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Abstract

Global trade and economic growth greatly rely on the shipping industry, with a key
role played by dry bulk shipping. This form of shipping deals with transporting loose
bulk cargo, such as grains iron, and coal, and is crucial for various sectors. However,
the industry encounters difficulties stemming from the volatile market conditions,
which make it challenging to anticipate vessel destinations accurately. As a result,
scheduling, routing, and resource allocation suffer from inefficiencies. To tackle these
challenges, the application of machine learning can significantly enhance operational
efficiency and decision-making in the shipping industry by more accurately predicting
vessel destinations.

This thesis investigates the application of machine learning techniques to predict the
destinations of dry bulk vessels in the shipping industry. The study focuses on the
multiclass classification problem of predicting port-to-port, laden, and ballast voyages.
A comprehensive pre-processing of the Automatic Identification System signals was
performed to create trajectories. Trajectory similarity measures were used to collect
an initial prediction, which was used as a feature in the machine learning model,
along with other relevant information. The XGBoost algorithm was employed for the
classification task, with separate models created for the largest sub-segments of dry
bulk vessels, namely Very Large Ore Carriers, Capesize, Panamax, and Supramax.
The performance of the models was evaluated using various metrics, including port
accuracy, port frequency-based decision accuracy, cluster accuracy, country accuracy,
Average Prediction Distance Error, Median Prediction Distance Error, and the Brier
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score.

The overall results varied between 50-83 % for port prediction accuracy, and between
75-96 % for country accuracy. The models performed best on larger vessels, particu-
larly the Very Large Ore Carriers for port-to-port predictions, and achieved the best
overall result of 83 % accuracy for Capesize ballast voyages. The laden voyages where
the hardest to predict, with results varying between 24-64 %. Permutation feature
importance and SHAP values were used to investigate feature importance, reveal-
ing a correlation between real-world events and the model’s predictions. This thesis
contributes to the understanding of how machine learning can be used to improve
operational efficiency in the shipping industry.



Sammendrag

Den globale handelen og økonomiske veksten er sterkt avhengig av shippingindus-
trien, der tørrbulkfrakt spiller en nøkkelrolle. Denne formen for frakt håndterer trans-
port av løst bulkgods, som korn, jern og kull, og er avgjørende for ulike sektorer. Im-
idlertid står bransjen overfor utfordringer som skyldes volatiliteten i markedet, noe
som gjør det utfordrende å nøyaktig predikere destinasjonene for skipene. Som et
resultat lider planlegging, rutevalg og ressursallokering av diverse ineffektiviteter i
markedet. For å håndtere disse utfordringene kan anvendelsen av maskinlæring bety-
delig forbedre driftseffektiviteten og beslutningstakingen i skipsfartsindustrien ved å
mer nøyaktig predikere skipenes destinasjoner.

Denne oppgaven undersøker bruken av maskinlæringsteknikker for å forutsi destinas-
jonene til tørrbulkskip i shippingindustrien. Studien fokuserer på flerklassifiserings-
problemet med å forutsi havn-til-havn, lastede og ballastreiser. En omfattende pre-
prossesring av Automatic Identification System (AIS) signaler ble utført for å lage
skipsbaner. Matematiske distanse modeller for baner ble brukt til å lage en innledende
prediksjon, som ble brukt som variabel i maskinlæringsmodellen, sammen med annen
relevant informasjon. XGBoost-algoritmen ble brukt for flerklassifiseringsoppgaven,
med separate modeller opprettet for de største sub-segmentene av tørrbulkskip, nem-
lig Very Large Ore Carriers, Capesize, Panamax og Supramax. Modellenes ytelse ble
evaluert ved hjelp av forskjellige metrikker, inkludert havnenøyaktighet, beslutnings-
nøyaktighet basert på havnefrekvens, klyngenøyaktighet, landsnøyaktighet, gjennom-
snittlig feil i prediksjonsavstand, median feil i prediksjonsavstand, og Brier-scoren.
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Resultatene varierte betydelig, der nøyaktigheten for havne-prediksjon varierte mel-
lom 50-82 %, og for landsnøyaktighet mellom 75-96%. Modellene presterte best på
større skip, spesielt Very Large Ore Carriers for havn-til-havn-prediksjoner, og oppnådde
det beste samlede resultatet med 82 % nøyaktighet for Capesize ballastreiser. De las-
tede reisene var de vanskeligste å forutsi, med resultater som varierte mellom 24-64
%. Permutasjonsvariabelbetydning og SHAP-verdier ble brukt til å undersøke variabel-
betydning, og avslørte en korrelasjon mellom virkelige hendelser og modellens pre-
diksjoner. Denne oppgaven bidrar til forståelsen av hvordan maskinlæring kan brukes
til å forbedre driftseffektiviteten i shippingindustrien.
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Chapter 1

Introduction

1.1 The shipping market and dry bulk vessels

The shipping industry is of paramount importance for the global economy, as it is
responsible for transporting a significant portion of international trade. According to
the United Nations Conference on Trade and Development (UNCTAD), sea transport
accounted for approximately 80% of the world’s goods by volume and 70% of goods
by value in 2018 (Sirimanne et al. 2019).

The shipping trade process involves various actors, including shippers, receivers, shipown-
ers, charterers, shipbrokers, and traders, each playing distinct roles (Stopford 2008).
Shippers are typically producers or traders who have goods to transport, and receiv-
ers are typically the consumers or buyers of these goods. The shipping process begins
when a shipper needs to transport goods from one location to another. A charterer is a
person or company who hires a ship from a shipowner for a particular voyage (voyage
charter) or for a particular period of time (time charter). They negotiate chartering
contracts directly with the shipowner or through a shipbroker. The charterer is re-
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sponsible for providing the cargo and deciding the ports of call. Shipowners, who
own the vessels, provide the service of transporting goods. They can operate their
own ships or lease them out to charterers. Shipbrokers act as intermediaries between
shipowners and charterers. They negotiate the terms of the charter on behalf of both
parties, ensuring that all the necessary contractual obligations are understood and
agreed upon.

The sequence of events in the shipping trade process typically goes as follows: A trader
or producer (shipper) who has goods to ship contacts a shipbroker or charterer to find
a suitable ship. This is not always the case, an example being the Valemax fleet, where
the mining company Vale S.A, being the shipper, owns their own fleet (Papadionysiou
2014). However, typically a shipbroker is required. Thus it is the shipper that decides
the final destination of the vessels, due to the nature of the trade. The shipbroker then
negotiates with shipowners to find a vessel that meets the shipper’s needs in terms of
size, type, and availability. Once the shipbroker finds a suitable ship, they negotiate
the terms of the charter contract, including freight rate, duration, and route. The ship
then transports the goods to the specified destination, and upon arrival, the cargo is
unloaded by the receiver. The shipowner is paid the agreed freight rate, out of which
the shipbroker receives a commission.

Dry bulk vessels are a type of shipping vessel that are designed to transport large
quantities of dry cargo, such as coal, iron ore, grain, and other commodities (Stopford
2008). They are distinct from other types of vessels due to their size, cargo capacity,
and operational requirements. Dry bulk vessels are equipped with large, open holds
that are used to store the dry cargo, which are clearly seen in Figure 1.1. These holds
are typically box-like in shape and are covered by large hatches on the deck of the
ship to protect the cargo from the elements. The cargo is loaded onto the ship through
these hatches, often using a crane or conveyor belt system. For instance, large cranes
are typically used for solid commodities such as iron ore and coal, while specialized
equipment like grain elevators or pneumatic conveyors are used for loading agricul-
tural products like grain (Kendall 2012).

The dry bulk vessel industry is marked by significant volatility (Alizadeh and Nomikos
2013). A key contributor to this instability is the imbalance between supply and de-
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Figure 1.1: An example of a dry bulk vessel

mand, made worse by the decentralized nature of the spot market and a deficiency
of accurate, real-time information about cargo and vessel availability (Jugović et al.
2015).

Astrup Fearnley Code (AF Code) has supplied a graph displaying the volatility of the
spot market. Figure 1.2 displays the spot market indices for Capesize, Panamax, and
Supramax sub-segments of dry bulk vessels from 2019 to 2022, for time charter con-
tracts(TC). TC is a type of contract for the hire of a ship, where the shipowner provides
the vessel, crew, insurance, and other necessary provisions, but the charterer controls
the voyages and pays for the fuel and port charges (Agnolucci et al. 2014). The spot
market index is a measure of the current rate for shipping a particular type of cargo
on a particular type of vessel, quoted in U.S. dollars per day (USD/day). The rates
are determined by the supply and demand of vessels and cargoes in the market at any
given moment.

In the current system, the bid for bulk cargo contracts is heavily dependent on how
close a ship is to the loading port and whether it can reach there within the required
timeframe. However, lack of information about other ships potentially going to the
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Fearnleys Dry Bulk Market Outlook | June 20223

The Dry Bulk Spot Market Indices

Baltic Capesize, Panamax and Supramax Indices

Figure 1.2: Spot market indices between 2019 and 2022 for different sub-segments
of dry bulk vessels.

same port introduces uncertainty. This unpredictability in the supply of ships, both in
terms of location and timing, can lead to inefficiencies in the market and significant
economic challenges (Jing et al. 2008).

1.2 AIS signals and trajectories

The Automatic Identification System (AIS), established by the International Maritime
Organisation (IMO) under the Safety Of Life At Sea (SOLAS) convention in the early
2000s, was designed to standardize and enhance maritime safety (Joseph and Dalaklis
2021). The convention’s main aim is to outline basic safety standards that all vessels
from participating countries must adhere to. The SOLAS convention prioritizes the
security and safe navigation of ships, which led to the creation of the AIS. The AIS
contributes to this goal by providing real-time location updates to both other ships
and onshore stations within their radio range, thus reducing the likelihood of ship
collisions.

AIS signals are transmitted using a specific format that includes a set of binary data
packets. The data packets contain information about the vessel, such as its unique
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identifier, GPS position, course, speed, and other relevant information. A typical AIS
data packet can have the following format:

• Message Type: Identifies the type of message
• Repeat Indicator: Number of times a message has been transmitted
• IMO nr: Unique identifier for the vessel
• Navigation Status: Specifies the vessel’s navigation status
• Latitude: Latitude of the vessel’s location
• Longitude: Longitude of the vessel’s location
• Speed Over Ground: Speed of the vessel over the ground
• Destination: Destination, manually inputted
• Course Over Ground: Course of the vessel over the ground

The destination field is of interest here because it is the focus of this thesis work.
According to Abdallah et al. (2019), only around 38 % of AIS signals contain accurate
destinations. This can be due to geopolitical or economic reasons, for example that
the trader of goods does not want rivals to know which ports the vessels are traveling
to, and by doing so one gains an economic advantage.

Table 1.1: Typical example of the manually inputted destination field in the AIS sig-
nals

Date Departure Port Arrival Port Destination
06.05.23 NEWCASTLE RIZHAO ZHOUSHAN
15.05.23 NEWCASTLE RIZHAO ZHOUSHAN
22.05.23 NEWCASTLE RIZHAO RIZHAO

In Table 1.1, we observe a particular vessel taking a route from NEWCASTLE AUS-
TRALIA to RIZHAO, at three different time stages of the journey, however the field
"Destination" changes after two weeks, perhaps because of an instruction from the
trader.

Since AIS signals are available and provide information about vessel trajectories, they
can be utilized to create trajectories that help in predicting vessel destinations. By
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analyzing historical AIS data and considering factors such as vessel behavior, route
patterns, and destination patterns of similar vessels, it becomes possible to make in-
formed predictions about the future destinations of vessels.

1.3 Problem statement

The key problem to be addressed in this thesis is the prediction of dry bulk vessel
destinations using multiclass classification models. The suggested models utilize his-
torical AIS data and account for the probabilistic nature of other important features.

The goal is to build and compare trajectories using AIS data, providing a spatial solu-
tion to the problem. This spatial perspective is then integrated with other static in-
formation for machine learning applications, considering the probabilistic aspects of
other important features. The approach is not only to predict port-to-port voyages,
but also laden and ballast voyages, meaning from the loading of cargo to the unload-
ing and vice versa. Given that the decision of the vessels’ destinations is made by the
trader of goods, the models will incorporate features related to these decision-makers.

Addressing this problem could significantly reduce the inherent volatility of the dry
bulk vessel industry, contributing to improved market stability and economic effi-
ciency. The challenge lies in the selection of appropriate machine learning models,
such as XGBoost, and features that can effectively deal with the complexity and stochasti-
city of the problem.

Similar studies have been conducted for prediction of destination ports, such as in
Roşca et al. (2018), Zhang et al. (2020) and Omholt-Jensen (2021), however the
main contribution for this thesis lies in the prediction of laden and ballast voyages,
which has not, to the best of our knowledge, been previously explored in depth for
dry-bulk vessels.
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1.4 Outline

In chapter 2, we investigate the dataset derived from AIS signals. We introduce sub-
segments in the dry bulk vessel segment (Section 2.1), explain how AIS Trade Flow
systems work (Section 2.2), provide definitions for different types of vessel voyages
(Section 2.3), and explain how we create trajectories (Section 2.4). We introduce Port
Clustering(Section 2.5), then perform an exploratory data analysis on the full dataset
(Section 2.6).

Chapter 3 is dedicated to explaining the research methodology. We discuss the multi-
class classification problem notation (Section 3.1), trajectory-based features (Sections
3.2). Afterwards, we discuss how we prepare the machine learning datasets (Sections
3.3), how we handle encoding of categorical features (Sections 3.4), and present our
machine learning models (Section 3.5). Finally, we explain our evaluation metrics
(Sections 3.6) and the concepts of feature importance (Sections 3.7).

Chapter 4 analyzes and discusses the results obtained from our machine learning
models for the three different voyage types: port-to-port voyages (Sections 4.1), laden
voyages (Sections 4.2), and ballast voyages (Sections 4.3). We discuss the results in
the context of machine learning performances and feature importance, and tie this
up to the dry bulk trade market.

The final chapter summarizes the findings of our research, highlighting the implica-
tions and potential future directions for the shipping industry.





Chapter 2

AIS Dataset

2.1 Sub-segments in the dry bulk vessel segment

The dry bulk vessel segment encompasses several sub-segments that cater to different
transportation needs in the bulk cargo industry. In this thesis, the focus is on four main
sub-segments: Very Large Ore Carriers (VLOC), Capesize, Panamax, and Supramax
(Stopford 2008). Figure 2.1 shows examples of these four sub-segments, along with
their deadweight. A more detailed explanation follows below:

VLOC: VLOCs are specialized bulk carriers designed to transport large quantities of
iron ore and other minerals. They are among the largest bulk carriers, typically ran-
ging from 200,000 to 400,000 deadweight tons (DWT). VLOCs are primarily utilized
in long-haul routes, often transporting iron ore from major exporting countries like
Brazil and Australia to industrial centers such as China. Due to their size, VLOCs re-
quire deep-water ports for loading and unloading.

Capesize: Capesize vessels derive their name from their need to navigate the Cape of

9
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Supramax
40.000-60.000 DWT

Panamax
63.000-90.000 DWT

Capesize
150.000 + DWT

VLOC
200.000-400.000 DWT

Figure 2.1: Images displaying the four different dry-bulk sub-segments this thesis
focuses on, along with their typical deadweight.

Good Hope and Cape Horn. These vessels are too large to pass through the Panama
Canal or Suez Canal and therefore must circumnavigate the southern tips of Africa or
South America. They are the largest bulk carriers(except VLOC), usually exceeding
150,000 DWT. Capesize vessels are predominantly used to transport commodities like
iron ore and coal on intercontinental routes, such as from Brazil or Australia to China
or Europe.

Panamax: Panamax vessels are named after their size limitations to fit the maximum
dimensions of the Panama Canal locks. These vessels typically have a DWT ranging
from 63.000 to 90.000 tons. Panamax vessels are versatile and can transport various
dry bulk commodities, including grains, coal, and ores. They are commonly employed
on medium-range routes, such as shipments between the Americas, Europe, and Asia.
The Panama Canal expansion in 2016 has increased the maximum size of vessels that
can pass through, known as Neopanamax, enabling larger vessels in this segment.

Supramax: Supramax vessels are smaller-sized bulk carriers, typically ranging from
40.000 to 60.000 DWT. They are highly versatile and well-suited for accessing ports
with restrictions on draft and infrastructure limitations. Supramax vessels are com-
monly employed for transporting various dry bulk cargoes, including grains, coal,
minerals, and steel products. They provide flexibility and are able to serve a wide
range of routes, including both short-haul and long-haul voyages.
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2.2 AIS Trade Flow systems

AIS Trade Flow systems work by leveraging the data transmitted by vessels globally to
provide real-time and historical insights into maritime trade activities (Halden 2019).
The goal is to build a system for defining trade between ports using the AIS signals.
Defining port areas in AIS Trade Flow systems is a complex process that involves both
geographical and operational considerations. Geographically, a port area is typically
defined by a set of coordinates that outline the physical boundaries of the port and
its surrounding waters. This can include berths, anchorages, and sometimes even the
approach channels. Determining whether a ship is inside a port area often involves
comparing the ship’s current AIS-reported coordinates with the defined boundaries
of the port. If the ship’s position falls within these boundaries, it is considered to be
inside the port area. However, it is not just about geographical location. For example,
a ship might be within the geographical boundaries of a port, but if it is just passing
through without stopping or engaging in port activities, it might not be considered as
being ’in port’ from an operational perspective. Figure 2.2 represents an example of
a vessel anchored outside of the Port of Singapore, however it is not close to where
goods are transferred from vessel to shore(the red area), highlighting the complexity
of deciding if a voyage is laden, ballast or just port-to-port.

To handle these complexities, AIS Trade Flow systems often use sophisticated al-
gorithms to accurately determine port boundaries and to classify vessel behavior. This
can include factors like the ship’s speed, course, and historical patterns of behavior. By
combining these different data points, these systems can provide a highly accurate pic-
ture of port activities and vessel movements. AF Code has built a system for this using
the general principles, which has created a dataset containing the AIS signals along
with portstops, loading and unloading. The destination field is also pre-processed and
cleaned, which is explained in more detail later.
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Figure 2.2: AIS Trade Flow example of a dry bulk vessel anchored outside of Singa-
pore. The blue polygon represents an anchorage area, and the red area represents an
area where the vessel has the capacity for loading and unloading.

2.3 Vessel voyage definitions

In this section, we introduce three definitions of vessel voyages, namely port-to-port
voyages, laden voyages, and ballast voyages. Each of these types of voyages poses
distinct challenges, and predicting them involves addressing three separate problems.

2.3.1 Port-to-port voyage definition

A port-to-port voyage refers to the journey of a vessel from the departure port to the
destination port. This definition is commonly used for the analysis of maritime trans-
portation networks, as it simplifies the representation of vessel movements between
ports. The port-to-port definition can be formally described as follows:

Vi j = {(Pi , Pj) : Pi ∈ P, Pj ∈ P, Pi ̸= Pj}, (2.1)



Chapter 2: AIS Dataset 13

where Vi j represents the voyage from port i to port j, P is the set of all ports in
the network of available ports in the dataset, and Pi and Pj are the departure and
destination ports, respectively.

2.3.2 Laden voyage definition

The laden voyage definition concentrates on the movement of cargo, rather than the
movement of the vessel itself. This definition is particularly relevant when assessing
the performance of logistics chains and cargo flows in the context of maritime trans-
portation. A laden voyage is defined as the journey from the point of cargo loading at
the origin port to the point of cargo unloading at the destination port. This definition
can be formally described as:

Ci j = {(Li , Dj) : Li ∈ L, Dj ∈ D, Li ̸= Dj ,D,L ⊂ P}, (2.2)

where Ci j represents the cargo flow on a vessel between loading point Li and un-
loading point L j , L is the set of all cargo loading points, and D is the set of all cargo
unloading points. Note that all unloading ports are a subset of all ports, such that
D ⊂ P

2.3.3 Ballast voyage definition

The ballast voyage definition focuses on the movement of the vessel when it is not
carrying cargo, rather than the movement of the vessel with cargo. A ballast voyage is
defined as the journey from the port of cargo unloading as the origin port, to the port
of cargo loading as the destination port. This definition can be formally described as:
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Bi j = {(Di , L j) : Di ∈ D, L j ∈ L, Di ̸= L j ,D,L ⊂ P}, (2.3)

where Bi j represents the flow of the vessel in ballast condition between unloading
point Di and loading point Dj , D is the set of all cargo unloading points, and L is the
set of all cargo loading points. Note that all loading ports are a subset of all ports.

These two definitions regarding unloading and loading are of most interest, since
many vessels stop at ports for bunkering. An example is displayed in Figure 2.3, where
a vessel is loaded in Port Louis, arrives in Singapore for refueling, bunkering or crew
change, and travels on to Rizhao for unloading of cargo, and then finally travels bal-
last to Port Walcott for a new contract. The laden voyage in this example is between
Port Louis and Rizhao, the ballast voyage between Rizhao and Port Walcott, and the
voyages between each port is a port-to-port voyage. Prediction of the vessels move-
ment between individual ports Vi j , is not always the the most valuable information,
and has been done in previous studies (Yin et al. 2022). AF Code are mostly inter-
ested in modeling the flow of goods, therefore models predicting Pj , Dj and L j , will
be used.

2.4 Data and trajectory creation

As mentioned earlier, we need to create trajectories between ports using the AIS data.
This section details this process, along with illustrations. The raw data received from
AF Code corresponds to one AIS signal, with features such as IMO, coordinates and
timestamp. It also includes information such as the departure port, expected arrival
port (which is not known in a real-time scenario), sub-segment, and other import-
ant features relating to the vessel. This data contains more than a quarter billion
rows, with more parts belonging to the smaller sub-segments. The precise amount is
258,510,150, and the distribution for the various sub-segments is displayed in Table
2.1. Many of these points contain errors or missing values that will be handled by
simply discarding rows, due to the vast data amount available. A sample of 150,000
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Figure 2.3: Trajectory of vessel loaded in Port Louis, bunkering in Singapore, un-
loaded in Rizhao, and loaded again in Port Walcott.
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points is displayed in Figure 2.4, color-coded on sub-segment. This displays only
0.06% of the signals, showing the sheer scale of the data. In this figure one can clearly
also see the common routes of the different sub-segments, that Capesize and VLOC
travel around South Africa, while e.g Supramax tends to stay closer to land and travels
through the Suez Canal. Panamax and Supramax are also more evenly spread out
across the world compared to VLOC and Capesize vessels.

Vessel Type Value
VLOC 8,925,113

Supramax 98,711,76
Panamax 95,005,262
Capesize 55,372,299

Total 258,510,150

Table 2.1: Distribution of AIS signals among dry-bulk sub-segments in the AIS dataset

Figure 2.4: 150.000 subsampled AIS signals from the raw dataframe.
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2.4.1 Trajectory definition

A trajectory is a sequence of spatial-temporal points representing the path taken by
an object, such as a vessel, in a geographical space over time. In the context of mari-
time transportation, a trajectory between two ports can be mathematically defined as
follows:

Let Pi and Pj be two distinct ports, where Pi represents the departure port and Pj
represents the arrival port. The trajectory Ti j of a vessel traveling from port Pi to
port Pj is a continuous function that maps the time interval [t0, t1] to a sequence of
spatial-temporal points:

Ti j(t) = {(x(t), y(t), t)|t ∈ [t0, t1]}, (2.4)

where t0 is the departure time from port Pi , t1 is the arrival time at port Pj , and
(x(t), y(t)) denotes the geographical coordinates (longitude and latitude) of the ves-
sel at time t. The function Ti j(t) captures the spatial-temporal evolution of the vessel’s
position during the voyage between the two ports.

In the supplied data, the trajectory points are sampled regularly, so a discrete rep-
resentation is needed. A discrete representation of the trajectory Ti j can be obtained
by sampling the spatio-temporal points at regular time intervals during the voyage.
These sampled points can be represented as:

T D
i j = {(x(tk), y(tk), tk)|tk = t0, t0 + d t, . . . , t1}, (2.5)

where T D
i j is the discrete representation of the trajectory, and the sampling interval

is determined by discretization parameter d t. From here on, T D
i j will be simplified as

Ti j .
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2.4.2 Trajectory re-sampling

Re-sampling on time

AIS signals are transmitted at high-frequency intervals, often resulting in a large
volume of trajectory data. The provided data has signals provided at every hour. In
order to effectively use this information for predicting the destination of vessels, it
can be helpful to re-sample the trajectory data to reduce noise and computational
complexity. Re-sampling has been done in several similar studies, such as in Omholt-
Jensen (2021), where the re-sampling was done based upon six hour time intervals.

Re-sampling trajectory data has several benefits for AIS-based destination prediction:

1. Noise reduction: High-frequency AIS signals can contain noise due to various
factors such as signal interference, transmission errors, or changes in environ-
mental conditions (Pol,evskis et al. 2012). By re-sampling the data at lower fre-
quencies, the impact of noise on the prediction model can be reduced, leading
to more accurate and reliable predictions.

2. Computational efficiency: The large volume of high-frequency AIS data can
pose significant challenges for the storage and processing of trajectory informa-
tion. Re-sampling the data allows for a more manageable dataset size, reducing
the computational resources required for calculating distances between traject-
ories.

3. Generalization: Re-sampling trajectory data at lower frequencies can help in
capturing the general trends and patterns in vessel movements, making the
prediction model more robust to local variations and outliers in the data. This
generalization can lead to improved performance in predicting destination, dis-
charge or loading ports.

Using the above points, several re-sampling distances were investigated. An example
of re-sampling the data at intervals of six hours is displayed in Figure 2.5. In the figure,
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one can clearly see how the shape of the trajectory remains the same, but much less
cluttered. This re-sampling time was also chosen in this thesis, due to the volume of
the data and the previous approaches gaining effective results with this re-sampling.
This gives a discretization parameter d t = 6 for the trajectories, since the AIS signals
are supplied hourly.
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Figure 2.5: Example voyage traveling from Dakar to New York. The top figure is
for AIS signals sampled every hour, and the bottom figure is the data re-sampled at
intervals of six hours.
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Re-sampling on distance

As vessels move through different areas, their positions can be reported at varying
intervals, leading to an uneven distribution of data points. It is common for vessels
to bunker outside of a port before being able to enter for loading, or discharging
cargo. Re-sampling based upon time can address this somewhat, but can still lead
to an uneven distribution. Another way to address this issue is by re-sampling the
trajectory data based on distance.

Re-sampling based on distance involves combining data points that are closer to each
other than a specified threshold. This process ensures that the trajectory data is uni-
formly distributed across the spatial domain, allowing for more similar trajectories,
since clustered trajectory points would only make the trajectory calculations more
noisy. An example is displayed in Figure 2.6. If a vessel travels less than 10 km during
6 hours, it has a speed of 0.899 knots, which essentially means that the ship is at rest,
therefore 10km is chosen as the threshold for re-sampling the vessel trajectory data.

(a) Original (b) Re-sampled on distance

Figure 2.6: AIS signals from a ship outside Rio de Janeiro: Original and re-sampled
and distance.
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2.4.3 Temporal voyage segmentation

Port-to-port segmentation

When predicting destinations, a key challenge arises from the fact that for new, un-
seen voyages, we do not always know how far they have progressed towards their
destination.To handle this uncertainty and to make the model more robust and ad-
aptive, the trajectories for all voyages are split into four distinct temporal stages based
on the time remaining to arrival at the destination port:

• Stage 1: Voyages with 1 day remaining to destination.
• Stage 2: Voyages with 2 days remaining to destination.
• Stage 3: Voyages with 3 days remaining to destination.
• Stage 4: Voyages with 1 week remaining to destination.

This is done in other similar studies, such as in Zhang et al. (2020) and Omholt-
Jensen (2021). Each stage represents a different phase of the voyage. If the voyage
is shorter than the temporal divide, only the ones that fit are kept. Different patterns
may emerge at different stages of the voyage, which could be beneficial in predicting
the destination. An example of this is displayed in Figure 2.7, a voyage between Port
Walcott in Australia and Zhanjiang in China. The voyage is divided into different
colors, where at the split between purple and green, the voyage has one week left,
between green and blue the voyage has three days left, between blue and red the
voyage has two days left, and between red and gray the voyage has one day left.

In the figure, it becomes clear that predicting the destination using AIS signals would
be more difficult for the vessel at one week away from the arrival port, because of
the large amount of possible destinations still ahead. When there is only one day left,
one can disregard arrival ports in e.g the Philippines or Japan, since that would not
make sense considering the trajectory and current position. Voyages that are closer
than one day in time, so the gray area in the figure, are not included in the dataset,
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Figure 2.7: Voyage between Port Walcott and Zhanjiang, temporally divided.
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since prediction of these is not interesting since they are already so close to their
destination.

For each voyage, we generate a separate sample for each temporal group it belongs
to. For instance, a voyage with an actual duration of 8 days will have a record in each
of the four stages. Each sample contains the state of the voyage as it would be t days
before arrival, where t is the number of days corresponding to the group.

By doing so, we effectively augment our dataset, which allows the machine learning
model to learn the patterns corresponding to different stages of the voyage. The entire
augmented dataset, combining all four groups, is then used to train the multi-class
classifier. In the prediction phase, for a new, unseen voyage, we can use the current
voyage data and the trained classifier to predict the destination, regardless of how far
the vessel has progressed in its journey. This ensures also that there is no data leakage
between stages in the prediction phase.

Laden and ballast time segmentation

The laden voyages can be significantly longer than the port-to-port voyages, since
they can have several port stops during the way. Also, each laden and ballast voyage
start and stop with a significant event. Therefore a different approach, which mimics
a real-world scenario is introduced for laden and ballast voyages, where the temporal
split is based upon days and weeks after departure of the starting port, which is the
load port for laden voyagesm and the unload port for ballast voyages. This split is
done up to 5 weeks:

• Stage 1: Voyages 2 days after leaving the load port.
• Stage 2: Voyages 4 days after leaving the load port.
• Stage 3: Voyages 1 week after leaving the load port.
• Stage 4: Voyages 2 weeks after leaving the load port.
• Stage 5: Voyages 3 weeks after leaving the load port.
• Stage 6: Voyages 4 weeks after leaving the load port.
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• Stage 7: Voyages 5 weeks after leaving the load port.

This provides a more realistic method measure predictability, since this information
is readily available for unseen voyages.

2.4.4 Full trajectory creation process

The entire process of creating trajectories can be described by

1. Select relevant columns: Filter the dataset to retain only the relevant columns
for further analysis.

2. Create trajectories: Use departure port, destination port, and departure time
to create trajectories for each voyage. These trajectories represent the chro-
nological sequence of geographical positions of a vessel during a trip. For the
load-to-unload dataset, loadport and unloadport are used.

3. Re-sample trajectories on a 6-hour basis: Replace data with mean values for
every 6-hour interval. This step ensures uniformity in the time intervals between
data points across all trajectories.

4. Re-sample based on distance: If two consecutive points in a trajectory are
less than a certain threshold (e.g., 10 km) apart, combine these points. This
step aims to remove excessive points in areas where vessels are stationary or
moving within a confined region.

5. Filter out outliers and NaNs: Remove anomalous data points and data points
with missing values (NaNs) to ensure the quality of the dataset.

6. Temporally divide trajectories: Split trajectories based upon time.
7. Filter out low-frequency ports: Exclude voyages that depart from or arrive at

ports with low occurrence frequencies. This step can be achieved by filtering
out all voyages from or to ports with fewer than a certain number of other
departures or arrivals. By doing so, the dataset will focus on more common
ports, thereby increasing the model’s predictive power for more typical cases.
This threshold is set to 20 after inspection of the data set.
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After the full process, the signals displayed in Figure 2.4 are transformed into traject-
ories such as in Figure 2.8.

Figure 2.8: 50.000 subsampled trajectories from the dataset, equally split between
sub-segments.

2.5 Port clustering

In this section, the Haversine formula is introduced, along with a method for reducing
the response search space called port clustering.
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2.5.1 Haversine formula

The Haversine formula is used to calculate the great-circle distance between two
points on the surface of a sphere, given their longitudes and latitudes. It is partic-
ularly useful for calculating distances between geographical coordinates on Earth.
The Haversine distance between two points p1 = (lat1, lon1) and p2 = (lat2, lon2)
can be computed as follows:

dH-sine(p1, p2) = 2R arcsin
Æ

φ(lat2, lat1) + cos(lat1) cos(lat2)φ(lon2, lon1), (2.6)

whereφ(a, b) = sin2( a−b
2 ), R is the Earth’s radius (approximately 6371 km), and lat1,

lon1, lat2, and lon2 are the latitudes and longitudes of the two points in radians. An
illustration between two points on Earth, P and Q, is provided in Figure 2.9.

Approach 4: Using haversines directly

The above approaches have all proven the haversine formula via the familiar sine and cosine

functions. In this approach, we will use equation (3) above for the length of a chord in terms

of the haversine function:

𝐶2 = 4 haversin 𝑑,

where 𝑑 is the great circle distance (or angle subtended) and 𝐶 is the corresponding chord

length.

We wish to find the great-circle distance 𝑑 between the points 𝑃 and 𝑄 with latitudes 𝜙1 and

𝜙2 and longitudes 𝜆1 and 𝜆2 respectively.

By thinking about symmetry, we are prompted to also consider the points 𝑅 and 𝑆 with

latitudes 𝜙1 and 𝜙2 but with swapped longitudes 𝜆2 and 𝜆1 respectively. This gives us the

following configuration:

In this diagram, the blue lines are all straight chords (though an optical illusion makes it look

otherwise), and the red line is the great circle between 𝑃 and 𝑄.

Can you use this diagram to deduce the haversine formula?

• Look online to check your answer



How do these four approaches compare?
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Figure 2.9: The Haversine distance between points P and Q, where the haversine
distance is the red line, and the blue lines are straight chords used in the calculation,
with swapped longitude coordinates.
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2.5.2 Clustering

The world’s shipping network is composed of thousands of ports, making it a large
and complex response space. Even though larger dry-bulk vessels can not travel to all
ports, the response space is still large. Given the vast number of potential destinations
a vessel can have, it significantly complicates the task of predicting the destination
port accurately. Many of these ports can be geographically very close to each other,
leading to a high degree of overlap in their feature spaces. For instance, two ports
in close proximity may have similar types of cargo, similar vessel traffic, and may
serve similar types of dry bulk industries. This overlap makes it difficult to distinguish
between such ports based solely on the available features.

Therefore, ports are clustered based upon their geographical proximity, and the clas-
sification problem will also be tested on this response space. The exact port within the
cluster can then be predicted in a subsequent step, either using additional features
or models that focus specifically on differentiating between ports within the same
cluster, or by expert knowledge. This step is not performed in this thesis.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to
perform the port clustering. DBSCAN (Schubert et al. 2017) is a density-based clus-
tering algorithm which is particularly suitable for tasks where the number of clusters
is not previously known, such as this one, and where the clusters may not be of the
same density.

This algorithm considers clusters as regions in the dataset where the density of ports is
significantly high. The necessary notation for a better understanding of the DBSCAN
methodology is introduced

• P = P1, P2, ..., Pn represents the set of all ports where Pi is the location of the
i-th port given in latitude and longitude coordinates.
• ϵ > 0 denotes the radius of the neighborhoods around a port.
• MinPts ∈ N is the minimum number of ports needed to form a dense region,
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i.e., a cluster.

Given this, we can define the notion of ϵ-neighborhood of a port Pi as:

Nϵ(Pi) = {Pj ∈ P : dH-sine(Pi , Pj)≤ ϵ}, (2.7)

where dH-sine(Pi , Pj) is the haversine distance between port Pi and Pj , as defined in
Equation 2.6.

A port Pi is defined as a:

• Core port if |Nϵ(Pi)| ≥MinPts,
• Border port if |Nϵ(Pi)|<MinPts but ∃Pj : Pi ∈ Nϵ(Pj) and |Nϵ(Pj)| ≥MinPts,
• Noise port otherwise.

Using these definitions, the DBSCAN algorithm can be summarized as follows:

1. For each unvisited port Pi ∈ P, a neighborhood Nϵ(Pi) is retrieved. If it contains
at least MinPts, a new cluster is created, and Pi is marked as a core port.

2. All ports in Nϵ(Pi) are added to the same cluster. If they are core ports as well,
their neighborhoods are also added to the cluster.

3. Repeat the procedure until all ports in the dataset have been visited. The final
output is a set of clusters where each cluster consists of at least MinPts within
the neighborhood of ϵ.

The output of the DBSCAN algorithm is a set of clusters from the ports based on
their geographical proximity, which should be informative in improving the accuracy
of predicting the vessel’s destination. The parameter MinPts is set to 1, to ensure all
ports are considered. The parameter ϵ is more difficult to choose, since it becomes a
question dependent on the user of the model. In Figure 2.10, the amount of clusters
for the Capesize port destinations are displayed as a function of the intra-distance,
measured with the haversine distance, within each cluster, which is the ϵ normalized
to be kilometers.
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Figure 2.10: Number of port clusters for Capesize vessels for each intra-distance value
used in the DBSCAN algorithm.

Based upon this graph, there seemed to be slighly larger drop off at around 110km
and 220km, so the clusters for these distances were plotted on a world map with these
distances. For clusters with only one port, a circle was plotted with full opacity. For
clusters with two ports, a circle with half opacity was plotted, with the periphery of the
circle on each port. For clusters with three or more ports, a polygon was plotted. These
two different distances, for Capesize port-to-port voyages, are displayed in Figure
2.11a and Figure 2.11b, respectively.
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(b) Intra-distance 220 km

Figure 2.11: Clustering of Capesize ports with different intra-distances.

At the first inspection the 220 km clusters seemed to cluster the ports in a well-suited
manner, but after further inspection in some areas, one could see that clusters were
divided across countries, which is not something AF Code and other companies wants,
since calculating the imported goods into a country is of interest. An example of this
is shown in Figure 2.12, east of China, where a cluster collects ports from both Japan
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Figure 2.12: Clustering of Capesize ports with intra-distance 220km, zoomed in on
eastern Asia

and South Korea, and another one between Taiwan and China.

To address these issues, alternative distances were investigated. The analysis showed
that a distance of 170 km effectively fixed the first problem areas, providing a sat-
isfactory balance between interpretability and reduction in the size of the response
space. In Figure 2.13a, we illustrate the same areas at a 170 km distance, showing
the clear differences from the previous figure.

However in the bottom left corner of Figure 2.12 one can see that there is a cluster that
spans across the border of China and Vietnam. The distance between the responsible
ports was calculated to be 129 km, so this was set as the threshold, resulting in the
clusters displayed in Figure 2.13b.



32 Johannes Padel: Vessel prediction

+

−

 Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).(a) Intra-distance 170km+

−

 Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

(b) Intra-distance 129km

Figure 2.13: Clustering of Capesize ports with different intra-distances, zoomed in
on eastern Asia

For the Capesize ports, the number of clusters dropped to 109 when using a 129 km
intra-distance, a substantial decrease from the original response space size of 158.
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This provides an interesting approach by building separate models for prediction of
ports and clusters for the voyages.

The process was repeated, ensuring no ports span across countries, for Panamax and
Supramax ports, and then again for the three laden and ballast datasets. The response
space reductions for all datasets are displayed in Table 2.2, along with the chosen
intra-distance.

Table 2.2: Clustering of ports for port-to-port, laden and ballast voyages

Port-to-Port

Sub-segment Unique Ports Unique Clusters Intra-distance(km)

VLOC 55 26 215
Capesize 158 109 129
Panamax 230 146 120
Supramax 260 185 120

Laden journeys

Sub-segment Unique Ports Unique Clusters Intra-distance

VLOC 49 25 220
Capesize 82 57 120
Panamax 169 97 110
Supramax 189 120 109

Ballast journeys

Sub-segment Unique Ports Unique Clusters Intra-distance

VLOC 52 24 400
Capesize 88 52 350
Panamax 101 72 256
Supramax 132 76 230
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2.6 Exploratory data analysis

To ensure efficient computational run time in the prediction phase, we limit the num-
ber of trajectories used to 50,000 for each sub-segment, as displayed in Figure 2.8.
The laden and ballast datasets are constructed from these, resulting in smaller sub-
datasets. However, the exploratory data analysis is done on the full dataset.

The dataset contains voyages from February 2018 to May 2023. Significant global
events could cause substantial disruption in maritime transportation patterns, and
therefore conceivably impact the accuracy of our predictive models. Such events in-
clude

• The Suez Canal blockage (J. M.-y. Lee and Wong 2021), which led to that some
Panamax and Supramax vessels had to re-route around Africa
• The Russia-Ukraine war, which significantly impacted the one of the largest

grain exporters in Ukraine (Ngoc et al. 2022)
• The COVID-19 pandemic, which in general caused instability in the global mar-

ket by extending port waiting times, but did not in general disrupt the trading
routes (Michail and Melas 2020)
• The Brumadinho Dam Disaster, close to the Córrego do Feijão iron ore mine,

which disrupted the Iron ore trade out of Brazil, which led to an increase in
exports from smaller export countries such as India, Canada and Peru. The stock
price of Vale SA, the shipping company previously mentioned that holds the
Valemax fleet, plummeted and 19 billion dollars in market value were lost (Laier
2019).

However, considering the broad timeframe of the dataset (from February 2018 to May
2023), the overall impact of these specific incidents may be less important than first
thought. This is because the models takes into account a diverse range of voyages over
an extended period, thus smoothing out short-term anomalies and focusing more on
enduring patterns. It is also worth noting that the global shipping industry is resilient
and tends to adapt to such disruptions over time (Chua et al. 2022). However, these
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events underscore the need for models to be adaptable and responsive to the ever-
changing dynamics of global shipping.

In the dataset, the average travel distance of a port-to-port voyage is 1878 km, and the
average travel duration is 145 hours. The dataset provides several expected patterns
about the port visitation in the global maritime industry, as illustrated in Figure 2.14.
Here one can see a clear imbalance in visitation and also the sheer scale of the amounts
of ports. Note that the maximum count of the largest loadport is larger than the largest
departure port count, since the first leg of some laden voyages may not be present in
the dataset due to data cleaning.

According to the distributions of voyage origins and destinations in Figure 2.15, Singa-
pore (SGP), China (CHN), and Australia (AUS) dominate as the main nodes in the
shipping network across different vessel sub-segments. We note a significant concen-
tration of traffic in Eastern Asia, which is consistent with the region’s dominant role
in the dry bulk industry. Countries in this region, such as China, Japan, and South
Korea, are known for their substantial involvement in global trade, whether through
exporting manufactured goods or importing raw materials (Jin et al. 2006). Singa-
pore is particularly significant as a voyage starting point, especially for the VLOC sub-
segment, where more than 11,900 voyages start from Singapore. Australia, primarily
via Port Hedland, is also a prevalent departure point, again especially for VLOC sub-
segment. China, on the other hand, tends to be a popular destination. For the VLOC
sub-segment, over 20,276 voyages ended in China. For the other sub-segments, the
spread of departure ports is more even, which aligns with the belief that VLOC vessels
tend to stick to larger ports. This is seen in Table 2.2, where VLOC has a maximum of
55 unique ports, while the other sub-segments have many more.

The data also reveals that the busiest ports generally align with the most active coun-
tries. However, there are exceptions. For instance, while Brazil (BRA) ranks among
the top three countries for VLOC voyage origins, its ports do not appear in the top
15 departure ports for this sub-segments. This discrepancy might be due to the fact
that voyages from Brazil might be distributed among several ports, with none indi-
vidually breaking into the top 15. Furthermore, the distribution of voyages between
vessel types provides valuable insights. Singapore, for example, appears as a major
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Figure 2.14: Distribution of destination and departure ports and countries, and load
and unloading ports, in the dataset.
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Figure 2.15: Top 15 distribution of arrival and departure ports and countries in the
dataset.
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hub across all vessel types, underlining its status as a global maritime center. These
observations provide a snapshot of global shipping patterns and highlight the critical
role of certain countries and ports.

Figure 2.16 displays the distribution of arrival and departure ports plotted on a word
map, where one can see the clear clustering of ports up in Eastern Asia. Figure 2.17
shows the top 100 for the same distributions, showing more clearly where most of
the traffic is. Notably, the density of traffic in Europe and on the east coast of the
United States is significantly lower compared to Asia. This disparity underscores the
dominant role of Asian ports in global maritime trade and transportation.

Figure 2.16: Latitude and longitude distribution of ports in the dataset.

Figure 2.17: Latitude and longitude distribution of top 100 departure and destination
ports in the dataset.
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This is imbalance can also clearly be seen if one displays the count of destination ports
within each country on a heatmap on the world. The scale is logarithmic, showing
clearly that China and Singapore(combined with Malaysia to easier display it) are the
two main hubs, and that Australia and Brazil are also quite frequent. The map also
shows the variation in Europe, where for instance Sweden has very few vessel arrivals
compared to Norway, which makes sense considering that even though Sweden has
significant iron ore mining in Kiruna, most of the iron ore is shipped out of Narvik,
Norway (Carlson 1953).
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Figure 2.18: Heatmap of the distribution of destination ports, grouped by country.
The scale is logarithmic to capture the nuances more easily. Note that Singapore and
Malaysia are combined into one.

Figure 2.19 displays the distribution of the temporal segmentation of the voyages,
along with the distribution of the sub-segments. There are fewer and fewer voyages
for each day before arrival, indicating that there are more short voyages than long.

To illustrate how the laden voyages operate between countries, a sankey diagram
is displayed in Figure 2.20. It shows the flow of trade between countries, with a
threshold of at least 100 voyages between two countries. Here one can see that the
majority of laden voyages go from Australia and China, and also that Brazil and South
Africa(ZAF) are important factors.
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Figure 2.19: Distribution of voyages for days before arrival.

Figure 2.20: Flow of the laden voyages, on a threshold of at least 100 voyages
between two countries.
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Methodology

3.1 Multiclass classification problem notation

In this section, we introduce the notation for the multiclass classification problem,
where the goal is to predict vessel destinations and discharge destinations using a set
of features. The problem can be described using the following notation

• Let X ∈ Rn×p be the feature matrix, where n represents the number of obser-
vations (vessel voyages) and p denotes the number of features. Each row xi
of the matrix corresponds to a feature vector for the i-th vessel voyage, with
i = 1, 2, . . . , n. For each port-to-port dataset,n = 50000, and for laden and bal-
last, n< 50000.
• Let y ∈ Yn be the response vector, where Y = {1,2, . . . , K} denotes the set of

possible destination classes, and K represents the total number of classes for
the particular sub-segment. The element yi of the vector corresponds to the
true destination class for the i-th vessel voyage.
• Let ŷ ∈ Yn be the predicted response vector, where ŷi corresponds to the pre-

41
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dicted destination class for the i-th vessel voyage.

The objective of the multiclass classification problem is to learn a function f : Rp→ Y
that maps the feature vector xi to the corresponding destination class yi for each
vessel, minimizing the classification error, a suitable loss function or other relevant
metrics.

In the simplest case, let xi denote the departure port for the i-th vessel voyage. For
each departure port, we could use the count from that port to each possible destination
y ∈ Y as a predictor, where one selects the prediction as the destination with the
highest count.

Another possible approach to the multiclass classification problem would be to use
logistic regression. In this case, we learn a function f : Rp → Y that maps a feature
vector xi to the corresponding destination class yi . This feature vector could include
both quantitative features (like the counts described above) and qualitative features
(like the vessel type or the departure port).

The multiclass logistic model can be represented as:

log
�

P(Y = k|x)
P(Y = K |x)

�

= β0k +β
T
k x, (3.1)

for k = 1, 2, . . . , K − 1 and x ∈ Rp, where P(Y = k|x) is the probability of the k-th
destination given the feature vector x, β0k is the intercept for the k-th class, and β k
is the vector of coefficients for the k-th class.
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3.2 Trajectory-based features

When predicting destinations, the trajectory of a voyage represents information that
can be very important for increasing the accuracy of a prediction. The trajectory of a
vessel, which is essentially the path it follows over time, is determined by a combina-
tion of factors including the vessel’s starting point, its destination, and the conditions
it encounters during the voyage. As such, extracting features from these trajectories
can significantly enhance the predictive power of our model.

3.2.1 Hausdorff distance with Haversine formula for trajectory compar-
ison

The Hausdorff distance is a measure used to quantify the similarity between two sets
of points. In the context of this thesis and maritime transportation, the Hausdorff
distance can be used to compare two trajectories originating from the same departure
port but terminating at different arrival ports. To account for the Earth’s spherical
geometry, we will use the Haversine distance as the underlying metric.

Given two trajectories, Ti1 and Ti2, originating from the same departure port Pi , but
terminating at different arrival ports P1 and P2, the directed Hausdorff distance from
trajectory Ti1 to trajectory Ti2 is defined as:

dHdir(Ti1, Ti2) = max
p∈Ti1

min
q∈Ti2

dH-sine(p, q). (3.2)

Here, Ti1 and Ti2 represent the trajectories originating from port Pi and terminating
at ports P1 and P2, respectively.

The directed Hausdorff distance measures the maximum distance from a point p on
Ti1 to its closest point q on Ti2, and it is calculated using the directed Hausdorff sine
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distance, dH-sine(p, q). An illustration is displayed in Figure 3.1.

Figure 3.1: The directed Hausdorff Distance between trajectories Ti1 and Ti2. The
distance function can be manually selected, but due to the nature of this thesis, the
Haversine distance is chosen.

Similarly, the directed Hausdorff distance from trajectory Ti2 to trajectory Ti1 is:

dHdir(Ti2, Ti1) = max
p∈Ti2

min
q∈Ti1

dH-sine(p, q). (3.3)

Finally, the Hausdorff distance between the two trajectories, Ti1 and Ti2, is the max-
imum of the directed Hausdorff distances:

dH(Ti1, Ti2) =max dHdir(Ti1, Ti2), dHdir(Ti2, Ti1). (3.4)

By calculating the Hausdorff distance with the Haversine metric, we can compare
two trajectories with the same departure port but different arrival ports, taking into
account the curvature of the Earth. An illustration is displayed in Figure 3.2
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Figure 3.2: The directed Hausdorff Distance between two trajectories.

There exists a python library (Taha and Hanbury 2015), which implements the Haus-
dorff distance between coordinates in a fast way.

3.2.2 Symmetrized Segment-Path Distance with Haversine formula for
trajectory comparison

In this section, another distance metric called Symmetrized Segment-Path Distance
(SSPD) is introduced (Besse et al. 2016). This distance has been used in previous
similar works (Omholt-Jensen 2021). SSPD is proposed as a shape-based distance
that takes into account the whole trajectories and is less affected by noise than other
distance measures.

The distance DpT from a point p to a trajectory T is the minimum of distances between
this point and all points q that compose T , similar to the above

DpT (p, T ) =min
q∈T

dH-sine(p, q). (3.5)
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The Segment-Path distance(SPD) from trajectory Ti1 to trajectory Ti2 is the mean of
all distances from points composing Ti1 to the trajectory Ti2. Thus, the SPD distance
between two trajectories Ti1 and T j2, is defined as

DSPD(Ti1, Ti2) =
1
n1

n1
∑

k1=1

DpT (p
1
k1

, Ti2), (3.6)

where n1 is the amount of points in Ti1.

The distance in Equation 3.6 is not symmetric. If Ti1 is a very small sub-trajectory of
Ti2, then DSPD(Ti1, Ti2) = 0, but then DSPD(Ti2, Ti1) can be very large. By taking the
mean of these distances, the "Symmetrized Segment-Path Distance", SSPD, is defined
and is symmetric.

DSSPD(Ti1, Ti2) =
DSPD(Ti1, Ti2) + DSPD(Ti2, Ti1)

2
. (3.7)

An illustration of the SSPD distance between two trajectories between respectively
Cape Town and Montevideo and Cape Town and Rio De Janeiro, can be seen in Figure
3.3.

Note that if one instead uses the maximum instead of the mean, this becomes the
Hausdorff function described above. Since SSPD considers the mean, the distance
becomes less sensitive to noise in the trajectory data. For both distance calculations,
is is assumed that the departure port i is the same for both trajectories, however this
is not necessary for the calculations, but is used since this thesis will only compare
trajectories departing from the same port.
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Figure 3.3: SSPD distance between two realistic trajectories. The calculated distance
is the mean.

3.2.3 Most likely trajectory destination calculation

The Hausdorff distance and SSPD distance with the Haversine formula can be used
as a feature in machine learning models for destination prediction, as well as serve
as an initial spatial prediction. By comparing the current trajectory of a vessel with
historical trajectories, we can extract valuable information on the vessel’s most likely
destination. This method is inspired by Omholt-Jensen (2021). The process can be
described as follows:

1. Choose a randomly sampled subset of voyages departing from the same port as
historical trajectories.

2. Compute the chosen similarity measure with the Haversine formula between
the current trajectory and each selected historical trajectory.

3. Select the most similar historical trajectory:

a. Look at the φ most similar trajectories using SSPD or Hausdorff. The most
similar is the trajectory with the lowest similarity measure value.

b. Select the majority vote as the most likely trajectory destination
c. Calculate the mean distance, from the similarity measure distances, to
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each likely trajectory, a maximum of φ distances.

4. Use the destination port of the selected trajectory as the candidate destination,
the Most Likely Trajectory Destination(MLTD).

An example of this is displayed in Figure 3.4, where a vessel, in orange, travels from
Gladstone to an unknown location. The trajectory is compared to the other trajector-
ies, and the three most similar are displayed in blue. The MLTD of this voyage would
then be the mode of the destinations of these trajectories.

15/05/2023, 09:49 baltimore_folium.html

file:///C:/Users/JOHANN~2/AppData/Local/Temp/168413692283621/baltimore_folium.html 1/1

+

−

 Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

Gladstone

Figure 3.4: A selected voyage in orange, traveling from Gladstone. The three(thesis
uses 10 as value for robustness) most similar trajectories in blue, and the MLTD is
selected as the most likely destination of the destinations of the most similar traject-
ories.



Chapter 3: Methodology 49

3.3 Machine learning datasets

The full pre-processing of the trajectories for port-to-port prediction is displayed in
Figure 3.5. The arrows indicate the flow of the process, where each box corresponds
to a different step in the process, numbered for clarity.

1. Select relevant features 2. Create trajectories

3. Re-sample trajectories
on a 6-hour basis

4. Re-sample based on distance

5. Filter out outliers and NaNs 6. Remove low-frequency ports

7. Calculate MLTD and similarity distance

Figure 3.5: Flowchart of the process for creating the machine learning dataset

While AIS provides key trajectory-based features, such as the MLTD and coordinate
features, its exclusive use for predicting destination ports is limiting. The trajectory-
based features do not account for the frequency of travels between ports, information
regarding the vessel such as owner, flagcode, name of departure port and other similar
attributes. Certain destinations may be more common for vessels departing from Port
Hedland than from Port Walcott, so in order for a statistical model to take account
of these factors, they need to be included as features. AF Code has data for each
unique IMO, summarized in the static list below. The importance of these features for
the model is hard to quantify before training, but can be assessed through feature
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importance methods. All available features are detailed below, categorized into static
and trajectory-based features:

3.3.1 Static features

Static features are properties of a vessel that remain constant during its journey. These
attributes provide insights into the physical characteristics of the vessel and adminis-
trative information, which could influence potential destinations. For instance, larger
vessels may be limited to ports that can accommodate their size, and vessels built
in certain countries may have increased likelihood of traveling to specific countries
due to trade agreements or economic relationships. According to AF Code, charterer
could also have been an important feature, but this information is kept secret. The
static features include:

• fromporta: The origin port of the vessel, with country available as well
• loadport: The loading port of the vessel, with country available as well
• alat, alon: Latitude and longitude of the vessel’s origin port
• breadth, length: The dimensions of the vessel
• deadweight: The maximum weight that the vessel can safely carry
• depth: The vessel’s depth, which is the vertical distance between the waterline

and the bottom of the hull (keel)
• flagcode: The flag code the vessel is flying under
• shipmanager, registeredowner, groupbeneficialowner: These represent the

ship manager, the registered owner of the vessel, and the group that benefits
from the ownership of the vessel, respectively
• shipbuilder: The company that built the vessel
• countryofbuild: The country where the vessel was built
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3.3.2 Trajectory-based features

Trajectory-based features vary during a vessel’s journey. These include the vessel’s
current location, total distance traveled, compass direction, and other attributes re-
lated to the Most Likely Trajectory Distance (MLTD). These attributes can provide in-
formation about the vessel’s current trip, location, and direction, which can be highly
predictive of its destination. The trajectory-based features include:

• MLTD: These represent ports based on Most Likely Trajectory Distance (MLTD).
The exact categories these represent will depend on how the MLTD was split
into groups
• end lat, end lon: The final latitude and longitude of the vessel’s given trajectory
• travel distance: The total distance travelled by the vessel so far
• direction: The vessel’s compass direction
• similarity distance: The distance calculated between the trajectory of the vessel

and the mean of the MLTD trajectories
• MLTD lat, MLTD lon: The latitude and longitude corresponding to the vessel’s

MLTD

The available target variables for port-to-port voyages are:

• toportb: The destination port of the vessel
• cluster: The cluster belonging to the destination port of the vessel
• tocountry: The country of the destination port of the vessel

For laden and ballast, the target becomes ’next_unloadport’ and ’next_loadport’, re-
spectively. All categorical features are encoded using label encoding, explained in the
next section.
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3.4 Encoding of categorical features

Since the target variable in the prediction will be categorical, along with several other
categorical features, these will need to be handled, with the two main possibilities be-
ing one-hot encoding or label encoding. Other encoding methods also exist, however
exploration of these did not increase the results of this work in a significant manner.

3.4.1 One-Hot encoding

One-hot encoding(OHE) is a technique that transforms a categorical feature with K
distinct classes into K binary features, each representing one class. Each new binary
feature takes the value 1 if the original feature’s value corresponds to the respective
class, and 0 otherwise. This method results in a sparse representation, where each
instance has a single 1 and the remaining values are 0s. There are however a few
potential issues with OHE:

• High-dimensionality: When dealing with categorical features with a large num-
ber of classes, one-hot encoding can significantly increase the dimensionality
of the dataset, leading to increased memory requirements and longer training
times.
• Inefficiency: The sparse nature of one-hot encoding can result in inefficient use

of memory and computational resources during model training, as most of the
values are 0.

In summary, when we apply one-hot encoding to a categorical variable, it can in-
troduce sparsity into the dataset, which is generally considered undesirable. From
the perspective of the splitting algorithm in a tree ensemble method, which will be
used later, each dummy variable created from the one-hot encoding is treated as an
independent feature. If the decision tree algorithm decides to split on one of these
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dummy variables, the resulting gain in purity or information gain is typically min-
imal. Consequently, the decision tree is unlikely to select any of the dummy variables
as important features near the root of the tree. This behavior stems from the fact that
the dummy variables have a sparse representation and do not contribute significantly
to the overall decision-making process.

3.4.2 Label encoding

Label encoding is a technique that assigns an integer value to each distinct class in a
categorical feature. The values typically range from 0 to K−1, where K is the number
of classes. Unlike one-hot encoding, label encoding results in a dense representation,
with a single numerical value representing each instance of the original feature.

Label encoding introduces an arbitrary ordinal relationship between the classes, which
may not reflect the true relationship between them. This can cause issues with some
models that assume a meaningful ordering of the input features. However, due to the
issues with one-hot encoding, label encoding is used for the categorical features in
this thesis.

3.5 Machine learning models

3.5.1 Tree classification

Tree-based classifiers are a type of machine learning model that use decision trees to
make predictions about the target variable (Quinlan 1996). Decision trees are a series
of nodes that represent a decision based on a feature of the data, with each node hav-
ing two or more branches that lead to other nodes or leaf nodes. Leaf nodes represent
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a prediction of the target variable. An example of a tree for a binary classification
problem of predicting between Shanghai and Yosu as destination ports is illustrated
in Figure 3.6, together with a mock feature vector X , e.g being SSPD distance and
deadweight of a ship.

gini = 0.0
samples = 1
value = [0, 1]
class = Yosu

gini = 0.0
samples = 1
value = [1, 0]

class = Shanghai

gini = 0.0
samples = 2
value = [2, 0]

class = Shanghai

X[0] <= 0.583
gini = 0.5

samples = 2
value = [1, 1]

class = Shanghai

gini = 0.0
samples = 1
value = [1, 0]

class = Shanghai

gini = 0.0
samples = 6
value = [0, 6]
class = Yosu

gini = 0.0
samples = 3
value = [0, 3]
class = Yosu

X[0] <= 0.543
gini = 0.375
samples = 4
value = [3, 1]

class = Shanghai

gini = 0.0
samples = 15
value = [0, 15]

class = Yosu

X[0] <= 1.275
gini = 0.245
samples = 7
value = [1, 6]
class = Yosu

X[1] <= -1.204
gini = 0.49

samples = 7
value = [3, 4]
class = Yosu

X[0] <= 1.22
gini = 0.087

samples = 22
value = [1, 21]

class = Yosu

gini = 0.0
samples = 21
value = [21, 0]

class = Shanghai

X[0] <= 0.605
gini = 0.238

samples = 29
value = [4, 25]

class = Yosu

X[0] <= -0.122
gini = 0.5

samples = 50
value = [25, 25]
class = Shanghai

Figure 3.6: Example of a binary classification problem of predicting ports Shanghai
or Yosu using a decision tree, where X[0] and X[1] are mock features.

Gini impurity is a measure utilized by tree-based algorithms to decide the most suit-
able feature to split at each node. It quantifies the impurity or the degree of uncer-
tainty at a node. The Gini impurity is calculated as:
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Gini(pt) = 1−
∑

(pt i)
2, (3.8)

where pt refers to the probability distribution of the classes at a given node in the
decision tree, and pt i denotes the probability of an element being classified as class
i. The Gini impurity ranges between 0 and 1, where 0 indicates that all samples at
a node belong to a single class, signifying no uncertainty or impurity. Conversely, a
Gini impurity of 1 indicates that the elements are randomly distributed across various
classes, signifying maximum impurity or uncertainty.

In decision trees, at each node, the algorithm selects the feature that reduces the Gini
impurity the most, thus decreasing uncertainty about the target variable. This pro-
cess continues recursively until the tree reaches a maximum depth or other stopping
criteria are met.

Once the decision tree is built, new data can be classified by traversing the tree from
the root node to a leaf node based on the values of the input features. The prediction
is then the class label associated with the leaf node.

3.5.2 One-vs-Rest classification

One-vs-rest (OvR), also known as one-vs-all, is a heuristic method used for multiclass
classification problems (Rifkin and Klautau 2004). The fundamental idea of OvR is
to decompose the multiclass classification problem into multiple binary classification
problems. Each binary classification problem is solved independently, and the final
class prediction is made based on the outputs of all binary classifiers.

Given a multiclass classification problem with K classes, in the OvR approach, we
construct K different binary classifiers, each responsible for distinguishing one class
from all the remaining classes. In the context of predicting vessel destinations and
discharge destinations, this implies that for each destination port k ∈ Y, we train a
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binary classifier fk that classifies each voyage as either going to destination k or not.

Formally, let fk : Rp → {0, 1} be the binary classifier for class k, trained to predict
whether a voyage goes to destination k or not. The classifier fk is trained on a mod-
ified version of the original dataset, where the voyages going to destination k are
considered as positive instances and all other voyages are considered as negative in-
stances. In terms of the response vector, we create a modified response vector y (k)

where y(k)i = 1 if yi = k and y(k)i = 0 otherwise. Then we train fk to predict y (k)

based on X:

fk(xi) =

¨

1, if yi = k,

0, otherwise.
(3.9)

In the prediction phase, each binary classifier gives a prediction for a new observation
x. The observation is then assigned to the class with the highest predicted probability.
Mathematically, the final prediction ŷ for a new observation x is given by

ŷ = arg max
k∈Y

fk(x). (3.10)

In this thesis, we employ Extreme gradient boosting as the base estimator for each
binary classifier, which is explained in the next section.b

3.5.3 Extreme gradient boosting

Extreme Gradient Boosting, or XGBoost, is a scalable and efficient implementation of
the gradient boosting framework, which can be used for both regression and classific-
ation problems (T. Chen and Guestrin 2016). This method is particularly suitable for
our problem due to its ability to to model non-linear relationships, given the complex
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interplay of factors influencing the decision-making process for vessel destination.
The robustness of XGBoost to outliers also stands to be advantageous, considering
the unpredictable nature of the shipping industry often leads to data anomalies.

XGBoost uses an additive strategy; it builds an ensemble of weak learners, typically
decision trees, to create a robust model. In each iteration, a new decision tree is added
to the model that minimizes the objective function.

The objective function in XGBoost consists of a loss function and a regularization term.
The loss function measures how well the model fits the data, and the regularization
term controls the complexity of the model to prevent overfitting.

Given a feature matrix X ∈ Rn×p and a response vector y ∈ Yn whereY = {1,2, . . . , K},
XGBoost constructs an ensemble of T decision trees. XGBoost then employs the soft-
max objective function, which is a generalized logistic loss function for multiple classes.
Each tree ft outputs a K-dimensional probability vector, where each element corres-
ponds to a score for one class. The final class prediction is then obtained by applying
the softmax function to these scores:

ŷi = argmaxk





exp
�

∑T
t=1 ft,k(xi)
�

∑K
k′=1 exp
�

∑T
t=1 ft,k′(xi)
�



 ,

where ft,k denotes the score given by tree t for class k. XGBoost learns the trees in a
sequential manner. For each tree, it tries to minimize a regularized objective function,
involving the log loss function.

The log loss function involves the predicted probabilities, rather than the final class
predictions. While ŷ represents the predicted response vector where ŷi corresponds to
the predicted destination class for the i-th vessel voyage, we should clarify that within
the context of the log loss, we use p̂i,k, which represents the predicted probability that
observation i belongs to class k. This is a component of the predicted probabilities that
inform ŷ . Thus, the multiclass log loss function is given by:
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l(y , ŷ) = −
n
∑

i=1

K
∑

k=1

1(yi = k) log(p̂i,k), (3.11)

where:

• 1(yi = k) is an indicator function that equals 1 if the true class of observation i
is k, and 0 otherwise.
• p̂i,k is the predicted probability that the i-th vessel voyage goes to the k-th des-

tination port.

The regularization term Ω used by XGBoost is defined as:

Ω( f ) = γT l +
1
2
λ||w||2, (3.12)

where f represents a specific tree model in the boosting process, T l is the number of
leaves in the tree, w is the vector of scores on the leaves, and γ and λ are hyperpara-
meters that control the complexity of the model.

The overall objective function is given by:

Ob j(Θ) = L(y , ŷ) +Ω( f ), (3.13)

where Θ represents the parameters of the model, such as the amount of boosting
rounds and the maximum depth of the trees.

In each iteration, XGBoost adds a new tree that minimizes this objective function. This
is achieved by a second-order Taylor expansion of the loss function, which enables the
algorithm to capture more complex relationships in the data. The prediction of the
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model is updated iteratively as follows:

ŷ(t)i = ŷ(t−1)
i +η · ft(xi), (3.14)

where ŷ(t)i is the prediction of the i-th instance at the t-th iteration, ft(xi) is the
prediction of the t-th tree, and η is the learning rate, which often needs to be tuned.

The final prediction for the i-th instance is then the class with the highest probability:

ŷi = argmax
k∈Y

p(yi = k|xi). (3.15)

XGBoost has a number of hyperparameters that control the size and complexity of the
ensemble, including the learning rate, maximum depth of the trees, number of trees,
and regularization parameters. The optimal values of these hyperparameters need to
be determined through a process of hyperparameter tuning, which will be discussed
in the next section.

3.5.4 Hyperparameter optimization

In the optimization process of tuning the hyperparameters of an XGBoost model, the
Tree-structured Parzen Estimator (TPE) algorithm provided by the Hyperopt library
can be used. TPE is a Bayesian optimization algorithm that is particularly effective
in optimizing complex, high-dimensional functions with relatively few function eval-
uations (Bergstra et al. 2011). The heart of the TPE algorithm lies in the construc-
tion and adaptation of two conditional probability density functions (PDFs), l(θ ) and
g(θ ), which correspond to the likelihood of a hyperparameter configuration θ given
the prior evaluation results ψ.
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An important concept here is the introduction of a quantile threshold, denoted ψ̂.
This threshold is employed to discern between ’good’ and ’bad’ configurations of the
hyperparameters. If a particular configuration results in performance ψ that is better
than ψ̂, it is considered ’good’, and is captured by the PDF l(θ ) = p(θ | ψ < ψ̂). In
contrast, configurations that yield performanceψ that is equal to or worse than ψ̂ are
considered ’bad’, and are represented by the PDF g(θ ) = p(θ |ψ≥ ψ̂).

In the optimization step, the TPE algorithm seeks to maximize the Expected Improve-
ment (EI) criterion, which is the expectation of improvement over the current best
solution, with respect to the hyperparameter configuration θ . The EI criterion in the
TPE algorithm is somewhat complex, as it depends on the increase in the ratio l(θ )

g(θ ) .

Given a current best solution θ ∗ (which maximizes the ratio l(θ )
g(θ ) among all evalu-

ations so far), the EI(θ) at a new point θ is derived from the following:

EIψ∗(θ )∝
�

γ+
g(θ )
l(θ )

(1− γ)
�−1

, (3.16)

where γ = p(ψ < ψ∗). This expression shows that to maximize improvement, we
would like points θ with high probability under l(θ ) and low probability under g(θ ).

In practice, the TPE algorithm does not explicitly calculate EIψ∗(θ ). Instead, it selects

the next point θ to evaluate by maximizing the ratio l(θ )
g(θ ) . The EIψ∗(θ ) criterion is

implicit in this selection process, as the point θ that maximizes the ratio is also ex-
pected to provide the greatest improvement. Thus, the hyperparameter configuration
θ that yields the highest ratio is chosen for the next evaluation, θ ∗ = arg maxθ

l(θ )
g(θ ) .

As new evaluations are made, the models l(θ ) and g(θ ) are updated, hence incorpor-
ating the most recent information to guide the next selection. The process continues
until a predetermined stopping criterion is met, such as when a maximum number of
function evaluations is reached or the performance improvement between iterations
falls below a defined minimum.
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By this means, the TPE algorithm leverages the principles of Bayesian inference and
statistical modelling to balance the trade-off between exploration and exploitation in
the hyperparameter space, while mitigating computational expense.

3.5.5 Cross-validation

Cross-validation is a resampling procedure used to evaluate machine learning models
on a limited data sample (Stone 1978). The procedure has a single parameter called
g that refers to the number of groups that a given data sample is to be split into. As
such, the procedure is called g-fold cross-validation. Here are the steps involved in
g-fold cross-validation:

1. Shuffle the dataset randomly.
2. Split the dataset into g groups or folds.
3. For each unique group:

• Take the group as a hold out or test data set.
• Take the remaining groups as a training data set.
• Fit a model on the training set and evaluate it on the test set.
• Retain the evaluation score and discard the model.

4. The result of g-fold cross-validation is often given as the mean of the model
skill scores.

Here is a basic figure representing 5-fold cross-validation:



62 Johannes Padel: Vessel prediction

Test Train Train Train Train

Train Test Train Train Train

Train Train Test Train Train

Train Train Train Test Train

Train Train Train Train Test

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Here, the data set is split into 5 folds. In each iteration, one fold is used for testing
and the remaining folds are used for training. This process is repeated until each fold
has been used as the test set once. The splitting in this thesis is done using a stratified
train-test split. This is a technique for partitioning data that is especially useful when
dealing with imbalanced datasets. The stratification process ensures that each subset
of the data is representative of all strata of the data. In this context, a stratum refers
to a category or class in the target variable.

In other words, stratified train-test split ensures that each class (or stratum) is propor-
tionally represented in both the training and test sets. For instance, consider a binary
classification problem where the target variable is imbalanced: 80% of instances be-
long to class 0, and only 20% belong to class 1. A random train-test split might create
a training set with few instances of the minority class (class 1), causing the machine
learning model to be biased towards predicting the majority class (class 0).

However, if a stratified train-test split is used, it maintains the original 80%-20% dis-
tribution of classes in both the training set and the test set. This leads to a more repres-
entative subset of data for both training and evaluating the model, and is particularly
important for this problem due to the large imbalance in arrival port distribution.
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Stratified g-Fold cross-validation

In classification problems, particularly those with severe class imbalance such as this
one, preserving the original class distribution in each training and test set is critical.
A commonly used method that adheres to this principle is Stratified g-Fold Cross-
Validation. Stratified g-Fold Cross-Validation is a variant of traditional g-Fold Cross-
Validation, as explained in the methodology, that stratifies the data, ensuring that each
fold is a good representative of the overall class distribution of the data.

However, a single run of Stratified g-Fold Cross-Validation might yield a noisy estimate
of the model’s performance. This noise is attributable to the variability in the data
splits, where different partitions can lead to substantially different results. To alleviate
this issue, we introduce Repeated Stratified g-Fold Cross-Validation.

In Repeated Stratified g-Fold Cross-Validation, the Cross-Validation procedure is re-
peated multiple times, with different random splits into K folds each time. The per-
formance measure reported by this method is then an average of the values computed
in the loop. This average is expected to be a more robust and accurate estimate of the
model’s performance.

PerformanceRepeatedStratifiedgFold =
1
N

N
∑

i=1

PerformanceStratifiedgFold,i , (3.17)

where N is the number of repeats, and PerformanceStratifiedgFold,i is the performance
measure of the i-th Stratified g-Fold Cross-Validation run.

The major advantage of Repeated Stratified g-Fold Cross-Validation is that it provides
a more reliable estimate of model performance. However, this comes at the cost of
computational efficiency, as we need to fit and evaluate many more models. Specific-
ally, if we use R repeats of g-fold cross-validation, we would need to fit and evaluate
R × g models. This cost can be mitigated if the computations are distributed across
multiple cores or machines, speeding up the process significantly, which can be done
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for bagging algorithms with great success.

3.6 Evaluation metrics

In this section, we will discuss the top-κ accuracy metrics, Port frequency-based de-
cision strategy(PFD), the average prediction distance error (APDE), median predic-
tion distance error (MPDE), and the Multiclass Brier score as evaluation measures.

3.6.1 Top-κ Accuracy

In multiclass classification problems, each class is assigned a probability, where the
class with the highest probability is normally selected as the prediction. Denote the
estimated probability matrix as Q ∈ [0,1]n×K , where each row q i represents the prob-
ability distribution over the K classes for the i-th vessel voyage. Each element qi j rep-
resents the predicted probability that the i-th vessel voyage destination belongs to the
j-th class.

Top-κ accuracy is a generalization of this traditional accuracy metric. Instead of con-
sidering only the top 1 prediction, it takes into account the top-κ predictions, the
classes with top-κ probabilities, made by the model. The top-κ accuracy measures
the proportion of instances for which the correct class label appears in the top-κ pre-
dictions.

Let Z be the total number of predictions, κ be the number of predictions to consider,
yi be the true class label for the i-th instance, and ŷi, j be the j-th predicted class label
for the i-th instance. Then, the top-κ accuracy (Accκ) can be defined as:
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Accκ =
1
Z

Z
∑

i=1

I
�

yi ∈
�

ŷi,1, ŷi,2, . . . , ŷi,κ

	�

where I
�

yi ∈
�

ŷi,1, ŷi,2, . . . , ŷi,k

	�

is an indicator function that evaluates to 1 if the
true label yi is among the top-κ predictions and 0 otherwise. Note that by setting
κ= 1 one recovers the global accuracy.

3.6.2 Port frequency-based decision strategy

In multiclass classification problems, it is often important to consider the impact of dif-
ferent factors on the decision-making process of the maximum probability. One such
factor is the frequency of departure ports. The Port Frequency-based Decision(PFD)
strategy aims to incorporate the departure port frequencies into the classification
model to make more informed decisions (Zhang et al. 2020). This is also a method to
mitigate eventual overfitting, since the strategy is a means of reducing bias towards
certain ports that may be over-represented in the data. To use this strategy, the final
decision making is not based solely on the highest probability in the probability vector
obtained from the classifier, but a port frequency-based normalized probability vector.

We compute the frequency vector f= ( f1, f2, ..., fK), where each element f j represents
the frequency of departures for the j-th class.

Now, we perform the port frequency-based normalization process which adjusts the
probability matrix Q based on the departure frequencies. This can be expressed as:

q′i j =
qi j

f j
, (3.18)
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for i = 1,2, ..., n and j = 1, 2, ..., K . This operation normalizes each probability by its
respective class frequency.

The resulting matrix Q′ does not necessarily maintain the row-wise sum equals to
1 anymore. To get a valid probability distribution, a further normalization step is
necessary:

q′′i j =
q′i j
∑K

j=1 q′i j

, (3.19)

for i = 1, 2, ..., n and j = 1,2, ..., K . This ensures that each row in the final prob-
ability matrix Q′′ sums up to 1, thus representing valid probability distributions for
each vessel voyage’s destination. The new prediction is then the port with the highest
probability in each corresponding row in Q′′.

This PFD strategy ensures that the class predictions are not skewed towards over-
represented classes by taking into account the departure frequency of each class.

3.6.3 Average prediction distance error

The average prediction distance error (APDE) provides a measure of the average dis-
tance between the predicted and true class labels. It quantifies the average discrep-
ancy between the predicted and actual port for each instance. Let M be the total
number of incorrect predictions in a test set, Ξi be the latitude and longitude of the
true class label yi for the i-th instance, and Ξ̂i be the latitude and longitude of the the
predicted class label ŷi . Then, the APDE can be defined as:
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APDE=
1
M

M
∑

i=1

dH-sine(Ξi , Ξ̂i),

where dH-sine is the Haversine distance as defined in Equation (2.6), in kilometers.

3.6.4 Median prediction distance error

The median prediction distance error (MPDE) represents the central tendency of the
prediction distance errors and provides a robust measure against outliers in the error
distances. It is the median value of the prediction error distances across all predictions.

Let M be the total number of incorrect predictions, Ξi be the latitude and longitude
of the true class label yi for the i-th instance, and Ξ̂i be the latitude and longitude
of the predicted class label ŷi . The MPDE can be defined as the median of the set of
prediction error distances

MPDE=median
�

�

dH-sine(Ξi , Ξ̂i)
	N

i=1

�

.

3.6.5 Brier score

The Brier Score (Brier et al. 1950) is an effective metric for assessing the accuracy
of probabilistic predictions in multiclass classification problems, and has been used
previously with assessing XGBoost (Jullum et al. 2020). In contrast to other metrics
such as accuracy or log loss, the Brier Score has a clear probabilistic interpretation
and is particularly informative when it comes to understanding model performance
across multiple classes.
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The Brier Score measures the mean squared difference between the predicted probab-
ilities and the actual outcomes for each class. This provides a comprehensive view of
the model’s performance, as it penalizes both type I and type II errors and takes into
account the distance between the predicted probabilities and the actual outcomes. As
a result, the Brier Score provides a good balance between precision and recall.

Additionally, the Brier Score promotes calibrated predictions. This means the model
is encouraged to make predictions that align with the true class proportions observed
in the data. In the context of predicting vessel destinations, this property of the Brier
Score is particularly beneficial, since the accuracy of the predictions are important.
The Brier Score is bounded between 0 and 1, with a score of 0 indicating perfect
accuracy and a score of 1 indicating complete disagreement between the predicted
probabilities and the actual outcomes. This range facilitates an intuitive understand-
ing of model performance.

Again, denote the estimated probability matrix as Q ∈ [0,1]n×K . We can also express
the true labels y in a one-hot encoded matrix form Y ∈ {0,1}n×K , where Yi j = 1 if the
i-th vessel voyage destination belongs to the j-th class, and Yi j = 0 otherwise.

The multiclass Brier score is then defined as:

BS =
1
n

n
∑

i=1

K
∑

j=1

(qi j − Yi j)
2 (3.20)

3.7 Feature importance

When predicting dry bulk vessel destinations, geographical features and ship-specific
details play an integral role. For example, the departure port and its coordinates
provide information about the origin of a voyage, which is likely to influence the
destination due to factors such as trade routes, shipping lanes, and bilateral trade
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agreements. Other features derived from vessel trajectories, like the vessel’s speed,
heading, or even past voyage patterns, can also be significant in predicting the destin-
ation. These trajectory-derived features can help identify common patterns or trends
in routes which can, in turn, improve the prediction accuracy of the model.

On the other hand, ship-specific details such as the owner, vessel type, size, and age
could provide additional insights. Different owners might have different preferences
or specializations in terms of trade routes or cargo types. Similarly, the vessel’s type
and size can influence its possible destinations as it determines the kind of ports it
can dock at and the type of cargo it can carry.

The interplay between these various features can create a complex predictive problem.
Understanding the importance of these features is not just about improving model
performance; it can also provide strategic insights for various stakeholders, such as
the shipbrokers, in the shipping industry. By identifying the features that have the
most influence on vessel destinations, industry participants can make more informed
decisions and develop better strategies for operations and planning. Two different
types of feature importance will be introduced.

3.7.1 Permutation feature importance

Permutation Feature Importance (PFI) is a method utilized for understanding the im-
portance of different features (variables) in a machine learning model’s predictive
power (Altmann et al. 2010). The core idea behind PFI is to measure the decrease
in a model’s performance when one feature’s values are randomly shuffled, thereby
breaking the relationship between the feature and the true outcome.

To compute the PFI of a particular feature x , we perform the following steps:

1. Train a machine learning model using the full dataset and compute its baseline
performance P fbaseline. This could be any appropriate metric such as accuracy
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for classification problems or R2 for regression problems. In this thesis, the Top-
1 accuracy is used.

2. Permute the values of feature x in the test set. This breaks the association
between feature x and the true outcome.

3. Use the model to make predictions on this permuted dataset and compute the
permuted performance P fpermuted.

4. The PFI of feature x is then given by the decrease in performance caused by the
permutation:

PF I f = P fbaseline − P fpermuted. (3.21)

The permutation process can be repeated n times for more robust results, with the
final PFI calculated as the average of these repetitions. This way, the resulting PFI
provides a ranking of feature importance, with higher values indicating a higher im-
portance in the predictive model. Since the process is repeated n times, there is some
deviation to the reduction in score, which can be displayed using e.g boxplots.

3.7.2 Shapley values in machine learning

Shapley values, originating from cooperative game theory, have gained significant
attention in recent years as a powerful method for interpreting and explaining the
predictions of machine learning models (Shapley 1997). In this section, we provide
an overview of Shapley values and discuss their application in this thesis for under-
standing the contribution of individual features in predicting vessel destinations.

The concept of Shapley values was introduced to fairly allocate the payoff among play-
ers in cooperative games, considering each player’s contribution to the total payoff.
The Shapley value for a player can be interpreted as the average marginal contribution
of the player to all possible coalitions.

Given a cooperative game with n players and a characteristic function v : 2N → R that
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assigns a real value to every coalition of players, the Shapley value ζi(v) for player i
can be computed as:

ζi(v) =
∑

S⊆P\{i}

|S|!(p− |S| − 1)!
p!

[v(S ∪ {i})− v(S)], (3.22)

where P = {1, 2, . . . , p} is the set of players, and S is a subset of players not including
player i.

In the context of machine learning and multiclass classification problems (Lundberg
and S.-I. Lee 2017), Shapley values can be used to explain the output of a model
by fairly attributing the prediction for each class to each input feature. The idea is
to treat each feature as a player in a cooperative game, and the prediction for each
class is considered as the payoff. The Shapley value for a feature indicates its average
contribution to the prediction across all possible combinations of features and all
classes.

Given a machine learning model f : Rn×p→ Yn, the Shapley value φ j,k( f ,xi) for the
j-th feature of the i-th instance, contributing to the k-th class, can be computed using
a similar formula as in cooperative games:

ζ j,k( f ,xi) =
∑

S⊆P\{ j}

|S|!(p− |S| − 1)!
p!

[ fk(xi,S∪{ j})− fk(xi,S)], (3.23)

where ζ j,k( f ,xi) is the Shapley value for the j-th feature contributing to the k-th class
of the i-th instance. It represents the average contribution of the j-th feature across
all possible subsets of features, considering each possible subset size.

The summation iterates over all subsets S of the feature set Px excluding the feature j.
For each subset, the term [ fk(xi,S∪ j)− fk(xi,S)] calculates the difference in the model’s
output for the k-th class when the j-th feature is included and when it is excluded.
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The term |S|!(p−|S|−1)!
p! is a weighting factor that represents the number of ways the

particular subset S can be formed, and it normalizes the total contribution of the j-th
feature across all subsets.

The vectors xi,S∪ j and xi,S represent the i-th instance where the features in the set
S∪ j and S are active, respectively, while the remaining features are replaced by their
expected values. This acts as a way of simulating the impact of including or excluding
a specific feature from the model.

In essence, Shapley values provide a powerful and fair way to attribute the prediction
of a machine learning model to its features, considering all possible combinations of
features and offering insights that simple feature importance metrics can’t provide.
They enable us to capture the complex interactions between features and their im-
pact on model predictions, which is crucial in understanding and explaining complex
machine learning models.

Interpreting SHAP summary plots

SHAP summary plots offer a comprehensive visualization of the feature importances
and their impact on the model’s predictions, and are commonly used in Explainable
AI (Xu et al. 2019). An example plot from the SHAP website is provided in Figure 3.7,
where 8 different features for an example problem are displayed, showing a varied
distribution of SHAP values.

They provide an overview of the Shapley values for each feature across all instances
in the dataset. Here is a brief guide on how to interpret these plots:

• Features: Each row in the plot represents a feature in the dataset. Features are
usually sorted by their average absolute Shapley values, with the most import-
ant feature on top and the least important at the bottom.
• Shapley Values: The plot displays the Shapley values for each feature-instance

pair as individual data points. The horizontal position of a data point indic-
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Figure 3.7: Example plot of SHAP values (Lundberg, 2008)

ates the magnitude and direction of the Shapley value for that specific instance.
Positive Shapley values (to the right of the vertical axis) indicate that the fea-
ture contributes to increasing the prediction, while negative values (to the left)
suggest that the feature decreases the prediction.
• Color: Data points are colored according to the value of the corresponding fea-

ture. Typically, a gradient color scheme is used, with one color representing low
feature values and another color representing high feature values. This coloring
scheme helps in identifying trends and interactions between features and their
values.
• Feature Importance: The overall importance of a feature can be estimated by

the spread and magnitude of its Shapley values in the plot. Features with larger
spreads and higher average absolute Shapley values are generally more import-
ant for the model’s predictions.
• Feature Effects: By examining the distribution of Shapley values and their cor-

responding feature values (indicated by colors), one can gain insights into how
the feature values influence the model’s predictions. For example, a positive
correlation between the Shapley values and feature values suggests that higher
feature values lead to higher predictions, and vice versa.

For instance, in Figure 3.7, one can see that the most important feature is MedInc,
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while the least importance feature is AveBedrms. For MedInc, low SHAP values of the
feature negatively contribute to the prediction, while larger values contribute posit-
ively. Since the spread is quite large for MedInc, this also indicates that it is a more
important feature.



Chapter 4

Results and discussion

4.1 Overview of the evaluation process

This section explains the evaluation process of our models, focusing on the prediction
of destination ports for different purposes, for different vessel sub-segments, VLOC,
Capesize, Panamax, and Supramax, for different sets of features. This is first done on
the port-to-port dataset, where each voyage is as described in Equation 2.1.

Initially, the MLTD was calculated for different sub-segments. First a test is done com-
paring Hausdorff versus SSPD, and then the results are displayed for the SSPD, which
is the best method for this problem.

Afterwards, we trained three distinct XGBoost models on different datasets for these
vessels: one comprised solely of static features, while the second used only trajectory-
based features derived from AIS signals, and the third combined both. The purpose
was to ascertain the added value of AIS signals in enhancing the model’s performance.

75
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The entire process, from model training to evaluation, was done for the VLOC, Capes-
ize, Panamax and Supramax datasets, thereby ensuring our approach’s robustness
across various vessel sub-segments. The learning curves, with log loss and classifica-
tion error as metrics, for the Capesize port-to-port predictions are displayed in Figure
4.1, where one can see a clear tendency to overfitting due to the large gap between
the training set curve and the validation set curve. Even though XGBoost has many
hyperparameters that can be tuned to help mitigate overfitting, this did not help in
any significant manner.
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Figure 4.1: Training curves for Port-to-port Capesize using all available features

The destination field from the AIS signals is then added, and the machine learning
results with this feature included are discussed. This process was then repeated for
the laden and ballast voyages, however only for the Capesize sub-segment.

As previously discussed, VLOCs have a predictable voyage pattern due to their long-
term contracts, and they almost exclusively transport goods between Brazil, Australia
and China. Therefore, the potential scope of prediction for VLOCs is significantly
limited, and further testing for VLOCs in predicting unload and load ports may not
provide additional valuable insights. On the other hand, Capesize vessels exhibit a
balance between predictability and variability in their voyages, making them an ex-
cellent candidate for further testing. While Panamax and Supramax vessels also show
promising characteristics for the prediction task, due to their increased route flexibil-
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ity and variability, it is anticipated that the trends observed for Capesize vessels will
hold for these vessel sub-segments as well, where we have seen that Capesize consist-
ently outperforms the other two sub-segments. Therefore the analysis for laden and
ballast voyages will be performed only on the Capesize vessels.

4.2 Port-to-port voyages

4.2.1 MLTD for port-to-port voyages

SSPD vs Hausdorff comparison

In the previous chapter, two different similarity measures were introduced. In previous
works, it has been generally shown that the SSPD outperforms the Hausdorff distance
in similar studies, such as in Besse et al. (2016), therefore we are interested in the
accuracy of the MLTD when it is based on either the Hausdorff distance or the SSPD.
We denote these two versions of the MLTD classifier as fH and fS with φ = 10, as
defined in subsection 3.2.3, respectively.

To compare fH and fS , we generate n random subsets S1, . . . , Sn of the Capesize sub-
segment dataset, each of size m (in our case, n= 100, m= 1000), and compute their
Top-1 accuracies:

ai,H = Acc1( fH , Si), ai,S = Acc1( fS , Si), i = 1, . . . , n. (4.1)

Finally, we visualize and compare the distributions of a1,H , . . . , an,H and a1,S , . . . , an,S
using box plots, displayed in Figure 4.2. SSPD clearly performs better on average,
likely due to that the Hausdorff distance is sensitive to outliers, and the run-time is
approximately equal, therefore SSPD is chosen as the preferred similarity measure
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Figure 4.2: Distributions of the Hausdorff and SSPD measures MLTD accuracy

distance for all datasets.

Results with SSPD

The MLTD is the predicted port, and MLTDC is the country the predicted port lies
in. One can observe distinct differences in the accuracy of predictions based on the
sub-segment of the vessel. As seen in Figure 4.3, the accuracy of the port predictions
is highest for the VLOC sub-segment, at around 58%. For the Capesize, Panamax and
Supramax sub-segments, the accuracies are slightly lower, at around 48%, 41% and
37% respectively. This is in line with theory that the VLOC vessels follow more com-
mon routes, and that Capesize follows more predictable routes than Panamax and
Supramax.

The accuracy of the country predictions follows a similar pattern, but with notably
higher accuracies across all sub-segments. The VLOC sub-segment again performs
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best with an average accuracy of around 87%, however the Capesize is almost at the
exact same accuracy, while the Panamax and Supramax sub-segments show accuracies
of 76% and 68%, respectively.
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Figure 4.3: Port-to-port MLTD and MLTDC accuracy grouped by sub-segment

When considering the number of days before arrival in Figure 4.4, we find that the pre-
diction accuracy generally decreases as the number of days before arrival increases.
This decrease is seen across all sub-segments. As the vessel approaches the destination
port, the similarity measure to other trajectories will increasingly align with a smaller
subset of trajectories, enhancing its accuracy.

For example, in the Capesize sub-segment, the port prediction accuracy falls from
around 56% when the prediction is made one day before arrival, to approximately
42% when the prediction is made seven days before arrival. This downward trend is
similarly observed in the Panamax and Supramax sub-segments.

The country prediction accuracies show a similar pattern. In the Capesize sub-segment,
the accuracy decreases from 90% one day before arrival, to 80% seven days before
arrival. The other sub-segments also follow this trend, with the Panamax sub-segment
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Figure 4.4: MLTD accuracy grouped by days and sub-segment

showing a decrease from 80% to 64%, and the Supramax sub-segment from 74% to
47%.

This analysis suggests that the MLTD accuracy is more reliable for shorter time ho-
rizons, and for vessels in the VLOC and Capesize sub-segments. As MLTD is solely a
spatial attribute, it will be utilized as a feature in machine learning, alongside other
relevant variables such as departure port and vessel information, which might in-
crease the accuracy.

The geographical aspect is also interesting to analyze. A normalized confusion matrix
showing the recall for the top 30 busiest arrival ports is displayed in Figure 4.5. The
confusion matrix presents the recall, showing clear struggles with ports that are close
to each other, such as ports in China, Huanghua, Tianjin, Qingdao, Jingtang, Rizhao
and Caofeidan and a few more, and as well a clear confusion between Port Hedland,
Port Walcott and Dampier, where Port Hedland is often incorrectly predicted.

To see if this is a general problem, the accuracy for each departure port is displayed
on a world map in Figure 4.6, where each possible destination port is plotted. The
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ports are scaled in regards to accuracy, as well as color coded where green indicates a
higher accuracy and blue indicates a lower. One can see a general trend that around
the larger, green circles, there are more smaller blue circles, indicating that the MLTD
overfits to some larger ports. This especially holds true for the Chinese coast.

4.2.2 Model selection

For destination port prediction, several state-of-the-art machine learning models, with
default hyperparameters, are tested on a particular configuration of the dataset, for
Capesize vessels with all features. It is assumed due to the nature of the dataset, that
this will hold across configurations.

A repeated stratified 5-fold cross validation is used to ensure robustness and compar-
ability, and the mean Top-1 Accuracy is used as a metric for the performance. This is
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done on a subset of 10000 samples of Capesize vessels.

Table 4.1: Model selection using repeated stratified 5-fold cross validation

Model Mean Top-1 Accuracy(%)

Random Forest 51.30
Gaussian Naive Bayes 38.72
KNN 10.80
XGBoost 56.04
Extra Trees 50.34
One vs Rest(XGBoost) 55.52

The results of the model selection are displayed in Table 4.1, where one can see that
XGBoost outperforms the other models. The only model that is close is One vs rest mul-
ticlass classification with XGBoost as a base classifier. however the run-time is much
larger than for regular XGBoost, since K models need to be trained, therefore regular
XGBoost is preferred. The run-time for XGBoost was also longer than for the others,
considering the creation of trees in e.g. Random Forests which is inherently parallel,
however the added accuracy was preferred ahead of run-time. Each following model
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also uses the TPE algorithm as explained in the previous chapter for hyperparameter
tuning, to ensure a good fit of the hyperparameters. For the XGBoost above, training
the model with tuned hyperparameters increased the accuracy from 56.04 % to 60.04
%.

4.2.3 Machine learning for port-to-port voyages

Initially, when the model was trained with only static features as shown in Table 4.2,
the Top 1 accuracy varied between 26.9 % for Supramax and 73.4 % for VLOC, with
the Brier Score spanning from 0.36 to 0.88 across all vessel sub-segments. Moreover,
the implementation of only trajectory features resulted in considerable enhancement
of model’s performance. As per Table 4.3, the model achieved a Top 1 accuracy ranging
from 48.6 % for Supramax to 64.8 % for VLOC, and reduced the Brier Score range to
0.45 to 0.65.

Table 4.2: Prediction Results for Port-to-Port with only static features

Segment Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

VLOC 73.4 93.6 73.4 78.1 90.2 2046.8 872.6 0.36

Capesize 36.8 58.9 37.1 44.7 62.4 3792.8 2880.8 0.77

Panamax 31.8 51.3 32.3 37.2 54.1 4615.9 3219.8 0.83

Supramax 26.9 45.1 26.9 29.6 42.2 4257.9 3160.7 0.88

The combined use of static and trajectory features led to the most significant improve-
ment. As presented in Table 4.4, the Top 1 accuracy for Capesize vessels peaked at
59.4 %, an increase over the results when employing each feature set separately. Sim-
ultaneously, the Brier Score improved further, falling to as low as 0.45, indicating a
better calibrated model. This increase could be seen across all types.

Inspecting the results in greater detail reveals that the VLOC sub-segment consistently
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Table 4.3: Prediction Results for Port-to-Port with only trajectory features

Segment Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

VLOC 64.8 83.9 64.9 75.3 92.1 1164.4 512.2 0.45

Capesize 56.3 76.8 57.3 75.7 87.2 961.7 455.9 0.54

Panamax 52.8 73.0 55.2 63.6 83.7 955.5 485.5 0.59

Supramax 48.6 69.4 65.1 74.6 81.4 1194.7 726.2 0.65

Table 4.4: Prediction Results for Port-to-Port with static and trajectory features

Segment Days before
Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

VLOC

All days 75.3 92.1 84.03 84.00 96.0 1037.2 473.8 0.31
1 78.5 93.9 - 87.9 96.0 1131.5 395.1 0.28
2 76.5 92.8 - 84.6 95.9 951.6 473.8 0.29
3 74.8 91.5 - 82.9 96.5 905.5 473.8 0.32
7 69.9 89.3 - 78.9 95.3 1155.1 501.4 0.39

Capesize

All days 59.4 79.8 59.9 69.8 89.5 948.5 447.9 0.51
1 65.6 82.7 - 77.7 92.3 791.4 383.5 0.45
2 62.3 81.5 - 71.6 89.6 832.7 440.2 0.49
3 54.5 78.1 - 64.2 89.6 875.6 447.9 0.56
7 49.0 73.2 - 58.3 82.5 1323.8 717.2 0.64

Panamax

All days 55.0 75.7 56.9 65.4 84.8 1066.4 528.8 0.57
1 59.7 79.6 - 73.3 88.8 764.5 383.7 0.52
2 56.4 77.8 - 67.6 87.1 796.8 404.7 0.56
3 51.4 72.7 - 61.8 83.4 940.1 545.8 0.61
7 46.1 66.8 - 47.6 72.4 1764.8 1158.1 0.67

Supramax

All days 49.8 70.9 52.2 56.6 75.3 1225.3 759.1 0.65
1 55.5 76.6 - 66.1 81.9 837.1 447.9 0.58
2 50.8 72.8 - 58.3 79.2 1017.2 568.3 0.64
3 46.8 68.1 - 50.2 71.2 1211.0 847.7 0.68
7 33.3 51.2 - 36.5 50.5 2323.8 2172.1 0.83
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outperforms the Capesize, Panamax and Supramax sub-segments across all scenarios.

The VLOC sub-segment demonstrates a consistently high Top 1 accuracy, for instance,
73.4% with static features alone (Table 4.2), 64.8% with trajectory features (Table 4.3),
and peaking at 78.5% when both feature sets are used one day before arrival (Table 4.4).
In contrast, even the best-performing Capesize, Panamax, and Supramax models fail
to exceed a Top 1 accuracy of 65.6%, 59.7%, and 55.5%, respectively, under similar
conditions.

The superior performance of VLOC in port prediction can be attributed to a couple of
key factors associated with their operational characteristics. Primarily, VLOC vessels
are often engaged in long-term contracts, notably between Australia, Brazil and China
(Papadionysiou 2014). These contracts result in highly predictable shipping routes,
with fewer port-to-port variations compared to other sub-segments. This consistency
enhances the model’s ability to accurately predict their port of arrival. Additionally, the
VLOC fleet is relatively small, which further reduces variability in port destinations,
as fewer vessels result in a narrower range of ports being serviced. Therefore the
performance of the Capesize vessels is perhaps more interesting, since they are more
volatile.

Excluding VLOC,when both static and trajectory features were used together (as seen
in Table 4.4), the Capesize sub-segment again outperformed the others with a max-
imum Top 1 accuracy of 65.6% and a minimum Brier Score of 0.45.

This consistent superior performance of the Capesize sub-segment compared to Panamax
and Supramax, might be attributed to the nature of Capesize vessels. Capesize dry
bulk carriers are the largest(excluding VLOC), among dry bulk carriers, and they are
often associated with more predictable routes due to their size and the volume of the
commodities they transport, such as iron ore and coal. These large cargoes are typic-
ally moved in bulk between major ports, which might provide more regular patterns
that enhance the prediction capability of the models. The main ports for e.g iron ore
lie in China and Australia. AF Code has provided graphs to support this, displayed
in Figure 4.7 and 4.8, where one can clearly see that the largest exporter of iron is
Australia, and the largest importer is China.
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Figure 4.7: Top exporters of iron ore. Source: Fearnleys
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Figure 4.8: Top importers of iron ore. Source: Fearnleys
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On the other hand, Panamax and Supramax vessels, being smaller, have more flexibil-
ity and variability in their routes and cargoes. This variability can make the trajectories
and port-to-port movements of these sub-segments more difficult to predict, possibly
explaining the relative under-performance of these sub-segments in comparison to
Capesize.

From Table 4.4, we can observe the APDE and MPDE for each ship segment and num-
ber of days before arrival. These metrics provide insight into the performance of the
model when it comes to predicting the precise location of the ports, quantified by the
Haversine distance between the true and predicted ports. We also note that the PFD
accuracy is quite similar to the top 1 accuracy for Capesize vessels, but for VLOC,
Supramax and Panamax the accuracy improvement is larger. VLOC has an increase of
8.69 percentage points, which is quite significant, indiciating that one should consider
the PFD as a decision strategy for these vessels.

As the number of days before arrival increases, we generally see an increase in both the
APDE and MPDE. This is expected, as the further in advance the prediction is made,
the higher the associated uncertainty tends to be. The most accurate predictions are
made closest to the day of arrival at the port, as indicated by the lowest APDE and
MPDE values typically being observed one day prior to arrival.

For the Capesize sub-segment, specifically, the APDE and MPDE for ’All days’ are 948.5
km and 447.9 km, respectively. As the days before the arrival increases, these errors
gradually increase, indicating that the model’s ability to predict accurately diminishes.
For instance, the APDE and MPDE increase to 1323.8 km and 717.2 km, respectively,
seven days before arrival. A histogram of the distances for Capesize ’All days’ is dis-
played in Figure 4.9, where we can clearly see that most wrong port predictions are
fairly close to the true port. This indicates that the method often predicts ports in the
same vicinity, which will be further emphasised later in the cluster prediction analysis.

The performance disparities between the VLOC, Capesize, Panamax, and Supramax
sub-segments could also be explained by the size of their respective response spaces.
The VLOC and Capesize sub-segments, with the smallest response spaces, demon-
strated the highest prediction accuracies. Conversely, the Supramax sub-segment,
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Figure 4.9: Histogram of Haversine distances between true and wrongly predicted
ports

with the largest response space, yielded the lowest accuracies. The size of the re-
sponse space is of critical significance when dealing with prediction models such as
XGBoost (Wan et al. 2021). A smaller response space implies that the model has fewer
potential outcomes to discriminate between, which can often lead to higher prediction
accuracy. In our case, the VLOC sub-segment, having the definite smallest response
space with 55 ports, could make it easier for the XGBoost models to correctly identify
the destination port. Fewer potential ports can simplify the decision boundary that
the model must learn, leading to a more accurate model. On the contrary, the Supra-
max sub-segment, with the largest response space, presents a more complex decision
problem for the XGBoost models. The model must distinguish between more possible
ports, which can lead to a more complicated decision boundary and potentially lower
accuracy.

This is also clearly seen in the Cluster and Country prediction, which are consistently
better for all possible combinations. Regarding the cluster predictions, the results in-
dicate a generally higher accuracy compared to the top 1 port prediction. This is ex-
pected given that predicting the cluster of destination ports is a less granular task
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than predicting the exact port, and thus less prone to errors. As observed in Table
4.2, using only static features, the Capesize sub-segment reached a cluster accuracy
of 44.7%, higher than its top 1 accuracy of 36.87%. When both static and traject-
ory features were used (Table 4.4), the Capesize sub-segment achieved even higher
cluster accuracies, reaching up to 77.7%.

As for the country predictions, the results follow a similar pattern to the cluster predic-
tions, with even higher accuracies. This is again consistent with the expectation that
a broader category (i.e., country) should be easier to predict than a more specific one
(i.e., port or cluster). For instance, when both static and trajectory features were em-
ployed, the Capesize sub-segment achieved a maximum country accuracy of 92.3%.
The VLOC outperformed this as well, with a country accuracy of 96 % in the same
scenario, which is largely attributed to the small response space and predictability
between large importers and exporters, shown in Figure 4.10.

0 2500 5000 7500 10000 12500 15000 17500 20000

Count

BGD
NLD
HKG
PHL

OMN
MUS
GIN
MYS
ZAF
KOR
JPN

SGP
BRA
AUS
CHN

Co
un

try

Count of VLOC Destination Countries

Figure 4.10: The distribution of countries for port-to-port VLOC voyages.
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4.2.4 Port-to-port feature importance

Given the multifaceted nature of our investigation, and considering the sheer num-
ber of machine learning models developed (36 in total), it was necessary to select a
representative model for a more in-depth analysis of feature importance. The Capes-
ize all-features model was chosen for this purpose for a few reasons. First, Capesize
vessels are among the largest dry bulk carriers, meaning they are responsible for a sig-
nificant proportion of global dry bulk trade, making their voyage patterns particularly
influential within the shipping industry. Second, the ’all-features’ model leverages the
full spectrum of available data - both static and trajectory-based features - thereby al-
lowing us to explore a more complete and nuanced understanding of feature import-
ance. This would not be possible with models based solely on static or trajectory-based
features. Lastly, the Capesize all-features model displayed a clear tendency towards
overfitting (as shown in Figure 4.1), providing an opportunity to investigate whether
certain features might be contributing disproportionately to this behavior, and thus
might need to be addressed to improve model generalizability.

The boxplots in Figure 4.11 display the PFI for the Capesize model with static and
trajectory features, providing a visual representation of the influence of each feature
on the prediction of voyage destinations. From these results, it is apparent that certain
features have a significantly higher impact on the model’s predictions than others. The
’MLTD_lat’, ’end_lon’, ’MLTD_lon’, and ’end_lat’ features - which are related to the
vessel’s trajectory and the most likely trajectory destination (MLTD) - emerge as the
most important. The ’end_lat’ is the final latitute coordinate sent from the AIS signals.
This finding aligns with the nature of shipping routes, which are largely determined by
geographical coordinates. The longitude is more important than the latitude, which
might be because of the wider span(-180 to 180 versus -90 and 90), and also that there
are many latitude values that never appear, for instance values close to the poles.

The model may be over-reliant on the MLTD features, fitting tightly to these pre-
dictions in the training data and hence performing less well on unseen data. This
observation suggests a potential avenue for improving the model’s performance, such
as by reducing the reliance on MLTD features or by incorporating regularization tech-
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Figure 4.11: PFI for Capesize port-to-port predictions with static and trajectory fea-
tures

niques to mitigate the overfitting. However, implementing regularization techniques
with XGBoost only slightly improved the results, as mentioned above.

The remaining features display a range of importance values, with trajectory-related
features (e.g., ’direction’, ’travel_distance’), ship characteristics (e.g., ’draught’, ’dead-
weight’, ’length’, ’depth’, ’breadth’), and administrative information (e.g., ’groupbe-
neficialowner’, ’fromporta’, ’shipmanager’, ’registeredowner’, ’shipbuilder’, ’flagcode’,
’countryofbuild’) playing a role in the prediction of voyage destinations. However,
their individual impact on the model’s output is substantially less than that of the
MLTD and end-coordinate features.
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4.2.5 Using AIS destination field as a feature

As mentioned in the introduction, the AIS signal contain a manually inputted destin-
ation field. This data is frequently marred by inconsistencies and inaccuracies due to
human error during entry. It could include spelling mistakes, abbreviations, aliases,
or even special characters, which can lead to confusion and misinterpretation of the
vessel’s actual destination (Abdallah et al. 2019). The destination field in this dataset
is thoroughly preprocessed by AF Code. The first step in this process is removing un-
necessary noise from the data, such as special characters. Special characters are often
used in typing errors or as a workaround for symbols and terms not easily represen-
ted with a standard keyboard. However, these characters can muddle the dataset and
complicate data analysis.

Next, the destination field data is matched against a reference table. This table con-
tains an exhaustive list of all recognized port names, which have been standardized
for consistency. It includes alternative designations, abbreviations, and common mis-
spellings of each port name. By cross-referencing the manually inputted data with
this table, AF Code ensures that each destination aligns with an existing port.

For port-to-port Capesize voyages, the destination field is correct 46.73% of the time,
which is over 10% worse than for the machine learning results for Capesize, and
roughly the same as for the MLTD for Capesize. However, by using this destination
field as a feature, one could harness the predictive power of both the MLTD and the
destination field, along with the other features.

The results for the same model, but with the added destination feature, are displayed
in Table 4.5. The results are significantly better than without using the destination
as a feature, with an accuracy of 74%, indicating that adding the destination field as
a feature significantly boosts the predictive power of the model. For the laden and
ballast voyages, the destination field is therefore part of the initial analysis. The PFI
for this model is shown in Figure 4.12, where one can see that the destination feature
is clearly the most influential feature.
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Table 4.5: Prediction Results for Port-to-Port with the destination feature, along with
static and trajectory features

Segment Days before
Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

Capesize

All days 73.99 89.35 74.48 80.51 92.78 1048.94 371.19 0.364
1 79.24 91.56 - - - 983.55 388.36 0.293
2 76.08 89.82 - - - 892.68 371.19 0.330
3 71.98 88.83 - - - 851.65 325.80 0.398
7 62.57 84.73 - - - 1345.83 471.24 0.521

de
st

in
at

io
n

ML
TD

_la
t

ML
TD

_lo
n

en
d_

lo
n

en
d_

la
t

di
re

ct
io

n
ML

TD
al

on
1

al
at

1
de

ad
we

ig
ht

tra
ve

l_d
ist

an
ce

le
ng

th
dr

au
gh

t
re

gi
st

er
ed

ow
ne

r
gr

ou
pb

en
ef

ici
al

ow
ne

r
tra

j_l
en

fro
m

po
rta

ss
pd

_d
ist

an
ce

sh
ip

m
an

ag
er

tra
ve

l_d
ur

at
io

n
de

pt
h

sp
ee

d
br

ea
dt

h
sh

ip
bu

ild
er

fla
gc

od
e

co
un

try
of

bu
ild

Features

0.00

0.05

0.10

0.15

0.20

Im
po

rta
nc

e 
Sc

or
e

Permutation Feature Importances

Figure 4.12: PFI for Capesize port-to-port predictions with static, trajectory and des-
tination features
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4.3 Laden voyages

The methodology of temporal segmentation for the laden voyages differs, as it focuses
on the time elapsed after departure rather than the time remaining before arrival.
This change in perspective necessitates a different presentation of the temporal results
compared to the port-to-port results, displaying accuracy as a global measure but also
as a function of time passed since departure. It is important to note that due to this
alteration in the nature of the prediction problem, and also due to that the voyages
themselves are different, the outcomes should not be directly compared with those of
port-to-port predictions.

4.3.1 MLTD for laden voyages

The MLTD and MTLDC accuracy for laden voyages, along with weighted harmonic
mean of precision and recall, are found in Table 4.6.

Table 4.6: Accuracy and F1 scores

Metric MLTD MLTDC

Accuracy 0.2095 0.7519
F1 Weighted 0.1915 0.7233

When considering the F1 weighted scores, which take into account precision and
recall, the MLTD model achieves a score of 0.1915. Conversely, the MLTDC model
obtains a higher F1 weighted score of 0.7233.

The notable difference in accuracy and F1 weighted scores between MLTD and MLTDC
can be attributed to the fact that the MLTD model primarily struggles with port predic-
tion, while the MLTDC demonstrates better performance in determining the correct
country associated with a given port. This indicates that the method often predicts
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the correct country but faces challenges in accurately predicting the corresponding
port. This can be further explored by looking at the confusion matrix for the top 20
ports in this dataset, displayed in Figure 4.13. One can see that for most of the ports
in China, the recall is quite low, indicating that the MLTD method for laden voyages
struggles to predict these ports correctly, since it often predicts other ports in China
instead.
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Figure 4.13: Confusion matrix of laden voyages normalized to present recall

In Figure 4.14, the wrongly predicted voyages are plotted as red, and the correctly pre-
dicted are plotted as cyan. It becomes quite clear from this Figure that the MLTD often
incorrectly classifies a lot of ports in China, if one inspects the red lines at around 130
degrees (longitude). The best area seems to be voyages traveling from the west coast
of South America, which might be due to specified trade routes that are commonly
used.

The proportion of MLTD accuracy grouped by days since departure from the load port
is displayed in Figure 4.15. The trend is that the MLTD accuracy increases with time
up to a point, which makes sense considering it increases the likelihood that the vessel
is getting closer to its final destination. For voyages that last longer than 4 weeks, the
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Figure 4.14: Laden voyages on a world map, color-coded based upon correct and
incorrect MLTD accuracy

accuracy decreases slightly again, but it is noted that the sample size is much smaller
here.
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4.3.2 Machine learning for laden voyages

Table 4.7 showcases the prediction results for laden Capesize voyages, using different
combinations of feature sets. These feature sets include a combination of Static and
Trajectory features with destination, Static features with Trajectory, Trajectory alone,
and Static alone. Note that the destination field itself has an accuracy of 44.94% for
this dataset.

Table 4.7: Prediction Results for Laden Capesize voyages

Feature set Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

Static + trajectory + destination 64.65 80.74 64.67 76.95 96.14 1785.56 430.03 0.48

Static + trajectory 44.16 69.06 44.20 58.66 87.50 2376.09 659.56 0.68

Trajectory 24.27 46.28 25.54 41.12 77.64 2540.41 1021.11 0.86

Static 38.02 38.00 38.10 48.97 76.22 2909.70 1080.58 0.76

The model using Static and Trajectory features produced reasonable accuracy rates,
with Top 1 and Top 3 accuracies of 44.16% and 69.06%, respectively. However, it
resulted in a larger error, with an APDE of 2376.09 km, an MPDE of 659.56 km, and
a Brier Score of 0.68.

In comparison, using only Trajectory features led to lower accuracy rates and higher
errors. The Top 1 and Top 3 accuracies dropped to 24.27% and 46.28% respectively,
and the APDE increased to 2540.41 km, the MPDE to 1021.11 km, while the Brier
Score was the highest among all the feature sets at 0.86, indicating poor prediction
performance.

Finally, using only Static features had mixed results. Although the top 1 accuracy and
PFD accuracy were higher than for only static, the cluster accuracy was the lowest
(41.12%). The prediction error distances were also the largest among the feature
sets, with an APDE of 2909.70 km and an MPDE of 1080.58 km. The Brier Score
of 0.76 is relatively high, indicating poorer prediction quality compared to the other
feature sets (except only trajectory features). An interesting observation here is that
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the static dataset had 12 percentage points higher accuracy than the trajectory set,
however the MPDE was higher, indiciating that when it first predicted wrongly, the
errors were more severe.

The laden voyages studied encompassed durations from 1 day up to as many as 41
days. The mean accuracy per every other day is displayed in Figure 4.16, color-coded
on the amount of voyages that had a record in that day. The accuracy increases with
time, which is aligned with the belief that the closer the vessel is to the destination,
the easier it is to predict correctly.
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Figure 4.16: Mean accuracy per day traveled for Capesize Laden voyages

4.3.3 Laden voyages feature importance

The PFI for the model using the destination feature show an over-reliance on that
particular feature, making it harder to distinguish between the importance of the
other features. One possibility would be to log-transform the PFI, however this is
might still obscure the results. Therefore the feature importance analysis is done on
the model that used static and trajectory features, to ensure comparability. The PFI
for laden voyages with static and trajectory features are displayed in Figure 4.17.
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Figure 4.17: PFI for Capesize Laden predictions with static and trajectory features

There seems to be a linear trend for the feature importance with trajectory and static
features, contrasting the feature importance for the same feature set for port-to-port
voyages in Figure 4.11, where it was overly reliant on the MLTD features. Some static
features are now more important, indicating that trajectory-based features might be
less important. Considering the nature of laden voyages, where they travel a much
greater distance on average than port-to-port (3211 km vs 1878 km), it makes sense
that the administrative and static features of the ship instead indicates likely unload
destination.

Vessel deadweight and departure port coordinates, along with some MLTD features
such as the longitude, emerge as the most important features. The registered owner,
group beneficial owner and ship-manager are also three important features, which
might correlate to the trade industry as explained in the introduction. As the predic-
tion of laden voyages relies on forecasting the flow of trade goods, it becomes apparent
that decisions related to those in charge of trade management carry significant weight
in this context.

Due to this, it could be interesting to examine the PFI of the model using only static
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features. These are displayed in Figure 4.18. The linear trend that came from using
trajectory and static features has now been replaced by a more exponential trend,
where the coordinates of the departure port now emerge as the most important static
features.
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Figure 4.18: PFI for Capesize Laden predictions with only static features

Considering that deadweight was the most important feature for the other model,
but only ranks nr 3 here, might indicate a correlation between vessel deadweight and
the trajectory-based features. Vessels with a certain deadweight might be more likely
to unload goods at certain ports, where the feature importance of deadweight might
become enhanced if one knows the last known coordinates, or the MLTD.

To investigate how some ports are affected by the specific features themselves, we
compute the SHAP values, and provide SHAP summary plots. An important aspect to
note in the SHAP plots are the encoded categorical features. These have been repres-
ented through a process of label encoding, which assigns a unique numerical iden-
tifier to each category. However, these numerical values are arbitrary and hold no
intrinsic order or value, meaning they are merely labels rather than a feature with a
natural numerical interpretation. Consequently, while they appear in our SHAP sum-
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mary plots, their contribution should not be considered in a quantitative analysis as
the model’s response to these features is not based on their encoded numeric value.
In practice, they are more useful for differentiating between distinct categories rather
than evaluating their influence on the model’s output.

Since destination is such an important feature, the SHAP values are found for the
model without it, to see which other features affect the prediction. The most common
laden voyage destination ports are Caofeidian and Jingtang, both located on the east
coast of China. The SHAP summary plots for both are displayed in Figure 4.19.

(a) Caofeidan (b) Jingtang

Figure 4.19: SHAP summary plots for the two most common unloading ports

For Caofeidian, one can see that the feature end_lon, which is the final available
longitude coordinate in the trajectory, has a positive effect on the prediction if it is low,
meaning it is far west. The same holds for the coordinates of the departure port, thus
indicating that voyages to Caofeidian that start far west in South or North America
and cross the Pacific ocean are easier for the model to predict correctly. All voyages in
the test set heading to Caofeidian are displayed in Figure 4.20, where one can clearly
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Figure 4.20: Voyages in the test set unloading in Caofeidian, color-coded on predic-
tion. Note that the map has cut off large parts of the pacific ocean, in the western
hemisphere.

see this. The model is a lot more confused with voyages traveling from e.g Australia,
but from a certain port in Peru, San Nicolas, an iron ore loading port, it almost always
predicts correctly. This might be due to certain trade agreements between entities
in Peru and Caofeidian. China and Peru entered a Free Trade Agreement in April
2009, the first one between China and a South-American country, which might have
influenced this trade route (Angulo-Bustinza et al. 2022).

4.4 Ballast voyages

Ballast voyages, taking place post-unloading and pre-loading, are often shorter than
laden voyages, which occur between loading and unloading. The reasons for this are
threefold. Firstly, the weight of the ship in the ballast state is significantly less than in
the laden state, reducing its draft and allowing for increased speed. Secondly, ballast
voyages often follow more direct routing as they are less constrained by port call
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schedules and fuel considerations. Lastly, operational efficiencies, including efficient
bunkering practices, can contribute to the decreased duration of ballast voyages.

4.4.1 MLTD for ballast voyages

The MLTD and MLTDC accuracy for ballast voyages, along with weighted harmonic
mean of precision and recall, are found in Table 4.8. The accuracies are significantly
higher than for the laden in Table 4.6, as expected.

Table 4.8: Accuracy and F1 scores

Metric MLTD MLTDC

Accuracy 0.4712 0.8632
F1 Weighted 0.4250 0.8418

The proportion of MLTD accuracy grouped by days since departure from the load port
is displayed in Figure 4.21. There is a clear trend here as well that the MLTD accuracy
increases with time, as it did for laden voyages.
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A visualisation of this on the world map, zoomed in on the eastern hemisphere, is
displayed in Figure 4.22, where the trend clearly is shown with more red (incorrect)
trajectories for the lower timeframes and more blue (correct) for the higher time-
frames. It is also clearly shown the that there are fewer voyages that have a very long
duration.

Figure 4.22: Correct and incorrect Ballast voyages for Ballast voyages in the eastern
hemisphere.
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4.4.2 Machine learning for ballast voyages

The results for the ballast voyages for the different feature configurations are dis-
played in Table 4.9. Note that the destination field itself has an accuracy of 69.95%
for this dataset.

Table 4.9: Prediction Results for Ballast Capesize voyages

Feature set Accuracy (%) Error

Top 1 Top 3 PFD Cluster Country APDE(km) MPDE(km) Brier Score

Static + trajectory + destination 82.58 94.95 82.62 91.36 94.56 2018.13 339.54 0.24

Static + trajectory 66.92 91.78 66.89 83.34 90.69 1725.56 474.68 0.44

Trajectory 53.27 83.34 53.56 77.21 88.26 1610.01 348.81 0.62

Static 65.25 89.83 65.13 77.27 88.13 2648.64 1849.00 0.49

The model with Static + Trajectory + Destination features outperforms the others
on almost all metrics, except APDE, where it only beats the model with only static
features. The MPDE is lower, meaning that some predictions for the Static+ Trajectory
+ Destination are extremely off, since it increases the average. This could be due to
the over-reliance on the destination and MLTD, and if they for some predictions are
largely incorrect, it might give some very wrong predictions.

The ballast voyages studied encompassed durations from 3 days up to as many as 41
days. The mean accuracy per every other day is displayed in Figure 4.23.

We observed that the mean prediction accuracy fluctuated across different voyage
durations. Voyages after 39 days achieved the highest mean accuracy of over 90%,
albeit with a relatively small sample size. The shorter voyage duration of 3 and 4
days had the lowest mean accuracy of around 70%, indicating that it is harder for the
model to predict the destination early in the voyages. The general trend suggests an
increase in prediction accuracy with the increase in days traveled. This observation
aligns logically with the expectation that the model’s prediction accuracy improves as
the vessel draws closer to its port.
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Figure 4.23: Mean accuracy per day traveled for Capesize Ballast voyages

4.4.3 Ballast voyages feature importance

The PFI for the ballast Capesize voyages for static and trajectory features is displayed
in Figure 4.24. The end-coordinate features are clearly the most important features
according the PFI, especially the final longitude. By randomly shuffling the final lon-
gitude coordinate feature, the accuracy drops from 67% down to approximately 40%.
In general, compared to the laden voyages, the trajectory-based features seem to be
much more important. The vessel deadweight is once again an important feature,
ranking as nr 3. This was also seen for laden voyages in the previous section, and
might be due to that certain trade routes and port facilities are specifically designed
to handle larger vessels, thus limiting the possible ports for vessels with a larger dead-
weight.

To further investigate how the features themselves affect the predictions, we use SHAP
values. We investigate the SHAP values for the three loadports with the highest false
positive (FPR) rate. FPR is the proportion of actual negative cases (in this context,
incorrectly predicted ports) that are incorrectly identified by the model as positive.
Mathematically,
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Figure 4.24: PFI for Capesize Ballast predictions with trajectory and static features

False Positive Rate (FPR)=
False Positives (FP)

False Positives (FP) + True Negatives (TN)

The three ports with the highest FPR, are Port Hedland, Port Walcott and Dampier,
with FPR equal 0.92, 0.47 and 0.37. Port Hedland is the most heavily trafficked out of
these three ports, which might explain why it has the highest FPR. These three ports
are the main source of transporting iron ore from Australia to China (Beresford et al.
2011), and it seems like the model is often confused in this area. The three Australian
ports are plotted in Figure 4.25, where one can see the close proximity.

The SHAP values for the three Australian ports are displayed in Figure 4.26. The
impact of the ’end_lon’ feature, representing the final longitudinal coordinate of the
vessels, is significant. It can be observed from the SHAP plots that a lower value of
’end_lon’ tends to have a lower SHAP value, indicating a lower contribution to the
model’s prediction of a positive class. Conversely, a higher ’end_lon’ value often leads
to a higher SHAP value, implying a greater contribution to the prediction of a positive
class. This suggests that the model has learned a positive correlation between the final
longitude of the vessel and the likelihood of predicting a positive class, indicating that
vessels that have their final position far east are more likely to travel to one of these
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Figure 4.25: Port Hedland, Port Walcott and Dampier

ports.

As mentioned earlier, the iron ore trade between China and Australia is significant,
and the three ports analysed here are the main contributors, since e.g Port Hedland
is the largest iron ore loading port in the world (Beresford et al. 2011). For all three
ports, the features relating to the size of the vessels are all fairly important, where
low values for vessel deadweight, length and depth (maximum draught of the vessel)
negatively affect the prediction. This means that smaller vessels do not tend to travel
to these ports according to the model, which makes sense considering that dry bulk
vessels transporting iron ore generally are large (S. Chen et al. 2011). After inspec-
tion of port data relating to how large the vessels can be, it was not found a clear
correlation between the SHAP values and the draught, max beam and max length of
vessels for these ports. Domain experts suggested that the feature importance here is
therefore likely influenced by trade factors such as the charterer, which is kept secret.

In general, these type of analyses can then be done for a selected port, to assess the
prediction of few voyages. One could inspect the variables that are used for the predic-
tions, compare them with the SHAP values for the predicted port, and see if they align
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(a) Port Walcott (b) Port Hedland

(c) Dampier

Figure 4.26: SHAP summary plots for ports with highest False Positive Rate (FPR)
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with the expected values. The overall prediction thereby serves as a comprehensive
audit of the prediction model for a new voyage to a selected port.



Chapter 5

Conclusion

This thesis aimed to apply machine learning models for predicting dry bulk vessel des-
tinations in three distinct contexts: port-to-port, laden, and ballast voyages. A signific-
ant component of this process involved the collection and compilation of trajectories
from AIS data, which necessitated considerable data cleaning due to its extensive and
complicated nature.

An initial prediction for the most likely trajectory destination was computed using
the Symmetrized Segment Path Distance, which was compared to the Hausdorff dis-
tance. It was shown that Symmetrized Segment Path Distance performed better on
average than the Hausdorff distance. The most likely trajectory destination predic-
tion performed better in general when the vessel had embarked far on the voyage.
The best most likely trajectory destination accuracy was found for Very-Large Ore
Carrier vessels, at around 58 %.

The most likely trajectory destination prediction was used as a feature alongside ad-
ditional factors pertaining to the vessel and its trajectory to enhance the predictive
machine learning models. Various combinations of features (static, trajectory, static +
trajectory, and static + trajectory + destination) were considered for the models.

111
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Through extensive evaluation and testing of these models on the aforementioned fea-
ture sets, it was established that the combination of static + trajectory + destination
data provided the most accurate predictions. Metrics such as accuracy, average pre-
diction distance error, median prediction distance error, and the Brier score were used
to evaluate the models in this multi-class classification problem.

The models’ accuracy ranged from 50-83% for predicting ports, and from 75-96%
for predicting countries. The highest performance was seen with larger vessels, not-
ably Very Large Ore Carriers, when it came to port-to-port predictions. The top score
achieved was an 83% accuracy rate for Capesize ballast voyages. Interestingly, the
prediction of laden voyage destinations proved more challenging compared to those
of ballast and port-to-port journeys.

The utility and significance of various features were further examined using permuta-
tion feature importance. Moreover, SHAP values were utilized to investigate how par-
ticular features influenced predictions for individual classes (i.e., ports). It was found
that the influence of certain features on predictions for specific classes was reason-
ably expected, given the underlying structure of the trade industry. This observation
offered invaluable insights into the dynamics of feature importances across different
classes.

For laden voyages, the features of the two most common unloadports, Caofeidian and
Jingtang, were investigated with SHAP values, and it was found that the most likely
trajectory destination longitude of the vessel was the most important feature. It was
also found that nearly all voyages from Peru to Caofeidian were correctly predicted.
A free trade agreement, the first between China and a South American country, was
entered in 2009, which might explain why this prediction was often correct.

For ballast voyages, the model demonstrated the highest false positive rates for the
Australian ports of Port Walcott, Port Hedland, and Dampier. Given that these ports
are instrumental in the global iron ore trade, a detailed examination of the predictive
model’s behavior was conducted here as well. This analysis found that lower values
for vessel deadweight, length, and depth tended to reduce the likelihood of a vessel’s
destination being predicted as one of these ports, implying that the model has learned
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that these major iron ore loading ports are predominantly visited by larger vessels. The
model also revealed a positive correlation between the final longitudinal coordinate of
a vessel and its likelihood of predicting a positive class, demonstrating how geographic
coordinates can provide important insights into vessel movements.

Looking ahead, there is potential to enhance the performance of the predictive mod-
els. For instance, incorporating economic data and seasonal trends could be explored
as avenues for improvement. Furthermore, refinement of the most likely trajectory
destination calculations could potentially yield more accurate predictions. One ap-
proach not covered is using a machine learning model to first predict the amount of
days remaining of a voyage, and then use a recurrent neural network to predict the
upcoming trajectory points, and then finally map the last one of these to the closest
port.

As maritime operations continue to evolve and more data becomes available, the pre-
dictive models will likely improve, aiding decision-making in this important sector.
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