despite that, gradient-based methods often outperform DFO if the
gradient is available. In the last 20 years, DFO has gained traction in the engineering
design community and can surpass heuristics in some cases, with solutions rarely being
characterized in terms of quality. Even though DFO requires a basic understanding of
theory and knowledge of use cases, engineers can create great opportunities by taking
advantage of these methods.

Løv̊as (2019) investigates several methods for DFO-based autotuning of DP controllers in
his M.Sc. thesis. It includes parameterization of the control law, comparisons, and eval-
uation of different DFO algorithms such as PSO, Surrogate Model Optimization (SGO),
and the Nelder-Mead simplex method.

The DFO objective is to minimize the objective function f(x), subject to some constraints
g(x), which uses data collected from the real world for testing. The goal is to minimize
the objective function by tuning the control parameters, x. Tuning as an optimization
problem has these characteristics:

• Nonlinear: Gain parameterization is nonlinear. Hence, the objective function may
be nonlinear as well.
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• Non-smooth: The signal is contaminated by stochastic random noise, such as
measurement noise, waves, jitter, etc., which might make the objective function
non-smooth.

Furthermore, MATLAB recommends PSO and SGO to solve non-smooth and nonlinear
problems (MATLAB 2022).

PSO is the superior algorithm for autotuning a controller in the MC-Lab and seems feasible
for autotuning observers (Løv̊as 2019). In addition, PSO has a better convergence rate
than SGO, is suitable for use with historical data, and its implementation is of lower
complexity.

Table 2.1: Selection matrix for choosing optimization method. Courtesy: Løv̊as (2019).

PSO SGO

Convergence rate Good/Very good Good

Convergence Good/Very good Good

Generality Good Good

Global vs Local Global/Local Global

Complexity of Implementation Low Medium

Complexity of Parameterization Medium Low

Bounds Yes Yes

Ability to use historic data Suitable Very suitable

2.2.1 Particle swarm optimization

PSO is an efficient and accurate algorithm well suited to solve nonlinear, non-convex,
continuous, discrete integer variable problems. This makes it a good fit to solve the
optimization problem. According to Sahib and Ahmed (2016), PSO yielded the best
performance when tasked to optimize control parameters for a PID controller. Kaliappan
and Thathan (2014) make this same discovery regarding the performance of PSO.

The algorithm is inspired by how schools of fish and swarms of birds collectively search an
area together. The swarm contains many particles, which all use their locally best-known
position, the best-known position of the swarm, and its velocity to calculate how to move
around. The number of particles in the swarm should be equal to the dimension of the
optimization problem (Løv̊as 2019). The algorithm works as follows:

1. Initialization: The swarm, S = {x1, x2, ..., xn} contains all the different candidate
solutions called particles. All the particles are usually initialized with random posi-
tions in search space and random velocities. However, in some cases, the position of
the initial particles might be set to specific values to decrease the convergence time.

2. Evaluation and updating: The objective function is then used to calculate the
fitness of each particle in the swarm. The local and global best-known positions are
calculated, and the fitness of each particle is updated based on these positions and
their velocities.
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3. Iteration: Step 2 is repeated until a particle reaches the desired threshold and
satisfactory convergence is reached.

Based on Løv̊as (2019) research regarding DFO, PSO is chosen as the autotuning op-
timization algorithm in this thesis, and the optimization problem is further described in
chapter 7.

2.3 Robot operating system

The system’s architecture is based on ROS. ROS is an open-source framework with tools
and libraries that help developers and researchers build and reuse code to create robotic
applications. This includes drivers, advanced algorithms, and developing applications to
simplify the process of making a robotic system. In addition, it has a global community of
engineers, computer scientists, and hobbyists who make robotics accessible and available
for everyone.

ROS is a middleware. It handles services such as hardware abstraction, package man-
agement, and message-passing between processes. Furthermore, it provides a publish-
subscribe messaging infrastructure supporting construction of distributed computing sys-
tem. It also provides supporting functionality to build and maintain the application.

ROS-based processes are represented as nodes in the graph architecture. The nodes
connect through topics, which they use to interact through publish-subscribe messages-
passing. The nodes communicate through service calls and parameter services connected
to the ROS master. The ROS master is a parameter server that keeps track of all active
nodes and the topic to which each node is connected. It establishes a peer-to-peer commu-
nication network between the nodes. Figure 2.1 illustrates a system containing two nodes
communicating through a topic. In this case, NODE1 publishes messages to the TOPIC,
and NODE2 subscribes to the same topic. The publish-subscribe communication follows
the structure of event-driven programming, where the subscribing node will act when a
message is published on the topic.

Figure 2.1: ROS architecture concept.
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2.4 Marine cybernetics laboratory

MC-Lab is a small wave basin. It was created from the old storage basin for the towing
tank, back when models were made of paraffin wax and needed wet storage. Models are no
longer made of paraffin wax, yielding an empty basin to be repurposed into the MC-Lab
in the 1990s. The basin has a length of 40m, a breadth of 6.45m, and a depth of 1.5 m
(NTNU 2022). Today the lab is mainly used to perform model tests by M.Sc. and Ph.D.
candidates.

The laboratory has a suite of sensors and equipment to perform several types of tests. This
includes tools to generate environmental forces, towing carriage, and a MoCap system.

Wave maker

The MC-Lab is equipped with a 6m width single paddle wave maker that is located at
the short end of the basin. It has the ability to produce both regular and irregular waves
with height and period (NTNU 2022):

• Regular waves H < 0.25, T = 0.3 – 3 s.

• Irregular waves Hs < 0.15 m, T = 0.6 – 1.5 s.

• Speed limit: 1.2 m/s.

It can be used to create different wave spectra such as Joint North Sea Wave Project
(JONSWAP) and Pierson-Moskowitz.

Qualisys motion-capture

To capture movement in 6DOF, the lab is equipped with the Qualisys MoCap system,
which consists of two parts. Firstly, the Oqus infrared cameras. They track infrared
reflective spheres positioned on the models. Today the lab has four cameras. However,
it is currently being fitted with additional cameras to increase its effective tracking area.
Secondly, the Qualisys Track Manager (QTM) is run on a dedicated computer. It performs
triangulation and broadcasts the position of the model on the local network.

2.5 C/S Arctic Drillship

In 2015 Jon Bjørnø created the CSAD (J. Bjørnø 2016). CSAD is a 1:90 scale model of
the Arctic drillship created by Inocean for Statoil. It was developed to perform tests on
thruster-assisted position mooring systems. The dimensions are displayed in Table 2.2.

11



Chapter 2. Background and literature review

Table 2.2: Dimensions CSAD. Courtesy: J. Bjørnø (2016).

Description Data

Length 2.578[m]

Breadth 0.440[m]

Depth (moulded) 0.211[m]

Draft (design) 0.133[m]

The model is equipped with six azimuth thrusters and a rotatable circular turret. Fig-
ure 2.2 illustrates the configuration of the thrusters. They are rotated by continuous servos
that have shafts that spin continuously. The Center of Origin (CO) is placed at the center
of the turret in the waterline when the vessel is fully ballasted. The turret enables it
to connect four mooring lines and a riser. The model is primarily used for stationkeep-
ing and low-speed operation, as its size makes it impractical for medium and high-speed
maneuvering operations in the MC-Lab.

Figure 2.2: CSAD thruster configuration. Courtesy: Jon Bjørnø et al. (2017).
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Chapter 3
Experimental setup

The experimental surface vessel, CSAD, is used both in simulation and in model-scale tests
in the MC-Lab. Both CSAD and its operational environment, MC-Lab, are described in
section 2.4. Significant effort has been put into creating a GUI for the vessel and creating
ROS wrappers for all the modules in CSADs DP system, which previously has been
implemented in the MCSimPython package and not in ROS. The content of this section
is reproduced from the author’s project report (Midtun et al. 2022).

3.1 Vessel models

This section contains the mathematical models for a low-speed vessel, including a SVM
used to simulate the vessel and an ODM.

The mathematical modeling is based on the assumption that roll- and pitch angles are
small, which is a good approximation for most conventional ships (T. I. Fossen 2021)
operating at low speed.

The reference frames used in this chapter are the Basin frame and Body-fixed frame.
The Basin frame is an inertial frame that is local earth fixed where x, y, and z points,
respectively, along the long side of the basin, along the short side of the basin, and down
directions. The basin frame replaces the North East Down (NED) as a local Earth-fixed
reference frame which is frequently used in DP systems, to give the axes more intuitive
directions when performing tests in MC-Lab. In the body-fixed frame, the x-axis is directed
aft-to-fore, the y-axis is directed port-to-starboard, and the z-axis points down.

3.1.1 Simulation Verification Model

The SVM is a high-fidelity model that precisely describes the motions of the vessel. The
SVM takes in the thruster command angles α and thruster input u and produces the
ship’s pose η. The SVM includes vessel dynamics, wave loads, thruster dynamics, and a
measurement model.
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Vessel dynamics

The vessel dynamics are derived from the nonlinear 3DOF ship model in (Lyngstadaas
2018). As described in further work, the numerical values for the model parameters are
not yet found for CSJ. Since neither simulations nor experiments will use current, νc = 0
assumes no current. The SVM

η̇ = R(ψ)ν (3.1)

Mν̇ + C(ν)ν +D(ν)ν = τwave + τ, (3.2)

where η = (x, y, ψ) is the pose vector, ν = (u, v, r) is the body-fixed velocity vector, τ =
(Fsurge, Fsway,Myaw) is the command forces, τwave = (Fsurge,wave, Fsway,wave,Myaw,wave)
is the wave forces,

R(ψ) :=

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ∈ R3x3 (3.3)

is the rotational matrix, and M :=MRB +MA ∈ R3x3 is the mass matrix with,

MRB :=

m 0 0
0 m mxg
0 mxg Iz

 ∈ R3x3, MA :=

−Xu̇ 0 0
0 −Yν̇ −Yṙ
0 −Nν̇ −Nṙ

 ∈ R3x3 (3.4)

where xg is the distance from the origin to the center of mass, and Iz is the inertia about
the z-axis.

C := CRB + CA ∈ R3x3 is the Coriolis and centripetal matrix, defined by

CRB :=

 0 0 −m(xgr + v)
0 0 mu

−m(xgr + v) −mu 0

 ∈ R3x3, (3.5)

CA :=

 0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

 ∈ R3x3. (3.6)

D := DL + DNL ∈ R3x3 which is positive definite and should preferably be symmetric,
that is,

DL :=

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 ∈ R3x3, DNL :=

dNL,11 0 0
0 dNL,22 dNL,23
0 dNL,32 dNL,33

 ∈ R3x3,

(3.7)
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where

dNL,11 = −X|u|u||u| −Xuuuu
2 (3.8)

dNL,22 = −Y|v|v||v| − Y|r|v||r| − Yvvvv
2 (3.9)

dNL,23 = −Y|r|r||r| − Y|v|r||r| − Yvvvr
2 − Yuru (3.10)

dNL,32 = −N|v|v||v| −N|r|v||v| −Nvvvv
2 −Nuvu (3.11)

dNL,33 = −N|r|r||r| −N|v|r||v| −Nrrrr
2 −Nuru (3.12)

To accommodate the Munk moment, the damping terms,

Yur = Xu̇ ∈ R, Nuv = −(Yv̇ −Xu̇) ∈ R, Nur = Yṙ ∈ R (3.13)

are added to the damping matrix.

Wave loads

In the simulator, waves are generated using the python package MCSimPython created
by Hyggen et al. (2023). It is an adaptation of parts of the Marine Systems Simulator
(MSS) toolbox available in MATLAB. It produces waves from the JONSWAP and Modified
Pierson Moskowitz wave spectra.

Thruster dynamics

The thruster dynamics takes in the actuator input u ∈ Rn and the thruster angle α ∈ Rn
from the thruster allocation and calculates the forces applied to the vessel,

τ(α, u) = B(α)KTu (3.14)

where KT := diag(k1, k2, . . . , kn) ∈ Rnxn is the thrust coefficient matrix, n is the number
of thrusters and the thrust configuration matrix is

B(α) =

cos(α1) cos(α2) . . . cos(αn)
sin(α1) sin(α2) . . . sin(αn)
N1 N2 . . . Nn

 , (3.15)

Ni = Lx,isin(αi)− Ly,icos(αi), i ∈ 1, 2, . . . , n, (3.16)

where Lx,i and Ly,i describe the distance from the CO and the thruster i. The rate
limitations of the azimuth thrusters are not taken into account.

Measurement model

A simple measurement model is used by adding zero-mean Gaussian white noise.

ηm = η + v (3.17)

where v ∈ R3 is the Gaussian white noise. The measurements from QTM are pre-
cise and the error is in the magnitude of 1mm. Hence, the white noise is set to v :=
[0.001, 0.001, 0.001]T (Løv̊as 2019).
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3.1.2 Observer Design Model

The ODM is used for LF controller- and observer design. It captures the main dynamics
of the system. Low-speed maneuvers are assumed, in which Coriolis and centripetal terms
and the nonlinear damping effects are omitted (Værnø et al. 2019). The dynamics of the
model are described by

η̇ = R(t)ν (3.18)

Mν̇ = −DLν +R(t)T b+ τ, (3.19)

where η = (x, y, ψ) is the LF pose vector, ν = (u, v, r) is the LF body-fixed velocity vector,
b ∈ R3 the bias vector, M ∈ R3x3 is the mass matrix, DL ∈ R3x3 is the linear damping
matrix, τ = (Fsurge, Fsway,Myaw) is the command forces, and the rotational matrix

R(t) :=

cosψy(t) −sinψy(t) 0
sinψy(t) cosψy(t) 0

0 0 1

 ∈ R3x3, (3.20)

where ψy(t) ≈ ψ(t) assuming ψω(t) is negligible (Værnø et al. 2019).

Bias model

The bias model is slowly varying and body-fixed. It accounts for 2. order wave loads,
slowly varying forces and moments due to the wind- and current loads, and modeling
errors. It is modeled as a 1. order Gaussian-Markov process (T. I. Fossen 2021), by

ḃ = −T−1
b b+ Ebωb, (3.21)

where Tb := diag(tb,x, tb,y, tb,ψ) is the bias time constants, Eb ∈ R3x3 is the scaling matrix,
and ω ∈ R3 is the zero-mean Gaussian white noise vector.

Wave frequency control design model

The WF motions are modeled as the damped harmonic oscillator,

ξ̇ω = Aωξω + Ebωω (3.22)

ηω = Cωξ (3.23)

Cω :=
[
03x3 I3x3

]
, Aω :=

[
03x3 I3x3
−Ω2 −2ΛΩ

]
∈ R6x6, Eω :=

[
03x3
Kω

]
, (3.24)

where Ω := diag(ω1, ω2, ω3), Λ := diag(λ1, λ2, λ3) and Kω := diag(kω1, kω2, kω3). The pair
(Aω, Cω) is observable (R. Skjetne 2022).
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Measurement model

The measurement is modeled as

y = η + Cωξ + ϵy (3.25)

where ϵy ∈ R3 is the zero-mean Gaussian white noise vector.

Observer design models

By combining (3.19) - (3.25), we get the Linear Time Varying (LTV) ODM. It applies
the internal model principle, including the WF output disturbance as a part of the plant
modeled as a harmonic oscillator. The ODM is given by LF kinematics, kinetics, bias,
and WF, that is

ξ̇ω = Aωξω + Ebωω

η̇ = R(t)ν

ḃ = −T−1
b b+ Ebωb (3.26)

Mν̇ = −DLν +R(t)T b+ τ

y = η + Cωξ.

3.2 Model-scale tests

Three types of tests are performed in this thesis. Firstly, a baseline observer and control
system is used in the MC-Lab to collect data to be used in the desktop comparison study.
After making conclusions in the desktop study, a DPO is chosen for final model-scale tests.
The final tests consist of a 4-corner test with one 10 to 20-second continuous dropout of
position signal between each setpoint. In the third test, the signal dropouts are frequent
but with a low duration of 1-5 seconds. The tests performed on CSE and CSJ are not
described in this chapter.

Combined motion test

A combined surge-sway-yaw motion test is performed in MC-Lab when collecting data to
compare the performance of all DPO. The test is chosen both for its simplicity and to
capture the behavior of the vessel in surge, sway, and yaw. The vessel starts the test with
a heading of 30 degrees. The guidance system sets the following setpoints:

1. Position and heading change: 1m in the negative Y direction in basin frame and
a heading change of 90◦ counterclockwise, testing combined surge-sway-yaw move-
ment.

2. Position and heading change: 1m in the positive Y direction in basin frame and a
heading change of 90◦ clockwise, testing combined surge-sway-yaw movement.
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When the test is complete. the vessel returned to its original position, ready for another
test. The test will be performed in all sea states discussed in section 3.3. Figure 3.1
illustrates the the test

Figure 3.1: Combined motion test, used to collect data for the desktop study. The vessels
start position is identical to setpoint 2.

4-corner test

A 4-corner test, based on Roger Skjetne et al. (2017), is used in order to test the perform-
ance of the best performing observer in the final tests. First, the vessel is initialized in
DP, maintaining its position and heading of 0◦, testing the steady state of the vessel with
no motion. The start point of the test is the same as setpoint 5. The following setpoints
are given to the guidance system:

1. Position change: 1m in the positive X direction in the basin frame, testing a pure
surge ahead vessel movement.

2. Position change: 1m in the positive Y direction in the basin frame, testing a pure
sway movement in the starboard direction.

3. Heading change: 30◦ clockwise, testing a pure yaw movement while maintaining
position.

4. Position change: 1m in the negative X direction in the basin frame, testing a com-
bined surge-sway movement while maintaining the heading.

5. Position and heading change: 1m in the negative X direction in basin frame and
a heading change of 30◦ counterclockwise, testing combined surge-sway-yaw move-
ment.

After completing a test, the vessel returns to its original position and heading, ready for
another test at the same spot along the same track. The setpoints are placed quite close
to each other in order to get a larger portion of the test with a transient response from
the system. It is chosen to see if the observer is able to track the position of the vessel in
the transient state when the vessel is moving in pure and combined surge, sway, and yaw
movements. The test is visualized in Figure 3.2.
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Figure 3.2: 4-corner test used in the final test by the best performing observers. The
vessels start position is the same as setpoint 5.

3.3 Sea states

All tests are performed without any current or wind in both calm, rough, and very rough
sea states. The wave characteristics are chosen to fit Perrault (2021) definition of sea
states.

The tests performed in rough sea state have a full-scale significant wave height, HS = 2.7m,
and a peak wave period, Tp = 6.6s. The very rough sea state has a full-scale significant
wave height, HS = 4.5m, and a peak wave period, Tp = 10.4s. Table 3.1 illustrates the
model-scale sea states, with Froude scaling, used for Hardware in the Loop (HIL) and
model-scale testing.

Table 3.1: Sea states scaled down for model vessel CSAD, used for testing in both HIL
and model-scale tests.

Sea State nr. Description of sea
Significant wave height
(HS)[m]

Peak wave period
(Tp)[s]

0 Calm water 0 0

1 Rough sea 0.03 0.7

2 Very rough sea 0.05 1.1

Both of these sea states are within the capabilities of the wavemaker in MC-Lab and the
wave component of the MCSimPython package.
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3.4 Software

When conducting tests in MC-Lab, there are two computers in use. Computer one is
an embedded computer onboard the vessel running the drivers for the actuators and the
Qualisys node. The second computer on land runs the control system and GUI. The
computer on land runs the remaining modules and provides the operator with an interface
showing the position and heading of the vessel. Furthermore, it provides tools to help the
operator keep an overview of tests performed and the system’s state. The operator is able
to listen to all messages sent between nodes onboard the vessel from the second computer
on land. All functionalities of the GUI are described later in this section.

All HIL and model-scale tests are performed using ROS. In order to be able to perform
offline tuning and simulations, the backend of the system is programmed in Python, and
the ROS nodes are created using a ROS wrapper. This enables users to run simulations in
simulation time without ROS on their system if needed. Furthermore, with the same ROS
wrapper interface, it is easy to switch between various modules underneath. Figure 3.3
illustrates how the MCSimPython package is integrated into CSADs ROS stack using a
ROS wrapper interface(Hyggen et al. 2023).

Figure 3.3: ROS wrapper used to integrate features from the MCSimPython package to
CSADs ROS stack.

It is possible to run the system in simulation time instead of realtime, performing sim-
ulations much faster. This is done using the MCSimPython package without the ROS
wrapper. However, these tests have no messages sent between nodes and are run on
a single computer, therefore, problems regarding lost messages and latency are not in-
cluded. However, these tests are helpful to rapidly test each separate module and find
baseline parameters for the system.

HIL ROS architecture

Figure 3.4 illustrates a graph of the system’s ROS architecture. It depicts all nodes as
circles and topics as rectangles. The HIL node, marked in green, runs on a separate
computer, simulating the vessel, when performing HIL tests. All other nodes run on the
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same computer that is used when performing model-scale tests in MC-Lab. The arrows
between nodes and topics refer to their relation. An arrow from node to topic refers to the
node publishing on the topic. Likewise, an arrow from a topic to a node refers to the node
subscribing to the topic. The message types used are all standard ROS message types.

Figure 3.4: Graph of the ROS architecture of the software used in HIL tests.

The system depicted in Figure 3.4 is run in realtime and contains the following nodes:

1. Vessel. It contains a model of CSAD based on the SVM proposed in subsection 3.1.1.
It stimulates the vessel and takes thruster forces as input giving the vessel’s updated
position and actual thrust load produced as output. It can be activated to perform
various HIL tests without using the MC-Lab, testing the rest of the system on the
hardware used in MC-Lab. This node is not active when performing model-scale
tests at MC-Lab, where the Qualisys MoCap system and thruster actuator replace
it.

2. Observer. The observer takes in the vessel’s position and command forces. It es-
timates the unmeasured state velocity based on the measured position and removes
noise from the position measurements. Furthermore, it outputs the estimated posi-
tion, speed, observer bias, and WF motions. In the future, it is possible to use the
measured acceleration using Inertial Measurement Units (IMU), as well as position.
Note that a fault tolerance node that takes in the measurements from the sensors
and detects and handles signal errors is not implemented. The only signal fault that
is implemented is a frozen signal which will activate dead reckoning.

3. Guidance. The guidance node takes in the observer states and calculates the desired
position and velocity of the vessel, which is sent to the controller. A third-order
reference filter is implemented.

4. Controller. Both a joystick and PID controller is implemented. The controller takes
in the estimated and desired position and velocity, calculating the command forces
of the vessel.

5. Thrust alloc. The thrust allocator takes in the command forces and calculates the
force and angle each thruster should produce. The thrust allocator currently uses a
Moore-Penrose pseudoinverse to calculate the thrust to the six azimuth thrusters.
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6. GUI. The GUI node subscribes to all topics in the system. It is able to publish
gains to the observer for tuning purposes. The functionality is easily transferred to
realtime tuning of controllers as well.

MC-Lab ROS architecture

When performing model-scale tests in MC-Lab, small modifications are made to the system
compared to HIL tests. The changes in the ROS architecture between the HIL tests and
MC-Lab tests are listed below.

1. Vessel node replaced with Qualisys and Thruster actuator nodes.

2. Qualisys. The Qualisys node tracks the position of the vessel with cameras. It does
not subscribe to any topics and sends the pose and attitude of the vessel to the
observer.

3. Thrust actuators. Thrust actuators takes in the actuator input u and actuator angle
α from the thrust allocation node. It then converts the signals to pulse width
modulation signals and sends them to the servo and azimuth motors. In addition,
it sends the actual thrust produced by the thrusters to the observer.

The embedded computer onboard the vessel runs the two nodes added, marked with green
in Figure 3.5. All other nodes run on the laptop as in HIL tests. The laptop runs the same
nodes in HIL and model-scale tests. The only difference is that the embedded computer
running the MoCap and thruster actuators is switched with a PC that simulates the vessel
in HIL tests. All messages are still transferred from the laptop to the embedded computer
or the computer simulating the vessel depending on the test being performed in MC-Lab
or as a HIL test. The ROS architecture used for model-scale tests at the MC-Lab is
illustrated in Figure 3.5.

Figure 3.5: Graph of the ROS architecture for the software used in model-scale.
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Chapter 4
Problem formulation

The overall goal of this thesis is to compare different DPO and find a baseline observer that
can be used in the MC-Lab for the model-scale vessel CSAD. Furthermore, an autotuning
module is implemented in order to compare and tune the observers efficiently. The small-
gain observer design should also be tested on CSE and CSJ.

4.1 Performance indicators

In order to compare the different observers, PI need to be selected. Both quantitative
and qualitative PI are considered in this study after completing a preliminary numerical
analysis in the simulator. In addition, a quantitative PI is needed as a cost function when
autotuning the observers. It needs to consider both the accuracy of the position and
velocity estimates. The Observers will be evaluated by the following PIs.

1. Performance of the accuracy of the observer using a quantitative performance meas-
ure.

2. Complexity of implementation and configuration.

3. Ease of tuning.

4. Dead-reckoning capability.

5. Having a WF filter.

4.2 Stability of observers and manual tuning guidelines

The observer designs, including stability properties, should be studied in order to find
some rule-of-thumb tuning guidelines to be used for manual tuning. The gains that are
found through manual tuning will be used as the initial condition for the autotuning
algorithm. This should consider a discrete Kalman filter for LTV systems, a Nonlinear
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passive observer as presented by T. I. Fossen (2021), an observer based on the small-gain
principle, and one based on a Lyapunov proof reported by R. Skjetne (2023). Stability
boundaries for the observer based on small-gain principle should also be compared to the
gains found with the autotuning algorithm.

4.3 Baseline control system

A baseline control system needs to be implemented in ROS for CSAD. CSAD already has a
Python package called MCSimPython that includes most modules needed, but the modules
are not implemented in ROS. ROS wrappers should be used to enhance the modules of
the MCSimPython package to be usable in ROS. In addition, to adding observers, a ROS
wrapper for a controller, guidance system, and thrust allocator needs to be implemented
before CSAD can run in realtime on ROS.

4.4 Autotuning

In order to achieve a fair comparison of the observers, an autotuning module is needed. The
DFO algorithm PSO is chosen based on Løv̊as (2019) work with autotuning of controllers.
The algorithm needs to be customized in order to tune observers. An objective function
needs to be chosen, and the observer gains need to be parameterized in order to fit the
algorithm. The DFO should be able to tune both the deterministic observers and the
stochastic Kalman filter. The autotuning algorithm should have rather loose bounds
compared to the bounds found from the small-gain principle stability proof. Afterward,
the behavior of the convergence of the autotuner can be compared to the limits of the
gains found by the stability analyses.

Multiple tests need to be performed in the MC-Lab with and without waves in order to
generate relevant datasets. A default DP control law and baseline DPO are needed to
collect this data. Afterward, the observers should be tested in a desktop study to compare
and contrast them considering all PI. Furthermore, data collected in MC-Lab needs post-
processing in order to produce the ”actual” velocity, which is not measured by the MoCap
system during tests.

4.5 Graphical user interface

CSAD’s HMI lacks a proper GUI, which is needed to monitor, log, and interact with
the system. Furthermore, functionality to improve the tuning of observers should be
prioritized. This includes realtime tuning tools and realtime plotting of measured, desired,
and actual position and heading of the vessel. The GUI needs to be integrated into the
CSAD ROS stack in order to be used in the realtime system.
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Chapter 5
Control system

This chapter describes the different parts of the DP system of CSAD. It included a guidance
system, a PID controller, and a thrust allocator. Note that the observers are described in
chapter 6 and therefore not included in this chapter.

5.1 Guidance system

Guidance is the action or the system that continuously computes the reference (desired)
position, velocity, and attitude of a marine craft to be used by the motion control system.
These data are usually provided to the human operator and the navigation system (T. I.
Fossen 2021).

The guidance system is a trajectory generator, producing a smooth trajectory from one
setpoint to the next one, as well as acceleration and velocity. The reference model is of
third order, consisting of a lowpass filter cascaded with a mass-damper-springer system
(T. I. Fossen 2021). The author considers the choice of the reference model to not be
conclusive for the scope of this master thesis. More details can be seen in T. I. Fossen
(2021, Chapter 12).

However, it should be noted that CSAD is able to operate within a feasible set of velocities
illustrated in Figure 5.1 (Nørgaard Sørensen et al. 2018). Speed limits for the reference
model chosen as surge speed limit, |umax| < 0.25 m/s, sway speed limit, |vmax| < 0.075
m/s, and yaw rate limit, |rmax| < 3 deg/s. It is a simplification of the findings in Nørgaard
Sørensen et al. (2018) and can in some rare cases lead to unfeasible velocities for CSAD,
resulting in the vessel struggling to keep up with the reference model.
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Figure 5.1: Possible combinations of surge speed, sway speed, and yaw rate, with respect
to the actuator magnitude saturation limits. Courtesy: Nørgaard Sørensen et al. (2018).

5.2 PID controller

The control objective is a tracking problem, controlling the vessel’s position to the desired
time-varying trajectory ηd(t) with the desired velocity νd(t) produced by the guidance
system. This thesis uses a simple PID control law

τPID = −Kpη̃ −KiΣ(η̃)−Kdν̃ (5.1)

where η̃ = RT (ψd)(η̂ − ηd) is the three dimensional positional error vector and ν̃ = ν̂ −
RT (ψd)η̇d is the error velocity vector, Σ(η̃) is the positional error integrated using the
Euler method and Kp,Ki,Kd ∈ R3×3 are the control gains matrices.

The gains of the controller used in MC-Lab were found using the standard PID tuning rules
presented in T. I. Fossen (2021, Chapter 12), implemented in Python and included in the
ROS system with a custom ROS wrapper. Note that no integral windup is implemented,
which might result in the accumulation of a significant error when the desired position is
far from the estimated position.

5.3 Thrust allocation

CSAD is equipped with six azimuth thrusters, distributed symmetrically onto the x-axis
illustrated in Figure 5.2. The position of each thruster is relative to the vessel’s CO is
shown in Table 5.1. The azimuth thrusters have the capability to rotate freely and produce
force in any direction in the XY-plane, making CSAD over-actuated.

Figure 5.2: Thruster configuration of CSAD. Courtesy: Jon Bjørnø et al. (2017).
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Table 5.1: CSAD fixed thruster position and angle in body frame.

Thruster lxi lyi αi
Azimuth 1 1.0678 0.0 0

Azimuth 2 0.9344 0.11 π
4

Azimuth 3 0.9344 -0.11 −π
4

Azimuth 4 -1.1644 0.0 π

Azimuth 5 -0.9911 -0.1644 −3π
4

Azimuth 6 -0.9911 0.1644 −3π
4

For simplified and predictable thrust allocation, in previous experimental setups, the ori-
entations of the thrusters have been fixed, hence, creating a constant relationship between
the command forces, τ ∈ R3, and the actuator input u ∈ R6 (Lyngstadaas 2018). The
vessel suffered thruster malfunctions on Azimuth 3 and 5. In order to improve the ef-
ficiency of the remaining thrusters, a thrust allocator with freely rotating thrusters was
implemented. The relationship between the trust load vector τ and the actuator inputs
u, shown in Equation 3.14, is used when solving the thrust allocation problem. Note that
τ is the commanded thrust load given by the controller and not the actual thrust load
produced, which is used in (3.14). The Moore-Penrose pseudoinverse, from Thor I. Fossen
and Sagatun (1991), is used to solve the (3.14) with respect to u, yielding

u = B†K†τ, (5.2)

with

B =

 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
lx1 −ly1 lx2 −ly2 lx4 −ly4 lx6 −ly6

 ∈ R3x8, (5.3)

where B is the extended configuration matrix, and K = diag(k1, k2, k3, k4, k5, k6, k7, k8) ∈
R8×8 is the extended thrust gain matrix. Note that the thrust allocation algorithm does
not respect the rate saturation of the thrusters or consider forbidden sectors connected to
thrust losses.

The thrusters input is saturated at 0.5,

ui = sat(
√
u2xi + u2yi) (5.4)

and the thruster angles

αi = arctan(
uyi
uxi

) (5.5)

are calculated from the relationship between thruster input in the x and y direction of
each individual thruster.

5.4 Human machine interface

The HMI connects the operator to the DP system and lets it monitor, log and interact
with the system. The system has both a GUI and a separate joystick control, letting
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the operator control the vessel with a Play Station 4 (PS4) controller. This section puts
emphasis on the GUI of the HMI, which was built from scratch for this thesis.

GUI node

The GUI node runs on the computer on land together with the Qualisys node. The GUI
node is compatible with both HIL and model-scale tests. The GUI node subscribes to all
topics in the system.

It is implemented using QT (QT 2022), which is easily integrated with ROS. Utilizing a
Model-View-Controller architectural pattern, the application upholds good scalability and
modifiability properties (Bass et al. 2013). Figure 5.3 illustrates the layout of the GUI. The
window gives the operator an overview of the system in realtime. Furthermore, it provides
information to the user, such as the vessel’s actual, desired, and estimated position and
heading in realtime, and thruster information. Currently, Plotjuggler (Plotjuggler 2022)
is used to make detailed plots of data from topics in realtime, and Rosbag (ROS 2022) is
used to save the data for later usage. Therefore, this functionality is not implemented in
the GUI as well. The GUI gives the operator an overview of the environment the vessel
operates in and shows the performance of the observer, guidance system, thrust allocator,
and controller.

Figure 5.3: Layout of the GUI, implemented in the GUI node.

The GUI has the following functionality:

1. Status indicators, showing the status of the PS4 controller and MoCap system
Qualisys.

2. Thruster usage, showing the angle and power produced by each thruster.

3. Overview of vessels environment, Vessel position and heading are shown in 2D. In
addition, the 2D map shows the path of the vessel, observers estimated position,
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reference trajectory, and the active setpoints. There is functionality added to zoom
in and out, lock the camera on the vessel and move the camera freely around the
environment.

4. Vessel info, showing the position and heading of the vessel.

5. Realtime plots, showing the desired position from the guidance system, an estimated
position from the observer, and the actual position of the vessel. The functionality
to hide and remove each individual plot is added.

6. Setpoints are marked, and trajectory between setpoints are displayed.

7. Realtime tuning is implemented for observers. It makes the tuning process simpler,
and gains are easily set. This functionality is easily transferred to the tuning of
controllers, which can’t be tuned offline like the observers. This functionality is
illustrated in Figure B.3.

More screenshots from the GUI implemented are found in Appendix B. This includes
an interactive testing interface and more detailed pictures of plots, and a zoom-in on the
thruster information.

32



Chapter 5. Control system

33



Chapter 6
DP observer designs

In this chapter, different DPO designs are considered. Both the stability and limits
for gains that make the system stable are analyzed for the different DPO. Afterward,
guidelines for manual tuning are presented for each observer.

6.1 Nonlinear passive observer

The DP passive observer is based on the 3 DOF ODM (3.26). Represented in state space,
it becomes

˙̂
ξ = Aω ξ̂ +K1ỹ

˙̂η = R(ψ)ν̂ +K2ỹ

˙̂
b = −T−1

b b+K3ỹ (6.1)

M ˙̂ν = −Dν̂ +RT (ψ)b̂+ τ +RT (ψ)K4ỹ

ŷ = η̂ + Cωξ,

with the observer gains

K1 :=



k1 0 0
0 k2 0
0 0 k3
k4 0 0
0 k5 0
0 0 k6

 , K2 :=

k7 0 0
0 k8 0
0 0 k9

 , (6.2)

K3 :=

k10 0 0
0 k11 0
0 0 k12

 , K4 :=

k13 0 0
0 k14 0
0 0 k15

 . (6.3)
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The matrices are tuned according to T. I. Fossen (2021) rules in order to make the system
Globally Exponentially Stable (GES), that is,

ki = −2(ζni − λi)
ωci
ωoi

= −2.2059 (6.4)

k3+i = 2(ζni − λi)ωoi = 1.8 (6.5)

k6+i = ωci (6.6)

k9+i ≫
k12+i
Tb,i

, (6.7)

where i = {1, 2, 3}, λi = 0.1 is the relative damping of the wave spectrum, ζni = 1 > λi
is damping parameters, ωoi is the peak frequency of the wave spectrum, ωci = 1.226ωoi is
the filter cut-off frequency, and Tb,i are the bias time constants. The bias time constant is
typically set to 1000s for full-scale, which scales down to Tb,i =

1000√
90

= 105.41s for CSAD.

6.2 LTV Kalman filter

The LTV-KF algorithm is the same as presented in Simon (2006). It is based on the
continuous dynamics of Equation 3.26 written on the form

x̂ = A(t, x) +Bu+ Ew (6.8)

y = Cx+ v (6.9)

Værnø et al. (2019) also uses the exact same discretized system, which is as follows

xk = fk−1 (xk−1, tk−1, uk−1, wk−1) (6.10)

= Φk−1 (xk−1, tk−1)xk−1 +∆k−1 (xk−1, tk−1)uk−1 (6.11)

+ Γk−1 (xk−1, tk−1)wk−1 (6.12)

yk = Hkxk + vk (6.13)

wk ∼ (0, Qk) (6.14)

vk ∼ (0, Rk) , (6.15)

Where

Φk = eA(tk,xk)h ≈ I +A (tk, xk)h+
1

2
(A (tk, xk)h)

2 (6.16)

∆k =

(∫ h

0
eAhdσ

)
B ≈

(
Ih+

1

2
A (tk, xk)h

2 +
1

6
A (tk, xk)

2 h3
)
B (6.17)

Γk =

(∫ h

0
eA(tk,xk)hdσ

)
E ≈

(
Ih+

1

2
A (tk, xk)h

2 +
1

6
A (tk, xk)

2 h3
)
E (6.18)

Hk = C. (6.19)

It is implemented as an iterative loop, and its stability properties are investigated with
linear system theory. The LTV-KF has the following implementation.
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Initialization:

x̂+0 = E (x0) (6.20)

P+
0 = E

[(
x0 − x̂+0

) (
x0 − x̂+0

)⊤]
(6.21)

The Kalman filter has the following state equations:
The Kalman filter gain

Kk = P−
k H

⊤
k

(
HkP

−
k H

⊤
k +Rk

)−1
. (6.22)

The state corrector

x̂+k = x̂−k +Kk

(
y(k)−Hkx̂

−
k

)
. (6.23)

Covariance corrector:

P+
k = (I −KkHk)P

−
k (I −KkHk)

⊤ +KkRkK
⊤
k . (6.24)

State predictor:

x̂−k = Φk−1 (tk−1) x̂
+
k +∆k−1 (tk−1)uk−1 (6.25)

Covariance predictor:

P−
k = Fk−1P

+
k−1F

⊤
k−1 + Γk−1Qk−1Γ

⊤
k−1. (6.26)

The LTV-KF is a well known observer design, and the stability properties will not be
investigated further in this thesis but are found in Simon (2006).

6.3 DPO design based on Lyapunov transformation

This chapter presents an observer design that estimates η, ν, b, and restrictions for injection
gains to ensure the system is stable. The observer disregards the wave motions ξ and is
based on the ODM in (3.26), setting ξ = 0. Let ˙̂x := col(η̂, ν̂, b̂) be the observer state.
Furthermore, the injection gains are added with the feedback from observer error ỹ = y−ŷ.
The proposed observer model is,

˙̂η = R(t)ν̂ + L1ỹ

M ˙̂ν = −Dν̂ +R(t)T b̂+ τ +R(t)TL2ỹ

˙̂
b = −T−1

b b̂+ L3ỹ (6.27)

ŷ = η̂.
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Inserting ỹ = η̃, the error dynamics becomes

˙̃x = A(t)x̃ (6.28)

A(t) :=

 −L1 R(t) 0
−M−1R(t)TL2 −M−1D M−1RT (t)

−L3 0 −T−1
b b̃

 ∈ R9×9, x̃ := x− x̂. (6.29)

R. Skjetne (2022) proves the origin x̃ = 0 stable when the following conditions are satisfied:

1. The model matrices satisfy M =MT > 0, D +DT > 0, and Tb > 0.

2. The injection gain matrices satisfy L1 = LT1 > 0, L2 = LT2 > 0 and L3 = LT3 > 0,
where L1, and L3 commute.

3. The symmetric matrices L1L2 + L2L1 − 2L3 − T−1
b , L−1

3 L1 − L−1
2 , and 2L−1

3 L1 − I
are positive definite.

If conditions 1-3 are satisfied, the stability of x̃ = 0 can be shown to be UGES, using the
Lyapunov direct method. This is done by considering a quadratic Lyapunov function,

λmin(P )|x̃|2 ≤ V (x̃) := x̃P x̃ ≤ λmax(P )|x̃|2, (6.30)

where

P =

L2 0 −I
0 M 0

−I 0 L−1
3 L1

 . (6.31)

By using the Schur complement (Gallier 2019) as the complement of P, it is shown that
P > 0 when L2 > 0, M > 0, and L−1

3 L1 −L−1
1 > 0, which is satisfied by the assumptions.

Værnø et al. (2019) shows that the time derivative of the Lyapunov function along the
trajectories of the error dynamics, V̇ = 2x̃P ˙̃x is bounded by

V̇ (x̃) ≤ −(L1L2 + L2L1 − 2L3 − T−1
b )|η̂|2 − (D +DT )|ν̂|2 − (2L−1

3 L1 − I)T−1
b |b̂|2.

(6.32)

Given that condition 1 is relaxed to D +DT ≥ 0 and T−1
b = 0, the system can be proven

to be Uniformly Globally Stable (UGS) by the fact that V (x̃) is positive definite, radially
bounded, and V̇ (x̃) ≤ −(L1L2+L2L1−2L3−T−1

b )|η̂|2 ≤ 0. Furthermore, the equilibrium
can be proven Uniformly Globally Asymtotically Stable (UGAS) (R. Skjetne 2021), using
Matrosovs Theorem (Loŕıa et al. 2005).

The injection gains should satisfy conditions 2 and 3. R. Skjetne (2022), proposes choosing
L1, L2, and L3 as positive diagonal matrices, with L2 relatively large and L3 relatively
small to satisfy condition 3. This is satisfied by choosing L1 > 0 diagonal, L2 = aL1, and
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L3 =
1
bL1, with a, b ≥ 1. This yields the new conditions

L1L2 + L2L1 − 2L3 − T−1
b = 2(aL1 −

1

b
)L1 − T−1

b > 0 =⇒ (aL1 −
1

b
)L1 >

1

2
T−1
b

(6.33)

L−1
3 L1 − L−1

2 = bI − 1

a
L−1
1 > 0 =⇒ abL1 > I (6.34)

2L−1
3 L1 − I = 2bI − I > 0 =⇒ b >

1

2
, (6.35)

which is easily satisfied. Let L1 := diag(l1, l2, l3). The 1st condition states that each
diagonal element li is bounded by (al1 − 1

b )l1 >
1

2tb,(·)
, the 2nd condition bounds each

diagonal element li by abli > 1 and 3rd condition is satisfied through b ≥ 1. L2 and L3 is
then calculated from given L1 that satisfies these three conditions.

6.4 DPO design based on small-gain principle

6.4.1 Small-gain principle

Before presenting the observer design, the small-gain principle is presented (Khalil 2015).
It derive robust stability criteria for the observer and sets sufficient conditions for robust
performance. Physically, it corresponds to the fact that every time the external input
circulates in the closed loop, it is attenuated (Liu and Yao 2016). Stability characterization
based on the small-gain principle complements deterministic design based on Lyapunov
stability results in the helpful toolbox for nonlinear observer design (Teel 1996).

Consider the two subsystems,

ẋi = fi(t, xi, ui) fi(t, 0, 0) = 0 i = {1, 2}, ∀t. (6.36)

Suppose there exist some Vi(t, xi) and αj,i, κi ∈ κ∞ for j = 1, 2, 3, 4 s.t. ∀t,

α1,i|xi|2 ≤ Vi(t, xi) ≤ α2,i|xi|2 (6.37)

V̇i = V t
i (t, xi) + V xi

i (t, xi)fi(t, xi, ui) ≤ −α3,i|xi|2 + κi|ui|2. (6.38)

Both subsystems are Input-to-State Stability (ISS) w.r.t input ui (Sontag 2008). Suppose
u1 = x2 and s.t. we have the cascade,

ẋ1 = f1(t, x1, x2), ẋ2 = f2(t, x1, u2), (6.39)

that is ISS w.r.t u2 as input (R. Skjetne 2022). Suppose that we make the feedback
interconnection u2 = K(t)x1, that is

ẋ1 = f1(t, x1, x2) ẋ2 = f1(t, x1,K(t)x1), (6.40)

where K(t) is piecewise continuous and supt∥K(t)∥ ≤ ρ ≤ ∞. The origin (x1, x2) = 0 of
(6.40) is UGES when the small-gain condition,

ρ2 <
α3,2(α3,1 − ϵ2)

κ1κ2(1 + ϵ1)
<
α3,1α3,2

κ1κ2
(6.41)
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where 0 < ϵ1, ϵ2 ≪ 1.

ISS of (6.39) can be shown by letting V := V1 + aV2 with a = (1 + ϵ1)
κ1
α3,2

for ϵ1 > 0

resulting in

V̇ ≤ −α3,1 |x1|2 + κ1 |x2|2 − aα3,2 |x2|2 + aκ2 |u2|2 (6.42)

= −α3,1 |x1|2 − ε1κ1 |x2|2 + aκ2 |u2|2 ,

where V is an ISS-Lyapunov function. Further, (6.40) is shown to be UGES when consid-
ering V as a Lyapunov function and u2 = K(t)x1, resulting in

V̇ ≤ −α3,1 |x1|2 − ε1κ1 |x2|2 + aκ2∥K(t)∥2 |x1|2 (6.43)

≤ −α3,1 |x1|2 + aκ2ρ
2 |x1|2 − ε1κ1 |x2|2

= −α3,1 |x1|2 + (1 + ε1)
κ1κ2
α3,2

ρ2 |x1|2 − ε1κ1 |x2|2

≤ −ε2 |x1|2 − ε1κ1 |x2|2

where the small-gain condition (6.41) is applied. Lyapunov’s direct method proves the
origin (x1, x2) = 0 UGES (R. Skjetne 2023).

6.4.2 DPO design

This section presents a DPO design copying the ODM in (3.26), and adding injection gains
with feedback from the observer output error ỹ = y − ŷ, that is,

˙̂η = R(t)ν̂ + L1ỹ

M ˙̂ν = −Dν̂ + b̂+ τ +R(t)TL2ỹ

˙̂
b = −T−1

b b̂+ L3ỹ (6.44)

˙̂
ξ = Awξ̂ + L4ỹ (6.45)

ŷ = η̂ + Cwξ̂,

where L1, L2, L3 ∈ R3×3, and L4 ∈ R6×3 are injection gains.

Stability condition

The error dynamics of the system,

˙̃η = R(t)ν̃ − L1ỹ

M ˙̃ν = −Dν̃ + b̃− L2R(t)
T ỹ

˙̃
b = −T−1

b b̃− L3R(t)
T ỹ (6.46)

˙̃
ξ = Awξ̃ − L4ỹ. (6.47)
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Let z̃ := col(η̃, ξ̃) ∈ R9, x̃ := col(Mν̃, b̃) ∈ R6, Υ(t) := col(R(t), I) ∈ R9×3 , Λ =
row(M−1, 03×3) ∈ R3×6, L14 := col(L1, L4) ∈ R9x3 and L23 := col(L2, L3) ∈ R6x3. Asso-
ciating Σ1 to z̃1 and Σ2 to x̃ with u1 = x̃ and u2 = −L23R(t)

T ỹ gives the interconnected
subsystems,

Σ1 := ˙̃z = A1z̃ +Υ(t)Λu1 (6.48)

Σ2 := ˙̃x = A2(t)x̃+ u2 (6.49)

where

A1 :=

[
−L1 L1Cw
−L4 Aw − L4Cw

]
, A2(t) :=

[
−M−1D I

0 −T−1
b

]
. (6.50)

It is worth noting that A1 = A0 − L14C0, where A0 := diag(03×3, Aw) ∈ R9×9 and
C0 := row(I, Cw) ∈ R3×9. The pair A0 and C0 is observable, hence, L14 can be designed
to render A1 Hurwitz. Further, let P1 = P T1 s.t.

P1A1 +AT1 P1 = −q1I (6.51)

and V1(z̃) := z̃TP1z̃ to show that Σ1 is ISS, that is

λmin(P1) ≤ V1(z̃) ≤ λmax(P1), (6.52)

V̇1(z̃) ≤ −q1|z̃|2 + 2λmax(P1)|z̃|∥Υ(t)∥∥Λ∥|u1|

≤ −(q1 −
λmax(P1)

2∥Λ∥2

κ1
)|z̃|2 + κ1|u1|2 (6.53)

≤ −c1|z̃|2 + κ1|u1|2, c1 := q1 −
λmax(P1)

2∥Λ∥2

κ1
,

where κ1 > 0 is chosen s.t. c1 > 0.

For Σ2, A2 is designed Hurwitz with Appropriate pole placement. Correspondingly, let
P2 = P T2 s.t.

P2A2 +AT2 P2 = −q2I, (6.54)

and V2(x̃) := x̃TP1x̃, yielding

λmin(P2) ≤ V2(x̃) ≤ λmax(P2), (6.55)

V̇2(x̃) ≤ −q2|x̃|2 + 2λmax(P2)|x̃||u2|

≤ −(q2 −
λmax(P2)

2

κ2
)|x̃|2 + κ2|u2|2 (6.56)

≤ −c2|x̃|2 + κ2|u2|2, c2 := q2 −
λmax(P2)

2

κ2
,

where κ2 > 0 is chosen s.t. c2 > 0. Hence, Σ2 is ISS (Sontag 2008).

The interconnected system with u2 = −L23R(t)
T ỹ, with ỹ = C0z̃, the supt∥−R(t)TC0∥ =

2. By letting ∥L23∥ = ∥L23∥2 = ρ, and 4∥L23∥22 < c1c2
κ1κ2

, the interconnected subsystems

with u1 = x̃ and u2 = −L23R(t)
TC0z̃, is UGES by the small gain theorem.
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Choosing gains

Before choosing the gains κ1 and κ2 have to be set in order to render c1 > 0 and c2 > 0.

Using design recommendations from R. Skjetne (2023), setting κ1 = 2λmax(P1)2∥Λ∥2
q1

and

κ2 = 2λmax(P2)2

q2
gives c1 =

q1
2 and c2 =

q2
2 . In order to satisfy the small gain condition

∥L23∥ <
1

8∥Λ∥
q1

λmax(P1)

q2
λmax(P2)

(6.57)

has to be satisfied. It sets an upper bound on the gain matrix L23 which depends on L2

and L3. It can be further simplified by using properties of the matrix 2-norm (Petersen and
Pedersen 2012), giving ∥Λ∥2 =

√
λmax(ΛTΛ) =

√
λmax((M−1)2) = ∥M−1∥2 = 1

λmin(M)

due to M =MT > 0 and ∥L23∥2 =
√
λmax(LT23L23) =

√
λmax(L2L2 + L3L3), that gives

∥L23∥ <
λmin(M)

8

q1
λmax(P1)

q2
λmax(P2)

. (6.58)

Now let L2 = diag(l2,1, l2,2, l2,3 > 0 and L3 = diag(l3,1, l3,2, l3,3 > 0 and q1 = q2 = 1, the
the sum of each diagonal pair is bounded by

l22,i + l23,i <
λmin(M)

8λmax(P1)λmax(P2)

2

, ∀i ∈ 1, 2, 3. (6.59)

The wave motion gains are chosen using recommendations of T. I. Fossen (2021). Let
L4 = row(L4,1, L4,2) ∈ R3×6 where

L4,1 = −2(ζn − λ)
ωc
ω0
I = −2.2059 · I (6.60)

L4,2 = 2(ζn − λ)ω0I = 1.8 · I (6.61)

with the filter cutoff frequency ωc = 1.2255ω0, and ζni > λ determining the notch is set
to λ = 0.1, and ζ = 1.0.
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Chapter 7
Derivative Free Optimisation

To investigate the performance of the model and compare the different observers, optim-
ization is used. Since the Hessian or gradient is not available, DFO is the most viable
option. This chapter covers how a PSO is used to tune the observer gains offline. Firstly,
the optimization problem is formulated, and then the PI is proposed.

7.1 Optimisation problem

The goal is to calibrate the observer gains, x, to minimize the objective function, f(x),
subjected to some constraints, gi(x), given on standard form as

min f(x) (7.1)

subject to gi(x). (7.2)

The constraint gi(x) makes sure the system is stable and is described in chapter 6. For the
Kalman filter the Q-matrix (process-noise) is used as tuning parameters and the Q-matrix
is restricted to be diagonal. Furthermore, the deterministic observer’s gains, L1, L2, L3,
and L4, are also restricted to being diagonal with some simplifications. The

• L1 = diag(x1, x1, x2), L2 = diag(x3, x3, x4), L3 = diag(x5, x5, x6).

• Q = diag(x1, x2, x3, x4, x5, x6).

L4 is set manually according to T. I. Fossen (2021) rules of tuning. Note that these
simplifications are not optimal for the performance of the observer, but in practice, it is
necessary in order to find the minimum of the DFO in a reasonable time (Værnø et al.
2019). It is a trade-off between the performance of the DFO and the computing resources
used. Including all non-diagonal terms would construct a problem too large to solve with
the computing resources available.
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7.2 Performance indicator functions

The PI relevant to this thesis is a scalar value defining the performance of the observer.
The PIs evaluate how well the observers estimate the position of the vessel. A well-tuned
observer is used when collecting training data, both in HIL tests and model-scale tests.
The following data is collected to be used for DFO tuning: η position and heading of the
vessel, ν linear and angular velocity, τ actual thrust load, and Tp peak period when waves
are used. In the high-fidelity simulator, all this data is available. The data collected from
the model-scale tests require some post-processing,

List of different PI functions used by M. E. N. Sørensen and Morten Breivik (2015) and
Eriksen and M. Breivik (2017):

1. Integral of Absolute Error (IAE): It is a standard performance measure due to its
simplicity. It describes the overall accuracy, and intuitively, the perfect IAE is zero.

2. Integral of Square Error (ISE): The ISE describes the overall accuracy, and the
perfect ISE is intuitively zero. However, compared to the IAE, it weighs significant
errors.

3. Integral of Absolute Error multiplied by Work(IAEW): It measures error combined
with work, where error velocity and control input are weighted equally. The integral
of error can be reduced to zero, and the work reduced to the minimal work that can
perform the maneuver.

4. Integral of Absolute Error and Control (IAEC): The measure of both error and
control input. The integral of error can be reduced to zero, and the minimum
control input will be larger than zero. It measures the wear and tear to some extent.

5. Integral of Absolute Error multiplied by Time (ITAE): The ITAE weights errors that
happen later in the simulation.

6. Integral of Absolute Derivative Control (IADC): The IADC measures the change in
control input and does not measure the accuracy, which makes it a PI solely for wear
and tear. However, it is highly susceptible to noise being derivative and should be
paired up with an accuracy measure.

According to Løv̊as (2019) and Værnø et al. (2019), IAE, IAEW, and IAEC, are suitable
PI candidates for controller tuning. However, the observer is not concerned with the work
of the system. Therefore, IAE is chosen for the thesis due to its simplicity and lack of
required tuning.

The cost function, J(x), used for the DFO in the thesis is

J(x, ηtest) = Jη(x, ηtest) + cJν(x, ηtest) (7.3)

where the observer is initialized with the gains set by x, then IAE measures the cumulative
position and velocity error

Jη(x, ηtest) = Σnk=0(|ηN,k − η̂N,k|+ |ηE,k − η̂E,k|+
180

π
|ψk − ψ̂k|) (7.4a)

Jν(x, νtest) = Σnk=0(|uk − ûk|+ |vk − v̂k|+
180

π
|rk − r̂k|). (7.4b)
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Here, ηtest is the data used to evaluate the cost function, k = n is the final step of the
interval, and c > 0 is a scaling constant. It is found iteratively and set s.t. the size of the
IAE contribution for position and velocity are similar. The weighting of (7.3) is chosen
in order to be close to DP operating limits, which are typically 3m and 3 degrees (Veritas
2011). The cost of 1 m error in position is equivalent to 1 deg error in the heading.
Likewise, 1 m/s error in linear velocity is equivalent to 1 deg/s error in angular velocity.
ηtest contains the following sets: Y = {y0, y1, y2, . . . , yn} the measurement data containing
the position and heading of the vessel, T = {τ0, τ1, τ2, . . . , τn} is the actual thruster loads
produced, H = {ν0, ν1, ν2, . . . , yn} and V = {ν0, ν1, ν2, . . . , νn} which is the actual position
and velocity of the vessel used to evaluate the performance of the observer.

For the high-fidelity simulator, all the datasets are directly available and extracted. Like-
wise, all data from the model-scale tests are directly extracted, except H, which is post-
processed using a low pass Finite Impulse Response (FIR) filter to find actual velocities.
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Chapter 8
Desktop study

This chapter presents the results from the desktop study comparing the performance of
the DPOs. The results from four different test cases are presented. Model-scale tests with
CSAD in MC-Lab were performed with the LTV-KF to collect data for the test cases. For
each scenario, the cost function over time is presented. Finally, the results are consolidated
in Table 8.1, Table 8.2, and Table 8.3. The cost functions of the DPOs are normalized,
giving the worst-performing observer a score of 100. The nonlinear passive observer from
T. I. Fossen (2021) was only used to set gains for the wave filter of the small-gain observer
design and was not tuned with the autotuner due to the similarities between the structure
of the two observers.

8.1 Test 1: Combined surge-sway-yaw motion in calm water

The combined motion test described in section 3.2 was performed in order to collect data
for the desktop study. The data was collected in MC-Lab using the manually tuned LTV-
KF. The first test was performed in calm water with no waves. Firstly, the vessel stabilizes
at η = [1.5 0.6 30◦]. Afterward, it gets a position change 1m in the negative Y direction
and a heading change of 60 degrees counterclockwise to η = [1.5 -0.4 −30◦]. Then the
reference setpoint is changed 1m in the positive Y direction and 60 degrees clockwise in
heading to return to its original position.
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Figure 8.1: Comparison of DPO performance during the combined surge-sway-yaw motion
in calm water.

Figure 8.1 illustrates the accuracy of each autotuned observer through their cost function.
All the autotuned observers have a relatively equal performance when no waves are present,
and they have a lower cost than the manually tuned LTV-KF. There is no significant
difference between the performance of these observers when operating at low speed in no
waves.

8.2 Test 2: Combined surge-sway-yaw motion in rough sea

The second test was performed in rough seas with a full-scale significant wave height of
HS = 2.7m and a peak wave period of TP = 6.64s. Figure 8.2 illustrates the performance
of the autotuned observers relative to each other and the manually tuned LTV-KF. The
Lyapunov based designs’ performance falls off relative to the observer designs when adding
waves, but it still outperforms the manually tuned LTV-KF. The autotuned LTV-KF
performs quite well compared to the other designs. The small-gain based design seems to
be able to filter out some of the WF motions but not all of them. The manually tuned
LTV-KF is performing well compared to the autotuned LTV-KF.
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Figure 8.2: Comparison of DP performance during the combined surge-sway-yaw motion
in rough seas.

8.3 Test 3: Combined surge-sway-yaw motion in very rough
sea

The third test was run in rough seas with a full-scale significant wave height of HS = 4.5m
and a peak wave period of TP = 10.4s. Figure 8.3 illustrates the performance of the
autotuned observers relative to each other and the manually tuned LTV-KF. In very
rough seas, the manually tuned LTV-KF accuracy is significantly worse relative to the
other tests. The Lyapunov based design performance has a bigger problem in very rough
seas than in rough seas. This is expected as the wave motions play a bigger part in the
very rough seastate. The LTV-KF is still the most accurate.
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Figure 8.3: Comparison of DP performance during the combined surge-sway-yaw motion
in very rough seas.

8.4 Test 4: Combined surge-sway-yaw motion in very rough
sea with position loss

The fourth test is similar to the third test but with added position and heading loss. The
duration of heading and position signal dropouts in MC-Lab are commonly between 1-5
seconds in model-scale time. The system loses position and heading with intervals of 1-5
seconds followed by 1-5 seconds with the signal regained. This continues until the vessel
reaches the first setpoint. The signal is not lost when traveling from setpoint 1 to 2. The
test checks if the observers are able to handle shorter frequent signal dropouts. In full-
scale time the dropout duration is in the range of 10 - 50 seconds. Figure 8.4 illustrates
the performance of the DP system and observers during the deadreckoning test. It can
be seen that the DP performance is impacted when the vessel loses position and heading
signal frequently. This is likely due to the observer struggling to estimate an accurate
position and velocity. Figure 8.4b shows that the cost over time grows more rapidly for
the observers when the signal is lost. However, the DP system still manages to follow the
track, and the observers converge quickly close to the actual position of the vessel when
the position and heading signal is regained. The biggest surprise is how the Lyapunov
design improves its performance relative to the other observers when deadreckoning is
introduced. It’s important to note that this improvement is only relative to the other
observers and not compared to its performance in test 3.
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(a) Trajectory of estimated and measured pos-
ition of CSAD during deadreckoning test with
manually tuned LTV-KF.

(b) Comparison of DP performance during the
combined surge-sway-yaw motion in very rough
seas with deadreckoning.

Figure 8.4: DP performance during the combined surge-sway-yaw motion in very rough
seas with frequent position and heading signal dropout.

8.5 Autotuning

The PSO algorithm was used to autotune all observers. The particles were initiated with
values based on the gains found when tuning manually. Noise was added to the initial
particles when initialising the PSO to spread the particles throughout the search space.
The autotuning result is separated into deterministic and stochastic parts since these two
categories have different structures. In this section, the autotuning performed for the very
rough sea state is presented.

Deterministic observers

The injection gains L1, L2, and L3 are tuned using PSO, while L4 is set manually. The
development of the gains and the convergence of the cost function is illustrated in Fig-
ure 8.5.
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(a) Convergence of objective function, IAE. (b) Development of L1.

(c) Development of L2. (d) Development of L3.

Figure 8.5: (a) shows the convergence of IAE, (b)-(d) development of the best injection gains as
a function of iteration.

The performance of the small-gain observer design increases significantly when tuned with
the PSO algorithm. Figure 8.6 illustrates a comparison of the cost function of the observer
design before and after it is tuned with the PSO algorithm. Originally the guidelines
presented at chapter 6 were used to tune the observer manually.
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Figure 8.6: Comparison of the small-gain observer design before and after autotuning
using the PSO algorithm.

When conducting the autotuning, the PSO algorithm was free to choose gains inside
and outside of the stability region of the small-gain design. Afterward, the behavior of the
autotuner was compared with the stability limits presented in (6.59). Figure 8.7 illustrates
how the stable limits of the gains and the best injection gains changed each iteration when
the observer was tuned for the very rough sea state. The autotuner is not bounded to be
contained in the stable space but converges into it in this specific case. This relationship
was not further investigated but is a promising observation.

Figure 8.7: The development of the injection gains L2 and L3 with respect to the stability
limits set by the small-gain observer design.
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Stochastic observers

The measurement covariance matrix Q is autotuned using PSO. The development of the
gains and the convergence of the cost function is illustrated in Figure 8.8. The Q matrix
is in this case simplified to be diagonal.

(a) Development of q11 − q44. (b) Development of q55 and q66.

Figure 8.8: Development of the best injection gains by PSO as a function of iteration.

Figure 8.9 illustrates the performance of the manually tuned LTV-KF and the autotuned
LTV-KF. The LTV-KF was more challenging to manually tune relative to the small-gain
observer design. The autotuned LTV-KF improves more compared to the manually tuned
LTV-KF compared to the deterministic observers. This support the hypothesis that the
LTV-KF is more challenging to tune manually.

Figure 8.9: Comparison of the LTV-KF before and after autotuning using the PSO al-
gorithm.
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8.6 Summary of results

To compare the performance of each observer during the test scenarios, the quantitative
position and velocity cost functions in (7.4) were used. The cost values are normalized such
that the worst performing observer has a score of 100. The positional accuracy is presented
in Table 8.1 and velocity accuracy in Table 8.2. The performance of the Lyapunov design
relative to the small-gain design was decreasing when the vessel was subjected to larger
waves. This was true both for accuracy of position and velocity.

Table 8.1: Position term of the cost function with normalized values such that the worst
performing observer has a score of 100.

LTV-KF baseline LO SG LTV-KF

Test 1 46.03 22.41 20.93 23.39

Test 2 33.34 39.57 35.86 27.41

Test 3 31.29 32.67 23.57 18.28

Test 4 46.90 31.16 27.16 25.53

Table 8.2: Velocity term of the cost function with normalized values such that the worst
performing observer has a score of 100.

LTV-KF baseline LO SG LTV-KF

Test 1 53.97 46.37 47.28 45.64

Test 2 66.66 50.14 49.19 44.11

Test 3 68.71 43.93 33.31 25.70

Test 4 53.10 39.39 35.23 32.47

During the MC-Lab model-scale tests, the autotuned observers outperformed the manually
tuned LTV-KF. Furthermore, the autotuned LTV-KF had the overall best performance.
All observer’s performances were similar when waves were not introduced. Table 8.3
illustrates the total performance of all observers, including both position and velocity.
The manually tuned LTV-KF is better relative to the other observers in the rough sea
state compared to calm water. This is likely due to the baseline LTV-KF being tuned
more accurately in that sea state. More time was invested in tuning the LTV-KF in waves
than in calm waters. The goal of the manual tuning was to have a good enough observer
to collect data, not to perfect the performance of the manually tuned LTV-KF in all sea
states. Its also worth mentioning that the manually tuned LTV-KF was returned before
performing test 4, which is the reason why it performs better relative to the small-gain
design and LTV-KF in this test compared to test 3, which is without signal dropouts.
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Table 8.3: The total cost function with normalized values such that the worst performing
observer has a score of 100.

LTV-KF baseline LO SG LTV-KF

Test 1 100 68.79 68.21 69.03

Test 2 100 89.71 85.05 71.51

Test 3 100 76.60 56.88 43.98

Test 4 100 70.55 62.39 57.00

To summarize the comparison, all different PIs mentioned in section 4.1 are listed together
in Table 8.4. The observers are able to handle short-duration position and heading signal
loss, but the estimation error grows rapidly when the duration increases. The deadreckon-
ing capability of the observers would be increased if other internal states were measured.
The Lyapunov obsever design actually performed better relative to the other observers
when performing deadreckoning, which was surprising. The Lyapunov was the easiest
observer to implement and tune, but it has a decreased performance relative to the other
observers when waves are introduced. The small-gain design with a wave filter similar
to the nonlinear passive observer works well both in waves and calm waters and is easier
to implement than the LTV-KF. The best performing observer all over is the LTV-KF.
When introducing waves, it performs significantly better than the other observers both in
position and velocity accuracy when tuned with the PSO algorithm.

Table 8.4: Comparison of all observers using selected PIs.

LO SG LTV-KF

Accuracy Good Good/Great Great

Manual tuning Medium Medium Hard

Wave filter No Yes Yes

Complexity of Implementation Low/Medium Medium Medium/High

Deadreckoning capability Medium Medium Medium
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Chapter 9
Model-scale results

This chapter presents the results from the model-scale experiment conducted at MC-Lab.
The tests performed are described in detail in section 3.2. The LTV-KF filter is the chosen
observer for the final tests on CSAD and is autotuned using the PSO algorithm. The tests
are performed in all sea states presented in section 3.3. In this chapter, experiments
are performed in a very rough sea state. The results from other sea states are found in
Appendix A. Lastly, the result from model-scale experiments with the small-gain observer
on the vessels CSE and CSJ is presented.

9.1 4-corner test in very rough sea

The 4-corner test is described in section 3.2 and was performed in very rough seas with
CSAD. Between each setpoint, the vessel was cut off from measurements of position and
heading in 10-20 second intervals. All stages of the test will be investigated in the following
sections. Figure 9.1 illustrates the measured position and estimated position of the 4-
corner performed in very rough seas.
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Figure 9.1: Trajectory of the 4-corner tests in very rough seas with deadreckoning intervals
of 10-20 seconds.

Setpoint 1: Surge ahead motion

The first section of the 4-corner test investigates the vessel in pure surge ahead motion in
head seas. The reference setpoint was changed 1.5m in the positive X direction from η =
[1.5 -0.9 0◦] to η = [3.0 -0.9 0◦].
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(a) LTV-KF velocity estimation error.
(b) LTV-KF position and heading estimation
error.

Figure 9.2: LTV-KF performance during surge ahead motion in very rough seas with
position and heading loss.

The LTV-KF manages to estimate the true position of the vessel quite well. This is true
both when the vessel is standing still in its initial position and when the vessel starts its
surge motion. The DP system loses position and heading signal after approximately 150
seconds and initiates deadreckoning as illustrated in Figure 9.2. The signal loss duration
corresponds to 3 min in full-scale time. As expected, the observer estimation error grows
rapidly in all 3DOF due to only relying on the single input, thruster load. It should be
noted that after recovering the position and heading signal, the observer quickly converges
close to the true position of the vessel.

Setpoint 2: Sway starboard motion

The second section investigates the vessel in pure sway motion in starboard direction in
head seas. The reference setpoint was changed 1.5m in the positive Y direction to η =
[3.0 0.6 0◦].
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(a) LTV-KF velocity estimation error.
(b) LTV-KF position and heading estimation
error.

Figure 9.3: LTV-KF performance during sway starboard motion in very rough seas with
position and heading loss.

Figure 9.3 illustrates the performance of the observer during the sway starboard motion of
the vessel. The vessel still has bow seas and moves in a sway position while being pushed
in negative surge motion by the waves. The surge error has some small increases in error
throughout the sway motion, which is likely a result of the vessel facing large waves at
those moments. The vessel loses position and heading signal after 540 seconds which lasts
2 min and 30 seconds in full-scale time. The observer estimation error grows rapidly in
surge and sway, but it’s low in the heading. This is likely due to the waves meeting the
vessel head on, and the wave load does not apply a moment to the vessel turning it around.
The observer recovers quickly after regaining position and heading signal. In addition to
the controlled signal loss, the MoCap system loses track of CSAD after 575 seconds. The
signal loss is approximately 50 seconds in full-scale time. The shorter signal loss does not
seem to face the observer with any problem.

Setpoint 3: Yaw clockwise motion

The third section investigates the vessel in pure yaw motion in head and bow quartering
seas. The reference heading setpoint was changed 30◦ in the clockwise direction to η =
[3.0 0.6 30◦].
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(a) LTV-KF velocity estimation error.
(b) LTV-KF position and heading estimation
error.

Figure 9.4: LTV-KF performance during yaw clockwise motion in very rough seas with
position and heading loss.

Figure 9.4 illustrates the performance of the observer during the yaw clockwise motion of
the vessel. The vessel moves from bow sea towards bow quartering seas. The error of the
observer grows when moving to bow-quartering seas. The observer does not manage to
filter out all the WF motion when facing waves to the side of the vessel’s hull. The vessel
loses position and heading signal after 900 seconds which lasts approximately 2 min and 30
seconds in full-scale time. During the signal loss, the X estimation error is quite small, and
the sway estimation error is less than in previous tests. However, the heading estimation
error grows rapidly before converging quickly when the signal is regained. There is a signal
loss due to the MoCap system after 945s which is not notable to the performance of the
observer.

Setpoint 4: Combined surge-sway motion

The fourth section investigates the vessel in combined surge sway motion in bow quartering
seas. The reference setpoint was changed 1.5m in the negative X direction to η = [1.5 0.6
30◦].
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(a) LTV-KF velocity estimation error.
(b) LTV-KF position and heading estimation
error.

Figure 9.5: LTV-KF performance during combined surge-sway motion in very rough seas
with position and heading loss.

Figure 9.5 illustrates the performance of the observer during the surge-sway motion of the
vessel. The vessel losses position and heading signal after 1310 seconds. The signal loss
duration corresponds to 1 min and 30 seconds in full-scale time. The observer position
error in surge and the heading error grows large quickly. It is expected due to the waves
moving in the negative X direction and the vessel being in bow quartering sea, making
the wave load apply a moment to the vessel. The sway error is quite low during the signal
loss.

Setpoint 5: Combined surge-sway-yaw motion

The fifth section investigates the vessel in combined surge-sway-yaw motion in bow quar-
tering/head seas. The reference setpoint was changed 1.5m in negative Y direction and a
heading change of 30◦ counterclockwise to η = [1.5 -0.9 0◦].
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(a) LTV-KF velocity estimation error.
(b) LTV-KF position and heading estimation
error.

Figure 9.6: LTV-KF performance during combined surge-sway-yaw motion in very rough
seas with position and heading loss.

Figure 9.6 illustrates the performance of the observer during the surge-sway-yaw motion of
the vessel. The vessel losses position and heading signal after 1740 seconds. The signal loss
duration corresponds to approximately 1 min and 45 seconds in full-scale time. Similar
to the other tests in bow quartering seas, the observer is struggling in surge and yaw
estimation during deadreckoning. Sway error is low throughout the signal loss.

9.2 C/S Enterprise

All tests on CSE were performed in calm water. Firstly a circular test is performed to check
the observer’s position estimation capability. Afterward, a test where different velocities
are given as setpoints are performed to check the accuracy of the velocity estimation. The
observer implemented for CSE was the small-gain principle based observer design with
new gains, damping matrix, and inertial matrix.

9.2.1 Test 1: Circle

The vessel performed three laps in a circular shape with a diameter of 1.5m. Figure 9.7
illustrates the performance of the observer during the circle test. Note, Figure 9.7b shows
the measured and estimated position from the second circle only. The observer is able to
estimate the position and heading well throughout the whole circle. The performance is
equally good throughout the whole circle.
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(a) Trajectory of CSE in calm water during
circle test.

(b) Position estimation error during circle tests
in calm water.

Figure 9.7: LTV-KF performance during circle test performed in calm water with CSE.

9.2.2 Test 2: Velocity setpoints

The velocity test was performed using a joystick controller, which sent out velocity set-
points for the vessel. The test is conducted with lots of turning since the MoCap system
in MC-Lab covers a relatively small area. Figure 9.8 illustrates the trajectory of CSE and
the velocity accuracy of the observer during the test. The observer is having some prob-
lems estimating the velocity of the vessel. When turning at maximum speed, the velocity
estimations have a fast oscillatory behavior with small magnitudes. The estimation error
also increases when the vessel moves in a surge ahead motion after 200s.
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(a) Trajectory of CSE during velocity test in
calm water.

(b) Velocity estimation error during velocity
tests in calm water.

Figure 9.8: LTV-KF performance during joystick control test performed in calm water
with CSE.

9.3 C/S Jonny

The CSJ did not yet have a control system. Therefore, a simple joystick controller was
implemented to collect data to evaluate the performance of the observer. The observer
implemented for CSJ was the small-gain design with new gains, damping matrix, and
inertial matrix.

9.3.1 Test 1: Joystick control

The vessel is driven with a PS4 controller using a simple joystick control. The controller
gives command thrust forces directly to the thrust allocator. The vessel is driven in a
combined surge-sway-yaw motion testing transient behavior introduced by the operator.
CSJ is moving at high speeds compared to CSAD. The observer position estimates are
accurate in all three DOFs. The test was conducted to test the performance of the observer
in transient movements at higher speeds.
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Figure 9.9: Position and heading estimates during joystick control test performed in calm
water with CSJ.

9.4 Summary of results

The 4-corner test is used to test the performance of the LTV-KF in the surge, sway,
and yaw of motion. Between each setpoint, the system loses the position and heading
signal between approximately one and a half to 3 minutes in full-scale time. The LTV-KF
estimation error rises quickly when the heading and position signal is lost. Especially
heading and X position is difficult for the observer to estimate in deadreckoning. This is
likely due to the fact that the vessel is facing head and bow quartering seas throughout
the test. However, the estimated position and heading converge fast, close to the actual
position, when the position and heading signal is regained. Hence, the observer is robust
enough to be used in MC-Lab, where signal loss is normally between 1-5 seconds. The
system also lost the position and heading signal for short periods due to the MoCap
system. This did not affect the performance of the system considerably. Considering the
tests performed, the LTV-KF implemented for CSAD is robust enough to handle shorter
signal losses of up to 3 minutes in full-scale time but is not able to perform dead reckoning
over longer periods due to not measuring enough internal states.

The small-gain observer design was implemented for both CSE and CSJ. It yielded high
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accuracy of the position of both CSE and CSJ. However, the velocity estimation was not
as accurate, struggling after fast movements in surge or yaw. The accuracy seems high
enough for the small-gain design to be used as a baseline observer for the respective vessels
in calm water. Note that tests were only performed in calm water for CSE and CSJ, which
for CSAD yielded similar performance for all observers.
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Chapter 10
Conclusion

This chapter presents the findings, contributions, and concluding remarks of the thesis.
All analyses are conducted with respect to results from a high-fidelity simulator based on
the MCSimPython package and the model-scale tests at MC-Lab at the Department of
Marine Technology, NTNU.

10.1 Conclusion

The overall goal of this thesis was to compare different observers and find a baseline
observer for the model-scale vessel CSAD. Furthermore, an autotuning module has been
implemented in order to compare and tune both stochastic and deterministic observers
efficiently. Through simulations and laboratory experiments, the results confirm that the
LTV-KF has the best performance. Hence, this should be used as a baseline observer
for CSAD in further experiments at MC-Lab. The new GUI proved a useful tool for
monitoring operations and allows for realtime tuning of observers and plotting of observer
states.

The small-gain observer design was implemented for the vessels CSE and CSJ. The ob-
server estimated the position with high accuracy and worked well as a baseline observer
for the two vessels. However, the performance of the observer has not yet been tested in
waves.

The DFO algorithm PSO was used to autotune both the deterministic observers and the
LTV-KF. The autotuning method showed promising results compared to manual tuning
but relied on good initial gains in order to not get stuck in a local minimum with poor
performance. Using tuning guidelines presented in chapter 6 to find initial gains for the
PSO initialization worked well.

The deadreckoning capability of the observers was tested through both complete position
and heading signal loss over a longer period of time and multiple short consecutive periods.
The observers relied only on the actual thrust load as input during signal loss. When
subjected to many short consecutive signal losses, all tested observers managed to estimate
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both position and velocity quite well. Resulting in a performance loss on the whole DP
system. However, when subjected to longer intervals, the LTV-KF estimation error grew
quickly, especially when subjected to waves in quartering bow seas. Overall the LTV-KF
deadreckoning capability is robust enough for testing in MC-Lab, where signal loss from
the MoCap system ranges from 1-5 seconds in model time. The observer converges close
to the actual position quickly after regaining the heading and position signal.

10.2 Further work

• Include more measured states, such as acceleration, to the system. IMU can be used
in order to capture the vessel’s acceleration. This will further enhance the system’s
deadreckoning capability.

• Implement a functioning autotuning loop for online tuning of observers in realtime.
Functionality for capturing data and tuning the observers based on this data already
exists but is currently only used for offline observer tuning.

• A module handling signal faults such as wild points and low variance on the signal
should be implemented. The current system only handles frozen signals.

• The thrusters and the electrical system on CSAD need an upgrade. During the
model-scale tests, three thruster malfunctions were encountered, with one being
replaced. This resulted in only 4 thrusters being used instead of 6.

• The GUI can be further enhanced to allow control over multiple ships at once.
Currently, it only supports tracking one ship, but it would be a nice improvement
to track multiple ships in MC-Lab.
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Appendix A
Additional results

4-corner tests performed in all sea states with controlled deadreckoning intervals.

(a) LTV-KF performance in calm waters with
deadreckoning intervals of approximately 35-40
seconds.

(b) LTV-KF performance in rough seas with
dead reckoning intervals of approximately 15-
20 seconds.

Figure A.1: Trajectory of the 4-corner tests in very rough seas with deadreckoning intervals
of 10-20 seconds.

Deadreckoning test performed with frequent short-duration position and heading dropouts.
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Appendix A. Additional results

(a) LTV-KF performance in calm waters with
frequent deadreckoning intervals of approxim-
ately 1-5 seconds.

(b) LTV-KF performance in rough seas with
frequent dead reckoning intervals of approxim-
ately 1-5 seconds.

Figure A.2: Trajectory of the combined motion tests in calm water and the rough sea
state with frequent deadreckoning intervals of 1-5 seconds.
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Appendix B
GUI

This appendix contains a few figures showing different views of the GUI.

Figure B.1: Layout of the GUI, both the measured and estimated position are plotted.
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Appendix B. GUI

Figure B.2: Layout of the GUI. The estimated position is plotted while the measured
position is hidden.
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Appendix B. GUI

Figure B.3: The observer tab allows for realtime observation of observer states and tuning
of gains.
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Appendix B. GUI

Figure B.4: Tuning of the controller. The controller tab lets the operator directly change
the gains of the PID controller.

Figure B.5: Interactive test screen. Allows the operator to easily configure tests to be
later activated with just one click.
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Appendix B. GUI

Figure B.6: Zoom in on thruster overview. Positive thrust is marked with red and moves
in the positive direction from the center of the circle. Negative thrust marked with blue
moves in the opposite direction, with 0 thrusts being marked with just a black line in the
center. The green arrow shows the direction of the propeller.

vii
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