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ABSTRACT

The dense and rigid extracellular matrix in malignant tumors creates a physical
barrier that hinders the delivery of drugs, and thus compromises treatment efficacy.
This project has measured the stiffness of three murine tumor models, and related
the results to the concentrations of two important ECM constituents: sGAG and
collagen.

Micro indentation of tumor sections provided force indentation depth curves,
which could be used to estimate spring constants and Young’s moduli by curve
fitting to Hooke’s law and Hertz model. Hooke’s law was curve fitted within a
100 µm linear interval, while Hertz model included data from the entire force
curve. Young’s modulus was also calculated from the shear wave velocity acquired
using shear wave elastography. The contents of collagen and sGAG were measured
using pre-made assay kits, and provided measurements of the concentrations in µg
collagen or sGAG per mg wet weight of the tumor. The concentrations of sGAG
provide an indication of the proteoglycan contents in the tumor.

KPC consistantly had the highest stiffness parameters, while CT26 had the
lowest. The stiffness parameters for 4T1 varied depending on experimental proce-
dure; indentation data suggested similar stiffness parameters to CT26, and shear
wave elastography indicated Young’s modulus similar to KPC. Correlation analysis
of stiffness parameters and concentrations of collagen and sGAG showed that the
collagen concentration increased and sGAG concentration decreased with increas-
ing tumor stiffness. However, except for the correlation between Young’s modulus
from indentation and sGAG concentration, none of the trends were statistically
significant.
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SAMMENDRAG

Den tette og stive ekstracellulære matriksen i kreftsvulster danner en fysisk bar-
riere som hindrer tilførsel av medisiner og dermed hemmer kreftbehandling. I dette
prosjektet har stivheten til tre tumormodeller fra mus blitt målt og sammenlignet
med konsentrasjonen av to viktige bestanddeler av den ekstracellulære matriksen:
sGAG og kollagen.

Mikroindentering av kreftsvulstene ga kraft-indenteringskurver som, ved å
kurvetilpasse dem til Hookes lov og Hertz-modellen, ga verdier for fjærkonstanten
og Youngs modulus. Hookes lov ble kurvetilpasset innenfor et lineært intervall på
100 µm, mens Hertz-modellen inkluderte data fra hele kraftkurven. Youngs mod-
ulus ble også beregnet basert på skjærbløgehastigheten som ble målt ved bruk
av skjærbølgeelastografi. Innholdet av kollagen og sGAG ble målt ved bruk av
ferdige assay-kit, og ga målinger av konsentrasjonen i µg kollagen eller sGAG
per mg våtvekt av kreftsvulsten. Konsentrasjonen av sGAG ga en indikasjon på
proteoglykaninnholdet i kreftsvulsten.

KPC hadde gjennomgående høyest verdi for stivhetsparametrene, mens CT26
hadde lavest. Stivhetsparametrene for 4T1 varierte avhengig av den eksper-
imentelle metoden; resultater fra indentering ga stivhetsparametre tilsvarende
CT26, mens skjærbølgedataene antydet at Youngs modulus var tilsvarende KPC.
Korrelasjonsanalyse av stivhetsparametre og konsentrasjon av kollagen og sGAG
viste at kollagenkonsentrasjonen økte og sGAG-konsentrasjonen sank med økt
svulststivhet. Med unntak av korrelasjonen mellom Youngs modulus fra indenter-
ing og sGAG-konsentrasjonen var ingen av trendene statistisk signifikante.
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CHAPTER

ONE

INTRODUCTION

Cancer research has long been a highly prioritized research field, but despite sig-
nificant efforts the mortality rate for many types of cancer remains high, with
millions of new cases and cancer-related deaths reported each year [1]. Thus, the
challenge of finding a cure for cancer remains. In recent years, the focus has shifted
towards understanding the tumor microenvironment (TME) as a complex entity
consisting of cancer cells, immune cells, fibroblasts, and the extracellular matrix
(ECM).

The TME encompasses the tumor vasculature, infiltrating immune cells, con-
nective tissue, and the ECM [2]. While the TME itself may not be malignant,
it contains properties and components that can hinder the delivery of therapeu-
tics to tumor cells and promote cancer formation and progression. Compared to
regular tissue, the ECM in tumors is often stiffer, and collagen and proteoglycans
overexpressed in solid tumors [3, 4]. The dense and rigid ECM in tumors creates
a physical barrier that hinders the delivery of drugs in the TME [5]. Netti et al.
(2000) performed a study that investigated the collagen network and its interac-
tion with the proteoglycan matrix within tumors [6]. The study concluded that
the resistance to delivery of macromolecule therapeutics in tumors was mainly
attributed to the collagen concentration. However, stiffness and concentration of
ECM constituents vary among different tumor models, and must be characterized
for each tumor model.

This thesis is part of a larger project working with characterizing three murine
tumor models, and ultrasound mediated delivery of drug-loaded nanoparticles to
tumor models to increase drug delivery. Ultrasound is combined with microbub-
bles, which oscillate in response to ultrasonic waves. This can assist the drug in
crossing the blood vessel wall and physically push it deeper into the extracellular
matrix [5]. Characterisation of the mechanical properties of the tumor models is
important to study how differences between tumor models may affect the drug de-
livery. In this project, the stiffness of three murine tumors, KPC, 4T1 and CT26,
is investigated, and compared to the levels of collagen and sulfated glycosamino-
glycan. A micro indenter was used to obtain force indentation curves, which are
curve fitted with Hertz and Hooke’s model to obtain the Young’s modulus and
spring stiffness constant, which is two different measures of stiffness. Shear wave
elastography provided another measure of Young’s modulus, derived from shear
wave velocity. The absorbance was measured after performing Sircol collagen and
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2 CHAPTER 1. INTRODUCTION

Blyscan sulfated glycosaminoglycan assays to calculate the concentration of col-
lagen and sGAG in the tumor samples. The sGAG concentrations provide an
indication of the concentrations of proteoglycans in the tumors. The overall aim
of the master thesis is to study the association between tumor tissue stiffness and
amount of the ECM constituents collagen and sGAG, and to determine the impact
of stiffness on drug delivery.



CHAPTER

TWO

THEORY

2.1 Tumor biology

2.1.1 The hallmarks of cancer

Cancer is a malignant tumor, i.e. an abnormal mass of tissue that develops when
abnormal cell growth and cellular division results in excessive cellular proliferation
[7]. The transformation from normal cells into malignant tumor cells is a multi-
step process [8]. In 2000, Hanahan and Weinberg proposed the "Hallmarks of
Cancer" theory, identifying six distinct physiological changes necessary for cancer
development and growth. These steps include self-sufficiency in growth signals,
insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative poten-
tial, sustained angiogenesis, and tissue invasion and metastasis. In 2011 Hanahan
and Weinberg published ’Hallmarks of cancer: the next generation’, where two
other distinct attributes of cancer cells which are equally important for the devel-
opment of cancer were presented [9]. These are avoiding immune destruction, and
deregulating cellular energy metabolism. The original and emerging hallmarks of
cancer are illustrated in Figure 2.1.1.

2.1.2 The tumor microenvironment

The tumor 1 microenvironment (TME) is composed of various components, as
shown in Figure 2.1.2 [4]. The TME include immune cells, fibroblasts, capillaries,
and the extracellular matrix (ECM), which contains proteins such as collagen I and
fibronectin. Collagen fibers in the ECM provide the tissue with structural strength,
and support signal transduction between the cells. Activated fibroblasts, known
as cancer-associated fibroblasts (CAFs), secrete cytokines and growth factors and
produce an excess of ECM proteins, often leading to desmoplasia and increased
tumor stiffness. The density of these components leads to the development of solid
stress within the tumor microenvironment, which is divided into growth-induced
stress and externally applied stress. These stresses promote tumor progression
by altering tissue architecture, promoting invasion, and supporting cancer cell
survival.

1In this thesis the word tumor refers to malignant tumors, and will be used interchangeably
with the word cancer.
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4 CHAPTER 2. THEORY

Figure 2.1.1: Figure showing the eight required physiological changes in cancer
cells for the formation and growth of tumors, adapted from Hanahan and Weinberg
[8, 9]. Original hallmarks are marked in grey, whilst the two emerging hallmarks
are marked in green.

Figure 2.1.2: Illustration shows some of the components of the tumor microenvi-
ronment; tumor cells, immune cells, fibroblasts, leaky blood vessels, collagen fibers
and proteoglycans.
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Tumor growth and progression are sustained by mechanisms such as angio-
genesis and co-option of pre-existing blood vessels [10]. However, these vessels
are structurally and functionally abnormal, leading to hyper-permeability and im-
paired circulation. Additionally, unchecked cancer cell proliferation can compress
blood and lymphatic vessels, inducing a desmoplastic reaction that results in exces-
sive production of tumor ECM. The tumor microenvironment is highly dynamic,
evolving during tumor growth, progression, and treatment, and is strongly coupled
with abnormalities within the tumor’s vascular and extravascular compartments.

The various components of the TME promote tumor progression in different
ways. This thesis will focus on the ECM; its components and mechanical proper-
ties.

2.1.3 The extracellular matrix

The shape and mechanical properties of tissues are mainly determined by the
ECM, which is composed of three types of molecules: structural proteins, pro-
teoglycans, and adhesive glycoproteins [8]. Structural proteins like collagen and
elastin provide strength and flexibility to the ECM, and are embedded in a matrix
formed by proteoglycans. Adhesive glycoproteins, such as fibronectin and lamin,
enable cell attachment to the ECM. Fibroblasts are the predominant producer of
ECM. In the following section we will go further into detail on collagen, proteo-
glycans, and fibroblasts.

Collagen

Collagen is the most prevalent protein in the human body, and provides tensile
strength to tissue [8]. Its structure, shown in Figure 2.1.3, consists of three α-
chains forming a triple helix known as the collagen molecule. These molecules
then self-assemble into collagen fibrils which, in turn, assemble laterally into col-
lagen fibers. The stability of collagen fibers is ensured by the hydrogen bonds
between α-chains and collagen fibrils. There are 15 different types of collagen
molecules formed by about 25 different α-chains, with type I being the most
abundant. The density and alignment of collagen fibrils vary between different
tissues, contributing to distinct mechanical and biological functions [11].

Proteoglycans

The matrix in which structural proteins are embedded into primarily consists
of proteoglycans; glycoproteins in which a large number of glycosaminoglycans
(GAGs) are covalently bound to a single protein molecule [8]. GAGs are large,
anionic carbohydrates characterized by repeating disaccharide units, as illustrated
in Figure 2.1.4 [12]. Due to their negative charge they are hydrophilic, attracting
both water and cations. This creates the hydrated matrix wherein the structural
proteins are embedded. Hyaluronan, which is the salt form of hyaluronic acid, is
not sulfated, but the other glycosaminoglycan chains contain sulfate substituents
at various positions of the chain [13]. These are called sulfated-glycosaminoglycans
(sGAG). Proteoglycans vary greatly in size, depending on the molecular weight of
the core protein and the number and length of the carbohydrate chains.
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Figure 2.1.3: Schematic of the hierarchical structure of collagen. α chains build
up a triple helix, forming the collagen molecules, which nest together to form the
collagen fibrils, which again form the collagen fiber.

Figure 2.1.4: Example of the structure of a proteoglycan. Glycosaminoglycan
chains are covalently bound to core proteins, which again are attached via linker
proteins to the central hyalauronan strand.

Fibroblasts

Fibroblasts, shown in Figure 2.1.5, are key regulators of ECM composition and
organization [14]. Fibroblasts play an important role in ECM production by pro-
ducing the ECM’s structural proteins, adhesive proteins, and ground substance.
In addition, fibroblasts play important roles in maintaining and reabsorbing the
ECM, wound healing, inflammation, angiogenesis, and in physiological as well
as pathological roles. Additionaly, fibroblasts produce and respond to various
paracrine and autocrine signals, such as cytokines and growth factors. In healthy
tissue, fibroblasts remain in a quiescent state with negligible metabolic and tran-
scriptomic activities [4].
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Figure 2.1.5: Illustration of the typical structure of a fibroblast. Depicted are
the nucleus, golgi apparatus, ribosomes, mitochondrion, and rough endoplasmic
reticulum. Fibroblasts become activated in response to tissue damage.

The extracellular matrix and tumor stiffness

Stiffness is a material property, and refers to its capacity to return to its original
shape or form after an applied load is removed [12]. When a material is sub-
jected to a load it experiences stress and strain. Stress is measured as the ratio
of force to cross-sectional area, while strain is measured as the ratio of the change
in length to the original length along the axial direction, as illustrated in Figure
2.1.6. Biological tissues are modeled as viscoelastic materials, meaning they ex-
hibit both viscous and elastic behaviour when experiencing stress and strain [15].
A generalized stress-strain curve for biological tissues is shown in Figure 2.1.7 [16].
The curve show how changes in the structure of the tissue occur in response to
increasing stresses.

In biological tissues, the stiffness is mainly determined by the composition and
organization of the ECM [12]. Increased tissue stiffness is a classic characteris-
tic of solid tumors and a critical factor in cancer progression [17, 18]. One of
the major contributing factors to stiffening of tumor tissue is increased density of
stiffness-promoting matrix components, such as collagen fibers [19, 20]. The con-
dition of overproduction and accumulation of ECM fibers is called desmoplasia.
Desmoplasia leads to a continuous stiffening of the tumor [21]. Collagen fibers are
secreted from both CAFs and cancer cells [18]. Additionally, CAFs exert contrac-
tile forces on the ECM, which modifies the tissue architecture and causes tumor
tissue stiffening. This remodeling involves degradation of the ECM and deposition
of a new tumor-supporting ECM [22]. Matrix crosslinking is another critical step
for stiffening of cancer tissue, and is caused by certain proteins, such as the lysyl
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Figure 2.1.6: Illustration showing the concepts, and equations, of stress (σ) and
strain (ϵ) as an object is subjected to two equal, but opposite, uniaxial forces, F.

oxidase family proteins. Proteins causing matrix stiffening are secreted by CAFs,
cancer cells, and stromal cells.

The mechanical properties of the tumor and host tissue determine how a grow-
ing tumor displaces the host tissue and how the host tissue contains or restrains the
tumor [17, 23]. When a tumor grows it is restricted by the surrounding healthy
tissue, causing compressive forces to accumulate over time. These compressive
forces are largest at the center of the tumor. Due to its highly negative charge HA
and sGAGs can trap water and swell, and thus resist compressive forces. Hence,
HA and sGAG are mostly accumulated in the centre of the cell. The periphery of
the tumor experiences compressive forces in the radial direction, but tensile forces
in the circumferential direction. Collagen fibers are strongly resistant to tensile
loads, which tends to restrict the expansion of tumors. Thus, the collagen density
at the tumor periphery is therefore often higher than throughout the tumor tissue.

The role of the extracellular matrix proteins and stiffness in tumor
progression

Cancer progression can be enhanced by changes in the ECM within tumor tissue.
The ECM plays a crucial role during cell surface receptor signalling, and serves
a storage site for growth factors. In addition, it can assist in signalling events
using its major adhesion receptors, integrins and proteoglycans. Some of these
signaling molecules are growth factors, and thus the ECM can contribute to the
continuous growth of malignant cells [17, 24]. The extensive remodeling of the
ECM causes signaling through integrins to be altered, causing sustained tumor
growth and progression [25].

Studies have revealed that cancer cells exhibit slower proliferation in a softer
ECM, while increased matrix stiffness can intensify tumor progression [17]. More-
over, the rigid ECM can directly trigger signaling pathways associated with cell
migration, thereby enhancing cell motility and elevating the invasive potential of
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Figure 2.1.7: Generalized stress-strain curve for biological tissues. When the tissue
is initially subjected to a load, the gradual increase in stress is described by the
toe region. As the stress continues to increase, the curve enters a linear region,
which represents the region in which the tissue functions under normal, physiologic
stresses. Once the proportional limit is reached the tissue’s behaviour becomes
non-linear. The elastic limit represents the maximum stress the tissue can endure
while still being able to return to its original shape once the load is removed.
Upon reaching the yield point, the material starts to rapidly deform until the
point of maximum stress, known as ultimate stress. The rupture point occurs at
stress level below the ultimate stress, due to the time required for all the tissue to
undergo complete failure.
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cancer cells.
Elevated matrix stiffness can hinder proper vascularization as the ECM fibers

can disrupt endothelial cell-cell junctions, resulting in leaky blood vessels and di-
minished blood flow [17]. Additionally, the excessive production of ECM and rapid
tumor growth can exert compressive forces on both blood and lymphatic vessels
within the tumor. This compression, combined with reduced blood flow, can lead
to hypoxia. Hypoxia can exacerbate tumor progression by causing alterations in
DNA repair mechanisms, cell metabolism, and tumoral immunity [26]. Addition-
ally, changes in transcriptional heterogeneity can contribute to cancer stem cells
phenotype, invasion, and resistance to chemo- and radiotherapies [26].

2.2 Methods for stiffness measurements

The following section describes the theoretical background for methods for stiffness
measurements used in this project. The tumor stiffness was measured using two
different experimental methods - shear wave elastography and micro indentation.
Shear wave elastography yields the shear velocity, which is the velocity of a local
shear wave produced by a remote mechanical source [27]. This can be used further
to calculate the Young’s modulus of the sample. The Young’s modulus, also
known as the elastic modulus, is used to measure the stiffness of materials, and is
considered an inherent property, independent of the shape or size of the material
[28]. It is calculated as the ratio of stress to strain when an object is subjected to
two opposite uniaxial forces. A material with a higher Young’s modulus is stiffer,
resulting in a smaller strain for the same applied force.

Micro indentation provides force curves which can be used to calculate the
spring constant and Young’s modulus of the sample by curve fitting with Hooke’s
law and Hertz model, respectively. These are both models which describe the
deformation of a sample when subjected to a force, and will be further described
in the following subsections [29, 30]. The spring constant is a measurement of
stiffness of a material, and is defined as the ratio of the force affecting the material
to the displacement caused by it [29]. Materials with larger spring constants will
experience smaller displacements than materials with lesser spring constant when
subjected to forces of equal magnitude.

2.2.1 Shear wave elastography

Shear wave elastography (SWE) is an ultrasonographic (US) imaging technique
that allows quantification of mechanical and elastic tissue properties [31]. A shear
wave is a transverse wave that appears in an elastic medium when subjected
to a periodic shear force, as illustrated in Figure 2.2.1 [32]. SWE generates shear
waves in tissue using focused acoustic radiation force from a linear US array, which
creates local stress and displacement in tissue. The shear waves propagate through
nearby tissue in a transverse plane, moving at a slow velocity, which depends on
the shear modulus of the material. The propagation of the shear wave causes shear
displacements in the tissue. Tissue displacement are monitored using a fast plane
wave excitation method, and determined using a speckle tracking algorithm. The
shear wave velocity (ct) is calculated using tissue displacement maps. Equations



CHAPTER 2. THEORY 11

Figure 2.2.1: Illustration of longitudinal wave (top) and shear wave (bottom). A
longitudinal wave spreads by successive volume variations of the medium, and
the displacement of the medium is parallel to its propagation direction. A shear
wave spreads by successive movements that are perpendicular to the direction of
propagation.

2.1 and 2.2 show the relation between shear wave velocity and Young’s modulus
(E):

ct =

√
µ

ρ
(2.1)

E = 2µ(1 + ν) = 2ρc2t (1 + ν) ≈ 3ρc2t (2.2)

µ is the shear modulus, ρ is the mass density, and ν is the Poisson ratio [33].
The shear modulus is a measure of a material’s ability to resist transverse defor-
mations, and is defined as the ratio of shear stress to shear strain. The Poisson
ratio is the ratio of lateral contraction to longitudinal extension of the material
under longitudinal tensile stress, illustrated in Figure 2.2.2 [34]. For soft biological
tissue, the Poisson ratio is estimated to be approximately 0.5, hence the relation
in Equation 2.2 [35]. Biological tissues are considered incompressible materials,
wherein the volume remains constant when subjected to an applied force.

Limitations

SWE assumes the material is elastic, incompressible, homogenous, and isotropic
[36]. However, soft tissues generally are viscoelastic, inhomogeneous, and anisotropic.
Soft tissue elasticity in the human body is nonlinear and dependent on the tissue
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Figure 2.2.2: Illustration depicts the concept and equations for the Poisson ratio
as an object is subjected to two equal, but opposite, uniaxial forces, donted as F.

density, strain magnitude, and/or applied excitation frequency. Nevertheless, it is
possible to achieve a first-order approximation for elasticity metrics if the viscous
forces are ignored, and one assumes linear, elastic solid tissues.

2.2.2 Hooke’s law

When a elastic material is subjected to a force, the material stretches or compresses
in response to the force [29]. Hooke’s law is an empirical law that describes
the relationship between the force applied to an elastic object and its resulting
deformation. According to Hooke’s law, within the elastic limit of a substance,
the strain (ϵ) of the material is directly proportional to the applied stress (σ):

F = k∆d (2.3)

F is the applied force, k is the spring constant given in N/m, and ∆d is the length
of compression/extension.

Limitations

Hooke’s law gives accurate results only when the forces and deformations are small
[37]. In addition, it only applies within the elastic region of a material, i.e. within
the straight segment of the stress-strain curve [29]. Within the elastic region the
sample is still able to return to its original shape or size once the load is removed,
as described in Figure 2.1.7.
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2.2.3 Indentation and Hertz model

The Hertz model, depicted in Figure 2.2.3, assumes a spherical indenter, with
radius R, that applies a force F and causes an indentation depth δ on the sur-
face of a sample. The relationship between Young’s modulus (E), the force, and
indentation depth can be described by the following equation [30, 38]:

F =
4

3

E

1− ν2
R1/2δ3/2 (2.4)

where ν is the Poisson ratio. The spring constant from Hooke’s law and Young’s
modulus from Hertz model is related by the following equation:

k = E
A

L
(2.5)

where A is the area over which the force is applied, and L is the nominal length
of the material.

Figure 2.2.3: Figure illustrates the experimental basis for using the Hertz model,
where a spherical indenter with radius R applies a force, F, and causes an inden-
tation, δ on the surface of a sample. These parameters can be used to calculate
Young’s modulus.

Limitations

Hertz model assumes that the sample is an elastic half space [39]. An elastic
half space is an isotropic and homogeneous material, extending infinitely in all
directions with the top surface serving as a boundary. A biological sample can
not be considered an elastic half space. However, if the indentation depth is suf-
ficiently small and the tip radius much smaller than the sample, it is possible
to approximate a biological sample as such. According to Buckle’s rule, the in-
dentation depth should be limited to 5-10% of the sample thickness to prevent
measuring the sample’s substrate properties. Additionally, the distance from the
tip to the sample’s edge should be at least ten times the tip radius, creating an
approximation of infinite horizontal extension.

Biological samples fail to meet another requirement of the Hertz model, which
assumes that the sample exhibits elasticity [40]. In reality, most biological samples
are viscoelastic [36, 41].
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Despite the limitations of the model, one can ensure a good model fit for
experimental data from biological samples by performing careful experimental
control, such as attentive choices of indentation depth and probe sizes [42].

2.3 Colorimetric determination of ECM
constituents

2.3.1 Enzymatic extraction of ECM constituents

In order to extract specific proteins from the ECM, enzymes can be used to degrade
linker proteins, and thereby freeing the targeted protein [43]. To facilitate enzyme
degradation in vitro, enzyme activity can be enhanced by adjusting temperature
and/or pH.

Pepsin is the main enzyme responsible for protein digestion [44]. It breaks down
proteins into smaller peptides and amino acids, which can easily be absorbed in
the small intestine. Pepsin depends on activation by an acidic environment, hence,
it exhibits its highest efficiency at a pH range of approximately 1.5 to 2. Pepsin
can be used to extract soluble collagen from tissue by enzymatic hydrolysis of the
ends of the collagen fibers [45].

Papain is a proteolytic enzyme, and can be extracted from the leaves, fruits,
roots, and latex of the Carica papaya plant [46]. Proteolytic enzymes are a group
of enzymes that facilitate the degradation of long protein chains into peptides,
and further into amino acids [47]. By degrading the long protein chains to which
sGAG is attached to, papin can be used to extract sGAG from the ECM.

2.3.2 Dye-complex formation

Sirius Red is an anionic dye with a high affinity for collagen [48]. It contains
sulfonic acid side chain groups, which bind to specific side chain groups found in
collagen. This creates a dye-collagen complex which can be used in colorimetric
measurements and analysis.

Dimethylmethylene blue (DMMB) is a dye with a high affinity for sGAG [49].
Electrostatic interactions between the dye and sGAG sulfate group causes the
formation of a dye-sGAG complex when mixed in a solution.

2.3.3 Colorimetry

Colorimetry is a technique used to determine the concentration of a specific analyte
in a solution [50]. The colorimeter measures the absorbance and transmittance of
light that passes through a liquid, and uses Beer-Lamberts law (Equation 2.6) to
relate the absorbance to a concentration.

A = log
I0
I

= ϵlc (2.6)

A is the absorbance, I0 is the incident light intensity, I is the transmitted light
intensity, ϵ is the absorption coefficient, l is the optical path length, and c is the
concentration of the analyte.
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In order to get concentration measurements from absorbance readings, you
need two things: standards and reference solutions. Standards are solutions with
known concentrations of the analyte, while reference solutions consist of buffer
solutions without the analyte. If the analyte lacks color or autofluorescence, it
needs to be complexed with a dye molecule. A standard curve is then created by
correlating the absorbance readings of the standards and reference solutions with
their known concentrations. When measuring unknown samples, their absorbance
readings can be compared to the standard curve to determine their concentrations.

The accuracy of absorbance measurements relies on the dye having an absorp-
tion peak at the wavelength of the incident monochromatic light. As the incident
light passes through the sample, the dye absorbs a portion of the light, resulting
in a reduction in the intensity of the transmitted light.

2.4 Inter- versus intraheterogenity
Cancers contain morphologically different cells, and multiple tumors of the same
type may differ significantly. When a sample population can be divided into sub-
groups of samples, it is possible to calculte how much of the overall heterogeneity in
the population originates from the differences within the subgroups (intrahetero-
geneity, σ2

intra) versus differences between the subgroups (interheterogeneity, σ2
inter)

[51]. Interheterogeneity is defined as the variance of the measured values of all
samples. Intraheterogeneity is described by Equation 2.7:

σ2
intra =

∑P
i=1

∑ni

j=1(Xij −Xi)
2

(N − r)
(2.7)

r is the number of subgroups, ni the number of samples measured in subgroup i,
N the total number of samples, Xij the measured value of sample j in subgroup
i, and Xi is the average measured value of subgroup i.

The proportion of intraheterogeneity relative to the total heterogeneity can be
calculated using Equation 2.8:

f =
σ2

intra

σ2
intra + σ2

inter
(2.8)

Here, σ2
intra and σ2

inter represent the variances of the measurements due to intra-
heterogeneity and interheterogeneity, respectively. f ranges from 0 to 1, where a
value of 0.5 indicates an equal contribution of both intraheterogeneity and inter-
heterogeneity. A value greater than 0.5 suggests that the contribution to hetero-
geneity is mainly from within the subgroups rather than between them.
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METHODS

The tumors used in this project were pancreatic (KPC), breast (4T1), and colon
(CT26) tumor models. They were subjected to two methods for stiffness mea-
surements, as well as assays for determining the concentrations of collagen and
sGAG. The timeline of experimental procedures is explained in Figure 3.0.1. Tu-
mors were implanted and grown for 14-16 days before harvesting, and shear wave
elastography was performed ex vivo the same day. Indentation was performed the
following day, before the tumors were stored at -80◦C for later collagen and sGAG
assays.

Figure 3.0.1: Timeline of experimental procedures. Tumors were implanted and
grown for 14-16 days before harvesting. Shear wave elastography was performed
ex vivo the same day, and tumors were subsequently stored in the fridge overnight
before micro indentation the following day. After indentation, the tumors were
frozen at -80◦C until collagen and sGAG assays were performed.

3.1 Tumor implantation and harvest

The KPC cancer cells originates from the Department of Radiation Oncology at
the Massachusetts General Hospital, where they were isolated from pancreatic

17
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ductal adenocarcinoma (PDAC) tumors in transgenic KPC mice. The KPC cells
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (GibcoTM 11960-
044, Thermo Fisher Scientific) with 10% FBS, 1% penicillin streptomycin and
0.5% L-Glutamine (G7513, Sigma Aldrich). The 4T1 cells (CRL 2539 ATCC)
were cultured in RPMI 1640 Medium in 10% FBS supplemented with 1% peni-
cillin streptomycin. The CT26 cancer cells (CRL-2638, American Type Culture
Collection (ATCC)) were cultured in RPMI 1640 Medium (30-2001, ATCC) in 10%
fetal bovine serum (FBS) (F7524, Sigma Aldrich) supplemented with 1% penicillin
streptomycin (P0781, Sigma Aldrich). All cell lines were kept under exponential
growth conditions in 75 cm2 flasks at 37◦C and 5% CO2 , with subculturing at 70
- 80% confluency twice a week and medium renewal once per week.

During subculturing, the old cell medium was removed before washing the cells
twice with 5 mL Dulbecco’s Phosphate Buffered Saline (DPBS) (D8537, Sigma-
Aldrich). 1 mL 0.25% Trypsin-EDTA (GibcoTM 25200-072, Thermo Fisher Scien-
tific) was added, followed by incubation at 37◦C for 3 minutes to detach the cells.
Subsequently, the trypsin was neutralized by adding 9 mL fresh cell medium and
the cells were pipetted to ensure a homogeneous cell suspension. A certain volume
of cell suspension was transferred to new 75 cm2 flasks with 14 mL cell medium
to obtain an appropriate seeding ratio. The CT26 and 4T1 cells were seeded at
ratio of 1:20 - 1:30, and the KPC cells at ratio of 1:10 - 1:20.

Prior to implantation of cancer cells in mice, the cells were washed, trypsinzed
and resuspended as described above. The cells were then centrifuged for 5 min-
utes at 1500 revolutions per minute (rpm), the supernatant was removed and cell
medium was added to the desired cell concentration. Cells were kept on ice until
implantation. In case of the KPC cell line, 200 000 cells in 20 µl cell medium were
injected subcutaneous (s.c.) in the right hind leg of B6/albino mice. For 4T1, 10
000 cells in 50 µL cell medium were injected in the right hind leg of a BALB/c
mouse. For CT26, 100 000 cells in 50 µl cell medium were injected in the left hind
leg of a BALB/c mouse.

After 14-16 days, the mice were euthanized and the tumors harvested. After
measuring the size and weight of the tumors, they were stored at 4◦C in 50 mL mi-
crosentrifuge tubes with cold DPBS (RNBK6918, Sigma Aldrich) with cOmplete
protease inhibitor cocktail (11836170001, Roche) to a concentration of one tablet
per 10 mL DPBS to minimize tissue degeneration. Cell culture, implantation and
harvest were performed by Caroline Einen. All animal experiments were approved
by the Norwegian Food and Safety Authority.

3.2 Shear wave elastography

Shear wave elastography was performed ex vivo the same day as tumor harvest.
Prior to SWE imaging, the tumors were cast in a phantom gel consisting of 0.7%
(wt/vol) agarose, with 40% evaporated milk (Tørrleffs), and 4.17 g Sephadex
G2580 (Sigma-Aldrich) per liter gel. The phantom provides an environment where
the shear waves will propagate in stead of being reflected at the tumor border.
For the SWE experiments, a custom-made set-up was used, with a custom-made
ultrasound probe and software, and a Verasonics Vantage 256 (Verasonics, Kirk-
land, WA) ultrasound scanner. Shear waves were generated via an acoustic push
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pulse, using 5 MHz, with a pulse length of 200 microseconds (corresponding to
1000 oscillations), and f-number in azimuth of 2.5. Tracking the shear waves was
done by using 14 MHz, a shorter pulse of 1-2 oscillations, plane waves, and a pulse
repetition frequency (prf) of 10 kHz. Prf refers to the number of ultrasound pulses
emitted by the transducer within a specific time frame [52]. Using the plane waves
ensures a high prf, which ensures high temporal resolution when tracking the shear
waves. The tracking provides a color map of the shear wave velocity (in m/s), and
a confidence display generated by the software which indicates the quality of the
measurements within the region of interest. Two measurements were taken at two
different planes of each tumor. Each measurement was divided into two subsets
of data: one with measurements of the waves propagating to the right, and one of
the waves propagating to the left. Sample preparation and SWE was performed
in collaboration with Rune Hansen and Naseh Amini.

After SWE, the tumors were cut out from the phantom, and stored at 4◦C in
50 mL microsentrifuge tubes with cold DPBS with cOmplete protease inhibitor
cocktail to minimize further tissue degeneration.

3.3 Micro indentation

Micro indentation experiments was performed the following day of tumor harvest,
using a custom-made set-up. The set-up consisted of a stepper motor from New-
port (TRB25CC), a custom-made 1 mm spherical indenter, i.e. with radius R =
0.5 mm, and a scale from Sartorius (YAC01ED). Data was acquired and stored
using a custom-made LabView script.

The tumors weighing more than 0.2 grams were cut in half along the centre,
whilst the tumors weighing less were kept intact due to their small size. This is
to limit the indentation depth to 5-10% of the sample thickness, as explained in
Section 2.2.3. The samples were placed in a 60 mm × 15 mm polystyrene petri
dish with DPBS to prevent dehydration of the tumor.

Indentation was performed at 2 µm/s. Stepper-motor position and weight were
continuously recorded throughout the experiment per 100 ms from t = 0 to t =
100 s. This ensured indentation depth of approximately 200 µm. Indentation
was performed at five different positions on the tumor or tumor section, with
some exception for the smallest tumors to avoid performing measurements too
close to the sample’s edge to account for the limitations of the Hertz model, as
explained in Section 2.2.3. This yielded 10 measurements for the biggest tumors
(five measurements per section). For the tumors which were cut in two, indentation
was performed on the cut surfaces of the tumor sections.

After indentation, the tumors were rinsed with DPBS and stored at −80◦C in
50 mL microsenrifuge tubes for later measurements of collagen and sGAG.

3.4 Data analysis

3.4.1 Shear wave elastrography

Initial processing of the data from SWE was performed by Rune Hansen and
Naseh Amini. This yielded the images shown in Figure 3.4.1, where the three
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Figure 3.4.1: Example of SWE image. First is the B-mode image of the tumor.
The middle and bottom image displays the shear wave velocity and standard
deviation for the estimate, respectively. This image originates from a CT26 tumor.
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images show the B-mode image of the tumor, and the corresponding shear wave
velocity and standard deviation for the estimate. The pixels in the second and
third images correspond to measurements of shear wave velocity and SD, ordered
as data in a matrix.

Figure 3.4.2: Example of greyscale B-mode image, originating from the same CT26
tumor as in Figure 3.4.1. The ROI was chosen within this image, and to ensure
correct dimensions of the ROI, it was compared to the measurements of the tumor.

Image analysis

Further analysis of the SWE images was performed using the Image Processing
ToolboxTM in MATLAB [53]. The MATLAB script used is included in Appendix
A. A region of interest (ROI) was established around the tumor in a greyscale ver-
sion of a B-mode image, shown in Figure 3.4.2, using the measurements performed
after harvesting to verify the dimensions were correct. Regions displaying a high
standard deviation (SD > 1) in the third image were excluded, as this indicated
unreliable measurements. The ROI was transferred to the shear wave velocity
image to calculate values for the mean, median, standard deviation, and variance
within the ROI.

3.4.2 Micro indentation

The force indentation depth curves were curve fitted to Hooke’s law (Equation 2.3)
and Hertz model (Equation 2.4) using the Python script in Appendix B, which
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also estimated the spring constant and Young’s modulus, respectively. Both mod-
els were curve fitted to the entire force curve, to include all relevant information.
However, as Hooke’s law describes the linear relation between force and indenta-
tion depth, it was also curve fitted within an interval of 100µm, ranging from 100
to 200 µm. This interval was chosen as it consistently exhibited an approximately
linear relationship between force and indentation depth.

The Python script also calculates the P-value and R2. In model fitting, the
P-value determines the significance of the model compared to the null hypothesis,
while R2 is a measure of how well the model describes the data [54].

Correction for evaporation

During micro indentation, the bottom of the petri dish was covered with DPBS
to prevent drying of the tumor during indentation. Due to the sensitivity of the
indenter, indentation was performed above a petri dish with its bottom covered
with DPBS to attain data for potential evaporation during indentation. Distance
between the petri dish and indenter tip was varied to account to differences in
tumor thickness. In total, 10 such measurements were performed, and linear
regression of all data points was performed to find a force curve for evaporation.
This force curve subtracted from the initial force curves to correct the data for
evaporation. The data from the DPBS indentation experiments and the associated
linear regression line is shown in Figure 3.4.3.

Figure 3.4.3: Data and linear regression line from indentation with a petri dish
with DPBS. The linear regression line is used to correct for DPBS evaporation
and other experimental errors.
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3.5 Colorimetric determination of ECM
constituents

3.5.1 Sample preparation

Cold DPBS was added to the 50 mL microsentrifuge tubes to cover the tumors,
and the tubes were thawed over ice. After thawing, the tumors were rinsed with
DPBS and weighed in 1.5 mL conical Eppendorf tubes using a Sartorius Basic BA
110S balance.

Homogenization was performed in a polystyrene petri dish with a scalpel and
a pair of tweezers. To prevent the tumors from drying out during this process,
DPBS was used to coat the bottom of the petri dish. A random selection of the
sample pieces was transferred to 1.5 mL conical Eppendorf tubes, and weighed.
For the collagen assay, sample weight was between 10-15 mg, and for sGAG it
was between 20-25 mg. This corresponded to 3-5 tumor pieces for collagen assay,
and 5-10 for sGAG. Sample weights for the assays were chosen to ensure that the
samples contain an amount of collagen or sGAG that approximately corresponds
to the middle of the standard curve [48, 49]. Examples of standard curves for both
assays are shown in Figure 3.5.1. All 18 tumors were run in triplicates, resulting
in 54 samples in total.

(a) (b)

Figure 3.5.1: Standard curve used to calculate the concentrations of collagen (a)
and sGAG (b) in the samples. The collagen standard curve originates from ab-
sorbance measurements of standards containing 10, 25, and 50 µg collagen, and
the sGAG standard curve originates from absorbace measurements of standards
containing 1, 2, 3, 4, and 5 µg sGAG.

3.5.2 Extraction of ECM constituents

Pre-made assay kits from Biocolor were used for this project, specifically the Sir-
col - Soluble Collagen assay kit [48] and the Blyscan - sulfated Glycosamino-
glycan (sGAG) assay kit [48]. The Sircol kit consists of Sircol Dye Reagent
(BB721, Biocolor), Collagen Reference Standard (BB708, Biocolor), Acid-Salt
Wash Reagent (BB727, Biocolor), and Alkali Reagent (BB720, Biocolor). The
Blyscan kit consists of Blyscan Dye Reagent (BB718, Biocolor), sGAG Reference
Standard (BB723, Biocolor), and Dissociation Reagent (BB730, Biocolor).
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Collagen

Pepsin (P7012, Sigma Aldrich) was used to prepare a pepsin digestion buffer at
a concentration of 0.1 mg/mL in 0.5 M acetic acid. Digestion buffer was added
to the sample tubes in a ratio of 1 mg sample to 30 µL buffer. To avoid self-
degradation of the enzyme the digestion buffer was used the same day as it was
prepared. The samples were incubated overnight at 4◦C in a mechanical shaker
(KS125basic, IKALABORTECHNIK) at 500 rpm. The following day the samples
were centrifuged at 3000 relative centrifugal force (rcf) for 10 minutes using a
Eppendorf 5415 R Centrifuge.

A set of 1.5 mL microcentrifuge tubes were labeled as samples, standards and
blanks. 100 µL of the supernatant of each sample was transferred to a new set of
1.5 mL conical Eppendorf tubes. 100 µL of digestion buffer was transferred for the
reagent blanks. The collagen standards used the 0.5 µg/µL stock solution from
the Sircol collagen kit to prepare standard solutions in digestion buffer containing
10, 25 and 50 µg collagen.

1 mL of Sircol Dye Reagent was added to all tubes, and mixing was performed
by inverting contents and placing tubes in a mechanical shaker at 500 rpm for
30 minutes. During mixing the the collagen-dye complex formed and precipitated
in the solution. After, the tubes were centrifuged at 13.000 rcf for 10 minutes to
ensure firm packing of the complexes. The tubes were subsequently drained of the
solution containing unbound dye.

700 µL ice-cold Acid-Salt Wash Reagent was added to the tubes to remove
residual unbound dye. The tubes were centrifuged at 13 000 rcf for 10 minutes,
berfore being carefully drained, only leaving behind a densely packed collagen-dye
complex pellet. 1 mL of the Alkali Reagent was added to each tube to release the
bound dye from the collagen. To dissolve the dye in the solution, the tubes were
vortexed for a few seconds at 5 minute intervals. 200 µL of each solution was added
to individual wells of a 96 Costar Clear Microwell. Absorbance measurements
followed immediately to avoid dye bleaching.

sGAG

The digestion buffer was prepared by adding 400 mg Sodium Acetate (104H0293,
Sigma Aldrich), 200 mg EDTA Disodium Salt Dihydrate (0533C338, Amresco),
and 40 mg L-cysteine Hydrochloride (107H0028, Sigma Aldrich) to 50 mL 0.2
M sodium phosphate buffer, and stirred on a hot magnetic stirrer. The pH was
adjusted to 6.4, and when all the salts had dissolved, 250 µL of Papain from papaya
latex (P3125-100MG, Sigma Aldrich) was added. To avoid self-degradation of the
enzyme, the digestion buffer was used within one week of preparation. 1 mL of the
papain buffer was added to the samples, and they were incubated in a thermally
regulated heating block at 65◦C overnight. The following day the samples were
centrifuged at 10.000 rcf for 10 minutes.

A set of 1.5 mL microcentrifuge tubes were labeled as samples, standards and
blanks. 50 µL of the supernatant of each sample and 50 µL of the digestion
buffer was transferred to a new set of 1.5 mL conical Eppendorf tubes. 100 µL
of digestion buffer was transferred for the reagent blanks. The sGAG standards
used the 0.1 µg/µL stock solution from the Blyscan sGAG kit to prepare standard
solutions in digestion buffer containing 1, 2, 3, 4 and 5 µg sGAG.
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1 mL of Blyscan Dye Reagent was added to each tube, and the contents of the
tubes were mixed by inverting and mechanical shaking at 300 rpm for 30 minutes.
The tubes were subsequently centrifuged at 13 000 rcf for 10 minutes to firmly
pack the sGAG-dye complexes. The tubes were drained for unbound dye solution,
and 0.5 mL of Blyscan Dissociation Reagent was added to them. The tubes were
vortexed at 5 minute intervals to release the bound dye into the solution. When
all the dye was dissolved, the tubes were centrifuged at 13 000 rcf for 5 minutes
to remove foam. 200 µL of each sample, standard and reference were added to
individual wells of a 96 Costar Clear Microwell. A small pipette tip dipped in
70% ethanol was used to remove bubbles from the surface of the solutions before
absorbance measurements. Absorbance measurements followed immediately to
avoid dye bleaching.

3.5.3 Absorbance measurements

The Spectramax i3x plate reader was used in conjunction with the Softmax Pro
6.5.1 software to perform absorbance readings. For the collagen samples and their
associated standards and blanks, the plate reader was set to endpoint absorption
measurements with a wavelength of 556 nm. For sGAG, the plate reader was set
to endpoint adsorption measurements with a wavelength of 656 nm. Following the
measurements, the software generated a standard curve relating the absorbance
values of the unknown samples and their concentration in µg collagen or sGAG.
Subsequently, this concentration was adjusted, taking into account the sample
volume in the microwells, dilutions performed during the assay, and the weight of
the tumor pieces. As a result, the final concentration was expressed as µg collagen
or sGAG per mg wet weight of the tumor.

3.6 Statistical analysis

All statistical analysis and plots were made in Graphpad Prism 9. All results were
subjected to outlier identification and removal, by a built-in outlier identification
analysis in Prism named ROUT with Q = 1%. The ROUT method fits a model
to the data using a robust method where outliers have little impact [55]. It sub-
sequently uses a new outlier detection method, based on the false discovery rate,
to decide which data points are far enough from the prediction of the model to be
classified as outliers. Q denotes the maximum desired false discovery rate, hence
Q=1% means that it is only acceptable that 1% of all outliers found are false
outliers.

To determine the statistical significance an Ordinary one-way ANOVA test
with a p < 0.05 was done using Prism. Subsequently, a Tukey’s multiple compar-
ison test with α = 0.05 was used to identify the significance between the tumor
model means. Table 3.6.1 provides a summary of the asterisk notation used to
denote statistical significance.

Correlation analysis was performed on the data to calculate the Pearson cor-
relation coefficient (r) and assess significance. In addition, a linear regression line
was fitted to the correlation data. The statistical tests were deemed statistically
significant for p-values less than or equal to 0.05. A Pearson r value between
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Table 3.6.1: Table showing the asterisk notations used to denote statistical signif-
icance in Prism.

Symbol Meaning P value
**** Extremely significant < 0.0001
*** Extremely significant 0.0001 - 0.001
** Very significant 0.001 - 0.01
* Significant 0.01 - 0.05
ns Not significant ≥ 0.05

±0.1 and 0.3 is considered a small correlation, between ±0.3 and 0.5 a medium
correlation, and between ±0.5 and 1 it is considered large.

Several tests of inter- versus intra tumor heterogeneity were performed as de-
scribed in Section 2.4. This was done for the spring constant, Young’s modulus,
and the collagen and sGAG density. In the analysis, the heterogeneity within
each tumor was defined as the intraheterogeneity, while the interheterogeneity
was defined as the heterogeneity between the tumors of same type. To assess the
statistical significance, an Ordinary one-way analysis of variance (ANOVA) test
was conducted using Prism, with a significance level set at p < 0.05.

The mean stiffness measurements and mean concentrations of collagen and
sGAG for each tumor model is based on the mean of 6 tumors. Table 3.6.2 show
the number of samples from which the mean per tumor was calculated from.

Table 3.6.2: Table showing the number N of samples per tumor for all experimental
procedures. For the indentation measurements, the tumors weighing more than
0.2 grams were cut in two, and both sections were subjected to indentation. This
provided more measurements.

Experimental procedure N
Indentation (m > 0.2 g) 10
Indentation (m < 0.2 g) 5
Shear wave elastography 4

Collagen assay 6
sGAG assay 6
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RESULTS

4.1 Tumor characteristics
The 18 tumors used in this project are listed in Appendix C, with the correspond-
ing weights and dimensions. 4T1 and CT26 were the largest tumors, with tumor
weight ranging from 0.2909 to 0.5766 grams for 4T1, and 0.1384 to 0.5715 grams
for CT26. The KPC tumors were smaller, with tumor weight ranging from 0.0393
to 0.1692 grams.

4.2 Assessing curve fit parameters
Figure 4.2.1 show examples of force curves obtained by using the micro indenter
on a KPC (Figure 4.2.1a), 4T1 (Figure 4.2.1b), and CT26 (Figure 4.2.1c) tissue
section. The force curves are corrected for DPBS evaporation as explained in
Section 3.4.2. Only the approach curve (red) is included, as well as the model
fit curves for Hertz model (orange) and Hooke’s law (blue and green). The blue
curve is curve fitted to the entire curve, while the green is only curve fitted within
100 to 200 µm indentation depth. This interval was chosen as it generally showed
a high degree of linearity for all three tumor models. As Hooke’s law describes a
linear relation between force and distance, only the data from within the interval
is included [29]. Data from Hooke’s law curve fitting to the entire force curve can
be found in Appendix E.

As can be seen from the force curves in Figure 4.2.1, the curve fitting of Hertz
law to the force curves of KPC and 4T1 tumors is better than Hooke’s law. The
CT26 force curves were generally linear, both within the interval and throughout
the entire curve, and thus showed a good model fit with the linear Hooke’s law, as
seen in Figure 4.2.1c. These observations are confirmed by the R2 values, presented
in Table 4.2.1.

27
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(a)

(b)

(c)

Figure 4.2.1: Examples of force curves obtained by using the micro indenter on a
KPC (a), 4T1 (b), and CT26 (c) tissue section. The red line is the force curve,
corrected for DPBS evaporation. The orange curve is the Hertz model fit. The
blue and green curves are the Hooke’s law model fit curves, calculated for the entire
force curve and within the interval 100 to 200 µm indentation depth, respectively.
All indentation experiments were performed with an indenter with r = 0.5 mm,
at 0.002 mm/s speed, with 200µm indentation depth.
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Table 4.2.1: Table showing the R2 and P-value for the Hooke’s law and Hertz
model fit to the force curves obtained from micro indentation. The values are
mean values, calculated from the mean values of the individual tumors of the same
tumor model. The Python script used for calculating the values are included in
Appendix B.

Tumor model R2 P-value
Hooke’s law within linear interval

KPC 0.9082 0.3574
4T1 0.9296 0.3751

CT26 0.9138 0.3836
Hertz model

KPC 0.9875 0.3514
4T1 0.9811 0.3293

CT26 0.9041 0.2991

4.3 Spring constant - Hooke’s law

The results from indentation were subjected to ROUT method with Q=1%. 1
outlier was identified, and removed from the data set. The outlier originated from
a CT26 tumor. Outliers from all data sets are included in Appendix D. The force
curve for the outlier removed from the indentation data set is also included.

Figure 4.3.1 shows the spring constant for all three models, measured in N/m.
The spring constant is derived from the model fit of Hooke’s law to the 100 µm
linear interval of the force curve. The KPC tumors had a significantly higher spring
constant than 4T1 and CT26. There was no significant difference between 4T1 and
CT26, meaning their spring constants were similar. The min-max range, median,
mean and standard deviation of the spring constant were found to be [3.044-5.365,
4.496, 4.342 ± 0.9372] for KPC, [0.8417-2.263, 1.386, 1.472 ± 0.5237] for 4T1, and
[0.7020-1.323, 0.9121, 0.9415 ± 0.2369] for CT26. Compared to the results from
the entire force curve, included in Appendix E, the mean spring constant calculated
from within the chosen interval is 0.159 N/m higher for KPC, 0.07 lower for 4T1,
and 0.0315 higher for CT26.

4.4 Young’s modulus - Hertz model and shear wave
velocity

Young’s modulus was obtained by Hertz model curve fitting to the force curve
from indentation, and from the shear wave velocities measured in shear wave
elastography. The shear wave velocities were converted to Young’s modulus with
the assumption that the phantom had a mass density of 1000 kg/m3, similar to
water, and a Poisson ratio of 0.5. This yields the relation given in Equation 2.2.

The results from the SWE were subjected to ROUT method with Q=1%. 4
outliers were identified and removed from the data sets. All outliers originated
from the same 4T1 tumor, and were similar to each other, about twice as high as
the other results.

Figures 4.4.1a and 4.4.1b shows the Young’s modulus from the Hertz model
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Figure 4.3.1: The spring constant of the tumor models in a box plot. Whiskers
represents the minimum and maximum values, and the box is the 25-75%. The
median is depicted by a horizontal line crossing the box. Each individual point
within the box plot represents the mean value of one tumor. The presence of aster-
isks between the boxes indicates the statistical significance between the respective
data sets, as explained in Table 3.6.1.

fit to indentation data, and from SWE, respectively. In Figure 4.4.1a, Young’s
modulus for KPC is significantly higher than for both 4T1 and CT26. This trend
is similar to that of the spring constants in Figure 4.3.1. CT26 and 4T1 have a
similarly low Young’s modulus, thus there is no statistical significance between
the two data sets. In Figure 4.4.1b, KPC and 4T1 have a similarly high Young’s
modulus, which is significantly higher than that of CT26. The min-max range,
median, mean and standard deviation of Young’s modulus is shown in Table 4.4.1.
Comparing the results from the two methods with each other show that Young’s
modulus measured by indentation is much lower than the one measured by SWE.
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(a) (b)

Figure 4.4.1: Young’s modulus from Hertz model curve fitting to indentation
force curves (a) and from shear velocity measured in shear wave elastography (b)
in box plots. Whiskers represents the minimum and maximum values, and the
box is the 25-75%. The median is depicted by a horizontal line crossing the box.
Each individual point within the box plot represents the mean value of one tumor.
The presence of asterisks between the boxes indicates the statistical significance
between the respective data sets.

Table 4.4.1: Table showing the min-max, median, and mean value with standard
deviation for Young’s modulus from indentation and shear wave elastography.

Tumor model Min Max Median Mean ± SD
Young’s modulus (Hertz)

KPC 6.004 10.76 9.021 8.671 ± 1.940
4T1 1.687 4.529 2.764 2.933 ± 1.050

CT26 1.371 2.593 1.766 1.917 ± 0.5510
Young’s modulus (SWE)

KPC 41.81 45.84 44.73 44.28 ± 1.767
4T1 41.27 48.16 45.15 44.64 ± 2.640

CT26 19.80 39.88 32.38 31.67 ± 7.899

4.5 Concentration of ECM components

The results from collagen and sGAG assays were subjected to ROUT method
with Q=1%. 6 outliers were identified and removed from the collagen data set.
All outliers originated from CT26 tumors. The significant deviation to the rest
of the group is suggested to originate from experimental error. 0 outliers were
identified from the sGAG data set.
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(a) Collagen measurements. (b) sGAG measurements.

Figure 4.5.1: Amount of collagen (a) and sGAG (b) per mg tumor in a box plot.
Whiskers represents the minimum and maximum values, and the box is the 25-
75%. The median is depicted by a horizontal line crossing the box. Each individual
point within the box plot represents the mean value of one tumor. The presence
of asterisks between the boxes indicates the statistical significance between the
respective data sets.

Collagen

Figure 4.5.1a presents the collagen concentrations in the tumor samples after re-
moving outliers. There was a significantly higher concentration of collagen in 4T1
compared to CT26. There was no statistical significance between KPC and 4T1,
and KPC and CT26, meaning the collagen concentrations in the KPC tumors
was comparable to both tumor models. The min-max range, median, mean and
standard deviation of µg collagen per mg tumors were found to be [0.4851-2.615,
0.9853, 1.209 ± 0.7728] for KPC, [0.2160-2.659, 2.013, 1.666 ± 0.9681] for 4T1,
and [0.3230-0.3980, 0.3921, 0.4057 ± 0.08284] for CT26.

sGAG

Figure 4.5.1b presents the sGAG concentrations in the tumor samples after remov-
ing outliers. There was no statistical significance between the data sets, meaning
the concentrations of sGAG were similar between the tumor models. The min-
max range, median, mean and standard deviation of µg sGAG per mg tumors were
found to be [3.563-5.474, 4.765, 4.765 ± 0.7524] for KPC, [5.142-6.080, 5.484, 5.556
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± 0.3576] for 4T1, and [4.615-8.070, 5.780, 6.089 ± 1.348] for CT26.

4.6 Correlations in measurement data
The correlation matrix in Figure 4.6.1 shows the Pearson correlation coefficient
(r) between weight, Young’s modulus, spring constant, and concentrations of col-
lagen and sGAG. The correlation coefficients are calculated from all data, without
differentiating between tumor models. The following section will go further into
detail on the correlations.

Figure 4.6.1: Correlation matrix showing the correlation coefficient between
weight, Young’s modulus, spring constant, and concentrations of collagen and
sGAG. A correlation coefficient equal to 1 indicates a strong positive relationship,
equal to -1 indicates a strong negative relationship, and equal to zero indicates no
relationship at all.

4.6.1 Correlation between stiffness measurements

The scatter plots in Figures 4.6.2a, 4.6.2b and 4.6.2c show the correlation plots
between the spring constant and Young’s modulus from indentation, spring con-
stant and Young’s modulus from SWE, and Young’s modulus from indentation
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SWE, respectively. Data points of the same color corresponds to mean values for
individual tumors of the same tumor model. Individual regression lines for all
tumor models are also included, in addition to a linear regression line for all data
points. As can be seen from Figure 4.6.2a, there is a significant large positive
correlation between the data from indentation (r=0.9993, p < 0.0001). These cal-
culations originate from the same data sets. Thus, they exhibit similar trends in
the following correlation plots. Figure 4.6.2b and 4.6.2c show a large positive cor-
relation between the results from indentation and SWE for KPC and 4T1. CT26
show a medium negative correlation between spring constant and Young’s mod-
ulus from SWE, and a small negative correlation between Young’s modulus from
indentation and SWE. The linear regression lines for all data sets show a medium
positive correlation. However, the correlations are not statistically significant for
any plots.

4.6.2 Correlation between stiffness measurements and mea-
surements of collagen and sGAG

Figure 4.6.3 shows the scatter plots of stiffness measurements and concentrations
of collagen. The data points represents mean values for each tumor. Linear re-
gression lines for all data points and for individual tumor models are included.
As can be seen from all plots there is a strong positive correlation between stiff-
ness measurements and collagen concentration for KPC tumors. The 4T1 tumors
generally show a small negative correlation between the parameters. In Figure
4.6.3a there is a small positive correlation for CT26, but Figure 4.6.3b show no
correlation between the indentation data and collagen concentration for CT26 (r =
-0.01297). In Figure 4.6.3c, there is a medium negative correlation for CT26. The
regression line from all data points show a small positive correlation in Figures
4.6.3a and 4.6.3b, and a medium positive correlation in Figure 4.6.3c. However,
the correlations are not statistically significant for any plots.

Figure 4.6.4 shows the scatter plots of stiffness measurements and concentra-
tions of sGAG. The data points represents mean values for each tumor. Linear
regression lines for all data points and for individual tumor models are included.
As can be seen from Figures 4.6.4a and 4.6.4b, there is no correlation between
the indentation results and sGAG concentrations for the KPC tumor model (r =
-0.02921 and r = -0.05331, respectively). 4T1 show a medium positive correlation
in Figure 4.6.4a, and a small positive correlation in Figure 4.6.4b. CT26 show
a consistently small negative correlation. The regression line based on data for
all tumor models show a medium negative correlation, which for Figure 4.6.4b is
statistically significant (r = -0.4851, p = 0.0484). As can be seen from Figure
4.6.4c, there is a medium negative correlation between Young’s moduli and sGAG
concentrations for KPC, a small negative correlation for 4T1, and a small positive
correlation for CT26. The regression line for all data points show a small negative
correlation. However, none of the results are statistically significant.
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(a)

(b)

(c)

Figure 4.6.2: Scatter plot showing the correlation between spring constant and
Young’s modulus from indentation (a), spring constant and Young’s modulus from
SWE (b), and Young’s modulus from indentation and SWE (c). Each data point
represents the average measured parameter per tumor. The individual regression
lines are calculated from data points originating from the same tumor model, and
the black line is a linear regression line for all data points. The Pearson r and p
values are included in the lower right corners of all plots. Statistically significant
regression lines are solid, and regression lines lacking statistical significance are
dashed.
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(a)

(b)

(c)

Figure 4.6.3: Scatter plot showing the correlation between collagen concentration
and spring constant (a), Young’s modulus from indentation (b), and Young’s mod-
ulus from SWE (c). Each data point represents the average collagen concentration,
and average measured parameter per tumor. The individual regression lines are
calculated from data points originating from the same tumor model, and the black
line is a linear regression line for all data points. The Pearson r and p values are
included in the lower right corners of all plots. Statistically significant regression
lines are solid, and regression lines lacking statistical significance are dashed.
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(a)

(b)

(c)

Figure 4.6.4: Scatter plot showing the correlation between sGAG concentration
and spring constant (a), Young’s modulus from indentation (b), and Young’s mod-
ulus from SWE (c). Each data point represents the average sGAG concentration,
and average measured parameter per tumor. The individual regression lines are
calculated from data points originating from the same tumor model, and the black
line is a linear regression line for all data points. The Pearson r and p values are
included in the lower right corners of all plots. Statistically significant regression
lines are solid, and regression lines lacking statistical significance are dashed.
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4.6.3 Correlation between collagen and sGAG concentra-
tion

Figure 4.6.5 shows the scatter plots of collagen and sGAG concentrations. The
data points represents mean values for each tumor. A linear regression line for
all data points and for individual tumor models is included. There is a small
negative correlation between collagen and sGAG contents. Individually there is
no correlation for KPC, a large negative correlation for 4T1, and a small negative
correlation for CT26. However, none of the correlations are statistically significant
correlation.

Figure 4.6.5: Scatter plot showing the correlation between collagen and sGAG
concentration. Each data point represents the average collagen and sGAG con-
centration per tumor. The individual regression lines are calculated from data
points originating from the same tumor model, and the black line is a linear re-
gression line for all data points. The Pearson r and p values are included in the
lower right corners of all plots. Statistically significant regression lines are solid,
and regression lines lacking statistical significance are dashed.

4.6.4 Correlation between experimental measurements and
tumor weight

Figure 4.6.6 show the scatter plots of weight and all experimental measurements,
i.e. spring constant, Young’s modulus, and concentrations of sGAG and collagen.
Linear regression lines for all data points and for individual tumor models are
included. Plots for indentation data show a strong negative correlation between
spring constant and weight, and Young’s modulus and weight. These results are
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statistically significant, as p < 0.0001. Individually, there are negative correlations
between stiffness measurements and weights, however these are not statistical sig-
nificant. Figure 4.6.6c show a large positive correlation between Young’s modulus
and weight for KPC and CT26, and a small negative correlation for 4T1. The
correlation for CT26 is statistically significant (r = 0.8410, p = 0.0359). Regres-
sion line for all data points shows r ≈ 0, i.e. no correlation. Figure 4.6.6d show a
medium positive correlation between weight and collagen concentration for KPC
and 4T1, and a medium negative correlation for CT26. However, none of the
correlations are statistically significant, and the regression line for all data points
show no correlation. In Figure 4.6.6e there is a large negative correlation between
sGAG concentration and weight for KPC and 4T1, and a small positive correla-
tion for CT26. The regression line for all data points show a medium positive
correlation. However, none of these results are statistically significant.
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(a) (b)

(c)

(d) (e)

Figure 4.6.6: Scatter plot showing the correlation between weight and spring con-
stant (a), weight and Young’s modulus from indentation (b), weight and Young’s
modulus from SWE (c), weight and collagen concentration (d), and weight and
sGAG concentration (e). Each data point represents the weight in grams, and
average measured parameter per tumor. The individual regression lines are cal-
culated from data points originating from the same tumor model, and the black
line is a linear regression line for all data points. The Pearson r and p values are
included in the lower right corners of all plots. Statistically significant regression
lines are solid, and regression lines lacking statistical significance are dashed. (a)
and (b) show a statistical significant large negative correlation between weight and
spring constant, and weight and Young’s modulus, respectively. No other results
were statistically significant.



CHAPTER 4. RESULTS 41

4.7 Inter- versus intraheterogeneity
Table 4.7.1 presents the proportion of intraheterogeneity relative to the total het-
erogeneity (f ), as introduced in Equation 2.8. f is calculated for all results, i.e.
from indendtaion, shear wave elastography, and collagen and sGAG assays. Intra-
heterogeneity was calulated from measurements originating from the same tumor,
whilst interheterogeneity was calculated from all measurements from the same
tumor model.

The results from all data sets show that the interheterogeneity is the domi-
nating factor, with exception for sGAG data for 4T1. However, for some data
sets, the factor f is almost equal to 0.5, which indicates that there is almost an
equal contribution from both inter- and intraheterogeneity. This applies for the
spring constant, Young’s modulus (Hertz), and collagen concentration for CT26,
and Young’s modulus (SWE) and sGAG concentration for KPC. The calculated
intra- and interheterogeneity is found in Appendix F in Table F.1.

Table 4.7.1: The proportion of intraheterogeneity relative to the total heterogene-
ity (f ), calculated for data from SWE, indentation, and collagen and sGAG assays.

Tumor type f
Spring constant

KPC 0.346
4T1 0.419

CT26 0.468
Young’s modulus (Hertz)

KPC 0.334
4T1 0.417

CT26 0.483
Young’s modulus (SWE)

KPC 0.475
4T1 0.353

CT26 0.237
Collagen concentration

KPC 0.400
4T1 0.333

CT26 0.462
sGAG concentration
KPC 0.483
4T1 0.617

CT26 0.334
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CHAPTER

FIVE

DISCUSSION

5.1 Force curves and curve fitting

The majority of force curves obtained from indentation with KPC and 4T1 had
the same shape; exponential rise the first 100 µm, and an almost linear relation
between force and indentation depth the last 100 µm. A study performed by
Efremov et al. (2020) showed that the shape of the force-indentation curve is
dictated by the underlying viscoelastic relaxation function [56]. The shape of the
force-indentation curves for KPC and 4T1 corresponds to the curves presented by
Efremov et al., which indicates that these tumor models are viscoelastic. This
is according to our knowledge about the material characteristics of tumor tissue,
and biological tissue in general. The force curve obtained from indentation with
CT26 tumors showed a linear relation between force and indentation depth, indi-
cating different material characteristics. The differences in material characteristics
could be further examined by looking at the relaxation and retraction curve from
indentation experiments; these were not logged in this project.

The shape of the curves dictated which model had the best curve fit. Hertz
model showed a better fit to the force curves for KPC and 4T1, and the linear
Hooke’s law showed a better fit to the force curves for CT26. This was also
reflected in the R2 values, where high R2-values indicate good fit of the models [54].
However, additional high p-values suggest suggest a lack of statistical significance
for the predictor variable, i.e. the spring constants and Young’s modulus.

5.2 Stiffness measurements

Young’s modulus

In this project, Young’s modulus was estimated using indentation and shear wave
elastography. The indentation data showed KPC having a significantly higher
Young’s modulus than both 4T1 and CT26, which were similar. The SWE data
showed 4T1 and KPC having equally high values for Young’s modulus, which were
significantly higher than for CT26.

There was four outliers removed from the SWE data set, which all originated
from a 4T1 tumor. Despite having a Young’s modulus significantly higher than

43
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for the rest of the population, it is possible that these outliers are valid since they
are comparable for all four tumors. However, there are no observations of higher
stiffness measurements in the indentation data for the tumor, and thus, these out-
liers have been removed from the data set. Causes of experimental errors and bad
signals in SWE could be caused by high concentrations of collagen, necrosis and
poor vascularity, as well as reflection of the ultrasound wave and signal interfer-
ence. However, the tumors in question did not display high values in the standard
deviation image.

There was one outlier removed from the indentation data set, originating from
one out of 8 measurements of a CT26 tumor section. Since it was only one mea-
surement it is most likely caused by experimental error. Experimental errors in
indentation experiments could be caused by movements disrupting the measure-
ments of the highly sensitive probe. However, due to little noise in the force curve
in Appendix D, it is more likely that it is caused by local morphological differences.

The Young’s moduli calculated from SWE data were generally much higher
than the ones originating from indentation data. Comparing to stiffness measure-
ments of agar phantoms show a consistent tendency of measuring a higher Young’s
modulus using SWE compared to indentation. Agar phantoms, with its biome-
chanical properties depending on the agar concentration, are often used to mimic
the elastic properties of biological tissues [57]. Song et al. (2014) performed shear
wave elastography of agar phantoms, and measured the shear wave velocity of a
2.0 % (m/v) agar phantom to be ∼ 7.0 m/s, which corresponds to a Young’s mod-
ulus of 147 kPa [58]. In comparison, Maccabi et al. (2016) used a muscle motor
system to perform indentation on a 2.0 % (m/v) agar phantom, and calculated
the Young’s modulus from the force indentation curve to be 102.90 kPa [59]. The
experimental methods used in these studies are comparable to micro indentation
and SWE performed in this project. The differences in Young’s moduli reported
in the studies are in accordance with the results from micro indentation and SWE
in this project.

Rao et al. (2019) measured the stiffness of orthotopic 4T1 tumors using a
macroscopic indentation device with a 2 mm cylindrical probe, and found average
Young’s modulus of ∼ 7 kPa [60]. In this project, the average Young’s modu-
lus from indentation data was 3.027 for 4T1, which is lower than what Rao et
al. found, but within the same order of magnitude. There are some important
differences between the experimental set-up; firstly, the probe used by Rao et al.
is bigger (2 mm) than the one used in this project (1 mm). Young’s modulus
is directly related to the square root of the radius in Equation 2.4. Secondly,
their choice of indentation speed, which ranged from 0.01 to 40 mm/s, is faster
than what is used in this project, 0.002 mm/s. Huth et al. (2019) performed a
study looking at the dependence of Young’s moduli on indentation speed for a
thin polyacrylamide (PAAm) sample using AFM [61]. PAAms are viscoelastic,
thus making them comparable to biological tissue. The measurements resulted
in higher Young’s moduli for higher indentation speeds. These differences could
explain why Rao et al. measured a higher Young’s modulus than this project.
Otherwise, the experimental procedures are comparable.

Nabavizadeh et. al (2020) measured the Young’s modulus for KPC tumor
models using harmonic motion elastography (HME) in vivo [62]. This method
was chosen instead of SWE because no SWE studies have distinctly reported the
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Young’s modulus values for the perilesional regions, i.e. the region located be-
tween the tumor and non-neoplastic region non-invasively. In their work, Young’s
modulus was estimated to be 11.3 ± 1.7 kPa. This is close to the mean result
from indentation experiments (8.30 kPa), but much lower than from SWE (44.04
kPa), a method which is closely related to the one used by Nabavizadeh et. al.
An important difference between their study and this project, is that HME was
performed in vivo one week after tumor implantation. Differences in Young’s mod-
ulus could be caused by the difference in growth time, as tumors are reported to
become stiffer over time [63].

Seguin et al. (2017) measured the Young’s modulus of CT26 tumors using
shear wave elastography, and found mean Young’s modulus of about 13.5 kPa after
12 days [64]. Similarly to Nabavizadeh et. al, it was performed in vivo. Several
studies have shown that post-mortem degradation and lack of blood perfusion may
disturb ex vivo measurements, causing an overestimation of stiffness parameters
[65, 66]. Although measures were taken to prevent tissue degradation, this could
be the reason this project estimated a higher Young’s modulus compared to similar
elastography experiments.

Rao et al.’s study provides validation for the Young’s moduli obtained from
indentation data in this thesis. Otherwise, there is a significant variability depend-
ing on the experimental method used in other studies, which highlights that the
Young’s modulus cannot be considered as an absolute value. However, in studies
comparing tumor stiffness and delivery of drugs, the absolute value of Young’s
modulus is not needed, but the relative difference between the tumor models.

As mentioned in Section 2.2.3, Hertz model assumes that the indentation depth
is limited to 5-10% of the sample thickness [30]. With an indentation depth of 200
µm, the sample should be no thinner than 2-4 mm. In cases of the indentation
depth exceeding the assumptions of the model, this would have lead to measuring
the mechanical properties of the petri dish in which the tumor was placed. The
petri dish, being made of polystyrene, is inherently stiffer than soft biological
tissue [39]. Comparing to the measurements of the tumor sizes in Appendix C,
these precautions should satisfy the requirements of the model. However, for the
larger tumors (m > 0.2 g) which were cut in half, this depends on the precision of
the cutting.

Another assumption of Hertz model is that the distance from the tip to the
sample’s edge should be at least ten times the tip radius, i.e. for a tip radius of 0.5
mm, the distance should me at least 5.0 mm [30]. Comparing to the measurements
in Appendix C, this would not be fulfilled for the majority of the tumors. These
conditions violate the Hertz assumption and lead to an overestimation of Young’s
modulus [67].

Spring constant

Indentation data showed the KPC tumors inhibited a significantly higher spring
constant than both 4T1 and CT26, which were similarly low. There was a signif-
icant strong correlation between the indentation data, i.e. spring constants and
Young’s moduli (r = 0.9993, p < 0.0001). This is because they are calculated
from the same data set. Thus, they exhibit the same trends when compared to
other data sets. There are no studies that have measured the spring constant of
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tumors, nor any relevant healthy biological tissue, thus the estimates can not be
compared to literature.

Hooke’s law assumes small forces and deformations, since the stress-strain rela-
tionship becomes nonlinear otherwise. In addition, it only applies when the elastic
limit is not exceeded. Assuming the same limitations to indentation depths as for
Hertz law, there is a possibility that the indentation depths surpassed the limits
of Hooke’s law. This would have caused an overestimation of the spring constant.
When applied to biological tissues, Hooke’s law is often used in conjunction with
the linear viscous Newtonian Dash-pot, which describes long term shear modu-
lus behavior, to properly examine the viscoelastic properties of biological tissue
under spring force and displacement [15]. As Hertz law showed a better good-
ness of fit to KPC and 4T1, which exhibited visoscelastic characteristics in their
force-deformation curves, it could be that Hooke’s law on its own is too simple for
biological, viscoelastic tissues.

5.3 Concentration of ECM constituents

There was a significantly higher collagen concentration in the 4T1 tumors than in
the CT26 tumors. The collagen content of the KPC tumors was comparable to
both 4T1 and CT26. There were no statistical significant difference between the
sGAG measurements of the tumor models. Consequently, studies of the delivery
of therapeutic agents to these three tumor models could potentially identify the
contents of collagen as a barrier within the ECM.

Six outliers were removed from the collagen data set, originating from two
CT26 tumors. Two outliers originated from the same sample, the four remaining
outliers originated from two samples of the same tumor. The outliers are sug-
gested to originate from experimental error. This is because the preparation of
the sample consist of many steps which all could contribute to error, with the
most critical step being the draining step(s) [49, 48]. The draining step involves a
high risk of sample loss, and to avoid this there was sometimes a trade-off so that
not every single drop of fluid, containing unbound dye, was removed. However,
this was not deemed as critical for the collagen assay, as it involved two draining
steps. Nevertheless, it cannot be ruled out that the discrepancy could be a result
of biological variation, especially since four of the outliers originate from the same
tumor. There were very little variation between the collagen measurements of the
CT26 tumors. Additionally, as can be seen in Appendix F, both inter- and intra-
heterogeneity were very low, and almost equal to each other. This could indicate
that the CT26 tumors overall have a uniform collagen composition throughout the
tumor. The outliers, which were higher than the other measurements, could have
been caused by local accumulations of collagen, for example near the periphery of
the tumor.

Samples for sGAG assays were more prone to experimental error in the draining
step [49, 48]. Additionally, the amount of sGAG was smaller (0 - 5 µg) compared
to collagen (0 - 50 µg), making loss of sample more critical. However, no outliers
were removed from the sGAG data set.

A study perfromed by Baylon et al. (2022) looking at the relation between
osmotic swelling responses in cartilage tissue and contents of collagen and sGAG
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found a significant large negative correlation between collagen and sGAG concen-
trations (ρ = -0.874, p < 0.0001) [68]. In this study, 4T1 and CT26 exhibited a
negative trend between collagen and sGAG contents, but not a statistically sig-
nificant correlation. However, Baylon et al. performed studies on healthy tissue,
which is not comparable to tumor tissue. There are no published study correlating
the concentrations in tumor tissue.

Davis et al. (2001) characterized the concentrations of collagen and sGAG in
s.c. and orthotopic human osteosarcoma OHS tumors grown in mice, using col-
orimetry [69]. The s.c. osteosarcomas, which are most comparable to the tumors
used in this study, contained 1.57 and 0.44 µg/mg wet tissue collagen and sGAG,
respectively. The collagen concentrations are comparable to the results in this
thesis, with the exception of CT26, which contained 0.41 µg sGAG per mg tumor.
The sGAG concentrations found by Davies et al. are about ten times lower then
that was found in the 4T1, KPC, and CT26 tumors in this thesis. The following
year, Davies et al. performed a similar project using s.c. rat rhabdomyosarcoma
[70]. They estimated the collagen and sGAG concentrations to be 4.4 - 6.8 and 0.3
- 0.4 µg/mg wet tissue, respectively. The estimations of collagen concentrations
are higher than in this thesis, but comparable and within the same order of magni-
tude. The experimental methods used in Davies et a.’s study is comparable to the
ones employed in this study, and thus the differences between the measurements
is mainly attributed to differences between the tumor models.

In a study performed by Netti et al. (2000) they measured the collagen
and sGAG concentrations in four tumor models: human colon adenocarcinoma
LS174T, human glioblastoma U87, human soft tissue sarcoma HSTS 26T and
murine mammary carcinoma MCalIV [6]. All tumor models were implanted s.c.
in the leg. They estimated collagen and sGAG concentrations within the range 2
- 8.8 and 0.10 - 0.16 µg/mg wet tissue, respectively. Compared to Davies et al.’s
findings, the collagen range is higher, but the sGAG range is lower. However, the
values are comparable and in the same order of magnitude. The methods used in
Netti’s characterization are the same as Davies’. Since the methods are the same,
the differences are most probably caused by differences between tumor models.

All three studies have performed colorimetric assays for determining collagen
and/or sGAG contents, and have comparable results among themselves. The esti-
mates for collagen concentrations were comparable to those found in this project
as well. However, the sGAG concentrations were about ten times lower then that
was found in the 4T1, KPC, and CT26 tumors in this thesis. Hence, the findings
of this project may possess some uncertainty when it comes to determining the
absolute concentrations for the tumor models. Nevertheless, these findings appear
plausible considering the lack of existing literature measuring the collagen and/or
sGAG content specifically for our three tumor models.

All three studies have performed colorimetric assays for determining collagen
and/or sGAG contents of different tumor models, and have comparable results
among themselves. Differences between their results and the results from this
study is mainly caused by biological differences between the tumor models. The es-
timates for collagen concentrations were comparable to those found in this project
as well. Small differences

However, the sGAG concentrations were about ten times lower then that was
found in the 4T1, KPC, and CT26 tumors in this thesis. Hence, the findings
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of this project may possess some uncertainty when it comes to determining the
absolute concentrations for the tumor models. Nevertheless, these findings appear
plausible considering the lack of existing literature measuring the collagen and/or
sGAG content specifically for our three tumor models.

The majority of the tumors used in the studies mentioned originate from hu-
mans, while this project used murine tumors. There are differences between human
and murine tumors that could have contributed to the gap between the measure-
ments and the literature. For instance, murine tumors are reported to typically
be more homogeneous than human tumors [71].

5.4 Association between tumor stiffness and colla-
gen and sGAG concentrations

Correlation analysis between stiffness measurements and collagen concentration
obtained in this study showed a large positive correlation only for KPC, which
was the stiffest tumor model. For the most part, the other tumor models showed
a negative relationship between the two parameters. Literature on the subject
recognizes increased collagen density as a major contribution to increased tumor
stiffness [5, 72]. Calò et al. (2020) performed spatial mapping of the collagen
distribution in human liver samples, obtained from colon cancer patients, using
AFM [73]. In the study they found a positive correlation between the elastic
modulus of the tissue and the collagen content (r = 0.33, P < 0.0001).

One can speculate that the stiffness of the tumors must surpass a certain level
for there to be a positive correlation between the two parameters. Additionally,
it rises the question of which other factors could cause variations in tumor stiff-
ness. In addition to the accumulation of ECM constituents, mainly collagen and
hyaluronan, tissue stiffening is caused by an increase in the amount of cancer and
stromal cells. Variations in the amount of HA, and cancer and stromal cells could
have caused the deviation from results reported in litterature.

GAGs have water binding properties due to their anionic characteristics [14].
Bound water acts as a plasticizer of biological tissues, meaning that an increase in
bound water contents results in an decrease in the tissue stiffness [74]. One could
assume that tumors containing larger amounts of sGAG also contained larger
amounts of bound water, making them softer than the tumors containing less
sGAG. This would explain the negative non-significant trend between sGAG and
stiffness measurements.

5.5 Tumor mass

The indentation data showed a significant decreasing stiffness with increasing
weight. There were some differences between the tumor masses, both within the
tumor models and between them. The KPC tumors, which also were the stiffest,
were the smallest, while CT26 and 4T1 were bigger and similar to each other. It
is known that necrosis, along with hypoxia, is more commonly observed in solid
tumors when they have exceeded 4 mm in diameter [75]. Necrotic areas have
lower stiffness values compared with solid tumor components [76]. In addition to
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being of similar size, the indentation data yielded similar stiffness parameters for
4T1 and CT26. Higher levels of necrosis in these tumors could have caused the
negative correlations between tumor size and stiffness.

The SWE data showed a positive correlation between Young’s modulus and
weight for CT26 (r = 0.8410, p = 0.0359). There was a positive trend between
Young’s modulus and weight for KPC, and a small negative trend for 4T1, however
these were not statistically significant. Several studies have reported a positive
correlation between stiffness parameters and mass. For instance, Chamming’s
et al. (2013) looked at the elasticity of a human tumor xenograft tumor model
HBCx3 in vivo, using shear wave elastography during tumor growth [77]. The
stiffness increased as the tumor grew, showing a strong correlation between size
and stiffness (r = 0.94, p < 0.0001). In this study, the tumors originating to
the same tumor model were implanted and harvested at the same time, meaning
intertumor differences in size were caused by other factors.

Nia et al. found no correlation between tumor size and stiffness in a study from
2017 [78]. They measured the stiffness of MMTV-M3C breast tumors using AFM.
This could indicate that the negative correlations found between indentation data
and tumor weights are highly dependent on the tumor model. On the other hand,
the differences in the trends between the indentation data and weight, and SWE
data and weight, could also indicate that the trends seen here are only coincidental.

Other studies have looked at the relation between stiffness measurements and
tumor volume, which is comparable to tumor mass. Hadjigeorgiou et al. (2023)
measured the stiffness and tumor volume of 4T1 tumors, and found a significant
positive, nonlinear correlation (ρ = 0.84, p = 0.0025) [79]. The results from the
study performed by Seguin et al. also showed a positive correlation between the
volume of CT26 tumor models and their shear modulus parameter (r = 0.59, p
< 0.0001), which is linearly related to Young’s modulus [64]. The correlation
between tumor size and stiffness parameters could be further examined by looking
at tumor volume, or by examining possible non-linear correlations. For instance
the equation used by Hadjigeorgiou et al. for curve fitting in their correlation
analysis: E = k1 − k2e

−k3V , where E is the elastic modulus, V the tumor volume
and k1, k2, and k3 are the fitted parameters [79].

There was an increasing collagen concentration for increasing weight for KPC
and 4T1 tumors, and a decreasing sGAG concentration. For CT26, there was
a negative trend between collagen content and weight, and a positive trend be-
tween sGAG content and weight. However, all correlation plots lack statistical
significance. Davies et al.’s study from 2001 found a significant positive correla-
tion between collagen and tumor volume in the s.c. osteosarcoma, and a negative
correlation for the orthotopic osteosarcoma [69]. There was also a significant pos-
itive correlation between sGAG contents and tumor volume for the orthotopic
osteosarcoma. The implantation site is known to cause differences in morphologic
and metabolic patterns [80].

5.6 Tumor heterogeneity

The complexity of tumors causes large variations within and between tumor mod-
els, which has been observed in this project. Calculations of the inter- versus in-
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traheterogeneity indicate that these variations mainly stem from variations within
the tumor family, i.e. the intertumor heterogeneity. However, the intrahetero-
geneity is relatively high, especially for indentation, collagen and sGAG data.
High intratumor heterogeneity stems from a heterogeneous cell population, and
has been observed in a several different cancer types, including breast tumors [81].
For the indentation data, the large intratumor variation is very dependent on the
positions of the measurements. The contact diameter of a probe is given by the
equation Rc = 2

√
Rδ − δ

4
[39]. Given a probe with a radius R = 0.5 mm and an

average indentation depth δ = 200µm, this results in a contact diameter of 0.45
mm. Collagen fibers can be up to 20 µm in diameter, and the cancer cell lines used
in this project range from 10 to 20 µm in diameter [82, 83, 84]. Large intratumor
variation of the distribution of these components could cause large differences in
stiffness measurements between positions. For the collagen and sGAG data, the
choice of tumor pieces during homogenization could cause large variations between
the measurements. As mentioned, sGAG and collagen tend to accumulate in the
centre and at the periphery, respectively. A random selection of pieces originating
from the centre would yield a much higher concentration of sGAG than if the
pieces originated from the periphery. Large intravariation of collagen has been
proved to worsen prognoses and cause a higher resistance to therapeutics [85].
Thus, delivery studies of therapeutic agents to these three tumor models could be
able to identify the impact of collagen intraheterogeneity.

5.7 Future work
In Section 5.2 results from similar projects were presented, the majority of which
performed stiffness measurements of tumors in vivo. Performing in vivo measure-
ments enables investigation of the development of tumor stiffness over time. This
would also eliminate the effects of post-mortem degradation, which could have
lead to overestimation of the stiffness measurements in this thesis. To be able to
perform SWE in vivo one would need a ultrasound prove fitting to small tumors in
mice. Additional improvements of the SWE technology could yield more precises
measurements of shear wave velocity.

Future work should also use a uniform tumor size distribution. Studies have
shown that the amount of collagen is positively correlated to the size of the tumor
[86]. There were some differences between the sizes of the tumors used in this
project, both within the same tumor model and between them, which could have
affected the correlation analysis of stiffness measurements vs. concentrations of
collagen and sGAG.
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CONCLUSIONS

The aim of this project was to determine the association between tumor tissue
stiffness and collagen and sGAG for KPC, 4T1 and CT26 tumor models. The
estimated Young’s moduli and spring constants were significantly higher for KPC
than for CT26, while the stiffness parameters for 4T1 varied depending on the
experimental method. CT26 contained significantly less collagen than 4T1, while
KPC was comparable to both tumor models. For collagen measurements of KPC
and CT26, the contribution of intraheterogeneity relative to the total heterogene-
ity was high. Consequently, delivery studies of therapeutic agents to these three
tumor models might identify the contents of collagen as a potential barrier within
the ECM, and identify the impact of collagen intraheterogeneity. No statistically
significant differences were observed between the sGAG measurements of the tu-
mor models.

Compared to stiffness estimates in literature, the Young’s modulus measured
by micro indentation is comparable to results from similar indention experiments.
For SWE, this project’s findings were higher, which could be explained by post-
mortem degradation. To avoid this, future studies should aim to perform mea-
surements in vivo, which also will make it possible to study the tumor stiffness
over time.

The Young’s modulus estimated from SWE was significantly higher than from
indentation, which is a consistent trend observed in other projects using same
experimental procedures. This highlights that Young’s modulus cannot be con-
sidered an absolute value, but rather something that depends on the experimental
method used. However, in studies comparing tumor stiffness and delivery of drugs,
the absolute value of Young’s modulus is not needed, but the relative difference
between tumor models.

The collagen concentrations measured in this project is comparable to litera-
ture, while the concentrations of sGAG were up to tenfold higher. The differences
is mainly caused by variations between tumor models. Overall, there was a positive
trend between stiffness and collagen concentration, and a negative trend between
stiffness and sGAG concentration. However, these were not statistically signifi-
cant. To further investigate this relation, further studies should use tumors of the
same size to avoid the effects of the size dependency of collagen concentrations.
There was a negative correlation between the stiffness measurements from inden-
tation and weight, which could have been caused by necrosis. CT26 showed a
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positive correlation between Young’s modulus from SWE and weight, which is in
accordance with literature.

Stiffness and collagen content are important biomarkers for which tumors will
have a successful delivery of therapeutics. Hopefully, this project has laid down
some of the ground work for future research on the therapeutic consequences of
the morphological and physiological differences between tumor models.
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APPENDICES

A MATLAB script for image analysis of SWE im-
ages

The following MATLAB script was used to analyze the images from shear wave
elastography. The first part of the code was provided by Rune Hansen and Naseh
Amini, and displays three images showing the B-mode image of the tumor, the
shear wave velocity, and standard deviation of measurements, as shown in Figure
3.4.1. The second part prompts the user to draw the ROI in the B-mode image,
and converts the mask to the two other images. Within the ROI in the shear wave
velocity image, the mean and median value is calculated, in addition to the stan-
dard deviation and variance. This provides the mean and median shear velocity,
in addition to SD and variance. The tumor tag refers to a specific measurement,
where the first three numbers refers to the tumor number, the fourth number
refers to the measurement number, and the last number refers to whether it is
measurements of waves propagation to the right (1) or left (2).

1 if exist( ’replaceTag ’, ’var’) && replaceTag
2 disp(’Using␣set␣tumortag ’);
3 replaceTag = 0;
4 else
5 tumortag = ’19611’;
6 end
7

8 fid = fopen([’meta’ tumortag ’.txt’]);
9 test = textscan(fid , ’%f␣%f’);

10 fclose(fid);
11

12 % shearSize = [240 30];
13 % bmodeSize = [240 447];
14 % zaxis_lims = [0.0066 0.0176];
15 % xaxisS_lims = [ -0.00585 0.00575];
16 % xaxisB_lims = [ -0.01115 0.0112];
17

18

19 shearSize = [test {1}(1) test {2}(1) ];
20 bmodeSize = [test {1}(2) test {2}(2) ];
21 zaxis_lims = [test {1}(3) test {2}(3) ];
22 xaxisS_lims = [test {1}(4) test {2}(4) ];
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23 xaxisB_lims = [test {1}(5) test {2}(5) ];
24

25

26

27 fid = fopen( [’shear’ tumortag] );
28 shearImg = fread( fid , ’single ’);
29 fclose(fid);
30 shearImg = reshape( shearImg , shearSize);
31

32 fid = fopen( [’bmode’ tumortag] );
33 bmodeImg = fread( fid , ’single ’);
34 fclose(fid);
35 bmodeImg = reshape( bmodeImg , bmodeSize);
36

37 fid = fopen( [’std’ tumortag] );
38 stdImg = fread( fid , ’single ’);
39 fclose(fid);
40 stdImg = reshape( stdImg , [shearSize ]);
41 % stdImg = stdImg
42

43 %%
44 fig10 = figure (10);
45 subplot (3,1,1), imagesc( xaxisB_lims *1e3, zaxis_lims *1e3,

bmodeImg); xlabel(’[mm]’); ylabel(’[mm]’)
46 daspect ([1, 1, 1]);
47 subplot (3,1,2), imagesc( xaxisS_lims *1e3, zaxis_lims *1e3,

shearImg); caxis ([1 8]); xlabel(’[mm]’); ylabel(’[mm]’)
48 daspect ([1, 1, 1]);
49 subplot (3,1,3), imagesc( xaxisS_lims *1e3, zaxis_lims *1e3,

stdImg); xlabel(’[mm]’); ylabel(’[mm]’)
50 daspect ([1, 1, 1]);
51

52 %% Mark ROI in bmodeImg
53 fig11 = figure (11);
54 imagesc(xaxisB_lims * 1e3, zaxis_lims * 1e3, bmodeImg);
55 xlabel(’[mm]’);
56 ylabel(’[mm]’);
57 title(’Select␣ROI␣in␣B-mode␣Image’);
58 axis image;
59 colormap gray;
60

61 % Allow the user to draw a freehand ROI
62 h = imfreehand(gca);
63 mask = h.createMask ();
64

65 % Apply the ROI mask to the bmodeImg
66 roiBmodeImg = bmodeImg .* mask;
67

68 % Display the ROI in a separate figure
69 fig12 = figure (12);
70 imagesc(xaxisB_lims * 1e3, zaxis_lims * 1e3, roiBmodeImg);
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71 xlabel(’[mm]’);
72 ylabel(’[mm]’);
73 title(’Region␣of␣Interest␣(ROI)’);
74

75 %% Apply ROI to shearImg and stdImg
76 % Account for different axis sizes
77 scaleFactor = size(bmodeImg) ./ size(shearImg);
78

79 % Resize the mask to match shearImg size
80 resizedMask = imresize(mask , size(shearImg)) > 0;
81

82 % Apply the resized mask to shearImg
83 roiShearImg = shearImg .* resizedMask;
84

85 % Apply the resized mask to stdImg
86 roiStdImg = stdImg .* resizedMask;
87

88 %% Display images and statistics
89 fig13 = figure (13);
90 subplot(3, 1, 1), imagesc(xaxisB_lims * 1e3, zaxis_lims * 1e3

, roiBmodeImg);
91 xlabel(’[mm]’);
92 ylabel(’[mm]’);
93 title(’Region␣of␣Interest␣(ROI)␣in␣B-mode␣Image’);
94 subplot(3, 1, 2), imagesc(xaxisS_lims * 1e3, zaxis_lims * 1e3

, roiShearImg);
95 caxis
96 subplot(3, 1, 3), imagesc(xaxisS_lims * 1e3, zaxis_lims * 1e3

, roiStdImg);
97 xlabel(’[mm]’);
98 ylabel(’[mm]’);
99 title(’Region␣of␣Interest␣(ROI)␣in␣Standard␣Deviation␣Image’)

;
100

101 %% Calculate statistics within ROI from shearImg
102 roiValuesShear = roiShearImg(resizedMask);
103 meanValueShear = mean(roiValuesShear);
104 medianValueShear = median(roiValuesShear);
105 stdValueShear = std(roiValuesShear);
106 varValueShear = var(roiValuesShear);
107 numValuesShear = numel(roiValuesShear);
108

109 fprintf(’Statistics␣within␣ROI␣from␣Shear␣Image:\n’);
110 fprintf(’Number␣of␣values:␣%d\n’, numValuesShear);
111 fprintf(’Mean:␣%.4f\n’, meanValueShear);
112 fprintf(’Median:␣%.4f\n’, medianValueShear);
113 fprintf(’Standard␣Deviation:␣%.4f\n’, stdValueShear);
114 fprintf(’Variance:␣%.4f\n’, varValueShear);
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B Python script for analyzing indentation force
curves

The following Python script was used to correct indentation force curves for DPBS
evaporation, and curve fitting of Hooke’s law and Hertz model. The script also
estimates spring constant and Young’s modulus from curve fitting. The script
assumes a tip diameter of 1 mm, and a biological sample with Poisson ratio 0.5.
The script also calculates the P-value and R2.

1 #Import packages
2

3 import numpy as np
4 import matplotlib.pyplot as plt
5 from sklearn.metrics import r2_score
6 from scipy.optimize import curve_fit
7 from scipy.stats import t, sem
8

9 #Defining DPBS correction line
10

11 def p(x):
12 return -0.27378543*x - 0.00000193
13

14 #Defining Hertz model and Hooke’s law
15

16 def hertz_law(d, E):
17 return (((4/3)*E)/(1 -(0.5**2)))*(np.sqrt (0.5*0.001) *(d)

**(3/2))
18

19 def hookes_law(x, k):
20 return k*x
21

22 def plot(file , plotlabel , min , max):
23 plt.rcParams.update ({’font.size’:10})
24 depth = np.loadtxt(file , dtype=float , usecols =[0])
25 depth *= 1E-3
26 force = np.loadtxt(file , dtype=float , usecols =[1])
27 force *= 0.0098
28 correctedforce = force -p(depth)
29 plt.figure(figsize =(10 ,6))
30 plt.plot(depth , correctedforce , label = plotlabel , color=

’C3’)
31

32 #Model fitting
33

34 popt_hertz , pcov_hertz = curve_fit(hertz_law , depth ,
correctedforce)

35 F_hertz = hertz_law(depth , *popt_hertz)
36

37 popt_hookes , pcov_hookes = curve_fit(hookes_law , depth ,
correctedforce)

38 F_hookes = hookes_law(depth , *popt_hookes)
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39

40 mask = (depth >= 0.0001) & (depth <= 0.0002)
41 depth_interval = depth[mask]
42 force_interval = correctedforce[mask]
43 popt_hookes_interval , pcov_hookes_interval = curve_fit(

hookes_law , depth_interval , force_interval)
44 F_hookes_interval = hookes_law(depth_interval , *

popt_hookes_interval)
45

46 #Find Young’s modulus and spring constant
47

48 youngsmodulus = popt_hertz [0]
49 youngsmodulus_kpa = popt_hertz [0]*1E-3
50 springconstant = popt_hookes [0]
51 springconstant_hookes_interval = popt_hookes_interval [0]
52

53 #Calculating R squared
54

55 r_squared_hertz = r2_score(correctedforce , F_hertz)
56 r_squared_hookes = r2_score(correctedforce , F_hookes)
57 r_squared_hookes_interval = r2_score(y_interval ,

hookes_law(x_interval , *popt_hookes_interval))
58

59 #Calculating P-value
60

61 residuals = correctedforce - hertz_law(depth , *popt_hertz
)

62 degrees_of_freedom = len(correctedforce) - len(popt_hertz
)

63 p_value_hertz = 2 * (1 - t.cdf(np.abs(residuals).mean() /
np.std(residuals), degrees_of_freedom))

64

65 residuals = correctedforce - hookes_law(x, *popt_hookes)
66 degrees_of_freedom = len(y_corrected) - len(popt_c)
67 p_value_hookes = 2 * (1 - t.cdf(np.abs(residuals).mean()

/ np.std(residuals), degrees_of_freedom))
68

69 residuals = force_interval - hookes_law(depth_interval , *
popt_hookes_interval)

70 degrees_of_freedom = len(force_interval) - len(
popt_hookes_interval)

71 p_value_hookes_interval = 2 * (1 - t.cdf(np.abs(residuals
).mean() / np.std(residuals), degrees_of_freedom))

72

73 #Plot model fits
74

75 plt.plot(x, F_hertz , color=’C1’, linestyle=’dashdot ’,
label=f’Hertz␣law␣fit:␣E={ popt_hertz_c [0]*1E-3:.2g}␣
kPa’)

76 plt.plot(x, F_hookes , color=’C0’, linestyle=’dashed ’,
label=f’Hooke\’s␣law␣fit:␣k={ popt_c [0]:.2g}␣N/m’)
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77 x__intervalplot = np.linspace(x_interval.min(),
x_interval.max(), 100)

78 plt.plot(x_plot_interval , F_hookes_interval , color=’C2’,
linestyle=’dashed ’, label=f"Hooke’s␣law␣fit␣within␣
linear␣interval:␣k␣=␣{slope :.2g}␣N/m")

79

80 #Extend the plot outside the interval
81

82 x_plot_extended = np.linspace(depth.min(), depth.max(),
100)

83 y_fit_extended = slope * x_plot
84 plt.plot(x_plot , y_fit_extended , color=’C2’, linestyle=’

dashed ’)
85

86

87

88 plt.legend(fontsize =10, ncol =1)
89 plt.tight_layout(pad=2)
90 plt.grid(which = "major", linewidth = 1)
91 plt.grid(which = "minor", linewidth = 0.2)
92 plt.minorticks_on ()
93 plt.xlabel("Indentation␣depth␣(\ u03BCm)", fontsize =12)
94 plt.ylabel("Load␣(mN)", fontsize =12)
95 x1 = [0 ,0.00005 ,0.00010 ,0.00015 ,0.00020 ,0.00025]
96 squad = [’0’,’50’,’100’,’150’,’200’,’250’]
97 plt.xticks(x1, squad)
98

99 plt.show()
100

101 with open(’YoungsModulus.txt’, ’a’) as f:
102 f.write(str(youngsmodulus_kpa) + ’\n’)
103 with open(’Pvalue_hertz.txt’, ’a’) as f:
104 f.write(str(p_value_hertz) + ’\n’)
105 with open(’Rsquared_hertz.txt’, ’a’) as f:
106 f.write(str(r_squared_hertz) + ’\n’)
107

108 with open(’SpringConstant.txt’, ’a’) as f:
109 f.write(str(springconstant) + ’\n’)
110 with open(’Pvalue_hookes.txt’, ’a’) as f:
111 f.write(str(p_value_hookes) + ’\n’)
112 with open(’Rsquared_hookes.txt’, ’a’) as f:
113 f.write(str(r_squared_hookes) + ’\n’)
114

115 with open(’SpringConstantInterval.txt’, ’a’) as f:
116 f.write(str(springconstant_hookes_interval) + ’\n’)
117 with open(’Pvalue_Hookes_Interval.txt’, ’a’) as f:
118 f.write(str(p_value_hookes_interval) + ’\n’)
119 with open(’Rsquared_Hookes_Interval.txt’, ’a’) as f:
120 f.write(str(r_squared_hookes_interval) + ’\n’)
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C Table of tumors, including weights and dimen-
sions

This project used six KPC, six 4T1 and six CT26 tumors. Table C.1 show the
animal ID of the animals from which they were harvest from, as well as the weight
and dimensions of the tumors, which was measured right after harvesting.

Table C.1: Tumors used in the project, with weights and dimensions, and the ID
of the animal from which they were harvested from.

Tumor type Animal ID Tumor size (mm) Tumor weight (g)
KPC 169 6.2 x 5.9 x 4.8 0.1493
KPC 170 7.55 x 6.2 x 5.0 0.1692
KPC 171 7 x 4.5 x 3.7 0.0751
KPC 172 5.6 x 5.9 x 4.1 0.1024
KPC 173 5 x 5.2 x 2.2 0.0393
KPC 174 5.4 x 5.2 x 3.3 0.0670
4T1 175 10.2 x 8.4 x 6.3 0.3902
4T1 176 9.8 x 11.9 x 6.2 0.4231
4T1 177 10.1 x 8.2 x 6.6 0.4781
4T1 178 9.7 x 10 x 7.6 0.5766
4T1 179 9.8 x 7.7 x 5.1 0.2909
4T1 180 10.1 x 8.5 x 6.5 0.4182

CT26 184 10 x 9.4 x 6 0.3950
CT26 185 9.7 x 8.5 x 6.7 0.4328
CT26 186 6.9 x 5.5 x 4.7 0.1384
CT26 190 11.2 x 9.5 x 6.2 0.5715
CT26 191 11 x 10 x 6.3 0.4580
CT26 196 10.2 x 8.6 x 6.11 0.4387
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D Outliers
Table D.1 shows the values of the outliers removed by Prism using the ROUT
outlier detection method, with Q=1%. The table also shows which tumor model
it originates from. No outliers were found in the sGAG data set.

Table D.1: The values of the outliers removed by ROUT method, and the tumor
model from which they originate from.

Spring constant
Tumor model Spring constant (N/m)

CT26 3.238
Young’s modulus (Hertz)

Tumor model Young’s modulus (kPa)
CT26 6.145

Young’s modulus (SWE)
Tumor model Young’s modulus (kPa)

4T1 106.236
4T1 119.865
4T1 101.282
4T1 114.199

Collagen concentration
Tumor model Collagen concentration (µg/mg)

CT26 0.909
CT26 0.906
CT26 1.001
CT26 1.002
CT26 1.848
CT26 1.851
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Figure D.1 show the force curve corresponding to the outlier removed from the
data set, and the corresponding curves from Hooke’s law and Hertz model curve
fitting.

Figure D.1: The corresponding force curve to the outlier removed from the inden-
tation data set. The red line is the force curve, corrected for DPBS evaporation.
The orange curve is the Hertz model fit. The blue and green curves are the Hooke’s
law model fit curves, calculated for the entire force curve and within the interval
100 to 200 µm indentation depth, respectively. All indentation experiments were
performed with an indenter with r = 0.5 mm, at 0.002 mm/s speed, with 200µm
indentation depth.
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E Hooke’s law model fit for entire force curve
Figure E.1 shows the spring constant for all three tumor models, measured in N/m.
The spring constant is derived from the model fit of Hooke’s law to the entire force
curve. KPC has a significantly higher spring constant than both 4T1 and CT26.
There is no statistical significance between 4T1 and CT26, meaning their spring
constants are similar. The min-max range, median, mean and standard deviation
of the spring constant were found to be [2.371 - 6.098, 4.145, 4.183 ± 1.120] for
KPC, [0.620 - 3.313, 1.377, 1.542 ± 0.747] for 4T1, and [0.420 - 2.220, 0.870, 0.910
± 0.375] for CT26.

Figure E.1: The spring constant of the tumor models in a box plot. Whiskers
represents the minimum and maximum values, and the box is the 25-75%. The
median is depicted by a horizontal line crossing the box. Each individual point
within the box plot represents the mean value of one tumor. The presence of aster-
isks between the boxes indicates the statistical significance between the respective
data sets, as explained in Table 3.6.1.
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F Intra- vs Interheterogeneity
Table F.1 shows the calculated intra- and interheterogeneity within tumor model
populations, and the relative contribution of intraheterogeneity to the total tumor
heterogeneity. The calculations are performed as described in Section 2.4.

Table F.1: The intra- (σ2
intra) and interheterogeneity (σ2

inter) within the tumor
model populations, and the relative contribution of intraheterogeneity to the total
tumor heterogeneity (f ). Calculations were performed for data sets from indenta-
tion, SWE, and measurements of collagen and sGAG concentrations.

Tumor type σ2
inter σ2

intra f
Spring constant

KPC 1.204 0.638 0.346
4T1 0.550 0.396 0.419

CT26 0.139 0.122 0.468
Young’s modulus (Hertz)
KPC 4.979 2.499 0.334
4T1 2.196 1.570 0.417

CT26 0.492 0.460 0.483
Young’s modulus (SWE)

KPC 8.084 7.302 0.475
4T1 9.964 5.434 0.353

CT26 70.558 21.860 0.237
Collagen concentration

KPC 1.120 0.746 0.400
4T1 1.364 0.682 0.333

CT26 0.017 0.015 0.462
sGAG concentration

KPC 0.415 0.389 0.483
4T1 0.532 0.855 0.617

CT26 2.608 1.311 0.334
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