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Abstract

The aim of this thesis is to present and explore a symplectic approach to Gabor
analysis – Gabor analysis is a subject in time-frequency analysis with close
ties to information and communication technologies as well as to theoretical
and applied physics. Whereas the structure of Gabor frames over the two-
dimensional time-frequency plane is well-understood, the higher-dimensional
cases remain much more elusive. We present and develop a classification
scheme for lattices in arbitrary dimensions; we show that the structure of
Gabor frames over a given lattice is uniquely determined by a set of symplectic
forms determined by the lattice. This framework is built on the metaplectic
representation, which relates Gabor systems over lattices determining the
same symplectic forms via unitary transformations.

It is becoming increasingly clear that equivalence bimodules over noncom-
mutative tori provide a powerful framework for Gabor analysis. We also lift
this classification scheme to the setting of such bimodules by constructing
isomorphisms between equivalence bimodules associated to lattices which
determine the same symplectic forms. We do this by extending metaplectic
transformations. In addition to this, we explore how the notion of Morita
equivalence of noncommutative tori relates to duality in Gabor analysis from
a novel point of view. This leads us to consider the notion of partially adjoint
lattices.

The thesis also contains a detailed introduction to the theory of C*-
algebras, Hilbert C*-modules and the equivalence bimodules that feature
in Gabor analysis. We have attempted to build the theory in a systematic
manner while assuming minimal prerequisite knowledge.



Sammendrag

Målet med denne avhandlingen er å presentere og utforske en symplektisk
tilnærming til gaboranalyse – gaboranalyse er et emne innen tid-frekvens-
analyse som er nært knyttet b̊ade til informasjon- og kommunikasjonste-
knologier og til teoretisk og anvendt fysikk. Teorien om gaborrammer over
det todimensjonale tid-frekvens-planet er godt utviklet, men tilfellet med et
vilk̊arlig antall dimensjoner har vist seg å være mer komplisert. Vi gjør rede
for og videreutvikler et system for klassifisering av gitter i et vilk̊arlig antall
dimensjoner; vi viser at strukturen til gaborrammer over et gitt gitter kun er
avhengig av en mengde med symplektiske former bestemt av gitteret. Dette
rammeverket bygger p̊a den metaplektiske representasjonen, som relaterer
gaborsystemer over gitter som bestemmer de samme symplektiske formene
via unitære transformasjoner.

Det blir stadig mer tydelig at ekvivalens-bimoduler over ikkekommutative
toruser utgjør et nyttig rammeverk for gaboranalyse. Vi løfter ogs̊a dette
klassifiseringssystemet til disse ekvivalens-bimodulene ved å konstruere iso-
morfier mellom ekvivalens-bimoduler assosiert med gitter som bestemmer
de samme symplektiske formene. Dette gjør vi ved å utvide metaplektiske
transformasjoner. I tillegg til dette utforsker vi hvordan moritaekvivalens
mellom ikkekommutative toruser er relatert til dualiteten i gaboranalyse fra
et nytt perspektiv. Dette fører oss til å betrakte konseptet delvis adjungerte
gitter.

Utover dette inneholder avhandlingen en detaljert introduksjon til teorien
om C*-algebraer, Hilbert C*-moduler og ekvivalens-bimodulene som inng̊ar i
gaboranalyse. Vi har forsøkt å bygge teorien p̊a en systematisk måte som
antar færrest mulig forkunnskaper.
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Introduction

Gabor analysis is a subject in time-frequency analysis. As an independent
branch of mathematics, time-frequency analysis is quite modern – emerging
only around the year 1980. Its historical roots, however, stretch across the
20th century and are deeply entangled with the origins of quantum mechanics
as well as the development of information and communication technologies.
It is a rapidly growing and already vast interdisciplinary subject, of interest
to mathematicians, physicist and engineers alike.

The aim of time-frequency analysis, broadly construed, is to provide a
framework for analysing the frequency spectrum of a signal locally. While
the Fourier transform lets us study the frequency spectrum of a signal, it
provides only global information – it cannot answer the question of when a
given frequency is prominent. In this manner, time-frequency analysis is a
refinement of Fourier theory: the two domains of Fourier theory, the time
and frequency domains, unify to form the time-frequency plane. A function
no longer has one representation in the time domain and another in the
frequency domain, but a single time-frequency representation: a function on
the time-frequency plane.

The subject of Gabor analysis is where the historical and contemporary
ties to engineering and signal processing are most apparent. Indeed, the
person after which the subject is named, Dennis Gabor, was an electrical
engineer (as well as a physicist). The foundational idea is to replace the
time-frequency plane with a discrete set, typically a lattice. This is of course
a prerequisite for numerical time-frequency analysis. In mathematical terms,
we are studying classes of highly structured and countable bases for spaces
of functions on the time-frequency plane. To be more precise, we are not
studying bases, but frames, which generalize the notion of bases. The frames
that feature in Gabor analysis are known as Gabor frames. For every choice
of lattice, there is an associated set of Gabor frames supported by that lattice.

There is a notion of duality that shapes the subject of Gabor analysis: for
every lattice on the time-frequency plane, there is an associated lattice, referred
to as its adjoint lattice. The properties of a lattice and its adjoint, from the

1



2 Introduction

vantage of Gabor analysis, are in many ways dual to each other. Over the last
two decades, my advisor, Franz Luef, has uncovered an intriguing connection
between duality in Gabor analysis and the notion of equivalence bimodules.
These are quite abstract constructions motivated by the representation theory
of C*-algebras, which are particular kinds of algebras of operators. Just as
Fourier theory benefits greatly from the abstract theory of Hilbert spaces,
Gabor analysis is enriched by the theory of C*-algebras. This connection
between duality and equivalence bimodules is a fascinating and promising
aspect of this relationship.

Much is know about Gabor frames in the case of one-dimensional signals,
corresponding to a two-dimensional time-frequency plane. The general case,
with signals of arbitrary dimension, has proven to be much more unwieldy.
The main argument of this thesis is that the structure of Gabor frames
supported by a given lattice is uniquely determined by a certain symplectic
structure determined by the lattice. This leads to a classification scheme
for lattices in Gabor analysis. This is not really relevant in the case of one-
dimensional signals, for there is essentially a unique symplectic structure in
that case. Our goal is to show how precise and powerful this classification
scheme is in the general case. In particular, we will show how this method
of classification can be lifted to the setting of equivalence bimodules. This
approach is based on ideas by Luef.

Symplectic geometry is a deep mathematical subject with close ties to both
classical and quantum mechanics. We will spend the first chapter introducing
those parts of the subject that will be of relevance to us. Because the theory of
C*-algebras features so prominently in our constructions, we have devoted the
second chapter to a detailed introduction to the subject. The third chapter
serves as an introduction to time-frequency analysis and Gabor analysis. In
particular, we wish to highlight Subsection 3.2.2: this is where we provide a
more precise outline of our classification scheme. The reader who is already
familiar with Gabor analysis may want to peek at this subsection in order to
get a better understanding of what we aim to achieve.

The equivalence bimodules introduced into Gabor analysis by Luef are
particular kinds of Hilbert C*-modules over noncommutative tori. Chapters
4 and 5 are spent introducing these notions and constructing the relevant
bimodules in great detail. In Chapter 5, we also spend some time further
exploring the connection between duality and equivalence bimodules.

Finally, in Chapter 6, we introduce metaplectic transformations. These
are the transformations that facilitate our classification scheme – hence the
title. The final subsection, Subsection 6.1.3, contains the precise formulation
of this scheme. In the end, the proofs are fairly simple; it is the development
of all the required background material that fills the pages.
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Notation and conventions

Throughout this thesis, d will denote an arbitrary positive integer and {ej}2dj=1

will denote the standard basis for R2d. The set of all 2d× 2d matrices over
R will be denoted by M2d(R) and we will write GL(2d,R) for its group of
invertible elements. We will frequently identify elements of M2d(R) with the
linear transformations they represent with respect to the standard basis. We
will write N0 and N1 to denote the natural numbers including and excluding
zero, respectively – we will simply write N when the distinct doesn’t matter.
For sequences N → X (for any set X), we may write either (xn)n∈N, (xn)n
or simply (xn). When it comes to linear maps, we may or may not use
parentheses for evaluations and we may or may not use the symbol ◦ when
considering compositions; the particulars of each situation dictate our choices.
Finally, overlines will be used for complex conjugation and for the closures of
sets in topological spaces (and sometimes for completions).
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Chapter 1

Linear Symplectic Algebra

This chapter is intended to serve as an introduction to the subject of linear
symplectic algebra. Our presentation is largely shaped by our needs; the
reader may consult our main source, de Gosson [15], for a much more complete
treatment.

1.1 | Symplectic Vector Spaces

1.1.1 Symplectic Forms

The structure studied in linear symplectic algebra consists of a real vector
space equipped with a symplectic form, a notion we now introduce.

1.1.1 Definition (Symplectic forms). Let V be a vector space over R. A
bilinear map Ω: V × V → R is called a symplectic form on V if it is

(i) antisymmetric: Ω(w, v) = −Ω(v, w) for all v, w ∈ V .

(ii) nondegenerate: Ω(v, w) = 0 for all v ∈ V implies that w = 0.

The pair (V,Ω) is referred to as a symplectic vector space. For w ∈ V , we
will write Ω(−, w) to denote the linear map V → R defined by Ω(−, w)(v) =
Ω(v, w).

We will almost exclusively restrict our attention to the case V = R2d. A
choice of basis lets us represent symplectic forms on R2d in terms of matrices.
We will use the standard basis {ej}2dj=1 for R2d. Fix a symplectic form Ω on
R2d, define

θij := Ω(ej, ei) for 1 ≤ i, j ≤ 2d (1.1)

5



6 Linear Symplectic Algebra

and consider the 2d × 2d-matrix θ := (θij). For z = (z1, . . . , z2d) and w =
(w1, . . . , w2d) in R2d, we find that

Ω(z, w) = Ω
( 2d∑
j=1

zjej,

2d∑
i=1

wiei

)
=

2d∑
j=1

2d∑
i=1

wiθijzj = wT θz.

The conditions for Ω to define a symplectic form translate into conditions
on the matrix θ. We capture this relationship between symplectic forms and
matrices in the following lemma and the subsequent definition.

1.1.2 Lemma. Let θ ∈M2d(R). The bilinear map Ωθ : R2d×R2d → R defined
by

Ωθ(z, w) = wT θz for z, w ∈ R2d (1.2)

is a symplectic form if and only if θ is antisymmetric and invertible, i.e. if
and only if θT = −θ and det θ ̸= 0.

Proof. Assume that Ωθ is a symplectic form. Inserting standard basis elements
into Equation (1.2) gives θij = Ωθ(ej, ei), so

θji = Ωθ(ei, ej) = −Ωθ(ej, ei) = −θij for 1 ≤ i, j ≤ 2d.

Thus, θ is antisymmetric. If θz = 0 for some z ∈ R2d, then Ωθ(z, w) = 0 for
all w ∈ R2d, so z = 0 by nondegeneracy of Ωθ. This shows that θ is invertible.

Assume now that θ is antisymmetric and invertible. Then,

Ωθ(w, z) = zT θw = (wT θT z)T = wT θT z = −wT θz = −Ωθ(z, w)

for all z, w ∈ R2d, so Ωθ is antisymmetric. Nondegeneracy follows from the
fact that Ωθ(z, θ

−T z) = zT θ−1θz = zT z for all z ∈ R2d.

1.1.3 Definition. Consider the set M2d(R) of all 2d × 2d-matrices over R
and define the subsets

T2d :=
{
A ∈M2d(R) : AT = −A

}
and S2d := T2d ∩GL(2d,R).

For θ ∈ S2d, we refer to the symplectic form Ωθ defined by Equation (1.2) as
the symplectic form represented by θ.

Lemma 1.1.2, along with the discussion prior to it, shows that symplectic
forms on R2d are in bijective correspondence with the elements of S2d.
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We now turn our attention to a particularly simple symplectic form. Let
Id denote the d× d identity matrix. The matrix

J :=

(
0 Id

−Id 0

)
(1.3)

is known as the standard symplectic matrix. It satisfies

J2 = I and J−1 = JT = −J,

where I is the 2d× 2d identity matrix. The symplectic form ΩJ represented
by J is called the standard symplectic form on R2d. If we write z = (x, ω)
and w = (y, η) with x, ω, y, η ∈ Rd, it is given by

ΩJ(z, w) = wTJz = y · ω − η · x, (1.4)

where the dot denotes the standard inner product on Rd.
It turns out that any symplectic form is related to ΩJ by a change of

basis. This is the content of Proposition 1.1.8. Before we show this, we collect
some basic facts from linear algebra regarding dual spaces and introduce some
convenient terminology.

Let V be a finite dimensional vector space over R. Linear maps τ : V → R
are referred to as linear functionals on V , and the vector space of all linear
functionals on V (with addition and scalar multiplication defined pointwise)
is called the dual space of V and denoted by V ∗.

1.1.4 Lemma. Let V be a finite dimensional vector space over R and assume
that τ1, . . . , τk ∈ V ∗ are linearly independent (for some integer k ≥ 1). Then,
the following statements are true.

(i) τ ∈ span{τ1, . . . , τk} ⇐⇒
⋂k
j=1Ker τj ⊂ Ker τ .

(ii) There exist vectors v1, . . . , vk in V such that τi(vj) = δij for 1 ≤ i, j ≤ k.

(iii) We have dim
(⋂k

j=1 Ker τj
)
= dimV − k.

Moreover, we have dimV ∗ = dimV .

Proof. The forward direction ( =⇒ ) of the first point is immediate. For
the converse, we use induction on k ≥ 1. For k = 1, the claim is that if
Ker τ1 ⊂ Ker τ , then there is some r ∈ R such that τ = rτ1. Let w ∈ V be
such that τ1(w) = 1 (linearly independent vectors are nonzero). Then,

τ(v) = τ
(
τ1(v)w +

(
v − τ1(v)w

))
= τ1(v)τ(w) for all v ∈ V
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since v − τ1(v)w ∈ Ker τ1 ⊂ Ker τ . Thus, τ = τ(w)τ1, which proves the base
case.

Let now k > 1. Our induction hypothesis is the following: for any
collection of k − 1 linearly independent functionals τ ′1, . . . , τ

′
k−1, we have that

k−1⋂
j=1

Ker τ ′j ⊂ Ker τ ′ =⇒ τ ′ ∈ span{τ ′1, . . . , τ ′k−1} (1.5)

for all τ ′ ∈ V ∗. We need to show that for any collection of k linearly
independent functional τ1, . . . , τk, we have that

k⋂
j=1

Ker τj ⊂ Ker τ =⇒ τ ∈ span{τ1, . . . , τk}

for all τ ∈ V ∗.
If τ1, . . . , τk are linearly independent, then τi (for 1 ≤ i ≤ k) is not in

the span of {τ1, . . . , τk}\{τi}. The contrapositive of our induction hypothesis
(1.5) (with τ ′ = τi and {τ ′1, . . . , τ ′k−1} = {τ1, . . . , τk}\{τi}) therefore implies
that ⋂

j∈{1,...,k}\{i}

Ker τj ̸⊂ Ker τi (for 1 ≤ i ≤ k).

Thus, we can find v1, . . . , vk such that τi(vj) = δij for 1 ≤ i, j ≤ k. This also
shows how (i) implies (ii) in general. We then have that

v −
k∑
j=1

vjτj(v) ∈
k⋂
j=1

Ker τj for all v ∈ V.

Now, if τ ∈ V ∗ is such that
⋂k
j=1Ker τj ⊂ Ker τ , then

τ(v) = τ

( k∑
j=1

vjτj(v) +
(
v −

k∑
j=1

vjτj(v)
))

=
k∑
j=1

τ(vj)τj(v),

for all v ∈ V . Thus, τ =
∑k

j=1 τ(vj)τj ∈ span{τ1, . . . , τk}, which completes
the proof of the first point.

We have already seen that (ii) follows from (i). To prove (iii), consider
the linear map T : V → Rk defined by

T (v) =
(
τ1(v), . . . , τk(v)

)
for v ∈ V.
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Since
⋂k
j=1Ker τj = KerT , the rank-nullity theorem applied to T implies that

dim
( k⋂
j=1

Ker τj

)
+ dimT (V ) = dimV.

The result now follows if we can show that dimT (V ) = k, i.e. that T
is surjective. By (ii), we can find v1, . . . , vk such that τi(vj) = δij, and
then T (v1), . . . , T (vk) is the standard basis for Rk, so T is surjective. This
concludes the proof of (iii) and also shows that dimV ∗ ≤ dimV (if we could
take k > dimV , the rank nullity theorem would imply that dim(KerT ) < 0).

In order to see that dimV ∗ ≥ dimV , let n := dimV and let (v1, . . . , vn)
be a basis for V . We can define linear functionals τ1, . . . , τn by τj(vi) = δij
for 1 ≤ i, j ≤ n. This gives

⋂
j∈{1,...,n}\{i}Ker τj ̸⊂ Ker τi (consider vi), so

{τ1, . . . , τn} is a linearly independent set by (i), hence dimV ∗ ≥ n. This
concludes the proof.

We will frequently appeal to the first part of the following lemma. We
will have no use for the second part, but it gives us an alternate view of
symplectic forms which seems worth mentioning.

1.1.5 Lemma. Let Ω be a symplectic form on R2d. The linear map

R2d → (R2d)∗

w 7→ Ω(−, w)

is then an isomorphism.
Conversely, if S : R2d → (R2d)∗ is a linear isomorphism such that w ∈

KerS(w) for all w ∈ R2d, then the bilinear map (z, w) 7→ S(w)(z) is a
symplectic form on R2d.

Proof. By nondegeneracy of Ω, we have Ω(−, w) = 0 if and only if w = 0.
This proves that the map in question is injective, so it is an isomorphism
since dimR2d = dim(R2d)∗ by Lemma 1.1.4.

If S : R2d → (R2d)∗ is as in the statement of the lemma, then (z, w) 7→
S(w)(z) is nondegenerate since S(w)(z) = 0 for all z ∈ R2d implies that
S(w) = 0 and S is injective. Finally, antisymmetry follows from

0 = S(w + z)(w + z) = S(w)(w) + S(w)(z) + S(z)(w) + S(z)(z)

= S(w)(z) + S(z)(w)

for all z, w ∈ R2d.
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The following terminology will be useful. It is borrowed from differential
geometry.

1.1.6 Definition (Pullbacks of bilinear maps). Let V andW be vector spaces
over R, let T : V → W be a linear map and let Γ: W ×W → R be a bilinear
map. The bilinear map

T ∗Γ: V × V → R
(v, w) 7→ T ∗Γ(v, w) := Γ(Tv, Tw)

is called the pullback of Γ by T .
In the case that V = W = R2d and A ∈M2d(R) represents a linear map,

we will write A∗Γ for the pullback of Γ by the linear map represented by A,
i.e. A∗Γ(z, w) = Γ(Az,Aw).

Pullbacks are a very natural and simple notion, for T ∗Γ is essentially just
the composition “Γ after T”, but accounting for the fact that Γ takes two
arguments. This is made precise by introducing the map T × T : V × V →
W ×W defined by (v, w) 7→ (Tv, Tw), for then T ∗Γ = Γ ◦ (T × T ). The
ordering-reversing property shown in the following lemma is a reflection of
this fact.

1.1.7 Lemma (Basic properties of pullbacks). Let A,B ∈ M2d(R) and
let Γ be a bilinear map on R2d. Then, (AB)∗Γ = B∗(A∗Γ). Moreover, if
A ∈ GL(2d,R), then (A−1)∗(A∗Γ) = Γ.

Proof. Let z, w ∈ R2d. Then,

B∗(A∗Γ)(z, w) = A∗Γ(Bz,Bw) = Γ(ABz,ABw) = (AB)∗Γ(z, w),

so that B∗(A∗Γ) = (AB)∗Γ. If A ∈ GL(2d,R), then (A−1)∗(A∗Γ) = Γ follows
from B∗(A∗Γ) = (AB)∗Γ by setting B = A−1.

We have now gathered the tools we need to see how all symplectic forms
relate to the standard symplectic form.

1.1.8 Proposition (Ω-symplectic bases). Let Ω be a symplectic form on R2d.
Then, there exists a basis {v1, . . . , vd, w1, . . . , wd} for R2d such that

Ω(vi, vj) = Ω(wi, wj) = 0 and Ω(wi, vj) = δij

for 1 ≤ i, j ≤ d. A basis of this form is referred to as an Ω-symplectic basis.
Moreover, the matrix A ∈ GL(2d,R) defined by

Avj = ej and Awj = ed+j for 1 ≤ j ≤ d

satisfies Ω = A∗ΩJ . If Ω is represented by θ ∈ S2d, then Ω = A∗ΩJ is
equivalent to ATJA = θ.
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Proof. We will prove the existence of the Ω-symplectic basis by induction
on the integer d ≥ 1. We begin with the base case d = 1. Pick any non-
zero w ∈ R2. Then there exists some v ∈ R2 such that Ω(w, v) ̸= 0, for
otherwise Ω would be degenerate. Scaling v and using bilinearity, we can
assume that Ω(w, v) = 1. By antisymmetry, Ω(v, v) = 0 = Ω(w,w). Since
Ω(w, rw) = rΩ(w,w) = 0 for all r ∈ R, v and w must be linearly independent.
Thus, {v, w} is a basis of the desired form.

Assume now that d > 1 and that the result has been shown for R2(d−1).
Using the same argument as for the base case, we can find two (necessarily
linearly independent) vectors v1 and w1 such that Ω(w1, v1) = 1. We will
show that

R2d = Rv1 ⊕ Rw1 ⊕
(
KerΩ(−, v1) ∩KerΩ(−, w1)

)
. (1.6)

If t, s ∈ R were such that tw1 + sv1 ∈ KerΩ(−, v1) ∩KerΩ(−, w1), then

0 = Ω(−, v1)
(
tw1 + sv1

)
= tΩ(w1, v1) + sΩ(v1, v1) = t,

and similarly we find that s = 0. This shows that the sum on the right
hand side of Equation (1.6) is direct. To see that it adds up to R2d, we
count dimensions. The linear functionals Ω(−, v1) and Ω(−, w1) are linearly
independent (by Lemma 1.1.5 and linear independence of v1 and w1). Thus,
by point (iii) of Lemma 1.1.4, we can conclude that

dim
(
KerΩ(−, v1) ∩KerΩ(−, w1)

)
= 2d− 2,

which gives Equation (1.6).
By the induction hypothesis, we can choose a basis {v2, . . . , vd, w2, . . . , wd}

for KerΩ(−, v1) ∩KerΩ(−, w1) ∼= R2(d−1) such that

Ω(vi, vj) = Ω(wi, wj) = 0 and Ω(wi, vj) = δij for 2 ≤ i, j ≤ d.

Since we know that

{v2, . . . , vd, w2, . . . , wd} ⊂ KerΩ(−, v1) ∩KerΩ(−, w1)

and that Ω(w1, v1) = 1, the basis {v1, . . . , vd, w1, . . . , wd} has the desired form.
This concludes the proof that there exists an Ω-symplectic basis.

We now turn to the matrix A ∈ GL(2d,R) defined by Avj = ej and
Awj = ed+j for 1 ≤ j ≤ d. We have

ΩJ(Awi, Avj) = ΩJ(ed+i, ej) = δij = Ω(wi, vj) for 1 ≤ i, j ≤ d,
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and similarly

ΩJ(Avi, Avj) = 0 = Ω(vi, vj) and ΩJ(Awi, Awj) = 0 = Ω(wi, wj)

for 1 ≤ i, j ≤ d. This shows that the two bilinear forms A∗ΩJ and Ω agree
on all pairs of the basis {v1, . . . , vd, w1, . . . , wd}, so they must be equal.

Finally, if Ω is represented by θ ∈ S2d, i.e. Ω = Ωθ, then A
∗ΩJ = Ωθ means

that

wT θz = Ωθ(z, w) = A∗ΩJ(z, w) = (Aw)TJ(Az) = wT (ATJA)z

for all z, w ∈ R2d. Taking z and w to be standard basis elements, we see that
this holds if and only if θij = (ATJA)ij for 1 ≤ i, j ≤ 2d, i.e. if and only if
θ = ATJA.

1.1.2 Lagrangian Subspaces and Polarizations

In Lemma 1.1.5 we saw how a symplectic form on R2d determines an iso-
morphism between R2d and its dual. We will now investigate a more subtle
relation between symplectic forms and duality. We will show that a symplectic
form Ω on R2d decomposes R2d as the direct sum of Rd and its dual (Rd)∗ in
such a manner that Ω takes a particularly nice form. We should note that
this decomposition is far from unique. In the next section we will obtain
a precise characterization of the redundancy (see the paragraph preceding
Lemma 1.2.7).

To introduce the topic, let’s momentarily widen our perspective and
consider an arbitrary finite-dimensional vector space L over R. There is a
canonical symplectic form Ωc on the (external) direct sum L⊕ L∗ given by

Ωc : (L⊕ L∗)× (L⊕ L∗) → R(
(v1, τ1), (v2, τ2)

)
7→ τ2(v1)− τ1(v2)

(1.7)

Symplectic forms of this kind appear naturally and play a central role in the
Hamiltonian formulation of classical mechanics.

Note that

Ωc
(
(v1, 0), (v2, 0)

)
= 0 for all v1, v2 ∈ L

and Ωc
(
(0, τ1), (0, τ2)

)
= 0 for all τ1, τ2 ∈ L∗.

In the terminology of the upcoming definition, the subspaces L ⊕ {0} ∼= L
and {0}⊕L∗ ∼= L∗ would be referred to as Ωc-Lagrangian subspaces of L⊕L∗

and the pair (L⊕ {0}, {0} ⊕ L∗) as an Ωc-polarization of the space.
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1.1.9 Definition (Lagrangian subspaces). Let Ω be a symplectic form on
R2d.

(i) A d-dimensional subspace L ⊂ R2d is called Ω-Lagrangian if Ω|L×L = 0
(we say that Ω vanishes on L).

(ii) Two Ω-Lagrangian subspaces L and L′ are said to be transversal if
V = L⊕ L′. In this case, we refer to (L,L′) an Ω-polarization of R2d.

When Ω = ΩJ , we will omit the Ω-prefix and speak of Lagrangian subspaces
and polarizations of R2d.

We note that our main reference, de Gosson [15], does not use the termi-
nology of polarizations, but speaks of pairs of transversal Lagrangian planes
instead.

We will now see that all Ω-polarizations (L,L′) of R2d determine a de-
composition of R2d as a direct sum of L and its dual L∗, with the symplectic
form Ω taking the canonical form. Note that Proposition 1.1.8 on symplectic
bases shows that there exists an Ω-polarization for any symplectic form Ω on
R2d (take L = span{v1, . . . , vd} and L′ = span{w1, . . . , wd}).

1.1.10 Proposition. Let Ω be a symplectic form on R2d and let (L,L′) be
an Ω-polarization of R2d. The linear map

T : L′ → L∗

w 7→ Ω(−, w)|L

is then an isomorphism. Moreover, introducing the isomorphism

I ⊕ T : L⊕ L′ → L⊕ L∗

v + w 7→ (v, Tw) (where v ∈ L and w ∈ L′)

and letting Ωc denote the canonical symplectic form on L ⊕ L∗ defined by
Equation (1.7), we have that Ω = (I ⊕ T )∗Ωc.

Proof. To verify that T is an isomorphism, all we need to show is that it is
injective, since dimL′ = d = dimL and dimL = dimL∗ by Lemma 1.1.4.

Let w ∈ L be such that Ω(−, w)|L = Tw = 0. For any z ∈ R2d = L⊕ L′,
we can write z = zL + zL′ with zL ∈ L and zL′ ∈ L′. We now find that

Ω(z, w) = Ω(zL, w) + Ω(zL′ , w) = Ω(−, w)|L(zL) + Ω(zL′ , w) = 0,

where Ω(zL′ , w) = 0 since zL′ , w ∈ L′ and L′ is Ω-Lagrangian. Since z ∈ R2d

was arbitrary and Ω is nondegenerate, we must have w = 0, so T is injective.
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For the identity Ω = (I ⊕ T )∗Ωc, let v1, v2 ∈ L and w1, w2 ∈ L′. Then,

(I ⊕ T )∗Ωc(v1 + w1, v2 + w2) = Ωc
(
(v1, Tw1), (v2, Tw2)

)
= Tw2(v1)− Tw1(v2)

= Ω(v1, w2)− Ω(v2, w1)

= Ω(v1 + w1, v2 + w2),

where the last equality relies on the fact that L and L′ are Ω-Lagrangian.
This concludes the proof.

Consider now the canonical symplectic form Ωc on Rd ⊕ (Rd)∗. If we
identify (Rd)∗ with Rd using the standard inner product, we obtain the
standard symplectic form ΩJ on R2d. This is one reason as to why the
standard symplectic form is particularly natural.

Before embarking on the study of linear maps preserving symplectic forms,
which will lead to the notion of symplectic groups, we introduce the symplectic
analogue of orthogonal complements.

1.1.11 Lemma (Ω-complements). Let Ω be a symplectic form on R2d and let
V ⊂ R2d be a subspace. Define the Ω-complement of V to be the subspace

V Ω := {z ∈ R2d : Ω(z, v) = 0 for all v ∈ V }.

Let V,W ⊂ R2d be subspaces. Then,

(i) {0}Ω = R2d, (R2d)Ω = {0} and (V Ω)Ω = V .

(ii) V Ω ∩WΩ = (V +W )Ω.

(iii) (V ∩W )Ω = V Ω +WΩ.

(iv) dimV + dimV Ω = 2d.

(v) V is Ω-Lagrangian if and only if V Ω = V .

Proof. We begin with (i). The equalities {0}Ω = R2d and (R2d)Ω = {0}
follow from bilinearity and nondegeneracy of Ω, respectively. If v ∈ V , then
Ω(v′, v) = −Ω(v, v′) = 0 for all v′ ∈ V Ω (by definition of V Ω), so v ∈ (V Ω)Ω.
Thus, V ⊂ (V Ω)Ω. The opposite inclusion is more subtle, but the results we
have developed makes the proof fairly quick.

If V = {0}, then (V Ω)Ω = (R2d)Ω = {0}, so we assume that V ̸= {0}. Let
{v1, . . . , vk} be a basis for V . If v ∈ (V Ω)Ω, then V Ω ⊂ KerΩ(−, v), and so

k⋂
j=1

KerΩ(−, vj) = V Ω ⊂ KerΩ(−, v).
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By Lemma 1.1.5 (i.e. the fact that w 7→ Ω(−, w) is an isomorphism), the
linear functionals Ω(−, v1), . . . ,Ω(−, vk) are linearly independent, and so

Ω(−, v) ∈ span
{
Ω(−, v1), . . . ,Ω(−, vk)

}
by point (i) of Lemma 1.1.4. Appealing again to Lemma 1.1.5, this gives
v ∈ span{v1, . . . , vk} = V .

For (ii), assume first that u ∈ V Ω ∩WΩ. If v ∈ V and w ∈ W , then
Ω(u, v + w) = Ω(u, v) + Ω(u,w) = 0, so u ∈ (V +W )Ω. For the converse
inclusion, let u ∈ (V +W )Ω. Since V ⊂ V +W and W ⊂ V +W , we find
that u ∈ V Ω ∩WΩ.

Point (iii) follows from (ii) and (i) by noting that

V ∩W = (V Ω)Ω ∩ (WΩ)Ω = (V Ω +WΩ)Ω

and taking Ω-complements (note also that V Ω +WΩ is a subspace).
We now turn to (iv). If V = {0}, the result follows from (i). If V is

nonzero, let {v1, . . . , vk} be a basis for V . Then, V Ω =
⋂k
j=1KerΩ(−, vj).

As in the proof of (i), Lemma 1.1.5 implies that Ω(−, v1), . . . ,Ω(−, vk) are
linearly independent, and point (iii) of Lemma 1.1.4 implies that

dimV Ω = dim

( k⋂
j=1

KerΩ(−, vj)
)

= 2d− k = 2d− dimV,

as desired.
We are now left only with (v). If V is Ω-Lagrangian, then V ⊂ V Ω since

Ω|V×V = 0. Since V Ω has dimension 2d − d = d, we must have V = V Ω.
Conversely, if V = V Ω, we must have dimV = d and Ω|V×V = 0, so V is
Ω-Lagrangian.

1.2 | The Symplectic Group

1.2.1 Definition and Characterizations

We now introduce the notion of structure preserving maps in linear symplectic
algebra.

1.2.1 Definition (Ω-symplectic matrices). Let Ω be a symplectic form on
R2d. A matrix S ∈M2d(R) is called Ω-symplectic if

Ω(Sz, Sw) = Ω(z, w) for all z, w ∈ R2d,

i.e. if S∗Ω = Ω. We write SpΩ(2d,R) for the set of all Ω-symplectic matrices.
When Ω = ΩJ , we will omit the Ω-prefix and speak of symplectic matrices
and write Sp(2d,R) for the set of all symplectic matrices.
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1.2.2 Proposition. Let Ω be a symplectic form on R2d. The set SpΩ(2d,R)
of all Ω-symplectic matrices is a subgroup of GL(2d,R).

Proof. It is clear that SpΩ(2d,R) is closed under multiplication of matrices
and that it contains the identity, so we only show that SpΩ(2d,R) ⊂ GL(2d,R)
and that the inverse of an Ω-symplectic matrix is Ω-symplectic.

Let S ∈ SpΩ(2d,R) and assume that z ∈ R2d is such that Sz = 0. Then
Ω(z, w) = Ω(Sz, Sw) = 0 for all w ∈ R2d, so z = 0 by nondegeneracy of Ω.
This shows that S is injective, hence invertible. Since S is Ω-symplectic, we
find that

Ω(S−1z, S−1w) = Ω
(
S(S−1z), S(S−1w)

)
= Ω(z, w) for all z, w ∈ R2d,

so S−1 is Ω-symplectic as well.

We will refer to SpΩ(2d,R) as the Ω-symplectic group and Sp(2d,R) simply
as the symplectic group. The following lemma shows that there is no loss of
generality in restricting our attention to Sp(2d,R), as we often will.

1.2.3 Lemma. Let Ω be a symplectic form on R2d and let A ∈ GL(2d,R) be
such that A∗ΩJ = Ω (see Prop. 1.1.8). Then

SpΩ(2d,R) = A−1
(
Sp(2d,R)

)
A

and ASpΩ(2d,R) = Sp(2d,R)A.

Proof. Let S ∈ Sp(2d,R). By Lemma 1.1.7 on pullbacks, we have (A−1)∗Ω =
ΩJ and

(A−1SA)∗Ω = (SA)∗
(
(A−1)∗Ω

)
= (SA)∗ΩJ = A∗(S∗ΩJ) = A∗ΩJ = Ω,

so A−1SA ∈ SpΩ(2d,R). Thus, A−1(Sp(2d,R))A ⊂ SpΩ(2d,R).
If SΩ ∈ SpΩ(2d,R), a similar calculation gives ASΩA

−1 ∈ Sp(2d,R), so

SΩ = A−1(ASΩA
−1)A ∈ A−1

(
Sp(2d,R)

)
A,

which shows that SpΩ(2d,R) = A−1(Sp(2d,R))A.
Since GL(2d,R) is a group, left multiplication by A is a bijection of

GL(2d,R). Since Sp(2d,R) and SpΩ(2d,R) are subsets of GL(2d,R), we find
that ASpΩ(2d,R) = Sp(2d,R)A as well.

Recall that symplectic forms on R2d correspond precisely to antisymmetric
matrices in GL(2d,R), the set of which is denoted by S2d (Definition 1.1.3),
and that we write Ωθ for the symplectic form represented by θ ∈ S2d. To avoid
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towers of subscripts, we will write Spθ(2d,R) := SpΩθ
(2d,R). This is in line

with our convention of identifying matrices with the linear transformations
they represent; here, we are identifying matrices with the bilinear forms they
represent.

We now characterize membership in Spθ(2d,R) in terms of a simple matrix
equation.

1.2.4 Lemma. Let θ ∈ S2d and S ∈ M2d(R). Then, S ∈ Spθ(2d,R) if and
only if ST θS = θ. In particular (when θ = J), we have S ∈ Sp(2d,R) if and
only if STJS = J .

Proof. We have S ∈ Spθ(2d,R) if and only if Ωθ(Sz, Sw) = Ωθ(z, w) for all
z, w ∈ R2d. In other words, S ∈ Spθ(2d,R) if and only if

wT (ST θS)z = (Sw)T θ(Sz) = Ωθ(Sz, Sw) = Ωθ(z, w) = wT θz

for all z, w ∈ R2d. Taking z and w to be standard basis elements, we see that
this holds if and only if (ST θS)ij = θij for 1 ≤ i, j ≤ 2d, i.e. if and only if
ST θS = θ.

Since JT = −J = J−1, we have JTJJ = J , so J ∈ Sp(2d,R). Calling J
the standard symplectic matrix is therefore consistent with our definition
of symplectic matrices. We emphasize that J appears in our theory in two
distinct ways: it is both the matrix in S2d representing the standard symplectic
form, and it represents a linear transformation preserving the standard
symplectic form. It is important to understand the distinction between
matrices representing symplectic forms, i.e. S2d, and matrices preserving the
standard symplectic form, i.e. Sp(2d,R). Symplectic matrices refers to the
latter kind.

Since J has a simple block-structure, Lemma 1.2.4 suggests that it may be
advantageous to block-decompose symplectic matrices. The following lemma
shows that this indeed is this case.

1.2.5 Lemma. Let S ∈ GL(2d,R) and write

S =

(
A B

C D

)
where A,B,C,D ∈Md(R).

We then have

S ∈ Sp(2d,R) ⇐⇒ S−1 =

(
DT −BT

−CT AT

)
.

Moreover, if S ∈ Sp(2d,R), then ST ∈ Sp(2d,R).
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Proof. Using the fact that J−1 = −J , we have

STJS = J ⇐⇒ (−JSTJ)S = I ⇐⇒ −JSTJ = S−1.

The claimed equivalence now follows from the calculation

−JSTJ =

(
0 −Id
Id 0

)(
AT CT

BT DT

)(
0 Id

−Id 0

)

=

(
0 −Id
Id 0

)(
−CT AT

−DT BT

)
=

(
DT −BT

−CT AT

)
.

If S−1 = −JSTJ , then (using that JT = −J)

(ST )−1 = (S−1)T = (−JSTJ)T = JT (ST )T (−J)T = −J(ST )TJ

shows that ST ∈ Sp(2d,R).

1.2.2 A Convenient Set of Generators

Our goal for this subsection is to prove the following proposition, which gives
us a very convenient set of generators for Sp(2d,R).

1.2.6 Proposition (Generators of the symplectic group). For each symmetric
matrix P T = P ∈Md(R) and invertible matrix L ∈ GL(d,R), define

VP =

(
Id 0

−P Id

)
and ML =

(
L−1 0

0 LT

)
.

Then,

G := {VP : P T = P ∈Md(R)} ∪ {ML : L ∈ GL(d,R)} ∪ {J}

generates Sp(2d,R), which is to say that G ⊂ Sp(2d,R) and that every
S ∈ Sp(2d,R) can be written as a finite product of elements of G.

The proof of Proposition 1.2.6 turns out to be somewhat involved, for it
relies on another factorization of symplectic matrices which seems difficult to
describe explicitly. This factorization is the content of Lemma 1.2.10, after
which we will prove Proposition 1.2.6. There is another proof of Proposition
1.2.6 which relies on topology, but which would be be no less involved at our
stage of development. An instance of this proof can be found in Folland [14,
Proposition 4.10 on p. 174]. We have opted for the algebraic proof given by de
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Gosson [15, Corollary 63 on p. 40], which has the added benefit of deepening
our understanding of Ω-polarizations of R2d.

It is not difficult to show that if S ∈ SpΩ(2d,R) and if (L,L′) is an Ω-
polarization of R2d, then (S(L), S(L′)) is also an Ω-polarization of R2d. The
following lemma shows that any two Ω-polarizations of R2d are related by an
Ω-symplectic transformation. Thus, if we are given one Ω-polarization, we
obtain all of them by acting with the Ω-symplectic group.

1.2.7 Lemma. Let Ω be a symplectic form on R2d and let (L,L′) and (K,K ′)
be two Ω-polarizations of R2d. Then, there exists an S ∈ SpΩ(2d,R) such that
S(L) = K and S(L′) = K ′.

Proof. Let {w1, . . . , wd} be a basis for L′. By Lemma 1.1.10, the linear
functionals {Ω(−, w1)|L, . . . ,Ω(−, wd)|L} form a basis for L∗. By point (ii)
of Lemma 1.1.4, we can now find v1, . . . , vd ∈ L such that Ω(vi, wj) = δij
for 1 ≤ i, j ≤ d. These vectors must be linearly independent, for if some
vj was in the span of the other v’s, we would have Ω(vj, wj) = 0. Thus,
{v1, . . . , vd} is a basis for L. Since L and L′ are Lagrangian and R2d = L⊕L′,
{v1, . . . , vd, w1, . . . , wd} is an Ω-symplectic basis for R2d, i.e.

Ω(vi, vj) = Ω(wi, wj) = 0 and Ω(wi, vj) = δij

for 1 ≤ i, j ≤ d. By Proposition 1.1.8, the matrix A ∈ GL(2d,R) mapping
{v1, . . . , vd, w1, . . . , wd} to {ej}2dj=1 satisfies Ω = A∗ΩJ .

Repeating the argument forK andK ′, we similarly obtain an Ω-symplectic
basis {v′1, . . . , v′d, w′

1, . . . , w
′
d} such that

K = span{v′1, . . . , v′d} and K ′ = span{w′
1, . . . , w

′
d}

and the matrix B ∈ GL(2d,R) mapping this basis to the standard one also
satisfies Ω = B∗ΩJ .

If we set S = B−1A, then S maps the basis {v1, . . . , vd, w1, . . . , wd} to
the basis {v′1, . . . , v′d, w′

1, . . . , w
′
d}, so S(L) = K and S(L′) = K ′. Moreover,

appealing to Lemma 1.1.7 on pullbacks, we find that (B−1)∗Ω = ΩJ and that

S∗Ω = (B−1A)∗Ω = A∗((B−1)∗Ω)
)
= A∗ΩJ = Ω,

so S ∈ SpΩ(2d,R), which concludes the proof.

We will need the following simple lemma from linear algebra.

1.2.8 Lemma. Let V, V1 and V2 be subspaces of R2d. If V \(V1 ∪ V2) = ∅,
then V ⊂ V1 or V ⊂ V2.
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Proof. First of all, it suffices to show that

V \(W1 ∪W2) = ∅ =⇒ V ⊂ W1 or V ⊂ W2

in the case that W1 and W2 are subspaces of V . To see this, set W1 = V ∩ V1
and W2 = V ∩ V2. Then,

V \(V1 ∪ V2) = V
∖(

(V ∩ V1) ∪ (V ∩ V2)
)
= V \(W1 ∪W2),

and if V ⊂ W1 = V ∩ V1 or V ⊂ W2 = V ∩ V2, then V ⊂ V1 or V ⊂ V2. We
will show the contrapositive statement, namely that for subspaces W1 and
W2 of V , we have

V ̸⊂ W1 and V ̸⊂ W2 =⇒ V \(W1 ∪W2) ̸= ∅.

If W1 ⊂ W2 or W2 ⊂ W1, then V \(W1 ∪W2) is either V \W1 or V \W2,
both of which are nonempty by assumption (V \W = ∅ ⇐⇒ V ⊂ W ), so
the claim follows in this case. Assume therefore that W1 ̸⊂ W2 and W2 ̸⊂ W1.
We can then choose w1 ∈ W1\W2 and w2 ∈ W2\W1, which implies that
w1 + w2 ∈ V \(W1 ∪W2) since

w1 + w2 ∈ W1 =⇒ w2 = (w1 + w2)− w1 ∈ W1

and w1 + w2 ∈ W2 =⇒ w1 = (w1 + w2)− w2 ∈ W2,

and either case contradicts our choice of v1 and v2.

The following lemma is the last ingredient we need to prove the factor-
ization result needed for the proof of Proposition 1.2.6. In particular (with
L1 = L2), this lemma shows that any Ω-Lagrangian subspace L ⊂ R2d is part
of an Ω-polarization of R2d (there are much simpler proofs of this fact).

1.2.9 Lemma. Let L1 and L2 be two Ω-Lagrangian subspaces of R2d. Then,
there exists an Ω-Lagrangian subspace L which is transversal to both L1 and
L2, i.e. such that L⊕ L1 = R2d = L⊕ L2.

Proof. By points (iv) and (v) of Lemma 1.1.11, a d-dimensional subspace
L ⊂ R2d satisfying L ⊂ LΩ must be Ω-Lagrangian. We are therefore looking
for a d-dimensional subspace L ⊂ R2d satisfying

L ⊂ LΩ and L ∩ L1 = {0} = L ∩ L2 (∗)

(the second condition, along with the dimensions involved, implies that
L ⊕ L1 = R2d = L ⊕ L2). We will say that a subspace M ⊂ R2d (of any
dimension) satisfies condition (∗) if M ⊂MΩ and M ∩ L1 = {0} =M ∩ L2.
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Thus, our goal is to show that there exists some d-dimensional subspace
satisfying (∗).

It is simple to find a one-dimension subspace satisfying (∗), for if we
choose any m ∈ R2d\(L1 ∪ L2) (which is nonempty by Lemma 1.2.8), then
M = Rm does the job. We will now show that we can inductively increase
the dimension of M until we obtain a d-dimensional subspace satisfying (∗).
To be precise, we will show that the following statement is true.

If M ⊂ R2d is a subspace satisfying (∗) and dimM < d, then

MΩ\
(
(L1 +M) ∪ (L2 +M)

)
̸= ∅,

and for any m ∈MΩ\((L1 +M) ∪ (L2 +M)), M + Rm is
a (dimM + 1)-dimensional subspace satisfying (∗).

We will show the contrapositive of the first part, namely that for a subspace
M ⊂ R2d satisfying (∗), we have

MΩ\
(
(L1 +M) ∪ (L2 +M)

)
= ∅ =⇒ dimM ≥ d.

By Lemma 1.2.8, emptiness of MΩ\((L1 +M) ∪ (L2 +M)) implies that MΩ

is contained in either L1 + M or L2 + M . Let’s say MΩ ⊂ L1 + M for
concreteness. Since M ∩ L1 = {0}, Lemma 1.1.11 on Ω-complements gives

R2d = {0}Ω = (M ∩ L1)
Ω =MΩ + LΩ

1 =MΩ + L1,

so R2d ⊂ (L1 +M) + L1 =M + L1, which implies dimM ≥ d, as desired.
Assume now that m ∈MΩ\((L1 +M) ∪ (L2 +M)). First of all, m /∈M ,

for m ∈ M implies that m ∈ L1 +M . Thus, dim(M + Rm) = dimM + 1.
Let now

m1 + r1m,m2 + r2m ∈M + Rm with m1,m2 ∈M and r1, r2 ∈ R.

Then,

Ω(m1 + r1m,m2 + r2m) = Ω(m1,m2) + r2Ω(m1,m) + r1Ω(m,m2) = 0

because M ⊂MΩ and m ∈MΩ. Thus, (M + Rm) ⊂ (M + Rm)Ω. All that
remains is to show that (M + Rm) ∩ L1 = {0} = (M + Rm) ∩ L2.

Let v ∈ (M + Rm) ∩ L1, so that v = mv + rvm for some mv ∈ M and
rv ∈ R. If rv ̸= 0, then m = (rv)

−1(v −mv) ∈ L1 +M , which contradicts our
choice of m. We must therefore have v = mv, but then v ∈M ∩ L1 = {0}, so
v = 0. This shows that (M + Rm) ∩ L1 = {0}. An identical argument shows
that (M + Rm) ∩ L2 = {0}, which concludes the proof.



22 Linear Symplectic Algebra

We are now ready for the factorization result which we will use to prove
Proposition 1.2.6. Free symplectic matrices are important in their own right
and they deserve a much more detailed treatment. Again, we refer the reader
to de Gosson [15]. Let

Lx := {(x, 0) ∈ R2d : x ∈ Rd} and Lω := {(0, ω) ∈ R2d : ω ∈ Rd},

so that (Lx, Lω) is a polarization of R2d.

1.2.10 Lemma (Free symplectic matrices). We say that a symplectic matrix
S ∈ Sp(2d,R) is free if S(Lω) ∩ Lω = {0}.

(i) Let S ∈ Sp(2d,R) and write

S =

(
A B

C D

)
with A,B,C,D ∈Md(R).

Then S is free if and only if detB ̸= 0.

(ii) Any S ∈ Sp(2d,R) can be written as the product of two free symplectic
matrices.

Proof. We begin with (i). With S written in block form, the condition
S(Lω) ∩ Lω = {0} becomes

{(Bω,Dω) ∈ R2d : ω ∈ Rd} ∩ {(0, ω′) ∈ R2d : ω′ ∈ Rd} = {0}.

If detB = 0, then we can find ω ̸= 0 such that Bω = 0. Since S is
invertible, we cannot have Dω = 0 (for then S maps (0, ω) to zero), so
(Bω,Dω) = (0, Dω) ̸= 0 shows that S is not free. If detB ̸= 0, then Bω = 0
implies that ω = 0 (and Dω = 0), so S is free. This proves the claimed
equivalence.

For (ii), use Lemma 1.2.9 to fix a Lagrangian plane L that is transversal
to both Lω and S(Lω), so that (Lω, L) and (L, S(Lω)) are polarizations of
R2d. By Lemma 1.2.7, there exists S0 ∈ Sp(2d,R) such that

S0(Lω) = L and S0(L) = S(Lω).

This gives S0(Lω) ∩ Lω = L ∩ Lω = {0} and

(S−1
0 S)(Lω) ∩ Lω = S−1

0 (S(Lω)) ∩ Lω = L ∩ Lω = {0},

so both S0 and S−1
0 S are free. Since S = S0(S

−1
0 S), we are done.
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We are now finally ready to prove Proposition 1.2.6.

Proof of Proposition 1.2.6. Recall that

G := {VP : P T = P ∈Md(R)} ∪ {ML : L ∈ GL(d,R)} ∪ {J}.

We first show that G ⊂ Sp(2d,R). We have already remarked that J ∈
Sp(2d,R) (see the paragraph following the proof of Lemma 1.2.4). Using
the characterization of Sp(2d,R) in terms of inverses written in block-form
(Lemma 1.2.5), it is straightforward to check that VP ∈ Sp(2d,R) and ML ∈
Sp(2d,R) for all P T = P ∈Md(R) and L ∈ GL(d,R).

We now show that G generates all of Sp(2d,R). Because of Lemma 1.2.10,
it suffices to show that any free symplectic matrix can be written as a finite
product of elements of G. Let therefore S ∈ Sp(2d,R) be free. Lemma 1.2.10
shows that we can write

S =

(
A B

C D

)
with B ∈ GL(d,R).

Now, multiplying out shows that

S =

(
Id 0

DB−1 Id

)(
B 0

0 DB−1A− C

)(
0 Id

−Id 0

)(
Id 0

B−1A Id

)
. (1.8)

By Lemma 1.2.5, the equation SS−1 = I = S−1S becomes(
A B

C D

)(
DT −BT

−CT AT

)
=

(
Id 0

0 Id

)
=

(
DT −BT

−CT AT

)(
A B

C D

)
.

Multiply out the products above, we find that

BAT − ABT = 0 = DTB −BTD and DAT − CBT = Id,

which implies that

(B−1A)T = B−1(BAT )B−T = B−1(ABT )B−T = B−1A,

(DB−1)T = B−T (DTB)B−1 = B−T (BTD)B−1 = DB−1,

and that

B−T = (DAT − CBT )B−T = D(B−1A)T − C = D(B−1A)− C.
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Combining the last three equations with Equation (1.8), we have shown that

S =

(
Id 0

DB−1 Id

)(
B 0

0 B−T

)(
0 Id

−Id 0

)(
Id 0

B−1A Id

)

with (DB−1)T = DB−1 and (B−1A)T = B−1A. In other words, we have
S = V−(DB−1)MB−1JV−(B−1A). This shows that any free symplectic matrix is
a finite product of elements of G, which concludes the proof.



Chapter 2

Banach Algebras and
C*-Algebras

The goal of this chapter is to give the reader an introduction to the theory
of Banach algebras and C*-algebras. We will assume that the reader is
familiar with the basics of complex analysis, Banach spaces and functional
analysis. Statements of those results we need from functional analysis, along
with references to proofs, can be found in Appendix A. For a general and
approachable introduction to functional analysis, we recommend Bowers and
Kalton [7]. Our development of Banach algebras and C*-algebras is largely
based on Murphy [23].

The Banach algebras and C*-algebras we will encounter in Gabor analysis
will all be algebras of bounded operators on complex normed spaces. In the
development of the theory, it may be useful to think of Banach algebras as an
abstraction of algebras of bounded operators on Banach spaces and to think
of C*-algebras as an abstraction of algebras of bounded operators on Hilbert
spaces. The simplicity of Hilbert spaces compared to general Banach spaces
is reflected in the theories of C*-algebras and Banach algebras; C*-algebras
are much better behaved (or more constrained) than general Banach algebras.

2.1 | Involutions and Banach Algebras

This section is mainly concerned with the development of Banach algebras.
Involutions and ⋆-algebras will not be of relevance until we consider C*-
algebras in the next section. Nevertheless, they are introduced alongside
algebras and spectra in the following subsection. This grouping of topics is
meant to emphasize that algebras, spectra and involutions are purely algebraic
constructions, whereas the theories of Banach algebras and C*-algebras are

25
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shaped by the interplay between algebra and topology.

2.1.1 Algebras, Spectra and Involutions

Some of the proofs in this subsection are quite scant; we assume that the
reader is already somewhat familiar with algebras.

2.1.1 Definition (Algebras). An algebra A is a nonzero vector space A over
C with a bilinear and associative product A× A→ A (typically denoted by
juxtaposition). We also require that there be an element 1A ∈ A such that
1Aa = a = a1A for all a ∈ A. The element 1A is called the unit of A.

Let A and B be two algebras. A map Φ: A→ B is an algebra homomor-
phism if it is C-linear,

� preserves the product: Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A,

� and preserves the unit: Φ(1A) = 1B.

An algebra homomorphism is an isomorphism of algebras if it is a bijection.
We refer to the existence of an isomorphism Φ: A→ B of algebras by saying
that A ∼= B as algebras.

There are a couple of remarks we wish to make regarding this definition.

� We are conforming to quite restrictive conventions and packing a lot of
content into the word algebra. What we are calling an algebra would
more generally be called an associative nontrivial unital algebra over C.
The requirement that our algebras be unital is not typical in the theory
of operator algebras.1

� An algebra is, in particular, a ring. All the basic algebraic results for
rings therefore hold for algebras as well. For example: the unit is unique,
0a = 0 = a0 (where 0 ∈ A is the additive identity), (−1A)a = −a =
a(−1A) for all a ∈ A, etc.

� We are not considering the “trivial algebra” A = {0} as an algebra.
This implies that 1A ̸= 0 in any algebra A.

1A foundational feature of nonunital C*-algebras is that they contain approximate units.
These are nets of elements which, when acting on the algebra via the product, behave like
a unit in the limit. The existence of approximate units ensures that the theory of nonunital
C*-algebras greatly resembles the theory of unital C*-algebras.
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� The inverse of an isomorphism of algebras is necessarily an algebra
homomorphism (and indeed an isomorphism of algebras), and a com-
position of algebra homomorphisms is an algebra homomorphism as
well.

We now briefly discuss the notion of inverses in an algebra. Let A be an
algebra and fix any a ∈ A. If there exists an element b ∈ A such that ab = 1A,
we say that a is right invertible and call b a right inverse of a. Similarly, a is
left invertible with a left inverse c ∈ A if ca = 1A.

An element may in general have multiple right inverses or multiple left
inverses. However, assume now that a ∈ A has both a right inverse b and a
left inverse c. Then,

b = 1Ab = (ca)b = c(ab) = c1A = c, so b = c.

There cannot be any other left or right inverses, for they must all equal b.
In this situation, we say that a is invertible, write a−1 := b and call a−1 the
inverse of a. In summary, a−1 (if it exists) is the unique element such that
a−1a = 1A = aa−1, and whenever a, b, c ∈ A satisfy ab = 1A and ca = 1A, it
follows that b = c = a−1.

We will denote the set of all invertible elements in A by Inv(A). It is
straightforward to verify that

1−1
A = 1A, (a−1)−1 = a and (ba)−1 = a−1b−1,

and that Inv(A) is a group with respect to the product.

2.1.2 Example (Shift operators). Consider the Banach space ℓ1(N) and the
shift operators L,R ∈ B(ℓ1(N)) defined by

Lv = (v2, v3, . . .) and Rv = (0, v1, v2, . . .) for v = (vj)
∞
j=1 ∈ ℓ1(N).

In the algebra B(ℓ1(N)) (with composition as the product), these satisfy
LR = Idℓ1(N) = 1B(ℓ1(N)), while RL : v 7→ (0, v2, v3, . . .) is not injective and
hence not invertible.

We say that two elements a, b ∈ A commute if ab = ba. If all elements of
A commute with each other, then A is called a commutative algebra. The
factors of an invertible product need not be invertible in general, as illustrated
by the example above.

2.1.3 Lemma (Inverses and products). Let A be an algebra, let N ≥ 2 be an
integer and suppose that a1, . . . , aN ∈ A all commute with each other. Then,
the product a1 · · · aN is invertible if and only if the factors a1, . . . , aN are all
invertible.
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Proof. Assume first that N = 2. If a1 and a2 are invertible, it is an immediate
consequence of associativity that a−1

2 a−1
1 is the inverse of a1a2. For the

converse, assume that a1a2 is invertible. Then,

a1
(
a2(a1a2)

−1
)
= (a1a2)(a1a2)

−1 = 1A = (a1a2)
−1(a1a2) =

(
(a1a2)

−1a2
)
a1.

By our discussion of inverses prior to the lemma, this means that a1 is
invertible and that a−1

1 = a2(a1a2)
−1 = (a1a2)

−1a2. A similar calculation
shows that a2 is invertible. This proves the lemma for N = 2.

For N > 2, we may write a1 · · · aN = (a1 · · · aN−1)aN . Thus, the N = 2
case shows that a1 . . . aN is invertible if and only if a1 · · · aN−1 and aN are both
invertible. The general case now follows by a simple inductive argument.

We now consider substructures and quotients of algebras. For a subset S
of an algebra A and an element a ∈ A, we write aS := {as : s ∈ S}.

2.1.4 Definition (Subalgebras and ideals). Let A be an algebra.

(i) A subalgebra of A is a vector-subspace B ⊂ A such that 1A ∈ B and
such that ab ∈ B whenever a, b ∈ B.

(ii) An ideal of A is a vector-subspace I ⊂ A satisfying aI ⊂ I and Ia ⊂ I
for every a ∈ A. An ideal I ⊂ A is proper if I ̸= A.

Let A be an algebra. It is straightforward to verify that a vector-subspace
of A is a subalgebra of A if and only if it is an algebra in its own right (with
the product restricted from A) with the same unit as A.

Ideals are precisely those vector-subspaces we can quotient out if we want
the product on A to descend to the quotient vector space. In order to avoid
A/I = {0}, we have to restrict attention to proper ideals.

2.1.5 Proposition (Quotients of algebras). Let A be an algebra and let I ⊂ A
be a proper ideal of A. Then, the quotient vector space A/I := {a+ I : a ∈ A}
is an algebra with respect to the product defined by

(a+ I)(b+ I) := ab+ I for all a, b ∈ I.

The unit of A/I is 1A + I and the quotient map q : A → A/I is an algebra
homomorphism.

Proof. We only show that the product is well-defined, for then associativity,
bilinearity and the claimed unit are simple verifications. The definition of the
product on A/I is equivalent to the quotient map preserving the product, so
it is immediate that the quotient map is an algebra homomorphism.
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If a1 + I = a2 + I and b1 + I = b2 + I for some a1, a2, b1, b2 ∈ A, then

a2(b1 − b2) ∈ I and (a1 − a2)b1 ∈ I

by the defining properties of ideals. Thus,

a2b2 + I = a2b2 + a2(b1 − b2) + (a1 − a2)b1 + I = a1b1 + I.

This shows that the product is well-defined.

It is straightforward to show that the kernel KerΦ of any algebra homo-
morphism Φ: A→ B is an ideal in A. Moreover, it is necessarily a proper ideal
because our algebra homomorphism preserve the unit and we are excluding
the possibility that 1B = 0.

2.1.6 Theorem (The first isomorphism theorem for algebras). Let Φ: A→ B
be an algebra homomorphism. Then, KerΦ is a proper ideal of A, Φ(B) is a
subalgebra of B and the map

Φ̃ : A/KerΦ → Φ(A)

a+KerΦ 7→ Φ(a)

is an isomorphism of algebras.

Proof. From the corresponding theorem for vector spaces, we already know
(by C-linearity of Φ) that KerΦ is a vector-subspace of A, that Φ(B) is a

vector-subspace of B and that Φ̃ is a well-defined linear bijection of vector
spaces. The remaining verifications are quite immediate consequences of Φ
preserving the product and the unit, so we omit them.

2.1.7 Example. (The evaluation map) Let X be a nonempty set and let CX

denote the vector space of all functions from X to C (with the vector space
operations defined pointwise). Equipping CX with the pointwise product,

CX × CX → CX

(f, g) 7→
(
fg : x 7→ fg(x) := f(x)g(x)

)
,

turns CX into a commutative algebra with the constant function 1CX : x 7→ 1
as the unit.

Fix now some x ∈ X and consider C as an algebra with the usual vector
space structure and product. The evaluation map at x, defined by

evx : CX → C
f 7→ evx(f) := f(x)
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is an algebra homomorphism: we find that evx(1CX ) = 1 and that

evx(fg) = fg(x) = f(x)g(x) = evx(f)evx(g) for all f, g ∈ CX .

Clearly evx(CX) = C, so the first isomorphism theorem tells us that the
map

CX/Ker(evx) → C
g +Ker(evx) 7→ g(x)

is an isomorphism of algebras. There is no mystery here;

Ker(evx) =
{
f ∈ CX : f(x) = 0

}
,

so the only information remaining in a coset g + Ker(evx) is the common
value of all its elements at the point x.

If X has additional structure, there may be interesting subalgebras of CX .
For example, if X has a topology, we can consider the subalgebra C(X) of all
continuous functions on X. This will be our main example of commutative
algebras going forward.

We now introduce the notion of the spectrum of an element in an algebra.
This notion, as we will see, lies at the heart of the theory of Banach algebras
and C*-algebras.

2.1.8 Definition (The spectra of elements). Let A be an algebra and let
a ∈ A. We define the spectrum of a to be the set

σ(a) :=
{
λ ∈ C : λ1A − a ̸∈ Inv(A)

}
.

We also define the spectral radius of a to be the (possibly infinite) number

r(a) := sup
{
|λ| : λ ∈ σ(a)

}
∈ [0,∞].

We will give multiple examples of spectra when we discuss Banach algebras.
In Example 2.1.7, the spectrum of a function f ∈ CX is given by its image, i.e.
σ(f) = f(X). This is because an inverse in CX corresponds to a pointwise
inverse, and λ1CX − f has a pointwise inverse if and only if it never vanishes,
which happens if and only if λ /∈ f(X).

We now prove some basic properties of spectra.

2.1.9 Lemma (Basic properties of spectra). Let A be an algebra. Then, the
following statements are true.
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(i) We have σ(ab) ∪ {0} = σ(ba) ∪ {0} for all a, b ∈ A.

(ii) If a ∈ Inv(A), then λ ∈ σ(a) if and only if λ−1 ∈ σ(a−1).

(iii) If Φ: A→ B is an algebra homomorphism, then σ(Φ(a)) ⊂ σ(a) for all
a ∈ A.

Proof. We will write λ instead of λ1A (for any λ ∈ C) for parts (i) and (ii) of
this proof.

We begin with (i). Suppose that λ ∈ C\{0} and λ− ab ∈ Inv(A). Then,

(λ− ba)
(
1 + b(λ− ab)−1a

)
= λ+ λb(λ− ab)−1a− ba− bab(λ− ab)−1a

= λ+ b
(
λ(λ− ab)−1 − 1− ab(λ− ab)−1

)
a

= λ+ b
(
(λ− ab)(λ− ab)−1 − 1

)
a = λ.

A very similar calculation yields (1 + b(λ− ab)−1a)(λ− ba) = λ. Thus, since
λ ≠ 0, we see that λ− ba ∈ Inv(A). The same result clearly holds with a and
b swapped, so we find that λ− ab ∈ Inv(A) if and only if λ− ba ∈ Inv(A), as
long as λ ̸= 0. Thus, σ(ab) ∪ {0} = σ(ba) ∪ {0}, which proves (i).

For (ii), suppose that a ∈ Inv(A) and let λ ∈ σ(a). Then λ ̸= 0 (since
0− a = −a is invertible) and

λ−1 − a−1 = −λ−1a−1(λ− a) ∈ Inv(A), so λ−1 ∈ σ(a−1).

The fact that (a−1)−1 = a gives the converse inclusion and concludes the
proof of (ii).

For (iii), fix any a ∈ A. We will show that σ(Φ(a)) ⊂ σ(a) by contraposi-
tion. If λ /∈ σ(a), then λ1A − a is invertible in A, and so

1B = Φ(1A) = Φ
(
(λ1A − a)−1(λ1A − a)

)
= Φ

(
(λ1A − a)−1

)
Φ(λ1A − a).

This shows that Φ(λ1A − a) = λ1B − Φ(a) is left-invertible in B. A similar
calculation shows that it is right-invertible as well. Thus, λ1B − Φ(a) is
invertible in B, so λ /∈ σ(Φ(a)). This gives σ(Φ(a)) ⊂ σ(a), which concludes
the proof.

We now introduce the notion of an involution on an algebra. The star-
superscript in “C*-algebra” refers to the presence of an involution. Thinking
of a C*-algebra as an algebra of bounded operators on a Hilbert space, the
involution corresponds to the function mapping each operator to its adjoint.

2.1.10 Definition (Involutions and ⋆-algebras). An involution on a algebra
A is a map ⋆ : A→ A, denoted x∗ := ⋆(x), that satisfies



32 Banach Algebras and C*-Algebras

(i) a∗∗ := (a∗)∗ = a

(ii) (λa+ b)∗ = λa∗ + b∗ (conjugate-linearity)

(iii) (ab)∗ = b∗a∗

for all a, b ∈ A and λ ∈ C. If an algebra A is equipped with an involution,
we call it a ⋆-algebra.

If A and B are two ⋆-algebras, a map Φ: A→ B is a ⋆-algebra homomor-
phism if it is an algebra homomorphism which also preserves the involution,
meaning that

Φ(a∗) = Φ(a)∗ for all a ∈ A.

A ⋆-algebra homomorphism is an isomorphism of ⋆-algebras if it is a bijection.
We refer to the existence of an isomorphism Φ: A → B of ⋆-algebras by
saying that A ∼= B as ⋆-algebras.

The inverse of an isomorphism of ⋆-algebras automatically preserves
the involution, so it is a ⋆-algebra homomorphism as well (and indeed an
isomorphism of ⋆-algebras). A composition of ⋆-algebra homomorphisms is
also a ⋆-algebra homomorphism.

Note that 1∗A = 1A in any ⋆-algebra A:

1∗Aa = (a∗1A)
∗ = a = (1Aa

∗)∗ = a1∗A for all a ∈ A,

from which uniqueness of the unit gives the result.

2.1.11 Definition (⋆-subalgebras and ⋆-ideals). Let A be a ⋆-algebra.

(i) A ⋆-subalgebra of A is a subalgebra B ⊂ A such that b∗ ∈ B whenever
b ∈ B.

(ii) A ⋆-ideal of A is an ideal I ⊂ A such that b∗ ∈ I whenever b ∈ I.

Let A be a ⋆-algebra. It is straightforward to verify that a subalgebra of
A is a ⋆-subalgebra of A if and only if it is a ⋆-algebra in its own right (with
the involution restricted from A).

If I ⊂ A is an ideal of A, the property that b∗ ∈ I for every b ∈ I is
precisely the condition we need in order for the involution to descend to the
quotient algebra. The first isomorphism theorem for ⋆-algebras is precisely
what one would expect. We will meet its incarnation for C*-algebras later.
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2.1.2 The Very Basics of Banach Algebras

We begin by recalling some basic facts about linear maps between normed
spaces. We will implicitly assume that all normed spaces in this chapter are
nonzero and over the complex numbers (these are the conditions required for
their algebras of operators to be algebras in our sense of the word).

For a linear map T : V → W between normed spaces, the operator norm
∥T∥ of T is defined by

∥T∥ := sup
{
∥Tv∥ : v ∈ V with ∥v∥ ≤ 1

}
= sup

∥v∥≤1

∥Tv∥ = sup
∥v∥=1

∥Tv∥.

Equivalently, ∥T∥ is the least number M ∈ [0,∞] such that ∥Tv∥ ≤ M∥v∥
for all v ∈ V . The map T is called norm-decreasing if ∥T∥ ≤ 1 and it is called
isometric (or said to be an isometry) if ∥Tv∥ = ∥v∥ for all v ∈ V .

If we let B(V,W ) denote the vector space of all linear maps T : V → W
such that ∥T∥ is finite, then the operator norm is indeed a norm on B(V,W ).
If W is a Banach space, then B(V,W ) is a Banach space as well.

Regardless of whether V is Banach or not, B(V ) := B(V, V ) is an algebra
with the product given by composition, and we have that

∥ST∥ = sup
∥v∥≤1

∥STv∥ ≤ sup
∥v∥≤1

∥S∥∥T∥∥v∥ = ∥S∥∥T∥ for all S, T ∈ B(V ).

This is a highly desirable property for normed algebras to possess.

2.1.12 Definition (Submultiplicativity of the norm). Let A be an algebra
equipped with a norm ∥ · ∥. We say that the norm on A is submultiplicative if

∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A.

The term normed algebra is often reserved for an algebra with a submulti-
plicative norm. We will spell out “an algebra with a submultiplicative norm”
so as not to further overload our language just yet.

Submultiplicativity allows us to write products of limits as limits of
products, as the following proposition shows.

2.1.13 Proposition (Continuity of multiplication). Let A be an algebra with
a submultiplicative norm and let a, b ∈ A. If (an), (bn) ⊂ A are sequences
such that an → a and bn → b, then anbn → ab.

Proof. By submultiplicativity of the norm, we find that

∥anbn − ab∥ ≤ ∥an(bn − b)∥+ ∥(an − a)b∥ ≤ ∥an∥∥bn − b∥+ ∥an − a∥∥b∥,

so ∥anbn − ab∥ → 0 as n → ∞ (where we have also used continuity of the
norm: ∥an∥ → ∥a∥).
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This property is referred to as continuity of multiplication because it is
equivalent to the statement that the algebra product A×A→ A is continuous
when A × A is equipped with the product topology. This property will be
referenced by name and not by number if referenced at all.

We have seen that if V is a Banach space, then B(V ) is a Banach space
which is also an algebra with a submultiplicative norm.

2.1.14 Definition (Banach algebras). An algebra B with a submultiplicative
norm ∥ · ∥ is called a Banach algebra if (B, ∥ · ∥) is a Banach space and
∥1B∥ = 1.

An isomorphism of Banach algebras is a bounded algebra isomorphism
(between two Banach algebras) with a bounded inverse.2 We will refer to the
existence of an isomorphism Φ: B → B′ of Banach algebras by saying that
B ∼= B′ as Banach algebras.

We emphasize that a Banach algebra is not simply a Banach space which
is also an algebra, for we are also requiring the norm to be submultiplicative
and the unit to be normalized. Note also that any closed subalgebra of B(V )
(where V is a Banach space) is a Banach algebra as well. More generally, any
closed subalgebra of a Banach algebra is a Banach algebra.

Any Banach algebra B can be realized as a closed subalgebra of operators
acting on a Banach space V , for we may take B = V (which leads to the slightly
unfortunate notation B(V ) = B(B)) and define the algebra homomorphism

Φ: B → B(B)
a 7→

(
La : b 7→ La(b) := ab

)
,

where B acts on itself by “multiplication from the left”. Submultiplicativity
of the norm and the existence of a normalized unit straightforwardly lead
to the conclusion that ∥La∥ = ∥a∥ for all a ∈ B, so that Φ is an isometric
algebra homomorphism “embedding” B as a closed subalgebra of B(B).

Nevertheless, Banach algebras occur naturally outside the context of oper-
ator algebras. Here are some examples of relevance to us:

2As our notion of isomorphism reveals, we are considering bounded algebra homomor-
phism to be homomorphisms of Banach algebras, but we will simply call them bounded
algebra homomorphisms. There is a good argument to be made that homomorphisms
of Banach algebras should be algebra homomorphism which are not only bounded, but
norm-decreasing. This would make isomorphisms of Banach algebras isometric algebra
homomorphism. The choice depends on whether one wants to consider equivalent norms
as isomorphic or not (equivalently: whether one wants to emphasize the particular norm
or the set of Cauchy sequences it determines).
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2.1.15 Example (Banach algebras).

(i) The complex numbers C form a commutative Banach algebra with
respect to the usual vector space structure, product and norm.

(ii) Let X be a topological space that is compact and Hausdorff.3 Then, the
algebra C(X) of continuous C-valued functions on X with pointwise
operations (see Example 2.1.7) and the supremum norm

∥f∥∞ := sup
{
|f(x)| : x ∈ X

}
for f ∈ C(X)

is a commutative Banach algebra. The supremum norm determines the
topology of uniform convergence on X, so completeness is a consequence
of the fact that a uniform limit of continuous functions is continuous.

(iii) The Banach space ℓ1(Z) with its usual ℓ1-norm and the product given
by convolution,

(a ∗ b)(n) =
∑
j∈Z

a(j)b(n− j) for all n ∈ Z and a, b ∈ ℓ1(Z),

is a commutative Banach algebra.

Whenever we refer to C or C(X) (for some compact Hausdorff space X) as
Banach algebras, these will be the structures we have in mind.

Let B be a Banach algebra. We call a series
∑∞

n=0 an with (an) ⊂ B
absolutely convergent if

∑∞
n=0 ∥an∥ <∞. The standard proofs that absolute

convergence implies convergence for C-valued series can be adapted to B-
valued series simply by replacing absolute values with norms: for any N,M ∈
N with N > M we see that∥∥∥∥ N∑

n=0

an −
M∑
m=0

am

∥∥∥∥ ≤
N∑

n=M+1

∥an∥,

so the fact that the partial sums of
∑∞

n=0 ∥an∥ are Cauchy implies that the
partial sums of

∑∞
n=0 an are Cauchy, and so

∑∞
n=0 an converges by complete-

ness.
Similarly, by using submultiplicativity of the norm, we can mimic the

standard proofs for C-valued series to show that we have( ∞∑
n=0

an

)( ∞∑
m=0

bn

)
=

∞∑
n=0

( n∑
k=0

akbn−k

)
3The Hausdorff requirement is not necessary, but it makes the algebra C(X) more

pleasant, so it is often included as an assumption is examples.
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in B whenever both series on the left converge absolutely. See Rudin [28,
Theorem 3.50 on p. 74] for a particular proof that straightforwardly generalizes
to the setting of a general Banach algebra.

In fact, equipped with submultiplicativity of the norm, we can lift a sur-
prising amount of complex analysis to the setting of a general Banach algebra.
We will barely scrape the surface; we recommend Rudin [30, Chapter 10] for
further exploration.

2.1.16 Lemma (Power series and the exponential function). Let B be a
Banach algebra and let

∑∞
n=0 λnz

n be a power series with complex coefficients
and radius of convergence R ∈ [0,∞]. If a ∈ B satisfies ∥a∥ < R, then∑∞

n=0 λna
n is an absolutely convergent series in B.

In particular, the exponential function

ea :=
∞∑
n=0

an

n!

is absolutely convergent for all a ∈ B. Moreover, if a, b ∈ B commute, then
eaeb = ea+b.

Proof. Suppose a ∈ B satisfies ∥a∥ < R. Submultiplicativity of the norm
gives ∥an∥ ≤ ∥a∥n, so the fact that

∑∞
n=0 λnz

n converges absolutely for
|z| < R gives

∑∞
n=0 ∥λnan∥ ≤

∑∞
n=0 |λn|∥a∥n <∞. That is, we have absolute

convergence of
∑∞

n=0 λna
n.

The radius of convergence of
∑∞

n=0 z
n/(n!) is infinite, so ea is absolutely

convergent for all a ∈ B. By the discussion preceding the lemma, we have( ∞∑
n=0

an

n!

)( ∞∑
m=0

bm

m!

)
=

∞∑
n=0

n∑
k=0

akbn−k

k!(n− k)!
=

∞∑
n=0

1

n!

( n∑
k=0

(
n

k

)
akbn−k

)
regardless of whether a and b commute or not. If they do commute, then the
binomial expansion (a + b)n =

∑n
k=0

(
n
k

)
akbn−k holds. Inserting this above

gives eaeb = ea+b.

We can now say a fair bit about the structure of the group Inv(B) of
invertible elements in a Banach algebra B.
2.1.17 Proposition (Invertible elements in Banach algebras). Let B be a
Banach algebra. Then, the following statements are true.

(i) If a ∈ B satisfies ∥a∥ < 1, then

1B − a ∈ Inv(B) and (1B − a)−1 =
∞∑
n=0

an.

In particular, Inv(B) contains the open unit ball centered at 1B.
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(ii) The set Inv(B) is open in B.

(iii) If (an) ⊂ Inv(B) converges to a ∈ Inv(B), then a−1
n → a−1.

We will refer to (iii) as continuity of the inverse.

Proof. We begin with (i). By Lemma 2.1.16,
∑∞

n=0 a
n is convergent whenever

∥a∥ < 1. Now, for any N ∈ N, we have

(1B − a)

( N∑
n=0

an
)

= 1B − aN+1 =

( N∑
n=0

an
)
(1B − a)

because of a pattern of cancellations that is easily observed by expanding out
the products for small values of N (or proved by induction, if one wants to be
precise). Taking the limit of this equation as N → ∞, using continuity of the
product and the fact that aN+1 → 0 (since ∥a∥ < 1 and ∥aN+1∥ ≤ ∥a∥N+1),
we obtain (1B − a)−1 =

∑∞
n=0 a

n, as desired.
For (ii), let a ∈ Inv(B). We will show that a − b is invertible whenever

b ∈ B satisfies ∥b∥ < ∥a−1∥−1. Then, Inv(B) must be open, for it contains
the open ball of radius ∥a−1∥−1 centered at a.

If b ∈ B is such that ∥b∥ < ∥a−1∥−1, then ∥ba−1∥ ≤ ∥b∥∥a−1∥ < 1, so

1B − ba−1 ∈ Inv(B)

by point (i). Since a ∈ Inv(B), we have a− b = (1B − ba−1)a ∈ Inv(B) as well.
This concludes the proof of (ii).

For (iii), we define bn := a− an, so that bn → 0 and

ana
−1 = (a− bn)a

−1 = 1B − bna
−1.

For large enough n ∈ N, we will have ∥bna−1∥ < 1 (bna
−1 → 0 by continuity

of the product), and so

a−1
n = a−1(ana

−1)−1 = a−1(1B − bna
−1)−1 = a−1

∞∑
k=0

(bna
−1)k

by point (i). Thus, for such n, we find that

∥a−1 − a−1
n ∥ =

∥∥∥∥a−1

(
1B −

∞∑
k=0

(bna
−1)k

)∥∥∥∥ ≤ ∥a−1∥
∥∥∥∥ ∞∑
k=1

(bna
−1)k

∥∥∥∥. (2.1)

Now, since bna
−1 → 0, we have∥∥∥∥ ∞∑
k=1

(bna
−1)k

∥∥∥∥ ≤
∞∑
k=1

∥bna−1∥k = ∥bna−1∥
1− ∥bna−1∥

→ 0

as well, from which Equation (2.1) gives a−1
n → a−1 and concludes the

proof.
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We now begin our exploration of spectra in Banach algebras. We begin
with a couple of examples

2.1.18 Example (Examples of spectra). The following examples illustrate
the notion of spectra in various Banach algebras.

(i) When B = B(Cn) ∼= Mn(C) (for some n ∈ N1), the spectrum of an
operator T ∈ B(Cn) is the set of its eigenvalues. This is because a linear
operator on Cn fails to be invertible precisely when it is not injective,
and any non-zero vector in the kernel of λICn − T (for some λ ∈ C)
is an eigenvector for T with eigenvalue λ. The spectral radius of T is
therefore the absolute value of its largest eigenvalue.

(ii) When B = B(V ) for an infinite dimensional Banach space V , the situa-
tion is more complicated, for an operator may fail to be invertible while
still being injective (consider e.g. the shift operator R in Example 2.1.2).
Bowers and Kalton [7, Example 8.16 on p. 187] show that the spectrum
σ(T ) of T ∈ B(V ) consists of the eigenvalues of T , the eigenvalues of its
transpose T ∗ : V ∗ → V ∗ and the approximate eigenvalues of T , which
are λ ∈ C for which there exists a sequence (vn) ⊂ V of unit vectors
such that (T − λIdV )vn → 0.

(iii) When B = C(X) for a compact Hausdorff space X, the spectrum of a
function f ∈ C(X) is simply its image: σ(f) = f(X). This is because a
function in C(X) has an inverse in C(X) if and only if it has a pointwise
inverse,4 from which our discussion of spectra in CX gives the result
(see the paragraph preceding Lemma 2.1.9). It now follows from our
definitions that r(f) = ∥f∥∞.

On a finite-dimensional complex vector space, any linear operator has an
eigenvalue. This is a foundational result in linear algebra, but it is not true
for bounded linear operators on infinite dimensional Banach spaces (consider
e.g. the shift operator R in Example 2.1.2). The following theorem, whose
importance can hardly be overstated, shows that spectra are capable of filling
the void left by eigenvalues in the infinite-dimensional case. Murphy [23]
suggest that we think of this as the fundamental theorem of Banach algebras.

2.1.19 Theorem. Let B be a Banach algebra and let a ∈ B. Then, σ(a) is
nonempty and compact. Moreover,

r(a) = inf
n≥1

∥an∥1/n = lim
n→∞

∥an∥1/n

4The pointwise inverse of a continuous function is continuous by continuity of the map
C\{0} → C defined by λ 7→ λ−1. The absolute value of a continuous function attains its
minimum on a compact space, so the inverse of a nonzero continuous function is bounded.
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and, in particular, we have r(a) ≤ ∥a∥.

Proof. This is a rather long proof, so we have divided it into three parts. In
this proof, and throughout this thesis, B∗ will denote the continuous dual of
B as a Banach space.

Part 1: The spectrum is nonempty

We will prove this by contradiction, so assume that σ(a) = ∅. If this is the
case, then λ1B − a is invertible for every λ ∈ C, so we have a well-defined
map

g : C → B
λ 7→ (λ1B − a)−1.

We claim that for any τ ∈ B∗, the map τ ◦ g : C → C is an entire function
that is also bounded. Before we show this, let’s see how this results in a
contradiction.

Liouville’s theorem states that the only entire and bounded functions are
constants. Thus, we get

τ(−a−1) = τ ◦ g(0) = τ ◦ g(1) = τ
(
(1B − a)−1

)
for all τ ∈ B∗.

By the Hahn-Banach theorem (see Corollary A.2.2), this implies that −a−1 =
(1B−a)−1. Taking the inverse of both sides gives 1B = 0, which is a possibility
we have excluded by our definition of algebras. Thus, if we can show that
τ ◦ g is entire and bounded for each τ ∈ B∗, then we will have shown that
σ(a) ̸= ∅.

We first show that the τ ◦ g’s are entire. For the remainder of this part of
the proof, we will write λ instead of λ1B (for any λ ∈ C). Let λ1, λ2 ∈ C be
arbitrary but distinct. We find that

g(λ2)− g(λ1) = (λ2 − a)−1 − (λ1 − a)−1

= (λ2 − a)−1
(
1B − (λ2 − a)(λ1 − a)−1

)
= (λ2 − a)−1

(
(λ1 − a)− (λ2 − a)

)
(λ1 − a)−1

= (λ2 − a)−1(λ1 − λ2)(λ1 − a)−1,

(2.2)

and so

g(λ2)− g(λ1)

λ2 − λ1
= −(λ2 − a)−1(λ1 − a)−1 → −(λ1 − a)−2

as λ2 → λ1. Fix any τ ∈ B∗. Since τ is linear and continuous, we can conclude
that

τ ◦ g(λ2)− τ ◦ g(λ1)
λ2 − λ1

= τ

(
g(λ2)− g(λ1)

λ2 − λ1

)
→ τ

(
− (λ1 − a)−2

)
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as λ2 → λ1 (by continuity of the product and the inverse). This shows that
τ ◦ g has a complex derivative at the arbitrary point λ1 ∈ C, so it is entire.

We now show that τ ◦g is bounded. As an analytic function, it is certainly
continuous, so it is bounded on any compact subset of C, e.g. the closed disk
of radius 2∥a∥ centered at the origin. It suffices therefore to show that τ ◦ g
is bounded outside of this disk: let λ ∈ C be such that |λ| > 2∥a∥. Setting
λ2 = λ and λ1 = 0 in Equation (2.2), we find that

g(λ) = g(0) + (λ− a)−1(−λ)(−a)−1 = g(0) +

(
1− a

λ

)−1

a−1.

Since |λ| > 2∥a∥, Proposition 2.1.17 gives (1− a/λ)−1 =
∑∞

n=0(a/λ)
n and

hence ∥∥∥∥(1− a

λ

)−1∥∥∥∥ ≤
∞∑
n=0

∥a/λ∥n =
1

1− ∥a/λ∥
< 2.

Thus, we see that

∥g(λ)∥ ≤ ∥g(0)∥+
∥∥∥∥(1− a

λ

)−1∥∥∥∥∥a−1∥ < ∥g(0)∥+ 2∥a−1∥.

Since |τ ◦ g(λ)| = |τ(g(λ))| ≤ ∥τ∥∥g(λ)∥, this concludes the proof that τ ◦ g
is bounded, and moreover the proof that σ(a) ̸= ∅.
Part 2: The spectrum is compact

We will show that σ(a) ⊂ C is compact by showing that it is closed and
bounded. If λ1 /∈ σ(a), then λ11B − a ∈ Inv(B). Since

∥(λ1B − a)− (λ11B − a)∥ = |λ− λ1| for all λ ∈ C,

the fact that Inv(B) is open (point (ii) of Proposition 2.1.17) implies that
for λ sufficiently close to λ1, we will have λ1B − a ∈ Inv(B) and so λ /∈ σ(a).
This shows that the complement of σ(a) in C is open, so σ(a) is closed.

We now show that σ(a) is bounded. If λ ∈ C satisfies |λ| > ∥a∥, then
point (i) of Proposition 2.1.17 tells us that 1B − λ−1a is invertible, so λ1B − a
is as well, hence λ /∈ σ(a). Thus, we have shown that σ(a) is bounded and
that r(a) ≤ ∥a∥.
Part 3: The formula for the spectral radius

Our goal is to show that

lim sup
n→∞

∥an∥1/n ≤ r(a) ≤ inf
n≥1

∥an∥1/n, (2.3)
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from which the general fact that

inf
n≥1

∥an∥1/n ≤ lim inf
n→∞

∥an∥1/n ≤ lim sup
n→∞

∥an∥1/n

(which holds by virtue of the definitions) gives the result. The first inequality
in (2.3) will require much more work than the second, so we show the second
and simplest first.

The well-known formula for the difference of two nth powers gives

λn1B − an = (λ1B − a)
n∑
k=1

λn−kak−1 for any n ∈ N1 and λ ∈ C.

By Lemma 2.1.3 on products and inverses (everything commutes here), this
implies that if λ1B − a is not invertible, then λn1B − an cannot be invertible
either. In other words, λ ∈ σ(a) implies that λn ∈ σ(an). We have shown
that r(an) ≤ ∥an∥ (see the last sentence of Part 2 of this proof), so this gives

λ ∈ σ(a) =⇒ |λ|n = |λn| ≤ r(an) ≤ ∥an∥ for all n ∈ N1.

Taking nth roots and then the supremum over all λ ∈ σ(a), we find that
r(a) ≤ ∥an∥1/n for all n ∈ N1. Thus, r(a) ≤ infn≥1 ∥an∥1/n.

All that remains is the first inequality in Equation (2.3). With slightly
sloppy notation, let {|λ| < r(a)−1} ⊂ C denote the open disk of radius r(a)−1

centered at the origin, with the agreement that r(a)−1 = ∞ if r(a) = 0. We
claim that the function

h :
{
|λ| < r(a)−1

}
→ B

λ 7→ (1B − λa)−1

is well-defined. At λ = 0 there is no problem, so consider 0 ̸= |λ| < r(a)−1.
Since |λ−1| > r(a), we must have λ−1 /∈ σ(a). This means that λ−11B − a is
invertible and so 1B − λa is as well. Thus, h is well-defined.

The exact same factorization trick that we used in Equation (2.2) gives

h(λ2)− h(λ1) = (1B − λ2a)
−1(λ2 − λ1)a(1B − λ1a)

−1

for all λ2, λ1 ∈ {|λ| < r(a)−1}. The same reasoning as in Part 1 of this proof
shows that τ ◦ h is holomorphic on {|λ| < r(a)−1} ⊂ C for all τ ∈ B∗.

By point (i) of Proposition 2.1.17, we have (1B − λa)−1 =
∑∞

n=0(λa)
n

whenever |λ| < ∥a∥−1. Fix any τ ∈ B∗. Linearity and continuity of τ gives

τ ◦ h(λ) =
∞∑
n=0

τ(an)λn whenever |λ| < ∥a∥−1.
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This is a power series expansion for τ ◦h centered at the origin. A power series
representation of a holomorphic function converges in the largest possible disk
where the function is holomorphic, and we know that τ ◦ h is holomorphic
on {|λ| < r(a)−1}, so

∑∞
n=0 τ(a

n)λn must converge whenever |λ| < r(a)−1.
This requires |τ(an)λn| → 0 as n → ∞. In particular, there must be some
constant Mτ such that |τ(an)λn| ≤Mτ for all n ∈ N.

We have now shown that the set {λnan}n∈N is weakly bounded when-
ever |λ| < r(a)−1. By the uniform boundedness principle (see Corollary
A.2.5), {λnan}n∈N must then also be bounded in norm. That is, there must
exist some constant M > 0 such that ∥λnan∥ ≤ M for all n ∈ N. Since
lim supn→∞M1/n = 1 for any M > 0, we have shown that

|λ| lim sup
n→∞

∥an∥1/n = lim sup
n→∞

∥λnan∥1/n ≤ 1 whenever |λ| < r(a)−1.

This gives

lim sup
n→∞

∥an∥1/n ≤ inf

{
1

|λ|
: |λ| < r(a)−1

}
= r(a),

which completes the proof of Equation (2.3) and the theorem as a whole.

Here is an immediate and important corollary of Theorem 2.1.19.

2.1.20 Corollary. If B is a Banach algebra such that every nonzero element
is invertible, then B = C1B.

Proof. Let a ∈ B. By Theorem 2.1.19, we can find some λ ∈ σ(a). This
means that λ1B − a is not invertible, but then λ1B − a = 0 by our assumption.
Thus, a = λ1B. Since a was arbitrary, we have B = C1B.

We now consider quotients of Banach algebras; let B be a Banach algebra
and let I ⊂ B be a proper ideal. We know from Proposition 2.1.5 that the
quotient space B/I has the structure of an algebra. If I is closed in B, then
B/I is a Banach space when equipped with the quotient norm (see e.g. Bowers
and Kalton [7, Proposition 3.47 on p. 54]). The following proposition shows
that these structures combine to yield a Banach algebra.

2.1.21 Proposition (Quotients of Banach algebras). Let B be a Banach
algebra and let I ⊂ B be a proper and closed ideal. Then, the quotient algebra
B/I equipped with the quotient norm

∥a+ I∥q := inf
{
∥a+ b∥ : b ∈ I

}
for a ∈ B

is a Banach algebra.
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Proof. By the paragraph preceding the proposition, we only need to verify
that the quotient norm is submultiplicative and that the unit is normalized.

Fix any ϵ > 0. Let a, b ∈ B and choose ca, cb ∈ I such that

∥a+ ca∥ < ∥a+ I∥q + ϵ and ∥b+ cb∥ < ∥b+ I∥q + ϵ.

Submultiplicativity in B gives

∥(a+ ca)(b+ cb)∥ ≤ ∥a+ ca∥∥b+ cb∥ <
(
∥a+ I∥q + ϵ

)(
∥b+ I∥q + ϵ

)
.

Since (a+ ca)(b+ cb) = ab+ c with c := (acb + cab+ cacb) ∈ I, we find that

∥ab+ I∥q ≤ ∥ab+ c∥ = ∥(a+ ca)(b+ cb)∥ <
(
∥a+ I∥q + ϵ

)(
∥b+ I∥q + ϵ

)
.

Taking the limit ϵ→ 0 gives submultiplicativity of the quotient norm.
As for the normalization of the unit, submultiplicativity in B/I gives

∥1B + I∥q = ∥(1B + I)2∥q ≤ ∥1B + I∥2q,

which implies that either ∥1B+I∥q ≥ 1 or ∥1B+I∥q = 0. However, we already
know that 1B + I ̸= I (since I is proper, for if 1B ∈ I, then B1B ⊂ I) and that
the quotient norm is nondegenerate. Thus, we must have ∥1B + I∥q ≥ 1. The
fact that 0 ∈ I gives ∥1B + I∥q ≤ ∥1B∥ = 1, so we find that ∥1B + I∥q = 1,
which concludes the proof.

2.1.3 The Gelfand Representation

In this subsection we will focus exclusively on commutative Banach algebras.
We have seen that if X is a compact Hausdorff space, then C(X) is a
commutative Banach algebra (see Example 2.1.15). These are algebras that
we understand particularly well. We have e.g. seen that the spectrum of a
function f ∈ C(X) is its image: σ(f) = f(X) (Example 2.1.18).

In this subsection, we will ask the question: given a commutative Banach
algebra B, can we construct a compact Hausdorff space X such that B ∼= C(X)
as Banach algebras? The answer to this question in general is no, as is revealed
by the existence of a commutative Banach algebra where σ(b) = {0} does not
imply that b = 0, as it would have to in a Banach space of the form C(X).5

Nevertheless, we will comes as close to achieving this as is possible:
given any commutative Banach algebra B, we will construct a compact

5The matrix N = ( 0 1
0 0 ) generates a commutative Banach algebra in M2(C), namely the

closed span of {Nm : m = N0}. One may verify that (λI −N)−1 = λ−2(λI +N) for all
λ ̸= 0, so that σ(N) = {0} although N ̸= 0.
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Hausdorff space X and a norm-decreasing algebra homomorphism B → C(X)
whose kernel is precisely those b ∈ B for which σ(b) = {0}. The Gelfand
representation will refer to this algebra homomorphism B → C(X).

Given a compact Hausdorff space X, each x ∈ X determines an algebra
homomorphism evx : C(X) → C given by evaluation at x (see Example 2.1.7).
Thus, given a commutative Banach algebra B, it is natural to build the
corresponding topological space out of algebra homomorphisms B → C. The
kernels of such algebra homomorphism are maximal ideals, which is where we
will begin our development of the Gelfand representation in earnest.

An ideal I of an algebra A is called maximal if it is a proper ideal that
is not properly contained in any other proper ideal (thus, it is a maximal
element among proper ideals ordered by inclusion). Maximal ideals are
typically denoted by the letter M . We emphasize that all maximal ideals are
proper by definition.

2.1.22 Lemma (Maximal ideals). Let B be a commutative Banach algebra.
Then, the following statements are true.

(i) If I ⊂ B is a proper ideal, then there exists a maximal ideal M ⊂ B
such that I ⊂M .

(ii) Any maximal ideal M ⊂ B is closed and B/M ∼= C as Banach algebras.

Proof. Point (i) is a consequence of Zorn’s lemma. We assume that the reader
is familiar with the required terminology.

Zorn’s lemma. Let P be a nonempty partially ordered set (i.e.
a set with a reflexive, antisymmetric and transitive relation). If
every nonempty chain (i.e. totally ordered subset) of P has an
upper bound in P , then P contains a maximal element.

Let P be the set of all proper ideals of B which contain I and order P by
inclusion (i.e. let the partial order ≤ be given by the subset relation ⊂). Then,
I ∈ P, so P is nonempty. If J ⊂ P is a nonempty chain, we claim that⋃

J ∈ P and that
⋃

J is an upper bound for J (where
⋃
J denotes the

union of all elements of J ). We first show that
⋃

J ∈ P .
If a, b ∈

⋃
J then there are J1, J2 ∈ J such that a ∈ J1 and b ∈ J2.

Since J is a chain, either J1 ⊂ J2 or J2 ⊂ J1. Since both J1 and J2 are
subspaces, we have λa+ b ∈ J1 ∪ J2 ⊂

⋃
J for all λ ∈ C. This shows that⋃

J is a vector-subspace of B. Since all elements of J are ideals, we have
a(
⋃

J ), (
⋃

J )a ⊂
⋃

J for all a ∈ B, so
⋃

J is an ideal. To see that it
is proper, note that if 1B ∈

⋃
J , then 1B ∈ J for some J ∈ J , but then

B = J ∈ J ⊂ P, which contradicts our definition of P as a collection of
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proper ideals. This shows that
⋃
J is a proper ideal, and hence an element

of P .
It is now immediate that

⋃
J is an upper bound for J : J ⊂

⋃
J for

all J ∈ J . Thus, we have verified that P satisfies the hypothesis of Zorn’s
lemma, so there is a maximal element M ∈ P. This means that M is a
proper ideal of B that contains I and is not contained in any other proper
ideal containing I. However, since M contains I, it cannot be contained in
any proper ideal not containing I either. Thus, M is a maximal ideal and we
have proved (i).

For (ii), let M ⊂ B be a maximal ideal. We will show that M (the closure
of M in B) is a proper ideal. Since M ⊂M , maximality of M will then imply
that M =M .

The closure of any subspace is a subspace by continuity of addition.
Similarly, the closure of an ideal is an ideal by continuity of the product. To
see this, let m ∈ M and b ∈ B. Choose a sequence (mn) ⊂ M such that
mn → m. Continuity of the product gives bmn → bm and mnb→ mb. Since
M is an ideal, we have (bmn), (mnb) ⊂M , so their limits, mb and bm, are in
M . This shows that M is an ideal.

We now show that M is proper, i.e. M ̸= B. We first note that no
element of a proper ideal can be invertible: if m ∈ M is invertible, then
b = (bm−1)m ∈M for all b ∈ B, so M = B. If we had M = B, then we could
find a sequence (mn) ⊂M such that mn → 1B. But any element of the open
unit ball centered at 1B is invertible (Proposition 2.1.17), so then M would
contain invertible elements. The fact that M is proper therefore prevents
M = B.

We have now shown that M is a proper ideal, so M =M by maximality
of M , as remarked at the beginning of our argument. It remains to show that
B/M ∼= C as Banach algebras.

We claim that every nonzero element of B/M is invertible. For now, let
a ∈ B be arbitrary. Using the fact that B is commutative, it is simple to
verify that Ba := {ba : b ∈ B} is an ideal in B. Moreover, the sum (as vector
spaces) of two ideals is clearly an ideal, so M + Ba is an ideal as well.

An element a+M ∈ B/M is nonzero precisely when a /∈ M , so assume
now that a /∈ M . Then, Ba ̸⊂ M , because a = 1Ba ∈ Ba. Thus, M + Ba
is an ideal of B properly containing M . By maximality of M , we must
have M + Ba = B. This means that there exists some b ∈ B and m ∈ M
such that m + ba = 1B. But then (b +M)(a +M) = 1B +M = 1B/M . By
commutativity of B (and hence B/M), this shows that the arbitary nonzero
element a+M ∈ B/M is invertible, which is what we wanted to show.

By Corollary 2.1.20, it now follows that B/M = C1B/M , so clearly B/M ∼=
C as Banach algebras.
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2.1.23 Definition (Characters and the spectrum of an algebra). Let B be a
commutative Banach algebra. An algebra homomorphism µ : B → C is called
a character on B. We write MB for the set of all characters on B and call it
the spectrum of B.

The following lemma clarifies the relation between the spectrum of an
algebra and the spectra of its elements. Once it has been proved, the Gelfand
representation and its properties will follow without much effort.

2.1.24 Lemma. Let B be a commutative Banach algebra. Then, the following
statements are true.

(i) For any a ∈ B, we have that

σ(a) =
{
µ(a) : µ ∈ MB

}
=: MB(a).

In particular, MB is nonempty.

(ii) Characters are continuous and

MB =
{
τ ∈ B∗\{0} : τ(ab) = τ(a)τ(b) for all a, b ∈ B

}
.

In fact, ∥µ∥ = 1 for all µ ∈ MB.

Proof. We begin with (i). Let µ ∈ MB. If b ∈ Inv(B), then µ(b) ̸= 0 because

1 = µ(1B) = µ(bb−1) = µ(b)µ(b−1).

Let now a ∈ B. Since µ(µ(a)1B − a) = 0, the element µ(a)1B − a cannot be
invertible, so MB(a) ⊂ σ(a). The opposite inclusion, which we now wish to
show, is less obvious.

Let a ∈ B be nonzero (σ(0) = {0} = MB(0) is trivial) and fix λ ∈ σ(a).
We will construct a character µ such that µ(a) = λ.

Since λ1B − a is not invertible, the ideal B(λ1B − a) is proper, because
none of its elements are invertible (by Lemma 2.1.3 on inverses and products).
By Lemma 2.1.22, B(λ1B − a) is contained in a maximal ideal M and there is
an algebra isomorphism Φ: B/M → C. The quotient map q : B → B/M is an
algebra homomorphism, so the composition µ := Φ ◦ q : B → C is a character
on B.

Since Ker q = M and Φ is an isomorphism, Kerµ = M . Finally, since
(λ1B − a) ∈ B(λ1B − a) ⊂M = Kerµ, we have µ(λ1B − a) = 0, so λ = µ(a) ∈
MB(a). Since λ ∈ σ(a) was arbitrary, we have shown that σ(a) ⊂ MB(a),
which concludes the proof of (i).
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For (ii), we first note that if τ ∈ B∗\{0} and τ preserves the product, then
it preserves the unit. This happens because

τ(1B) = τ(12B) = τ(1B)
2

and the only complex numbers which square to themselves are 0 and 1, so we
must have τ(1B) = 1, for otherwise τ = 0. With this in mind, elements of
B∗\{0} are characters if and only if they preserve the product, so the equality

MB =
{
τ ∈ B∗\{0} : τ(ab) = τ(a)τ(b) for all a, b ∈ B

}
follows if we can show that characters are bounded, i.e. that MB ⊂ B∗.

Fix any µ ∈ MB. By point (i) we have µ(a) ∈ σ(a), so |µ(a)| ≤ r(a) ≤ ∥a∥
by Theorem 2.1.19. This shows that ∥µ∥ ≤ 1. Since µ(1B) = 1, we must have
∥µ∥ = 1, which concludes the proof.

Let B be a Banach algebra and consider B∗ with the weak* topology. The
weak* topology is just the topology of pointwise convergence, so we have that

τn → τ in B∗ ⇐⇒ τn(a) → τ(a) in C for all a ∈ B

for all sequences (and nets) (τn) ⊂ B and τ ∈ B∗. If we fix some τ ∈ B∗, the
sets

Wτ (a1, . . . , aN ; ϵ) :=
{
τ ′ ∈ B∗ : |τ(aj)− τ ′(aj)| < ϵ for 1 ≤ j ≤ N

}
(2.4)

(for all N ∈ N1, a1, . . . , aN ∈ B∗ and ϵ > 0) form a local base at τ .
Having identified the spectrum MB as a subset of B∗, we may equip it

with the subspace topology (w.r.t. the weak* topology). From now on, we
will always assume that MB is equipped with this topology. In other words,
convergence in MB is precisely pointwise convergence.

2.1.25 Proposition (The spectrum is compact Hausdorff). Let B be a com-
mutative Banach algebra. Then, its spectrum MB is compact and Hausdorff.

Proof. The weak* topology on B∗ is Hausdorff, so MB is Hausdorff (this
claim follows quite easily from consideration of the sets in Equation (2.4)).

The Banach-Alaoglu theorem (Theorem A.2.3) tells us that the closed
unit ball in B∗ is compact in the weak* topology. Closed subsets of compact
sets are compact, so if we can show that MB is closed in B∗ (and hence in
the closed unit ball of B∗), then we are done. The fact that MB is closed in
B∗ is very simple to show if one is familiar with nets. For the benefit of a
potential reader who is not, we give an alternate proof.
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Suppose τ ∈ B∗ is in the closure of MB. Let a, b ∈ B and fix any ϵ > 0.
Since τ ∈ MB, its neighborhood Wτ (a, b, ab; ϵ) must intersect MB. Thus,
there is some character µ ∈ MB ∩Wτ (a, b, ab; ϵ). But then

|τ(ab)− τ(a)τ(b)| ≤ |τ(ab)− µ(ab)|+ |µ(a)µ(b)− τ(a)τ(b)|
< ϵ+ |µ(a)µ(b)− τ(a)µ(b)|+ |τ(a)µ(b)− τ(a)τ(b)|
= ϵ+ |µ(a)− τ(a)||µ(b)|+ |τ(a)||µ(b)− τ(b)|
< ϵ
(
1 + |µ(b)|+ |τ(a)|

)
≤ ϵ
(
1 + ∥b∥+ |τ(a)|

)
,

where we used ∥µ∥ = 1 in the last step (see Lemma 2.1.24). Since ϵ > 0 was
arbitrary, we must have τ(ab) = τ(a)τ(b). Since Wτ (1B; ϵ) is a neighborhood
of τ for any ϵ > 0, we similarly find that τ(1B) is arbitrarily close to 1, so
that τ(1B) = 1. Thus, τ ∈ MB.

We have now shown that MB contains it closure, so it must be closed. By
the second paragraph of the proof, we are done.

We motivated our investigation of characters with the following observation.
If X is a compact Hausdorff space, then evx : C(X) → C is an algebra
homomorphisms for each x ∈ X. Thus, in order to realize a commutative
Banach algebra B as an algebra of the form C(X), it would be wise to
investigate algebra homomorphisms µ : B → C. We have now built a compact
Hausdorff space out of such algebra homomorphisms, namely its spectrum
MB.

In the example of C(X), we can think of a function f ∈ C(X) as an
evaluation on evaluations. That is, for every f ∈ C(X), we have a map

evf : {evx : x ∈ X} → C
evx 7→ evf (evx) := evx(f) = f(x).

This is the idea behind the Gelfand representation.

2.1.26 Theorem (The Gelfand representation). Let B be a commutative
Banach algebra. Then, the evaluation map

ev : B → C(MB)

a 7→
(
eva : µ 7→ eva(µ) := µ(a)

)
is a norm-decreasing algebra homomorphism. Moreover,

σ(a) = eva(MB) and r(a) = ∥eva∥∞

for all a ∈ B.
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Proof. We first show that the evaluation map is well-defined, which amounts
to showing that evaluation at a ∈ B is a continuous map on MB. This is
immediate using nets, but we will give an alternate argument.

Let µ ∈ MB, let ϵ > 0 be arbitary and let B(µ(a), ϵ) ⊂ C denote the open
ball of radius ϵ centered at µ(a) = eva(µ). We will show that the preimage of
this ball under eva is a neighborhood of µ, which means that eva : MB → C
is continuous. This is immediate, for

ev−1
a

(
B(eva(µ), ϵ)

)
=
{
µ′ ∈ MB : eva(µ

′) = µ′(a) ∈ B
(
µ(a), ϵ

)}
=
{
µ′ ∈ MB : |µ(a)− µ′(a)| < ϵ

}
= Wµ(a; ϵ) ∩MB

is a neighborhood of µ in MB.
For any a ∈ B, we find that

∥eva∥∞ = sup
{
|eva(µ)| : µ ∈ MB

}
≤ sup

{
∥µ∥∥a∥ : µ ∈ MB

}
= ∥a∥

since ∥µ∥ = 1 for all µ ∈ MB (Lemma 2.1.24). This shows that the evaluation
map ev : B → C(MB) is norm-decreasing. The fact that ev(1B) = ev1B =
1C(MB) and that

evab(µ) = µ(ab) = µ(a)µ(b) = eva(µ)evb(µ) = (evaevb)(µ)

for all µ ∈ MB and all a, b ∈ M shows that it is an algebra homomorphism
as well (linearity should also be shown, but this is even simpler).

In Lemma 2.1.24, we proved that σ(a) = {µ(a) : µ ∈ MB}. The claim that
σ(a) = eva(MB) is just different notation for this fact, since µ(a) = eva(µ).
The claim that r(a) = ∥eva∥∞ is now just a matter of recalling definitions:

r(a) = sup
{
|λ| : λ ∈ σ(a)

}
= sup

{
|λ| : λ ∈ eva(MB)

}
= ∥eva∥∞.

This concludes the proof.

As we have remarked, the Gelfand representation need not be injective;
its kernel clearly consists of those b ∈ B for which σ(b) = {0}. Another
shortcoming is that ev(B) need not be closed in C(MB), so our representation
of B need not be a Banach algebra. We will eventually see that both of these
problems are remedied if the commutative Banach algebra in question is a
C*-algebra.

This is not that to say that the Gelfand representation in the general
setting of Banach algebras is not important or profound. Indeed, there are
deep ties to Fourier theory. We recommend Deitmar and Echterhoff [11] for
further exploration.
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2.2 | C*-Algebras

We are now fully prepared to explore the wonderful world of C*-algebras. As
in the previous section, we are mainly following Murphy [23].

2.2.1 The Very Basics of C*-Algebras

Let H be a Hilbert space and consider the Banach algebra B(H) equipped
with the involution given by the adjoint. For any T ∈ B(H), we have that

∥T∥2 = sup
∥v∥≤1

∥Tv∥2 = sup
∥v∥≤1

⟨T ∗Tv, v⟩ ≤ ∥T ∗T∥ ≤ ∥T ∗∥∥T∥,

and so ∥T∥ ≤ ∥T ∗∥. Applying this to T ∗ gives ∥T ∗∥ ≤ ∥T ∗∗∥ ≤ ∥T∥, so we
must have ∥T∥ = ∥T ∗∥. We now find that

∥T∥2 ≤ ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ = ∥T∥2,

and so ∥T ∗T∥ = ∥T∥2.

2.2.1 Definition (C*-algebras). A Banach algebra A equipped with an
involution ⋆ : a 7→ a∗ satisfying

∥a∗a∥ = ∥a∥2 for all a ∈ A (2.5)

is said to be a C*-algebra. Condition (2.5) is called the C*-equality.

There is some redundancy in our definitions: normalization of the unit is
superfluous, since 0 ̸= 1A and ∥1A∥ = ∥1∗A1A∥ = ∥1A∥2 by the C*-equality.

The C*-equality is extremely powerful, for it not only relates the algebraic
structure of a C*-algbera to its norm (as submultiplicativity does), but it
implies that the norm is uniquely determined by the algebraic structure.
A fantastic consequence of this, as we will see, is that injective ⋆-algebra
homomorphisms between C*-algebras must be isometric.

The manner in which the algebraic structure determines the norm is part
of Lemma 2.2.3. Before we state it, we introduce some basic terminology for
distinguished elements of ⋆-algebras and C*-algebras. The inspiration from
Hilbert space theory should be clear.

2.2.2 Definition. Let A be a ⋆-algebra. An element a ∈ A is called

� normal if aa∗ = a∗a.

� unitary if aa∗ = 1A = a∗a, i.e. if a−1 = a∗.
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� self-adjoint if a∗ = a.

Let A be a ⋆-algebra. Then, any a ∈ A can be written as a = a1 + ia2,
where a1 and a2 are self-adjoint:

a =

(
a+ a∗

2

)
+ i

(
a− a∗

2i

)
.

We will use this on a couple of occasions.

2.2.3 Lemma (Basic properties of C*-norms). Let A be a C*-algebra. Then,
the following statements are true.

(i) If a ∈ A is self-adjoint, then ∥a∥ = r(a).

(ii) There is no other norm on the ⋆-algebra A with respect to which it is a
C*-algebra.

(iii) The involution is an isometry: we have ∥a∗∥ = ∥a∥ for all a ∈ A.

Proof. For (i), let a∗ = a ∈ A. Then, ∥a2∥ = ∥a∥2 by the C*-equality. Since
any power of a is self-adjoint, we can use induction to show that ∥a2n∥ = ∥a∥2n

for all n ∈ N. By our formula for the spectral radius (Theorem 2.1.19), we
obtain

r(a) = lim
n→∞

∥an∥1/n = lim
n→∞

∥a2n∥1/2n = lim
n→∞

∥a∥ = ∥a∥,

as desired.
For (ii), assume that ∥ · ∥′ is a (possibly different) norm on A which turns

it into a C*-algebra. For any a ∈ A, the element a∗a ∈ A is self-adjoint, so
(i) implies that

(∥a∥′)2 = ∥a∗a∥′ = r(a∗a) = ∥a∗a∥ = ∥a∥2

(recall that the spectral radius is defined purely in terms of the algebraic
structure on A and makes no reference to the norm). Thus, ∥ · ∥′ = ∥ · ∥.

For (iii), let a ∈ A be any nonzero element. The C*-equality and submul-
tiplicativity of the norm gives

∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥∥a∥, so ∥a∥ ≤ ∥a∗∥.

The same result applied to a∗ instead of a gives ∥a∗∥ ≤ ∥a∗∗∥ = ∥a∥, so we
must have ∥a∥ = ∥a∗∥, which concludes the proof.

We now define a class of Banach algebras with involutions which are not
necessarily C*-algebras, but for which the involution is an isometry.
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2.2.4 Definition (Banach ⋆-algebras). A Banach algebra B equipped with
an involution ⋆ : a 7→ a∗ is a Banach ⋆-algebra if ∥a∗∥ = ∥a∥ for all a ∈ B.

By point (iii) of the lemma we just proved, all C*-algebras are Banach
⋆-algebras. We have now defined three kinds of algebras with deceptively
simple names. We summarize our definitions in Table 2.2.1 and then provide
some examples.

Table 2.1: Central structures, listed in decreasing order of generality.

Structure Compatibility condition

Banach algebra Banach space
and algebra

Submultiplicative norm
and normalized unit

Banach ⋆-algebra Banach algebra
with involution

Isometric involution

C*-algebra Banach algebra
with involution

C*-equality ( =⇒
isometric involution)

2.2.5 Example (C*-algebras and Banach ⋆-algebras). See Example 2.1.15
for the underlying Banach algebra structures.

� The Banach algebra C with the involution given by complex conjugation
is a C*-algebra.

� Let H be a complex nonzero Hilbert space. Any closed subalgebra of
B(H) that is also closed under the taking of adjoints is a C*-algebra
(where the involution is given by the adjoint).

� Consider the Banach algebra C(X) of continuous functions on a compact
Hausdorff space X. This is a C*-algebra with the involution given by
pointwise complex conjugation. For f ∈ C(X), we will denote the
pointwise complex conjugate of f by either f or f ∗.

� The convolution algebra ℓ1(Z) with the involution defined by

a∗(n) := a(−n) for all n ∈ Z and a ∈ ℓ1(Z)

is not a C*-algebra (the C*-equality does not hold), but it is a commu-
tative Banach ⋆-algebra.

Whenever we refer to C, B(H) or C(X) as C*-algebras, these are always the
structures we will have in mind.
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The following proposition begins to reveal the convenience of having a
norm determined by algebraic structure.

2.2.6 Proposition. Let B be a Banach ⋆-algebra, let A be a C*-algebra and
let Φ: B → A be a ⋆-algebra homomorphism. Then, Φ is norm-decreasing.

In particular, ⋆-algebra homomorphisms between C*-algebras are norm-
decreasing and ⋆-algebra isomorphisms between C*-algebras are isometric.

Proof. Let b ∈ B. By point (iii) of Lemma 2.1.9, we have σ(Φ(b∗b)) ⊂ σ(b∗b)
and hence r(Φ(b∗b)) ≤ r(b∗b). Thus,

∥Φ(b)∥2 = ∥Φ(b)∗Φ(b)∥ = r
(
Φ(b∗b)

)
≤ r(b∗b) ≤ ∥b∗b∥ ≤ ∥b∗∥∥b∥ = ∥b∥2,

where the second equality follows from point (i) of Lemma 2.2.3 and the
second inequality follows from Theorem 2.1.19 on spectra in Banach algebras.
This proves that Φ is norm-decreasing.

By what we have already shown, a ⋆-algebra isomorphism Φ: A → B
between C*-algebras (which are Banach ⋆-algebras) must both be norm-
decreasing and have a norm-decreasing inverse, so ∥a∥ = ∥Φ−1Φ(a)∥ ≤
∥Φ(a)∥ ≤ ∥a∥ for all a ∈ A. Thus, such algebra isomorphisms are isometric.

This result makes it clear that ⋆-algebra isomorphisms are the correct
notion of isomorphisms for C*-algebras – we obtain isometry for free! We
may refer to the presence of a ⋆-algebra isomorphism Φ: A → A′ between
C*-algebras by saying that A ∼= A′ as C*-algebras.

We now investigate the spectra of distinguished elements in a C*-algebra.
We will use the symbol T to denote the unit circle in C.

2.2.7 Proposition. Let A be a C*-algebra.

(i) If a ∈ A is unitary, then σ(a) ⊂ T.

(ii) If a ∈ A is self-adjoint, then σ(a) ⊂ R.

Proof. We begin with (i). Let a ∈ A be unitary, i.e. a∗ = a−1. By point (ii)
of Lemma 2.1.9, we have λ ∈ σ(a) if and only if λ−1 ∈ σ(a−1). Now, the
C*-equality gives ∥a∥2 = ∥a∗a∥ = ∥1A∥ = 1, so we have

r(a) ≤ ∥a∥ = 1 and r(a−1) = r(a∗) ≤ ∥a∗∥ = ∥a∥ = 1

by Theorem 2.1.19 and the fact that the involution is isometric.
Let now λ ∈ σ(a). Since λ−1 ∈ σ(a−1), we obtain both |λ| ≤ r(a) = 1 and

|λ−1| ≤ r(a−1) = 1, which gives |λ| = 1. This shows that σ(a) ⊂ T.
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For (ii), let a ∈ A be self-adjoint, i.e. a∗ = a. Since ia and −ia trivially
commute, we have eiae−ia = e0 = 1A and e−iaeia = 1A (see Lemma 2.1.16).
That is, (eia)−1 = e−ia. Since the involution is an isometry, it is also continuous,
so

(eia)∗ =

( ∞∑
n=0

(ia)n

n!

)∗

=
∞∑
n=0

(
(ia)n

n!

)∗

=
∞∑
n=0

(−ia)n

n!
= e−ia = (eia)−1.

This shows that eia is unitary. By (i), we now know that σ(eia) ⊂ T.
For any λ ∈ C, we have

eiλ1A − eia = eiλ
(
1A − ei(a−λ1A)

)
= −eiλ

∞∑
n=1

(
i(a− λ1A)

)n
n!

=

(
eiλ

∞∑
n=1

in(a− λ1A)
n−1

n!

)
(λ1A − a).

In the last step, we could just as well have written λ1A − a to the left of the
sum, so λ1A − a commutes with the sum. By Lemma 2.1.3 on inverses and
products, we see that if λ1A − a is not invertible, then eiλ1A − eia cannot be
invertible either. In other words: if λ ∈ σ(a), then eiλ ∈ σ(eia) ⊂ T. Thus,
we must have σ(a) ⊂ R, which is what we wanted to show.

We now consider C*-subalgebras.

2.2.8 Definition (C*-subalgebras). Let A be a C*-algebra. A C*-subalgebra
C of A is a ⋆-subalgebra C ⊂ A that is closed.

C*-subalgebras of a C*-algebra A are of course precisely those subalgebras
of A which are C*-algebras in their own right (with the norm and involution
restricted from A).

Let now C be a C*-subalgebra of A. Since the spectrum of an element
is defined with respect to invertibility in the C*-algebra containing it, an
element c ∈ C ⊂ A will have one spectrum with respect to C and a potentially
different spectrum with respect to A. We will denote these spectra by σC(c)
and σA(c), respectively.

Clearly Inv(C) ⊂ Inv(A)∩ C, for an inverse of c ∈ C in C is an inverse of c
in A as well. Thus, for any λ ∈ C and c ∈ C, we have that

λ1A − c /∈ Inv(A) =⇒ λ1A − c /∈ Inv(C).

This shows that σA(c) ⊂ σC(c) (recall that 1C = 1A by our definitions). We
will now see that these spectra in fact must be equal. This means that we
are free to drop the subscripts going forward.
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2.2.9 Proposition (Spectral permanence). Let A be a C*-algebra and let
C ⊂ A be a C*-subalgebra of A. Then,

Inv(C) = Inv(A) ∩ C and σC(c) = σA(c) for all c ∈ C.

Proof. Assume first that c ∈ C is self-adjoint. We will show that σC(c) =
σA(c). As noted before the proposition, σA(c) ⊂ σC(c) is immediate from the
observation that Inv(C) ⊂ Inv(A) ∩ C. We will show that σC(c) ⊂ σA(c) by
contraposition.

For any t ∈ R, self-adjointness of c implies that(
t+

i

n

)
1A − c ∈ Inv(C) for all n ∈ N1, (2.6)

for otherwise the non-real number t+ i/n would be in σC(c), which cannot
happen since σC(c) ⊂ R (Proposition 2.2.7). If t /∈ σA(c), then t1A − c is
invertible in A, and by continuity of the inverse we see that((

t+
i

n

)
1A − c

)−1

→
(
t1A − c

)−1
in A as n→ ∞.

The sequence on the left is in C by Equation (2.6). Since C is closed, we can
conclude that (t1A − c)−1 ∈ C. This shows that t /∈ σC(c) whenever t /∈ σA(c),
so σC(c) ⊂ σA(c).

We have now shown that σC(c) = σA(c) for all self-adjoint c ∈ C. The next
step is to show that Inv(A) ∩ C ⊂ Inv(C), so that these sets must be equal.

Let c ∈ Inv(A) ∩ C. Then,

(c∗c)
(
c−1(c−1)∗

)
= 1A =

(
c−1(c−1)∗

)
(c∗c), so c∗c ∈ Inv(A).

Now, c∗c is a self-adjoint element of C, so we know that σC(c
∗c) = σA(c

∗c) by
the previous part of the proof. Since

c∗c ∈ Inv(A) ⇐⇒ 0 /∈ σA(c
∗c) and c∗c ∈ Inv(C) ⇐⇒ 0 /∈ σC(c

∗c),

we obtain c∗c ∈ Inv(C) from c∗c ∈ Inv(A). Finally, we have

c
(
(c∗c)−1c∗

)
= c
(
c−1(c−1)∗c∗

)
= 1A =

(
(c∗c)−1c∗

)
c,

so c−1 = (c∗c)−1c∗ ∈ C (since (c∗c)−1 ∈ C and c∗ ∈ C). This concludes the
proof that Inv(A) ∩ C = Inv(C).

For any c ∈ C and λ ∈ C, the fact that Inv(A) ∩ C = Inv(C) gives

λ1A − c /∈ Inv(C) ⇐⇒ λ1A − c /∈ Inv(A),

so σC(c) = σA(c), which concludes the proof.
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2.2.2 The Continuous Functional Calculus

In this subsection, commutative C*-algebras will be denoted by C and general
C*-algebras by A. We will always specify our assumptions, but this should
make the text more transparent. We have already seen that ⋆-algebra isomor-
phisms between C*-algebras are isometric (Proposition 2.2.6), but we will
nevertheless speak of “isometric isomorphisms of ⋆-algebras” for emphasis.

We begin by revisiting the Gelfand representation in the case that our
commutative Banach algebra is a C*-algebra C. Recall that we have defined
characters on C to be algebra homomorphism µ : C → C. The following lemma
shows that characters on C must be ⋆-algebra homomorphisms as well.

2.2.10 Lemma. Let C be a commutative C*-algebra and let µ ∈ MC be a
character on C. Then, µ preserves the involution:

µ(c∗) = µ(c) for all c ∈ C.

Thus, characters on (commutative) C*-algebras are ⋆-algebra homomorphisms.

Proof. Let c ∈ C and write c = c1 + ic2 with c1 and c2 self-adjoint (see the
paragraph following Definition 2.2.2). We know that µ(c1) ∈ σ(c1) ⊂ R and
µ(c2) ∈ σ(c2) ⊂ R (Lemma 2.1.24 and Proposition 2.2.7). Since c∗ = c1 − ic2,
we find that

µ(c∗) = µ(c1)− iµ(c2) = µ(c1) + iµ(c2) = µ(c1 + ic2) = µ(c),

which is what we wanted to show.

2.2.11 Theorem (The Gelfand representation). Let C be a commutative
C*-algebra. Then, the Gelfand representation

ev : C → C(MC)

c 7→
(
evc : µ 7→ evc(µ) := µ(c)

)
is an isometric isomorphism of ⋆-algebras.

Proof. We already know that ev : C → C(MC) is an algebra homomorphism
by Theorem 2.1.26. We need to show that it preserves the involution and
that is isometric and bijective.

Let c ∈ C. By Lemma 2.2.10, we have

evc∗(µ) = µ(c∗) = µ(c) = evc(µ) = (evc)
∗(µ) for all µ ∈ MC,
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so evc∗ = (evc)
∗, which shows that ev preserves the involution. To see that

it is isometric, we use the C*-equality and the fact that r(c∗c) = ∥evc∗c∥∞
(Theorem 2.1.26):

∥c∥2 = ∥c∗c∥ = r(c∗c) = ∥evc∗c∥∞ = ∥(evc)∗evc∥∞ = ∥evc∥2∞.

As an isometry between complete spaces, ev is injective and its image
is closed. If we can show that its image ev(C) is dense in C(MC), then
it must be surjective, which will conclude the proof that is is an isometric
isomorphism of ⋆-algebras.

To conclude that ev(C) is dense in C(MC), we appeal to the Stone-
Weierstrass theorem (Theorem A.1.1). The Stone-Weierstrass theorem applies
because ev(C) is a ⋆-subalgebra of C(MC) such that

� ev(C) separates points of MC: as functions on C, µ and µ′ are distinct
if and only if they differ on an element of C.

� ev(C) vanishes at no point of C: ev1C(µ) = µ(1C) = 1 ̸= 0 for all
µ ∈ MC.

This concludes the proof.

We now turn to the continuous functional calculus.

2.2.12 Definition (The C*-algebra generated by a set). Let A be a C*-
algebra and let S ⊂ A be a subset. The C*-algebra generated by S is the
smallest (w.r.t. inclusion) C*-subalgebra of A containing S. It is denoted by
C∗(S). We will write C∗(a) := C∗({a}) for all a ∈ A.6

The C*-algebra generated by S ⊂ A equals the intersection of all C*-
subalgebras of A containing S. It always exists, as A is a C*-subalgebra
of itself containing any of its subsets, and an arbitrary intersection of C*-
subalgebras is a C*-subalgebra. These claims are straightforward to verify.

Let A be a C*-algebra and let a ∈ A be a normal element. Then,

C∗(a) = spanC
{
an(a∗)m ∈ A : (n,m) ∈ N0 × N0

}
, (2.7)

because the closed span on the right hand side is a C*-subalgebra of A
containing a, and any C*-algebra containing a must contain this closed span.
Note that this is a commutative C*-algebra (by normality of a).

6As our C*-algebras are unital, 1A ∈ C∗(a) by definition. When working with nonunital
C*-algebras, what we are calling C∗(a) would be denoted by C∗(1A, a) and C

∗(a) would
carry a different meaning.
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The continuous functional calculus refers to an identification of C∗(a)
with the C*-algebra C(σ(a)) of continuous functions on the spectrum of a.
The Gelfand representation identifies C∗(a) with C(MC∗(a)). To obtain the
continuous functional calculus, we will identify MC∗(a) and σ(a) as topological
spaces. The following lemma provides the link.

2.2.13 Lemma. Let C be a commutative C*-algebra that is generated by a
single element a ∈ C. Then, (the corestriction of)7 evaluation at a,

eva|σ(a) : MC → σ(a)

µ 7→ µ(a),

is a homeomorphism.

Proof. We will write eva instead of eva|σ(a) for the duration of this proof.
From the construction of the Gelfand representation for commutative

Banach algebras (see Proposition 2.1.25 and Theorem 2.1.26), we know that
MC is compact, that eva is continuous and that eva(MC) = σ(a).

We now show that eva is injective. Suppose that µ, µ′ ∈ C are such that
µ(a) = eva(µ) = eva(µ

′) = µ′(a). This implies that µ(a∗) = µ′(a∗) (Lemma
2.2.10) and we know that µ(1C) = 1 = µ′(1C). Now, since

C = C∗(a) = spanC
{
an(a∗)m ∈ C : (n,m) ∈ N0 × N0

}
,

continuity of µ and µ′ implies that µ = µ′.
We have now shown that eva is a continuous bijection of the compact

space MC onto σ(a). This is enough to conclude that ev−1
a is continuous, as

the following argument shows.
Let E ⊂ MC be any closed set. As a closed subset of a compact space, E

is compact, so by continuity of eva, the set(
(eva)

−1
)−1

(E) = eva(E)

is compact and hence closed in σ(a) (compact subsets of Hausdorff spaces
are closed). Thus, the preimage by ev−1

a of any closed set is closed, so ev−1
a

is continuous. This show that eva is a homeomorphism and concludes the
proof.

7We have defined evaluation at a as the map eva : MC → C. We have seen that
eva(MC) = σ(a), so we are free to restrict the range of eva to σ(a). This is called
corestriction (restriction of range) and is what is meant by the notation eva|σ(a).
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For a continuous map F : X → Y between topological spaces, we define
the transpose of F to be the map

F t : C(Y ) → C(X)

f 7→ F t(f) := f ◦ F.

In words, F t is simply precomposition with F .

2.2.14 Lemma. Let X and Y be compact Hausdorff spaces. If F : X → Y
is a homeomorphism, then F t : C(Y ) → C(X) is an isometric isomorphism
of ⋆-algebras.

Proof. The fact that F t is a ⋆-algebra homomorphism requires only straight-
forward verifications like

F t(fg)(x) = (fg)
(
F (x)

)
= f

(
F (x)

)
g
(
F (x)

)
= F tf(x)F tg(x) =

(
(F tf)(F tg)

)
(x) for all x ∈ X;

we omit the rest. Since(
(F−1)t ◦ F t

)
(f) = f ◦ F ◦ F−1 = f for all f ∈ C(Y ),

we have (F−1)t ◦ F t = IdC(Y ). Similarly, F t ◦ (F−1)t = IdC(X). Thus, F t is
bijective and hence an isomorphism of ⋆-algebras. Since C(X) and C(Y ) are
C*-algebras, F t must be isometric (Proposition 2.2.6).

We now obtain the continuous functional calculus simply by putting the
pieces together.

2.2.15 Theorem. Let C be a commutative C*-algebra that is generated by a
single element a ∈ C, and let ev : C → C(MC) be the Gelfand representation.
Then, the map

Γa := ev−1 ◦ (eva|σ(a))t : C
(
σ(a)

)
→ C

f 7→ ev−1(f ◦ eva|σ(a))

is an isometric isomorphism of ⋆-algebras. Moreover, if z : σ(a) → C denotes
the inclusion of σ(a) into C, then Γa(z) = a.

Proof. The evaluation map ev : C → C(MC) is an isometric isomorphism of
⋆-algebras by Theorem 2.2.11. Combining Lemma 2.2.13 with Lemma 2.2.14
implies that (ev|σ(a))t : C(σ(a)) → C(MA) is an isometric isomorphism of
⋆-algebras. The composition Γa := ev−1 ◦ (eva|σ(a))t is then an isometric
isomorphism of ⋆-algebras as well.
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Finally, if z : σ(a) → C denotes the inclusion, then z ◦ eva|σ(a) = eva, so

Γa(z) = ev−1(z ◦ eva|σ(a)) = ev−1(eva) = a,

which concludes the proof.

2.2.16 Corollary (The continuous functional calculus). Let A be a C*-
algebra and let a ∈ A be a normal element. Then, there is an isometric
⋆-algebra isomorphism

Γa : C
(
σ(a)

)
→ C∗(a)

such that Γa(z) = a.

Proof. If a is normal, then C∗(a) is commutative (see Equation (2.7) and the
surrounding discussion). By spectral permanence (Proposition 2.2.9) we have
σC∗(a)(a) = σA(a), so Theorem 2.2.15 with C = C∗(a) gives the result.

In the situation of the corollary, we will write

f(a) := Γa(f) for any f ∈ C
(
σ(a)

)
.

This is sensible, because we can think of Γa as the identification of

C
(
σ(a)

)
= spanC

{
znzm ∈ C

(
σ(a)

)
: (n,m) ∈ N0 × N0

}
(see Corollary A.1.2) with

C∗(a) = spanC
{
an(a∗)m ∈ A : (n,m) ∈ N0 × N0

}
obtained by mapping a 7→ z (and consequently a∗ 7→ z). It is the map
Γa : C(σ(a)) → C∗(a) (potentially followed by the inclusion C∗(a) → A) that
is referred to as the continuous functional calculus at a.

We now give a characterization of f(a) which will be useful in proving the
next result.

2.2.17 Lemma. Let A be a C*-algebra, let a ∈ A be a normal element and
let f ∈ C(σ(a)). Then, f(a) is the unique element in C∗(a) such that

µ
(
f(a)

)
= f

(
µ(a)

)
for all µ ∈ MC∗(a).

Proof. This is just a matter of unwrapping our definitions. Recall that
Γa : C(σ(a)) → C∗(a) is defined by the composition

C
(
σ(a)

)
−→ C(MC∗(a)) −→ C∗(a)

f 7−→ f ◦ eva|σ(a)

g 7−→ ev−1(g).
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This means that Γa maps f ∈ C(σ(a)) to the unique (by bijectivity) element
f(a) := Γa(f) ∈ C∗(a) such that

evf(a) = f ◦ eva|σ(a) ∈ C
(
MC∗(a)

)
.

This is precisely the statement that µ(f(a)) = f(µ(a)) for all µ ∈ MC∗(a).

The following result shows that the continuous functional calculus interacts
nicely with compositions and spectra.

2.2.18 Theorem (The spectral mapping theorem). Let A be a C*-algebra,
let a ∈ A be a normal element and let f ∈ C(σ(a)). Then,

σ
(
f(a)

)
= f

(
σ(a)

)
, and (g ◦ f)(a) = g

(
f(a)

)
for all g ∈ C

(
σ(f(a))

)
.

Proof. By Lemma 2.1.24 and spectral permanence (Proposition 2.2.9), we
have σ(f(a)) = {µ(f(a)) : µ ∈ MC∗(a)} and σ(a) = {µ(a) : µ ∈ MC∗(a)}. By
Lemma 2.2.17, we now find that

σ
(
f(a)

)
=
{
f
(
µ(a)

)
: µ ∈ MC∗(a)} = f

(
σ(a)

)
.

For the other assertion of the theorem, note that C∗(f(a)) ⊂ C∗(a) because
f(a) ∈ C∗(a). Moreover, f(a) is normal, for both f(a) and f(a)∗ = f(a) are
contained in the commutative C*-algebra C∗(a). By Lemma 2.2.17, g(f(a))
is the unique element in C∗(f(a)) such that

µ
(
g(f(a))

)
= g
(
µ(f(a))

)
for all µ ∈ MC∗(f(a)).

Since every character on C∗(a) restricts to a character on C∗(f(a)), this
means that g(f(a)) ∈ C∗(f(a)) ⊂ C∗(a) satisfies

µ
(
g(f(a))

)
= g
(
µ(f(a))

)
= g
(
f(µ(a))

)
= (g ◦ f)

(
µ(a)

)
for all µ ∈ MC∗(a)

(where we have used Lemma 2.2.17 applied to f for the second equality). But
(g◦f)(a) is the unique element in C∗(a) such that µ((g◦f)(a)) = (g◦f)(µ(a))
for all µ ∈ MC∗(a), so we must have g(f(a)) = (g ◦ f)(a).

Finally, we show that the continuous functional calculus interacts nicely
with ⋆-algebra homomorphisms. Note that our notation is somewhat sloppy
with regard to restrictions.8

8This will often be the case when working with the continuous functional calculus.
Restrictions of continuous functions are continuous, so this leads to no harm.
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2.2.19 Proposition. Let Φ: A → A′ be a ⋆-algebra homomorphism between
C*-algebras and let a ∈ A be a normal element. Then, Φ(a) is normal, any
f ∈ C(σ(a)) restricts to f ∈ C(σ(Φ(a))), and we have

Φ(f(a)) = f(Φ(a))

for all f ∈ C(σ(a)).

Proof. The calculation Φ(a)∗Φ(a) = Φ(a∗a) = Φ(aa∗) = Φ(a)Φ(a)∗ shows
that Φ(a) is normal. We know that σ(Φ(a)) ⊂ σ(a) (point (iii) of Lemma
2.1.9), so the claimed restriction poses no problems.

By the Stone-Weierstrass theorem, we can find a sequence (pn) of polyno-
mials in z and z such that pn → f uniformly on σ(a) (see Corollary A.1.2).
The continuous functional calculus at a is continuous (even isometric), so we
have pn(a) → f(a) in A.

Since Φ is an algebra homomorphism, we have Φ(pn(a)) = pn(Φ(a)) for all
n ∈ N. We know that Φ is norm-decreasing and hence continuous (Proposition
2.2.6), so

Φ(f(a)) = Φ( lim
n→∞

pn(a)) = lim
n→∞

Φ(pn(a)) = lim
n→∞

pn(Φ(a)).

Finally, if pn → f uniformly on σ(a), then pn → f uniformly on σ(Φ(a)) ⊂
σ(a) as well. Thus, we find that pn(Φ(a)) → f(Φ(a)) in A′ by continuity of
the continuous functional calculus at Φ(a). This gives Φ(f(a)) = f(Φ(a)) and
concludes the proof.

2.2.3 Positive Elements

In Proposition 2.2.7, we showed that any self-adjoint element in a C*-algebra
has a spectrum consisting entirely of real numbers. We now consider those
self-adjoint elements whose spectra consists entirely of nonnegative numbers.

2.2.20 Definition (Positive elements). Let A be a C*-algebra. An element
a ∈ A is called positive if a is self-adjoint and σ(a) ⊂ [0,∞). We will write
a ≥ 0 to signify that a is positive and we will denote the set of all positive
elements in A by A+.

If C is any (not necessarily commutative) C*-subalgebra of A, then c ∈ C
is positive in C if and only if it is positive in A, because of spectral permanence
(Proposition 2.2.9).

In analogy with the complex numbers (where σ(λ) = {λ} for all λ ∈ C, so
that λ ≥ 0 carries the usual meaning), positive elements have unique positive
square roots.
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2.2.21 Proposition (Square roots of positive elements). Let A be a C*-
algebra. Then, for any a ∈ A+, there exists a unique element b ∈ A+ such
that b2 = a. We write a1/2 := b and call b the positive square root of a.
Moreover, a1/2 ∈ C∗(a).

Proof. Fix a ∈ A+. We first show that the condition that b ∈ A+ satisfies
b2 = a determines b uniquely. Define sq: [0,∞) → C and sqrt : [0,∞) → C
by sq(λ) = λ2 and sqrt(λ) =

√
λ. Then, sq(b) = b2 = a. Since σ(sq(b)) =

σ(a) ⊂ [0,∞), we have sqrt ∈ C(σ(sq(b))). The spectral mapping theorem
(Theorem 2.2.18) now gives

b = (sqrt ◦ sq)(b) = sqrt(sq(b)) = sqrt(a) = Γa(sqrt).

This means that any b ≥ 0 such that b2 = a must be the result of applying
the continuous functional calculus at a to the square root function, which
proves uniqueness.

We now show existence. We have sqrt ∈ C(σ(a)), and the continuous
functional calculus at a gives

(sqrt(a))2 = (Γa(sqrt))
2 = Γa(sqrt

2) = Γa(z) = a

as well as sqrt(a)∗ = sqrt(a) = sqrt(a). Finally, the spectral mapping theorem
gives σ(sqrt(a)) = sqrt(σ(a)) ⊂ [0,∞), so b := sqrt(a) is a positive element
which squares to a, as desired, and we clearly have b ∈ C∗(a).

We now collect a handful of simple but useful results regarding positive
elements.

2.2.22 Lemma. Let A be a C*-algebra and let a ∈ A. Then, the following
statements are true.

(i) If a∗ = a and ∥t1A − a∥ ≤ t for some t ∈ R, then a ≥ 0.

(ii) If a ≥ 0, then, for all t ∈ R: t ≥ ∥a∥ =⇒ ∥t1A − a∥ ≤ t.

(iii) The sum of two positive elements is positive.

(iv) If a is normal and f ∈ C(σ(a)), then:

f(a) ≥ 0 in A ⇐⇒ f ≥ 0 in C
(
σ(a)

)
⇐⇒ f

(
σ(a)

)
⊂ [0,∞).

(v) If a ≥ 0, then ∥a∥ ∈ σ(a).

(vi) If a∗ = a, then we can write a = a+ − a−, where a+, a− ∈ A+ and
a+a− = 0.
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Proof. In both (i) and (ii), we are assuming that a is self-adjoint, so we
are free to apply the continuous functional calculus at a, and we know that
σ(a) ⊂ R by Proposition 2.2.7.

If there exists some t ∈ R such that ∥t1A − a∥ ≤ t, then (letting t
denote the constant function at t) we have ∥t − z∥∞ ≤ t in C(σ(a)), since
the continuous functional calculus is an isometry. For this to be true, the
inclusion z : σ(a) → C cannot take negative values, so σ(a) ⊂ [0,∞), which
proves (i).

For (ii), suppose that a ≥ 0 and let t ∈ R. We have σ(a) ⊂ [0, ∥a∥] by
Lemma 2.2.3, so if t ≥ ∥a∥, then ∥t − z∥∞ ≤ t in C(σ(a)). Thus, t ≥ ∥a∥
implies that ∥t1A − a∥ ≤ t by isometry of the continuous functional calculus.

For (iii), let a, b ∈ A+. Then,∥∥∥a∥1A − a
∥∥ ≤ ∥a∥ and

∥∥∥b∥1A − b
∥∥ ≤ ∥b∥

by (ii). We now have (a+ b)∗ = a+ b and∥∥(∥a∥+ ∥b∥
)
1A − (a+ b)

∥∥ ≤
∥∥∥a∥1A − a

∥∥+ ∥∥∥b∥1A − b
∥∥ ≤ ∥a∥+ ∥b∥,

so a+ b ≥ 0 by (i), which proves (iii).
For (iv), let a be normal and f ∈ C(σ(a)). It is quite immediate that

f(σ(a)) ⊂ [0,∞) ⇐⇒ f ≥ 0 in the C*-algebra C(σ(a)). (2.8)

To see this, note that f(σ(a)) = σ(f) (see point (iii) of Example 2.1.18) and
that f ∗ = f = f if f(σ(a)) ⊂ [0,∞).

By the spectral mapping theorem (Theorem 2.2.18), we have σ(Γa(f)) =
σ(f(a)) = f(σ(a)) = σ(f), so the continuous functional calculus Γa preserves
spectra. As a ⋆-algebra homomorphism, it also preserves the involution, so it
is now immediate that it preserves the positivity condition (in both directions).
Thus, Γa(f) = f(a) ≥ 0 if and only if f ≥ 0 in C(σ(a)), which concludes the
proof of (iv).

For (v), the facts that

σ(a) ⊂ [0,∞), σ(a) is compact and r(a) = ∥a∥

(Theorem 2.1.19 and Lemma 2.2.3) together imply that ∥a∥ ∈ σ(a). To see this,
choose a sequence (λn) ⊂ σ(a) such that |λn| → r(a) = ∥a∥. By compactness,
there is a convergent subsequence (λ′n) ⊂ σ(a) such that limn→∞ λ′n ∈ σ(a),
and we must have λ′n → ∥a∥ since σ(a) ⊂ [0,∞). This gives (v).

For (vi), the fact that a∗ = a implies that σ(a) ⊂ R (Proposition 2.2.7).
We can write the inclusion z : R → C as z = z+ − z−, where

z+ := max{0, z} and z− := max{0,−z}
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are continuous functions on R. We then have z+(σ(a)) ⊂ [0,∞) and
z−(σ(a)) ⊂ [0,∞) as well as z+z− = 0. Define

a+ := Γa(z+) = z+(a) and a− := Γa(z−) = z−(a).

By (iv), we have a+ ≥ 0 and a− ≥ 0. Finally, since Γa is an algebra
homomorphism, we have a = a+ − a− and a+a− = 0, which concludes the
proof.

The following theorem is of great importance.

2.2.23 Theorem. Let A be a C*-algebra. Then, a∗a ≥ 0 for all a ∈ A.

Proof. Fix any a ∈ A. By point (vi) of Lemma 2.2.22, we can write a∗a =
(a∗a)+ − (a∗a)− with (a∗a)+, (a

∗a)− ≥ 0 and (a∗a)+(a
∗a)− = 0. We wish to

show that (a∗a)− = 0, for then a∗a = (a∗a)+ ≥ 0.
Set b := a(a∗a)−. We will show that b∗b = 0, and then explain why this

implies that (a∗a)− = 0. We find that

b∗b = (a∗a)−a
∗a(a∗a)− = (a∗a)−

(
(a∗a)+ − (a∗a)−

)
(a∗a)− = −(a∗a)3−. (2.9)

Since σ((a∗a)−) ⊂ [0,∞), we have −b∗b = (a∗a)3− ≥ 0 by point (iv) of Lemma
2.2.22, and hence σ(b∗b) = −σ(−b∗b) ⊂ (−∞, 0].

Write b = b1 + ib2 with b1 and b2 self-adjoint (see the paragraph following
Definition 2.2.2). Then, b∗ = b1 − ib2, and we find bb∗ + b∗b = 2b21 + 2b22 by
multiplying out. Now, b21 = Γb1(z

2) ≥ 0 and b22 = Γb2(z
2) ≥ 0 by point (iv)

of Lemma 2.2.22. Since sums of positive elements are positive (point (iii) of
Lemma 2.2.22), this gives

bb∗ = 2b21 + 2b22 + (−b∗b) ≥ 0.

By point (i) of Lemma 2.1.9, we have σ(bb∗) ∪ {0} = σ(b∗b) ∪ {0}, so bb∗ ≥ 0
gives σ(b∗b) ⊂ [0,∞).

We have now shown that σ(b∗b) ⊂ (−∞, 0] ∩ [0,∞) = {0}. Since b∗b
is self-adjoint, we have ∥b∗b∥ = r(b∗b) = 0 (Lemma 2.2.3), so b∗b = 0. By
Equation (2.9), we now see that (a∗a)3− = 0. By the continuous functional
calculus, this means that z3 and 0 are equal as functions on σ((a∗a)−), so
σ((a∗a)−) = {0}. This gives (a∗a)− = 0 by the same reasoning that we
just used for b∗b. This concludes the proof, for we have now shown that
a∗a = (a∗a)+ ≥ 0.

We can now give an alternate description of positive elements, which does
not appeal to spectra. This is an important result that we may use without
reference.
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2.2.24 Corollary (Alternate description of positivity). Let A be a C*-algebra.
Then, A+ = {a∗a : a ∈ A}.

Proof. By Theorem 2.2.23, {a∗a : a ∈ A} ⊂ A+. Conversely, let a ∈ A+. By
Proposition 2.2.21, there is a unique b ∈ A+ such that a = b2 = b∗b. This
gives the other inclusion, so A+ = {a∗a : a ∈ A}.

Let A be a C*-algebra. By combining the fact that a∗a ∈ A+ for all a ∈ A
and the fact that every positive element has a unique positive square root,
we can define absolute values: for any a ∈ A we write |a| := (a∗a)1/2 and call
|a| the absolute value of a.

We can also use the set A+ to define a partial order on the set of all
self-adjoint elements in A, which we now introduce a symbol for:

Asa := {a ∈ A : a∗ = a}.

By a partial order, we mean a relation that is reflexive, antisymmetric and
transitive.

2.2.25 Proposition (The partial order on Asa). Let A be a C*-algebra. For
a, b ∈ Asa, we will write a ≥ b to signify that a− b ∈ A+. Then, the relation
≥ is a partial order on Asa.

Moreover, for any a, b, c ∈ Asa and t ∈ [0,∞), the following implications
are true.

(i) a ≥ b =⇒ a+ c ≥ a+ c

(ii) a ≥ b =⇒ ta ≥ tb

(iii) a ≥ b =⇒ −b ≥ −a

Proof. Let a, b, c ∈ Asa. We have a − a = 0 ∈ A+, so ≥ is reflexive. If
a− b ∈ A+ and b− a ∈ A+, then σ(a− b) ⊂ (−∞, 0] ∩ [0,∞) = {0}. Thus,
∥a − b∥ = r(a − b) = 0 (Lemma 2.2.3) and so a = b. This shows that ≥ is
antisymmetric. If a−b ∈ A+ and b−c ∈ A+, then a−c = (a−b)+(b−c) ∈ A+,
since the sum of positive elements is positive (Lemma 2.2.22). This shows
that ≥ is transitive and concludes the proof that ≥ is a partial order on Asa.

Properties (i), (ii) and (iii) are immediate: (i) follows from a − b =
(a+c)−(b+c); (ii) follows from the fact that a−b ∈ A+ implies t(a−b) ∈ A+;
(iii) follows from a− b = (−b)− (−a).

We now prove some less obvious properties of this partial order.

2.2.26 Proposition. Let A be a C*-algebra and let a, b ∈ Asa. Then, the
following statements are true.
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(i) If a ≥ b, then c∗ac ≥ c∗bc for all c ∈ A.

(ii) We have ∥a∥1A ≥ a. Moreover, if a ≥ b ≥ 0, then ∥a∥ ≥ ∥b∥.

(iii) If a ≥ b ≥ 0 and a, b ∈ Inv(A), then b−1 ≥ a−1 ≥ 0.

Proof. We begin with (i). If a− b ∈ A+, then a− b has a positive square root
(Proposition 2.2.21), and we find that

c∗(a− b)c =
(
(a− b)1/2c

)∗(
(a− b)1/2c

)
≥ 0,

which proves (i).
For (ii), we have σ(a) ⊂ [−∥a∥, ∥a∥] by Lemma 2.2.3, so ∥a∥ − z ≥ 0 in

C(σ(a)). Thus, ∥a∥1A − a ≥ 0 by point (iv) of Lemma 2.2.22, so we obtain
∥a∥1A ≥ a.

Assume now that a ≥ b ≥ 0. We have ∥a∥1A ≥ a ≥ b, so ∥a∥1A − b ≥ 0.
By points (iv) and (v) of Lemma 2.2.22, we have ∥a∥ − z ≥ 0 in C(σ(b)) and
∥b∥ ∈ σ(b). This gives ∥a∥ − ∥b∥ ≥ 0, which concludes the proof of (ii).

We now turn to (iii). By Proposition 2.2.9, we have Inv(C∗(b)) = Inv(A)∩
C∗(b), so since b is invertible in A, its inverse is in C∗(b). By the continuous
functional calculus at b, it is now clear that b ≥ 0 implies b−1 ≥ 0 (see point
(iv) of Lemma 2.2.22). Thus, b−1 has a positive square root b−1/2 ∈ C∗(b−1) ⊂
C∗(b) which commutes with b. We now have

b−1/2ab−1/2 ≥ b−1/2bb−1/2 = 1A

by (i). Note that (b−1/2)−1 = b1/2, since (z−1/2)−1 = z1/2 in C(σ(b)).
Consider now the element c := b−1/2ab−1/2. This is self-adjoint, invertible

and satisfies c ≥ 1A. This means that z ≥ 1 in C(σ(c)), so z is invertible in
C(σ(c)) and 1 ≥ z−1. Thus, 1A ≥ c−1 by point (iv) of Lemma 2.2.22. This
means that

1A ≥ c−1 = (b−1/2ab−1/2)−1 = b1/2a−1b1/2,

from which another application of (i) gives

b−1 = b−1/21Ab
−1/2 ≥ a−1.

The fact that a−1 ≥ 0 follows by the same reasoning that we used to conclude
that b−1 ≥ 0 in the previous paragraph. This concludes the proof.

We will close this section with an alternate characterization of positivity
when our C*-algebra is an algebra of operators on a Hilbert space. To prove
it, we need a simple lemma from the theory of Hilbert spaces. Our inner
products are linear in the first entry.
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2.2.27 Lemma. Let H be a complex Hilbert space with inner product ⟨·, ·⟩
and suppose that T ∈ B(H) satisfies

⟨Tv, v⟩ = 0 for all v ∈ H.

Then, T = 0.

Proof. Our assumption on T gives

0 = ⟨T (v + w), v + w⟩ = ⟨Tv, w⟩+ ⟨Tw, v⟩ for all v, w ∈ H,

and so

2⟨Tv, w⟩ = ⟨Tv, w⟩+ ⟨Tw, v⟩+ i
(
⟨Tv, iw⟩+ ⟨T (iw), v⟩

)
= 0 + i0 = 0

for all v, w ∈ H. With v ∈ H arbitrary and w = Tv, this gives ∥Tv∥2 =
⟨Tv, Tv⟩ = 0, so T = 0.

2.2.28 Proposition. Let H be a complex Hilbert space with inner product
⟨·, ·⟩ and let T ∈ B(H). Then,

T ≥ 0 in B(H) ⇐⇒ ⟨Tv, v⟩ ∈ [0,∞) for all v ∈ H.

Proof. The forward implication is easy: if T ≥ 0, then T has a positive square
root in B(H) (Proposition 2.2.21), so

⟨Tv, v⟩ = ⟨(T 1/2)2v, v⟩ = ⟨T 1/2v, T 1/2v⟩ = ∥T 1/2v∥2 ≥ 0 for all v ∈ H.

For the converse, assume that ⟨Tv, v⟩ ∈ [0,∞) for all v ∈ H. Then,

⟨(T − T ∗)v, v⟩ = ⟨Tv, v⟩ − ⟨T ∗v, v⟩ = ⟨Tv, v⟩ − ⟨Tv, v⟩ = 0 for all v ∈ H,

so we have T = T ∗ by Lemma 2.2.27. Thus, σ(T ) ⊂ R (Lemma 2.2.7), so it
suffices to show that tIdH − T is invertible in B(H) whenever t < 0, for then
σ(T ) ⊂ [0,∞).

Let t < 0. We first show that tIdH − T is injective. For this, it suffices to
show that there is some constant C > 0 such that

∥(tIdH − T )v∥ ≥ C∥v∥ and all v ∈ H. (2.10)

We find that

∥(tIdH − T )v∥∥v∥ ≥ ⟨(T − tIdH)v, v⟩ = ⟨Tv, v⟩ − t∥v∥2 ≥ |t|∥v∥2

since ⟨Tv, v⟩ ≥ 0 and t < 0. This gives Equation (2.10) with C = |t|.
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We now show that tIdH − T is surjective. It is clearly self-adjoint. Now, if
v ∈ (S(H))⊥ for some self-adjoint S ∈ B(H), then 0 = ⟨S(Sv), v⟩ = ⟨Sv, Sv⟩,
so v ∈ Ker(S). Thus, we see that(

(tIdH − T )(H)
)⊥ ⊂ Ker(tIdH − T ) = {0}.

By Equation (2.10), the range of tIdH − T is closed.9 As a closed subspace
whose orthogonal complement is {0}, (tIdH − T )(H) = H, so tIdH − T is
surjective.

We now know that tIdH − T is bijective. It is always the case that a
bounded linear bijection on a Hilbert space has a bounded inverse, but we
need not rely on this powerful result here: if we let w ∈ H be arbitrary and
set v = (tIdH − T )−1w in Equation (2.10), we obtain

∥w∥ ≥ C∥(tIdH − T )−1w∥ for all w ∈ H,

so (tIdH − T )−1 is bounded, which concludes the proof.

2.2.4 Ideals and Quotients of C*-Algebras

In the general theory of C*-algebras, where units are not assumed to exists,
the results of this subsection are typically proved by way of approximate
units. Approximate units are instances of nets, a notion we have avoided in
order to make the treatment as accessible as possible.

The following lemma affords us with “local approximate units” in the form
of sequences; these will be sufficient for our purposes. This is the approach
taken by Arveson [2, Section 1.3]. This subsection is largely based on his
exposition.

2.2.29 Lemma. Let A be a C*-algebra. Suppose that I ⊂ A is a closed ideal
of A and that a ∈ I. Then, there exists a sequence (en) ⊂ I such that:

(i) en is self-adjoint and σ(en) ⊂ [0, 1] for all n ∈ N1,

(ii) limn→∞ ena = a.

Proof. We first assume that a ≥ 0. Then, σ(a) ⊂ [0,∞), and we are free to
apply the functional calculus at a.

Define a sequence (fn)n∈N1 ⊂ C(σ(a)) by

fn(t) =

{
nt if 0 ≤ t ≤ 1/n

1 if 1/n < t

9If a sequence ((tIdH − T )vn)n is Cauchy, then so is (vn), and if vn → v, then we have
(tIdH − T )vn → (tIdH − T )v ∈ (tIdH − T )(H) by continuity.
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and let en := fn(a) for all n ∈ N1.
Fix any n ∈ N1. We will show that en ∈ I. Since fn(0) = 0, there is

a sequence of polynomials (pm) without constant terms such that pm → fn
uniformly on the compact set σ(a), which is precisely the statement that
pm → fn in C(σ(a)). We have (pm(a)) ⊂ I since ak ∈ I for all integers k ≥ 1
(a ∈ I and I is an ideal). Now, pm(a) → fn(a) in A by continuity of the
functional calculus at a, so en := fn(a) ∈ I since I is closed.

Now, fn is real-valued, so e∗n = fn(a)
∗ = fn(a) = fn(a) = en, proving that

en is self-adjoint. Moreover, we have σ(en) = σ(fn(a)) = fn(σ(a)) by the
spectral mapping theorem (Theorem 2.2.18). Since fn(σ(a)) ⊂ [0, 1], we get
σ(en) ⊂ [0, 1].

We now show that aen → a in A. Consider the functions

gn(t) = t
(
1− fn(t)

)
∈ C(σ(a)) for n ∈ N1.

For arbitrary n ∈ N1, we have gn(0) = 0 and gn(t) = 0 for all t ≥ 1/n.
For 0 ≤ t ≤ 1/n, we have gn(t) = t(1 − nt). Differentiating shows that gn
(which is always positive) has a global maximum at t = 1/(2n) and that
g(1/(2n)) = 1/(4n). Thus, ∥gn∥∞ ≤ 1/(4n). Since the continuous functional
calculus is an isometry, we find that

∥a− aen∥ = ∥a(1A − fn(a))∥ = ∥gn(a)∥ = ∥gn∥∞ ≤ 1

4n
→ 0

as n→ ∞. This concludes the proof in the case that a ∈ I is positive.
For a general a ∈ I, we have a∗a ∈ I and a∗a ≥ 0. We can therefore

find a sequence (en) ⊂ I of self-adjoint elements with σ(en) ⊂ [0, 1] such
that (a∗a)en → a∗a. Note that ∥en∥ = r(en) ≤ 1 (Lemma 2.2.3). Now, the
C*-equality gives

∥a− aen∥2 = ∥a(1A − en)∥2 = ∥(1A − en)a
∗a(1A − en)∥

≤ 2∥(a∗a)(1A − en)∥,

so (a∗a)en → a∗a implies that aen → a, which concludes the proof.

If we want to form quotient C*-algebras, we clearly need to quotient
out closed ⋆-ideals. The following propositions shows that closed ideals of
C*-algebras are ⋆-ideals by default.

2.2.30 Proposition. Let A be a C*-algebra and let I ⊂ A be a closed ideal.
Then, I is a ⋆-ideal of A.

Proof. Let a ∈ I. We need to show that a∗ ∈ I. By Lemma 2.2.29, we can
find a sequence (en) ⊂ I of self-adjoint elements such that ena→ a. Now, we
have (ena)

∗ = a∗en ∈ I since en ∈ I. Moveover, (ena)
∗ → a∗ by continuity of

the involution, so a∗ ∈ I since I is closed.
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2.2.31 Theorem (Quotients of C*-algebras). Let A be a C*-algebra and let
I ⊂ A be a closed ideal. Then, the quotient algebra A/I equipped with the
quotient norm and the involution (a+ I)∗ = a∗ + I is a C*-algebra.

Proof. By Proposition 2.1.21 on quotients of Banach algebras, we already
know that the algebra A/I equipped with the quotient norm is a Banach
algebra. Appealing to Proposition 2.2.30, it is straightforward to check that
the involution on A/I is well-defined and indeed an involution; we omit the
details. The only remaining verification is the C*-equality.

Define

E :=
{
e ∈ I : e∗ = e and σ(e) ⊂ [0, 1]

}
We claim that

∥a+ I∥q := inf
{
∥a+ c∥ : c ∈ I

}
= inf

{
∥a− ae∥ : e ∈ E

}
(2.11)

for all a ∈ A. Since E ⊂ I, we have −ae ∈ I for all e ∈ E, which gives the
inequality ≤ between the infima above. For the opposite inequality, fix a ∈ A
and c ∈ I. Using Lemma 2.2.29, fix a sequence (en) ⊂ E such that cen → c.

Note that any e ∈ E satisfies σ(1A − e) = 1− σ(e) ⊂ [0, 1] by the spectral
mapping theorem (Theorem 2.2.18) and hence ∥1A − e∥ = r(1A − e) ≤ 1 by
Lemma 2.2.3. Submultiplicativity now gives ∥(a+ c)(1A − en)∥ ≤ ∥a+ c∥ for
all n ∈ N, and hence:

∥a+ c∥ ≥ lim inf
n→∞

∥(a+ c)(1A − en)∥

= lim inf
n→∞

∥a(1A − en) + c(1A − en)∥

= lim inf
n→∞

∥a(1A − en)∥ ≥ inf
n≥1

∥a− aen∥,

where the transition to the last line follows from the fact that c(1A − en) → 0
by our choice of (en) ⊂ E. Since c ∈ I was arbitrary, this shows that

inf
{
∥a+ c∥ : c ∈ I

}
≥ inf

{
∥a− ae∥ : e ∈ E

}
,

so we have now proven Equation (2.11).
Applying Equation (2.11) to a and a∗a, we obtain one inequality of the

C*-equality:

∥a+ I∥2q = inf
{
∥a(1A − e)∥2 : e ∈ E

}
= inf

{
∥(1A − e)a∗a(1A − e)∥ : e ∈ E

}
≤ inf

{
∥a∗a(1A − e)∥ : e ∈ E

}
= ∥a∗a+ I∥q,
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where we again have used the fact that ∥1A − e∥ ≤ 1 for all e ∈ E.
Finally, the inequality we just proved, along with submultiplicativity, gives

∥a+ I∥2q ≤ ∥a∗a+ I∥q = ∥(a+ I)∗(a+ I)∥q ≤ ∥a∗ + I∥q∥a+ I∥q,

so ∥a + I∥q ≤ ∥a∗ + I∥q (assuming a + I ̸= I; the C*-equality is trivial for
the zero-element). Another application of submultiplicativity now gives the
remaining inequality:

∥a∗a+ I∥q ≤ ∥a∗ + I∥q∥a+ I∥q ≤ ∥a+ Iq∥2.

Thus, the quotient norm satisfies the C*-equality and we are done.

We now come to the long promised result that injective ⋆-algebra homo-
morphism between C*-algebras are necessarily isometric.

2.2.32 Theorem. Let Φ: A → A′ be an injective ⋆-algebra homomorphism
between C*-algebras. Then, Φ is isometric.

Proof. By Proposition 2.2.6, we already know that Φ is norm-decreasing.
That is, ∥Φ(a)∥ ≤ ∥a∥ for all a ∈ A. We will show that if there is some a ∈ A
such that ∥Φ(a)∥ < ∥a∥, then Φ cannot be injective. The result then follows
by contraposition: Φ injective =⇒ ∥Φ(a)∥ ≥ ∥a∥ for all a ∈ A.

Suppose that ∥Φ(a)∥ < ∥a∥. We know that both a∗a and Φ(a∗a) =
Φ(a)∗Φ(a) are positive (Theorem 2.2.23). Invoking Lemma 2.2.3, we find that

σ(a∗a) ⊂ [0, r] with r := r(a∗a) = ∥a∗a∥
and σ(Φ(a∗a)) ⊂ [0, s] with s := r(Φ(a∗a)) = ∥Φ(a∗a)∥.

Our assumption, along with the C*-equality, gives s < r:

s = ∥Φ(a∗a)∥ = ∥Φ(a)∥2 < ∥a∥2 = ∥a∗a∥ = r.

Let f : R → C be a continuous function such that f(r) = 1 and f(t) = 0
whenever |t − r| ≥ r − s > 0. We have r = ∥a∗a∥ ∈ σ(a∗a) by point (v) of
Lemma 2.2.22, so this means that f |σ(a∗a) ̸= 0, while f |σ(Φ(a∗a)) = 0.

The continuous functional calculus is injective, so we now have f(a∗a) ̸= 0
and f(Φ(a∗a)) = 0. By Proposition 2.2.19, we have Φ(f(a∗a)) = f(Φ(a∗a)),
so 0 ̸= f(a∗a) ∈ KerΦ. Thus, Φ is not injective, which is what we wanted to
show.

We will now see that the first isomorphism theorem holds for C*-algebras.
Indeed, the assumption of the theorem is purely algebraic: it states that
if the domain and target of any ⋆-algebra homomorphism happen to be
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C*-algebras, then the isomorphism afforded by the algebraic isomorphism
theorem is necessarily an isometric isomorphism between C*-algebras.10

2.2.33 Theorem (The first isomorphism theorem for C*-algebras). Let
Φ: A → A′ be a ⋆-algebra homomorphism between C*-algebras. Then, KerΦ
is a closed ideal of A, Φ(A) is a C*-subalgebra of A′, and the map

Φ̃ : A/KerΦ → Φ(A)

a+KerΦ 7→ Φ(a)

is an (isometric) ⋆-algebra isomorphism between C*-algebras. In particular,
A/KerΦ ∼= Φ(A) as C*-algebras.

Proof. Using the fact that Φ is a ⋆-algebra homomorphism, it is straightfor-
ward to check that KerΦ is a ⋆-ideal of A, that Φ(A) is a ⋆-subalgebra of

A′ and that Φ̃ is an isomorphism of ⋆-algebras; we omit the details. This
amounts to the first isomorphism theorem for ⋆-algebras (which we chose to
mention but not state in Subsection 2.1.1).

Continuity of Φ (Proposition 2.2.6) implies that the ideal KerΦ ⊂ A is
closed, so the quotient A/KerΦ is a C*-algebra by Theorem 2.2.31. The
only remaining verification is that the ⋆-subalgebra Φ(A) ⊂ A′ is closed (and

hence a C*-subalgebra of A′ and a C*-algebra in its own right), for then Φ̃ is
isometric by Proposition 2.2.6.

Consider now the canonical map Φq : A/KerΦ → A′ induced by Φ, i.e.

Φ̃ : A/KerΦ → Φ(A) followed by the inclusion Φ(A) → A′. By the last
two paragraphs, Φq : A/KerΦ → A′ is an injective ⋆-algebra homomorphism
between C*-algebras, so by Theorem 2.2.32, it is an isometry.

This means that Φ(A) is closed, for if (Φ(an)) ⊂ Φ(A) is a Cauchy sequence
(and hence convergent in A′), then

∥Φ(am)− Φ(an)∥ = ∥Φq(am +KerΦ)− Φq(an −KerΦ)∥
= ∥(am +KerΦ)− (an −KerΦ)∥q

shows that (an + KerΦ) is a Cauchy sequence in the C*-algebra A/KerΦ,
and hence convergent, say with limit a+KerΦ. Continuity of Φq now implies
that

lim
n→∞

Φ(an) = lim
n→∞

Φq(an +KerΦ) = Φq(a+KerΦ) = Φ(a) ∈ Φ(A).

This concludes the proof that Φ(A) is closed and hence the proof as a
whole.

10This is quite incredible: there is no analogous result for Banach algebras, even if require
the algebra homomorphism to be norm-decreasing in the first place (its image need not be
a Banach space). This is another reflection of the fact that the norm of a C*-algebra is
entirely rooted in its algebraic structure.
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2.2.5 The Gelfand-Naimark Theorem

Before we conclude our discussion of C*-algebras, there is one more founda-
tional result we wish to establish, namely the Gelfand-Naimark theorem. We
have motivated C*-algebras as an abstraction of certain algebras of bounded
operators on Hilbert spaces. In particular, we have seen that for a Hilbert
space H, closed subalgebras of B(H) which are also closed under the taking
of adjoints are C*-algebras (Example 2.2.5). These are C*-algebras we un-
derstand particularly well, given the well-developed theory of Hilbert spaces.
The Gelfand-Naimark theorem states that any C*-algebra can be realized as
a C*-algebra of this form.

The Gelfand-Naimark theorem is a result that belongs to the representation
theory of C*-algebras. A proper introduction to representation theory would
take us too far afield, so we only introduce those parts of the theory that we
will need in order to properly state and prove this result.

2.2.34 Definition (Representations of C*-algebras). Let A be a C*-algebra.
A representation of A is ⋆-algebra homomorphism Φ: A → B(H), where H
is a Hilbert space.

Whenever we refer to a map Φ: A → B(H) as a representation, it should
be implicitly understood that A is a C*-algebra and that Φ is a representation
of A.

2.2.35 Definition (Unitary equivalence). Two representations Φ1 : A →
B(H1) and Φ2 : A → B(H2) are said to be unitarily equivalent if there exists
a unitary transformation U : H1 → H2 such that

Φ2(a) = UΦ1(a)U
∗ for all a ∈ A. (2.12)

We will write Φ1 ∼ Φ2 to signify that Φ1 and Φ2 are unitarily equivalent.

Equation (2.12) is equivalent to the statement that the diagram

H1 H2

H1 H2

U

Φ1(a) Φ2(a)

U

commutes for every a ∈ A. Unitary equivalence is clearly an equivalence
relation among the representations of A.11

11The class of all Hilbert space does not form a set, so neither do the representations
of A. Thus, unitary equivalence is not a relation on a set. The point is that the usual
conditions which define an equivalence relation hold for any three representations Φ1,Φ2

and Φ3. The same situation arises when considering isomorphism as an equivalence relation
among e.g. groups or vector spaces.
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Suppose now that we have a representation Φ: A → B(H) and fix any
nonzero h ∈ H. We then obtain a linear map

τh : A → C
a 7→ ⟨Φ(a)h, h⟩.

(2.13)

We will quickly sketch how to realize the orbit of h, i.e. the vector-subspace

Φ(A)h :=
{
Φ(a)h ∈ H : a ∈ A

}
⊂ H,

as a vector space quotient of A. We will also reconstruct the inner product
and the maps Φ(a) (restricted and corestricted to Φ(A)h) on this quotient,
and we will see that the only information we really need for all of this is the
map τh.

First of all, note that Φ(A)h is the image of the linear map T : A → H
defined by T (a) = Φ(a)h. Thus, the linear map

T̃ : A/KerT → Φ(A)h

a+KerT 7→ T (a) = Φ(a)h

is an isomorphism of vector spaces. We can use this isomorphism to transfer
the inner product and the maps Φ(a) on Φ(A)h to A/KerT . For any a, b ∈ A,
we find that〈

a+KerT, b+KerT
〉
:=
〈
Φ(a)h,Φ(b)h

〉
=
〈
Φ(b∗a)h, h

〉
= τh(b

∗a) (2.14)

and, with Φ′(a) := T̃−1Φ(a)T̃ ,

Φ′(a)(b+KerT ) = T̃−1Φ(a)
(
Φ(b)h

)
= T̃−1

(
Φ(ab)h

)
= ab+KerT. (2.15)

We see that 0 = T (a) = Φ(a)h if and only if 0 = ⟨Φ(a)h,Φ(a)h⟩ =
⟨Φ(a∗a)h, h⟩ = τh(a

∗a). This means that

KerT =
{
a ∈ A : τh(a

∗a) = 0
}
,

so indeed, the map τh is all we need to define KerT and construct the
quotient A/KerT . Moreover, Equation (2.14) shows that the inner product
on A/KerT depends only on τh and Equation (2.15) shows that the maps
Φ′(a) depend only on the algebraic structure of A.

If we are given only the map τh, this construction allows us to recover
part of the representation Φ, namely the part corresponding to the orbit of h.
The inner product space A/KerT ∼= Φ(A)h need not be complete (the inner
product need not induce the quotient norm), so in order for Φ′ to become an



76 Banach Algebras and C*-Algebras

actual representation of A, we must extend the operators Φ′(a) ∈ B(A/KerT )
to the Hilbert space completion of A/KerT .12

Said another way, the only representations we can hope to fully recover
by this method are of a very particular form:

2.2.36 Definition (Cyclic vectors and representations). Let Φ: A → B(H)
be a representation. A vector h ∈ H is said to be cyclic for Φ if

H = spanC
{
Φ(a)h : a ∈ A

}
,

and the representation Φ is said to be cyclic if there is a vector in H that is
cyclic for Φ.

We now define the class of functionals in A∗ which will turn out to
correspond to maps of the form given by Equation (2.13), with the additional
(and harmless) condition that ∥h∥ = 1.

2.2.37 Definition (States). Let A be a C*-algebra. A state on A is a linear
functional τ ∈ A∗ such that

(i) τ is normalized: ∥τ∥ = 1.

(ii) τ is positive: τ(a∗a) ≥ 0 for all a ∈ A (or, equivalently: τ(a) ≥ 0 for all
a ∈ A+).

We write S(A) to denote the set of all states on A.

Our goal now is to construct a representation from any given state
τ ∈ S(A). This procedure is known as the GNS-construction, and the
representation we obtain is known as the GNS-representation associated to τ .
The idea is simply to follow the recipe outlined above.

We begin by showing that the map (a, b) 7→ τ(b∗a), which will become
our inner product, has some desired properties.

2.2.38 Lemma. Let A be a C*-algebra and let τ ∈ S(A). Then, for all
a, b ∈ A, we have the following relations:

(i) τ(b∗a) = τ(a∗b) (conjugate symmetry)

(ii) |τ(b∗a)|2 ≤ τ(a∗a)τ(b∗b) (the Cauchy-Schwarz inequality)

12We will assume that the reader is familiar with Hilbert space completions. However,
in Chapter 4, we will introduce a vast generalization of Hilbert spaces, and a detailed
construction of their completions can be found in Appendix B.
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Proof. We begin with (i). Let λ ∈ C be arbitrary. We find that

0 ≤ τ
(
(a+ λb)∗(a+ λb)

)
= τ(a∗a) + λτ(a∗b) + λτ(b∗a) + |λ|2τ(b∗b). (2.16)

Since τ(a∗a) + |λ|2τ(b∗b) ∈ R, the imaginary part of λτ(a∗b) + λτ(b∗a) must
vanish. Now,

λ = 1 =⇒ 0 = Im
(
τ(a∗b) + τ(b∗a)

)
= Im

(
τ(a∗b)− τ(b∗a)

)
,

λ = i =⇒ 0 = Im
(
iτ(a∗b)− iτ(b∗a)

)
= Re

(
τ(a∗b)− τ(b∗a)

)
,

so τ(a∗b) = τ(b∗a), which proves (i).
For (ii), suppose first that τ(b∗b) = 0. If we let t ∈ R and set λ = t or

λ = it in Equation (2.16), we find that

0 ≤ τ(a∗a) + 2tRe(τ(b∗a)) and 0 ≤ τ(a∗a) + 2tIm(τ(b∗a))

for all t ∈ R. For this to be possible, we must have τ(b∗a) = 0. This proves
(ii) in the case that τ(b∗b) = 0. If τ(b∗b) ̸= 0, then

λ = −τ(b
∗a)

τ(b∗b)
=⇒ 0 ≤ τ(a∗a) +

1

τ(b∗b)

(
− 2|τ(b∗a)|2 + |τ(b∗a)|2

)
,

which after some slight rearranging gives (ii).

We are now prepared to construct the GNS-representation associated
to a state τ ∈ S(A). As remarked, we will be forced to consider Hilbert
space completions. Now, Hilbert space completions are unique precisely up
to unitary transformations. Thus, different explicit constructions of Hilbert
space completions will yield different representations of A, but they will all
be unitarily equivalent. Thus, the GNS-representation associated to a state
is really defined up to unitary equivalence.

2.2.39 Theorem (The GNS construction). Let A be a C*-algebra, let τ ∈
S(A) and define Nτ :=

{
a ∈ A : τ(a∗a) = 0

}
. Then, Nτ is a vector-subspace

of A and the map

A/Nτ ×A/Nτ → C
(a+Nτ , b+Nτ ) 7→ τ(b∗a)

is a well-defined inner product on the vector space quotient A/Nτ . Moreover,
the map13

Φτ : A → B(A/Nτ )

a 7→
(
Φτ (a) : b+Nτ 7→ ab+Nτ

)
13We repeat that the norm on A/Nτ , which defines B(A/Nτ ), is not the quotient norm,

but the norm induced by the inner product.
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is a well-defined algebra homomorphism such that Φτ (a
∗) = Φτ (a)

∗ for all
a ∈ A.14

Finally, if we let Hτ be the Hilbert space completion of A/Nτ , then each
Φτ (a) ∈ B(A/Nτ ) extends to an operator Φτ (a) ∈ B(Hτ ) and the map

Φτ : A → B(Hτ )

a 7→ Φτ (a) := Φτ (a)

is a representation of A. Moreover, the vector h := 1A +Nτ ∈ Hτ is cyclic
for Φτ , and we have that τ(a) = ⟨Φτ (a)h, h⟩ for all a ∈ A.

Proof. We will drop the τ -subscripts for the duration of this proof.
The fact that |τ(b∗a)|2 ≤ τ(a∗a)τ(b∗b) for all a, b ∈ A (Lemma 2.2.38)

implies that, for any given a ∈ A, we have τ(a∗a) = 0 if and only if τ(b∗a) = 0
for all b ∈ A. Thus,

N =
{
a ∈ A : τ(b∗a) = 0 for all b ∈ A}. (2.17)

Linearity of τ now immediately implies that N is a vector-subspace of A.
If a ∈ N , so that τ(b∗a) = 0 for all b ∈ A, then for any c ∈ A, we find

that τ(b∗(ca)) = τ((c∗b)∗a) = 0 for all b ∈ A. This means that

a ∈ N =⇒ ca ∈ N for all c ∈ A. (2.18)

We now check that the claimed inner product is well-defined and indeed an
inner product. If a+N = a′ +N and b+N = b′ +N , then a′ − a, b′ − b ∈ N ,
so Equation (2.18) (along with Lemma 2.2.38) implies that

τ(b∗a) = τ(b∗a) + τ
(
b∗(a′ − a)

)
+ τ
(
(a′)∗(b′ − b)

)
= τ
(
b∗a+ b∗(a′ − a) + (b′ − b)∗a′

)
= τ
(
(b′)∗a′

)
,

which proves well-definition. Linearity in the first entry follows from linearity
of τ , conjugate symmetry corresponds to point (ii) of Lemma 2.2.38, nonneg-
ativity corresponds to positivity of τ and nondegeneracy is immediate from
our definition of Nτ . Thus, the axioms of an inner product are all satisfied.

We now consider the map Φ: A → B(A/N). We begin by showing well-
definition. Fix any a ∈ A. We first need to show that Φ(a) : b+N 7→ ab+N
is well-defined, but this follows immediately from Equation (2.18):

b− b′ ∈ N =⇒ ab− ab′ = a(b− b′) ∈ N.

14Because of incompleteness of A/Nτ , we can’t necessarily speak of B(A/Nτ ) as a
⋆-algebra, hence the clumsy formulation.
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It is clear that Φ(a) is linear; we will show that it is bounded.
Fix any b ∈ A. By point (ii) of Proposition 2.2.26, we know that ∥a∗a∥1A−

a∗a ≥ 0 in A. By point (i) of the same proposition, we find that

∥a∥2b∗b− (ab)∗(ab) = b∗∥a∗a∥b− b∗(a∗a)b ≥ 0.

Since τ is positive, this gives τ((ab)∗(ab)) ≤ ∥a∥2τ(b∗b), which is exactly the
statement that〈

Φ(a)(b+N),Φ(a)(b+N)
〉
≤ ∥a∥2⟨b+N, b+N⟩.

Thus, ∥Φ(a)∥ ≤ ∥a∥, so Φ(a) ∈ B(A/N). This proves that Φ: A → B(A/N)
is well-defined.

It is quite immediate that Φ: A → B(A/N) is a linear map preserving
the product and the unit. With a, b, c ∈ A, the calculation〈

Φ(a)(b+N), c+N
〉
= τ
(
c∗(ab)

)
= τ
(
(a∗c)∗b

)
=
〈
b+N,Φ(a∗)(c+N)

〉
shows that Φ(a)∗ = Φ(a∗).

By Corollary B.1.5, the “extension map” Ext: B(A/N) → B(H) which
maps each T ∈ B(A/N) to its unique bounded linear extension Ext(T ) :=
T ∈ B(H) is an algebra homomorphism. Thus, Φ = Ext ◦ Φ is an algebra
homomorphism as well. To see that it preserves the involution, consider any
a ∈ A and g, h ∈ H, choose sequences (hn), (gn) ⊂ A/N such that hn → h
and gn → g and use continuity of the inner product on H to conclude that

⟨Φ(a)h, g⟩ = lim
n→∞

⟨Φ(a)hn, gn⟩ = lim
n→∞

⟨hn,Φ(a∗)gn⟩ = ⟨h,Φ(a∗)g⟩.

This proves that Φ is a ⋆-algebra homomorphism and hence a representation
of A.

Since Φ(a)(1A +N) = a+N for all a ∈ A, we see that Φ(A)(1A +N) =
A/N , so h := 1A +N is cyclic for Φ. Finally, for any a ∈ A, we find that

τ(a) = τ(1∗Aa) = ⟨a+N, 1A +N⟩ = ⟨Φ(a)h, h⟩,

which concludes the proof.

Having shown that cyclic representations of a C*-algebra A can be con-
structed from states on A, we now wish to show that there exists an abundance
of states on A. To do so, we need the following characterization of states.

2.2.40 Lemma. Let A be a C*-algebra and suppose that τ ∈ A∗ is normalized.
Then, τ ∈ S(A) if and only if τ(1A) = 1.



80 Banach Algebras and C*-Algebras

Proof. Assume first that τ ∈ S(A) and fix any a ∈ A. By point (ii) of
Proposition 2.2.26, we have ∥a∥21A − a∗a = ∥a∗a∥1A − a∗a ≥ 0 in A, which
implies that ∥a∥2τ(1A) ≥ τ(a∗a). By the Cauchy-Schwarz inequality for
states (Lemma 2.2.38), we now find that

|τ(a)|2 = |τ(1∗Aa)|2 ≤ τ(1∗A1A)τ(a
∗a) ≤ ∥a∥2τ(1A).

Since a ∈ A was arbitrary, this implies that τ(1A) ≥
√

∥τ∥ = 1. Since
τ(1A) ≤ ∥τ∥ = 1, we can conclude that τ(1A) = 1.

Conversely, suppose that τ ∈ A∗ satisfies ∥τ∥ = 1 and τ(1A) = 1. We will
show that τ(a) ≥ 0 whenever a ∈ A+.

Fix a ∈ A+ and let t ∈ R be arbitrary. We find that

|τ(it1A − a)|2 ≤ ∥it1A − a∥2 = ∥(it1A − a)∗(it1A − a)∥ = ∥t21A + a2∥
≤ t2 + ∥a∥2

Now, since τ(it1A − a) = it− τ(a), we see that(
t− Im τ(a)

)2
+
(
Re τ(a)

)2
= |τ(it1A − a)|2 ≤ t2 + ∥a∥2,

which after some rearranging becomes:

−2t
(
Im τ(a)

)
≤ ∥a∥2 −

(
Re τ(a)

)2 − (Im τ(a)
)2
.

Since this holds for all t ∈ R, we must have Im τ(a) = 0.
With the knowledge that τ(a) ∈ R, we find that

∥a∥ − τ(a) = τ
(
∥a∥1A − a

)
≤
∥∥∥a∥1A − a

∥∥ ≤ ∥a∥,

where the last inequality follows from point (ii) of Lemma 2.2.22 (and the
assumption that a ≥ 0). This gives τ(a) ≥ 0, so we are done.

We now obtain the promised existence result more or less for free.

2.2.41 Proposition. Let A be a C*-algebra. Then, for any a ∈ A, there exists
some τ ∈ S(A) such that τ(a∗a) = ∥a∥2. Moreover, the GNS-representation
Φτ associated to τ satisfies ∥Φτ (a)∥ = ∥a∥.

Proof. Fix any a ∈ A and consider the commutative C*-algebra C∗(a∗a) and
its spectrum MC∗(a∗a). By Lemma 2.1.24, we know that

σ(a∗a) =
{
µ(a∗a) : µ ∈ MC∗(a∗a)

}
.

By point (v) of Lemma 2.2.22, we have ∥a∗a∥ ∈ σ(a∗a), so there must exist
some µ ∈ MC∗(a∗a) such that µ(a∗a) = ∥a∗a∥ = ∥a∥2. Lemma 2.1.24 also



2.2.5. The Gelfand-Naimark Theorem 81

tells us that ∥µ∥ = 1, and we have µ(1A) = 1 by our definition of functionals
as algebra homomorphisms.

Now, µ is a bounded linear functional on C∗(a∗a) ⊂ A. By the Hahn-
Banach theorem (Theorem A.2.1), there exists an extension µ̃ ∈ A∗ such that
∥µ̃∥ = ∥µ∥ = 1. As µ̃ extends µ, we have µ̃(a∗a) = ∥a∥2 and µ̃(1A) = 1. By
Lemma 2.2.40, this implies that µ̃ ∈ S(A).

Finally, with τ := µ̃, let Φτ : A → B(Hτ ) be the GNS-representation
associated to τ . Then,

∥a∥2 = τ(a∗a) = ⟨a+Nτ , a+Nτ ⟩ = ∥Φτ (a)(1A +Nτ )∥2 ≤ ∥Φτ (a)∥2,

because ∥1A + Nτ∥2 = τ(1∗A1A) = 1. The ⋆-algebra homomorphism Φτ is
norm-decreasing by Proposition 2.2.6, so the displayed equation implies that
∥a∥ = ∥Φτ (a)∥, which concludes the proof.

With this result, we can construct a representation Φ: A → B(H) such
that any given element of A is not mapped to zero. In order to obtain an
injective representation, we will construct a direct sum of such representations.
To do this, we must consider direct sums of a possibly uncountable collection
of Hilbert spaces, so we briefly discuss this notion before stating the Gelfand-
Naimark theorem.

Given an arbitrary family {Hi}i∈I of Hilbert spaces (meaning that I is
an arbitrary index set), we quickly sketch how to construct their direct sum⊕

i∈I Hi as Hilbert spaces. Consider their direct product
∏

i∈I Hi as vector
spaces.15 We define the subset⊕

i∈I

Hi :=
{
(hi)i∈I ∈

∏
i∈I

Hi :
∑
i∈I

∥hi∥2 <∞
}
,

where the sum is defined as the supremum over all finite sums. In order
for such a sum to be finite, (hi)i∈I can only have countably many nonzero
components.16 By standard ℓ2-norm considerations (indeed, this is just an
ℓ2-space over a possibly uncountable set), it is now fairly straightforward to
show that

⊕
i∈I Hi is a vector-subspace of

∏
i∈I Hi and that〈

(hi)i∈I , (h
′
j)j∈I

〉
:=
∑
i∈I

⟨hi, h′i⟩.

15This is the vector space of all maps ϕ : I →
⋃

i∈I Hi such that ϕ(i) ∈ Hi for all i ∈ I
with pointwise operations. We write (hi)i∈I to denote the map ϕ ∈

∏
i∈I Hi satisfying

ϕ(i) = hi for all i ∈ I.
16A quick proof: If the supremum over finite sums is to be finite, then there can only be

a finite number of terms with values between 1/(n+ 1) and 1/n, for any given n ∈ N1. For
this to hold, there can only be countably many nonzero terms.
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defines an inner product on
⊕

i∈I Hi which turns it into a Hilbert space.
If {Ti}i∈I is a collection of operators such that Ti ∈ B(Hi) for each i ∈ I

and supi∈I ∥Ti∥ <∞, it is straightforward to see that we obtain an operator⊕
i∈I Ti ∈ B(

⊕
i∈I Hi) defined by⊕

i∈I

Ti
(
(hi)i∈I

)
= (Tihi)i∈I .

Moreover, one may easily verify the identities:(⊕
i∈I

Ti
)∗

=
⊕
i∈I

T ∗
i ,

⊕
i∈I

(λTi + Si) = λ
⊕
i∈I

Ti +
⊕
i∈I

Si,⊕
i∈I

(Ti ◦ Si) =
(⊕
i∈I

Ti
)
◦
(⊕
i∈I

Si
)

and Id⊕
i∈I Hi

=
⊕
i∈I

IdHi
,

where λ ∈ C and {Si}i∈I is another such collection of operators.
The proof the Gelfand-Naimark theorem is now simple.

2.2.42 Theorem (The Gelfand-Naimark theorem). For any C*-algebra A,
there exists an injective representation Φ: A → B(H). By Theorem 2.2.33, Φ
is then isometric and A ∼= Φ(A) ⊂ B(H) as C*-algebras.

Proof. Consider the direct sum H :=
⊕

τ∈S(A)Hτ of Hilbert spaces, where Hτ

is the Hilbert space corresponding to the GNS-representation Φτ : A → B(Hτ )
associated to τ ∈ S(A). For each a ∈ A, we know that ∥Φτ (a)∥ ≤ ∥a∥
for all τ ∈ S(A) (by Proposition 2.2.6), so we obtain a bounded operator⊕

τ∈S(A) Φτ (a) on H. By our discussion prior to the theorem, the map

Φ: A → B(H)

a 7→
⊕

τ∈S(A)

Φτ (a)

is a ⋆-algebra homomorphism, hence a representation of A. Finally, for each
a ∈ A, Proposition 2.2.41 tells us that there exists some τ ∈ S(A) such
that Φτ (a) ̸= 0, and this straightforwardly leads to the conclusion that this
representation is injective.



Chapter 3

Time-Frequency Analysis and
Gabor Analysis

In this chapter, we introduce the main subject of the thesis, which is Gabor
analysis. Gabor analysis is a subject in time-frequency analysis, which we
therefore introduce first. In many ways, time-frequency analysis is a refinement
of Fourier theory. The basic idea is to combine the time and frequency domains
(which are treated as separate entities in ordinary Fourier theory) in such
a manner that we can study the frequency content of a signal locally. We
refer to Gröchenig [17] for a thorough and accessible introduction to both
time-frequency analysis and Gabor analysis; our exposition of these topics is
largely based on his book.

Subsection 3.2.2 is a pivotal part of the thesis: it is where we outline our
main argument.

3.1 | Time-Frequency Analysis

The goal of this section is to give the reader a quick introduction to those
parts of time-frequency analysis that we will need in order to discuss Gabor
analysis properly.

3.1.1 Preliminaries

We will assume familiarity with basic Fourier theory and measure theory.
From measure theory, we will mainly need Fatou’s lemma, the monotone

and dominated convergence theorems as well as Fubini’s and Tonelli’s theorems.
To make sure that we are on the same page: by Tonelli’s theorem, we refer
to the fact that we may freely change the order of integration as long as the

83
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integrand is nonnegative, and by Fubini’s theorem, we refer to the fact that
we may change the order of integration as long as the integrand is absolutely
integrable. The conditions for these results to hold (such as σ-finiteness and
measurability) will always be trivially satisfied in our setting. There are
many great introductions to measure theory: Cohn [9] is a detailed and broad
classic; Axler [5] is a recent and very accessible introduction.

Our convention for the Fourier transform on Rd will be that

Ff(ω) =
∫
Rd

f(t)e−2πit·ω dt for all ω ∈ Rd and f ∈ L1(Rd).

Its unitary extension/restriction to L2(Rd) will also be denoted by F . For
f, g ∈ L2(Rd) we will write ⟨f, g⟩ for their standard inner product and f · g
or fg for their pointwise product. Inner products will be linear in the first
entry and complex conjugation will be denoted by an overline.

We will write S (Rd) to denote the Schwartz space, which is the space of
all infinitely differentiable functions whose every derivative decays faster than
any polynomial. We will freely appeal to basic facts regarding S (Rd), such
as invariance under the Fourier transform and the fact that S (Rd) is dense
in L2(Rd).

As for general Fourier theory, we will assume knowledge of pretty much
everything up to the Poisson summation formula (which we will prove).
Whenever we invoke such results, we will try to point them out. Everything
we need can be found in the accessible introduction [31] by Stein and Shakarchi.

3.1.2 Translations, Modulations and Time-Frequency
Shifts

The most basic operations performed on functions in time-frequency analysis
are translations and modulations. The latter is a translation of a functions
frequency spectrum, i.e. its Fourier transform. This subsection serves to
introduce these operators and their basic properties.

For any x, ω ∈ Rd, we define operators Tx and Mω on L2(Rd) by

(Txf)(t) = f(t− x) and (Mωf)(t) = e2πit·ωf(t),

for all t ∈ Rd and f ∈ L2(Rd). The dot denotes the standard inner product
on Rd. We refer to Tx as a translation operator and Mω as a modulation
operator. These are unitary operators with adjoints/inverses given by

M∗
ω =M−1

ω =M−ω and T ∗
x = T−1

x = T−x.
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For any z = (x, ω) ∈ R2d, we further define the composition

π(z) :=MωTx,

which we refer to as a time-frequency shift. In this context, we will refer to
R2d as the time-frequency plane. Thus, the time-frequency plane parametrizes
the set of all time-frequency shifts. We may also write π(x, ω) for π(z), and
whenever we write something like “(x, ω) ∈ R2d”, it should be understood
that x, ω ∈ Rd.

Those parts of time-frequency analysis of relevance to us are built entirely
upon these operators, so it is their algebraic structure that shapes the subject.
We collect some basic identities in the following lemma. We will feel free to
use these properties without reference. We may on occasion refer to property
(iii) as the basic commutation relation.

3.1.1 Lemma (Basic identities). Let z = (x, ω), w = (y, η) ∈ R2d. Then, the
following relations hold.

(i) TxMω = e−2πix·ωMωTx

(ii) π(z + w) = e2πiη·xπ(z)π(w)

(iii) π(z)π(w) = e2πi(ω·y−η·x)π(w)π(z) = e2πiΩJ (z,w)π(w)π(z)

(iv) π(z)∗ = π(z)−1 = e−2πiω·xπ(−z)
In (iii), ΩJ refers to the standard symplectic form on R2d, as defined by
Equation (1.4).

Proof. The first three relations are straightforward calculations. We find that

TxMωf(t) = e2πi(t−x)·ωf(t− x) = e−2πix·ωMωTxf(t),

for all t ∈ Rd and f ∈ L2(Rd), which gives (i). Noting that MωMη = Mω+η

and TxTy = Tx+y, we use (i) to find that

π(z)π(w) =MωTxMηTy = e−2πiη·xMωMηTxTy = e−2πiη·xπ(z + w),

which is (ii). Appealing to (ii) twice, we find that

π(z)π(w) = e−2πiη·xπ(z + w) = e−2πiη·xπ(w + z) = e−2πiη·xe2πiω·yπ(w)π(z).

Noting that ΩJ(z, w) = ω · y − η · x, we obtain (iii).
As a composition of unitary operators, π(z) is unitary. Using (ii), we find

that

e−2πiω·xπ(−z)π(z) = π(0) = e−2πiω·xπ(z)π(−z).

Since π(0) = IdL2(Rd), we see that π(z)∗ = π(z)−1 = e−2πiω·xπ(−z), which
gives (iv) and concludes the proof.
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The following lemma verifies that modulations are translation of a functions
frequency spectrum.

3.1.2 Lemma. For all x, ω ∈ Rd, we have that

FTx =M−xF , FMω = TωF ,

as well as Fπ(x, ω) = e2πix·ωπ(ω,−x)F .

Proof. Let f ∈ S (Rd) and η ∈ Rd. We find that

FTxf(η) =
∫
Rd

f(t− x)e−2πit·η dt =

∫
Rd

f(s)e−2πi(s+x)·η ds =M−xFf(η)

and that

FMωf(η) =

∫
Rd

e2πit·ωf(t)e−2πit·η dt = Ff(η − ω) = TωFf(η).

For any f ∈ L2(Rd), we can choose a sequence (fn) ⊂ S (Rd) such that
fn → f in L2(Rd). Appealing to continuity of all the operators involved, we
then find that

FTx
(
lim
n→∞

fn
)
= lim

n→∞
FTxfn = lim

n→∞
M−xFfn =M−xF

(
lim
n→∞

fn
)
,

so that FTxf = M−xFf . By a similar calculation, FMωf = TωFf as well.
This proves the displayed relations of the lemma.

Finally, using what we have proved, we find that

Fπ(x, ω) = FMωTx = TωM−xF = e2πix·ωM−xTωF = e2πix·ωπ(ω,−x)F ,

which completes the proof.

Before we move on to the next topic, there is one more class of operators
we wish to introduce. We define

ψ(z) :=Mω/2TxMω/2 = e−πix·ωπ(z) for z = (x,w) ∈ R2d.

These are known as Heisenberg-Weyl operators. They can be thought of as
“symmetrized” time-frequency shifts; a compromise between TxMω and MωTx.
Heisenberg-Weyl operators occur naturally in quantum mechanics.1 For more
on this topic, we refer the reader to de Gosson [15, Chapter 8].

In time, we will find that Heisenberg-Weyl operators are more convenient
than time-frequenecy shifts for our purposes. Nevertheless, time-frequency

1We have chosen the symbol ψ mainly as a nod to this fact.
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analysis and Gabor theory is traditionally phrased in terms of time-frequenecy
shifts, so we will stick with those for now. As a sneak peek at the property
that will make Heisenberg-Weyl operators preferable, we observe that Lemma
3.1.2 implies that

Fψ(x, ω) = e−πix·ωFπ(x, ω) = eπix·ωπ(ω,−x)F = ψ(ω,−x)F ,

so that the phase factor disappears when working with Heisenberg-Weyl
operators!

3.1.3 The Short-Time Fourier Transform

We now introduce the short-time Fourier transform (the STFT for short).

3.1.3 Definition. Let f, g ∈ L2(Rd). We define the short-time Fourier
transform of f with window g to be the function Vgf on R2d defined by

Vgf(z) = ⟨f, π(z)g⟩ = F
(
f · Txg

)
(ω) for z = (x, ω) ∈ R2d.

We will also write Vgf(z) = Vgf(x, ω).

The STFT Vgf is a complex-valued function on the time-frequency plane.
As the rightmost expression suggest, for fixed x ∈ Rd, we can think of
ω 7→ Vgf(x, ω) as a Fourier transform of a weighted version of f . If g is a
Gaussian centered at the origin, then f · Txg represents a “snippet” of f in
the vicinity of x ∈ Rd. Taking its Fouier transform gives us information about
the frequency spectrum of f in the vicinity of x. Thus, the STFT allows us
to obtain localized frequency information about f . The variable x represents
the location at which we wish to probe f .

We may think of the STFT operationally in the following manner. First,
pick a window function g ∈ L2(Rd), which will be our “probe”. Then, apply
the entire time-frequency plane worth of operators to g in order to produce
the set

{π(z)g : z ∈ R2d} ⊂ L2(Rd) (3.1)

consisting of time-frequency shifted version of our probe. We can now study
an arbitrary function f ∈ L2(Rd) by considering its “components” with
respect to this set. If we fix x and let ω vary, the components ⟨f, π(x, ω)g⟩
represent the frequency content of f in the vicinity of x (assuming that g is
localized near the origin). Of course, some probes will obscure our original
signal more than others; much of Gabor theory is concerned with finding
suitable probes/windows.
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We will now develop some basic properties of the short-time Fourier
transform. We begin by exploring the interplay between the STFT, time-
frequency shifts and the ordinary Fourier transform. Gröchenig refers to the
first property of the following lemma as the covariance property of the STFT
and to the second as the fundamental identity of time-frequency analysis. The
latter shows that the Fourier transform is related to a 90 degree rotation of
the time-frequency plane (which seems natural, as it should exchange the
roles of time and frequency).

3.1.4 Lemma. Let f, g ∈ L2(Rd). Then,

(i)
(
Vgπ(y, η)f

)
(x, ω) = e−2πiy·(ω−η)Vgf(x− y, ω − η)

(ii) Vgf(x, ω) = e−2πix·ωVFgFf(ω,−x)

for all (x, ω), (y, η) ∈ R2d.

Proof. Freely using the basic identities of Lemma 3.1.1, we find that〈
π(y, η)f, π(x, ω)g

〉
=
〈
f, π(y, η)∗π(x, ω)g

〉
=
〈
f, e−2πiy·ηπ(−y,−η)π(x, ω)g

〉
= e2πiy·η

〈
f, e−2πiω·(−y)π(x− y, ω − η)g

〉
= e−2πiy·(ω−η)〈f, π(x− y, ω − η)g

〉
.

Recalling the definition of the STFT, we obtain (i). The fact that F is unitary,
along with Lemma 3.1.2, implies that

⟨f, π(x, ω)g⟩ = ⟨Ff,Fπ(x, ω)g⟩ = ⟨Ff, e2πix·ωπ(ω,−x)Fg⟩,

which proves (ii).

For any f, g ∈ L2(Rd), the ability to evaluate Vgf at points is immediate
from its definition (in contrast to the Fourier transform of an L2(Rd)-function).
The following lemma shows that Vgf is uniformly continuous as a function
on the time-frequency plane.

3.1.5 Proposition. Let f, g ∈ L2(Rd). Then, Vgf is uniformly continuous
on R2d.

Proof. We first show that the function Rd → L2(Rd) defined by x 7→ Txg is
uniformly continuous (with respect to the Euclidean norm on Rd). Our proof
of this fact imitates the proof given by Rudin [29, Theorem 9.5 on p. 182].

Fix any ϵ > 0 and choose a continuous function g̃ with compact support
that moreover satisfies ∥g − g̃∥2 < ϵ. This can always be done, as such
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functions are dense in L2(Rd). For any r > 0 and t ∈ Rd, let Bt(r) ⊂ Rd

denote the closed ball of radius r centred at t and let |Bt(r)| denote its volume.
Let R > 0 be such that supp(g̃) ⊂ B0(R). A continuous function with

compact support is uniformly continuous, so there exists some δ ∈ (0, R) such
that, for all x, y ∈ Rd,

∥x− y∥ < δ =⇒ |g̃(x)− g̃(y)| < ϵ

|B0(3R)|1/2
.

Assume from now on that x, y ∈ Rd satisfy ∥x− y∥ < δ. Since, in particular,
∥x− y∥ < R, we find that

supp(Txg̃ − Tyg̃) ⊂ Bx(R) ∪By(R) ⊂ Bx(3R). (3.2)

The last two displayed equations imply that

∥(Tx − Ty)g̃∥22 =
∫
Rd

|g̃(t− x)− g̃(t− y)|2 dt ≤ |Bx(3R)|
ϵ2

|B0(3R)|
= ϵ2,

which (along with our choice of g̃) gives:

∥Txg − Tyg∥2 ≤ ∥Txg − Txg̃∥2 + ∥Txg̃ − Tyg̃∥2 + ∥Tyg̃ − Tyg∥2
= 2∥g − g̃∥2 + ∥(Tx − Ty)g̃∥2 < 3ϵ.

This proves that for any ϵ > 0, we can find some δ > 0 such that ∥x−y∥ < δ
implies that ∥Txg−Tyg∥2 < ϵ. In other words, the map x 7→ Txg is uniformly
continuous. Since g ∈ L2(Rd) was arbitrary, the same result applies to the
function Ff ∈ L2(Rd). Lemma 3.1.2 implies that

∥(T−ω − T−η)Ff∥2 = ∥F(M−ω −M−η)f∥2 = ∥(M−ω −M−η)f∥2,

so we also obtain uniform continuity of the map ω 7→M−ωf .
Let now z = (x, ω), w = (y, η) ∈ R2d. Then,

|Vgf(z)− Vgf(w)| =
∣∣〈f, (MωTx −MηTy)g

〉∣∣
=
∣∣〈f, (MωTx −MωTy +MωTy −MηTy)g

〉∣∣
≤
∣∣〈f,Mω(Tx − Ty)g

〉∣∣+ ∣∣〈f, (Mω −Mη)Tyg
〉∣∣

=
∣∣〈M−ωf, (Tx − Ty)g

〉∣∣+ ∣∣〈(M−ω −M−η)f, Tyg
〉∣∣

≤ ∥f∥2∥Txg − Tyg∥2 + ∥M−ωf −M−ηf∥2∥g∥2.

Thus, uniform continuity of Vgf follows from uniform continuity of the maps
x 7→ Txg and ω 7→M−ωf .
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The next result we wish to prove is known as Moyal’s identity. It is
a foundational and extremely useful result. In order to derive it, it will
be convenient to have an alternate description of the STFT. The following
paragraph introduces the necessary machinery.

For any f, g ∈ L2(Rd), define their tensor product

f ⊗ g : R2d → C
(x, t) 7→ f(x)g(t) (where x, t ∈ Rd).

By Tonelli’s theorem, we find that ∥f⊗g∥2 = ∥f∥2∥g∥2, hence f⊗g ∈ L2(R2d).
Let F2 : L

2(R2d) → L2(R2d) denote the Fourier transform with respect to the
last d variables only. That is, for any F ∈ L1(R2d), we define

F2F (x, ω) =

∫
Rd

F (x, t)e−2πit·ω dt for all (x, ω) ∈ R2d,

and then extend F2 to L2(Rd) in the usual manner. Again, by Tonelli’s
theorem, along with the fact that the regular Fourier transform is unitary
(and that if F ∈ L2(R2d), then F (x,−) ∈ L2(Rd) for almost every x ∈ Rd),
we find that

∥F2F∥22 =
∫
R2d

|F2F (x, ω)|2d(x, ω) =
∫
Rd

∫
Rd

|F2F (x, ω)|2 dω dx

=

∫
Rd

∫
Rd

|F (x, t)|2 dt dx = ∥F∥22,

so that F2 is unitary (invertibility is also quite immediate from invertibility
of the usual Fourier transform). Finally, let T : R2d → R2d denote the
transformation (x, t) 7→ (t, t− x) and define

T t : L2(R2d) → L2(R2d)

F 7→ T tF := F ◦ T.

Then, T t is clearly unitary as well (it is just a coordinate transformation).
Now, for any f, g ∈ L2(Rd), we find that(

F2T
t(f ⊗ g)

)
(x, ω) =

∫
Rd

(f ⊗ g)(t, t− x)e−2πit·ω dt = Vgf(x, ω),

so that F2T
t(f ⊗ g) = Vgf .

2

We are now prepared to prove Moyal’s identity.

2We have been slightly sloppy with the domain of F2 in this paragraph. In order to be
completely rigorous, one should use approximating sequences for these calculations.
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3.1.6 Proposition (Moyal’s identity). Let f1, f2, g1, g2 ∈ L2(Rd). Then,
Vg1f1, Vg2f2 ∈ L2(R2d) and we have that

⟨Vg1f1, Vg2f2⟩ =
∫
R2d

Vg1f1(z)Vg2f2(z) dz = ⟨g1, g2⟩⟨f1, f2⟩.

Proof. By the discussion preceding the proposition, we find that

⟨Vg1f1, Vg2f2⟩ =
〈
F2T

t(f1 ⊗ g1),F2T
t(f2 ⊗ g2)

〉
= ⟨f1 ⊗ g1, f2 ⊗ g2⟩ = ⟨f1, f2⟩⟨g1, g2⟩,

where the last equality is a simple application of Fubini’s theorem.

We will now see how to recover any function in L2(Rd) from its short-time
Fourier transform (w.r.t. any nonzero window). We will do this via a weak
integral, a notion we quickly introduce before stating the result.

Let H be a complex Hilbert space and let X be a measure space. We say
that a function ϕ : X → H is weakly integrable if the following two conditions
are satisfied:

(i) for every k ∈ H, the function

⟨ϕ(−), k⟩ : X → C
x 7→ ⟨ϕ(x), k⟩

is integrable (i.e. a member of L1(X));

(ii) the conjugate-linear map

H → C

k 7→
∫
X

⟨ϕ(x), k⟩ dx

is bounded. A sufficient but not necessary condition for this is that∫
X
∥ϕ(x)∥ dx <∞.

If ϕ is weakly integrable, then the Riesz representation theorem guarantees
the existence of a unique element f ∈ H such that

⟨f, k⟩ =
∫
X

⟨ϕ(x), k⟩ dx for all k ∈ H.

We then define the weak integral of ϕ:∫
X

ϕ(x) dx := f,
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so that 〈∫
X

ϕ(x) dx, k
〉
=

∫
X

⟨ϕ(x), k⟩ dx for all k ∈ H.

We are now ready to state the promised result, often referred to as the
reconstruction formula or the inversion formula.

3.1.7 Corollary. Let g, h ∈ L2(Rd) be non-orthogonal, i.e. ⟨h, g⟩ ≠ 0. Then,

f =
1

⟨h, g⟩

∫
R2d

Vgf(z)π(z)h dz

for all f ∈ L2(Rd).

Proof. We are weakly integrating the map ϕ : R2d → L2(Rd) defined by

ϕ(z) =
1

⟨h, g⟩
Vgf(z)π(z)h.

By Moyal’s identity (Proposition 3.1.6), we have that

⟨f, k⟩ = 1

⟨h, g⟩

∫
R2d

Vgf(z)⟨π(z)h, k⟩ dz for all k ∈ L2(Rd).

Since Vgf, Vhk ∈ L2(R2d), and hence Vgf · Vhk ∈ L1(R2d), condition (i) for
the definition of a weak integral is satisfied. This equation also immediately
implies that condition (ii) is satisfied and that the conclusion of the corollary
holds.

There is another way to interpret the reconstruction formula, which we
now describe. Fix a nonzero window g ∈ L2(Rd) and consider the linear map

Vg : L2(Rd) → L2(R2d)

f 7→ Vgf

By Moyal’s identity (Proposition 3.1.6), this is a well-defined and bounded
map whose norm equals ∥g∥2. Consider the (suggestively named) map

V∗
g : L

2(R2d) → L2(Rd)

F 7→
∫
R2d

F (z)π(z)g dz.

Since, for every F ∈ L2(R2d) and f ∈ L2(Rd),∫
R2d

〈
F (z)π(z)g, f

〉
dz =

∫
R2d

F (z)Vgf(z) dz = ⟨F,Vgf⟩,
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the weak integral defining V∗
gF is well-defined. Moreover, this shows that

⟨V∗
gF, f⟩ = ⟨F,Vgf⟩, which means that V∗

g is the adjoint of Vg.
We can now write the reconstruction formula as follows:

IdL2(Rd) =
1

⟨h, g⟩
V∗
hVg for all h, g ∈ L2(Rd) s.t. ⟨h, g⟩ ≠ 0.

In particular, for any nonzero g ∈ L2(Rd), we find that the short-time Fourier
transform Vg : L2(Rd) → L2(R2d) is injective.

3.2 | Gabor Analysis

We are finally prepared to introduce the main subject of this thesis: Gabor
analysis. The first subsection introduces the basic notions, the second outlines
our proposed approach to the subject, while the third and fourth will be spent
proving more subtle (though still foundational) results.

3.2.1 Gabor Systems, Frames and Associated Opera-
tors

This subsection is not based on any particular reference, but it is inspired by
Gröchenig [17], Gröchenig and Koppensteiner [19] as well as lecture notes by
Luef.

Before we discuss Gabor systems, we must introduce the notion of a lattice.
A lattice Λ ⊂ R2d is an additive subgroup of R2d of the form

Λ = AZ2d :=
{
Ak : k ∈ Z2d

}
for some A ∈ GL(2d,R).

In this context, we will call A a lattice matrix (for Λ) and say that the
matrix A determines the lattice Λ. We also define the volume of the lattice:
vol(Λ) := | detA|.

Distinct matrices can determine the same lattice. The following simple
lemma clarifies when this is the case.

3.2.1 Lemma (Lattice matrices). Two matrices A,B ∈ GL(2d,R) determine
the same lattice, i.e. AZ2d = BZ2d, if and only if A−1B ∈ GL(2d,Z).

Proof. For any A,B ∈ GL(2d,R), we have the following equivalences:

AZ2d = BZ2d ⇐⇒ Z2d = A−1BZ2d ⇐⇒ A−1B ∈ GL(2d,Z).

The first equivalence holds because A is a bijection on R2d and the second
equivalence holds because A−1B is additive/Z-linear (and hence additively
invertible if and only if it is bijective).
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As a simple corollary to this lemma, we observe that vol(Λ) depends
only on Λ, meaning that it is independent of our choice of lattice matrix:
if we have AZ2d = BZ2d, then detB = det(A) det(A−1B) = ± detA, for
A−1B ∈ GL(2d,Z) implies that det(A−1B) = ±1.3

A Gabor system for L2(Rd) is a set of the form

G(g,Λ) =
{
π(λ)g : λ ∈ Λ

}
where g ∈ L2(Rd) and Λ ⊂ R2d is a lattice. In connection to the STFT, we
can think of this as a discrete analogue of the set in Equation (3.1). That is,
we wish to replace the entirety of the time-frequency plane with a lattice, so
that we may study the localized frequency content of a function f ∈ L2(Rd)
by considering only a countable number of components Vgf(λ) = ⟨f, π(λ)g⟩.
This is of course a prerequisite for numerical time-frequency analysis.

Gabor analysis deals with the spanning properties of Gabor systems; the
spanning properties of G(g,Λ) tell us how suitable g and Λ are for the purposes
outlined above. Whenever we refer to a “Gabor system G(g,Λ)”, it should be
implicitly understood that g ∈ L2(Rd) and that Λ is a lattice on R2d.

3.2.2 Definition (Bessel sequences and Gabor frames). Let G(g,Λ) be a
Gabor system. We say that G(g,Λ) is a Bessel sequence if there exists a
constant B > 0 (called a Bessel bound) such that∑

λ∈Λ

|⟨f, π(λ)g⟩|2 ≤ B∥f∥22 for all f ∈ L2(Rd). (3.3)

Similarly, we call G(g,Λ) a Gabor frame for L2(Rd) if there exist constants
A,B > 0 such that

A∥f∥22 ≤
∑
λ∈Λ

|⟨f, π(λ)g⟩|2 ≤ B∥f∥22 for all f ∈ L2(R2d). (3.4)

In this situation, we refer to A as a lower frame bound and to B as an upper
frame bound for the Gabor frame G(g,Λ). A Gabor frame is said to be tight
if we can choose A = B, and we call it a Parseval frame if we can choose
A = B = 1.

Ultimately, we wish to identify lattices Λ and pairs of functions g, h ∈
L2(Rd) such that

f =
∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)h for all f ∈ L2(Rd)

3A matrix over a commutative ring R, such as Z, is invertible if and only if its determinant
is invertible in R. The only invertible elements in Z are 1 and −1.
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(we will define such sums soon). This is a discrete analogue of the reconstruc-
tion formula (Corollary 3.1.7). In Proposition 3.2.8, we will see that whenever
G(g,Λ) is a Gabor frame for L2(Rd), there is a canonical choice for h such
that this holds.

Given a Gabor system G(g,Λ), we can describe the passage from f to∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)h. (3.5)

in two steps. First, we extract the coefficients (⟨f, π(λ)g⟩)λ∈Λ from f , and
then we form the linear combination above. These processes are called analysis
(extracting the coefficients) and synthesis (forming a function from a set of
coefficients). They are discrete analogues of the STFT Vg and its adjoint V∗

g ,
as described after Corollary 3.1.7. We will define them properly soon.

In the Bessel condition (3.3), the sum can be defined as the supremum
over all finite sums. Alternatively, one can choose any enumeration of Λ and
define it as an ordinary limit. Non-negativity of the terms implies that the
enumeration doesn’t matter, as absolute convergence implies unconditional
convergence. In Equation (3.5), we are summing functions in L2(Rd), so a
precise definition requires more care. We will define the infinite sum as a
limit. In general, convergence will depend on the enumeration of Λ. However,
we will only consider such sums when G(g,Λ) and G(h,Λ) are assumed to be
Bessel sequences, and the upcoming Lemma 3.2.4 shows that the result is
independent of the enumeration in this case.

In the following definition, ℓ2(Λ) denotes the usual Hilbert space of func-
tions a : Λ → C (with aλ := a(λ)) such that ∥a∥22 =

∑
λ∈Λ |aλ|2 <∞.

3.2.3 Definition (Analysis, synthesis and frame operators). Let G(g,Λ) and
G(h,Λ) be Bessel sequences. We define the following operators.

(i) The analysis operator :

CΛ
g : L

2(Rd) → ℓ2(Λ)

f 7→
(
⟨f, π(λ)g⟩

)
λ∈Λ.

(ii) The synthesis operator :

DΛ
h : ℓ

2(Λ) → L2(Rd)

(aλ)λ∈Λ 7→
∑
λ∈Λ

aλπ(λ)h,

where the sum is defined by an arbitrary enumeration of Λ (see Lemma
3.2.4 for well-definition).
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(iii) The mixed-type frame operator :

SΛ
g,h := DΛ

h ◦ CΛ
g : L

2(Rd) → L2(Rd)

f 7→
∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)h.

The condition that G(g,Λ) be a Bessel sequence is precisely the condition
that the analysis operator CΛ

g is well-defined and bounded. Indeed, we can
rewrite the Bessel condition (3.3) as:

∥CΛ
g f∥2 ≤

√
B∥f∥2 for all f ∈ L2(Rd).

The smallest possible Bessel bound B will therefore be the square of the
operator norm ∥CΛ

g ∥.

3.2.4 Lemma. Let G(g,Λ) be a Bessel sequence. Then, DΛ
g is well-defined

(i.e. independent of enumeration of Λ) and it is the adjoint of CΛ
g . That is,

we have that∑
λ∈Λ

aλ(CΛ
g f)λ = ⟨a, CΛ

g f⟩ = ⟨DΛ
g a, f⟩ =

∫
Rd

DΛ
g a(t)f(t) dt

for all a = (aλ)λ∈Λ ∈ ℓ2(Λ) and f ∈ L2(Rd). In particular, ∥DΛ
g ∥ = ∥CΛ

g ∥.

Proof. Let c00(Λ) ⊂ ℓ2(Λ) denote the space of finite sequences, i.e. sequences
with only finitely many nonzero terms. If a ∈ c00(Λ), then

⟨a, CΛ
g f⟩ =

∑
λ∈Λ

aλ⟨f, π(λ)g⟩ =
∑
λ∈Λ

⟨aλπ(λ)g, f⟩ =
〈∑
λ∈Λ

aλπ(λ)g, f
〉

since the sums are finite. Moreover, since
∑

λ∈Λ aλπ(λ)g ∈ L2(Rd), we now
find that∥∥∥∑

λ∈Λ

aλπ(λ)g
∥∥∥
2
= sup

{∣∣∣〈∑
λ∈Λ

aλπ(λ)g, f
〉∣∣∣ : f ∈ L2(Rd) with ∥f∥2 = 1

}
= sup

{∣∣⟨a, CΛ
g f⟩

∣∣ : f ∈ L2(Rd) with ∥f∥2 = 1
}

≤ ∥a∥2∥CΛ
g ∥.

This shows that the linear map D : c00(Λ) → L2(Rd) defined by a 7→∑
λ∈Λ aλπ(λ)g is bounded (with operator norm ∥D∥ ≤ ∥CΛ

g ∥). Since c00(Λ)
is dense in ℓ2(Λ), this implies that D extends to a bounded linear operator
D : ℓ2(Λ) → L2(Rd) (Theorem B.1.2).
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Suppose that (Λn)n∈N is an increasing sequence of finite subsets of Λ such
that

⋃
n∈N Λn = Λ. In particular, we could choose Λn = {λj}nj=1 for some

enumeration (λn)n∈N of Λ. For any a ∈ ℓ2(Λ), we can now define a sequence
(an)n∈N ⊂ c00(Λ) such that an → a by setting (an)λ = aλ if λ ∈ Λn and
(an)λ = 0 otherwise. By continuity of D, we find that

Da = lim
n→∞

Dan = lim
n→∞

∑
λ∈Λn

aλπ(λ)g.

This proves that the enumeration doesn’t matter, as Da is independent of
our choice of subsets Λn. We also see that D = DΛ

g . By continuity of the
inner product, we find that

⟨DΛ
g a, f⟩ = lim

n→∞
⟨Dan, f⟩ = lim

n→∞
⟨an, CΛ

g f⟩ = ⟨a, CΛ
g f⟩,

which shows that DΛ
g is the adjoint of CΛ

g . The fact that ∥DΛ
g ∥ = ∥CΛ

g ∥
now follows from a foundational result from Hilbert space theory (which we
essentially proved in the beginning of Section 2.2), so we are done.

3.2.5 Corollary. Let G(g,Λ) and G(h,Λ) be Bessel sequences. Then, the
mixed-type frame operator SΛ

g,h is bounded and (SΛ
g,h)

∗ = SΛ
h,g.

Proof. By Lemma 3.2.4 and the paragraph that preceded it, CΛ
g , C

Λ
h , D

Λ
g and

DΛ
h are all bounded, and

(SΛ
g,h)

∗ = (DΛ
h ◦ CΛ

g )
∗ = (CΛ

g )
∗ ◦ (DΛ

h )
∗ = DΛ

g ◦ CΛ
h = SΛ

g,h,

as desired.

In particular, the corollary we just proved shows that SΛ
g,g is a self-adjoint

operator in L2(Rd) whenever G(g,Λ) is a Bessel sequence. We now show
that the frame condition can be phrased in terms of conditions on the frame
operator. For the rest of this subsection, we will use I to denote the identity
operator on L2(Rd).

3.2.6 Proposition. Let G(g,Λ) be a Bessel sequence. Then, the following
statements are equivalent.

(a) G(g,Λ) is a Gabor frame.

(b) There exist constants A,B > 0 such that AI ≤ SΛ
g,g ≤ BI in the

C*-algebra B(L2(Rd)).

(c) The frame operator SΛ
g,g is invertible in B(L2(Rd)).
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Proof. By Corollary 3.2.5, SΛ
g,g is bounded and self-adjoint. Let f ∈ L2(Rd).

By continuity of the inner product, we have that

⟨SΛ
g,gf, f⟩ =

〈∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)g, f
〉
=
∑
λ∈Λ

⟨f, π(λ)g⟩⟨π(λ)g, f⟩

=
∑
λ∈Λ

|⟨f, π(λ)g⟩|2.
(3.6)

Thus, the condition that G(g,Λ) be a Gabor frame may equivalently be
written as: there exist constants A,B > 0 such that

⟨Af, f⟩ ≤ ⟨SΛ
g,gf, f⟩ ≤ ⟨Bf, f⟩ for all f ∈ L2(Rd).

By Proposition 2.2.28, this is equivalent to the condition that both BI − SΛ
g,g

and SΛ
g,g − AI are positive elements of B(L2(Rd)). Since SΛ

g,g is self-adjoint,
we may write this condition as AI ≤ SΛ

g,g ≤ BI, which proves that (a) and
(b) are equivalent.

We now wish to prove the equivalence of (b) and (c). We see from Equation
(3.6) that SΛ

g,g is positive (appealing again to Proposition 2.2.28). This implies
that SΛ

g,g ≤ ∥SΛ
g,g∥I by point (ii) of Proposition 2.2.26, so we only need to

prove that invertibility of SΛ
g,g is equivalent to the existence of a constant

A > 0 such that AI ≤ SΛ
g,g.

We know that σ(SΛ
g,g) ⊂ [0,∞). By definition of spectra, SΛ

g,g is invertible
if and only if 0 /∈ σ(SΛ

g,g). By compactness of spectra, this happens if and
only if there exists some constant A > 0 such that σ(SΛ

g,g) ⊂ [A,∞).
If we apply the continuous functional calculus at SΛ

g,g, we find that AI ≤
SΛ
g,g (for any constant A ∈ R) if and only if A ≤ z as functions on σ(SΛ

g,g)
(point (iv) of Lemma 2.2.22; order preservation of the continuous functional
calculus). Since A ≤ z on σ(SΛ

g,g) if and only if σ(SΛ
g,g) ⊂ [A,∞), we can

conclude that AI ≤ SΛ
g,g if and only if σ(SΛ

g,g) ⊂ [A,∞). By the previous
paragraph, we obtain the equivalence between (b) and (c).

The following is an important lemma for the structure of the theory. We
will soon see an application.

3.2.7 Lemma. Let G(g,Λ) be a Bessel sequence. Then, the frame operator
SΛ
g,g commutes with π(λ) for every λ ∈ Λ.

Proof. Since time-frequency shifts are unitary, the claimed commutation is
equivalent to the condition that π(λ)SΛ

g,gπ(λ)
∗ = SΛ

g,g for all λ ∈ Λ. This is
what we will prove.
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Fix any λ ∈ Λ and let f ∈ L2(Rd). We find that(
π(λ)SΛ

g,gπ(λ)
∗)f = π(λ)

(∑
µ∈Λ

⟨π(λ)∗f, π(µ)g⟩π(µ)g
)

=
∑
µ∈Λ

⟨f, π(λ)π(µ)g⟩π(λ)π(µ)g

=
∑
µ∈Λ

⟨f, π(λ+ µ)g⟩π(λ+ µ)g = SΛ
g,gf,

where the transition to the last line follows from point (ii) of Lemma 3.1.1
(the phase factors that arise immediately cancel, since the inner product in
conjugate-linear in the second entry). This proves our claim.

Recall that we wish to identify lattices Λ and pairs of functions g, h ∈
L2(Rd) such that

f =
∑
λ∈Λ

⟨f, π(λ)g⟩π(λ)h for all f ∈ L2(Rd).

Supposing that G(g,Λ) and G(h,Λ) are Bessel sequences, we can now write
this condition simply as SΛ

g,h = I. Since (SΛ
g,h)

∗ = SΛ
h,g, we now know that this

happens if and only if SΛ
h,g = I. We will refer to the statement that SΛ

g,h = I
by saying that g and h are dual atoms.

We now show that every Gabor frame gives rise to both a dual pair of
atoms and a Parseval frame. This result crucially relies on the commutation
property of the previous lemma.

3.2.8 Proposition (Canonical dual atom and Parseval frame). Let G(g,Λ)
be a Gabor frame. Then, the following statements are true.

(i) Let h := (SΛ
g,g)

−1g. Then, G(h,Λ) is a Gabor frame and SΛ
h,h = (SΛ

g,g)
−1.

Moreover, g and h are dual atoms.

(ii) The Gabor system G((SΛ
g,g)

−1/2g,Λ) is a Parseval frame.

Proof. Throughout this proof, we will simply write S for SΛ
g,g.

We begin with (i). We know that S is invertible by Proposition 3.2.6. As
the inverse of a self-adjoint operator, S−1 is self-adjoint. By Lemma 3.2.7,
we know that S−1π(λ) = π(λ)S−1 for all λ ∈ Λ. Thus, with f ∈ L2(Rd) and
λ ∈ Λ, we find that

⟨f, π(λ)h⟩ = ⟨f, π(λ)S−1g⟩ = ⟨f, S−1π(λ)g⟩ = ⟨S−1f, π(λ)g⟩. (3.7)
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Now, the fact that G(g,Λ) is a Bessel sequence implies that∑
λ∈Λ

|⟨f, π(λ)h⟩|2 =
∑
λ∈Λ

|⟨S−1f, π(λ)g⟩|2 ≤ B∥S−1f∥2 ≤ B∥S−1∥2∥f∥2

for all f ∈ L2(Rd), where B is a Bessel bound for G(g,Λ). This proves that
G(h,Λ) is a Bessel sequence as well. Thus, we know that the frame operator
SΛ
h,h is well-defined and bounded.
Using Equation (3.7) again, along with the definitions of S and SΛ

h,h, we
find that

⟨S−1f, f⟩ = ⟨f, S−1f⟩ = ⟨S(S−1f), (S−1f)⟩ =
∑
λ∈Λ

|⟨S−1f, π(λ)g⟩|2

=
∑
λ∈Λ

|⟨f, π(λ)h⟩|2 = ⟨SΛ
h,hf, f⟩

for all f ∈ L2(Rd) (see Equation (3.6) for more details). By Lemma 2.2.27,
this proves that SΛ

h,h = S−1 (= (SΛ
g,g)

−1). Thus, since S−1 is invertible, G(h,Λ)
is a Gabor frame by Proposition 3.2.6.

Finally, for duality of g and h, we again appeal to Equation (3.7) and find
that

f = S(S−1f) =
∑
λ∈Λ

⟨S−1f, π(λ)g⟩π(λ)g =
∑
λ∈Λ

⟨f, π(λ)h⟩π(λ)g

for all f ∈ L2(Rd), which concludes the proof of (i).
For (ii), recall that S−1/2 denotes the unique positive square root of the

positive operator S−1, as afforded by Proposition 2.2.21 (by (i), we know that
S−1 is a frame operator for a Gabor frame, so it is positive by Proposition
3.2.6). Since S−1/2 ∈ C∗(S−1) = C∗(S),4 the operator S−1/2 commutes with
both S and π(λ) for every λ ∈ Λ. Using these facts, we find that

∥f∥22 = ⟨f, f⟩ = ⟨S(S−1/2f), (S−1/2f)⟩ =
∑
λ∈Λ

|⟨S−1/2f, π(λ)g⟩|2

=
∑
λ∈Λ

|⟨f, π(λ)(S−1/2g)⟩|2

for every f ∈ L2(Rd). This proves that G(S−1/2g,Λ) is a Parseval frame and
concludes the proof.

4We didn’t explicitly state or prove the equality C∗(S−1) = C∗(S) anywhere. However,
using the fact that 0 is not in the spectrum of an invertible element, this is a straightforward
consequence of the continuous functional calculus, as z−1 is continuous on C\{0}.
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3.2.2 Trading Lattices for Symplectic Forms

Suppose we fix a lattice Λ ⊂ R2d. We now ask the question: for which
g ∈ L2(Rd) will G(g,Λ) be a Gabor frame? We will refer to the supposed
answer to this question as “the structure of Gabor frames over Λ” or as “the
structure of Gabor frames supported by Λ”. This is an extremely difficult
question in general; much is known, but there are many open questions. For
example, it is known that vol(Λ) ≤ 1 is a necessary and sufficient condition for
the existence of some g ∈ L2(Rd) such that G(g,Λ) is a frame. Gröchenig and
Koppensteiner [19] offer an excellent and accessible overview of the current
state of knowledge.

We will not concern ourselves with questions of existence. Rather, our
goal is to present a powerful framework/method for grouping lattices which
support identical structures of Gabor frames. The purpose of this subsection
is to outline the basic idea behind this framework.

Consider the set π(Λ) := {π(λ) : λ ∈ Λ} ⊂ B(L2(Rd)) of time-frequency
shifts. We have the following basic commutation relation (restricted to the
lattice):

π(λ)π(µ) = e2πiΩJ (λ,µ)π(µ)π(λ) for λ, µ ∈ Λ, (3.8)

where ΩJ denotes the standard symplectic form on R2d, as defined by Equation
(1.4). If we choose a lattice matrix A ∈ GL(2d,R) for Λ, then this becomes:

π(Ak)π(Al) = e2πiΩJ (Ak,Al)π(Al)π(Ak) for k, l ∈ Z2d.

Now, the map (z, w) 7→ ΩJ(Az,Aw) is also a symplectic form on R2d. Indeed,
it is simply the pullback A∗ΩJ of ΩJ by A. Let’s introduce the notation

πA(k) := π(Ak) for k ∈ Z2d.

Then, we can write the basic commutation relation as follows:

πA(k)πA(l) = e2πi(A
∗ΩJ )(k,l)πA(l)πA(k) for k, l ∈ Z2d. (3.9)

All of this amounts to a change of basis for the time-frequency plane R2d such
that the lattice Λ is mapped to the standard lattice Z2d. We can think of
this transition, from Equation (3.8) to Equation (3.9), as trading a general
lattice for a general symplectic form. Loosely stated, our goal is to prove the
following statement:

The structure of Gabor frames over a lattice Λ = AZ2d depends
only on the symplectic from A∗ΩJ .
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Consider the mapping5

(ΩJ)∗ : GL(2d,R) → Symp(R2d) :=
{
Symplectic forms on R2d

}
A 7→ A∗ΩJ .

(3.10)

We will say that A determines A∗ΩJ . Note that a matrix representing a
symplectic form is different from a matrix determining a symplectic form; if A
determines Ω, then ATJA represents Ω, and if θ ∈ S2d represents Ω, then any
matrix A ∈ GL(2d,R) such that ATJA = θ determines Ω (see Proposition
1.1.8). Under the isomorphism Symp(R2d) ∼= S2d (which maps a symplectic
form to the matrix representing it), this mapping becomes A 7→ ATJA. We
may also identify θ with Ωθ and say that A determines θ = ATJA.

Our claim is that the mapping (3.10) isolates the property of AZ2d that
determines the structure of Gabor frames over AZ2d. The usefulness of this
result stems from the fact that this mapping is many-to-one. Moreover, it is
simple to give a precise description of the resulting classification:

3.2.9 Proposition. Let A,B ∈ GL(2d,R). Then, the following statements
are equivalent.

(a) A and B determine the same symplectic form: A∗ΩJ = B∗ΩJ

(b) We have B ∈ Sp(2d,R)A.

(c) With Ω := A∗ΩJ , we have B ∈ ASpΩ(2d,R).

Proof. The statement that A∗ΩJ = B∗ΩJ is equivalent to:

wT (ATJA)z = wT (BTJB)z for all z, w ∈ R2d,

which is equivalent to ATJA = BTJB. In turn, this is equivalent to:

J = A−T (BTJB)A−1 = (BA−1)TJ(BA−1),

i.e. the statement that BA−1 ∈ Sp(2d,R) (or, equivalently: B ∈ Sp(2d,R)A).
This gives the equivalence of (a) and (b).

Finally, by Lemma 1.2.3, we have that

ASpΩ(2d,R) = Sp(2d,R)A, where Ω = A∗ΩJ

This proves that (b) is equivalent to (c).

5To the degree that the map ΩJ 7→ A∗ΩJ is pre-composition with A (see the discussion
following Definition 1.1.6), the map A 7→ A∗ΩJ is post-composition with ΩJ . This is our
reason for choosing the notation (ΩJ)∗, as it is commonly used for post-composition.
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In other words, the foregoing proposition shows that, for any A ∈
GL(2d,R), we have that

(ΩJ)
−1
∗ (A∗ΩJ) = ASpΩ(2d,R) = Sp(2d,R)A.

That is, we can describe the set of matrices determining the same symplectic
form as A both as a left coset of SpΩ(2d,R) in GL(2d,R) and as a right coset
of Sp(2d,R). In yet other words, (ΩJ)∗ groups lattice matrices by their orbits
under the symplectic group (acting from the left).

There is a slight complication which we wish to address. If AZ2d = BZ2d

for some A,B ∈ GL(2d,R), it does not follow that A∗ΩJ = B∗ΩJ . That is,
even though a lattice matrix determines a unique symplectic form, a lattice by
itself does not. However, it is also simple to characterize the set of symplectic
forms determined by a fixed lattice:

3.2.10 Proposition. Let A ∈ GL(2d,R) and set Λ = AZ2d. Then,

(ΩJ)∗

({
B ∈ GL(2d,R) : BZ2d = Λ

})
=
{
R∗(A∗ΩJ) : R ∈ GL(2d,Z)

}
.

Moreover, with θ := ATJA, this is precisely the set of forms

(a) represented by {RT θR ∈ S2d : R ∈ GL(2d,Z)}, and

(b) equivalently: determined by {AR : R ∈ GL(2d,Z)} = AGL(2d,Z).

Proof. By Lemma 3.2.1, we have that{
B ∈ GL(2d,R) : BZ2d = Λ

}
=
{
AR : R ∈ GL(2d,Z)

}
= AGL(2d,Z),

from which (ΩJ)∗(AR) = (AR)∗ΩJ = R∗(A∗ΩJ) give the inclusion ⊂ (for the
displayed equation of sets in the proposition). For the converse inclusion,
suppose that Ω = R∗(A∗ΩJ) for some R ∈ GL(2d,Z) and set B := AR. This
means that

Ω = R∗(A∗ΩJ) = (AR)∗ΩJ = B∗ΩJ = (ΩJ)∗(B),

and since R ∈ GL(2d,Z), we have that BZ2d = (AR)Z2d = AZ2d = Λ. This
proves the displayed equality of sets in the proposition. The first sentence
of the proof now implies (b), and the simple equality RT θR = (AR)TJ(AR)
gives the equivalence between (a) and (b).

We will now describe what we mean by the statement that the structure
of Gabor frames over a lattice Λ = AZ2d depends only on the symplectic from
A∗ΩJ . It turns out that if A,B ∈ GL(2d,R) are such that A∗ΩJ = B∗ΩJ ,
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then there exists a unitary map U ∈ B(L2(Rd)) such that G(g, AZ2d) is a
Gabor frame if and only if G(Ug,BZ2d) is a Gabor frame. Moreover, the
mixed-type frame operators are related by6

SBZ2d

Ug,Uh = USAZ
2d

g,h U−1.

Thus, this correspondence is as precise as one could hope for. The maps U
will be metaplectic transformations, which we will introduce in Chapter 6.

Now, this is not an original result. The case where A = I (and hence
A∗ΩJ = ΩJ) is included in Gröchenig’s textbook [17, Proposition 9.4.4
on p. 199], and the general case is included in de Gosson’s textbook [15,
Proposition 163 on p. 113]. We will prove a slight extension of de Gosson’s
result in Chapter 6 (see Theorem 6.1.10). However, to the knowledge of the
author and his advisor Franz Luef, this point of view has not been thoroughly
explored in the literature on Gabor frames.

Moreover, Luef [21, 22] has initiated the use of equivalence bimodules for
the study of Gabor frames, and we also wish to show this correspondence can
be lifted to the setting of such bimodules. These bimodules are particular
kinds of Hilbert C*-modules over noncommutative tori. Much of this thesis
will be spent introducing these notions and explicitly constructing the relevant
bimodules. Our goal is to show that if two such bimodules arise from lattice
matrices which determine the same symplectic form, then they are isomorphic
as bimodules. These isomorphisms will be extensions of metaplectic trans-
formations. The idea of exploring in this direction has been suggested by
Chakraborty and Luef in [8], where they are working with the same structures
in a different setting and proving part of the desired result.

Another avenue of exploration afforded by this correspondence is the use
of symplectic methods for Gabor analysis. We will not pursue this in any
depth. However, we wish to state and prove one preliminary result showing
how these subjects are related.

Some classes of lattices are easier to work with than others in Gabor
theory. Particularly convenient are lattices of the form

Λ = A1Zd × A2Zd for A1, A2 ∈ GL(d,R).

These are called separable lattices. Many results in Gabor theory have
been proven only for separable lattices. Again, we refer to Gröchenig and
Koppensteiner [19, Section 4.6] for examples of such results. The following
proposition characterizes those symplectic forms which are determined by
separable lattices. One characterization is quite abstract and formulated in

6Don’t worry; we will clean up our notation soon.
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terms of symplectic geometry, while the other describes the explicit form of
matrices representing such forms (and is a quite immediate consequence of
Proposition 3.2.10). The idea of seeking a result of this form was suggested
to the author by his advisor. To our knowledge, this is a novel result.

3.2.11 Proposition. Let θ ∈ S2d and let Ωθ be the symplectic form it
represents (Definition 1.1.3). Then, the following statements are equivalent.

(a) There exists some A ∈ GL(2d,R) such that Ωθ = A∗ΩJ and

AZ2d = A1Zd × A2Zd for some A1, A2 ∈ GL(d,R).

(b) There exists a basis {b1, . . . , b2d} for Z2d (as an abelian group) and an
Ωθ-polarization (L,L′) of R2d such that

{b1, . . . , b2d} ⊂ L ∪ L′.

(c) The matrix θ is of the form

θ = RT

(
0 K

−KT 0

)
R

for some K ∈ GL(d,R) and R ∈ GL(2d,Z).

Proof. We will show the following chain of implications: (a) =⇒ (c) =⇒
(b) =⇒ (a). As always, {ej}2dj=1 will denote the standard basis for R2d. We
define

Lx :=
{
(x, 0) ∈ R2d : x ∈ Rd

}
and Lω :=

{
(0, ω) ∈ R2d : ω ∈ Rd

}
,

so that (Lx, Lω) is a polarization of R2d.
Assume (a) holds, so that AZ2d = A1Zd × A2Zd = (A1 ⊕ A2)Z2d. The

matrix K ′ ∈ S2d representing (A1 ⊕ A2)
∗ΩJ is given by

K ′ = (A1 ⊕ A2)
TJ(A1 ⊕ A2) =

(
AT1 0

0 AT2

)(
0 Id

−Id 0

)(
A1 0

0 A2

)

=

(
0 AT1A2

−AT2A1 0

)
=

(
0 K

−KT 0

)
with K := AT1A2 ∈ GL(d,R).

Thus, since AZ2d = (A1 ⊕ A2)Z2d, (c) follows from Proposition 3.2.10. This
proves that (a) implies (c).



106 Time-Frequency Analysis and Gabor Analysis

Assume now that (c) holds. We will show that (b) follows. Set

K ′ :=

(
0 K

−KT 0

)
.

Clearly Lx and Lω are ΩK′-Lagrangian planes. Since θ = RTK ′R, this implies
that L := R−1(Lx) and L

′ := R−1(Lω) are Ωθ-Lagrangian.
Since Lx and Lω are transversal, it follows that L and L′ are transversal

as well:

R2d = R−1(R2d) = R−1(Lx ⊕ Lω) = R−1(Lx)⊕R−1(Lω) = L⊕ L′.

In other words, (L,L′) is an Ωθ-polarization of R2d. Since R ∈ GL(2d,Z), we
find that

bj := R−1ej for 1 ≤ j ≤ 2d

defines a basis for Z2d. Moreover, we have that

bj = R−1ej ∈ R−1(Lx ∪ Lω) = R−1(Lx) ∪R−1(Lω) = L ∪ L′

for 1 ≤ j ≤ 2d. Thus, we have shown that (c) implies (b).
Finally, we need to show that (b) implies (a), so assume that (b) holds.

Since {b1, . . . , b2d} is a basis for R2d = L ⊕ L′ that is contained in L ∪ L′,
and L and L′ are both d-dimensional, there must exist some permutation
σ ∈ Sym(2d) (the symmetric group on 2d elements) such that

L = spanR
{
bσ(1), . . . , bσ(d)

}
and L′ = spanR

{
bσ(d+1), . . . , bσ(2d)

}
. (3.11)

Choose B ∈ GL(2d,R) such that θ = BTJB, i.e. Ωθ = B∗ΩJ (Proposition
1.1.8). This implies that

Ωθ(bσ(i), bσ(j)) = ΩJ(Bbσ(i), Bbσ(j)) for 1 ≤ j ≤ 2d.

Since L and L′ are Ωθ-Lagrangian planes, this shows that B(L) and B(L′)
are ΩJ -Lagrangian (i.e. just Lagrangian). Since B is invertible and L and L′

are transversal, B(L) and B(L′) are transversal as well. Thus, (B(L), B(L′))
is a polarization of R2d.

By Lemma 1.2.7, there exists some S ∈ Sp(2d,R) such that

SB(L) = Lx and SB(L′) = Lω.

By Equation (3.11), this implies that

Lx = SB(L) = spanR
{
SBbσ(1), . . . , SBbσ(d)

}
and Lω = SB(L′) = spanR

{
SBbσ(d+1), . . . , SBbσ(2d)

}
.
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We can now find change-of-basis matrices A1, A2 ∈ GL(d,R) such that

ej = (A−1
1 ⊕ A−1

2 )SBbσ(j) for 1 ≤ j ≤ 2d.

Since both {e1, . . . , e2d} and {bσ(1), . . . , bσ(2d)} are bases for Z2d, we must
have that

R := (A−1
1 ⊕ A−1

2 )SB ∈ GL(2d,Z).

Since S is symplectic, we also know that (SB)TJ(SB) = BTJB = θ. If we
now set A := SB ∈ GL(2d,R), then Ωθ = A∗ΩJ and

AZ2d = SBZ2d = (A1 ⊕ A2)RZ2d = (A1 ⊕ A2)Z2d = A1Zd × A2Zd

(since (A1 ⊕ A2)R = SB). This shows that (b) implies (a) and concludes the
proof.

Before we close this subsection, we introduce some notation that is better
suited to our needs. Given a lattice matrix A ∈ GL(2d,R) and windows
g, h ∈ L2(Rd) such that G(g, AZ2d) and G(h,AZ2d) are Bessel sequences, we
define the following variants of the synthesis and analysis operators:

CA
g : L2(Rd) → ℓ2(Z2d) DA

h : ℓ
2(Z2d) → L2(Rd)

f 7→
(
⟨f, πA(k)g⟩

)
k∈Z2d (ak)k∈Z2d →

∑
k∈Z2d

akπA(k)h

as well as their composition SAg,h := DA
h ◦ CA

g . If we set Λ = AZ2d, then these
are just the operators CΛ

g and DΛ
h up to an isomorphisms between ℓ2(Λ) and

ℓ2(Z2d), and so SAg,h = SΛ
g,h. In particular, all the results of Subsection 3.2.1

hold for these operators as well.

3.2.3 The Feichtinger Algebra and the FIGA

In this subsection we introduce a space of particularly well-behaved windows,
namely the Feichtinger algebra. This space was first introduced in 1981 by
Feichtinger [12]. It will be central to our construction of Hilbert C*-modules
over noncommutative tori.

Throughout this thesis, g0 will always denote the normalized Gaussian on
Rd. That is, g0(t) = 2d/4e−πt

2
for all t ∈ Rd.

3.2.12 Definition. We define the Feichtinger algebra:

S0(Rd) =
{
f ∈ L2(Rd) : Vg0f ∈ L1(R2d)

}
,

and equip it with the norm ∥f∥S0,g0 := ∥Vg0f∥1.
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We quickly argue that ∥ · ∥S0,g0 actually defines a norm on S0(Rd). Since
f 7→ Vg0f is a linear mapping, S0(Rd) is a vector space, and homogeneity
and the triangle inequality are immediate. By Moyal’s identity (Proposition
3.1.6), we have that

∥Vg0f∥2 = ∥g0∥2∥f∥2 for all f ∈ L2(Rd).

If ∥f∥S0,g0 = ∥Vg0f∥1 = 0, then Vg0f = 0 almost everywhere on Rd, so
∥Vg0f∥2 = 0 as well. Thus, by the displayed equation, we obtain ∥f∥2 = 0.
This gives nondegeneracy, so ∥ · ∥S0,g0 is indeed a norm.

The following lemma shows that, once S0(Rd) has been defined, the
Gaussian no longer plays a privileged role.

3.2.13 Lemma (Equivalent norms). Let g ∈ S0(Rd) be arbitrary but nonzero.
Then, there exist constants C1, C2 > 0 such that

C1∥Vg0f∥1 ≤ ∥Vgf∥1 ≤ C2∥Vg0f∥1 for all f ∈ L2(Rd).

Thus, the norms ∥·∥S0,g0 and f 7→ ∥f∥S0,g := ∥Vgf∥1 are equivalent on S0(Rd).

Proof. Fix any f ∈ L2(Rd) and z ∈ R2d. Moyal’s identity and the covariance
property of Lemma 3.1.4 implies that

|⟨g, g⟩⟨f, π(z)g0⟩| = |⟨Vgf, Vgπ(z)g0⟩|

≤
∫
R2d

|Vgf(w)||Vgπ(z)g0(w)| dw

=

∫
R2d

|Vgf(w)||Vgg0(w − z)| dw.

If we now integrate over z (and change the order of integration, which is
permitted by Tonelli’s theorem), we find that

∥g∥22∥Vg0f∥1 ≤ ∥Vgf∥1∥Vgg0∥1

With C1 := ∥g∥22/∥Vgg0∥1 (Vgg0 ̸= 0 by Moyal’s identity), this gives the
inequality C1∥Vg0f∥1 ≤ ∥Vgf∥1. The same exact argument with the roles of
g and g0 interchanged gives the other inequality and concludes the proof.

The Feichtinger algebra turns out be a very well-behaved and natural space
of functions for time-frequency analysis. In fact, it is a Banach space consisting
entirely of continuous functions and it is closed under both convolutions and
pointwise products. We will have no need for these facts, so we refer the
interested reader to Gröchenig [17, Chapter 11]. Moreover, S0(Rd) is invariant
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under the Fourier transform and S (Rd) ⊂ S0(Rd) (which we will show).
As a Banach space of continuous functions, S0(Rd) provides a simplifying
alternative to S (Rd) for the study of distributions with a well-defined Fourier
transform.

3.2.14 Lemma. The following statements are true.

(i) S0(Rd) is mapped to itself by the Fourier transform.

(ii) S0(Rd) is mapped to itself by all time-frequency shifts.

(iii) We have the inclusion S (Rd) ⊂ S0(Rd). In particular, S0(Rd) is dense
in L2(Rd).

Proof. Fix any f ∈ S0(Rd) and z ∈ R2d. By point (i) of Lemma 3.1.4, we see
that

|(Vg0π(z)f)(w)| = |Vg0f(w − z)| for all w ∈ R2d.

Integrating over w, we find that ∥π(z)f∥S0,g0 = ∥Vg0π(z)f∥1 = ∥Vg0f∥1 =
∥f∥S0,g0 . Thus, π(z)f ∈ S0(Rd), which proves (i).

For (ii), recall that Fg0 = g0 (this is a basic result in Fourier theory).
Point (ii) of Lemma 3.1.4 implies that

|Vg0f(x, ω)| = |VFg0Ff(ω,−x)| = |Vg0Ff(ω,−x)| for all (x, ω) ∈ R2d.

Thus, ∥Ff∥S0,g0 = ∥Vg0Ff∥1 = ∥Vg0f∥1 = ∥f∥S0,g0 , so Ff ∈ S0(Rd) as well,
proving (ii).

Finally, for (iii), consider the description Vgf = F2T
t(f ⊗ g) of the

STFT introduced just prior to Proposition 3.1.6. If f, g ∈ S (Rd), it is
straightforward to check that f ⊗ g ∈ S (R2d). Similarly, one checks that
S (R2d) is invariant under both T t and F2 (the latter holds for the same
reason that S (R2d) is invariant under the usual Fourier transform). Thus,
if f, g ∈ S (Rd), then Vgf ∈ S (R2d). Clearly g0 ∈ S (Rd) and S (R2d) ⊂
L1(R2d), so (iii) follows.

We now introduce a notion of great importance, namely that of the adjoint
lattice. This is the notion underlying the duality inherent to Gabor theory,
which we will discuss more in the next subsection. The FIGA, which is right
around the corner, is also a manifestation of this duality.

3.2.15 Lemma. Let A ∈ GL(2d,R) and consider the lattice Λ = AZ2d. If
we define

Λ◦ :=
{
z ∈ R2d : π(λ)π(z) = π(z)π(λ) for all λ ∈ Λ

}
, (3.12)

then Λ◦ = −JA−TZ2d.
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Proof. By the basic commutation relation, we see that z ∈ Λ◦ if and only
if e2πiΩJ (z,λ) = 1 for all λ ∈ Λ, which is equivalent to the condition that
ΩJ(z, λ) ∈ Z for all λ ∈ Λ. Since Λ = AZ2d, this, in turn, is equivalent to:

kT (ATJ)z = (Ak)TJz = ΩJ(z, Ak) ∈ Z for all k ∈ Z2d.

Taking k to be standard basis elements, we see that this happens if and
only if (ATJ)z ∈ Z2d, or, equivalently, if and only if z ∈ (ATJ)−1Z2d =
−JA−TZ2d.

3.2.16 Definition (The adjoint lattice). For a lattice Λ ⊂ R2d, we define
the adjoint lattice Λ◦ by Equation (3.12). Similarly, for a lattice matrix
A ∈ GL(2d,R), we define the adjoint lattice matrix A◦ := −JA−T . Thus, by
Lemma 3.2.15: Λ = AZ2d =⇒ Λ◦ = A◦Z2d.

Our main goal for the remainder of this subsection is to prove the following
identity, referred to as the fundamental identity of Gabor analysis, or the
FIGA for short.

3.2.17 Theorem (The fundamental identity of Gabor analysis). Let A ∈
GL(2d,R) and let f1, f2, g1, g2 ∈ S0(Rd). Then,∑

k∈Z2d

Vg1f1(Ak)Vg2f2(Ak) =
1

| detA|
∑
k∈Z2d

Vg1g2(A
◦k)Vf1f2(A

◦k),

with absolute convergence of both sums.

Following Feichtinger and Luef [13], we will prove Theorem 3.2.17 via
symplectic variants of the Fourier transform and the Poisson summation
formula.

3.2.18 Definition (The symplectic Fourier transform). Let F ∈ L1(R2d).
We define the symplectic Fourier transform F sF of F by

F sF (z) =

∫
R2d

F (w)e2πiΩJ (z,w) dw =

∫
Rd

∫
Rd

F (y, η)e2πi(ω·y−η·x) dy dη

for all z = (x, ω) ∈ R2d.

Since ΩJ(z, w) = wTJz = w · (Jz), we see that the symplectic Fourier
transform of F is given by F sF (z) = FF (−Jz), where FF is the ordinary
Fourier transform of F and J is the standard symplectic matrix.
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Unlike the ordinary Fourier transform on R2d, the symplectic Fourier
transform (extended/restricted to L2(R2d)) is its own inverse: if F,FF ∈
L1(R2d), then,

(F s)2F (z) = F(F sF )(−Jz) =
∫
R2d

F sF (w)e−2πiw·(−Jz) dw

=

∫
R2d

F sF (w)e2πi(−Jw)·z dw =

∫
R2d

F sF (Jw′)e2πiw
′·z dw′

=

∫
R2d

FF (w′)e2πiw
′·z dw′,

which equals F (z) via the usual Fourier inversion formula. Our main mo-
tivation for introducing the symplectic Fourier transform is the following
result.

3.2.19 Lemma. Let f1, f2, g1, g2 ∈ L2(Rd). Then,

F s(Vg1f1 · Vg2f2) = Vg1g2 · Vf1f2

pointwise.

Proof. Since Vg1f1, Vg2f2 ∈ L2(R2d) by Moyal’s identity (Proposition 3.1.6),
we know that Vg1f1 · Vg2f2 ∈ L1(R2d). Let z ∈ R2d. We find that

F s(Vg1f1 · Vg2f2)(z) =
∫
R2d

⟨f1, π(w)g1⟩⟨f2, π(w)g2⟩e2πiΩJ (z,w) dw

=

∫
R2d

⟨π(z)f1, π(z)π(w)g1⟩⟨f2, π(w)g2⟩e2πiΩJ (z,w) dw

=

∫
R2d

⟨π(z)f1, π(w)π(z)g1⟩⟨f2, π(w)g2⟩ dw

=

∫
R2d

(
Vπ(z)g1π(z)f1

)
(w)Vg2f2(w) dw

= ⟨π(z)g1, g2⟩⟨π(z)f1, f2⟩ =
(
Vg1g2 · Vf1f2

)
(z),

where we have used the basic commutation relations of Lemma 3.1.1 and
Moyal’s identity (Proposition 3.1.6).

Before introducing the symplectic Poisson summation formula, we prove
the ordinary Poisson summation formula. There are many different variants
of this result, with differing assumptions and notions of convergence; we will
prove a variant that is convenient for our proof of the FIGA.

For any subset S ⊂ R2d, we will write χS for the characteristic function
of S. That is, χS(z) = 1 if z ∈ S and χS(z) = 0 otherwise.
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3.2.20 Proposition (The Poisson summation formula). Let F ∈ L1(R2d)
be a continuous function. Assume that there exists some (ck)k∈Z2d ∈ ℓ1(Z2d)
such that

|F (z)| ≤
∑
k∈Z2d

|ck|χk+[0,1)2d(z) for all z ∈ R2d, (3.13)

and that
∑

k∈Z2d |FF (k)| <∞. Then,∑
k∈Z2d

F (z + k) =
∑
k∈Z2d

FF (k)e2πiz·k for all z ∈ [0, 1]2d,

with absolute pointwise convergence of both sums.

Proof. Fix any k ∈ Z2d. Since F is continuous and |F (z)| ≤ |ck| for all
z ∈ k+[0, 1)2d, we have that |F (z)| ≤ |ck| for all z ∈ k+[0, 1]2d. Equivalently:

|F (z + k)| ≤ |ck| for all z ∈ [0, 1]2d.

Let (kj)j∈N be an enumeration of Z2d and fix any ϵ > 0. Since
∑

k∈Z2d |ck| <
∞, there exists some N ∈ N such that

n∑
j=m+1

|ckj | < ϵ, whenever n > m ≥ N.

By our observation in the previous paragraph, we find that∣∣∣∣ n∑
j=1

|F (z + kj)| −
m∑
i=1

|F (z + ki)|
∣∣∣∣ = n∑

j=m+1

|F (z + kj)| ≤
n∑

j=m+1

|ckj | < ϵ

for all z ∈ [0, 1]2d and n > m ≥ N . This shows that
∑

k∈Z2d |F (z + k)| is
pointwise Cauchy (for any enumeration of Z2d) and hence pointwise convergent.
Taking the limit n→ ∞ in the last displayed equation, we also see that the
convergence is uniform on [0, 1]2d. Since each term |F (z+kj)| is continuous on
[0, 1]2d, the uniform convergence implies that

∑
k∈Z2d |F (z+k)| is a continuous

function on [0, 1]2d. Since∣∣∣∣ n∑
j=1

F (z + kj)−
m∑
i=1

F (z + ki)

∣∣∣∣ ≤ n∑
j=m+1

|F (z + kj)|,

the same argument shows that

G(z) :=
∑
k∈Z2d

F (z + k) for z ∈ [0, 1]2d
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defines a continuous function G : [0, 1]2d → C.
We now calculate the Fourier coefficients of G. We will use the dominated

convergence theorem twice, and both instances will be justified after the
calculation. Let l ∈ Z2d. Then,

Ĝ(l) =

∫
[0,1]2d

G(z)e−2πil·z dz

=
∑
k∈Z2d

∫
[0,1]2d

F (z + k)e−2πil·z dz

=
∑
k∈Z2d

∫
R2d

χk+[0,1]2d(z
′)F (z′)e−2πil·(z′−k) dz′

=

∫
R2d

F (z′)e−2πil·z′ dz′ = FF (l)

where we used the fact that e2πil·k = 1 for all k ∈ Z2d in the last step, before
applying the dominated convergence theorem for the second time. The first
instance of the dominated convergence theorem (going from the first to the
second line) is justified by

∑
k∈Z2d |F (z + k)| being continuous on [0, 1]2d

and hence in L1([0, 1]2d) (we proved continuity in the previous paragraph).
The second instance of the dominated convergence theorem is justified since
|F | ∈ L1(R2d).

We have now shown that Ĝ(k) = FF (k) for all k ∈ Z2d. Since G is
continuous and

∑
k∈Z2d |Ĝ(k)| < ∞ by our assumption on FF , the Fourier

series of G converges uniformly to G on [0, 1]2d (this is a foundational result
from Fourier theory). Thus, we have that∑

k∈Z2d

F (z + k) = G(z) =
∑
k∈Z2d

Ĝ(k)e2πiz·k =
∑
k∈Z2d

FF (k)e2πiz·k,

for every z ∈ [0, 1]2d. We have proved that the leftmost series converges
absolutely (and uniformly) pointwise, and the same is true of the rightmost
series since

∑
k∈Z2d |FF (k)| <∞ by assumption. Thus, we are done.

We now state and prove the symplectic Poisson summation formula over
an arbitrary lattice AZ2d.

3.2.21 Proposition (The symplectic Poisson summation formula). Let
A ∈ GL(2d,R) and let F ∈ L1(Rd) be a continuous function. Assume that
there exists some (ck)k∈Z2d ∈ ℓ1(Z2d) such that

|F (Az)| ≤
∑
k∈Z2d

|ck|χk+[0,1)2d(z) for all z ∈ R2d, (3.14)
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and that
∑

k∈Z2d |F sF (A◦k)| <∞. Then,∑
k∈Z2d

F (Az + Ak) =
1

| detA|
∑
k∈Z2d

F sF (A◦k)e−2πiΩJ (A
◦k,Az)

for all z ∈ [0, 1]2d, with absolute pointwise convergence of both sums.

Proof. Let k ∈ Z2d. The idea is to apply the ordinary Poisson summation
formula to the function FA on R2d defined by z 7→ F (Az). We have FA ∈
L1(R2d) by a simple change of variables calculation.

We calculate the Fourier transform of FA evaluated at k:

FFA(k) =
∫
R2d

F (Az′)e−2πiz′·k dz′

=
1

| detA|

∫
R2d

F (z)e−2πi(A−1z)·k dz

=
1

| detA|

∫
R2d

F (z)e2πiz·(J
2A−T k) dz

=
1

| detA|

∫
R2d

F (z)e2πiΩJ (JA
−T k,z) dz =

1

| detA|
F sF (−A◦k).

This shows that
∑

k∈Z2d |FFA(k)| < ∞, since
∑

k∈Z2d |F sF (A◦k)| < ∞ by
assumption. Equation (3.14) is simply Equation (3.13) for FA, so FA satisfies
all the conditions for the Poisson summation formula (Proposition 3.2.20).

Since

z · w = (Az) · (−J2A−Tw) = (Az) · (JA◦w) = ΩJ(A
◦w,Az)

for all z, w ∈ R2d, we can write the Poisson summation formula for FA as
follows: ∑

k∈Z2d

FA(z + k) =
∑
k∈Z2d

FFA(k)e2πiz·k

=
1

| detA|
∑
k∈Z2d

F sF (−A◦k)e2πiΩJ (A
◦k,Az).

The simple relabelling k 7→ −k now gives the desired result.

If one recalls Lemma 3.2.19, one can now see that the FIGA will follow
from the symplectic Poisson summation formula applied to F = Vg1f1 · Vg2f2
and evaluated at z = 0. However, we still need to show that symplectic
Poisson summation formula holds for Vg1f1 · Vg2f2 when all four functions
are in S0(Rd). To do this, we will need three additional lemmas, whose
statements and proofs have all been adapted from Gröchenig [17]. First up is
an inequality that we will have use for later as well.
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3.2.22 Lemma. Let f1, f2, g1, g2 ∈ L2(Rd) and suppose that ⟨g1, g2⟩ ≠ 0.
Then,

|Vf2f1(z)| ≤
1

|⟨g1, g2⟩|

∫
R2d

|Vg1f1(w)||Vf2g2(z − w)| dw

=
1

|⟨g1, g2⟩|
(
|Vg1f1| ∗ |Vf2g2|

)
(z),

for all z ∈ R2d (where the right hand side may be infinite).

Proof. By the reconstruction formula (Corollary 3.1.7 and the subsequent
discussion), we find that

⟨f1, π(z)f2⟩ =
1

⟨g2, g1⟩
⟨V∗

g2
Vg1f1, π(z)f2⟩

=
1

⟨g2, g1⟩

〈∫
R2d

Vgf1(w)π(w)g2 dw, π(z)f2

〉
=

1

⟨g2, g1⟩

∫
R2d

Vg1f1(w)⟨π(w)g2, π(z)f2⟩ dw

=
1

⟨g2, g1⟩

∫
R2d

Vg1f1(w)⟨g2, π(w)∗π(z)f2⟩ dw

=
1

⟨g2, g1⟩

∫
R2d

Vg1f1(w)Vf2g2(z − w)e2πi(η−ω)·y dw,

where w = (y, η) (as integration variables) and z = (x, ω) ∈ R2d. In the last
step, we used points (ii) and (iv) of Lemma 3.1.1. Taking absolute values
gives the desired result.

Next up is a simple lemma (with a tedious proof) regarding the STFT
Vg0g0. The subsequent lemma will transfer this result to Vgf , for arbitrary
f, g ∈ S0(Rd), which will give us the last piece we need to prove the FIGA.

3.2.23 Lemma. With g0(t) = 2d/4e−πt
2
, we find that

Vg0g0(z) = e−πix·ωe−πz
2/2 for all z = (x, ω) ∈ R2d.

Moreover, for any A ∈ GL(2d,R) there exists some (ck)k∈Z2d ∈ ℓ1(Z2d) such
that

|Vg0g0(Az)| = e−π(Az)
2/2 ≤

∑
k∈Z2d

|ck|χk+[0,1)2d(z) for all z ∈ R2d.
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Proof. Recall that Fg0 = g0, let Drf(t) = f(rt) for r > 0 and f ∈ L2(Rd),
and recall also that FDr = r−dDr−1F (these are basic properties of the
Fourier transform). With z = (x, ω) ∈ R2d, we calculate:

Vg0g0(x, ω) =

∫
Rd

2d/2e−πt
2

e2πit·ωe−π(t−x)2 dt

= 2d/4e−πx
2

∫
Rd

2d/4e−2π(t2−t·x)e−2πit·ω dt

= 2d/4e−πx
2/2

∫
Rd

2d/4e−2π(t−x/2)2e−2πit·ω dt

= 2d/4e−πx
2/2
(
FTx/2D21/2g0

)
(ω)

= 2d/4e−πx
2/22−d/2

(
M−x/2D2−1/2Fg0

)
(ω)

= e−πx
2/2e−πix·ωe−πω

2/2.

This proves the first claim of the lemma.
As for the second claim, we first show that there exists some (dk)k∈Z2d ∈

ℓ1(Z2d) such that

e−πz
2/2 ≤

∑
k∈Z2d

|dk|χk+[0,1)2d(z) for all z ∈ R2d, (3.15)

The Gaussian h(z) = e−πz
2/2 (for z ∈ R2d) decreases radially from the origin.

Thus, for every k ∈ Z2d, there exists some vector nk ∈ R2d whose entries are
only zeroes and ones such that

e−πz
2/2 ≤ e−π(k+nk)

2/2 for all z ∈ k + [0, 1)2d;

simply choose nk such that k + nk is the corner of k + [0, 1]2d that is closest
to the origin. With {nk : k ∈ Z2d} chosen in this manner, we have that
∥nk∥ ≤

√
2d for all k ∈ Z2d and that

e−πz
2/2 ≤

∑
k∈Z2d

e−π(k+nk)
2/2χk+[0,1)2d(z) for all z ∈ R2d. (3.16)

Temporarily fix k ∈ Z2d. If z ∈ k + [0, 1)2d, then ∥z∥ ≤ ∥k∥+
√
2d. Thus,

∥k + nk∥ ≥ ∥k∥ − ∥nk∥ ≥ (∥z∥ −
√
2d)− ∥nk∥ ≥ ∥z∥ − 2

√
2d,

which implies that e−π(k+nk)
2/2 ≤ e−π(∥z∥−2

√
2d)2/2 whenever ∥z∥ ≥ 2

√
2d (and

z ∈ k + [0, 1)2d). Thus, for some constant C > 0, we have that∑
k∈Z2d

|e−π(k+nk)
2/2| =

∫
R2d

∑
k∈Z2d

e−π(k+nk)
2/2χk+[0,1)2d(z)

≤ C +

∫
R2d

e−π(∥z∥−2
√
2d)2/2 dz.
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Changing to polar coordinates, we obtain a one-dimensional integral over
∥z∥2d−1e−π(∥z∥−2

√
2d)2/2, which is finite. By Equation (3.16), we have now

established Equation (3.15) (with dk = e−π(k+nk)
2/2).

Now, Equation (3.15) implies that

e−π(Az)
2/2 ≤

∑
k∈Z2d

|dk|χk+[0,1)2d(Az) =
∑
k∈Z2d

|dk|χA−1(k+[0,1)2d)(z) (3.17)

for all z ∈ R2d. For every l ∈ Z2d, let

ml := max
{
|dk| : k ∈ Z2d s.t.

(
l + [0, 1)2d

)
∩ A−1

(
k + [0, 1)2d

)
̸= ∅
}
.

Clearly there is a positive integer N , independent of k ∈ Z2d, such that
A−1

(
k+[0, 1)2d

)
intersects at most N cubes of the form l+[0, 1)2d for l ∈ Z2d.

This implies that ∑
l∈Z2d

ml ≤ N
∑
k∈Z2d

|dk|, (3.18)

because for any given l, there is some k ∈ Z2d such that ml = |dk|, and each
k ∈ Z2d contributes (in this manner) to at most N terms in

∑
l∈Z2d ml.

Similarly, there is a positive integer M , independent of l ∈ Z2d, such that
l+ [0, 1)2d intersects at most M sets of the form A−1

(
k+ [0, 1)2d

)
for k ∈ Z2d.

It follows by pointwise evaluation that∑
k∈Z2d

|dk|χA−1(k+[0,1)2d)(z) ≤M
∑
l∈Z2d

mlχl+[0,1)2d(z) for all z ∈ R2d, (3.19)

because if z ∈ l + [0, 1)2d, so that the right hand side is Mml, then there are
at most M nonzero terms on the left hand side, and ml is defined to be the
largest of these terms.

Finally, equations (3.17) and (3.19) combine to give:

e−π(Az)
2/2 ≤M

∑
l∈Z2d

mlχl+[0,1)2d(z) for all z ∈ R2d,

from which Equation (3.18) concludes the proof (with ck =Mmk).

3.2.24 Lemma. Let f, g ∈ S0(Rd) and let A ∈ GL(2d,R). Then, there exists
some (ck)k∈Z2d ∈ ℓ1(Z2d) such that

|Vgf(Az)| ≤
∑
k∈Z2d

|ck|χk+[0,1)2d(z) for all z ∈ R2d.

In particular, (Vgf(Ak))k∈Z2d ∈ ℓ1(Z2d).
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Proof. Let g0 be the normalized Gaussian on Rd, as always. By Lemma 3.2.22,
with g1 = g0, g2 = g0, f1 = f and f2 = g, we know that

|Vgf(z)| ≤ |Vg0f | ∗ |Vgg0|(z) for all z ∈ R2d.

Applying the same lemma again, with g1 = g0, g2 = g0, f1 = g0 and f2 = g,
we find that

|Vgf(z)| ≤ |Vg0f | ∗
(
|Vg0g0| ∗ |Vgg0|

)
(z) =

(
|Vg0f | ∗ |Vgg0|

)
∗ |Vg0g0|(z)

for all z ∈ R2d. By our assumption that f, g ∈ S0(Rd), along with the
equivalence of norms shown in Lemma 3.2.13 (and the fact that g0 ∈ S0(Rd)
by Lemma 3.2.23), all these STFTs are in L1(R2d). This implies that

|Vgf | ≤ F ∗ |Vg0g0| for some F = |F | ∈ L1(Rd) (3.20)

(pointwise), since L1(R2d) is closed under convolutions. The idea is now to
use the fact that |Vg0g0| decays sufficiently fast to show that |Vgf | does as
well.

For any k ∈ Z2d, choose vk ∈ k + [0, 1]2d such that

|Vgf(Avk)| = max
{
|Vgf(Az)| : z ∈ k + [0, 1]2d

}
.

We will show that
∑

k∈Z2d |Vgf(Avk)| < ∞, from which the result follows
immediately with ck := Vgf(Avk). For the rest of this proof, we will exchange
sums and integrals freely. Since all terms will be nonnegative, this is justified
via the monotone convergence theorem applied to the partial sums. We will
also write |A| := | detA| to save space.

By Lemma 3.2.23, there exists some (dk)k∈Z2d ∈ ℓ1(Z2d) such that

|Vg0g0|(Az) ≤
∑
l∈Z2d

|dl|χl+[0,1)2d(z) for all z ∈ R2d.

Equation (3.20) implies that∑
k∈Z2d

|Vgf(Avk)| ≤
∑
k∈Z2d

(
F ∗ |Vg0g0|

)
(Avk)

=
∑
k∈Z2d

∫
R2d

F (z′)|Vg0g0|(Avk − z′) dz′

=
∑
k∈Z2d

|A|
∫
R2d

F (Az)|Vg0g0|(Avk − Az) dz

≤ |A|
∑
k∈Z2d

∫
R2d

F (Az)
∑
l∈Z2d

|dl|χl+[0,1)2d(vk − z) dz.

(3.21)



3.2.3. The Feichtinger Algebra and the FIGA 119

Temporarily fix k, l ∈ Z2d. We have vk ∈ k + [0, 1]2d, so vk − z ∈ l + [0, 1)2d

implies that

z ∈ vk − l − [0, 1)2d ⊂ k + [0, 1]2d − l − [0, 1)2d ⊂ k − l + (−1, 1]2d.

This means that

χl+[0,1)2d(vk − z) ≤ χk−l+(−1,1]2d(z) for all z ∈ R2d.

Equation (3.21) thus implies that∑
k∈Z2d

|Vgf(Avk)| ≤ |A|
∑
k∈Z2d

∑
l∈Z2d

∫
R2d

F (Az)|dl|χk−l+(−1,1]2d(z) dz. (3.22)

Now, note that (−1, 1]2d is the disjoint union of 22d standard-lattice-translates
of (0, 1]2d, so that, for any l ∈ Z2d and z ∈ R2d:∑

k∈Z2d

χk−l+(−1,1]2d(z) =
∑
k∈Z2d

χk+(−1,1]2d(z) = 22d
∑
k∈Z2d

χk+(0,1]2d(z) = 22d.

Continuing where we left off and changing the order of summation (which we
may, as all terms are nonnegative), we now find that∑

k∈Z2d

|Vgf(Avk)| ≤ |A|
∑
l∈Z2d

|dl|
∫
R2d

F (Az)
∑
k∈Z2d

χk−l+(−1,1]2d(z) dz

= |A|
∑
l∈Z2d

|dl|
∫
R2d

F (Az)22d dz

= 22d∥F∥1
∑
l∈Z2d

|dl| <∞,

which is what we needed to show.

We are now finally ready to prove the fundamental identity of Gabor
analysis.

Proof of Theorem 3.2.17. Let f1, f2, g1, g2 ∈ S0(Rd) and let A ∈ GL(2d,R).
Our goal is to show that the pointwise product Vg1f1 · Vg2f2 satisfies the
conditions of Proposition 3.2.21 on the symplectic Poisson summation formula.

By Lemma 3.2.24, there exist (ck)k∈Z2d and (dl)l∈Z2d in ℓ1(Z2d) such that

|Vg1f1(Az)| ≤
∑
k∈Z2d

|ck|χk+[0,1)2d(z) and |Vg2f2(Az)| ≤
∑
l∈Z2d

|dl|χl+[0,1)2d(z)
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for all z ∈ R2d. This implies that

|Vg1f1 · Vg2f2|(Az) ≤
(( ∑

k∈Z2d

|ck|χk+[0,1)2d

)
·
( ∑
l∈Z2d

|dl|χl+[0,1)2d

))
(z)

=
∑
k∈Z2d

|ckdk|χk+[0,1)2d(z)

for all z ∈ R2d. Since ℓ1(Z2d) ⊂ ℓ2(Z2d), and since the pointwise product of
two ℓ2(Z2d)-sequences is in ℓ1(Z2d) by the Cauchy-Schwarz inequality, we can
conclude that (ckdk)k∈Z2d ∈ ℓ1(Z2d).

By Lemma 3.2.19, we know that

F s(Vg1f1 · Vg2f2) = Vg1g2 · Vf1f2,

pointwise. Applying Lemma 3.2.24 to Vg1g2 and Vf1f2, with A
◦ in place of A,

and arguing as we did in the previous paragraph, we find that there is some
(ak)k∈Z2d ∈ ℓ1(Z2d) such that

|Vg1g2 · Vf1f2|(A◦z) ≤
∑
k∈Z2d

|ak|χk+[0,1)2d(z) for all z ∈ R2d.

Thus,∑
k∈Z2d

|F s(Vg1f1 · Vg2f2)(A◦k)| =
∑
k∈Z2d

|Vg1g2 · Vf1f2|(A◦k) ≤
∑
k∈Z2d

|ak| <∞.

We have now shown that Vg1f1 · Vg2f2 satisfies all the requirements for the
symplectic Poisson summation formula (Proposition 3.2.21). Evaluating this
formula at z = 0 gives:∑

k∈Z2d

(
Vg1f1 · Vg2f2

)
(Ak) =

1

| detA|
∑
k∈Z2d

(
Vg1g2 · Vf1f2

)
(A◦k),

with absolute convergence of both sums. This is precisely the conclusion of
Theorem 3.2.17, i.e. the FIGA, so we are done.

As a corollary of the FIGA, we obtain the fact that all Gabor systems
with windows in S0(Rd) are Bessel sequences. This means that, as long as
we choose our windows from S0(Rd), we can consider analysis, synthesis
and mixed-frame type operators without worrying about whether they are
well-defined or bounded.

3.2.25 Corollary. If g ∈ S0(Rd), then G(g,Λ) is a Bessel sequence for any
lattice Λ ⊂ R2d.
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Proof. Let Λ = AZ2d for some A ∈ GL(2d,R). Suppose first that f ∈ S0(Rd).
Then, the FIGA implies that∑

k∈Z2d

|⟨f, π(Ak)g⟩|2 =
∑
k∈Z2d

Vgf(Ak)Vgf(Ak)

=
1

| detA|
∑
k∈Z2d

Vgg(A
◦k)Vff(A◦k)

and asserts that both sums converge absolutely. Since time-frequency shifts
are unitary, we find that∑

k∈Z2d

|Vgg(A◦k)Vff(A◦k)| =
∑
k∈Z2d

|Vgg(A◦k)⟨π(A◦k)f, f⟩|

≤ ∥f∥22
∑
k∈Z2d

|Vgg(A◦k)|.

Combining the last two displayed equations, we find that∑
k∈Z2d

|⟨f, π(Ak)g⟩|2 ≤ B∥f∥22 with B :=
1

| detA|
∑
k∈Z2d

|Vgg(A◦k)|

By Lemma 3.2.24, (Vgg(A
◦k))k∈Z2d ∈ ℓ1(Z2d), so B <∞.

Fix now any f ∈ L2(Rd) and choose a sequence (fn) ⊂ S0(Rd) such that
fn → f (Lemma 3.2.14). Define the functions

T : Z2d → R Tn : Z2d → R
k 7→ |⟨f, π(Ak)g⟩|2 k 7→ |⟨fn, π(Ak)g⟩|2

for n ∈ N. By continuity of the inner product, we see that Tn → T pointwise.
By Fatou’s lemma (with the counting measure on Z2d), we find that∑

k∈Z2d

|⟨f, π(Ak)g⟩|2 =
∑
k∈Z2d

lim
n→∞

|⟨fn, π(Ak)g⟩|2

≤ lim inf
n→∞

∑
k∈Z2d

|⟨fn, π(Ak)g⟩|2

≤ lim inf
n→∞

B∥fn∥22 = B∥f∥22.

This shows that G(g,Λ) is a Bessel sequence and concludes the proof.
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3.2.4 Duality and the Janssen Representation

Duality in Gabor theory refers to the fact that the properties of Gabor systems
over a lattice Λ are related to the properties of Gabor systems over its adjoint
lattice Λ◦. In particular, the duality theorem in Gabor analysis states that a
Gabor system G(g,Λ) is a frame if and only if G(g,Λ◦) is something called a
Riesz sequence. In many instances, the latter condition is easier to check than
the former. Moreover, this interplay between Λ and Λ◦ greatly constrains the
class of lattices over which there can exist Gabor frames. An example of this
is the previously mentioned fact that vol(Λ) ≤ 1 is required for the existence
of Gabor frames over Λ.

We will not have need for the duality theorem, so we have chosen not to
include it. Nevertheless, it lies at the heart of Gabor analysis, so it should be
mentioned. Indeed, a central message of the survey article [19] by Gröchenig
and Koppensteiner is that most (if not all) known characterizations of Gabor
frames for L2(Rd) are consequences of duality.

There is one important manifestation of duality that we will need:

3.2.26 Theorem (The Janssen representation). Let g, h ∈ S0(Rd) and let
A ∈ GL(2d,R). Then, the mixed-type frame operator SAg,h can be written as:

SAg,h =
1

| detA|
∑
k∈Z2d

⟨h, π(A◦k)g⟩π(A◦k),

where the sum converges absolutely in B(L2(Rd)).

Proof. Let f1, f2 ∈ S0(Rd). By definition of frame operators (and bounded-
ness, which is afforded by Corollary 3.2.25), we find that∑

k∈Z2d

Vgf1(Ak)Vhf2(Ak) =
∑
k∈Z2d

⟨f1, π(Ak)g⟩⟨π(Ak)h, f2⟩ = ⟨SAg,hf1, f2⟩

and that∑
k∈Z2d

Vgh(A
◦k)Vf1f2(A

◦k) =
∑
k∈Z2d

⟨h, π(A◦k)g⟩⟨π(A◦k)f1, f2⟩ = ⟨SA◦

g,f1
h, f2⟩.

The FIGA now implies that〈
SAg,hf1 −

1

| detA|
SA

◦

g,f1
h, f2

〉
= 0 for all f2 ∈ S0(Rd).

By density of S0(Rd) in L2(Rd) (Lemma 3.2.14), we can conclude that SAg,hf1 =

SA
◦

g,f1
h/| detA|. Thus, we have shown that

SΛ
g,hf1 =

1

| detA|
∑
k∈Z2d

⟨h, π(A◦k)g⟩π(A◦k)f1 for all f1 ∈ S0(Rd). (3.23)
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Now, we know that SΛ
g,h is a bounded operator on L2(Rd), and that

1

| detA|
∑
k∈Z2d

⟨h, π(A◦k)g⟩π(A◦k)

is as well, because (by Lemma 3.2.24)∑
k∈Z2d

∥⟨h, π(A◦k)g⟩π(A◦k)∥ ≤
∑
k∈Z2d

|Vgh(A◦k)| <∞.

Equation (3.23) shows that these two bounded operators agree on the dense
subspace S0(Rd), so they must be equal (Theorem B.1.2).





Chapter 4

Noncommutative Tori and
Hilbert C*-Modules

In this chapter, we introduce noncommutative tori and develop the basic theory
of Hilbert C*-modules. Noncommutative tori have an alternate description
in terms of twisted group C*-algebras, which we will find it more convenient
to work with. We will first construct twisted group C*-algebras in detail,
show how they relate to Gabor theory, and then show that they are in fact
noncommutative tori. These are the contents of the first two sections.

In the third section, we begin our development of Hilbert C*-modules.
We will conclude this chapter by constructing those Hilbert C*-modules over
noncommutative tori that appear in Gabor analysis. In the next chapter,
Chapter 5, we will upgrade these to equivalence bimodules. As outlined in
Subsection 3.2.2, one of our main goals is to construct isomorphism between
such bimodules, which we will achieve in Chapter 6.

4.1 | Twisted Group C*-Algebras and Time-

Frequency Shifts

The purpose of this section is to provide a detailed construction of twisted
group C*-algebras and to show how they relate to Gabor analysis. We will
obtain our twisted group C*-algebras as completions of purely algebraic
twisted group algebras, which we therefore introduce first. No constructions
or results in this section are original, but the exposition is not based on any
particular reference.

In order to make the connection to Gabor analysis as explicit as possi-
ble, we will only consider group C*-algebras over the group (Z2d,+). Our
constructions and results generalize immediately to arbitrary discrete groups

125
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(G, ·) by mere notational changes. With some additional work, they can also
be generalized to arbitrary locally compact (Hausdorff) groups by working
with Haar measures. We refer the interested reader to Raeburn and Williams
[24, Appendix C.3].

Before we get to work, we establish some notation and conventions. For
any Hilbert space H, we will write B(H) to denote the C*-algebra of bounded
operators on H. All Hilbert spaces are assumed to be nonzero and over the
complex numbers. We will write U(H) for the group of unitary elements in
B(H) and we will use T to denote the unit circle in C.

4.1.1 Twisted Group Algebras

Twisted group algebras are intimately related to projective unitary repre-
sentations, which is where our development begins. As a sneak peek at
their relevance to us, we reminder the reader of the fundamental identity
π(z + w) = e2πiη·xπ(z)π(w) from Lemma 3.1.1, which, after the introduction
of a lattice matrix A ∈ GL(2d,R), implies that

πA(k)πA(k
′) = e−2πiP2(k′)·P1(k)πA(k + k′) for all k, k′ ∈ Z2d,

where P1, P2 : R2d → Rd are projections (which will be defined properly in
Subsection 4.1.4).

A projective unitary representation of Z2d consists of a Hilbert space H
and a map ϕ : Z2d → U(H) such that

ϕ(k)ϕ(k′) = γ(k, k′)ϕ(k + k′) for some γ(k, k′) ∈ T (4.1)

for all k, k′ ∈ Z2d. It follows from this that ϕ(0) = γ(0, 0)IdH , for

ϕ(0) = ϕ(0 + 0) = γ(0, 0)ϕ(0)2,

from which composition with ϕ(0)−1 gives the result. Now, ϕ′ = γ(0, 0)ϕ
defines a projective unitary representation such that ϕ′(0) = IdH . Thus, there
is no real loss of generality in assuming that ϕ(0) = IdH , which we will do
from now on.

We now deduce two properties of the map γ : Z2d × Z2d → T associated
to a projective unitary representation of Z2d. Inserting either k = 0 or k′ = 0
into Equation (4.1), we see that γ(k, 0) = 1 = γ(0, k) for all k ∈ Z2d. The
relations (

ϕ(k1)ϕ(k2)
)
ϕ(k3) = γ(k1 + k2, k3)γ(k1, k2)ϕ

(
(k1 + k2) + k3

)
and ϕ(k1)

(
ϕ(k2)ϕ(k3)

)
= γ(k1, k2 + k3)γ(k2, k3)ϕ

(
k1 + (k2 + k3)

)
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imply that

γ(k1, k2)γ(k1 + k2, k3) = γ(k1, k2 + k3)γ(k2, k3) for all k1, k2, k3 ∈ Z2d.

We will eventually see that any map Z2d × Z2d → T satisfying these two
properties gives rise to a projective unitary representation of Z2d.

4.1.1 Definition (2-cocycles). A map γ : Z2d ×Z2d → T is called a 2-cocycle
on Z2d if

(i) γ(k, 0) = 1 = γ(0, k)

(ii) γ(k1, k2)γ(k1 + k2, k3) = γ(k1, k2 + k3)γ(k2, k3)

for all k, k1, k2, k3 ∈ Z2d.

In the example preceding the definition, the 2-cocycle γ : Z2d × Z2d → T
would be called the 2-cocycle associated to the representation ϕ : Z2d → U(H).
We may at times refer to certain 2-cocycles simply as cocycles.

In order to motivate the coming construction, there is one simple piece of
terminology we must introduce. Let H be a Hilbert space and consider the
C*-algebra B(H). We define the ⋆-algebra generated by a subset S ⊂ B(H) to
be the smallest ⋆-subalgebra of B(H) containing S. It may also be described
as the intersection of all ⋆-subalgebras of B(H) containing S (see Definition
2.2.12 for the analogous notion for C*-algebras).

Now, fix a 2-cocycle γ on Z2d and consider a projective unitary represen-
tation ϕ : Z2d → U(H) with associated 2-cocycle γ. Consider moreover the
⋆-algebra generated by ϕ(Z2d) in B(H). This ⋆-algebra will clearly depend
on the specifics of the representation ϕ : Z2d → U(H). Nevertheless, we may
ask what its “most general form” looks like (as ϕ varies).

The upcoming definition provides the answer to this question: the γ-
twisted group algebra C[Z2d, γ] is an abstract realization of the most general
⋆-algebra generated by the image of a projective unitary representation of Z2d

with 2-cocycle γ (we will unravel this connection in detail). It is a variant of
the ordinary group algebra from the representation theory of discrete groups,
obtained by accounting for the 2-cocycle γ as well as the involution on B(H).

By the symbol CZ2d
, we are referring to the set of all functions from Z2d

to C.

4.1.2 Definition (γ-twisted group algebras). Let γ be a 2-cocycle on Z2d.
The γ-twisted group algebra C[Z2d, γ] is the ⋆-algebra

C[Z2d, γ] =
{
a ∈ CZ2d

: |supp(a)| <∞
}
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with pointwise addition and scalar multiplication,1 product (a, b) 7→ a ∗γ b
given by (

a ∗γ b
)
(k) =

∑
l∈Z2d

a(l)b(k − l)γ(l, k − l)

and involution ⋆ : a 7→ a∗ given by a∗(k) = γ(k,−k)a(−k), for all k ∈ Z2d.

As the definition claims, C[Z2d, γ] is a ⋆-algebra. We will obtain this as a
simple corollary of the upcoming Lemma 4.1.3.

For any k ∈ Z2d, define the δ-function at k, δk : Z2d → C, by

δk(l) =

{
1 if l = k

0 otherwise.

Clearly, δk ∈ C[Z2d, γ]. Moreover, D := {δk : k ∈ Z2d} is a vector space
basis for C[Z2d, γ]. Indeed, the ordinary group algebra C[Z2d] = C[Z2d, 1] is
designed to be a vector space with a basis isomorphic to Z2d and a product
which is a bilinear extension of the group operation on Z2d. The twist
introduces an additional phase factor into the group operation: we have that

δk ∗γ δk′ = γ(k, k′)δk+k′ for all k, k′ ∈ Z2d. (4.2)

This follows from the simple calculation:

δk ∗γ δk′(l) =
∑
l′∈Z2d

δk(l
′)δk′(l − l′)γ(l′, l − l′)

= δk′(l − k)γ(k, l − k) = γ(k, k′)δk+k′(l).

If γ ≡ 1, so that C[Z2d, γ] = C[Z2d] is the ordinary group algebra, then
Equation (4.2) shows that (D, ∗1) ∼= (Z2d,+) as groups. In the general case,
D does not close under ∗γ, but we have the following result.

4.1.3 Lemma. With the notation of Definition 4.1.2 and the subsequent
discussion, the set

TD =
{
ξδk : ξ ∈ T and k ∈ Z2d

}
⊂ C[Z2d, γ]

is a group w.r.t. the product ∗γ in C[Z2d, γ], which is given by

(ξδk) ∗γ (ηδk′) = (ξη)δk ∗γ δk′ = ξηγ(k, k′)δk+k′ (4.3)

for all ξ, η ∈ T and k, k′ ∈ Z2d. The identity of TD is δ0 and the inverse
of ξδk is its adjoint (ξδk)

∗. In particular, all elements of TD are unitary in
C[Z2d, γ].

1As a vector space, this is identical to the ordinary group algebra C[Z2d]. Another
description is that it is the vector space of all finite “sequences” Z2d → C, typically denoted
by c00(Z2d).
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Proof. The definition of the product ∗γ in C[Z2d, γ] immediately implies that
it is bilinear. Thus, Equation (4.3) follows from Equation (4.2).

The 2-cocycle properties of γ are precisely the properties required for
Equation (4.3) to define an associative binary operation on TD with δ0 acting
as the identity; property (i) of Definition 4.1.2 is equivalent to δ0 acting as
the identity, while property (ii) is equivalent to associativity.

Fix any k ∈ Z2d. Using the definition of the involution on C[Z2d, γ], we
find that

δ∗k(l) = γ(l,−l)δk(−l) = γ(−k, k)δ−k(l) for all l ∈ Z2d,

so that δ∗k = γ(−k, k)δ−k. Thus, we see that

δ∗k ∗γ δk = γ(−k, k)δ−k ∗γ δk = γ(−k, k)γ(−k, k)δ−k+k = δ0.

Inserting k1 = k3 = k and k2 = −k in point (ii) of Definition 4.1.1 and using
point (i) of the same definition, one finds that γ(k,−k) = γ(−k, k). Using
this, a similar calculation to the one above show that δk ∗γ δ∗k = δ0. Thus, for
any ξ ∈ T, we find that

(ξδk)
−1 = ξδ−1

k = ξδ∗k = (ξδk)
∗.

We have now shown that TD has inverses, hence is a group, and moreover
that inverses are given by adjoints in C[Z2d, γ], so we are done.

4.1.4 Corollary. The γ-twisted group algebra C[Z2d, γ] is a ⋆-algebra.

Proof. It is immediate from its definition that ∗γ is bilinear. Expanding
a, b ∈ C[Z2d, γ] in terms of δ-functions, we therefore find that(∑

k

a(k)δk

)
∗γ
(∑

k′

b(k′)δk′

)
=
∑
k

∑
k′

a(k)b(k′)δk ∗γ δk′ .

Associativity now follows easily from the associativity of ∗γ restricted to TD.
Moreover, the fact that δ0 is an identity in TD implies that is serves as a unit
for C[Z2d, γ]. This shows that C[Z2d, γ] is an algebra.

Properties (i) and (ii) of an involution (Definition 2.1.10) are simple to
verify using the definition of the (claimed) involution on C[Z2d, γ], so we will
only show that (a ∗γ b)∗ = b∗ ∗γ a∗ follows. We know that

(δk ∗γ δk′)∗ = (δk ∗γ δk′)−1 = δ−1
k′ ∗γ δ−1

k = δ∗k′ ∗γ δ∗k for all k, k′ ∈ Z2d.
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Thus, expanding a and b in terms of δ-functions as above and using conjugate-
linearity of the involution, we find that

(a ∗γ b)∗ =
∑
k

∑
k′

a(k)b(k′)(δk ∗γ δk′)∗ =
∑
k

∑
k′

b(k′)a(k)δ∗k′ ∗γ δ∗k

=
(∑

k′

b(k′)δ∗k′
)
∗γ
(∑

k

a(k)δ∗k

)
= b∗ ∗γ a∗,

which concludes the proof.

Let ϕ : Z2d → U(H) be any projective unitary representation of Z2d with
associated 2-cocycle γ. If C[Z2d, γ] is meant to represent the most general
structure of the ⋆-algebra generated by ϕ(Z2d) in B(H), we should be able
to construct from ϕ a ⋆-algebra homomorphism C[Z2d, γ] → B(H). Before
proving that this is the case, we introduce some convenient terminology.

4.1.5 Definition (Representations). Let γ be a 2-cocycle on Z2d.

(i) A γ-twisted representation of Z2d is a map ϕ : Z2d → U(H), where H is
a Hilbert space, such that

ϕ(k)ϕ(k′) = γ(k, k′)ϕ(k + k′)

for all k, k′ ∈ Z2d.

(ii) A representation of the γ-twisted group algebra C[Z2d, γ] is a ⋆-algebra
homomorphism Φ: C[Z2d, γ] → B(H), where H is a Hilbert space.

Note that a γ-twisted representation is nothing but a projective unitary
representation with a notational emphasis on the associated 2-cocycle.

4.1.6 Theorem. Let γ be a 2-cocycle on Z2d. If ϕ : Z2d → U(H) is a γ-twisted
representation of Z2d, then there is a unique representation Φ: C[Z2d, γ] →
B(H) such that ϕ(k) = Φ(δk) for all k ∈ Z2d. Conversely, if Φ: C[Z2d, γ] →
B(H) is a representation of C[Z2d, γ], then

ϕ : Z2d → U(H)

k 7→ Φ(δk)

defines a γ-twisted representation of Z2d.
These constructions are mutual inverses of each other, so there is a bijective

correspondence between γ-twisted representations of Z2d and representations
of C[Z2d, γ].
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Proof. Let ϕ : Z2d → U(H) be a γ-twisted representation of Z2d. Since
C[Z2d, γ] is a vector space with basis D = {δk : k ∈ Z2d}, we can define a
unique linear map Φ: C[Z2d, γ] → B(H) by Φ(δk) = ϕ(k). Clearly, Φ(TD) ⊂
U(H). We also find that

Φ(δk ∗γ δk′) = Φ
(
γ(k, k′)δk+k′

)
= γ(k, k′)ϕ(k + k′)

= ϕ(k)ϕ(k′) = Φ(δk)Φ(δk′),

for all k, k′ ∈ Z2d, so the restriction (and corestriction) Φ|TD : TD → U(H)
is a group homomorphism. Since adjoints are given by inverses in both
TD and U(H), the map Φ|TD preserves the involution. Since the involution
and the product on C[Z2d, γ] are conjugate-linear and bilinear extensions
of their restrictions to D, it follows that the linear map Φ is a ⋆-algebra
homomorphism and hence a representation of C[Z2d, γ].

Assume now that Φ: C[Z2d, γ] → B(H) is an arbitrary representation of
C[Z2d, γ]. Since all elements of D are unitary and Φ is a ⋆-algebra homo-
morphism, it follows that Φ(D) ⊂ U(H). We can therefore define a map
ϕ : Z2d → U(H) by ϕ(k) = Φ(δk). Letting k, k

′ ∈ Z2d, the calculation

ϕ(k)ϕ(k′) = Φ(δk)Φ(δk′) = Φ(δk ∗γ δk′) = γ(k, k′)Φ(δk+k′)

= γ(k, k′)ϕ(k + k′)

shows that ϕ is a γ-twisted representation of Z2d.
The passage from a γ-twisted representation ϕ to the representation Φ is

achieved by a linear extension from the basis D, while the other direction is
achieved by restricting a linear map to D. These are clearly mutually inverse
operations.

We now define a canonical γ-twisted representation of Z2d for any 2-cocycle
γ. This proves the assertion preceding Definition 4.1.1 that any 2-cocycle
on Z2d gives rise to a projective unitary representation of Z2d, assuring us
that 2-cocycles are the correct characterization of the maps Z2d × Z2d → T
associated to projective unitary representations.

4.1.7 Definition (γ-twisted left regular representations). Let γ be a 2-cocycle
on Z2d. The γ-twisted left regular representation of Z2d is the map

Lγ : Z2d → U
(
ℓ2(Z2d)

)
k 7→ Lγ(k),

where Lγ(k) is defined by(
Lγ(k)f

)
(l) = γ(k, l − k)f(l − k)

for all f ∈ ℓ2(Z2d) and l ∈ Z2d.
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It is immediate that Lγ(k) ∈ U(ℓ2(Z2d)) for any k ∈ Z2d. We also find
that, for all l, k, k′ ∈ Z2d and f ∈ ℓ2(Z2d),(

Lγ(k)Lγ(k
′)f
)
(l) = γ(k, l − k)γ

(
k′, (l − k)− k′

)
f
(
(l − k)− k′

)
= γ(k, k′)γ

(
k + k′, l − (k + k′)

)
f
(
l − (k + k′)

)
= γ(k, k′)

(
Lγ(k + k′)f

)
(l)

(setting k1 = k, k2 = k′ and k3 = l − k − k′ in point (ii) of Definition 4.1.1
gives the transition to the second line). This shows that Lγ is a γ-twisted
representation of Z2d, as the name claims.

We conclude this subsection with a simple observation that we will need
in the next one.

4.1.8 Lemma. Let γ be a 2-cocycle on Z2d. Then, the representation
Lγ : C[Z2d, γ] → B(ℓ2(Z2d)) corresponding to the γ-twisted left regular repre-
sentation Lγ (see Theorem 4.1.6) is injective.

Proof. For any a ∈ C[Z2d, γ], write ak = a(k) for all k ∈ Z2d, so that
a =

∑
k∈Z2d akδk. Assume that∑

k∈Z2d

akLγ(k) = Lγ(a) = 0.

Applying the operator Lγ(a) to δ0 ∈ ℓ2(Z2d), we find that

0 =
∑
k∈Z2d

ak
(
Lγ(k)δ0

)
(l) =

∑
k∈Z2d

akγ(k, l − k)δk(l) =
∑
k∈Z2d

akδk(l) = al

for every l ∈ Z2d. Thus, Lγ(a) = 0 implies that a = 0, so Lγ is injective.

4.1.2 Twisted Group C*-Algebras

Fix a 2-cocycle γ on Z2d and let ϕ : Z2d → U(H) be any γ-twisted repre-
sentation of Z2d. In this subsection, we will investigate the structure of the
C*-algebra C∗(ϕ(Z2d)) ⊂ B(H) generated by ϕ(Z2d).

Using the fact that the closure of a ⋆-subalgebra of B(H) is a ⋆-subalgebra
(which follows by continuity of all operations), it is straightforward to check
that the C*-algebra generated by ϕ(Z2d) is the norm-closure of the ⋆-algebra
generated by ϕ(Z2d). Thus, we can abstract the most general structure of
C∗(ϕ(Z2d)) (as ϕ varies) by finding the largest possible C*-algebra in which
C[Z2d, γ] is dense.

With the goal of making this precise, we introduce not-necessarily-complete
versions of C*-algebras and consider their completions.
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4.1.9 Definition (Pre-C*-algebras). A pre-C*-algebra is a ⋆-algebra A
equipped with a submultiplicative norm that satisfies the C*-equality.

As we observed right after the definition of C*-algebras (Definition 2.2.1),
the C*-equality implies that the unit is normalized, so pre-C*-algebras satisfy
all the defining requirements of C*-algebras except completeness.

A C*-algebra completion of a pre-C*-algebra A is a C*-algebra A along
with an isometric ⋆-algebra homomorphism iA : A → A whose image is
dense. We may also refer to either A or the map iA by itself as the C*-algebra
completion of A. The following proposition shows that C*-algebra completions
exist and that they can be obtained from any Banach space completion of A.
Moreover, it shows that such completions are essentially unique.

4.1.10 Proposition (C*-algebra completions). Let A be a pre-C*-algebra
and let iA : A → A be a Banach space completion of A. Then, there is a
unique product and a unique involution on A such that iA : A→ A becomes a
⋆-algebra homomorphism and A becomes a C*-algebra. In other words: such
that iA : A→ A becomes a C*-algebra completion of A.

Moreover, if jA : A → A′ is any other C*-algebra completion of A, then
there exists a unique (isometric) ⋆-algebra isomorphism Φ: A → A′ such that
jA = Φ ◦ iA.

Proof. A thorough discussion of Banach space completions, C*-algebra com-
pletions and more can be found in Appendix B. For a proof of this result, see
Proposition B.2.10.

With this terminology under our belt, our goal is to construct the largest
possible (or universal) C*-algebra completion of C[Z2d, γ]. Thus, we need to
equip it with the largest possible norm that turns it into a pre-C*-algebra.

Let a ∈ C[Z2d, γ]. We define ∥a∥u (u for universal) to be the supremum
over all r ∈ R such that there exists a representation Φ: C[Z2d, γ] → B(H)
with ∥Φ(a)∥ = r.

4.1.11 Lemma (The universal norm). For any 2-cocycle γ on Z2d, the map

∥ · ∥u : C[Z2d, γ] → [0,∞)

a 7→ ∥a∥u

is a norm on C[Z2d, γ] that turns it into a pre-C*-algebra.

Proof. For any a ∈ C[Z2d, γ], let N(a) denote the set over which we are taking
the supremum. That is, r ∈ N(a) if and only if there exists a representation
Φ: C[Z2d, γ] → B(H) such that ∥Φ(a)∥ = r.
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The existence and the injectivity of the representation Lγ of Lemma 4.1.8
implies both that N(a) ̸= ∅ for any a ∈ C[Z2d, γ] and that ∥a∥u = supN(a) >
0 whenever a ̸= 0.

For any representation Φ: C[Z2d, γ] → B(H), we find that

∥Φ(a)∥ =
∥∥∥Φ( ∑

k∈Z2d

a(k)δk

)∥∥∥ ≤
∑
k∈Z2d

|a(k)|∥Φ(δk)∥ =
∑
k∈Z2d

|a(k)|,

since Φ(δk) ∈ U(H) and unitaries are normalized. This shows that N(a) is
bounded (these sums are finite, so supN(a) ≤

∑
k∈Z2d |a(k)| <∞). We have

now proved well-definition and nondegeneracy.
Fix any a, b ∈ C[Z2d, γ]. If r ∈ N(a + b), then there is a representation

Φ: C[Z2d, γ] → B(H) such that

r = ∥Φ(a+ b)∥ ≤ ∥Φ(a)∥+ ∥Φ(b)∥ ≤ ∥a∥u + ∥b∥u.

This implies that ∥a + b∥u = supN(a + b) ≤ ∥a∥u + ∥b∥u, so the triangle
inequality holds. A similar arguments shows that ∥ · ∥u is submultiplicative.

For any representation Φ: C[Z2d, γ] → B(H), we have that

∥Φ(a∗a)∥ = ∥Φ(a)∗Φ(a)∥ = ∥Φ(a)∥2.

Thus, for any r ≥ 0 we have r ∈ N(a) if and only if r2 ∈ N(a∗a). This gives:

∥a∗a∥u = supN(a∗a) = (supN(a))2 = ∥a∥2u,

i.e. the C*-equality. Fixing λ ∈ C, a similar argument shows that N(λa) =
|λ|N(a), which gives homogeneity.

We have now shown that ∥ · ∥u is a well-defined submultiplicative norm
satisfying the C*-equality, so we are done.

We are now ready to define the γ-twisted group C*-algebra C∗(Z2d, γ).
To reiterate, this is an abstract realization of the most general C*-algebra
generated by the images of γ-twisted representation of Z2d.

4.1.12 Definition (γ-twisted group C*-algebras). Let γ be a 2-cocycle on
Z2d. The γ-twisted group C*-algebra C∗(Z2d, γ) is the C*-algebra completion
of the pre-C*-algebra (C[Z2d, γ], ∥ · ∥u).

As is customary, we will often identify C[Z2d, γ] with its (isometric) image
in C∗(Z2d, γ).

We now upgrade Theorem 4.1.6 (on the correspondence of representations)
from C[Z2d, γ] to C∗(Z2d, γ). As in Subsection 2.2.5, and in line with Definition
4.1.5, a representation of C∗(Z2d, γ) is simply a ⋆-algebra homomorphism
Φ: C∗(Z2d, γ) → B(H), where H is a Hilbert space.
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4.1.13 Theorem. Let γ be a 2-cocycle on Z2d. If ϕ : Z2d → U(H) is γ-twisted
representation of Z2d, then there is a unique representation Φ: C∗(Z2d, γ) →
B(H) such that ϕ(k) = Φ(δk) for all k ∈ Z2d. Conversely, if Φ: C∗(Z2d, γ) →
B(H) is a representation of C∗(Z2d, γ), then

ϕ : Z2d → U(H)

k 7→ Φ(δk)

defines a γ-twisted representation of Z2d.
These constructions are mutual inverses of each other, so there is a bijective

correspondence between γ-twisted representations of Z2d and representations
of C∗(Z2d, γ).

Proof. With Theorem 4.1.6 in mind, we will establish a bijective correspon-
dence between representation of C[Z2d, γ] and of C∗(Z2d, γ). Any repre-
sentation Φ: C∗(Z2d, γ) → B(H) will clearly restrict to a representation
Φ|C[Z2d,γ] : C[Z2d, γ] → B(H), so one direction of this correspondence is trivial.

For the other direction, suppose that Φ: C[Z2d, γ] → B(H) is an arbitrary
representation of C[Z2d, γ]. By definition of the universal norm ∥ · ∥u, we have
that

∥Φ(a)∥ ≤ ∥a∥u for all a ∈ C[Z2d, γ].

Thus, Φ: C[Z2d, γ] → B(H) is bounded. By Proposition B.1.2, Φ has a unique
bounded linear extensions Φ: C∗(Z2d, γ) → B(H). By Proposition B.2.7, Φ
is also a ⋆-algebra homomorphism. Thus, Φ is a representation of C∗(Z2d, γ).

Now, Φ is only unique as a bounded linear extensions of Φ. However,
any ⋆-algebra homomorphism from C∗(Z2d, γ) to B(H) must be bounded by
Proposition 2.2.6. Thus, Φ is the only ⋆-algebra homomorphism C∗(Z2d, γ) →
B(H) that restricts to Φ.

Restrictions and unique linear bounded extensions are clearly mutual
inverses, so this establishes the claimed bijective correspondence between
representations of C[Z2d, γ] and of C∗(Z2d, γ). The fact that the resulting
correspondence between representations of C∗(Z2d, γ) and γ-twisted repre-
sentations of Z2d takes the claimed form follows immediately from Theorem
4.1.6 and the fact that we are working with extensions and restrictions.

We close this subsection with a useful lemma regarding isomorphisms
between twisted group algebras.

4.1.14 Lemma. Let γ1 and γ2 be two 2-cocycles on Z2d and suppose that
Φ: C[Z2d, γ1] → C[Z2d, γ2] is a ⋆-algebra isomorphism. Then, with respect to
the universal norms on C[Z2d, γ1] and C[Z2d, γ2], Φ is isometric. This means
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that Φ extends to an (isometric) ⋆-algebra isomorphism Φ: C∗(Z2d, γ1) →
C∗(Z2d, γ2).

Proof. Suppose that Φ′ : C[Z2d, γ2] → B(H) is a representation of C[Z2d, γ2].
Then, Φ′ ◦ Φ: C[Z2d, γ1] → B(H) is a representation of C[Z2d, γ1], which
means that

∥Φ′(Φ(a))∥ = ∥Φ′ ◦ Φ(a)∥ ≤ ∥a∥u for all a ∈ C[Z2d, γ1],

by definition of the universal norm on C[Z2d, γ1]. Since Φ′ was arbitrary, this
implies that

∥Φ(a)∥u ≤ ∥a∥u for all a ∈ C[Z2d, γ1],

this time by definition of the universal norm on C[Z2d, γ2]. This shows that
Φ is norm-decreasing. Since we can apply the same argument to Φ−1, Φ must
be isometric: ∥a∥u = ∥Φ−1Φ(a)∥u ≤ ∥Φ(a)∥u ≤ ∥a∥u for all a ∈ C[Z2d, γ1].

By Theorem B.1.2 and point (iv) of Proposition B.1.4, Φ extends to a
bounded linear bijection Φ: C∗(Z2d, γ1) → C∗(Z2d, γ2). By Proposition B.2.7,
Φ is a ⋆-algebra homomorphism and hence a ⋆-algebra isomorphism between
C*-algebras. We can use the isometry of Φ to conclude that Φ is an isometry,
but we can also just refer to Proposition 2.2.6, which means that we are
done.

4.1.3 Twisted Convolution Algebras

Let γ be a 2-cocycle on Z2d. In this short subsection, we will introduce
an algebra that lies between C[Z2d, γ] and C∗(Z2d, γ). It will a completion
of C[Z2d, γ] (w.r.t. another norm than ∥ · ∥u) that maps continuously into
C∗(Z2d, γ), but it will not be a C*-algebra; it will be a Banach ⋆-algebra.
This algebra will be central to our construction of Hilbert C*-modules for
Gabor theory.

Consider the ℓ1-norm on C[Z2d, γ]:

∥a∥1 =
∑
k∈Z2d

|a(k)| for a ∈ C[Z2d, γ].

If we take the Banach space completion of C[Z2d, γ] with respect to this norm,
we clearly obtain a vector space isomorphic to ℓ1(Z2d). It turns out that the
product and involution on C[Z2d, γ] also extend to this completion and yields
a Banach ⋆-algebra.
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4.1.15 Definition (pre-Banach ⋆-algebras). A pre-Banach ⋆-algebra is an
algebra B equipped with a submultiplicative norm that normalizes the unit
and an involution that is isometric.

A Banach ⋆-algebra completion of a pre-Banach ⋆-algebra B is a Banach ⋆-
algebra B along with an isometric ⋆-algebra homomorphism iB : B → B whose
image is dense. The following proposition does for pre-Banach ⋆-algebras
exactly what Proposition 4.1.10 did for pre-C*-algebras.

4.1.16 Proposition (Banach ⋆-algebra completions). Let B be a pre-Banach
⋆-algebra and let iB : B → B be a Banach space completion of B. Then,
there is a unique product and a unique involution on B such that iB : B → B
becomes a ⋆-algebra homomorphism and B becomes a Banach ⋆-algebra. In
other words: such that iB : B → B becomes a Banach ⋆-algebra completion of
B.

Moreover, if jB : B → B′ is any other Banach ⋆-algebra completion of B,
then there exists a unique isometric ⋆-algebra isomorphism Φ: B → B′ such
that jB = Φ ◦ iB.

Proof. See Proposition B.2.6 and Corollary B.2.8.

4.1.17 Lemma. For any 2-cocycle γ on Z2d, the γ-twisted group algebra
C[Z2d, γ] equipped with the ℓ1-norm is a pre-Banach ⋆-algebra.

Proof. Let a, b ∈ C[Z2d, γ]. By definition of the product in C[Z2d, γ], we find
that

∥a ∗γ b∥1 =
∑
k∈Z2d

∣∣∣∑
l∈Z2d

a(l)b(k − l)γ(l, k − l)
∣∣∣

≤
∑
k∈Z2d

∑
l∈Z2d

|a(l)b(k − l)|

=
∑
l∈Z2d

|a(l)|
∑
k∈Z2d

|b(k − l)| = ∥a∥1∥b∥1,

so ∥ · ∥1 is submultiplicative. The unit in C[Z2d, γ] is δ0, which is clearly
normalized. Similarly, it is immediate from its definition that the involution
is an isometry:

∥a∗∥1 =
∑
k∈Z2d

|γ(k,−k)a(−k)| =
∑
k∈Z2d

|a(k)| = ∥a∥1.
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4.1.18 Definition (γ-twisted convolution algebras). Let γ be a 2-cocycle
on Z2d. The γ-twisted convolution algebra ℓ1(Z2d, γ) is the Banach ⋆-algebra
completion of the pre-Banach ⋆-algebra (C[Z2d, γ], ∥ · ∥1).

Since ℓ1(Z2d, γ) ∼= ℓ1(Z2d) as Banach spaces, all elements of ℓ1(Z2d, γ)
can be thought of as functions Z2d → C. This makes ℓ1(Z2d, γ) much more
manageable than the C*-algebra C∗(Z2d, γ). In particular, this means that
we can write explicit expressions for products and involutions in ℓ1(Z2d, γ).
Indeed, in terms of components, they are exactly the same as in C[Z2d, γ].

4.1.19 Lemma. For any 2-cocycle γ on Z2d, there is a norm-decreasing
⋆-algebra homomorphism ℓ1(Z2d, γ) → C∗(Z2d, γ) whose restriction (and
corestriction) to C[Z2d, γ] is the identity.

Proof. In the proof of Lemma 4.1.11, we showed that for any representation
Φ: C[Z2d, γ] → B(H), we have that

∥Φ(a)∥ ≤
∑
k∈Z2d

|a(k)| = ∥a∥1 for all a ∈ C[Z2d, γ].

Thus, by definition of the universal norm: ∥a∥u ≤ ∥a∥1 for all a ∈ C[Z2d, γ].
Consider now the identity map Id: C[Z2d, γ] → C[Z2d, γ]. If we equip

its domain with the ℓ1-norm and its target with the universal norm, then it
becomes a bounded linear map between normed spaces (because ∥Id(a)∥u =
∥a∥u ≤ ∥a∥1). Thus, by Theorem B.1.2, it has a unique bounded linear
extension Id: ℓ1(Z2d, γ) → C∗(Z2d, γ) that is also norm-decreasing. By Pro-
posoition B.2.7, this extension is a ⋆-algebra homomorphism. By construction,
the restriction to C[Z2d, γ] is the identity.

In those cases of relevance to Gabor theory (i.e. for specific choices of
γ, which we are about to introduce), we will see that the map afforded by
this lemma is injective. Thus, this inclusion of ℓ1(Z2d, γ) into C∗(Z2d, γ)
affords us with a dense subset of C∗(Z2d, γ) that is very convenient for explicit
calculations and constructions.

4.1.4 Connection to Time-Frequency Shifts

In this subsection, we will explore in detail how 2-cocycles, twisted repre-
sentations of Z2d and twisted group C*-algebras occur in the context of
time-frequency analysis and Gabor analysis.

Consider the canonical projections

P1 : R2d → Rd

(x, ω) 7→ x
and

P2 : R2d → Rd

(x, ω) 7→ ω.
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Recall from Lemma 3.1.1 that

π(z)π(w) = e−2πiη·xπ(z + w) for z = (x, ω), w = (y, η) ∈ R2d. (4.4)

Thinking of R2d as Rd× (Rd)∗, there is a natural bilinear form on R2d, namely(
(x, ω), (y, η)

)
= (z, w) 7→ P2(w) · P1(z) = η · x,

and this is precisely the structure that determines the phase factor occurring
in Equation (4.4). We will refer to the map

β : R2d × R2d → T
(z, w) 7→ β(z, w) = e−2πiP2(w)·P1(z)

as the Heisenberg cocycle on R2d. We define 2-cocycles on R2d precisely as
for Z2d (Definition 4.1.1); it is not difficult to verify that β is a 2-cocycle on
R2d. Indeed, the imaginary exponential of any bilinear map R2d × R2d → R
is easily seen to be a 2-cocycle on R2d.

We can now write Equation (4.4) as follows:

π(z)π(w) = β(z, w)π(z + w) for z, w ∈ R2d. (4.5)

Letting ΩJ denote the standard symplectic form on R2d, as defined by Equation
(1.4), we moreover find that

e2πiΩJ (z,w) = β(z, w)β(w, z) for z, w ∈ R2d, (4.6)

since −P2(w) ·P1(z) +P2(z) ·P1(w) = −η · x+ω · y = ΩJ(z, w) for z = (x, ω)
and w = (y, η).

We now establish how these quantities appear under the lattice-induced
changes of basis described in Subsection 3.2.2 (where we traded the variation
of lattices for the variation of symplectic forms).

4.1.20 Definition (Heisenberg and symplectic 2-cocycles). LetA ∈ GL(2d,R),
set θ = ATJA and let Ωθ denote the symplectic form represented by θ, i.e.
Ωθ(z, w) = wT θz. The Heisenberg cocycle βA determined by A is the 2-cocycle

βA : R2d × R2d → T
(z, w) 7→ βA(z, w) := β(Az,Aw) = e−2πiP2(Aw)·P1(Az).

We also introduce the 2-cocycle

ρA : R2d × R2d → T
(z, w) 7→ ρA(z, w) := e2πiΩθ(z,w),

which we will refer to as the symplectic 2-cocycle determined by A. We will
not distinguish βA and ρA from their restrictions to Z2d × Z2d, which are
2-cocycles on Z2d.
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4.1.21 Lemma. With the notation of the last definition, we have that

πA(z)πA(w) = βA(z, w)πA(z + w) (4.7)

and that

ρA(z, w) = e2πiΩθ(z,w) = βA(z, w)βA(w, z) (4.8)

for all z, w ∈ R2d.

Proof. Since βA(z, w) = β(Az,Aw) and Ωθ(z, w) = ΩJ(Az,Aw), equations
(4.7) and (4.8) follow immediately from equations (4.5) and (4.6).

The following result is immediate, but it is the reason for introducing all of
the machinery of this chapter, so we elevate its status to that of a proposition.

4.1.22 Proposition. For any A ∈ GL(2d,R), the map

πA : Z2d → U
(
L2(Rd)

)
k 7→ πA(k)

is a βA-twisted representation of Z2d.

Proof. Equation (4.7).

Recall that C∗(πA(Z2d)) denotes the C*-subalgebra of B(L2(Rd)) generated
by πA(Z2d).

4.1.23 Corollary. For any A ∈ GL(2d,R), there is a ⋆-algebra homomor-
phism

ΠA : C
∗(Z2d, βA) → B

(
L2(Rd)

)
δk 7→ ΠA(δk) = πA(k).

Moreover, ΠA(C
∗(Z2d, βA)) = C∗(πA(Z2d)).

Proof. By Theorem 4.1.13, the βA-twisted representation of Z2d described in
Proposition 4.1.22 implies the existence of the ⋆-algebra homomorphism ΠA.

By continuity of ΠA (Proposition 2.2.6), we have that

ΠA

(
C∗(Z2d, βA)

)
= ΠA

(
C[Z2d, βA]

∥·∥u
)
⊂ ΠA

(
C[Z2d, βA]

)
⊂ C∗(πA(Z2d)

)
,

where the last inclusions follows from the fact that ΠA(C[Z2d, βA]) is included
in the ⋆-algebra generated by πA(Z2d) (as is straightforward to verify). By
the first isomorphism theorem for C*-algebras (Theorem 2.2.33), the image
of ΠA, which clearly contains πA(Z2d), is a C*-algebra. Thus, C∗(πA(Z2d)) ⊂
ΠA(C

∗(Z2d, βA)), which concludes the proof.
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We now wish to show that ΠA is injective, from which Corollary 4.1.23
(along with the first isomorphism theorem for C*-algebras) implies that
C∗(Z2d, βA) ∼= C∗(πA(Z2d)) as C*-algebras. This is a deep result, which we
will not be able to prove in full. We will reproduce an argument by Rieffel
[27], which in turn relies on a result by Green [16]. For this, we will need the
maps introduced in the following lemma.

4.1.24 Lemma. Let A ∈ GL(2d,R) and let z ∈ R2d. Then, the map
ΦρA(−,z) : C[Z2d, βA] → C[Z2d, βA] defined by(

ΦρA(−,z)a
)
(k) = ρA(k, z)a(k) for all a ∈ C[Z2d, βA] and k ∈ Z2d

is an isometric ⋆-algebra isomorphism (w.r.t. the universal norm).

Proof. Every statement in this proof should be quantified over all a ∈
C[Z2d, βA] and k ∈ Z2d (z ∈ R2d is fixed).

Since (
ΦρA(−,z)δ0

)
(k) = ρA(k, z)δ0(k) = ρA(0, z)δ0(k) = δ0(k),

the map ΦρA(−,z) preserves the unit. Bilinearity of the symplectic form Ωθ

(with θ = ATJA) implies that ρA(−k, z) = ρA(k, z), so that(
ΦρA(−,z)a

)∗
(k) = βA(k,−k)

(
ΦρA(−,z)a

)
(−k)

= βA(k,−k)ρA(−k, z)a(−k)
= ρA(k, z)βA(k,−k)a(−k)
= ρA(k, z)a

∗(k) =
(
ΦρA(−,z)a

∗)(k),
which shows that ΦρA(−,z) preserves the involution. Bilinearity of Ωθ also
implies that

ρA(l, z)ρA(k − l, z) = ρA(l, z)ρA(k, z)ρA(−l, z) = ρA(k, z)

for any l ∈ Z2d. With this in mind, it is simple to verify that ΦρA(−,z) preserves
the product. Thus, ΦρA(−,z) is a ⋆-algebra homomorphism. Bijectivity follows
from the fact that (ΦρA(−,z))

−1 = ΦρA(−,−z), as is easy to verify. Finally,
ΦρA(−,z) is isometric by Lemma 4.1.14.

The crux of our proof that ΠA is injective will be provided by the following
lemma. This is the result of Green referenced by Rieffel.
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4.1.25 Lemma. Let A ∈ GL(2d,R). For each z ∈ R2d, let

ΦρA(−,z) : C
∗(Z2d, βA) → C∗(Z2d, βA)

be the unique bounded extension of the ⋆-algebra isomorphism from Lemma
4.1.24. Suppose that I ⊂ C∗(Z2d, βA) is a closed ideal such that

ΦρA(−,z)(I) ⊂ I for every z ∈ R2d.

Then, I is trivial: I = {0} or I = C∗(Z2d, βA).

Proof. See Rieffel [27, Proposition 2.1 on p. 265] for context and Green [16,
Proposition 34 on p. 239] for the proof. One must also be familiar with
the basic representation theory of C*-algebras in order to understand how
Rieffel’s conclusion follows from Green’s result.

Now for the promised result.

4.1.26 Proposition. For any A ∈ GL(2d,R), the ⋆-algebra homomorphism
ΠA of Corollary 4.1.23 is injective. Thus, C∗(Z2d, βA) ∼= C∗(πA(Z2d)) as
C*-algebras, with ΠA as the isomorphism.

Proof. This proof is based on Rieffel [27, Proposition 2.2 on p. 265]. Let
z ∈ R2d be arbitrary. We will show that ΦρA(−,z)(KerΠA) ⊂ KerΠA, from
which Lemma 4.1.25 implies that KerΠA = {0} and hence gives the result.

By the basic commutation relation, we have that

πA(k)πA(z) = ρA(k, z)πA(z)πA(k) for all k ∈ Z2d.

For any a =
∑

k∈Z2d a(k)δk ∈ C[Z2d, βA], we now find that

πA(z)
∗ΠA(a)πA(z) = πA(z)

∗
∑
k∈Z2d

a(k)πA(k)πA(z)

=
∑
k∈Z2d

ρA(k, z)a(k)πA(k) = ΠA

(
ΦρA(−,z)a

)
.

By continuity of ΠA and ΦρA(−,w), along with density of C[Z2d, βA], we can
conclude that

πA(z)
∗ΠA(a)πA(z) = ΠA

(
ΦρA(−,z)a

)
for all a ∈ C∗(Z2d, βA).

This implies that ΦρA(−,z)(KerΠA) ⊂ KerΠA, which is what we needed to
show.
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Next up, we prove the result that allows us to think of ℓ1(Z2d, βA) as a
⋆-subalgebra of C∗(Z2d, βA). It is clearly dense, as C[Z2d, βA] ⊂ ℓ1(Z2d, βA).
Thus, if we equip ℓ1(Z2d, βA) with the universal norm (defined in the same man-
ner as on C[Z2d, βA], or simply restricted from C∗(Z2d, βA)), then ℓ

1(Z2d, βA)
becomes a pre-C*-algebra whose C*-algebra completion is C∗(Z2d, βA). This
is pretty much the only norm we will consider on ℓ1(Z2d, βA) going forward.

4.1.27 Corollary. For any A ∈ GL(2d,R), the ⋆-algebra homomorphism
ℓ1(Z2d, βA) → C∗(Z2d, βA) of Lemma 4.1.19 is injective.

If we follow it with ΠA : C
∗(Z2d, βA) → B(L2(Rd)), we obtain the map

ℓ1(Z2d, βA) → B(L2(Rd))

a 7→
∑
k∈Z2d

a(k)πA(k),

where the sums (clearly) converge absolutely. Having identified ℓ1(Z2d, βA)
with the image of its inclusion into C∗(Z2d, βA), we will denote this map by
ΠA as well.

Proof. Let’s denote the ⋆-algebra homomorphism ℓ1(Z2d, βA) → C∗(Z2d, βA)
in question by Φ. By Proposition 4.1.26, Φ is injective if and only if the
composition ΠA ◦ Φ: ℓ1(Z2d, βA) → B(L2(Rd)) is injective; we will show that
the composition is injective.

We know that Φ|C[Z2d,βA] is the identity (Lemma 4.1.19). Thus, by conti-
nuity of Φ and ΠA, we find that

ΠA ◦ Φ(a) =
∑
k∈Z2d

a(k)ΠA(δk) =
∑
k∈Z2d

a(k)πA(k) for all a ∈ ℓ1(Z2d, βA),

where the sums converge absolutely. We need to show that

ΠA ◦ Φ(a) =
∑
k∈Z2d

a(k)πA(k) = 0 =⇒ a(k) = 0 for all k ∈ Z2d.

Our proof of this fact is based on Gröchenig [18, Proposition 2.3 on p. 5].
Fix f, g ∈ L2(Rd) and let a ∈ ℓ1(Z2d, βA) be such that ΠA ◦ Φ(a) = 0.

Then,

0 =
∑
k∈Z2d

a(k)
〈
πA(k)πA◦(z)f, πA◦(z)g

〉
for all z ∈ R2d.

By the basic commutation relation and the fact that time-frequency shifts
are unitary, we find that

πA◦(z)∗πA(k)πA◦(z) = e−2πiΩJ (A
◦z,Ak)πA(k) for all k ∈ Z2d
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(note that z ∈ R2d; commutativity of πA(k) and πA◦(z) only follows if z ∈ Z2d).
Now, A◦ = −JA−T , so ΩJ(A

◦z, Ak) = (Ak)TJ(−JA−T z) = kT · z. Com-
bining this with the last two displayed equations gives:

0 =
∑
k∈Z2d

a(k)⟨πA(k)f, g⟩e−2πikT ·z for all z ∈ R2d.

Now, |⟨πA(k)f, g⟩| ≤ ∥f∥2∥g∥2 for all k ∈ Z2d and
∑

k∈Z2d |a(k)| <∞, so the
sum above is an absolutely convergent Fourier series on [0, 1]2d. Thus, since
it vanishes, we must have that

a(k)⟨πA(k)f, g⟩ = 0 for all k ∈ Z2d.

Finally, f, g ∈ L2(Rd) were arbitrary, so this means that a(k) = 0 for all
k ∈ Z2d (one may e.g. take g = πA(k

′)f for k′ ∈ Z2d), which is what we
wanted to show.

4.2 | Noncommutative Tori

Noncommutative tori are defined as C*-algebras that are universal with
respect to a set of relations. We will only concern ourself with what it
means for a noncommutative torus to be universal; we refer to Blackadar
[6, Section II.8.3] for a discussion of universality of C*-algebras in a broader
context.

The noncommutative torus is a foundational example in the theory of
C*-algebras and operator algebras in general, and much is known about
its structure. Indeed, the central constructions of our text, the equivalence
bimodules which are Hilbert C*-modules over noncommutative tori, were
investigated by Rieffel [27] long before they were discovered to be of relevance
to Gabor theory by Luef [21, 22]. Thus, it is a fruitful endeavour to understand
the connection between time-frequency shifts and noncommutative tori in
detail. The main takeaway of this section will be that our βA-twisted group
C*-algebras C∗(βA,Z2d) are noncommutative tori.

4.2.1 Twisted Group C*-Algebras as Noncommutative
Tori

Recall that T2d denotes the set of antisymmetric matrices inM2d(R) (Definition
1.1.3), and that a subset S of a C*-algebra A is said to generate the smallest
C*-subalgebra of A containing S (Definition 2.2.12).
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4.2.1 Definition (Noncommutative tori). Let θ ∈ T2d. The noncommutative
torus Aθ is a C*-algebra that is generated by unitaries U1, . . . , U2d satisfying
the NCT-relations

UjUi = e2πiθijUiUj for 1 ≤ i, j ≤ 2d, (4.9)

which moreover has the following universal property: if A is any C*-algebra
generated by unitaries V1, . . . , V2d satisfying the NCT-relations, then there
exists a ⋆-algebra homomorphism Φ: Aθ → A such that Φ(Uj) = Vj for
1 ≤ j ≤ 2d.

Assuming the existence of Aθ (which we will prove), it is unique up to
⋆-algebra isomorphisms: if Aθ and A′

θ both satisfy the universal property
of the definition, we are guaranteed ⋆-algebra homomorphisms Φ: Aθ → A′

θ

and Φ′ : A′
θ → Aθ that are mutual inverses because of how they map the

generators (along with continuity of ⋆-algebra homomorphism between C*-
algebras: Proposition 2.2.6). Moreover, to motivate the term universal,
note that if A is any C*-algebra generated by unitaries satisfying the NCT-
relations and if Φ: Aθ → A is the ⋆-algebra homomorphism guaranteed by
the universality of Aθ, we have that

A ∼= Aθ/KerΦ as C*-algebras

by the first isomorphism theorem for C*-algebras (Theorem 2.2.33). Thus,
all such C*-algebras are quotients of Aθ.

The aim of this subsection is to prove the following theorem. This is a
well-known and commonly quoted result, but the author was unable to find
an explicit proof. Thus, the given proof, though certainly not original, is the
result of the author’s struggle to connect the dots.

Recall that {ej}2dj=1 denotes the standard basis for (R2d and) Z2d.

4.2.2 Theorem. Let θ ∈ T2d and let B : Z2d × Z2d → R be any biadditive
(i.e. Z-bilinear) map such that the 2-cocycle γ := e2πiB satisfies

e2πil
T θk = γ(k, l)γ(l, k) for all k, l ∈ Z2d.

Then, C∗(Z2d, γ) is the noncommutative torus Aθ with δe1 , . . . , δe2d as the
unitary generators satisfying the NCT-relations.

We will prove Theorem 4.2.2 through a series of lemmas. Given unitaries
V1, . . . , V2d satisfying the NCT-relations, in any C*-algebra A, the idea is to
construct a γ-twisted representation ϕ of Z2d such that ϕ(ej) = Vj, and then
use Theorem 4.1.13 to extend this to a ⋆-algebra homomorphism C∗(Z2d, γ) →
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A such that δej 7→ Vj. By the Gelfand-Naimark theorem (Theorem 2.2.42)
this is a valid application of Theorem 4.1.13, for we can take A ⊂ B(H)
for some Hilbert space H. This will prove that C∗(Z2d, γ) has the desired
universal property. However, figuring out how to define ϕ will take a bit of
work.

We will have need for products of the form V k := V k1
1 V k2

2 · · ·V k2d
2d for

k = (k1, . . . , k2d) ∈ Z2d. We begin by seeing how the product V kV l relates to
V k+l (for k, l ∈ Z2d).

4.2.3 Lemma. Let θ ∈ T2d and let V1, . . . , V2d be unitaries (in any C*-algebra)
satisfying the NCT-relations (4.9). Define

V k := V k1
1 V k2

2 · · ·V k2d
2d for k = (k1, . . . , k2d) ∈ Z2d.

Then,

V kV l = exp

(
2πi

2d−1∑
i=1

2d∑
j=i+1

liθijkj

)
V k+l

for all k = (k1, . . . , k2d), l = (l1, . . . , l2d) ∈ Z2d.

Proof. Note the relations

V −1
j V −1

i = (ViVj)
−1 = (e2πiθjiVjVi)

−1 = e2πiθijV −1
i V −1

j ,

and V −1
j Vi = V −1

j (ViVj)V
−1
j = V −1

j (e2πiθjiVjVi)V
−1
j = e−2πiθijViV

−1
j .

For n ∈ Z\{0}, write sn = sgn(n). These relations then show that

V sn
j V sm

i = V sm
i V sn

j e2πiθijsnsm for any n,m ∈ Z\{0}, (4.10)

which gives:

V n
j V

m
i =

(
V sn
j

)|n|(
V sm
i

)|m|

= V sm
i

(
V sn
j

)|n|(
V sm
i

)|m|−1
e2πiθijsmsn|n|

...

= V m
i V

n
j e

2πiθijsmsn|n||m|,

since sn|n| = n and likewise for m. We can now observe that

V n
j V

m
i = V m

i V
n
j e

2πiθijnm for all n,m ∈ Z,
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because the cases n = 0 or m = 0 are easily seen to hold. Thus, with
k, l ∈ Z2d, we find that

V kV l = V k1
1 · · ·V k2d

2d V l1
1 · · ·V l2d

2d

= exp

(
2πi

2d∑
j=2

l1θ1jkj

)
V k1+l1
1 V k2

2 · · ·V k2d
2d V l2

2 · · ·V l2d
2d

...

= exp

(
2πi

2d−1∑
i=1

2d∑
j=i+1

liθijkj

)
V k1+l1
1 · · ·V k2d+l2d

2d ,

which is what we wanted to show.

Let ϕ denote the γ-twisted representation we wish to construct. We need
to define ϕ(k) for any k ∈ Z2d. We know that the extension of ϕ to the
representation Φ: C[Z2d, γ] → C∗(V1, . . . , V2d) (Theorem 4.1.6) will satisfy
ϕ(k) = Φ(δk). We also know that we want ϕ(ej) = Φ(δej) = Vj. Since Φ is a
⋆-algebra homomorphism, this means that

Φ
(
δk1e1 ∗γ . . . ∗γ δk2de2d

)
= V k.

Thus, we can figure out how to define ϕ(k) in terms of V k by writing δk in
terms of δk1e1 ∗γ . . . ∗γ δ

k2d
e2d

. This is the content of the following lemma. We will
not need really need this lemma in our proof, but it provides the motivation
for everything that follows, so we include it. It will be convenient to represent
the biadditive map B (defining the 2-cocycle γ = e2πiB) by a matrix.

4.2.4 Lemma. Let B = (Bij) ∈ M2d(R) and define the 2-cocycle γ(k, l) :=

e2πil
TBk. Then, for any k = (k1, . . . , k2d) ∈ Z2d, we have that

δk = exp

(
−2πi

2d−1∑
i=1

2d∑
j=i+1

ki(B
T )ijkj − πi

2d∑
i=1

kiBii(ki − 1)

)
δk1e1 ∗γ · · · ∗γ δk2de2d

in C[Z2d, γ] (where δkiei = δei ∗γ · · · ∗γ δei denotes the kith power of δei in
C[Z2d, γ]).
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Proof. We calculate (using Equation 4.2):

δk = δk1e1+
∑2d

j=2 kjej

= δk1e1 ∗γ δ∑2d
j=2 kjej

γ

(
k1e1,

2d∑
j=2

kjej

)
...

= δk1e1 ∗γ · · · ∗γ δk2de2d
2d−1∏
i=1

γ

(
kiei,

2d∑
j=i+1

kjej

)

= exp

(
− 2πi

2d−1∑
i=1

2d∑
j=i+1

kjBjiki

)
δk1e1 ∗γ · · · ∗γ δk2de2d .

(4.11)

Let now 1 ≤ i ≤ 2d and n ∈ Z. Assume first that n ≥ 2. Then,

δnei = δei+(n−1)ei

= δei ∗γ δ(n−1)eiγ
(
ei, (n− 1)ei

)
...

= (δei)
n

n−1∏
j=1

γ
(
ei, (n− j)ei

)
= exp

(
− 2πi

n−1∑
j=1

(n− j)Bii

)
(δei)

n

= exp

(
− πiBiin(n− 1)

)
(δei)

n,

where the last equality follows from the fact that

2
n−1∑
j=1

(n− j)Bii = 2Bii

n−1∑
j′=1

j′ = Biin(n− 1).

Suppose now that n ≤ 2. Then, since (δ−nei)
∗ = γ(nei,−nei)δnei (almost by

definition of the involution, see the proof of Lemma 4.1.3 for details) and
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−n ≥ 2, our previous result implies that

δnei = γ(nei,−nei)
(
δ−nei

)∗
= exp

(
2πi(−n)Biin

)
exp

(
− πiBii(−n)

(
− n− 1

))(
(δei)

−n)∗
= exp

(
πiBii

(
− 2n2 + n2 + n

))(
(δei)

−n)−1
.

= exp
(
− πiBiin

(
n− 1

))
(δei)

n.

Since the cases |n| ≤ 1 are readily verified by insertion (along with the fact
that (δei)

−1 = (δei)
∗ = γ(−ei, ei)δ−ei), we find that

δnei = exp
(
− πiBiin(n− 1)

)
δnei for all n ∈ Z.

Combining this with Equation (4.11) gives the result.

We now know how to obtain our γ-twisted representations. The following
lemma proves that everything works out as hoped.

4.2.5 Lemma. Let θ ∈ T2d and let B : Z2d × Z2d → R be any biadditive map
such that the 2-cocycle γ := e2πiB satisfies

e2πil
T θk = γ(k, l)γ(l, k) for all k, l ∈ Z2d. (4.12)

Suppose moreover that H is a Hilbert space and that V1, . . . , V2d are unitaries
in B(H) satisfying the NCT-relations (4.9). Then, if we set

Bij := B(ej, ei) for 1 ≤ i, j ≤ 2d, (4.13)

the map

ϕ : Z2d → U(H)

k 7→ exp

(
− 2πi

2d−1∑
i=1

2d∑
j=i+1

ki(B
T )ijkj − πi

2d∑
i=1

kiBii

(
ki − 1

))
V k,

defines a γ-twisted representation of Z2d.

Proof. First of all, Equation (4.12) implies that, for all k, l ∈ Z2d,

e2πil
T (B−BT )k = e2πil

TBke−2πikTBl = γ(k, l)γ(l, k) = e2πil
T θk,

where we have identified the bilinear form B with the matrix representing it.
Thus, we find that

(B −BT )ij ≡ θij (mod 1) for 1 ≤ i, j ≤ 2d. (4.14)



150 Noncommutative Tori and Hilbert C*-Modules

Fix now k, l ∈ Z2d. We wish to show that

ϕ(k)ϕ(l) = γ(k, l)ϕ(k + l) = e2πil
TBkϕ(k + l), (4.15)

for then ϕ is a γ-twisted representation of Z2d.
By definition of ϕ, we have that ϕ(k + l) = e−πiaV k+l, where

a := 2
2d−1∑
i=1

2d∑
j=i+1

(ki + li)B
T
ij(kj + lj) +

2d∑
i=1

(ki + li)Bii

(
ki + li − 1

)
,

and similarly that ϕ(k)ϕ(l) = e−πibV kV l, where

b := 2
2d−1∑
i=1

2d∑
j=i+1

(
kiB

T
ijkj + liB

T
ijlj
)
+

2d∑
i=1

(
kiBii(ki − 1) + liBii(li − 1)

)
.

Appealing to Lemma 4.2.3, we now find that

ϕ(k)ϕ(l) = e−πibV kV l

= e−πib exp

(
2πi

2d−1∑
i=1

2d∑
j=i+1

liθijkj

)
V k+l

= eπi(a−b) exp

(
2πi

2d−1∑
i=1

2d∑
j=i+1

liθijkj

)
ϕ(k + l).

Equation (4.15) therefore follows if we can show that

a− b ≡ 2lTBk − 2
2d−1∑
i=1

2d∑
j=i+1

liθijkj (mod 2). (4.16)
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We take a deep breath and calculate:

a− b = 2
2d−1∑
i=1

2d∑
j=i+1

(
kiB

T
ijlj + liB

T
ijkj

)
+ 2

2d∑
i=1

kiBiili

= 2

(2d−1∑
i=1

2d∑
j=i+1

kiB
T
ijlj +

2d∑
i=1

kiBiili

)
+ 2

2d−1∑
i=1

2d∑
j=i+1

liB
T
ijkj

= 2
2d∑
i=1

2d∑
j=i

kiB
T
ijlj + 2

2d−1∑
i=1

2d∑
j=i+1

liB
T
ijkj

= 2

( 2d∑
i=1

2d∑
j=1

kiB
T
ijlj −

2d∑
i=2

i−1∑
j=1

kiB
T
ijlj

)
+ 2

2d−1∑
i=1

2d∑
j=i+1

liB
T
ijkj

= 2kTBT l − 2

( 2d∑
i=2

i−1∑
j=1

kiB
T
ijlj −

2d−1∑
i=1

2d∑
j=i+1

liB
T
ijkj

)

= 2lTBk − 2
2d−1∑
i=1

2d∑
j=i+1

li(B −BT )ijkj,

where we used the fact that
∑2d

i=2

∑i−1
j=1 =

∑2d−1
j=1

∑2d
i=j+1 (and then relabelled)

in the last step. Finally, Equation (4.14) now implies Equation (4.16) and
hence Equation (4.15), which concludes the proof.

We are now ready to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. We begin by showing that C∗(Z2d, γ) is generated
by the unitaries δe1 , . . . , δe2d and that theses satisfy the NCT-relations (4.9).

Clearly δe1 , . . . , δe2d generate C∗(Z2d, γ) as a C*-algebra, for they form
a vector space basis for C[Z2d, γ], the closure of which is C∗(Z2d, γ). By
Equation (4.2), we see that

δk ∗γ δl = γ(k, l)δk+l = γ(k, l)γ(l, k)δl ∗γ δk for k, l ∈ Z2d.

Thus, we find that

δej ∗γ δei = γ(ej, ei)γ(ei, ej)δei ∗γ δej for 1 ≤ i, j ≤ 2d.

Since we are assuming that

γ(ej, ei)γ(ei, ej) = e2πi(ei)
T θej = e2πiθij ,

this shows that δe1 , . . . , δe2d satisfy the NCT-relations.
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Suppose now that A is a C*-algebra generated by unitaries V1, . . . , V2d
satisfying the NCT-relations. We can appeal to the Gelfand-Naimark theorem
(Theorem 2.2.42) and take A to be a C*-subalgebra of B(H), for some Hilbert
space H. In other words, we can suppose that A = C∗({V1, . . . , V2d}) ⊂ B(H).

By Lemma 4.2.5, we obtain a γ-twisted representation ϕ : Z2d → U(H)
such that

ϕ(ej) = exp
(
− πiBjj(1− 1)

)
Vj = Vj for 1 ≤ j ≤ 2d.

By Theorem 4.1.13, this implies the existence of a ⋆-algebra homomorphism
Φ: C∗(Z2d, γ) → B(H) such that Φ(δej) = Vj for 1 ≤ j ≤ 2d.

Now, we need Φ to corestrict to Φ|A : C∗(Z2d, γ) → A in order to conclude
that C∗(Z2d, γ) has the universal property characterizing Aθ. This is afforded
by continuity of Φ, for:

Φ
(
C∗(Z2d, γ)

)
= Φ

(
C[Z2d, γ]

)
⊂ Φ

(
C[Z2d, γ]

)
⊂ C∗(ϕ(Z2d)

)
= A,

where the fact that Φ(C[Z2d, γ]) is included in the ⋆-algebra generated by
ϕ(Z2d) gives the last inclusion. In fact, since ϕ(Z2d) ⊂ Φ(C[Z2d, γ]), the first
isomorphism theorem for C*-algebras implies that the image of Φ must be all
of A (this is the same exact argument that we gave in the proof of Corollary
4.1.23, just in a more general setting).

We have now shown that C∗(Z2d, γ) satisfies the requirements of Def-
inition 4.2.1, with unitary generators δ1, . . . , δ2d. Thus, C∗(Z2d, γ) is the
noncommutative torus and we have proved Theorem 4.2.2.

Finally, we summarize the equivalences that tie together all of our work
in this chapter up until now. This will be the main takeaway from the work
we have done.

4.2.6 Corollary. If A ∈ GL(2d,R) and θ = ATJA, then

Aθ
∼= C∗(Z2d, βA) ∼= C∗(πA(Z2d)

)
as C*-algebras,

where the identifications are determined by

Uj 7→ δej 7→ πA(ej) for 1 ≤ j ≤ 2d.

Proof. The second identification is provided by Proposition 4.1.26. Since

βA(k, l)βA(l, k) = e2πiΩθ(k,l) = e2πil
T θk for all k, l ∈ Z2d

by Equation (4.8), the first identification is afforded by Theorem 4.2.2 with
γ = βA. Finally, we note that ⋆-algebra homomorphisms between C*-algebras
are uniquely determined by where they map a generating set for their domain,
because of continuity (Proposition 2.2.6).
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4.3 | Hilbert C*-Modules and the Feichtinger

Algebra

In this section, we introduce Hilbert C*-modules. Theses are quite direct
generalizations of Hilbert spaces, where the complex number field is replaced
by a general C*-algebra. To a large extent, the first two subsections are
based on the excellent exposition of Raeburn and Williams [24]. In the third
subsection, we will follow Luef [21, 22] and construct Hilbert C*-modules
from the Feichtinger algebra.

As in Chapter 2, we are assuming that all algebras and algebra homomor-
phisms are unital. In particular, all C*-algebras are assumed to be unital.
For a complex vector space E, we will write EndC(E) for the vector space of
all linear maps E → E. We also wish to alert the reader to a slight notational
conflict: the letter A is used both for arbitrary pre-C*-algebras and for lattice
matrices. This ultimately leads to the notation A⟨·, ·⟩ having two distinct
meanings. These two topics are confined to separate subsections, so the
context will hopefully make matters clear.

4.3.1 Inner Product Modules and Hilbert C*-Modules

As the name suggests, we will require completeness of Hilbert C*-modules.
We must first introduce their not-necessarily-complete counterparts: inner
product modules. For the notion of a pre-C*-algebra, see Definition 4.1.9.

4.3.1 Definition (Inner product A-modules). Let A be a pre-C*-algebra. A
left inner product A-module is a (nonzero) complex vector space E equipped
with the following structure.

� An algebra homomorphism Φ: A→ EndC(E), referred to as an action
of A on E. We will write a · f := Φ(a)f for all a ∈ A and f ∈ E.

� A map ⟨·, ·⟩ : E × E → A, referred to as an A-valued inner product.

Moreover, we require the following conditions to hold for all λ ∈ C, a ∈ A
and f, g, h ∈ E:

(i) ⟨λf + g, h⟩ = λ⟨f, h⟩+ ⟨g, h⟩ (C-linearity in the first entry)

(ii) ⟨a · f, g⟩ = a⟨f, g⟩ (A-linearity in the first entry)

(iii) ⟨f, g⟩∗ = ⟨g, f⟩ (conjugate symmetry)

(iv) ⟨f, f⟩ ≥ 0 in the C*-algebra completion of A (positivity)
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(v) ⟨f, f⟩ = 0 =⇒ f = 0 (nondegeneracy)

If E is a left inner product A-module, conjugate symmetry and A-linearity
combine to yield:

⟨f, a · g⟩ = ⟨a · g, f⟩∗ = (a⟨g, f⟩)∗ = ⟨f, g⟩a∗

for all f, g ∈ E and a ∈ A. Similarly, we obtain (complex) conjugate-linearity
in the second entry.

A right inner product A-module (for a pre-C*-algebra A) is defined analo-
gously, but with the following modifications:

� The algebra homomorphism is replaced by Φ: Aop → EndC(E), where
Aop is the opposite algebra of A,2 and we write Φ(a)f = f · a. We still
refer to this as an action of A (as opposed to Aop).

� Condition (i) is replaced by C-linearity in the second entry.

� Condition (ii) is replaced by ⟨f, g · a⟩ = ⟨f, g⟩a, which we refer to as
A-linearity in the second entry.

The following is a simple but important observation, which is straightfor-
ward to verify. Suppose that A is a pre-C*-algebra and that E is a left inner
product A-module, whose action and inner product we will denote by

ΦA : A→ EndC(E) and A⟨·, ·⟩ : E × E → A.

If A′ is another pre-C*-algebra and Φ: A′ → A is an isometric ⋆-algebra
isomorphism (so that it extends to an isomorphism of their C*-algebra
completions), then we can turn E into a left inner product A′-module by
defining

ΦA′ := ΦA ◦ Φ: A′ → EndC(E)

and A′⟨·, ·⟩ := Φ−1
(
A⟨·, ·⟩

)
: E × E → A′.

We will have need for this construction later.
We now provide some basic examples. These are clear illustrations of the

manner in which inner product modules generalize inner product spaces by
replacing C with a pre-C*-algebra A.

2We will define opposite algebras properly when the need arises to consider right inner
product modules in detail.
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4.3.2 Example (Inner product modules).

� With the convention that inner products are linear in the first entry,
every inner product space over C is a left inner product C-module. With
linearity in the second entry, we obtain right inner product C-modules.

� Let A be a pre-C*-algebra and let n ≥ 1 be an integer. Then, An =
A× · · · × A as a vector space with pointwise operations becomes a left
inner product A-module when equipped with the following action and
inner product:

a · (aj)nj=1 = (aaj)
n
j=1 and

〈
(aj)

n
j=1, (bj)

n
j=1

〉
=

n∑
j=1

ajb
∗
j ,

where a, aj, bj ∈ A for 1 ≤ j ≤ n. If we exchange aaj for aja and ajb
∗
j

for a∗jbj, we obtain a right inner product A-module.

Assume now that E is a left inner product A-module. We wish to use
the A-valued inner product to define a norm on E. To do so, we need the
following lemma. It may be thought of as a generalization of the Cauchy-
Schwarz inequality (to which it reduces if A = C).

4.3.3 Lemma (The Cauchy-Schwarz inequality). Let A be a pre-C*-algebra
with C*-algebra completion A and let E be a left inner product A-module.
Then,

⟨g, f⟩⟨f, g⟩ ≤ ∥⟨f, f⟩∥⟨g, g⟩

holds in A for all f, g ∈ E.

Proof. Fix f, g ∈ E and let a ∈ A be arbitrary. We find that

0 ≤ ⟨a · f − g, a · f − g⟩ = a⟨f, f⟩a∗ − a⟨f, g⟩ − ⟨g, f⟩a∗ + ⟨g, g⟩.

By (i) and (ii) of Proposition 2.2.26: a⟨f, f⟩a∗ ≤ a(∥⟨f, f⟩∥1A)a∗. Thus,

0 ≤ a∥⟨f, f⟩∥a∗ − a⟨f, g⟩ − ⟨g, f⟩a∗ + ⟨g, g⟩.

The lemma clearly holds for f = 0, so we assume that f ̸= 0. If we now set
a = ⟨g, f⟩/∥⟨f, f⟩∥, we find that

0 ≤ − 1

∥⟨f, f⟩∥
⟨g, f⟩⟨f, g⟩+ ⟨g, g⟩,

from which the result follows (the required manipulations are all justified by
Proposition 2.2.25).
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Whenever we refer to a norm on an inner product module, it will be
the norm afforded by the following proposition. Note that the “ordinary”
Cauchy-Schwarz inequality follows from its generalization.

4.3.4 Proposition. Let A be a pre-C*-algebra and let E be a left inner
product A-module. Then, the map ∥ · ∥ : E → [0,∞) defined by

∥f∥ := ∥⟨f, f⟩∥1/2 for all f ∈ E

is a norm on E. Moreover, ∥⟨f, g⟩∥ ≤ ∥f∥∥g∥ for all f, g ∈ E.

Proof. Let f, g ∈ E and let λ ∈ C. By nondegeneracy of the A-valued inner
product and of the norm on A, we have that

f ̸= 0 =⇒ ⟨f, f⟩ ≠ 0 =⇒ ∥⟨f, f⟩∥ ≠ 0.

This gives nondegeneracy of the claimed norm. Homogeneity similarly follows
from homogeneity of the norm on A and the fact that ⟨λf, λf⟩ = |λ|2⟨f, f⟩.

Before showing the triangle inequality, we show that ∥⟨f, g⟩∥ ≤ ∥f∥∥g∥.
Combining the Cauchy-Schwarz inequality of Lemma 4.3.3 with point (ii) of
Proposition 2.2.26 we find that

∥⟨f, g⟩∥2 = ∥⟨g, f⟩⟨f, g⟩∥ ≤ ∥⟨f, f⟩∥∥⟨g, g⟩∥ = ∥f∥2∥g∥2,

which proves the claim. Finally, the triangle inequality in A and the isometry
of the involution now implies that

∥f + g∥2 = ∥⟨f, f⟩+ ⟨f, g⟩+ ⟨g, f⟩+ ⟨g, g⟩∥

≤ ∥f∥2 + 2∥⟨f, g⟩∥+ ∥g∥2 ≤
(
∥f∥+ ∥g∥

)2
,

which verifies the triangle inequality and completes the proof.

4.3.5 Corollary (Continuity of the inner product). Let A be a pre-C*-
algebra and let E be a left inner product A-module. Then, the inner product is
continuous: if f, g ∈ E and (fn), (gn) ⊂ E are such that fn → f and gn → g,
then ⟨fn, gn⟩ → ⟨f, g⟩ in A.

Proof. Using Proposition 4.3.4, we have that

∥⟨fn, gn⟩ − ⟨f, g⟩∥ ≤ ∥⟨fn, gn − g⟩∥+ ∥⟨fn − f, g⟩∥
≤ ∥fn∥∥gn − g∥+ ∥fn − f∥∥g∥

from which continuity of the norm (∥fn∥ → ∥f∥) gives the result.
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4.3.6 Lemma. Let A be a pre-C*-algebra and let E be a left inner product
A-module. Then, ∥a · f∥ ≤ ∥a∥∥f∥ for all a ∈ A and f ∈ E.

Proof. We find that

∥a · f∥2 = ∥⟨a · f, a · f⟩∥ = ∥a⟨f, f⟩a∗∥ ≤ ∥a∥∥⟨f, f⟩∥∥a∗∥,

from which ∥a∗∥ = ∥a∥ gives the result.

This means that the action Φ: A→ EndC(E) associated to a left inner-
product A-module E corestricts to Φ: A → B(E) when we equip E with
the norm determined by the A-valued inner product. In fact, we see that Φ
becomes norm-decreasing.

We are now ready to define Hilbert C*-modules.

4.3.7 Definition (Hilbert C*-modules). Let A be a C*-algebra. A left Hilbert
A-module is a left inner product A-module that is complete with respect to
the norm defined in Proposition 4.3.4. We will refer to such modules as left
Hilbert C*-modules when we wish to leave the C*-algebra unspecified.

Right Hilbert A-modules and right Hilbert C*-modules are defined anal-
ogously. Note that Hilbert C*-modules require completeness of both the
pre-C*-algebra and the inner product module.

Given a pre-C*-algebra A and two left inner product A-modules E and
F , a map T : E → F is said to be A-linear if

T (a · f) = a · Tf for all a ∈ A and f ∈ E,

and it is said to preserve the inner product if

⟨Tf, Tg⟩ = ⟨f, g⟩ for all f, g ∈ E.

If T is A-linear, then it is also C-linear, for the fact that the action is an
algebra homomorphism implies that

T (λf) = T
(
(λIdE)f

)
= T

(
(λ1A) · f

)
= (λ1A) · Tf = λTf

for all λ ∈ C and f ∈ E.
We now turn to completions. If A is a pre-C*-algebra with C*-algebra

completion A and E is a left inner product A-module, a (left) Hilbert C*-
module completion of E consists of a left Hilbert A-module E and an A-linear
map jE : E → E that preserves the inner product and has a dense image. For
this to be the case, jE must in particular be a Banach space completion of E
(for preservation of the inner product makes jE an isometry). We may also
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refer to either E or the map jE by itself as the Hilbert C*-module completion
of E.

The following proposition shows that Hilbert C*-module completions exist
and that they may be constructed from any Banach space completion of E.

4.3.8 Proposition (Hilbert C*-module completions). Let A be a pre-C*-
algebra with C*-algebra completion iA : A→ A. Suppose that E is a left inner
product A-module with action ΦA : A → B(E) and A-valued inner product

A⟨·, ·⟩. Suppose moreover that jE : E → E is a Banach space completion of E
(w.r.t. the norm determined by A⟨·, ·⟩).

Then, there exists a unique action ΦA : A → B(E) and a unique A-valued
inner product A⟨·, ·⟩ : E × E → A such that jE becomes an A-linear map
preserving the inner product and E becomes a left Hilbert A-module. In other
words: such that jE becomes a Hilbert C*-module completion of E. Moreover,
the Banach space completion norm on E equals the norm determined by A⟨·, ·⟩.

Proof. This result and its proof can be found in Appendix B.3. In particular,
see Proposition B.3.1.

We will consider uniqueness of such completions once the appropriate
notion of isomorphism has been introduced.

4.3.2 Morphisms of Hilbert C*-Modules

In the theory of ordinary Hilbert spaces, any bounded linear map between
Hilbert spaces has an adjoint. This is a foundational feature of the theory.
Indeed, our development of C*-algebras has illustrated how powerful the
structure of the adjoint really is, even in the absence of inner products. It
turns our that a bounded linear map between two Hilbert A-modules (for
some C*-algebra A) need not have an adjoint, even if we require A-linearity.

We will bypass this complication simply by restricting our attention to
those maps which do have adjoints. We will christen such maps “adjointable”.
The most general maps between Hilbert C*-modules we will consider will be
bounded A-linear adjointable maps. It turns out, however, that all we need
to require is the presence of an adjoint, for this implies both boundedness
and A-linearity.

For any two sets E and F , we write FE to denote the set of all functions
from E to F . If E and F are normed spaces, then B(E,F ) denotes the
normed algebra of all bounded C-linear maps from E to F .

4.3.9 Definition. Let A be a C*-algebra and let E and F be two left Hilbert
A-modules. We say that a function T ∈ FE is adjointable if there exits a
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function S ∈ EF such that

⟨Tf, g⟩ = ⟨f, Sg⟩ for all f ∈ E and g ∈ F.

In this case, we call S the adjoint of T (we will show uniqueness soon).

As promised:

4.3.10 Lemma. Let A be a C*-algebra and let E and F be two left Hilbert
A-modules. If T ∈ FE is adjointable, then T is both A-linear and bounded. In
particular, since A-linearity implies C-linearity, we have that T ∈ B(E,F ).

Proof. Suppose T ∈ FE is adjointable, with adjoint S. We begin by showing
that T is A-linear: for any a ∈ A and f, g ∈ E, we find that

⟨T (a · f), g⟩ = ⟨a · f, Sg⟩ = a⟨f, Sg⟩ = a⟨Tf, g⟩ = ⟨a · Tf, g⟩,

which implies (set g = T (a · f)− a · Tf) that〈
T (a · f)− a · Tf, T (a · f)− a · Tf

〉
= 0.

Nondegeneracy of the inner product now gives A-linearity. For the statement
that A-linearity implies C-linearity, see the discussion following Definition
4.3.7.

It remains to show that T is bounded. We will show that if a sequence
(fn) ⊂ E converges to some f ∈ E and the sequence (Tfn) ⊂ F converges to
some g ∈ F , then Tf = g. By the closed graph theorem (Theorem A.2.6),
this implies that T is bounded.

If fn → f ∈ E and Tfn → g ∈ F , then, by continuity of the A-valued
inner products, we find that

⟨g, h⟩ = lim
n→∞

⟨Tfn, h⟩ = lim
n→∞

⟨fn, Sh⟩ = ⟨f, Sh⟩ = ⟨Tf, h⟩

for all h ∈ F . As before, nondegeneracy of the inner product now implies
that g = Tf , which concludes the proof.

4.3.11 Definition (Adjointable operators). Let A be a C*-algebra and let
E and F be two left Hilbert A-modules. We write L(E,F ) for the set of all
adjointable maps from E to F . By Lemma 4.3.10, L(E,F ) ⊂ B(E,F ) and
L(E,F ) consists entirely of A-linear maps. We also write L(E) := L(E,E).

Whenever we speak of a norm on L(E,F ), we will mean the operator
norm restricted from B(E,F ) (where the norms on E and F are defined via
their A-valued inner products).
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In order to speak of the adjoint of an operator T ∈ L(E,F ), we should
verify that it is unique. If T has two adjoints, say S1, S2 ∈ EF , then we find
that ⟨f, (S1 − S2)g⟩ = ⟨(T − T )f, g⟩ = 0 for all f ∈ E and g ∈ F , from which
nondegeneracy of the inner product gives S1 = S2. Going forward, we will
denote the adjoint of T by T ∗.

It is simple to verify that

(T ∗)∗ = T, (λT1 + T2)
∗ = λT ∗

1 + T ∗
2 and (ST )∗ = T ∗S∗,

for any T, T1, T2 ∈ L(E,F ), λ ∈ C and S ∈ L(F,G), for any left Hilbert
A-module G. Indeed, the proofs are exactly the same as for ordinary Hilbert
spaces and adjoints. These simple identities imply that L(E,F ) is a vector-
subspace of B(E,F ) and that L(E) is ⋆-algebra.

4.3.12 Proposition. Let A be a C*-algebra and let E and F be two left
Hilbert A-modules. Then, the following statements are true.

(i) ∥T∥ = ∥T ∗∥ and ∥T∥2 = ∥T ∗T∥ for all T ∈ L(E,F ).

(ii) L(E,F ) is a closed vector-subspace of B(E,F ).

(iii) L(E) is a C*-algebra with the involution given by the adjoint.

Proof. Noting that ∥⟨f, g⟩∥ ≤ ∥f∥∥g∥ for all f, g ∈ E (Proposition 4.3.4), the
proof of (i) is pretty much identical to the argument given in the beginning
of Section 2.2, where we proved that T ∈ B(H) satisfies these identities for
any Hilbert space H.

As for (ii), we have already remarked that L(E,F ) is a vector-subspace
of B(E,F ). To see that it is closed, suppose that T ∈ B(E,F ) is the
limit of a sequence (Tn) ⊂ L(E,F ). In particular, (Tn) is then Cauchy, so
(T ∗

n) ⊂ L(F,E) is as well, by (i). Thus, (Tn)
∗ converges in B(F,E). By

continuity of our inner products, we find that

⟨Tf, g⟩ = ⟨ lim
n→∞

Tnf, g⟩ = lim
n→∞

⟨Tnf, g⟩ = lim
n→∞

⟨f, T ∗
ng⟩ = ⟨f, lim

n→∞
T ∗
ng⟩,

for all f ∈ E and g ∈ F . Thus, T is adjointable with T ∗ = limn→∞ T ∗
n . This

proves that L(E,F ) is closed.
The proof of (iii) is now simple: we have already remarked that L(E) is

a ⋆-algebra with the involution given by the adjoint, (ii) shows that L(E)
is closed (in the Banach algebra B(E)) and (i) shows that the C*-equality
holds.

Similarly to how we obtained a generalized Cauchy-Schwarz inequality
in the form of an inequality in A, we now obtain a generalized boundedness
condition for adjointable operators.
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4.3.13 Corollary. Let A be a C*-algebra and let E be a left Hilbert A-module.
Then, we have that

⟨Tf, Tf⟩ ≤ ∥T∥2⟨f, f⟩ for all T ∈ L(E) and f ∈ E.

Proof. Since T ∗T is a self-adjoint element in the C*-algebra L(E), point (ii)
of Proposition 2.2.26 implies that

∥T∥2IdE − T ∗T = ∥T ∗T∥IdE − T ∗T ≥ 0 in L(E).

Since positive elements have positive square roots (Proposition 2.2.21), there
exists some S∗ = S ∈ L(E) such that ∥T∥2IdE − T ∗T = S∗S. Now,

0 ≤ ⟨Sf, Sf⟩ = ⟨S∗Sf, f⟩ = ∥T∥2⟨f, f⟩ − ⟨T ∗Tf, f⟩
= ∥T∥2⟨f, f⟩ − ⟨Tf, Tf⟩

gives the result.

We now introduce a particularly simple kind of map between Hilbert
C*-modules (we will quickly shows that they are adjointable).

4.3.14 Definition (Rank-one operators). Let A be a C*-algebra and let E
and F be two left Hilbert A-modules. For each f ∈ E and g ∈ F , we define
the map Kf,g : E → F by

Kf,g(h) = ⟨h, f⟩ · g for all h ∈ E.

Operators of this form are referred to as rank-one operators.

The terminology of rank-one operators is borrowed from the theory of
Hilbert spaces. However, rank-one operators need not have one-dimensional
ranges over C. Instead, they have “one-dimensional ranges over A”, in the
sense that Kf,g(E) ⊂ A · g. In the special case where A = C and Hilbert
A-modules are ordinary Hilbert spaces, the terminology coincides. We will
always use this term in the sense of Definition 4.3.14.

We now show that rank-one operators are adjointable, and hence bounded
and A-linear as well.

4.3.15 Lemma. Let A be a C*-algebra and let E and F be two left Hilbert
A-modules. Then, all rank-one operators from E to F are adjointable. In
fact, we have that (Kf,g)

∗ = Kg,f for all f ∈ E and g ∈ F .
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Proof. Let h ∈ E and k ∈ F be arbitrary. Using only the basic properties of
our inner products, we find that〈

Kf,g(h), k
〉
=
〈
⟨h, f⟩ · g, k

〉
= ⟨h, f⟩⟨g, k⟩ =

〈
h, ⟨g, k⟩∗ · f

〉
=
〈
h, ⟨k, g⟩ · f

〉
=
〈
h,Kg,f (k)

〉
,

which gives the result.

We now consider the subspace of L(E,F ) consisting of limits of linear
combinations of rank-one operators.

4.3.16 Definition (Compact operators). Let A be a C*-algebra and let E
be a left Hilbert A-module. We define

K(E,F ) := spanC
{
Kf,g : f ∈ E and g ∈ F

}
⊂ L(E,F ),

and we refer to the elements of K(E,F ) as compact operators. We will write
K(E) := K(E,E).

As with rank-one operators, the terminology of compact operators is
borrowed from Hilbert space theory. Our compact operators need not be
compact in the ordinary sense of the word (that is, they need not map bounded
sets to relatively compact sets). We will always use this term in the sense of
Definition 4.3.16.

The reader who is familiar with compact operators on Hilbert spaces
might now anticipate the following result.

4.3.17 Proposition. Let A be a C*-algebra and let E be a left Hilbert
A-module. Then, K(E) is a closed ideal in L(E).

Proof. It is clear from its definition that K(E) is a closed vector-subspace of
L(E). To see that it is an ideal, let T ∈ L(E) and f, g, h ∈ E. We find that

(TKf,g)(h) = T
(
⟨h, f⟩ · g

)
= ⟨h, f⟩ · Tg = Kf,Tg(h)

and (Kf,gT )(h) = ⟨Th, f⟩ · g = ⟨h, T ∗f⟩ · g = KT ∗f,g(h)

where we have used A-linearity of T in the first line (Lemma 4.3.10). Bilin-
earity and continuity of the product in L(E) now implies that K(E) is an
ideal, which concludes the proof.

Before we close this subsection, we define the obvious notion of isomor-
phisms between Hilbert C*-modules. This is not a notion which appears (to
our knowledge) in Raeburn and Williams [24].
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4.3.18 Definition (Unitary operators). Let A be a C*-algebra and let E
and F be two left Hilbert A-modules. A map U : E → F is called unitary if
U ∈ L(E,F ) and

U∗U = IdE and UU∗ = IdF .

As is the case for all adjointable maps, we know that a unitary map
U ∈ L(E,F ) and its adjoint U∗ ∈ L(F,E) are A-linear. It is clear that both
U and U∗ preserve the inner product. Thus, a unitary operator is a bijection
between two Hilbert C*-modules which preserves all of the relevant structure
in both directions.

As a reflection of this fact, we see that Hilbert C*-module completions are
unique precisely up to unique unitary maps (clearly any Hilbert C*-module
completion jE : E → E followed by a unitary map U is another Hilbert
C*-module completion of E):

4.3.19 Proposition. Let A be a pre-C*-algebra and let E be a left inner
product A-module. If jE : E → E and kE : E → Ẽ are two Hilbert C*-module
completions of E, then there exists a unique unitary map U ∈ L(E, Ẽ) such
that kE = U ◦ jE.

Proof. This result and its proof can be found in Appendix B.3. In particular,
see Corollary B.3.3.

4.3.3 The Feichtinger Algebra as an Inner Product
Module

We are now finally ready to construct the long promised Hilbert C*-modules
over noncommutative tori. We will find that much of the work has already
been done. In this subsection, we are following Luef [21, 22].

What we will explicitly construct is an inner product ℓ1(Z2d, βA)-module,
for any A ∈ GL(2d,R) (recall that βA denotes the Heisenberg cocycle de-
termined by A; Defintion 4.1.20). Thus, we will consider ℓ1(Z2d, βA) as a
pre-C*-algebra whose C*-algebra completion is C∗(Z2d, βA) (see Corollary
4.1.27 and the paragraph preceding it). The vector space underlying the
module will be the Feichtinger algebra S0(Rd) from Subsection 3.2.3. The
completion of this inner product ℓ1(Z2d, βA)-module will be the desired Hilbert
C*-module.

Note that it is quite natural that S0(Rd) pairs with ℓ1(Z2d, βA): both are
defined by an absolute integrability/summability condition, and Lemma 3.2.24
shows that sampling the STFT Vgf for f, g ∈ S0(Rd) over AZ2d produces an
element of ℓ1(Z2d).
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4.3.20 Theorem (The Feichtinger algebra as an inner product module). For
any A ∈ GL(2d,R), the Feichtinger algebra S0(Rd) is a left inner product
ℓ1(Z2d, βA)-module with respect to the action

a · f := ΠA(a)f =
∑
k∈Z2d

a(k)πA(k)f for a ∈ ℓ1(Z2d, βA) and f ∈ S0(Rd),

and the ℓ1(Z2d, βA)-valued inner product A⟨·, ·⟩ defined for f, g ∈ S0(Rd) by

A⟨f, g⟩(k) = ⟨f, πA(k)g⟩ = Vgf(Ak) for all k ∈ Z2d.

We will prove this theorem soon. But first, we wish to highlight how
the canonical operators from Gabor theory appear in this construction. Let
f, g, h ∈ S0(Rd) and let a ∈ ℓ1(Z2d, βA). Recall the analysis, synthesis and
mixed-type frame operators, CA

g , D
A
h and SAg,h, introduced at the end of

Subsection 3.2.2. We find that

CA
g (f) = A⟨f, g⟩ and DA

h (a) = a · h.

Thus, we see that the inner product represents the analysis operator (or the
discrete STFT, if you will), while the action represents the synthesis operator.
Moreover, combining these, we see that

SAg,h(f) = (DA
h ◦ CA

g )f = A⟨f, g⟩ · h = Kg,h(f),

so the mixed-type frame operator Sg,h is precisely the rank-one operator
Kg,h! Of course, in this context, these are operators between/on S0(Rd) and
ℓ1(Z2d, βA), as opposed to L2(Rd) and ℓ2(Z2d). Nevertheless, this is a clear
illustration of how these modules encapsulate and reflect the basic structure
of Gabor theory.

Before we prove Theorem 4.3.20 in full, we capture the fact that the
module action is well-defined in a lemma.

4.3.21 Lemma. If f ∈ S0(Rd) and a ∈ ℓ1(Z2d, βA), then

ΠA(a)f =
∑
k∈Z2d

a(k)πA(k)f ∈ S0(Rd),

where the sum converges absolutely in L2(Rd).

Proof. Absolute convergence is immediate since ∥πA(k)f∥2 = ∥f∥2 for every
k ∈ Z2d. We need to verify that Vg0(ΠA(a)f) ∈ L1(R2d) (recall that g0 denotes
the normalized Gaussian; see Definition 3.2.12).
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The continuity of the STFT Vg0 : L2(Rd) → L2(R2d) implies that

Vg0

(∑
k∈Z2d

a(k)πA(k)f
)
(z) =

∑
k∈Z2d

a(k)
(
Vg0π(Ak)f

)
(z) for all z ∈ R2d.

Using the covariance property of Lemma 3.1.4, we now find that∥∥Vg0(ΠA(a)f
)∥∥

1
≤
∫
R2d

(∑
k∈Z2d

|a(k)Vg0f(z − Ak)|
)
dz

=
∑
k∈Z2d

|a(k)|
∫
R2d

|Vg0f(z − Ak)| dz =
∑
k∈Z2d

|a(k)|∥Vg0f∥1,

which is finite because f ∈ S0(Rd) and a ∈ ℓ1(Z2d, βA).

Finally, as a last note before we prove Theorem 4.3.20, we recall the
explicit form of products and involutions in ℓ1(Z2d, βA), since we will need
them. We have:

(a ∗βA b)(k) =
∑
l∈Z2d

a(l)b(k − l)βA(l, k − l)

and a∗(k) = βA(k,−k)a(−k)

for all a, b ∈ ℓ1(Z2d, βA) and k ∈ Z2d.

Proof of Theorem 4.3.20. The action of ℓ1(Z2d, βA) on S0(Rd) is the just the
map ΠA : ℓ

1(Z2d, βA) → B(L2(Rd)) afforded by Corollary 4.1.27, but with
the operators in its image restricted to act on S0(Rd) instead of L2(Rd).
Lemma 4.3.6 is the statement that this restriction is well-defined. We already
know that ΠA is a ⋆-algebra homomorphism (Corollary 4.1.23), so there is
nothing more to prove regarding the action. As for the ℓ1(Z2d, βA)-valued
inner product, we have already proved that it is well-defined: see Lemma
3.2.24. All we need to do is to verify the axioms of the inner product.

Fix any f, g ∈ S0(Rd). The C-linearity of the first entry follows imme-
diately from linearity of the STFT Vg : L2(Rd) → L2(R2d). For conjugate
symmetry, point (iv) of Lemma 3.1.1 gives:

πA(k)
∗ = βA(k,−k)πA(−k) for all k ∈ Z2d,

so that

A⟨f, g⟩∗(k) = βA(k,−k)⟨f, πA(−k)g⟩ =
〈
βA(k,−k)πA(−k)g, f

〉
= ⟨g, πA(k)f⟩ = A⟨g, f⟩(k)
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for all k ∈ Z2d.
We now turn to ℓ1(Z2d, βA)-linearity. With the definition of βA in mind,

the covariance property of Lemma 3.1.4 implies that(
Vgπ(Al)f

)
(Ak) = βA(l, k − l)Vgf(Ak − Al) for all k, l ∈ Z2d.

Thus, with a ∈ ℓ1(Z2d, βA), we find that

A⟨a · f, g⟩∗(k) =
〈∑
l∈Z2d

a(l)πA(l)f, πA(k)g
〉

=
∑
l∈Z2d

a(l)
〈
πA(l)f, πA(k)g

〉
=
∑
l∈Z2d

a(l)
(
Vgπ(Al)f

)
(Ak)

=
∑
l∈Z2d

a(l)βA(l, k − l)Vgf(Ak − Al)

=
∑
l∈Z2d

a(l)A⟨f, g⟩(k − l)βA(l, k − l) =
(
a ∗βA A⟨f, g⟩

)
(k)

for all k ∈ Z2d, which proves ℓ1(Z2d, βA)-linearity.
All that remains is positivity and nondegeneracy. For positivity, recall

that we require A⟨f, f⟩ ≥ 0 in the C*-algebra completion of ℓ1(Z2d, βA), i.e. in
C∗(Z2d, βA) ∼= C∗(πA(Z2d)) ⊂ B(L2(Rd)). Under the inclusion ℓ1(Z2d, βA) →
B(L2(Rd)) (Corollary 4.1.27 and Proposition 4.1.26), we have that

A⟨f, f⟩ 7→
∑
k∈Z2d

A⟨f, f⟩(k)πA(k) =
∑
k∈Z2d

Vff(Ak)πA(k).

By Proposition 2.2.28, we know that, for any T ∈ B(L2(Rd)),

⟨Tg, g⟩ ≥ 0 for all g ∈ L2(Rd) =⇒ T ≥ 0 in B(L2(Rd)).

Let now T =
∑

k∈Z2d Vff(Ak)πA(k). We will show that T ≥ 0 in B(L2(Rd)),
which is equivalent to T ≥ 0 in C∗(πA(Z2d)) by spectral permanence (Propo-
sition 2.2.9).

By continuity of inner products and the fact that T is a continuous
operator on L2(Rd), it suffices to show that ⟨Tg, g⟩ ≥ 0 for all g stemming
from a dense subspace of L2(Rd), e.g. for g ∈ S0(Rd) (Lemma 3.2.14). With
g ∈ S0(Rd), we find that

⟨Tg, g⟩ =
〈∑
k∈Z2d

Vff(Ak)πA(k)g, g
〉
=
∑
k∈Z2d

Vff(Ak)Vgg(Ak)

=
1

| detA|
∑
k∈Z2d

Vfg(A
◦k)Vfg(A◦k) ≥ 0,
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where we have used the FIGA (Theorem 3.2.17) in the last line. This proves
positivity of A⟨·, ·⟩.

Finally, if f ∈ S0(Rd) is nonzero, then A⟨f, f⟩ is nonzero, because

A⟨f, f⟩(0) = ⟨f, f⟩ = ∥f∥22. This gives nondegeneracy and concludes the
proof.

By Proposition 4.3.8 on Hilbert C*-module completions, we may complete
S0(Rd) to a left Hilbert C∗(Z2d, βA)-module. We will denote this completion by

AE . We may also consider AE as a left Hilbert Aθ-module (where θ = ATJA),
via the isomorphism Aθ

∼= C∗(Z2d, βA) of Corollary 4.2.6.
A priori, AE is an abstract completion, and we cannot interpret its ele-

ments as functions. However, it has recently become clear that AE embeds
continuously into L2(Rd). This was first shown by Austad and Luef [4] (in a
preprint). Austad and Enstad [3] has used this insight to further explore how

AE fits into the framework of Gabor frames in the L2(Rd)-setting. Thus, there
is an ongoing exploration and illumination of the naturality and usefulness of
these modules in Gabor theory.





Chapter 5

Morita Equivalence and Lattices

The purpose of this chapter is twofold. First, we introduce the notion of
Morita equivalence of C*-algebras via equivalence bimodules and show how
to upgrade the Feichtinger algebra to an equivalence bimodule. This is
the content of the first section. Afterwards, in the second section, we have
included some tangential considerations about how Morita equivalence relates
to duality in Gabor theory.

5.1 | Morita Equivalence and the Feichtinger

Algebra

Except for a brief encounter in Subsection 2.2.5, on the Gelfand-Naimark
theorem, we have not properly introduced representations of C*-algebras.
Indeed, representation theory is a vast and important topic that is front and
center in the deeper study of C*-algebras.

The notion of Morita equivalence originates in ring theory, where two
rings are said to be Morita equivalent if their categories of modules are
additively equivalent. We will not unpack this; we refer the interested reader
to Anderson and Fuller [1] for an approachable introduction to these topics.
Modules can be viewed as representations of rings, so, loosely stated, Morita
equivalence equates rings with isomorphic structures of representations. It
turns out that if two rings R and S are Morita equivalent, then there exists a
certain R-S-bimodule which one can use to turn representations of R into
representations of S and vice versa. The existence of such a bimodule is
also sufficient for Morita equivalence, so one can phrase Morita equivalence
entirely in terms of the existence of certain bimodules.

The notion of Morita equivalence for C*-algebras is similar to the notion
of Morita equivalence for rings, but there are important differences. Two

169
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C*-algebras are called Morita equivalent if there exists a certain Hilbert
C*-bimodule that relates their categories of representations, known as an
equivalence bimodule. However, there may exist C*-algebras whose categories
of representations are equivalent but for which no such bimodule exists.
Originally, C*-algebras with equivalent categories of representations were
called Morita equivalent, and the term strong Morita equivalence was used
to refer to the existence of an equivalence bimodule. These bimodules have
become so central to the subject that it has become common to omit the
adjective “strong”, which is a convention we will adopt. Equivalence bimodules
were developed by Rieffel [26], who called them imprivity bimodules (a term
that is still very much in use).

We will not develop the machinery needed to transfer representations
between Morita equivalent C*-algebras. We will simply introduce equivalence
bimodules as an interesting topic in their own right. The rest of the story can
be found in Raeburn and Williams [24], who we will follow in our development
of equivalence bimodules.

5.1.1 Opposite Algebras and Equivalence Bimodules

Let A and B be two C*-algebras. An A-B-equivalence bimodule will be a
complex vector space E that is both a left Hilbert A-module and a right
Hilbert B-module that moreover satisfies a couple of conditions relating these
structures. In order to properly introduce the topic, we need to discuss
opposite algebras and right inner product modules in some detail.

5.1.1 Definition (The opposite algebra). Let A be a ⋆-algebra with the
product denoted by juxtaposition. We define the opposite ⋆-algebra of A to
be the same vector space A equipped with the same involution ⋆ : A → A,
but with the product ⋄ : A× A→ A defined by

a ⋄ b = ⋄(a, b) := ba for all a, b ∈ A.

We will write Aop for this ⋆-algebra. Thus, A = Aop as vector spaces, but
their products differ.

It is straightforward to check that Aop actually is a ⋆-algebra. In order to
illustrate the notation, we include a couple of the required calculations:

� (a ⋄ b)∗ = (ba)∗ = a∗b∗ = b∗ ⋄ a∗ (Property (iii) of Def. 2.1.10),

� (a ⋄ b) ⋄ c = c(ba) = (cb)a = a ⋄ (b ⋄ c) (associativity of the product).
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Moreover, it is clear that (Aop)op = A as algebras.
If A is a pre-C*-algebra, then Aop is as well, with respect to the same

norm. Submultiplicativity of the norm is immediate, and

∥a∗ ⋄ a∥ = ∥aa∗∥ = ∥(a∗)∗a∗∥ = ∥a∗∥2 = ∥a∥2

gives the C*-equality. Moreover, if A denotes the C*-algebra completion of
A, then Aop is the C*-algebra completion of Aop. To be more precise: if
iA : A→ A is a C*-algebra completion of A, then, the same map iA : A

op →
Aop (A = Aop and A = Aop as sets) is a C*-algebra completion of Aop. This is
immediate: the only structure that differs is the product, and that calculation

iA(a) ⋄ iA(b) = iA(b)iA(a) = iA(ba) = iA(a ⋄ b) for all a, b ∈ Aop = A

shows that the product on Aop extends the product on Aop.
We now show that right inner product A-modules correspond to left inner

product Aop-modules and vice versa.

5.1.2 Lemma. Let A be a pre-C*-algebra. Suppose that E is a right inner
product A-module with action Φ: Aop → EndC(E) and A-valued inner product
⟨·, ·⟩×. Then, the same vector space E with the same action Φ: Aop →
EndC(E) and an Aop-valued inner product ×⟨·, ·⟩ defined by

×⟨g, f⟩ := ⟨f, g⟩× for all f, g ∈ E

is a left inner inner product Aop-module.
Conversely, if F is a left inner product A-module with action Φ: A →

EndC(F ) and A-valued inner product ×⟨·, ·⟩. Then, the same vector space F
with the same action Φ: (Aop)op = A → EndC(F ) and an Aop-valued inner
product ⟨·, ·⟩× defined by

⟨f, g⟩× := ×⟨g, f⟩ for all f, g ∈ F

is a right inner product Aop-module.

Proof. We show the first half of the statement, regarding right inner product
A-modules. The proof of the second half is almost identical, one just needs
to break apart the equations and shuffle the pieces around.

Let ⋄ denote the product in Aop. There is nothing to verify regarding the
action, for it doesn’t change. Note, however, that although the action of A in
the right module and the action of Aop in the left module are given by the
same algebra homomorphism Φ: Aop → EndC(E), we write them differently:

a · f = f · a for all a ∈ A = Aop and f ∈ E.



172 Morita Equivalence and Lattices

This is sensible, because

(a ⋄ b) · f = Φ(a ⋄ b)(f) =
(
Φ(a)Φ(b)

)
(f) = Φ(a)

(
Φ(b)(f)

)
= a · (b · f)

while

f · (ab) = Φ(ab)(f) = Φ(b ⋄ a)(f) = Φ(b)
(
Φ(a)(f)

)
= Φ(b)(f · a) = (f · a) · b

for all a, b ∈ A = Aop and f ∈ E.
We need to check that the inner product ×⟨·, ·⟩ satisfies the required

properties (see Definition 4.3.1). The following statements should be quantified
over all f, g, h ∈ E, λ ∈ C and a ∈ A.

(i) C-linearity in the first entry:

×⟨λf + g, h⟩ = ⟨h, λf + g⟩× = λ⟨h, f⟩× + ⟨h, g⟩× = λ×⟨f, h⟩+ ×⟨g, h⟩,

(ii) Aop-linearity in the first entry:

×⟨a · f, g⟩ = ⟨g, a · f⟩× = ⟨g, f · a⟩× = ⟨g, f⟩×a = ×⟨f, g⟩a = a ⋄ ×⟨f, g⟩.

(iii) Conjugate symmetry: ×⟨f, g⟩∗ = ⟨g, f⟩∗× = ⟨f, g⟩× = ×⟨g, f⟩.

(iv) Positivity: ×⟨f, f⟩ = ⟨f, f⟩× ≥ 0.

(v) Nondegeneracy: ×⟨f, f⟩ = 0 =⇒ ⟨f, f⟩× = 0 =⇒ f = 0.

This concludes the proof.

This correspondence has the following wonderful consequence: for every
result we have for left inner product modules, we obtain a corresponding
result for right inner product modules. Indeed, given a right A-module E,
we can import the desired result from the corresponding left Aop-module
structure on E. For example, the Cauchy-Schwarz inequality of Lemma 4.3.3
holds without change, because

⟨g, f⟩×⟨f, g⟩× = ⟨f, g⟩× ⋄ ⟨g, f⟩× = ×⟨g, f⟩ ⋄ ×⟨f, g⟩
≤ ∥×⟨f, f⟩∥×⟨g, g⟩ = ∥⟨f, f⟩×∥⟨g, g⟩×.

Similarly, we can translate our definitions for left Hilbert C*-modules into
definitions for right Hilbert C*-modules by seeing how our definition for a
left Hilbert Aop-module appears in the corresponding right Hilbert A-module
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structure. For example, if we let ×Kf,g denote a rank-one operator in a left
Hilbert Aop-module E (so f, g ∈ E), then

×Kf,g(h) := ×⟨h, f⟩ · g = g · ⟨f, h⟩×,

shows that we should define the rank-one operator corresponding to f, g ∈ E
in the right Hilbert A-module E by h 7→ g · ⟨f, h⟩×.

Now, similarly to how we change our notation for the action when passing
from left to right modules, we wish to make a slight notational change for
rank-one operators. It seems natural to define K×

g,f := ×Kf,g, so that the
order of the subscripts matches the order in which they appear in the defining
expressions. That is, we take

K×
f,g(h) = f · ⟨g, h⟩× for all h ∈ E

as a definition of the rank-one operator corresponding to f, g ∈ E in a right
Hilbert A-module E.

If we similarly include subscripts for the spaces of adjointable and compact
operators, we find that ×L(E) = L×(E) and that ×K(E) = K×(E). That
is, adjointable operators for a left Hilbert Aop-module are exactly the same
as adjointable operators for the corresponding right Hilbert A-module, and
likewise for compact operators. There is no more substance to this than
simple observations such as:

⟨Tf, g⟩× = ×⟨g, Tf⟩ = ×⟨T ∗g, f⟩ = ⟨f, T ∗g⟩×.

This concludes our discussion of the left Aop-module and right A-module
correspondence for now.

There is only one more notion we need before we are ready to study
equivalence bimodules.

5.1.3 Definition (Fullness of inner-product modules). Let A be a pre-C*-
algebra. A left or right inner product A-module E is said to be full if

spanC{⟨f, g⟩ : f, g ∈ E} = A.

We are now ready for the main definition of this section. We emphasize
that the notion of equivalence bimodules, which we are about to introduce, is
entirely distinct from the left Aop-module and right A-module correspondence
we just discussed. Considering a left Hilbert Aop-module as a right Hilbert
A-module does not turn it into an Aop-A-equivalence bimodule in general.

5.1.4 Definition (Equivalence bimodules). Let A and B be two C*-algebras.
An A-B-equivalence bimodule is a complex vector space E with the following
structure.
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(i) E is a full left Hilbert A-module and a full right Hilbert B-module. We
will denote the A-valued inner product by •⟨·, ·⟩ and the B-valued inner
product by ⟨·, ·⟩•.

(ii) A acts as adjointable operators w.r.t. ⟨·, ·⟩• and B acts as adjointable
operators w.r.t. •⟨·, ·⟩, meaning that

⟨a · f, g⟩• = ⟨f, a∗ · g⟩• and •⟨f · b, g⟩ = •⟨f, g · b∗⟩

for all a ∈ A, b ∈ B and f, g ∈ E.

(iii) The inner products satisfy the following associativity condition:

•⟨f, g⟩ · h = f · ⟨g, h⟩•

for all f, g, h ∈ E.

Whenever we speak of an “A-B-equivalence bimodule” it should be im-
plicitly understood that A and B are C*-algebras. We reiterate that two
C*-algebras A and B are called Morita equivalent if there exists an A-B-
equivalence bimodule.

We will write ΦA : A → EndC(E) and ΦB : Bop → EndC(E) for the
two actions that make up part of the bimodule structure. We also need to
notationally distinguish the maps T : E → E that are adjointable with respect
to the A-valued inner product from those that are adjointable with respect to
the B-valued inner product. We will write LA(E) for those operators that are
adjointable w.r.t. •⟨·, ·⟩ and LB(E) for those that are adjointable w.r.t. ⟨·, ·⟩•.
Note that a map may have one adjoint with respect to •⟨·, ·⟩ and another
adjoint with respect to ⟨·, ·⟩•, so we need to be careful with our notation.

With regard to rank-one and compact operators, we define, for f, g ∈ E:

KA
f,g(h) := •⟨h, f⟩ · g and KB

f,g(h) := f · ⟨g, h⟩•, (5.1)

and we write KA(E) and KB(E) for the respective spaces of compact operators
(see Definition 4.3.16).

It turns out that equivalence bimodules intertwine inner products and
compact operators in a very particular manner:

5.1.5 Proposition. Let E be an A-B-equivalence bimodule. Then, the
associated actions ΦA : A → EndC(E) and ΦB : Bop → EndC(E) satisfy

ΦA
(
•⟨f, g⟩

)
= KB

f,g and ΦB
(
⟨g, h⟩•

)
= KA

g,h, (5.2)
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for all f, g, h ∈ E. Moreover,1 KA(E) = LA(E) and KB(E) = LB(E), and
the actions corestrict to (isometric) ⋆-algebra isomorphisms

ΦA : A → LB(E) and ΦB : Bop → LA(E).

Proof. We will prove the claims that pertain to ΦA. The claims for ΦB are
proved analogously. Alternatively, one may note that an A-B-equivalence
bimodule is exactly the same as a Bop-Aop-equivalence bimodule, so that
exactly the same argument (applied to a Bop-Aop-equivalence bimodule) gives
the result.

With our definition of rank-one operators in mind (Equation (5.1)), con-
dition (iii) in Definition 5.1.4 becomes:

KA
g,h(f) = ΦA

(
•⟨f, g⟩

)
(h) = ΦB

(
⟨g, h⟩•

)
(f) = KB

f,g(h)

for all f, g, h ∈ E, which gives Equation (5.2).
Condition (ii) in Definition 5.1.4 is precisely the statement that ΦA : A →

EndC(E) satisfies ΦA(A) ⊂ LB(E) and that the corestriction ΦA : A → LB(E)
preserves the involution. This means that we have a ⋆-algebra homomorphism
ΦA : A → LB(E).

By fullness of the left Hilbert A-module structure, along with continuity
of ΦA : A → LB(E) (Proposition 2.2.6), we now find that

ΦA(A) = ΦA
(
spanC

{
•⟨f, g⟩ : f, g ∈ E

})
⊂ spanC

{
ΦA(•⟨f, g⟩) : f, g ∈ E

}
= spanC

{
KB
f,g : f, g ∈ E

}
= KB(E).

Now, we know that IdE = ΦA(1A) ∈ ΦA(A) ⊂ KB(E) (by our requirement
that algebra homomorphisms be unital). Since KB(E) is an ideal in LB(E)
(Proposition 4.3.17), this implies that KB(E) = LB(E).

By the first isomorphism theorem for C*-algebras (Theorem 2.2.33), we
know that ΦA(A) is a C*-subalgebra of LB(E). In particular, ΦA(A) ⊂ LB(E)
is closed. Thus, since spanC{KB

f,g : f, g ∈ E} ⊂ ΦA(A) by Equation (5.2), we
find that LB(E) = KB(E) ⊂ ΦA(A) ⊂ LB(E), from which we can conclude
that ΦA(A) = LB(E).

All that remains is to show that ΦA is injective (it is then automatically
isometric by Proposition 2.2.6). Suppose that a ∈ KerΦA and let ϵ > 0 be

1This part of the result depends crucially on our convention that all algebra ho-
momorphisms are unital! In the nonunitial theory, we obtain ⋆-algebra isomorphisms
ΦA : A → KB(E) and ΦB : Bop → KA(E), which map inner products to compact operators
in the same fashion, but it need not be the case that KA(E) = LA(E) and KB(E) = LB(E).
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arbitrary. By fullness of the left Hilbert A-module structure, we can find
fi, gi ∈ E (for 1 ≤ i ≤ N , where N is some integer) such that

∥∥∥1A −
N∑
i=1

•⟨fi, gi⟩
∥∥∥ < ϵ, and hence

∥∥∥a− a
N∑
i=1

•⟨fi, gi⟩
∥∥∥ ≤ ∥a∥ϵ.

But a ∈ KerΦA implies that

a
N∑
i=1

•⟨fi, gi⟩ =
N∑
i=1

•⟨a · fi, gi⟩ =
N∑
i=1

•⟨ΦA(a)fi, gi⟩ = 0,

so we find that ∥a∥ ≤ ∥a∥ϵ for any ϵ > 0. This means that a = 0, so ΦA is
injective and we are done.

We now explore an alternative to condition (ii) in our definition of equiva-
lence bimodules. Note that we have two potentially different norms on an
A-B-equivalence bimodule E. We will write

•∥f∥2 = ∥•⟨f, f⟩∥ and ∥f∥2• = ∥⟨f, f⟩•∥ for all f ∈ E.

We will soon find that these norms must in fact be equal, but for now, we
must distinguish them.

5.1.6 Lemma (Alternate condition). Consider Definition 5.1.4. In the
presence of conditions (i) and (iii), condition (ii) is equivalent to the following:

⟨a · f, a · f⟩• ≤ ∥a∥2⟨f, f⟩• and •⟨f · b, f · b⟩ ≤ ∥b∥2•⟨f, f⟩ (5.3)

for all a ∈ A, b ∈ B and f ∈ E.

Proof. We first note that Equation (5.3) holds in any A-B-equivalence bimod-
ule E: Proposition 5.1.5 shows that ΦA : A → LB(E) and ΦB : Bop → LA(E)
are (isometric) ⋆-algebra isomorphisms, so Equation (5.3) follows immediately
from Corollary 4.3.13.

We must now show that condition (ii) of Definition 5.1.4 follows from
conditions (i) and (iii) along with Equation (5.3).

Let f, g, h, k ∈ E. Using only condition (iii) and the Hilbert C*-module
axioms, we find that〈

•⟨f, g⟩ · h, k
〉
• =

〈
f · ⟨g, h⟩•, k

〉
• = ⟨g, h⟩∗•⟨f, k⟩• = ⟨h, g⟩•⟨f, k⟩•

=
〈
h, g · ⟨f, k⟩•

〉
• =

〈
h, •⟨g, f⟩ · k

〉
• =

〈
h, •⟨f, g⟩∗ · k

〉
•.
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This shows that condition (ii) holds for •⟨f, g⟩ ∈ A. By linearity of ΦA and
sesquilinearity of ⟨·, ·⟩•, we can conclude that

⟨a · h, k⟩• = ⟨h, a∗ · k⟩• for all a ∈ spanC{•⟨f, g⟩ : f, g ∈ E} ⊂ A.

Now, spanC{•⟨f, g⟩ : f, g ∈ E} is dense in A by condition (i), so for any
a ∈ A, we may choose a sequence (an) for which condition (ii) holds and such
that an → a.

By Equation (5.3) (and point (ii) of Proposition 2.2.26), we find that

∥a · f∥2• = ∥⟨a · f, a · f⟩•∥ ≤ ∥a∥2∥⟨f, f⟩•∥ ≤ ∥a∥2∥f∥2•
for all a ∈ A and f ∈ E. This means that an · f → a · f in the right Hilbert
B-module structure on E whenever an → a in A. If we now fix any a ∈ A and
choose a sequence (an) for which condition (ii) holds and such that an → a,
we find that

⟨a · h, k⟩• = lim
n→∞

⟨an · h, k⟩• = lim
n→∞

⟨h, a∗n · k⟩• = ⟨h, a∗ · k⟩

by continuity of ⟨·, ·⟩• and the involution on A.
Finally, a very similar argument with the roles of A and B interchanged

(or an appeal to left/right correspondence, as outlined in the beginning of the
proof of Proposition 5.1.5) concludes the proof.

When considering not-necessarily-complete versions of equivalence bimod-
ules, as we now will, one finds that the alternate condition of Lemma 5.1.6
is stronger than condition (ii) of Defintion 5.1.4, and that one must assume
the alternate condition in order for completion to work. The problem is that
condition (ii) imposes no boundedness on the action of A with respect to the
right B-module norm, whereas Equation (5.3) does.

5.1.7 Definition (Pre-equivalence bimodules). Let A and B be two pre-C*-
algebras. An A-B-pre-equivalence bimodule is a complex vector space E with
the following structure.

(i) E is a full left inner product A-module and a full right inner product
B-module. We will denote the A-valued inner product by ◦⟨·, ·⟩ and the
B-valued inner product by ⟨·, ·⟩◦.

(ii) We have that

⟨a · f, a · f⟩◦ ≤ ∥a∥2⟨f, f⟩◦ and ◦⟨f · b, f · b⟩ ≤ ∥b∥2◦⟨f, f⟩

for all a ∈ A, b ∈ B and f ∈ E, where the left inequality is an
inequality in the C*-algebra completion of B and the right inequality is
an inequality in the C*-algebra completion of A.
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(iii) The inner products satisfy the following associativity condition:

◦⟨f, g⟩ · h = f · ⟨g, h⟩◦

for all f, g, h ∈ E.

Suppose we have an A-B-pre-equivalence module E, whose actions and
inner products we will denote by

ΦA : A→ EndC(E), ΦB : B
op → EndC(E), A⟨·, ·⟩ and ⟨·, ·⟩B.

Then, if Φ1 : A
′ → A and Φ2 : B

′ → B are two isometric ⋆-algebra isomorphism
between pre-C*-algebras (which will extend to isomorphisms between their C*-
algebra completions), we can turn E into an A′-B′-pre-equivalence bimodule
by defining the actions

ΦA′ = ΦA ◦ Φ1 : A
′ → EndC(E) and ΦB′ = ΦB ◦ Φ2 : (B

′)op → EndC(E)

and the inner products

A′⟨·, ·⟩ = Φ−1
1

(
A⟨·, ·⟩

)
and ⟨·, ·⟩B′ = Φ−1

2

(
⟨·, ·⟩B

)
.

This is a simple but useful observation, which is straightforward to verify.
If A and B are C*-algebras, Lemma 5.1.6 implies that an A-B-equivalence

bimodule is an A-B-pre-equivalence bimodule as well. Thus, the following
lemma implies that the two norms •∥ · ∥ and ∥ · ∥• on an A-B-equivalence
bimodule coincide, as claimed.

5.1.8 Lemma. Let E be an A-B-pre-equivalence bimodule. Then, the norm

◦∥ · ∥ on E determined by A agrees with the norm ∥ · ∥◦ determined by B. In
other words, ◦∥f∥ = ∥◦⟨f, f⟩∥1/2 = ∥⟨f, f⟩◦∥1/2 = ∥f∥◦ for all f ∈ E.

Proof. We first note that condition (ii) in the definition of pre-equivalence
bimodules implies that, for any b ∈ B and f ∈ E:

◦∥f · b∥2 = ∥◦⟨f · b, f · b⟩∥ ≤ ∥b∥2∥◦⟨f, f⟩∥ = ∥b∥2
(
◦∥f∥

)2
, (5.4)

and hence that ◦∥f · b∥ ≤ ∥b∥
(
◦∥f∥

)
(where we again have used point (ii) of

Proposition 2.2.26 to convert an inequality in the C*-algebra completion of
B to an inequality of norms).

We also find that

∥◦⟨f, f⟩∥2 = ∥◦⟨f, f⟩◦⟨f, f⟩∥ =
∥∥◦〈◦⟨f, f⟩ · f, f〉∥∥ =

∥∥◦〈f · ⟨f, f⟩◦, f
〉∥∥.
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Appealing to the Cauchy-Schwarz inequality for ◦⟨·, ·⟩ and Equation (5.4)
with b = ⟨f, f⟩◦, we can now conclude that

∥◦⟨f, f⟩∥2 ≤
(
◦∥f · ⟨f, f⟩◦∥

)(
◦∥f∥

)
≤ ∥⟨f, f⟩◦∥

(
◦∥f∥

)2
.

By our definitions, this is the statement that ◦∥f∥4 ≤ (∥f∥◦)2(◦∥f∥)2, so we
obtain ◦∥f∥ ≤ ∥f∥◦.

The same argument with the roles of A and B interchanged now gives the
result.

Before we consider completions, we introduce the appropriate notion of
isomorphisms for equivalence bimodules. This is not a notion we have seen
elsewhere, but it seems natural and convenient to introduce it. For the notion
of a unitary map between Hilbert C*-modules (i.e. an isomorphism of Hilbert
C*-modules), see Definition 4.3.18.

5.1.9 Definition (Biunitary maps). Let E and F be two A-B-equivalence
bimodules. A map U : E → F is called biunitary if it is unitary both as a
map between left Hilbert A-modules and as a map between right Hilbert
B-modules. In other words, a biunitary map U : E → F is an invertible map

U ∈ LA(E,F ) ∩ LB(E,F )

whose inverse equals its adjoint in both of these spaces.

A biunitary map U : E → F is both A-linear, B-linear and preserves
both inner products. This implies that it preserves the equivalence bimodule
conditions as well. For example, we see that

U
(
•⟨f, g⟩ · h

)
= •⟨f, g⟩ · Uh = •⟨Uf, Ug⟩ · Uh

and •⟨Uf · b, Ug⟩ = •⟨U(f · b), Ug⟩ = ⟨f · b, g⟩

for all f, g, h ∈ E and b ∈ B.
We now turn to completions. Suppose that A and B are pre-C*-algebras

with C*-algebra completions A and B. If E is an A-B-pre-equivalence
bimodule, then an equivalence bimodule completion of E consists of an A-B-
equivalence bimodule E along with a map jE : E → E that makes E (along
with jE) a Hilbert C*-module completion of both module structures on E
(meaning that jE is both A- and B-linear, preserves both inner products and
has a dense image). As always, we may refer to either E or the map jE by
itself as an equivalence bimodule completion of E.

The following proposition shows existence and uniqueness of equivalence
bimodule completions. We have usually deferred proofs of such results to
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Appendix B, but this result is so intertwined with the contents of this section
that we give the proof here. Note that Lemma 5.1.8 allows us to speak of the
Banach space completion of an equivalence bimodule E.

5.1.10 Proposition (Equivalence bimodule completions). Let A and B be
pre-C*-algebras with C*-algebra completions A and B. Suppose that E is an A-
B-pre-equivalence bimodule and let jE : E → E be a Banach space completion
of E. Then, there exist a unique A-B-equivalence bimodule structure on E
such that jE : E → E becomes a Hilbert C*-module completion of both inner
product module structures on E. In other words: such that jE becomes an
equivalence bimodule completion of E.

Moreover, if kE : E → Ẽ is another equivalence bimodule completion of E,
then there exists a unique biunitary map U : E → Ẽ such that kE = U ◦ jE.

Proof. By Proposition 4.3.8 (and its appropriate translation to the setting of
right modules), we can give E the structure of a left Hilbert A-module and a
right Hilbert B-module in such a manner that jE : E → E becomes a Hilbert
C*-module completion of both module structures on E. Moreover, these
structures are unique. We must verify that E, equipped with this structure,
satisfies the equivalence bimodule axioms of Definition 5.1.4.

Since E is full as a left inner product A-module and as a right inner
product B-module, it is clear that E is full both as a left Hilbert A-module
and as a right Hilbert B-module (for a set which is dense in A is dense in A
and likewise for B and B).

For the following, keep in mind that there is a single topology on E. We
know that the A- and B-valued inner products •⟨·, ·⟩ and ⟨·, ·⟩• are continuous
(Corollary 4.3.5) and that the actions of A and B are continuous (Lemma
4.3.6). Thus, the fact that

◦⟨f, g⟩ · h = f · ⟨g, h⟩◦ for all f, g, h ∈ E

straightforwardly implies (via approximating sequences) that the correspond-
ing equation holds in E. This gives axiom (iii) of Definition 5.1.4.

Similarly, the fact that

⟨a · f, a · f⟩◦ ≤ ∥a∥2⟨f, f⟩◦ and ◦⟨f · b, f · b⟩ ≤ ∥b∥2◦⟨f, f⟩ (5.5)

for all a ∈ A, b ∈ B and f ∈ E implies that the corresponding equation
holds in E. To see this, one must also invoke the fact that a limit of positive
elements in a C*-algebra is positive.2 This shows that the alternate condition

2A proof of this fact can be found in the third to last paragraph of the proof of
Proposition B.3.1.
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of Lemma 5.1.6 holds in E. Thus, by the contents of that lemma, we have
shown that E is an A-B-equivalence bimodule.

As for the claim of uniqueness, suppose that kE : E → Ẽ is another equiv-
alence bimodule completion of E. Then, as jE and kE are both Banach space
completions of E (the assumption that kE preserves the inner product implies
that it is an isometry), Corollary B.1.3 on the uniqueness of Banach space
completions implies the existence of a unique isometric linear isomorphism
U : E → Ẽ such that kE = U ◦ jE. By Proposition 4.3.19 (and its appropriate
translation to right modules), this map must be unitary with respect to both
module structures, for otherwise U would not be unique.

5.1.2 The Feichtinger Algebra as a Pre-Equivalence
Bimodule

Let A ∈ GL(2d,R). The goal of this section is to turn the Feichtinger algebra
S0(Rd) into an ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence bimodule and to con-
sider its completion. Throughout this section, we are following Luef [21, 22],
who is translating a bimodule construction by Rieffel [27] into the language of
Gabor theory and exploring the implications of this correspondence. Rieffel’s
constructions are in terms of Schwartz spaces, while Luef is working with the
Feichtinger algebra.

We will obtain the right ℓ1(Z2d, βA◦)-module structure on S0(Rd) from the
left ℓ1(Z2d, βA◦)-module structure afforded by Theorem 4.3.20. For this, we
need the following lemma.

5.1.11 Lemma. Let γ be a 2-cocycle on Z2d. Then,

Γ: C[Z2d, γ] → C[Z2d, γ]op

a 7→ a∗

(where the involution is taken in C[Z2d, γ]) is a ⋆-algebra isomorphism which
extends to an (isometric) ⋆-algebra isomorphism Γ: C∗(Z2d, γ) → C∗(Z2d, γ)op.

Proof. For the duration of this proof, we will write a(k) = ak for all k ∈ Z2d

and any a ∈ C[Z2d, γ] or a ∈ C[Z2d, γ]op. Moreover, since we are dealing with
two distinct involutions, we will denote the involution on C[Z2d, γ]op by •, so
that

(a∗)k = γ(k,−k)a−k = γ(k,−k)a−k and (a•)k = γ(k,−k)a−k.

We find that

Γ(a)k = (a∗)k = γ(k,−k)a−k = γ(k,−k)a−k for all k ∈ Z2d. (5.6)
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It is quite clear that Γ is bijective (C[Z2d, γ] and C[Z2d, γ]op are the same as
vector spaces, and both complex conjugation and the involution are bijections).
We need to verify that Γ is a ⋆-algebra homomorphism.

Since δ0 is the unit in both C[Z2d, γ] and C[Z2d, γ]op, the calculation

Γ(δ0)k = γ(k,−k)δ0(−k) = γ(−0, 0)δ0(k) = (δ0)k

shows that Γ preserves the unit. The calculations

Γ(a)•k = γ(k,−k)Γ(a)−k = γ(k,−k)γ(−k, k)ak
and Γ(a∗)k = γ(k,−k)(a∗)−k = γ(k,−k)γ(−k, k)ak,

show that Γ preserves the involution.
Preservation of the product requires a bit more work. Let a, b ∈ C[Z2d, γ]

and k ∈ Z2d. Note that the identity to verify is:

Γ(a ∗γ b)k =
(
Γ(b) ∗γ Γ(a)

)
k
,

because of the opposite structure on the target. We find that

Γ(a ∗γ b)k = γ(k,−k)(a ∗γ b)−k = γ(k,−k)
∑
l∈Z2d

alb−k−lγ(l,−k − l)

and that
(
Γ(b) ∗γ Γ(a)

)
k
equals∑

l∈Z2d

Γ(b)lΓ(a)k−lγ(l, k − l)

=
∑
l∈Z2d

γ(l,−l)b−lγ(k − l, l − k)al−kγ(l, k − l)

=
∑
l′∈Z2d

γ(k + l′,−k − l′)b−k−l′γ(−l′, l′)al′γ(k + l′,−l′).

Thus, preservation of the product follows if we can show that

γ(k + l,−k − l)γ(−l, l)γ(k + l,−l) = γ(k,−k)γ(l,−k − l) (5.7)

for all k, l ∈ Z2d.
By the defining properties of 2-cocycles (Definition 4.1.1), we find that

γ(k + l,−k − l) = γ(k + l,−k − l)γ(0, k)

= γ(k + l,−k − l + k)γ(−k − l, k)

= γ(k + l,−l)γ(−k − l, k)

and that γ(l,−l) = γ(l,−l)γ(0,−k) = γ(l,−l − k)γ(−l,−k).
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This gives (using also that γ maps into T, so that conjugates are inverses):

γ(k + l,−k − l)γ(l,−l)γ(k + l,−l) = γ(−k − l, k)γ(l,−l − k)γ(−l,−k).

Finally, noting that

γ(−l,−k)γ(−k − l, k) = γ(−l,−k + k)γ(−k, k) = γ(−k, k) = γ(k,−k)

gives Equation (5.7) (for the last equality, see the proof of Lemma 4.1.3).
Thus, we have proved that Γ is a ⋆-algebra isomorphism.

To conclude that Γ extends to a ⋆-algebra isomorphism Γ: C∗(Z2d, γ) →
C∗(Z2d, γ)op, it is tempting to appeal to Lemma 4.1.14, which states that
⋆-algebra isomorphisms between twisted group algebras are isometric w.r.t.
their universal norms. We cannot use the lemma as stated, because of the
opposite structure on the target of Γ. However, it turns out that we can use
the exact same argument as we did for its proof.

The proof of Lemma 4.1.14 clearly carries through if we equip C[Z2d, γ]op

with the universal norm (defined as the supremum over the norms of all
representations), but we need to know that this equals the universal norm
on C[Z2d, γ], which is the norm we use to form the completion C∗(Z2d, γ)
(which defines C∗(Z2d, γ)op, as well as its norm). The Gelfand-Naimark
theorem (Theorem 2.2.42) saves the day: if Φ: C[Z2d, γ]op → B(H) is any
representation of C[Z2d, γ]op, we may interpret the same map Φ as a ⋆-algebra
homomorphism Φ: C[Z2d, γ] → B(H)op, and since B(H)op is a C*-algebra, we
can consider B(H)op to be a C*-subalgebra of B(H ′), for some Hilbert space
H ′. This argument shows that every representation of C[Z2d, γ]op can be
turned into a representation of C[Z2d, γ] and vice versa. Thus, their universal
norms agree, which means that the argument from Lemma 4.1.14 carries
through and concludes the proof.

Consideration of the ℓ1-norm that defines the ⋆-subalgebras ℓ1(Z2d, βA◦) ⊂
C∗(Z2d, βA◦) and ℓ1(Z2d, βA◦)op ⊂ C∗(Z2d, βA◦)op makes it clear that the
isomorphism Γ from Lemma 5.1.11 restricts and corestricts to a ⋆-algebra
isomorphism Γ: ℓ1(Z2d, βA◦) → ℓ1(Z2d, βA◦)op.

Invoking Lemma 5.1.2, we now immediately obtain a right ℓ1(Z2d, βA◦) ∼=
ℓ1(Z2d, βA◦)op-module structure on S0(Rd) from the left ℓ1(Z2d, βA◦)-module
structure afforded by Theorem 4.3.20. However, some consideration of the
isomorphism Γ: ℓ1(Z2d, βA◦) → ℓ1(Z2d, βA◦)op will be required.

5.1.12 Proposition. For any A ∈ GL(2d,R), the Feichtinger algebra S0(Rd)
is a right inner product ℓ1(Z2d, βA◦)-module with respect to the action

f · b =
∑
k∈Z2d

b(k)πA◦(k)∗f for b ∈ ℓ1(Z2d, βA◦) and f ∈ S0(Rd),
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and the ℓ1(Z2d, βA◦)-valued inner product defined for f, g ∈ S0(Rd) by

⟨f, g⟩A◦(k) =
1

| detA|
⟨πA◦(k)g, f⟩ for all k ∈ Z2d.

Proof. As discussed prior to the proposition, Lemma 5.1.2 turns S0(Rd) into
a right ℓ1(Z2d, βA◦)op-module with inner product

⟨f, g⟩×(k) = ×⟨g, f⟩(k) = A◦⟨g, f⟩(k) = ⟨g, πA◦(k)f⟩ for k ∈ Z2d

and action ΠA◦ : ℓ1(Z2d, βA◦) → EndC(S0(Rd)). By the construction outlined
after Definition 4.3.1 (of inner product modules), we can use the (isometric,
w.r.t. the pre-C*-algebra norms) ⋆-algebra isomorphism Γ: ℓ1(Z2d, βA◦) →
ℓ1(Z2d, βA◦)op to transfer this to a right ℓ1(Z2d, βA◦)-module structure. The
action and the inner product become

ΠA◦ ◦ Γ and ⟨·, ·⟩A◦ = Γ−1
(
⟨·, ·⟩×

)
(note that we may equivalently consider the same map Γ as a ⋆-algebra
isomorphism Γ: ℓ1(Z2d, βA◦)op → ℓ1(Z2d, βA◦), which is more appropriate for
the action). All we need to do is to verify that the action and the inner
product take the claimed forms.

We begin with a couple of useful observations. We see that

πA◦(−k)∗ = βA◦(k,−k)πA◦(k) for all k ∈ Z2d (5.8)

by point (iv) of Lemma 3.1.1. Appealing to Equation (5.6), we find that

(Γb)(k) = βA◦(k,−k)b(−k) and (Γ−1c)(k) = βA◦(−k, k)c(−k)

for all b ∈ ℓ1(Z2d, βA◦), c ∈ ℓ1(Z2d, βA◦)op and k ∈ Z2d.
Since ΠA◦ ◦ Γ(b) = ΠA◦(Γb), we now find that

f · b = ΠA◦(Γb)f =
∑
k∈Z2d

(Γb)(k)πA◦(k)f =
∑
k∈Z2d

b(−k)βA◦(k,−k)πA◦(k)f

=
∑
k∈Z2d

b(−k)πA◦(−k)∗f,

which gives the claimed form of the action (relabel k 7→ −k). As for the inner
product, we note that βA◦(k,−k) = βA◦(−k, k) and find that

⟨f, g⟩A◦(k) = Γ−1(⟨f, g⟩×)(k) = βA◦(−k, k)⟨g, πA◦(−k)f⟩
=
〈
βA◦(k,−k)πA◦(−k)∗g, f

〉
= ⟨πA◦(k)g, f⟩.

In the proposition, we have scaled this inner product by a positive number. We
are free do to so, because the inner product axioms will remain satisfied.
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Before we state and prove that we actually obtain a pre-equivalence
bimodule, we record the fullness of the left inner product ℓ1(Z2d, βA)-module
structure on S0(Rd) in a lemma. By the left/right correspondence of Lemma
5.1.2, this clearly implies that S0(Rd) is full a as a right inner product
ℓ1(Z2d, βA◦)-module as well.

5.1.13 Lemma. For any A ∈ GL(2d,R), the left inner product ℓ1(Z2d, βA)-
module S0(Rd) is full.3

Proof. For this, we must again appeal to Lemma 4.1.25, which states that
any ideal I ⊂ C∗(Z2d, βA) satisfying ΦρA(−,z)(I) ⊂ I for all z ∈ R2d is trivial.

Fix z ∈ R2d. The basic commutation relation implies that

πA(z)πA(k)πA(z)
∗ = ρA(z, k)πA(k) = ρA(k, z)πA(k) for all k ∈ Z2d.

Thus, for f, g ∈ S0(Rd) and k ∈ Z2d, we find that(
ΦρA(−,z)(A⟨f, g⟩)

)
(k) = ρA(k, z)

〈
f, πA(k)g

〉
=
〈
f, ρA(k, z)πA(k)g

〉
=
〈
πA(z)

∗f, πA(k)πA(z)
∗g
〉
= A

〈
πA(z)

∗f, πA(z)
∗g
〉
(k),

where we are allowed to write the last expression because S0(Rd) is closed
under time-frequency shifts (Lemma 3.2.14). Thus,

ΦρA(−,z)(A⟨f, g⟩) = A⟨πA(z)∗f, πA(z)∗g⟩ for all f, g ∈ S0(Rd). (5.9)

Now, the vector-subspace

J := spanC
{
A⟨f, g⟩ : f, g ∈ S0(Rd)

}
⊂ ℓ1(Z2d, βA)

is an ideal by ℓ1(Z2d, βA)-sesquilinearity of the inner product. Let a ∈
C∗(Z2d, βA) and b ∈ J , where J denotes the closure of J in C∗(Z2d, βA).
Choose sequences (an)n ⊂ ℓ1(Z2d, βA) and (bn)n ⊂ J such that an → a and
bn → b in C∗(Z2d, βA). Then, (anbn)n ⊂ J , so ab ⊂ J by continuity of the
product (and similarly ba ∈ J). Thus, J is an ideal in C∗(Z2d, βA).

By continuity of ΦρA(−,z) and Equation (5.9), we can now conclude that

ΦρA(−,z)(J) ⊂ ΦρA(−,z)(J) ⊂ J for all z ∈ R2d.

Thus, J = C∗(Z2d, βA) by Lemma 4.1.25, which gives the result.

3Keep in mind that we are considering ℓ1(Z2d, βA) as a pre-C*-algebra, so that the
fullness condition requires the linear span of inner products to be dense w.r.t. the norm
ℓ1(Z2d, βA) inherits from C∗(Z2d, βA), i.e. the universal norm.
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5.1.14 Theorem (The Feichtinger algebra as a pre-equivalence bimod-
ule). Let A ∈ GL(2d,R). Then, S0(Rd) equipped with the left inner product
ℓ1(Z2d, βA)-module structure of Theorem 4.3.20 and the right inner product
ℓ1(Z2d, βA◦)-module structure of Proposition 5.1.12 becomes an ℓ1(Z2d, βA)-
ℓ1(Z2d, βA◦)-pre-equivalence bimodule.

Proof. Lemma 5.1.13 verifies condition (i) of Definition 5.1.7, we need to
verify conditions (ii) and (iii) of that definition.

We begin with (iii): we wish to show that

A⟨f, g⟩ · h = f · ⟨g, h⟩A◦ for all f, g, h ∈ S0(Rd).

If we unpack our notation, this becomes:∑
k∈Z2d

⟨f, πA(k)g⟩πA(k)h =
1

| detA|
∑
k∈Z2d

⟨πA◦(k)h, g⟩πA◦(k)∗f. (5.10)

Using Equation (5.8), we find that

⟨πA◦(k)h, g⟩πA◦(k)∗ = ⟨h, πA◦(k)∗g⟩πA◦(k)∗ = ⟨h, πA◦(−k)g⟩πA◦(−k)

for all k ∈ Z2d. Thus, Equation (5.10) is equivalent to:∑
k∈Z2d

⟨f, πA(k)g⟩πA(k)h =
1

| detA|
∑
k∈Z2d

⟨h, πA◦(k)g⟩πA◦(k)f,

which is precisely the Janssen representation of the frame operator SAg,h
(Theorem 3.2.26)! Thus, condition (iii) certainly holds.

Condition (ii) becomes:

⟨a · f, a · f⟩A◦ ≤ ∥a∥2⟨f, f⟩A◦ (5.11)

for all a ∈ ℓ1(Z2d, βA) and f ∈ S0(Rd), in addition to a similar statement
regarding the action of ℓ1(Z2d, βA◦) and the inner product A⟨·, ·⟩. These two
statements are proved similarly, so we only prove the one displayed above.

Now, Equation (5.11) is an equation in C∗(Z2d, βA◦). The action of
ℓ1(Z2d, βA◦) extends to an action of C∗(Z2d, βA◦) by Proposition 4.3.8. This
action is defined by the composite map

C∗(Z2d, βA◦)op
Γ−−−→ C∗(Z2d, βA◦)

ΠA◦−−−→ EndC(S0(Rd)),

where Γ is the isomorphism from Lemma 5.1.11 and ΠA◦ is the usual map
ΠA◦ : C∗(Z2d, βA◦) → B(L2(Rd)), only with the operators in its image re-
stricted to act on S0(Rd). We know ΠA◦ to be injective (Proposition 4.1.26),
so the composite ⋆-algebra homomorphism

C∗(Z2d, βA◦)op
Γ−−−→ C∗(Z2d, βA◦)

ΠA◦−−−→ B(L2(Rd))
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is injective as well. If we apply this composition to Equation (5.11), we obtain
the equation∑

k∈Z2d

⟨a · f, a · f⟩A◦(k)πA◦(k)∗ ≤
∑
k∈Z2d

∥a∥2⟨f, f⟩A◦(k)πA◦(k)∗ (5.12)

in B(L2(Rd)). By the first isomorphism theorem for C*-algebras (Theorem
2.2.33), we can consider C∗(Z2d, βA◦)op as a C*-subalgebra of B(L2(Rd)). By
spectral permanence, Equation (5.11) now holds in C∗(Z2d, βA◦)op if and only
if Equation (5.12) holds in B(L2(Rd)). Finally, the spectrum of an element in
C∗(Z2d, βA◦)op equals its spectrum in C∗(Z2d, βA◦) (invertibility in one implies
invertibility in the other), so the positivity condition is the same as well.
Thus, we can conclude that Equation (5.11) holds in C∗(Z2d, βA◦) if we can
prove Equation (5.12) in B(L2(Rd)).

By Proposition 2.2.28 and the density of S0(Rd) in L2(Rd) (Lemma 3.2.14),
it now suffices to check that〈

g · ⟨a · f, a · f⟩A◦ , g
〉
≤ ∥a∥2

〈
g · ⟨f, f⟩A◦ , g

〉
for all g ∈ S0(Rd). (5.13)

Applying condition (iii) twice, we find that4〈
g · ⟨a · f, a · f⟩A◦ , g

〉
=
〈
A⟨g, a · f⟩ · (a · f), g

〉
=
〈
a · f, A⟨g, a · f⟩∗ · g

〉
=
〈
a · f, A⟨a · f, g⟩ · g

〉
=
〈
a · f, (a · f) · ⟨g, g⟩A◦

〉
.

Now, ⟨g, g⟩A◦ ≥ 0, so we can consider its unique positive square root afforded
by Proposition 2.2.21. This square root will be an element of C∗(Z2d, βA◦),

but need not be in ℓ1(Z2d, βA◦). Thus, the action by ⟨g, g⟩1/2A◦ is part of the
extended action. Continuing our calculation, we find that〈

g · ⟨a · f, a · f⟩A◦ , g
〉
=
〈
(a · f) · ⟨g, g⟩1/2A◦ , (a · f) · ⟨g, g⟩1/2A◦

〉
. (5.14)

We claim that

(a · f) · ⟨g, g⟩1/2A◦ = a · (f · ⟨g, g⟩1/2A◦ ),

which is equivalent to the operator ΠA(a) commuting with the operator

defining the action of ⟨g, g⟩1/2A◦ . Now, anything that commutes with ⟨g, g⟩A◦

commutes with its square root, and ⟨g, g⟩A◦ acts as

1

| detA|
∑
k∈Z2d

⟨πA◦(k)g, g⟩πA◦(k)∗, while ΠA(a) =
∑
k∈Z2d

a(k)πA(k),

4Note that we did not use condition (ii) for equivalence bimodules for the second
equality, for this is the L2(Rd) inner product, and we know that the action ΠA◦ ◦ Γ is a
⋆-algebra homomorphism.
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and these operators commute by definition of the adjoint lattice (see Lemma
3.2.15 and the subsequent definition).

Finally, continuing where we left off with Equation (5.14), and using the
fact that ∥ΠA(a)∥ = ∥a∥, we find that〈

g · ⟨a · f, a · f⟩A◦ , g
〉
=
〈
a · (f · ⟨g, g⟩1/2A◦ ), a · (f · ⟨g, g⟩1/2A◦ )

〉
≤ ∥a∥2

〈
f · ⟨g, g⟩1/2A◦ , f · ⟨g, g⟩1/2A◦

〉
= ∥a∥2

〈
f, f · ⟨g, g⟩A◦

〉
= ∥a∥2

〈
f, A⟨f, g⟩ · g

〉
= ∥a∥2

〈
A⟨g, f⟩ · f, g

〉
= ∥a∥2

〈
g · ⟨f, f⟩A◦ , g

〉
.

This gives Equation (5.13), which means that we are done.

There is one part of the proof which we wish to emphasize, namely that
the associativity condition for the inner product, i.e. the condition that

A⟨f, g⟩ · h = f · ⟨g, h⟩A◦ for all f, g, h ∈ S0(Rd),

amounts the Janssen representation of the frame operator. This highlights
how deeply related the concrete duality in Gabor theory is to these equivalence
bimodules, which are quite abstract constructions motivated by representation
theory. We also saw how the proof relied on the defining commutativity
property between a lattice and its adjoint.

For any A ∈ GL(2d,R), we may now consider the equivalence bimodule
completion of S0(Rd) as an ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence bimodule.
This yields a C∗(Z2d, βA)-C

∗(Z2d, βA◦)-equivalence bimodule which we will
denote by AEA◦ . As a left Hilbert C∗(Z2d, βA)-module, AEA◦ is precisely AE ,
which we discussed at the end of Subsection 4.3.3. Now, we have seen that
we can consider AE as a left Hilbert Aθ-module (where θ = ATJA), because
of the isomorphism afforded by Corollary 4.2.6. The following proposition
shows that we can think of AEA◦ as an Aθ-Aθ−1-equivalence bimodule.

5.1.15 Proposition. Let A ∈ GL(2d,R) and let θ = ATJA. Then,

Aθ−1
∼= C∗(Z2d, βA◦) as C*-algebras

via the identification Uj 7→ δej for 1 ≤ j ≤ 2d.

Proof. We find that

(A◦)TJA◦ = (−JA−T )TJ(−JA−T ) = A−1JA−T = −(ATJA)−1 = −θ−1,

so that the symplectic form determined by the lattice matrix A◦ is −θ−1.
Certainly θ−1 ∈ T2d, and we have that

e2πil
T θ−1k = e2πiΩθ−1 (k,l) = ρA◦(k, l) = βA◦(k, l)βA◦(l, k)

for all k, l ∈ Z2d (by Equation (4.8) and the fact that Ωθ−1 = −Ω−θ−1). Thus,
Theorem 4.2.2 gives the desired result.



5.2.1. Morita Equivalence of Noncommutative Tori 189

5.2 | Relating Morita Equivalence to Lattices

We have now seen how the duality in Gabor theory, based on the interplay
between a lattice Λ = AZ2d and its adjoint Λ◦ = A◦Z2d, is reflected in the
existence of an equivalence bimodule between the noncommutative tori Aθ

and Aθ−1 . This means that certain instances of Morita equivalence between
noncommutative tori are connected to duality in Gabor theory. However,
there are pairs of Morita equivalent noncommutative tori Aθ and Aθ′ for
which θ′ ̸= θ−1. In this section we take a slight detour from our main objective
and explore how the general notion of Morita equivalence of noncommutative
tori may be connected to Gabor theory and to duality in particular.

5.2.1 Morita Equivalence of Noncommutative Tori

As we mentioned when introducing noncommutative tori in Section 4.2: they
are well studied objects and much is known about their structure. This
subsection provides an example of this: there is a good understanding of when
two noncommutative tori are Morita equivalent. In particular, we will see a
sufficient condition for Morita equivalence. This condition is not necessary,
but it comes close to being necessary, for there is a strengthening of the notion
of Morita equivalence of noncommutative tori for which it is both necessary
and sufficient. More on this can be found in our reference for this subsection,
Li [20], who is proving a conjecture of Rieffel and Schwarz [25].

We define the group SO(2d, 2d |Z) to be the set of all matrices

g =

(
K L

M N

)
∈M4d(Z)

where K,L,M,N ∈M2d(Z) satisfy the following conditions:

KTM +MTK = 0 = LTN +NTL and KTN +MTL = I. (5.15)

Of course, based on this description, it is not obvious that such matrices form
a group. We will not be concerned with the group structure, so we omit the
verifications.

The advertised sufficient condition for Morita equivalence is based on
an action of SO(2d, 2d |Z) on the set T2d of all antisymmetric matrices in
M2d(R).

5.2.1 Theorem. Let θ ∈ T2d. Suppose that g ∈ SO(2d, 2d |Z) (with blocks
K,L,M,N ∈M2d(Z) as above). If Mθ +N ∈ GL(2d,R), set

g · θ := (Kθ + L)(Mθ +N)−1.
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Then, g · θ ∈ T2d and Ag·θ is Morita equivalent to Aθ.

Proof. The fact that g · θ ∈ T2d can be shown quite easily by using the
generators for SO(2d, 2d |Z) which we are about to introduce. For the claim
about Morita equivalence, see Li [20, Theorem 1.1] (who uses the term strong
Morita equivalence for what we are calling Morita equivalence).

We now define three classes of elements in SO(2d, 2d |Z):

ρ(R) :=

(
RT 0

0 R−1

)
for R ∈ GL(2d,Z), (5.16)

ν(N) :=

(
I2d N

0 I2d

)
for antisymmetric N ∈M2d(Z) (5.17)

and σ2p :=

(
I2d − P2p P2p

P2p I2d − P2p

)
for 1 ≤ p ≤ d, (5.18)

where P2p = I2p ⊕ 02(d−p) denotes the projection onto the first 2p factors
of R2d. In [25], Rieffel and Schwarz show that σ2 (p = 1) together with
all elements of the form ρ(R) and ν(N) generate SO(2d, 2d |Z) as a group.
We have slightly modified their definition of ρ(R) so that it is more in line
with our conventions (we have replaced R with RT , which we may, since the
transpose is a bijection of GL(2d,Z)).

In the following two subsections, we will attempt to interpret the Morita
equivalences afforded by Theorem 5.2.1 in terms of relations among lattice
matrices. If we expand our conception of Gabor analysis and replace Rd

by an arbitrary locally compact abelian group, then there already exists
a very satisfactory explanation of how these Morita equivalences relate to
lattices (see the discussion of embedding maps by Li [20], which is a notion
that appears already in Rieffel’s work [27]). However, this connection relates
lattices in R2d via lattices in larger groups. We wish to explore what can be
said purely in terms of lattices on R2d. To our knowledge, this has not been
done before.

Although Theorem 5.2.1 holds for all θ ∈ T2d, we are concerned only with
those matrices representing symplectic forms, so we will mostly restrict our
attention to the case where θ, g · θ ∈ S2d.

5.2.2 Linear Permutations and Combinations of Lat-
tices

In this subsection we consider generators of the form ρ(R) and ν(N) for
R ∈ GL(2d,Z) and NT = −N ∈M2d(Z), as defined by equations (5.16) and
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(5.17).
The first of these, the ρ(R)’s, correspond to an equivalence we have already

met. If we let θ ∈ S2d, then{
ρ(R) · θ : R ∈ GL(2d,Z)

}
=
{
RT θR : R ∈ GL(2d,Z)

}
⊂ S2d,

and this is precisely the set of matrices representing those symplectic forms
determined by a fixed lattice Λ; see Proposition 3.2.10. The action of ρ(R) on
θ = ATJA corresponds to a linear permutation of the lattice AZ2d. Indeed,
the equivalence between (a) and (b) in the following proposition is precisely
the content of Proposition 3.2.10. However, since the notation and setting is
slightly different and the proof is so simple, we include it here as well.

5.2.2 Proposition. Let θ, θ′ ∈ S2d. Then, the following statements are
equivalent.

(a) There exists some R ∈ GL(2d,Z) such that θ′ = ρ(R) · θ.

(b) There exist A,B ∈ GL(2d,R) such that θ = ATJA, θ′ = BTJB and
AZ2d = BZ2d.

Moreover, if (b) holds, then (a) holds with R = A−1B, we have that

ΦR : C
∗(Z2d, βB) → C∗(Z2d, βA)

δk 7→ δRk

is an (isometric) ⋆-algebra isomorphism, and Aθ
∼= Aθ′ as C*-algebras.

Proof. Suppose that (a) holds. Choose A ∈ GL(2d,R) such that θ = ATJA
(by Proposition 1.1.8) and set B = AR. Then,

BTJB = (AR)TJ(AR) = RT θR = ρ(R) · θ = θ′,

and AZ2d = A(RZ2d) = BZ2d. Thus, (b) follows from (a).
Now, suppose that (b) holds. Then, since AZ2d = BZ2d, we must have

A−1B ∈ GL(2d,Z) (Lemma 3.2.1). Thus, with R := A−1B, we find that

ρ(R) · θ = RT (ATJA)R = (AR)TJ(AR) = BTJB = θ′,

so (a) follows. This proves the equivalence of (a) and (b).
Suppose now that (b) holds and set R = A−1B. Our proof that (b) implies

(a) shows that (a) holds with this choice of R. Since AZ2d = BZ2d, we have
that

πA(Z2d) =
{
π(Ak) : k ∈ Z2d

}
=
{
π(Bk) : k ∈ Z2d

}
= πB(Z2d)
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and hence that C∗(πA(Z2d)) = C∗(πB(Z2d)) (these are just two descriptions
of the exact same C*-subalgebra of B(L2(Rd))). Noting that B = AR and
recalling the ⋆-algebra isomorphisms of Proposition 4.1.26, the composition

C∗(Z2d, βB)
ΠB−−→ C∗(πB(Z2d)) = C∗(πA(Z2d))

Π−1
A−−→ C∗(Z2d, βA)

δk 7→ πB(k) = πA(Rk) 7→ δRk

provides an isomorphism of C*-algebras, as claimed. Finally, by Corollary
4.2.6, we also have that

Aθ
∼= C∗(πA(Z2d)) = C∗(πB(Z2d)) ∼= Aθ′ as C*-algebras,

which concludes the proof.

We now see how the fact that a single lattice Λ ⊂ R2d determines multiple
symplectic forms fits into the framework of modules over noncommutative tori.
The two modules that result from two arbitrary choices A,B ∈ GL(2d,R)
of lattices matrices for Λ = AZ2d = BZ2d are related by an isomorphism
AAT JA

∼= ABT JB of C*-algebras. Thus: even though a fixed lattice does not
determine a unique symplectic form, it determines a unique noncommutative
torus, up to isomorphisms of C*-algebras. Moreover, we can easily go between
the resulting modules via the transition procedure outlined shortly after
Definition 4.3.1 of inner product modules.

As for generators of the form ν(N), with NT = −N ∈M2d(Z), as defined
by Equation (5.17), it seems difficult to give a complete description in terms
of lattices on R2d. To see why this is the case, note that the action of ν(N)
on T2d corresponds to the map

θ 7→ ν(N) · θ = θ +N,

which means that e2πiθij = e2πi(ν(N)·θ)ij for all 1 ≤ i, j ≤ 2d. While this
changes the symplectic form, it does not change the noncommutative torus
at all: Aθ = Aν(N)·θ, since the NCT-relations only involve the exponentiated
version of the symplectic form. Thus, this correspondence seems to have more
to do with the fact that noncommutative tori only depend on exponentiated
symplectic forms than it has to do with the symplectic forms themselves, and
this is not true of lattices.

However, we can exploit this correspondence to derive some consequences
for Gabor theory. To do so, we should introduce some terminology which
we could have introduce in Chapter 1, on linear symplectic algebra. Given
a symplectic form Ω: R2d × R2d → R, a subspace V ⊂ R2d is called Ω-
isotropic if ΩV×V = 0 (i.e. if Ω(v, w) = 0 for all v, w ∈ V ). In particular,
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Ω-Lagrangian subspaces are Ω-isotropic (and can in fact be characterized as
maximal Ω-isotropic subspaces).

In the following proposition, we will write θA := ATJA for any A ∈M2d(R).
Note that in order for θA to represent a symplectic form, we must have
A ∈ GL(2d,R). The value of the following proposition is that it gives us
means to modify a lattice without changing the noncommutative torus it
determines, which may have implications for the structure of Gabor frames
over that lattice.

5.2.3 Proposition. Let A ∈ GL(2d,R) and let K,L ∈ M2d(Z). Then, we
have that

θAK+A◦L = ν(N) · (θAK + θA◦L) for some N = −NT ∈M2d(Z).

In particular, AθAK+A◦L = AθAK+θA◦L.
As a special case, we find that

θA+A◦L = ν(N) · θA if θA◦L = 0.

Geometrically, A+ A◦L is obtained by adding to the columns of A a set of
vectors from the adjoint lattice A◦Z2d that belong to an ΩJ -isotropic subspace.

Proof. Expanding out, we find that

θAK+A◦L = (AK + A◦L)TJ(AK + A◦L)

= θAK + (AK)TJ(A◦L) + (A◦L)TJ(AK) + θA◦L.

Let now

N := (AK)TJ(A◦L) + (A◦L)TJ(AK)

= KT (ATJA◦)L+ LT ((A◦)TJA)K.

Recalling that A◦ = −JA−T , we find that

ATJA◦ = ATJ(−JA−T ) = I and (A◦)TJA = −(ATJA◦)T = −I,

and hence that N = KTL− LTK = KTL− (KTL)T . The fact that K and
L are integer-valued now implies that N = −NT ∈ M2d(Z), and the first
displayed equation of the proof shows that

θAK+A◦L = θAK + θA◦L +N = ν(N) · (θAK + θA◦L),

as desired.
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As for the geometric characterization of the special case, note that θA◦L = 0
if and only if

0 = (θA◦L)ij = eTi (A
◦L)TJ(A◦L)ej = (A◦Lei)

TJ(A◦Lej),

or equivalently:

ΩJ(A
◦Lei, A

◦Lej) = 0 for all 1 ≤ i, j ≤ 2d.

Since L ∈M2d(Z), the columns {A◦Lej}2dj=1 of A◦L belong to the set A◦Z2d,
and the last displayed equation shows that L must be chosen so that these
span an ΩJ -isotropic subspace.

In particular, given any A ∈ GL(2d,R), this proposition shows that we
can add any single vector from the adjoint lattice Λ◦ = A◦Z2d to any column
of A without changing the torus AθA , since all one-dimensional subspaces
are ΩJ -isotropic by antisymmetry of ΩJ . Note, however, that the resulting
matrix A+ A◦L could fail to be invertible.

5.2.3 Partially Adjoint Lattices

In this subsection we consider generators of the form σ2p, as defined by
Equation (5.18). We first consider the case where p = d, as this will give us
some valuable insight.

5.2.4 Proposition. Let θ ∈ S2d. Then, σ2d · θ = θ−1, and if A ∈ GL(2d,R)
determines θ (i.e. if θ = ATJA), then A◦ determines −θ−1.

Proof. The fact that σ2d · θ = θ−1 is immediate from the definitions. We
have already seen that θ = ATJA =⇒ −θ−1 = (A◦)TJA◦ in the proof of
Proposition 5.1.15.

We now see that this particular Morita equivalence is implemented by
the Aθ-Aθ−1-equivalence bimodule we constructed in Subsection 5.1.2. The
action by σ2d on T2d therefore corresponds precisely to the duality between a
lattice and its adjoint. The fact that it is Aθ−1 and not A−θ−1 that is Morita
equivalent to Aθ, even though A◦ determines −θ−1, stems from the fact that
Aop
θ−1

∼= A−θ−1 . This last fact is obvious with regard to the NCT-relations, and
may also be understood in terms of twisted group C*-algebras and 2-cocycles
via the isomorphism C∗(Z2d, βA◦)op ∼= C∗(Z2d, βA◦) from Lemma 5.1.11.

We now consider the cases where 1 ≤ p ≤ d−1. Let θ ∈ S2d, set q := d−p
and write

θ =

(
θ11 θ12

θ21 θ22

)
, (5.19)
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where θ11 ∈ T2p, θ22 ∈ T2q and θ12 is a 2p× 2q matrix. Note that θ21 = −θT12.
For the rest of this subsection, unless otherwise stated, all matrices written
in block form will have blocks of these sizes.

If θ11 is invertible, then there is a formulaic way of block-diagonalizing θ,
namely:

θ =

(
I2p θ−1

11 θ12

0 I2q

)T (
θ11 0

0 θ22 − θ21θ
−1
11 θ12

)(
I2p θ−1

11 θ12

0 I2q

)
. (5.20)

The main result of this subsection will be a straightforward consequence of
this decomposition. We will refer to Equation (5.20) as the block-diagonal
decomposition of θ.

5.2.5 Lemma. Let 1 ≤ p ≤ d − 1 and partition θ ∈ S2d as in Eq. (5.19).
Then, σ2p · θ exists if and only if θ11 is invertible. In this case, we have that

σ2p · θ =

(
θ−1
11 −θ−1

11 θ12

θ21θ
−1
11 θ22 − θ21θ

−1
11 θ12.

)

=

(
I2p −θ12
0 I2q

)T (
θ−1
11 0

0 θ22

)(
I2p −θ12
0 I2q

)
.

In particular, σ2p · θ is invertible if and only if θ22 is invertible.

Proof. The definitions of σ2p and σ2p · θ imply that

σ2p · θ =

(
I2p 0

θ21 θ22

)(
θ11 θ12

0 I2q

)−1

.

With A,B,C,D ∈M2d(R) arbitrary, we see that(
θ11 θ12

0 I2q

)(
A B

C D

)
=

(
θ11A+ θ12C θ11B + θ12D

C D

)
.

The right hand side is equal to the identity matrix if and only if C = 0,
D = I2q, θ11 is invertible, A = θ−1

11 and B = −θ−1
11 θ12. Both expressions for

σ2p · θ are now straightforward to verify. The second expression is just the
block-diagonal decomposition of σ2p · θ determined by Equation (5.20).

Finally, one may check that(
I2p −θ12
0 I2q

)−1

=

(
I2p θ12

0 I2q

)
,

which gives the claim regarding invertibility.
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In order to interpret the relation between θ and σ2p · θ in terms of lattices,
we will change basis in R2d such that J becomes

J2p ⊕ J2q =

(
J2p 0

0 J2q

)
,

where J2p and J2q are the standard symplectic matrices of dimensions corre-
sponding to their subscripts. Note that, by Proposition 5.2.4, it is natural
to seek a relation between lattice matrices determining θ and −σ2p · θ. Since
the d = p case corresponds to the relation between a lattice and its adjoint,
the idea is that the d < p case should be describable in terms of “partially
adjoint” lattices (or a “partial dualization”, if you will).

5.2.6 Proposition (Partially adjoint lattices). Let 1 ≤ p ≤ d−1 and assume
that σ2p · θ ∈ S2d for some θ ∈ S2d. Write θ in block form as in Eq. (5.19).
Then,

θ11, θ22 and θ22 − θ21θ
−1
11 θ12

are all invertible. Let A1, A2 and B2 be invertible square matrices (guaranteed
to exist by Proposition 1.1.8) such that

AT1 J2pA1 = θ11, AT2 J2qA2 = θ22 − θ21θ
−1
11 θ12 and BT

2 J2qB2 = θ22,

and let X be any 2q×2q matrix such that XTJ2qX = −J2q, e.g. X = (−Iq)⊕Iq.
Then, with respect to the basis defined just prior to this proposition,

A =

(
A1 A◦

1θ12

0 A2

)
and B =

(
A◦

1 −A◦
1θ12

0 XB2

)

(where A◦
1 = −J2pA−T

1 ) determine the symplectic forms (represented by) θ
and −σ2p · θ, respectively. That is,

AT (J2p ⊕ J2q)A = θ and BT (J2p ⊕ J2q)B = −σ2p · θ.

Proof. Our assumption is that θ ∈ S2d and that σ2p · θ exists and is invertible.
By Lemma 5.2.5, we know that θ11 and θ22 are invertible. Since θ is invertible,
the block-diagonal decomposition of θ given by Equation (5.20) implies that
θ22 − θ21θ

−1
11 θ12 is invertible as well. The matrices θ11, θ22 − θ21θ

−1
11 θ12 and θ22

are all in S2d (recall that θT12 = −θ21), so Proposition 1.1.8 guarantees the
existence of A1, A2 and B2, as claimed.
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The block-diagonal decomposition of θ also shows that

A :=

(
A1 0

0 A2

)(
I2p θ−1

11 θ12

0 I2q

)

determines θ, since A1 ⊕ A2 determines θ11 ⊕ (θ22 − θ21θ
−1
11 θ12). Since

(A◦
1)
TJ2pA

◦
1 = −θ−1

11 and (XB2)
TJ2q(XB2) = −θ22,

the block-diagonal decomposition of σ2p · θ given in Lemma 5.2.5 similarly
shows that

B :=

(
A◦

1 0

0 XB2

)(
I2p −θ12
0 I2q

)
determines −σ2p · θ. Multiplying out these expressions for A and B and using
the fact that θ−1

11 = A−1
1 (−J2p)A−T

1 = A−1
1 A◦

1 yields the forms given in the
proposition.

We now attempt to formulate this result in more geometric terms and to
show how everything connects to the passage from A1 to A◦

1 and hence from
θ11 to −θ−1

11 (which we will refer to as the dualization of θ11).
Let θ and σ2p · θ be as in Proposition 5.2.6. If we introduce ϕ := θ−1

11 θ12,
we can write the block-diagonal decomposition of θ as

θ =

(
I2p ϕ

0 I2q

)T (
θ11 0

0 θ22 − ϕ∗θ11

)(
I2p ϕ

0 I2q

)
,

where ϕ∗θ11 = ϕT θ11ϕ. We use this notation because the matrix ϕ∗θ11 repre-
sents the pullback by ϕ : R2q → R2p of the form represented by θ11. In other
words: ϕ∗Ωθ11 = Ωϕ∗θ11 . This decomposition shows that the symplectic form
Ωθ on R2p+2q can be described geometrically by the restricted forms Ωθ11 and
Ωθ22 on R2p and R2q, along with the linear transformation ϕ : R2q → R2p.

The block-diagonal decomposition of σ2p · θ can be written as

θ′ =

(
I2p ψ

0 I2q

)T (
θ−1
11 0

0 θ22

)(
I2p ψ

0 I2q

)
,

where ψ := −θ12. Now, the linear transformations ϕ, ψ : R2q → R2p are related
by:

ϕ∗θ11 = (θ−1
11 θ12)

T θ11(θ
−1
11 θ12) = θT12θ

−T
11 θ12 = −θT12θ−1

11 θ12 = ψ∗(−θ−1
11 ).
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We can also write this as

(A1ϕ)
∗ΩJ = ϕ∗Ωθ11 = ψ∗Ω−θ−1

11
= (A◦

1ψ)
∗ΩJ .

Thus, we see that ϕ and ψ are directly related by the dualization of θ11.
Moreover, with this notation, the lattice matrices A and B of Proposition
5.2.6 become

A =

(
A1 A1ϕ

0 A2

)
and B =

(
A◦

1 A◦
1ψ

0 XB2

)
,

and we can determine B2 (to the degree that B2 is determined by the propo-
sition, namely up to symplectic transformations) via the equation:

(B2)
∗ΩJ = (A2)

∗ΩJ + (A1ϕ)
∗ΩJ = (A2)

∗ΩJ + (A◦
1ψ)

∗ΩJ

(this is just the equation θ22 = (θ22 − θ21θ
−1
11 θ12) + θ21θ

−1
11 θ12 in different

notation).



Chapter 6

Metaplectic Transformations

6.1 | Metaplectic Transformations and Equiv-

alence Bimodules

This final section consists of three subsections. In the first, we introduce
metaplectic transformations and discover the convenience of Heisenberg-Weyl
operators (introduced in Subsection 3.1.2) over time-frequency shifts. In the
second, we show how to reformulate our equivalence bimodules from Chapter
5 in terms of Heisenberg-Weyl operators. In the third, we make good on our
promises from Subsection 3.2.2 and show the structure of Gabor frames over
a lattice depends only the symplectic form determined by any of its lattice
matrices. This statement takes two forms: we state one result with regard to
the general L2(Rd)-theory and one with regard to our equivalence bimodules.
In particular, we will construct isomorphisms between equivalence bimodules
arising from lattice matrices related by a symplectic transformation.

6.1.1 The Metaplectic Representation

The subject of the metaplectic group is beautiful and subtle, and deserves a
proper introduction. This is not a simple task, so we will settle for a simpler
presentation that suffices for our needs and refer the interested reader to de
Gosson [15, Chapter 7], who is our main source for this topic.

Recall Proposition 1.2.6, which states that the symplectic group Sp(2d,R)
is generated by all elements of the form

J =

(
0 Id

−Id 0

)
, VP =

(
Id 0

−P Id

)
and ML =

(
L−1 0

0 LT

)
, (6.1)
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where P T = P ∈Md(R) and L ∈ GL(d,R). Recall also the Heisenberg-Weyl
operators from Subsection 3.1.2:

ψ(z) :=Mω/2TxMω/2 = e−πix·ωπ(z) for z = (x,w) ∈ R2d. (6.2)

Shortly after introducing these operators, we noted the identity:

Fψ(x, ω) = ψ(ω,−x)F for all z = (x, ω) ∈ R2d,

where F denotes the Fourier transform on Rd. One may now notice that we
can write this identity as Fψ(z) = ψ(Jz)F . That is, we have the commutative
diagram

L2(Rd) L2(Rd)

L2(Rd) L2(Rd)

ψ(z) ψ(Jz)

F

F

for each z ∈ R2d.
This is but the tip of an iceberg: for any symplectic transformation

S ∈ Sp(2d,R), we can find a unitary operator U on L2(Rd) such that

Uψ(z) = ψ(Sz)U for all z ∈ R2d.

Of course, if U satisfies this identity, then, for any ξ ∈ T, ξU is another
unitary operator satisfying this identity. It turns out that there is a way to
choose exactly two such operators for each S ∈ Sp(2d,R) (differing only by a
sign) in such a manner that their collection forms a double covering group
of the symplectic group Sp(2d,R). This is the metaplectic group Mp(2d,R),
realized as a subgroup of U(L2(Rd)). This realization is also referred to as
the metaplectic representation.

We will not go into the details of this construction; we will settle for an
ad hoc definition that is sufficient for our purposes. We first introduce the
metaplectic operators associated to each of the generators from Equation
(6.1), and then we simply define the metaplectic group as the subgroup of
U(L2(Rd)) generated by these operators.1

We have already seen that the Fourier transform F satisfies the desired
relation for J . In order to obtain the metaplectic group, we have to multiply
it by a certain phase. The correction choice turns out to be e−πid/4.

1For a proof that this method gives the same result as the usual definition, see de
Gosson [15, Corollary 112 on p. 83].
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6.1.1 Definition (Generators of the metaplectic group). Let MT = M ∈
Md(R) and let L ∈ GL(d,R). Choose m ∈ {0, 1, 2, 3} so that im

√
| detL| is

a square root of detL (that is, choose m ∈ {0, 2} if detL > 0 and m ∈ {1, 3}
if detL < 0). We define the operators Ĵ , V̂P and M̂L,m on L2(Rd) by

� Ĵf(t) = e−πid/4Ff(t) = e−πid/4
∫
Rd

f(x)e−2πix·t dx

� V̂Pf(t) = e−πi(Pt)·tf(t)

� M̂L,mf(t) = im
√

| detL|f(Lt)

for all t ∈ Rd and f ∈ L2(Rd).

With the unitarity of F in mind, it is straightforward to see that all of
these operators are unitary; we omit the details. We will show that they
behave as advertised:

6.1.2 Lemma. We have that

� Ĵψ(z) = ψ(Jz)Ĵ

� V̂Pψ(z) = ψ(VP z)V̂P

� M̂L,mψ(z) = ψ(MLz)M̂L,m

for all z ∈ R2d, MT =M ∈Md(R), L ∈ GL(d,R) and m ∈ {0, 1, 2, 3} (where
the m’s are chosen in accordance with Definition 6.1.1).

Proof. Since Ĵ = e−πid/4F , it follows immediately from our discussion in the
opening of this subsection that Ĵψ(z) = ψ(Jz)Ĵ holds. As for the remaining
identities, we must calculate.

Let f ∈ L2(Rd) and t ∈ Rd. We first calculate with time-frequency shifts,
because they involve less phase factors. With z = (x, ω) ∈ R2d, we find that(

V̂Pπ(z)f
)
(t) = V̂P

(
e2πiω·tf(t− x)

)
= e−πi(Pt)·te2πiω·tf(t− x)

and moreover that(
π(VP z)V̂Pf

)
(t) = π(x, ω − Px)

(
e−πi(Pt)·tf(t)

)
= e2πi(ω−Px)·te−πi(Pt−Px)·(t−x)f(t− x)

= e−2πi(Px)·teπi(Pt)·xeπi(Px)·(t−x)
(
V̂Pπ(z)f

)
(t).
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Since P = P T ,

−2(Px) · t+ (Pt) · x+ (Px) · (t− x) = −(Px) · x,

from which we can conclude that π(VP z)V̂P = e−πi(Px)·xV̂Pπ(z). Using the
relation between time-frequency shifts and Heisenberg-Weyl operators (Equa-
tion (6.2)), we now see that

ψ(VP z)V̂P = ψ(x, ω − Px)V̂P = e−πix·(ω−Px)π(VP z)V̂P

= e−πix·ωV̂Pπ(z) = V̂Pψ(z),

which proves the second identity.
When it comes to the last identity, the constant im

√
| detL| plays no

role. Without this constant, M̂L,m is just the operator Lt : L2(Rd) → L2(Rd)
defined by Ltf = f ◦ L. We find that(

Ltψ(z)f
)
(t) = Lt

(
e−πix·ωe2πiω·tf(t− x)

)
= e−πix·ωe2πiω·(Lt)f(Lt− x)

and that(
ψ(MLz)L

tf
)
(t) = ψ(L−1x, LTω)

(
f(Lt)

)
= e−πi(L

−1x)·(LTω)e2πi(L
Tω)·tf

(
L(t− L−1x)

)
.

The fact that ω · (Lt) = (LTω) · t and (L−1x) · (LTω) = x · ω implies that
these two expression are equal, so that Ltψ(z) = ψ(MLz)L

t. Multiplying by
im
√
| detL| now gives the third identity and concludes the proof.

6.1.3 Definition (The metaplectic group). We define the metaplectic group
Mp(2d,R) to be the subgroup of U(L2(Rd)) generated by the set of operators
from Definition 6.1.1.

6.1.4 Proposition. For each S ∈ Sp(2d,R), there exists a metaplectic

operator Ŝ ∈ Mp(2d,R) such that

Ŝψ(z) = ψ(Sz)Ŝ for all z ∈ R2d.

Equivalently: such that the diagram

L2(Rd) L2(Rd)

L2(Rd) L2(Rd)

Ŝ

Ŝ

ψ(z) ψ(Sz)

commutes for each z ∈ R2d. We refer to this situation by saying that Ŝ is a
metaplectic operator associated to the symplectic matrix S.
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Proof. Suppose that we have two symplectic matrices S1, S2 ∈ Sp(2d,R), and
that we have metaplectic operators Ŝ1, Ŝ2 ∈ Mp(2d,R) associated to these

matrices. Then, Ŝ1Ŝ2 is a metaplectic operators associated to the product
S1S2, because

Ŝ1Ŝ2ψ(z) = Ŝ1ψ(S2z)Ŝ2 = ψ(S1S2z)Ŝ1Ŝ2 for all z ∈ R2d.

By Proposition 1.2.6, any S ∈ Sp(2d,R) can be written as a finite product
of elements from the set

{VP : P T = P ∈Md(R)} ∪ {ML : L ∈ GL(d,R)} ∪ {J},

and by Lemma 6.1.2, every element of this set has an associated metaplectic
operator. A simple inductive argument modelled on the previous paragraph
now provides the proof.

We emphasize that the foregoing proposition does not hold for time-
frequency shifts. Recalling the canonical projections

P1 : R2d → Rd

(x, ω) 7→ x
and

P2 : R2d → Rd

(x, ω) 7→ ω,

we can write the relation between time-frequency shifts and Heisenberg-Weyl
operators as follows:

ψ(z) = e−πiP2(z)·P1(z)π(z) for all z ∈ Z2d.

For any S ∈ Sp(2d,R), with associated metaplectic operator Ŝ ∈ Mp(2d,R),
we now find that

π(Sz)Ŝ = eπiP2(Sz)·P1(Sz)ψ(Sz)Ŝ = eπiP2(Sz)·P1(Sz)e−πiP2(z)·P1(z)Ŝπ(z),

and these phase factors will generally not cancel. Because of the explicit
dependence on z, we cannot absorb these phase factors into our metaplectic
operators either.

6.1.2 Heisenberg-Weyl Operators and Bimodules

Having begun to see the advantage of Heisenberg-Weyl operators over time-
frequency shifts, we now wish to recast our equivalence bimodules from
Chapter 5 in terms of Heisenberg-Weyl operators. This will give us a nice
opportunity to recap the overall story as well.
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Let A ∈ GL(2d,R). For time-frequency shifts, we have seen that the
identity

πA(z)πA(w) = e−2πiP2(Aw)·P1(Az)πA(z + w) = βA(z, w)πA(z + w) (6.3)

is of fundamental importance: it lead us to βA-twisted representations of Z2d,
the βA-twisted group C*-algebra C∗(Z2d, βA) and its dense subset ℓ1(Z2d, βA),
which we used to imbue the Feichtinger algebra S0(Rd) with the structure of
an ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence bimodule.
We now tell the same story with Heisenberg-Weyl operators in place of

time-frequency shifts. Using the relation ψ(z) = e−πix·ωπ(z), where z = (x, ω),
we find that

ψ(z)ψ(w) = e−πiω·xe−πiη·ye−2πiη·xπ(z + w)

= e−πiω·xe−πiη·ye−2πiη·xeπi(x+y)·(ω+η)ψ(z + w)

= eπi(y·ω−η·x)ψ(z + w) = eπiΩJ (z,w)ψ(z + w)

for all z = (x, ω), w = (y, η) ∈ R2d. We now introduce the notation

ψA(z) := ψ(Az) for all z ∈ R2d,

and with θ := ATJA, we define the Heisenberg-Weyl cocycle determined by
A to be the map

γθ : R2d × R2d → Rd

(z, w) 7→ γθ(z, w) = eπiΩθ(z,w).

Then, for all z, w ∈ R2d, we have that

ψA(z)ψA(w) = eπiΩJ (Az,Aw)ψA(z + w) = γθ(z, w)ψA(z + w). (6.4)

This it the analogue of Equation (6.3) for Heisenberg-Weyl operators. We see
that the cocycle βA has been replaced by γθ = γAT JA.

A convenient simplification has occurred already at this stage: the explicit
dependence on A has disappeared from the cocycle. Indeed, the cocycle
depends only on the symplectic form determined by A. Not only is this more
in line with our philosophy of emphasizing symplectic forms over lattices,
but it makes it much easier to consider maps between modules, for while
C∗(Z2d, βA) and C

∗(Z2d, βB) are isomorphic whenever ATJA = BTJB, the
corresponding twisted group C*-algebras for Heisenberg-Weyl operators will
be equal, since γAT JA = γBT JB.

Moreover, the isomorphism C∗(Z2d, βA) → C∗(Z2d, βB) is not as simple
as one might hope, for δk 7→ δk is generally not an algebra homomorphism.
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Indeed, it seems that the overall simplest isomorphism is obtained by re-
lating each of these C*-algebras to their common Heisenberg-Weyl coun-
terparts (via the upcoming Lemma 6.1.5). Because of the isomorphisms
C∗(Z2d, βA) ∼= Aθ

∼= C∗(Z2d, βB) from Corollary 4.2.6, we also know that
there is an isomorphism C∗(Z2d, βA) → C∗(Z2d, βB) determined by δej 7→ δej .
However, if one wants to relate δk ∈ C∗(Z2d, βA) to δk ∈ C∗(Z2d, βB) under
this isomorphism, one will encounter complicated phase factors such as those
from Lemma 4.2.4.

Returning to the main story: Equation (6.4) shows that the map

ψA : Z2d → U
(
L2(Rd)

)
k 7→ ψA(k)

defines a γθ-twisted representation of Z2d. By Theorem 4.1.13, this determines
a unique ⋆-algebra homomorphism

ΨA : C
∗(Z2d, γθ) → B

(
L2(Rd)

)
δk 7→ ΨA(δk) = ψA(k).

Like ΠA, this map will be injective, and we can use it to equip the Feichtinger
algebra S0(Rd) with a left inner product ℓ1(Z2d, γθ)-module structure and
then obtain an appropriate pre-equivalence bimodule structure. One can do
all of this by retracing our steps from the previous chapters (and appropriately
adapting the crucial Lemma 4.1.25 by Green). Indeed, not much changes: by
cancellations of phase factors, the FIGA and the Janssen representation will
continue to hold with Heisenberg-Weyl operators in place of time-frequency
shifts. However, so as not to sweep too many details under the rug, we
will build on the results we already have and show how to transfer the
familiar ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence bimodule structure to the
Heisenberg-Weyl setting.

The following lemma simply shows that the correspondence

ψ(z) = e−πix·ωπ(z) = e−πiP2(z)·P1(z)π(z)

leads to the expected isomorphism C∗(Z2d, γθ) ∼= C∗(Z2d, βA).

6.1.5 Lemma. Let A ∈ GL(2d,R) and let θ = ATJA. Then, there is a
⋆-algebra isomorphism

ΞA : C
∗(Z2d, γθ) → C∗(Z2d, βA)

δk 7→ e−πiP2(Ak)·P1(Ak)δk.

Moreover, ΨA = ΠA ◦ ΞA.
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Proof. Recall that D := {δk : k ∈ Z2d} is a vector space basis for any twisted
group algebra C[Z2d, γ]. Consider the linear map defined by

ΞA : C[Z2d, γθ] → C[Z2d, βA]

δk 7→ e−πiP2(Ak)·P1(Ak)δk.

This is clearly a bijection, for we can eyeball its inverse. We will show that it
is a ⋆-algebra homomorphism as well.

For any k ∈ Z2d, we find that

ΞA(δ
∗
k) = ΞA

(
γθ(−k, k)δ−k

)
= ΞA(δ−k) = e−πiP2(−Ak)·P1(−Ak)δ−k

and ΞA(δk)
∗ = βA(−k, k)e−πiP2(Ak)·P1(Ak)δ−k,

from which the fact that βA(−k, k) = e−2πiP2(Ak)·P1(−Ak) implies that ΞA(δ
∗
k) =

ΞA(δk)
∗. Since the involutions on these algebras are conjugate-linear exten-

sions of their restrictions to D, this implies that ΞA preserves the involution.
For any k, l ∈ Z2d, we find that

ΞA(δk ∗γθ δl) = γθ(k, l)ΞA(δk+l)

= γθ(k, l)e
−πiP2(Ak+Al)·P1(Ak+Al)δk+l

= eπi(P2(Ak)·P1(Al)−P2(Al)·P1(Ak))e−πiP2(Ak+Al)·P1(Ak+Al)δk+l

= e−2πiP2(Al)·P1(Ak)e−πiP2(Ak)·P1(Ak)e−πiP2(Al)·P1(Al)δk+l

= ΞA(δk) ∗βA ΞA(δl),

where we used that Ωθ(k, l) = ΩJ(Ak,Al) = P2(Ak) ·P1(Al)−P2(Al) ·P1(Ak)
(Equation (1.4)). Since the products on these algebras are bilinear extensions
of their restrictions to D, this implies that ΞA preserves the product.

Preservation of the identity is clear, so we have proved that ΞA is a ⋆-
algebra isomorphism. By Lemma 4.1.14, we can conclude that it extends to
the desired ⋆-algebra isomorphism ΞA : C

∗(Z2d, γθ) → C∗(Z2d, βA).
Finally, since

ΠA ◦ ΞA(δk) = ΠA(e
−πiP2(Ak)·P1(Ak)δk) = e−πiP2(Ak)·P1(Ak)πA(k) = ψA(k)

for any k ∈ Z, and since any ⋆-algebra homomorphism from C∗(Z2d, γθ) is
determined by where it maps the generators δe1 , . . . , δe2d , we can conclude
that ΠA ◦ ΞA = ΨA.

The previous lemma will allow us to transfer the left ℓ1(Z2d, βA)-module
structure on S0(Rd) to the Heisenberg-Weyl setting. The following lemma
does the same for the right ℓ1(Z2d, βA◦)-module structure.
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6.1.6 Lemma. Let A ∈ GL(2d,R) and let θ = ATJA. Then, there exists a
⋆-algebra isomorphism

Ξ′
A◦ : C∗(Z2d, γθ−1) → C∗(Z2d, βA◦)

δk 7→ eπiP2(A◦k)·P1(A◦k)δk.

Proof. Because (A◦)TJA◦ = −θ−1 (see the proof of Proposition 5.1.15),
Lemma 6.1.5 gives us a ⋆-algebra isomorphism

ΞA◦ : C∗(Z2d, γ−θ−1)op → C∗(Z2d, βA◦)op

δk 7→ e−πiP2(A◦k)·P1(A◦k)δk,

(a ⋆-algebra homomorphism remains a ⋆-algebra homomorphism if we take
the opposite algebra for both its domain and its target). By Lemma 5.1.11
(with γ = γ−θ−1 and γ = βA◦), we have ⋆-algebra isomorphisms:

C∗(Z2d, γ−θ−1) → C∗(Z2d, γ−θ−1)op C∗(Z2d, βA◦)op → C∗(Z2d, βA◦)

δk 7→ γ−θ−1(−k, k)δ−k δk 7→ βA◦(−k, k)δ−k,

where the expressions for δk can be deduced from Equation (5.6). Now,
γ−θ−1(−k, k) = 0 by antisymmetry of symplectic forms, so the first of these
maps reduces to δk 7→ δ−k. If we now compose these three maps (ΞA◦ goes
in the middle), we obtain a ⋆-algebra isomorphism Ξ′

A◦ : C∗(Z2d, γ−θ−1) →
C∗(Z2d, βA◦) such that

Ξ′
A◦(δk) = e−πiP2(A◦k)·P1(A◦k)βA◦(−k, k)δk

= e−πiP2(A◦k)·P1(A◦k)e−2πiP2(A◦k)·P1(−A◦k)δk = eπiP2(A◦k)·P1(A◦k)δk.

Finally, we need only note that γ−θ−1 = γθ−1 to conclude the proof.

We are now prepared to transfer the bimodule structure.

6.1.7 Theorem. Let A ∈ GL(2d,R) and let θ = ATJA. Then, the Fe-
ichtinger algebra S0(Rd) becomes an ℓ1(Z2d, γθ)-ℓ

1(Z2d, γθ−1)-pre-equivalence
bimodule when equipped with the actions and inner products defined by

a · f =
∑
k∈Z2d

a(k)ψA(k)f and f · b =
∑
k∈Z2d

b(k)ψA◦(k)∗f

A⟨f, g⟩(k) = ⟨f, ψA(k)g⟩ and ⟨f, g⟩A◦(k) =
1

| detA|
⟨ψA◦(k)g, f⟩

for all f, g ∈ S0(Rd), a ∈ ℓ1(Z2d, γθ), b ∈ ℓ1(Z2d, γθ−1) and k ∈ Z2d.
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Proof. As advertised, the idea is to use the ⋆-algebra isomorphisms from
lemmas 6.1.5 and 6.1.6 to transfer the ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence
bimodule structure afforded by Theorem 5.1.14 to an ℓ1(Z2d, γθ)-ℓ

1(Z2d, γθ−1)-
pre-equivalence bimodule structure. The isomorphism ΞA and Ξ′

A◦ clearly
restrict to isometric (Proposition 2.2.6) ⋆-algebra isomorphisms:

ΞA : ℓ
1(Z2d, γθ) → ℓ1(Z2d, βA) Ξ′

A◦ : ℓ1(Z2d, γθ−1) → ℓ1(Z2d, βA◦)

δk 7→ e−πiP2(Ak)·P1(Ak)δk δk 7→ eπiP2(A◦k)·P1(A◦k)δk.

Thus, we may use the method of transfer that we outlined immediately after
Definition 5.1.7.

Let A⟨·, ·⟩′ and ⟨·, ·⟩′A◦ be the ℓ1(Z2d, βA)- and ℓ1(Z2d, βA◦)-valued inner
products, respectively. The ℓ1(Z2d, γθ)- and ℓ

1(Z2d, γθ−1)-valued inner prod-
ucts will then be defined by

A⟨f, g⟩ = Ξ−1
A

(
A⟨f, g⟩′

)
and ⟨f, g⟩A◦ = (Ξ′

A◦)−1
(
⟨f, g⟩′A◦

)
.

Similarly, denoting the “old” actions by ΠA : ℓ
1(Z2d, βA) → EndC(E) and

Π′
A◦ : ℓ1(Z2d, βA◦)op → EndC(E), the new actions will be defined by

ΠA ◦ ΞA : ℓ1(Z2d, γθ) → EndC(E)

and Π′
A◦ ◦ Ξ′

A◦ : ℓ1(Z2d, γθ−1)op → EndC(E).

Our task is to verify that these become the actions and inner products
described in the statement of the theorem.

We have already seen (Lemma 6.1.5) that ΠA ◦ ΞA = ΨA, so that

ΠA ◦ ΞA(a) = ΨA(a) = ΨA

(∑
k∈Z2d

a(k)δk

)
=
∑
k∈Z2d

a(k)ψA(k)

for all a ∈ ℓ1(Z2d, γθ), as claimed. As for the right action, we find that

Π′
A◦ ◦ Ξ′

A◦(b) = Π′
A◦

(∑
k∈Z2d

b(k)eπiP2(A◦)·P1(A◦)δk

)
=
∑
k∈Z2d

b(k)eπiP2(A◦)·P1(A◦)πA◦(k)∗ =
∑
k∈Z2d

b(k)ψA◦(k)∗

for all b ∈ ℓ1(Z2d, γθ−1) (see Proposition 5.1.12 for the form of the right action
of ℓ1(Z2d, βA◦), which we are denoting by Π′

A◦ here). This verifies that the
actions take the stated forms.
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As for the inner products, we let f, g ∈ S0(Rd) and k ∈ Z2d, and find that

A⟨f, g⟩(k) = Ξ−1
A

(
A⟨f, g⟩′

)
(k) = Ξ−1

A

(∑
l∈Z2d

⟨f, πA(l)g⟩δl
)
(k)

=
(∑
l∈Z2d

⟨f, πA(l)g⟩eπiP2(Al)·P1(Al)δl

)
(k)

= ⟨f, πA(k)g⟩eπiP2(Ak)·P1(Ak) = ⟨f, ψA(k)g⟩

and that

⟨f, g⟩A◦(k) = (Ξ′
A◦)−1

(
1

| detA|
∑
l∈Z2d

⟨πA◦(l)g, f⟩δl
)
(k)

=

(
1

| detA|
∑
l∈Z2d

⟨πA◦(l)g, f⟩e−πiP2(A◦l)·P1(A◦l)δl

)
(k)

=
1

| detA|
⟨πA◦(k)g, f⟩e−πiP2(A◦k)·P1(A◦k) =

1

| detA|
⟨ψA◦(k)g, f⟩,

which concludes the proof.

For any A ∈ GL(2d,R), recall that AEA◦ denotes the completion of S0(Rd)
as an ℓ1(Z2d, βA)-ℓ

1(Z2d, βA◦)-pre-equivalence bimodule (Theorem 5.1.14 and
the subsequent discussion). We now do the same with our new pre-equivalence
bimodules. The completions are afforded by Proposition 5.1.10.

6.1.8 Definition. Let A ∈ GL(2d,R) and let θ = ATJA. We will write AEA◦

to denote the equivalence bimodule completion of S0(Rd) equipped with the
ℓ1(Z2d, γθ)-ℓ

1(Z2d, γθ−1)-pre-equivalence bimodule structure of Theorem 6.1.7.
We will view AEA◦ as a C∗(Z2d, γθ)-C

∗(Z2d, γθ−1)-equivalence bimodule.

6.1.3 Metaplectic Transformations for Gabor Analysis

We are now finally in a position to make good on our promises from Subsection
3.2.2. Recall from Proposition 3.2.9 that two lattice matrices A,B ∈ GL(2d,R)
determine the same symplectic form A∗ΩJ = B∗ΩJ , represented by θ :=
ATJA = BTJB, if and only if

B ∈ Sp(2d,R)A = ASpθ(2d,R), or, equivalently: BA−1 ∈ Sp(2d,R).

There are two central results which we wish to prove. Both of these results
will follow solely from the assumption that A ∈ GL(2d,R) and that B ∈
Sp(2d,R)A. This is precisely the statement that A and B determine the
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same symplectic form, it is just a convenient way of formulating our results,
as it becomes immediately apparent that BA−1 ∈ Sp(2d,R), which will
play an important role. The first result is a very explicit confirmation that
the structure of Gabor frames over AZ2d depends only on the symplectic
form determined by A. The second result lifts this correspondence between
“symplectically related” lattices to the setting of equivalence bimodules by
providing isomorphisms between these modules.

First of all, we make a simple but important observation: symplectic
transformations are compatible with duality. Despite its simplicity, we have
not seen this observation elsewhere.

6.1.9 Lemma. For any A ∈ GL(2d,R) and S ∈ Sp(2d,R), we have that
(SA)◦ = SA◦.

Proof. Since S ∈ Sp(2d,R), we know that ST ∈ Sp(2d,R) by Lemma 1.2.5.
This means that SJST = J , and hence SJ = JS−T . Thus,

(SA)◦ = −J(SA)−T = −JS−TA−T = −SJA−T = SA◦,

as claimed.

We are now fully prepared to prove the first of our central results. Except
for the statement about duality, the essence of this result is contained in
de Gosson’s book [15, Proposition 163 on p. 113]. There is an unfortunate
congregation of S’es in this theorem, seeing as we are dealing with both
frame operators and symplectic/metaplectic transformations. The sub- and
superscripts that go along with frame operators hopefully make matters clear.

6.1.10 Theorem (Metaplectic transformations for Gabor systems). Let

A ∈ GL(2d,R), suppose that B ∈ Sp(2d,R)A and let Ŝ ∈ Mp(2d,R) be a
metaplectic operator associated to S = BA−1 ∈ Sp(2d,R). Then, for any
g, h ∈ L2(Rd), the following statements are true.

(i) G(g, AZ2d) is a Bessel sequence if and only if G(Ŝg, BZ2d) is a Bessel
sequence. Moreover, their optimal Bessel bounds are equal.

(ii) G(g, AZ2d) is a Gabor frame if and only if G(Ŝg, BZ2d) is a Gabor frame.
Moreover, their optimal frame bounds are equal.

(iii) If G(g, AZ2d) and G(h,AZ2d) are Bessel sequences, then

SB
Ŝg,Ŝh

= Ŝ(SAg,h)Ŝ
−1.

Moreover, all of these statements are true with A◦ and B◦ in place of A and
B, with the same metaplectic operator Ŝ.
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Proof. We begin with a couple of observation. First of all, by Proposition
6.1.4, we have that

ψB(k)Ŝ = ψSA(k)Ŝ = ψ(SAk)Ŝ = Ŝψ(Ak) = ŜψA(k) for all k ∈ Z2d.

Because a time-frequency shift differs from the corresponding Heisenberg-Weyl
operator only by a phase factor, we find that, for all f, g ∈ L2(Rd),

|⟨f, πB(k)Ŝg⟩| = |⟨f, ŜπA(k)g⟩| = |⟨Ŝ−1f, πA(k)g⟩| for all k ∈ Z2d.

If we now assume that G(g, AZ2d) is a Bessel sequence, with Bessel bound
C > 0, we find that∑

k∈Z2d

|⟨f, πB(k)Ŝg⟩|2 =
∑
k∈Z2d

|⟨Ŝ−1f, πA(k)g⟩| ≤ C∥Ŝ−1f∥2 = C∥f∥2,

for all f ∈ L2(Rd), since Ŝ is unitary. This shows that G(Ŝg, BZ2d) is a
Bessel sequence. Moreover, it shows that any Bessel bound for G(g, AZ2d)

is a Bessel bound for G(Ŝg, BZ2d). A very similarly argument shows that if

G(g, AZ2d) is a Gabor frame, then G(Ŝg, BZ2d) is a Gabor frame with the
same frame bounds. Finally, since AB−1 = (BA−1)−1 = S−1 ∈ Sp(2d,R),
there is a metaplectic operator associated to AB−1 (indeed, we can choose

Ŝ−1), so the situation is symmetric with respect to A and B. This proves (i)
and (ii).

We now turn to (iii). We first note that, for all f, g, h ∈ L2(Rd):

⟨f, π(z)g⟩π(z)h = ⟨f, ψ(z)g⟩ψ(z)h for all z ∈ R2d,

because of cancellation of phase factors. This means that mixed-type frame
operators are unchanged if we replace all time-frequency shifts by Heisenberg-
Weyl operators. Thus, assuming that G(g, AZ2d) and G(h,AZ2d) are Bessel
sequences, so that the frame operators are well-defined and bounded, we find
that

SB
Ŝg,Ŝh

(Ŝf) =
∑
k∈Z2d

〈
Ŝf, ψB(k)Ŝg

〉
ψB(k)Ŝh

=
∑
k∈Z2d

〈
Ŝf, ŜψA(k)g

〉
ŜψA(k)h

=
∑
k∈Z2d

〈
f, ψA(k)g

〉
ŜψA(k)h = Ŝ(SAg,hf)

for all f ∈ L2(Rd), which proves (iii).
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Finally, for the remark regarding A◦ and B◦, we use Lemma 6.1.9 to see
that B◦ = (SA)◦ = SA◦ ∈ Sp(2d,R)A◦ and that

B◦(A◦)−1 = (SA)◦(A◦)−1 = SA◦(A◦)−1 = S,

so that A◦ and B◦ satisfy the conditions of the theorem with the exact same
choice for Ŝ.

We now turn to the task of constructing isomorphisms between our equiv-
alence bimodules. They will be constructed from metaplectic transformations.
In order to apply metaplectic transformations to our pre-equivalence bimod-
ules, we must first show that the Feichtinger algebra is invariant under such
transformations.

6.1.11 Lemma. Let S ∈ Sp(2d,R) and let Ŝ ∈ Mp(2d,R) be a metaplectic

operator associated to S. Then, Ŝ(S0(Rd)) = S0(Rd), so that Ŝ is a linear
bijection of S0(Rd).

Proof. Our proof of this fact is based on Gröchenig [17, Proposition 12.1.3
on p. 247].

Let f ∈ S0(Rd). By Lemma 3.2.13 on the equivalence of norms for S0(Rd),
we have that Vff ∈ L1(R2d). We will use this lemma multiple times without
mention in this proof. Since ψ(z) is related to π(z) by a phase factor, we
have that

|VŜf Ŝf(Sz)| = |⟨Ŝf, π(Sz)Ŝf⟩| = |⟨Ŝf, Ŝπ(z)f⟩| = |⟨f, π(z)f⟩| = |Vff(z)|

for all z ∈ R2d. If we now integrate over z, we find that VŜf Ŝf ∈ L1(R2d).

By the density of S0(Rd) in L2(Rd) (Lemma 3.2.14), we can certainly
choose some g ∈ S0(Rd) such that ⟨g, Ŝf⟩ ̸= 0. By Lemma 3.2.22 (with

f1 = Ŝf , f2 = f , g1 = Ŝf and g2 = g), we have that

|Vf Ŝf(z)| ≤
1

|⟨Ŝf, g⟩|
(
|VŜf Ŝf | ∗ |Vfg|

)
(z), for all z ∈ R2d.

The function on the right is a convolution of two functions which we know
to be in L1(R2d), so it is in L1(R2d) as well. Thus, Vf Ŝf ∈ L1(R2d), which

means that Ŝf ∈ S0(Rd).

This proves that Ŝ(S0(Rd)) ⊂ S0(Rd). Since Mp(2d,R) is a group, we

have Ŝ−1 ∈ Mp(2d,R). Since

ψ(z)Ŝ−1 = Ŝ−1ψ(Sz) for all z ∈ R2d,
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we find that

ψ(S−1z)Ŝ−1 = Ŝ−1ψ(SS−1z) = Ŝ−1ψ(z) for all z ∈ R2d.

This shows that Ŝ−1 is a metaplectic operator associated to S−1 ∈ Sp(2d,R).
By what we just proved, applied to S−1 instead of S, we can conclude
that Ŝ−1(S0(Rd)) ⊂ S0(Rd). This implies that Ŝ(S0(Rd)) = S0(Rd), which
concludes the proof.

We are now finally ready to prove the result we have been building towards
for most of this thesis. For finite subgroups of Sp(2d,R), Chakraborty and
Luef [8] have proved this result with regard to the left module structure. The
result regarding the right module structure is, to our knowledge, entirely
new. The crucial observation is Lemma 6.1.9. Without this lemma, it is
not even clear that B◦ = (SA)◦ and A◦ will determine the same symplectic
form and hence that AEA◦ and BEB◦ are equivalence bimodules over the
same C*-algebras. For the notion of a biunitary map (an isomorphism of
equivalence bimodules), see Definition 5.1.9.

6.1.12 Theorem (Metaplectic transformations for equivalence bimodules).
Let A ∈ GL(2d,R) and set θ = ATJA. Suppose that B ∈ Sp(2d,R)A and let

Ŝ ∈ Mp(2d,R) be a metaplectic operator associated to S = BA−1 ∈ Sp(2d,R).
Then, Ŝ : S0(Rd) → S0(Rd) extends to a biunitary map S : AEA◦ → BEB◦. In
other words,

S ∈ LC∗(Z2d,γθ)

(
AEA◦ , BEB◦

)
∩ LC∗(Z2d,γθ−1 )

(
AEA◦ , BEB◦

)
is an invertible map whose inverse equals its adjoint in both of these spaces.

Proof. By Lemma 6.1.11, the restriction and corestriction Ŝ : S0(Rd) →
S0(Rd) is well-defined. We wish to obtain an extension S : AEA◦ → BEB◦ , so

we should of course equip the domain of Ŝ with the ℓ1(Z2d, γθ)-ℓ
1(Z2d, γθ−1)-

bimodule structure determined by A and its target with the ℓ1(Z2d, γθ)-
ℓ1(Z2d, γθ−1)-bimodule structure determined by B (via Theorem 6.1.7; note
that θ = ATJA = BTJB and −θ−1 = (A◦)TJA◦ = (B◦)TJB◦).

We begin by verifying that Ŝ is ℓ1(Z2d, γθ)-linear and that it preserves the
ℓ1(Z2d, γθ)-valued inner product. By Proposition 6.1.4, we have that

ψB(k)Ŝ = ψSA(k)Ŝ = ψ(SAk)Ŝ = Ŝψ(Ak) = ŜψA(k) for all k ∈ Z2d.

With f, g ∈ S0(Rd) and a ∈ ℓ1(Z2d, γθ), we find that

Ŝ(a · f) = Ŝ
(∑
k∈Z2d

a(k)ψA(k)f
)
=
∑
k∈Z2d

a(k)ŜψA(k)f

=
∑
k∈Z2d

a(k)ψB(k)Ŝf = a · (Ŝf)
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and that

B⟨Ŝf, Ŝg⟩(k) = ⟨Ŝf, ψB(k)Ŝg⟩ = ⟨Ŝf, ŜψA(k)g⟩
= ⟨f, ψA(k)g⟩ = A⟨f, g⟩(k)

for all k ∈ Z2d. This verifies that the left inner product module structure is
preserved by Ŝ.

We now verify that Ŝ is ℓ1(Z2d, γθ−1)-linear and that it preserves the
ℓ1(Z2d, γθ−1)-valued inner product. We first note that | detS| = 1, so that
| detA| = | detB|.2 This follows from the calculation:

1 = | det J | = | det(STJS)| = | detST || detS| = | detS|2.

Recall from Lemma 6.1.9 that B◦ = (SA)◦ = SA◦, so that Proposition
6.1.4 gives

ψB◦(k)Ŝ = ψ(SA◦k)Ŝ = Ŝψ(A◦k) = ŜψA◦(k) for all k ∈ Z2d. (6.5)

Thus, for f, g ∈ S0(Rd), we find that

⟨Ŝf, Ŝg⟩B◦(k) =
1

| detA|
⟨ψB◦(k)Ŝg, Ŝf⟩ = 1

| detA|
⟨ŜψA◦(k)g, Ŝf⟩

=
1

| detA|
⟨ψA◦(k)g, f⟩ = ⟨f, g⟩A◦(k)

for all k ∈ Z2d. Now, Equation (6.5) implies that

Ŝ−1ψB◦(k)∗ =
(
ψB◦(k)Ŝ

)∗
=
(
ŜψA◦(k)

)∗
= ψA◦(k)∗Ŝ−1,

and hence that ψB◦(k)∗Ŝ = ŜψA◦(k)∗, for all k ∈ Z2d. Thus, with f ∈ S0(Rd)
and b ∈ ℓ1(Z2d, γθ−1), we now find that

Ŝ(f · b) = Ŝ
(∑
k∈Z2d

b(k)ψA◦(k)∗f
)
=
∑
k∈Z2d

b(k)ŜψA◦(k)∗f

=
∑
k∈Z2d

b(k)ψB◦(k)∗Ŝf = (Ŝf) · b.

This verifies that the right inner product module structure is preserved by Ŝ
as well.

By Lemma 6.1.11, Ŝ is bijective on S0(Rd). By Proposition B.3.2, the

unique bounded linear extension of Ŝ, which we will denote by S : AEA◦ →
2In fact, we always have detS = 1, so that Sp(2d,R) ⊂ SL(2d,R), but we will not have

need for this fact – which is trickier to prove.
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BEB◦ , is unitary as a map between left C∗(Z2d, γθ)-modules. Using the left-
right correspondence of Lemma 5.1.2, or just adapting the proof of Proposition
B.3.2 to the right module setting, we find that S is unitary as a map between
C∗(Z2d, γθ−1)-modules as well, which concludes the proof.

We can summarize our result as follows:

6.1.13 Corollary. Let A ∈ GL(2d,R). Then, whenever B ∈ Sp(2d,R)A, we
have that

AEA◦ ∼= BEB◦ as equivalence bimodules,

where the isomorphism is given by the bounded linear extension of a metaplectic
operator associated to BA−1 = B◦(A◦)−1 ∈ Sp(2d,R).

Proof. Immediate from Theorem 6.1.12.

Using Theorem 6.1.12, we can now easily prove a result similar to Theorem
6.1.10 in the context of these bimodules. Given A ∈ GL(2d,R), let’s denote
the two rank-one operators associated to g, h ∈ AEA◦ by

AKg,h : f 7→ A⟨f, g⟩ · h and KA◦

g,h : f 7→ g · ⟨h, f⟩A◦ .

Note that we are now working in the completion AEA◦ of S0(Rd) (without
modifying our notation). When g, h ∈ S0(Rd), we have seen that AKg,h

corresponds to the ordinary frame operator SAg,h:

AKg,hf = A⟨f, g⟩ · h =
∑
k∈Z2d

⟨f, ψA(k)g⟩ψA(k)h = SAg,hf for all f ∈ S0(Rd).

We repeat that the frame operators are unchanged if we replace time-frequency
shifts with Heisenberg-Weyl operators (because of cancellations of phase
factors). Similarly, we find that

KA◦

g,hf = g · ⟨h, f⟩A◦ =
1

| detA|
∑
k∈Z2d

⟨ψA◦(k)f, h⟩ψA◦(k)∗g

=
1

| detA|
∑
k∈Z2d

⟨f, ψA◦(k)∗h⟩ψA◦(k)∗g =
1

| detA|
SA

◦

h,gf

for all f ∈ S0(Rd), so that KA◦

g,h corresponds to the frame operator SA
◦

h,g (up
to a constant).

With this correspondence between rank-one operators and frame operators
in mind, the following corollary recovers much of Theorem 6.1.10, for windows
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in S0(Rd) (or its completion, if one takes into account the embedding AEA◦ →
L2(Rd) discussed towards the end of Subsection 4.3.3, which seems simple to
recast in terms of AEA◦ , based on the method of proof in Luef and Austad
[4] and Austad and Enstad [3]). The main takeaway of this corollary is how
simple the proof becomes with the machinery of Theorem 6.1.12.

6.1.14 Corollary. Let A ∈ GL(2d,R), suppose that B ∈ Sp(2d,R)A and let
S : AEA◦ → BEB◦ be one of the isomorphisms afforded by Corollary 6.1.13.
Then, for any g, h ∈ AEA◦, we have that

S (AKg,h)S
−1 = BKS g,S h and S (KA◦

g,h)S
−1 = KB◦

S g,S h.

Proof. For any f ∈ AEA◦ , we find that(
S (AKg,h)

)
(f) = S

(
A⟨f, g⟩ · h

)
= B⟨S f,S g⟩ · S h = (BKS g,S hS )(f)

and that(
SKA◦

g,h

)
(f) = S

(
g · ⟨h, f⟩A◦

)
= S g · ⟨S h,S f⟩B◦ = (KB◦

S g,S hS )(f),

which is what the corollary claims.

Finally, before we bow out, we note that Theorem 6.1.12 likely provides a
concrete example of a general framework developed by Combes [10]. Further
insights may be gained by exploring this connection.



Appendix A

Functional Analysis

This appendix contains two short sections. The first section is devoted to the
Stone-Weierstrass theorem, which plays an important role in the construction
and interpretation of the continuous functional calculus in Subsection 2.2.2.
The second section is a hodgepodge of foundational results from functional
analysis. These are appealed to at various points in the thesis, but mostly in
Chapter 2.

A.1 | The Stone-Weierstrass Theorem

For any topological space X, we write C(X) to denote the algebra of all
continuous functions on X (see Example 2.1.7). If X is compact, then C(X)
is a C*-algebra with respect to the supremum norm (see Example 2.1.15) and
with the involution given by pointwise complex conjugation. The supremum
norm determines the topology of uniform convergence on X.

A.1.1 Theorem (Stone-Weierstrass). Let X be a compact topological space
and let A be a ⋆-subalgebra of the C*-algebra C(X) with the following proper-
ties:

� A separates points of X: if x, y ∈ X are two distinct points, then there
is some f ∈ A such that f(x) ̸= f(y).

� A vanishes at no point of X: there is no x ∈ X such that f(x) = 0 for
all f ∈ A.

If this is the case, then A is dense in C(X).

Proof. See Rudin [28, Theorem 7.33 on p. 165].
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We will now apply the Stone-Weierstrass theorem to compact subsets of C.
Let z denote the identity z : C → C and let z denote the complex-conjugation
map z : λ 7→ λ. Clearly, z and z are in the algebra C(C). We will refer to
member of the set

P (z, z) := spanC
{
znzm : (n,m) ∈ N0 × N0

}
⊂ C(C)

as polynomials in z and z.

A.1.2 Corollary. Let K ⊂ C be a compact set and let f ∈ C(K). Then,
there exists a sequence (pn) of polynomials in z and z such that pn → f
uniformly on K.

Proof. The set P (z, z) (viewed as a set of functions on K, by restriction) is
a ⋆-subalgebra of C(K) satisfying the assumptions of the Stone-Weierstrass
theorem. Thus, P (z, z) is dense in C(K), which is exactly what the corollary
claims.

A.2 | Results from Functional Analysis

In this section we state four foundational results from functional analysis
and derive the consequences we need. We have by no means provided their
most general forms. In this subsection, as in Chapter 2, we assume that all
vector spaces are over C. If V is a normed space, then V ∗ denotes the space
of bounded linear functionals on V , i.e. its continuous dual space.

We begin with the Hahn-Banach theorem, which lets us extend bounded
linear functionals defined on subspaces of normed spaces.

A.2.1 Theorem (The Hahn-Banach theorem). Let V be a normed vector
space. If W ⊂ V is a vector-subspace and τ : W → C is a bounded linear
functional, then there exists a bounded linear functional τ̃ : V → C such that
τ̃ |W = τ and ∥τ̃∥ = ∥τ∥.

Proof. See Bowers and Kalton [7, Subsection 3.2].

The following corollary states that the dual space of a normed space
separates points.

A.2.2 Corollary. Let V be a normed vector space and suppose that v1, v2 ∈ V
are such that τ(v1) = τ(v2) for all τ ∈ V ∗. Then, v1 = v2.
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Proof. Consider the subspace C(v2 − v1) ⊂ V . We can define a linear func-
tional τ : C(v2 − v1) → C by τ(λ(v2 − v1)) = λ∥v2 − v1∥ for all λ ∈ C. The
functional τ is bounded since

|τ(λ(v2 − v1))| = |λ|∥v2 − v1∥ = ∥λ(v2 − v1)∥ for all λ ∈ C.

By the Hahn-Banach theorem, we can now find some τ̃ ∈ V ∗ such that
τ̃(v2 − v1) = τ(v2 − v1). By assumption, we know that τ̃(v2) = τ̃(v1), so then
∥v2 − v1∥ = τ̃(v2 − v1) = 0.

Next up is the Banach-Alaoglu theorem, which we need to prove that the
spectrum of a Banach algebra is compact.

A.2.3 Theorem (The Banach-Alaoglu theorem). Let V be a Banach space.
Then, the closed unit ball {τ ∈ V ∗ : ∥τ∥ ≤ 1} ⊂ V ∗ is compact in the weak*
topology (we say that it is weak*-compact).

Proof. See Bowers and Kalton [7, Theorem 5.39 on p. 105].

We now turn to the principle of uniform boundedness.

A.2.4 Theorem (The uniform boundedness principle). Let V and W be
Banach spaces and suppose that {Ti}i∈I ⊂ B(V,W ) is a collection of bounded
linear maps from V to W (where I is an arbitrary index set). If the collection
is pointwise bounded, in the sense that for every v ∈ V we have that

sup
{
∥Ti(v)∥ : i ∈ I

}
<∞,

then it is bounded in operator norm: sup{∥Ti∥ : i ∈ I} <∞.

Proof. See Bowers and Kalton [7, Theorem 4.10 on p. 65].

We will need the following corollary.

A.2.5 Corollary (Weakly bounded implies bounded in norm). Let V be a
Banach space and let S ⊂ V be any subset. If S is weakly bounded, in the
sense that for every τ ∈ V ∗ we have that

sup
{
|τ(s)| : s ∈ S

}
<∞,

then S is bounded in norm: sup{∥s∥ : s ∈ S} <∞.
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Proof. For each s ∈ S, let evs ∈ (V ∗)∗ denote the evaluation functional
τ 7→ evs(τ) = τ(s). We quickly argue that ∥evs∥ = ∥s∥ for each s ∈ S: the
inequality ∥evs∥ ≤ ∥s∥ follows from the fact that |evs(τ)| = |τ(s)| ≤ ∥τ∥∥s∥,
while the Hahn-Banach theorem affords us with functionals τs ∈ V ∗ such that
∥τs∥ = ∥s∥ and evs(τs) = τs(s) = ∥s∥2 (extend linear functionals Cs → C
defined by λs 7→ λ∥s∥2).

Our assumption becomes:

sup
{
|evs(τ)| : s ∈ S

}
= sup

{
|τ(s)| : s ∈ S

}
<∞ for all τ ∈ V ∗.

By the uniform boundedness principle, applied to the Banach space V ∗ and
the collection {evs}s∈S ⊂ (V ∗)∗ = B(V ∗,C), we find that

sup
{
∥s∥ : s ∈ S

}
= sup

{
∥evs∥ : s ∈ S

}
<∞,

which concludes the proof.

The last result we will need is the closed graph theorem.

A.2.6 Theorem (The closed graph theorem). Let V and W be Banach spaces
and let T : V → W be any linear map. Suppose that, whenever we have a
sequence (vn) ⊂ V such that both (vn) and (Tvn) converge (in V and W ,
respectively), it follows that limn→∞ Tvn = T (limn→∞ vn). If this is the case,
then T is bounded.

Proof. See Bowers and Kalton [7, Theorem 4.35 on p. 76].
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Completions and Extensions

The contents of this appendix, completions and extensions, are often relegated
to exercises (our treatment might reveal why – these are simple but tedious
arguments). Since completions play such a central role in our constructions,
we have chosen to included a detailed treatment.

In the first section, we construct Banach space completions and extensions
of bounded linear maps and prove that they are unique. In the second section,
we show how to furnish Banach algebra, Banach ⋆-algebra and C*-algebra
completions from ordinary Banach space completions. Finally, in the third and
last subsection, we show how to complete inner product modules. Completions
of pre-equivalence bimodules are so intertwined with the surrounding theory
that we have chosen to include this topic in the main text (Proposition 5.1.10).

It is quite difficult to prove all of these results without either resorting to
extremely repetitive calculations with approximating sequences or omitting
most of the required calculations. With the goal of providing fairly exhaustive
proofs, we have attempted to trade approximating sequences (where possible)
for arguments by uniqueness of bounded extensions. The hope is that this
will make the proofs slightly more interesting.

B.1 | Banach Space Completions and Bounded

Linear Extensions

This section covers Banach space completions as well as extensions of bounded
linear (and bilinear) maps. As it is the only case of interest to us, we will
assume that all of our normed spaces are nonzero and over the complex
numbers. We will frequently use the letter i to denote an inclusion; we will
never have need for the imaginary unit in this appendix.

Given a normed space V , a Banach space completion of V is a Banach
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space V along with a linear isometry i : V → V such that i(V ) is dense in V .
We may refer to either V or the map i by itself as a Banach space completion
of V . The following theorem shows that Banach space completions exist. We
will soon see that they are unique up to unique isometric linear isomorphisms
(Corollary B.1.3).

B.1.1 Theorem (Banach space completions). Let V be a normed space.
Then, there exists a Banach space V and a linear isometry i : V → V such
that i(V ) is dense in V . In other words: such that i : V → V is a Banach
space completion of V .

Proof. Let ∥ · ∥0 denote the norm on V and consider the vector space V N of
all sequences in V with addition and scalar multiplication defined pointwise.

Let C ⊂ V N denote the set of all Cauchy sequences in V . If (vn), (wn) ∈ C
and λ ∈ C, then

∥(λvm + wm)− (λvn + wn)∥0 ≤ |λ|∥vm − vn∥0 + ∥wm − wn∥0

shows that λ(vn) + (wn) = (λvn + wn) ∈ C as well. This shows that C is a
vector-subspace of V N. A similar argument shows that

C0 :=
{
(vn) ∈ C : lim

n→∞
∥vn∥0 = 0

}
is a vector-subspace of C. The quotient V := C/C0 with the norm defined by

∥(vn) + C0∥ := lim
n→∞

∥vn∥0 for (vn) ∈ C

will be our Banach space completion of V . We first show that this is well-
defined and indeed a norm.

The norm of a Cauchy sequence converges by the reverse triangle inequality,
|∥v∥0 − ∥w∥0| ≤ ∥v − w∥0, so limn→∞ ∥vn∥0 exists for all (vn) ∈ C. It is also
independent of representative: if (v′n) + C0 = (vn) + C0, this means that
(v′n − vn) ∈ C0, so that

lim
n→∞

∥v′n∥0 = lim
n→∞

∥v′n − vn + vn∥0

≤ lim
n→∞

∥v′n − vn∥0 + lim
n→∞

∥vn∥0 = lim
n→∞

∥vn∥0,

and the same argument with the roles of (vn) and (v′n) interchanged gives
the opposite inequality. Positivity, homogeneity and the triangle inequality
are simple verifications; we omit the details. Nondegeneracy follows by our
definition of C0.
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We now define the isometry i : V → V . For v ∈ V , we let i(v) be the
equivalence class of the constant sequence at v, i.e. i(v) = (v)n∈N + C0.
Constant sequences are certainly Cauchy, so i is well-defined. It is clearly
linear, and ∥i(v)∥ = limn→∞ ∥v∥0 = ∥v∥0 shows that it is an isometry.

To see that i(V ) ⊂ V is dense, let (vn) ∈ C and fix any ϵ > 0. Since (vn)
is Cauchy, we can find some N ∈ N such that ∥vn − vN∥0 < ϵ for all n ≥ N .
We then find that∥∥((vn) + C0

)
− i(vN)

∥∥ = lim
n→∞

∥vn − vN∥0 ≤ ϵ,

which shows that i(V ) is dense in V .
We now show that V is complete. Let (νk)k ⊂ V be a Cauchy sequence

(of equivalence classes of sequences in V ) and write

νk = (vkn)n + C0 for each k ∈ N.

Since i(V ) is dense in V , we can find wk ∈ V such that ∥νk − i(wk)∥ ≤ 1/k.
We now claim that

(wn)n ∈ C and νk = (vkn)n + C0 → (wn)n + C0 in V .

To see that (wn)n∈N is Cauchy, note that

∥wm − wn∥0 ≤ ∥wm − vmk ∥0 + ∥vmk − vnk∥0 + ∥vnk − wn∥0

for all m,n, k ∈ N, and that each of these terms are arbitrarily small for
sufficiently large m,n, k, because

lim
k→∞

∥vmk − vnk∥0 = ∥νm − νn∥,

lim
k→∞

∥wm − vmk ∥0 = ∥i(wm)− νm∥ ≤ 1

m
,

and lim
k→∞

∥wn − vnk∥0 = ∥i(wn)− νn∥ ≤ 1

n

(and (νk)k ⊂ V is Cauchy). To see that (wn)n + C0 is the limit of (νk)k in V ,
note that∥∥νk − ((wn)n + C0

)∥∥ = lim
n→∞

∥vkn − wn∥0

≤ lim
n→∞

(
∥vkn − wk∥0 + ∥wk − wn∥0

)
= ∥νk − i(wk)∥+ lim

n→∞
∥wk − wn∥0 → 0

as k → ∞ (the first term is ≤ 1/k by our choice of wk, and the last term
goes to zero because (wn)n is Cauchy). This concludes the proof that V is
complete and the proof as a whole.
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We now turn our attention to extensions of bounded linear maps.

B.1.2 Theorem (Bounded linear extensions). Let T : V → W be a bounded
linear map between normed spaces and let i : V → V and j : W → W be
Banach space completions. Then, there exists a unique bounded linear map
T : V → W such that j ◦ T = T ◦ i. Moreover, ∥T∥ = ∥T∥.

Proof. Suppose first that T : V → W is any continuous function such that
j ◦T = T ◦ i. For any v ∈ V , choose a sequence (vn) ⊂ V such that i(vn) → v.
Then, by continuity of T ,

Tv = lim
n→∞

Ti(vn) = lim
n→∞

jT (vn),

so these conditions determine T uniquely. We will verify that the map
Tv := limn→∞ jT (vn) is well-defined, linear, bounded with norm ∥T∥ and
that it satisfies j ◦ T = T ◦ i. In the following, we will frequently use the fact
that i and j are isometries without mentioning it.

If i(vn) → v ∈ V , then the sequence (vn) is Cauchy. Since T is bounded,
(Tvn) is Cauchy as well, so limn→∞ j(Tvn) exists in the complete space
W . If we have another sequence (v′n) ⊂ V such that i(v′n) → v, then
i(v′n− vn) = i(v′n)− i(vn) → 0, so that v′n− vn → 0 in V . Since T is bounded,
this implies that jT (v′n)− jT (vn) = jT (v′n − vn) → 0. We have now shown
that T is well-defined and independent of our choice of sequences.

Knowing that T is independent of our choice of sequences, it is straight-
forward to verify that it is linear:

T (λv + w) = lim
n→∞

jT (λvn + wn)

= λ lim
n→∞

jT (vn) + lim
n→∞

jT (wn) = λTv + Tw.

The following calculation shows that T is bounded, with ∥T∥ ≤ ∥T∥:

∥Tv∥ = lim
n→∞

∥jT (vn)∥ = lim
n→∞

∥Tvn∥

≤ lim
n→∞

∥T∥∥vn∥ = ∥T∥ lim
n→∞

∥i(vn)∥ = ∥T∥∥v∥.

Now, for any v ∈ V , let (vn)n = (v)n ⊂ V be the constant sequence at v.
Then, since i(vn) = i(v) → i(v) in V , we find that

T (i(v)) = lim
n→∞

jT (v) = jT (v),

which shows that T ◦ i = j ◦ T . If we now choose a sequence (vn)n ⊂ V of
unit vectors such that ∥Tvn∥ → ∥T∥, then (i(vn))n ⊂ V is a sequence of unit
vectors such that ∥Ti(vn)∥ = ∥jT (vn)∥ → ∥T∥. Thus, ∥T∥ = ∥T∥ and we are
done.
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We now obtain the claimed uniqueness of Banach space completions.

B.1.3 Corollary (Uniqueness of Banach space completions). Let V be a

normed space and suppose that i : V → V and j : V → Ṽ are two Banach space
completions of V . Then, there exists a unique isometric linear isomorphism
T : V → Ṽ such that j = T ◦ i.

Proof. Consider the identity map IdV : V → V . When applying Theorem
B.1.2 to IdV , we may use either i : V → V or j : V → Ṽ for the completion
of its domain, and similarly for its target. All in all, there are four possible
choices. Thus, we obtain four bounded linear maps

T1 : V → Ṽ , T2 : Ṽ → Ṽ , T3 : Ṽ → V and T4 : V → V

satisfying

j = T1 ◦ i, j = T2 ◦ j, i = T3 ◦ j and i = T4 ◦ i,

and we are assured that these are unique. By uniqueness, we can immediately
conclude that T2 = IdṼ and that T4 = IdV . However, we also find that

j = T1 ◦ i = T1 ◦ (T3 ◦ j) = (T1 ◦ T3) ◦ j and i = (T3 ◦ T1) ◦ i,

from which we can conclude that T1 ◦ T3 = IdṼ and that T3 ◦ T1 = IdV
(again by uniqueness). Thus, T := T1 is an isomorphism, and it is the unique
bounded linear map such that j = T ◦ i.

Finally, ∥T∥ = 1 and ∥T−1∥ = ∥T3∥ = 1, since both maps are bounded
linear extensions of IdV . This immediately implies that T is isometric:
∥v∥ = ∥T−1T (v)∥ ≤ ∥Tv∥ ≤ ∥v∥ for all v ∈ V . Thus, we are done.

The following proposition shows that bounded linear extensions act as
one would hope and expect.

B.1.4 Proposition (Properties of extensions). Let

T1 : V → W, T2 : V → W, S : W → Z

be bounded linear maps between normed spaces. The following statements are
true.

(i) Extension is linear: λT1 + T2 = λT1 + T2 for all λ ∈ C.

(ii) Extension preserves compositions: S ◦ T1 = S ◦ T1.

(iii) Extension preserves identities: IdV = IdV .
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(iv) Extension preserves inverses: if T1 is invertible and T−1
1 is bounded,

then T1 is invertible and
(
T1
)−1

= T−1
1 .

Proof. Let i : V → V , j : W → W and k : Z → Z be Banach space comple-
tions. Then, j ◦ T1 = T1 ◦ i, j ◦ T2 = T2 ◦ i and k ◦ S = S ◦ j. Thus,

j ◦ (λT1 + T2) = λ(j ◦ T1) + j ◦ T2 = λT1 ◦ i+ T2 ◦ i = (λT1 + T2) ◦ i
and k ◦ (S ◦ T1) = (k ◦ S) ◦ T1 = S ◦ (j ◦ T1) = (S ◦ T1) ◦ i.

The fact that λT1 + T2 and S ◦ T1 are bounded linear maps satisfying these
equations implies (i) and (ii) by uniqueness of bounded linear extensions.

Since i◦ IdV = i = IdV ◦ i, we see that IdV = IdV , which gives (iii). Finally,
(iv) follows by combining (ii) and (iii):

IdV = T−1
1 ◦ T1 = T−1

1 ◦ T1 and IdW = T1 ◦ T−1
1 = T1 ◦ T−1

1 ,

and so
(
T1
)−1

= T−1
1 (note that we need boundedness of T−1

1 for the existence

of T−1
1 ).

For the case where V = W , we can summarize the proposition we just
proved as follows.

B.1.5 Corollary. Let V be a normed space. Then, the bounded linear
extension map B(V ) → B

(
V
)
defined by T 7→ T is an isometric algebra

homomorphism.

Proof. Points (i), (ii) and (iii) in Proposition B.1.4 (along with the fact that
∥T∥ = ∥T∥, as shown in Theorem B.1.2).

We now turn to extensions of bilinear maps between normed spaces. These
will be useful for extending inner products, algebra products and more. For
normed spaces V,W and Z, we will say that a bilinear map B : V ×W → Z
is bounded if there exists some M ∈ [0,∞) such that

∥B(v, w)∥ ≤M∥v∥∥w∥ for all v ∈ V and w ∈ W,

and we will write ∥B∥ for the infimum over all such M .

B.1.6 Theorem (Bounded bilinear extensions). Let V,W and Z be normed
spaces with Banach space completions i : V → V , j : W → W and k : Z → Z.
Suppose that B : V ×W → Z is a bounded bilinear map. Then, there exists a
unique bounded bilinear map B : V ×W → Z that extends B, in the sense
that

k
(
B(v, w)

)
= B

(
i(v), j(w)

)
for all v ∈ V and w ∈ W.

Moreover, ∥B∥ = ∥B∥.
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Proof. Fix any v ∈ V . Then, the map

B(v,−) : W → Z

w 7→ B(v,−)(w) := B(v, w)

is a linear map with operator norm ∥B(v,−)∥ ≤ ∥B∥∥v∥. By Theorem B.1.2,
there is a unique linear extension B(v,−) : W → Z with the same operator
norm ∥B(v,−)∥ = ∥B(v,−)∥ ≤ ∥B∥∥v∥.

Consider now the map

BV : V → B(W,Z)

v 7→ BV (v) := B(v,−).

This is a linear map, because

B(λv + w,−) = λB(v,−) +B(w,−) = λB(v,−) +B(w,−)

by Proposition B.1.4. We find that ∥BV ∥ ≤ ∥B∥ because ∥BV (v)∥ =
∥B(v,−)∥ ≤ ∥B∥∥v∥ for all v ∈ V . Since Z is a Banach space, B(W,Z) is a
Banach space as well. Thus, we get a unique bounded linear extension

BV : V → B(W,Z)

which satisfies ∥BV ∥ = ∥BV ∥ ≤ ∥B∥, and hence

∥BV (v)(w)∥ ≤ ∥BV (v)∥∥w∥ ≤ ∥BV ∥∥v∥∥w∥ ≤ ∥B∥∥v∥∥w∥ (B.1)

for all v ∈ V and w ∈ W .
We now define

B : V ×W → Z

(v, w) 7→ B(v, w) := BV (v)(w),

and claim that this our desired extensions of B. Equation (B.1) shows that
∥B∥ ≤ ∥B∥. The fact that B(v,−) extends B(v,−) and BV extends BV

means that

B(v,−)
(
j(w)

)
= k

(
B(v, w)

)
for all v ∈ V and w ∈ W

and BV

(
i(v)

)
= BV (v) = B(v,−) for all v ∈ V,

and these combine to give

B
(
i(v), j(w)

)
= BV

(
i(v)

)(
j(w)

)
= B(v,−)

(
j(w)

)
= k

(
B(v, w)

)
,
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as desired. By this equation (and the fact that i, j and k are isometries), the
norm of B cannot be less than that of B, so we must have ∥B∥ = ∥B∥.

We have had uniqueness at each step of our construction, but it is not a
prior obvious that we could not have arrived at another extension by another
method, so we will give a quick proof of uniqueness.

Fix any v ∈ V . Suppose we have a (potentially different) bounded bilinear

map B̃ : V ×W → Z satisfying

B̃
(
i(v), j(w)

)
= k

(
B(v, w)

)
for all v ∈ V and w ∈ W.

Then, for each v ∈ V , the maps

W → Z

w 7→ B
(
i(v), w

) and
W → Z

w 7→ B̃
(
i(v), w

)
are both bounded linear extensions of the map W → Z defined by w 7→
B(v, w). Thus, they must be equal:

B
(
i(v), w

)
= B̃

(
i(v), w

)
for all v ∈ V and w ∈ W.

Finally, for each w ∈ W , the maps

V → Z

v 7→ B(v, w)
and

V → Z

w 7→ B̃(v, w)

are both bounded linear extensions of the map V → Z defined by v 7→
B(i(v), w) = B̃(i(v), w), so they must be equal as well. This shows uniqueness
and concludes the proof.

We close this section with a note on conjugate-linearity. Given a complex
vector space V , we define the complex conjugate of V , which we will denote
by V c: this is the same set as V with the same abelian group structure, but
with scalar multiplication defined by (λ, v) 7→ λv (where the juxtaposition
denotes scalar multiplication in V ). If V is a normed space, then V c is a
normed space as well (with the same norm), and V c is clearly complete if and
only if V is complete. If i : V → V is a Banach space completion of V , then
the exact same map i : V c → (V )c is a linear isometry with a dense image, so
V c ∼= (V )c.

Now, a conjugate-linear map T : V → W is exactly the same as a linear
map T : V c → W . The unique linear extension T : (V )c ∼= V c → W will there-
fore be a unique conjugate-linear extension T : V → W . The same holds for
sesquilinear and conjugate-bilinear maps (i.e. maps which are conjugate linear
in both entries). Thus, our proposition on the unique bounded extensions of
bilinear maps gives us unique bounded extensions of sesquilinear maps and
conjugate-bilinear maps as well.
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B.2 | Completions of Various Algebras

In this section we will consider not-necessarily-complete versions of Banach
algebras, Banach ⋆-algebras and C*-algebras, and show how to complete them.
We will also consider bounded extensions of bounded algebra and ⋆-algebra
homomorphisms. The appropriate place to read this section is during or after
Chapter 2, where the relevant concepts are introduced. The results of this
section are not needed until Chapter 4.

Consider a normed algebra A and let iA : A → A be a Banach space
completion of A. If we want to turn A into an algebra and think of A as
an algebra completion of A, the natural requirement is that iA should be an
algebra homomorphism. That is, iA should preserve the unit and the product.

Now, let µ : A × A → A denote the product on A and µ : A × A → A
denote the (suggestively named) product on A. Preservation of the product
by iA, i.e. the condition that

iA(a)iA(b) = iA(ab) for all a, b ∈ A

is equivalent to the condition that

µ
(
iA(a), iA(b)

)
= iA

(
µ(a, b)

)
for all a, b ∈ A, (B.2)

which is precisely the condition that µ be a bilinear extensions µ (as in
Theorem B.1.6).

We begin with not-necessarily-complete version of Banach algebras.

B.2.1 Definition (Pre-Banach algebras). A pre-Banach algebra is an algebra
B equipped with a submultiplicative norm that normalizes the unit.

Given a pre-Banach algebra B, a Banach algebra completion of B is a
Banach algebra B along with an isometric algebra homomorphism iB : B → B
whose image is dense. We may refer to either B or the map iB itself as a
Banach algebra completion of B.

The following proposition shows that Banach algebra completions exist
and that they can be obtained from any Banach space completion of B. Note
also that any Banach algebra completion of B is, in particular, a Banach
space completion of B.

B.2.2 Proposition (Banach algebra completions). Let B be a pre-Banach
algebra and let iB : B → B be a Banach space completion of B. Then, there is a
unique product on B such that iB : B → B becomes an algebra homomorphism
and B becomes a Banach algebra. In other words: such that iB becomes a
Banach algebra completion of B.
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Proof. By Theorem B.1.6 (and submultiplicativity of the norm), the algebra
product µ : B × B → B extends uniquely to a bilinear map µ : B × B → B
satisfying

∥µ(a, b)∥ ≤ ∥a∥∥b∥ for all a, b ∈ B.

We first prove that µ is associative. By the opening of this section, the fact
that µ extends µ is equivalent to iB preserving the product. Thus, we have
that

iB(a)
(
iB(b)iB(c)

)
= iB(a)iB(bc) = iB(abc) =

(
iB(a)iB(b)

)
iB(c)

for all a, b, c ∈ B. This shows that, if we fix c ∈ B, the maps

B × B → B
(a, b) 7→ (ab)iB(c)

and
B × B → B
(a, b) 7→ a

(
biB(c)

)
are both bounded bilinear extensions of the bounded bilinear map B×B → B
defined by (a, b) 7→ abc. By uniqueness of such extensions, they must be
equal. If we now fix a, b ∈ B, we may conclude that the maps

B → B
c 7→ (ab)c

and
B → B
c 7→ a(bc)

are both bounded linear extensions of the bounded linear map B → B defined
by c 7→ (ab)iB(c) = a(biB(c)). Thus, they must be equal, which proves
associativity.

Similarly, one finds that

iB(1B)iB(a) = iB(1Ba) = iB(a) = iB
(
IdB(a)

)
= iB(a)iB(1B)

for all a ∈ B. This means that the maps

B → B
a 7→ iB(1B)a

and
B → B
a 7→ aiB(1B)

are both bounded linear extensions of the identity on B, so they must be the
identity on B (Proposition B.1.4). Thus, 1B = iB(1B) and ∥1B∥ = ∥1B∥ = 1.

We have now verified that µ turns B into a Banach algebra and that iB is
an algebra homomorphism, so we are done.

It is useful to know that bounded linear extensions of bounded algebra
homomorphisms are algebra homomorphisms.
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B.2.3 Proposition. Let Φ: B → B′ be a bounded algebra homomorphism
between pre-Banach algebras and let iB : B → B and iB′ : B′ → B′ be Banach
algebra completions. Then, the unique bounded linear extension Φ: B → B′ is
also an algebra homomorphism.

Proof. For any maps f : X → Y and g : X → Y between sets X and Y ,
we will write f × g : X × X → Y × Y for the natural map defined by
(x1, x2) 7→ (f(x1), g(x2)).

Let µB and µB′ denote the products on the pre-Banach algebras indicated
by their subscripts and let µB and µB′ denote the products on their Banach
algebra completions (then, µB is a bounded bilinear extension of µB, and
likewise for B′, as we have seen).

We already know that Φ preserves the unit:

Φ(1B) = (Φ ◦ iB)(1B) = (iB′ ◦ Φ)(1B) = iB′(1B′) = 1B′ .

The statement that Φ preserves the product is equivalent to the statement
that

µB′ ◦ (Φ× Φ) = Φ ◦ µB

as maps B × B → B′. Now, the calculations

µB′ ◦ (Φ× Φ) ◦ (iB × iB) = µB′ ◦
(
(Φ ◦ iB)× (Φ ◦ iB)

)
= µB′ ◦

(
(iB′ ◦ Φ)× (iB′ ◦ Φ)

)
= µB′ ◦ (iB′ × iB′) ◦ (Φ× Φ)

= iB′ ◦ µB′ ◦ (Φ× Φ)

and

Φ ◦ µB ◦ (iB × iB) = Φ ◦ iB ◦ µB = iB′ ◦ Φ ◦ µB

show that µB′ ◦ (Φ× Φ) and Φ ◦ µB are both bounded bilinear extensions of
the bounded bilinear map µB′ ◦ (Φ× Φ) = Φ ◦ µB. Thus, by uniqueness of
such extensions, they are equal. This proves that Φ preserves the product
and concludes the proof.

B.2.4 Corollary (Uniqueness of Banach algebra completions). Let B be a
pre-Banach algebra and suppose that iB : B → B and jB : B → B′ are two
Banach algebra completions of B. Then, there exists a unique isometric
algebra isomorphism Φ: B → B′ such that jB = Φ ◦ iB.
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Proof. Both iB and jB are Banach space completions, so Corollary B.1.3
guarantees the existence of a unique isometric linear isomorphism Φ: B → B′

such that jB = Φ ◦ iB. The equation jB = Φ ◦ iB means that Φ is a linear
extension of the identity IdB : B → B (where iB is taken to be the completion
of its domain and jB is taken to be the completions of its target). Since IdB
is an algebra homomorphism, so is Φ, by Proposition B.2.3.

We now turn to not-necessarily-complete versions of Banach ⋆-algebras.

B.2.5 Definition (pre-Banach ⋆-algebras). A pre-Banach ⋆-algebra is an
algebra B equipped with a submultiplicative norm that normalizes the unit
and an involution that is isometric.

Given a pre-Banach ⋆-algebra B, a Banach ⋆-algebra completion of B
is a Banach ⋆-algebra B along with an isometric ⋆-algebra homomorphism
iB : B → B whose image is dense. The usual variants of the terminology
apply here as well.

B.2.6 Proposition (Banach ⋆-algebra completions). Let B be a pre-Banach
⋆-algebra and let iB : B → B be a Banach space completion of B. Then,
there is a unique product and a unique involution on B such that iB : B → B
becomes a ⋆-algebra homomorphism and B becomes a Banach ⋆-algebra. In
other words: such that iB becomes a Banach ⋆-algebra completion of B.

Proof. By Proposition B.2.2, we already know that there is a unique product
on B turning iB : B → B into an algebra homomorphism and B into a Banach
algebra. Thus, we only need to verify the existence of a unique involution on B
that turns B into a ⋆-Banach algebra and iB into a ⋆-algebra homomorphism.

By Theorem B.1.2, the involution ⋆ : B → B extends to a unique conjugate-
linear map ⋆ : B → B satisfying ∥⋆(a)∥ ≤ ∥a∥ for all a ∈ B. Since ⋆ is its own
inverse, Proposition B.1.4 guarantees that ⋆ is as well, so (a⋆)⋆ = a for all
a ∈ B. Note that ⋆ extending ⋆ means that iB(a

∗) = iB(a)
⋆ for all a ∈ B, so

we can conclude that iB is a ⋆-algebra homomorphism once we have shown
that ⋆ defines an involution.

The map ⋆ ◦µ : B×B → B defined by (a, b) 7→ (ab)∗ = b∗a∗ is a bounded
conjugate-bilinear map. The maps

B × B → B
(a, b) 7→ (ab)⋆

and
B × B → B
(a, b) 7→ b⋆a⋆

are both bounded conjugate-bilinear extensions of this map, as

(iB(a)iB(b))
⋆ = iB(ab)

⋆ = iB
(
(ab)∗

)
= iB(b

∗a∗) = iB(b)
⋆iB(a)

⋆.
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Thus, Theorem B.1.2 guarantees that they are equal. This proves that ⋆ is
an involution on B. Finally, since ⋆ is norm-decreasing and is its own inverse,
it is isometric: ∥a∥ = ∥⋆2(a)∥ ≤ ∥⋆(a)∥ ≤ ∥a∥ for all a ∈ B.

B.2.7 Proposition. Let Φ: B → B′ be a bounded ⋆-algebra homomorphism
between pre-Banach ⋆-algebras and let iB : B → B and iB′ : B′ → B′ be Banach
⋆-algebra completions. Then, the unique bounded linear extension Φ: B → B′

is also a ⋆-algebra homomorphism.

Proof. Because of Proposition B.2.3, all we need to check is that Φ preserves
the involution. Write ⋆B and ⋆B′ for the involutions on B and B′ and write ⋆B
and ⋆B′ for their extensions. The statement that Φ preserves the involution
is equivalent to the statement that ⋆B′ ◦ Φ = Φ ◦ ⋆B. The calculations

⋆B′ ◦ Φ ◦ iB = ⋆B′ ◦ iB′ ◦ Φ = iB′ ◦ ⋆B′ ◦ Φ
and Φ ◦ ⋆B ◦ iB = Φ ◦ iB ◦ ⋆B = iB′ ◦ Φ ◦ ⋆B

show that both ⋆B′ ◦ Φ and Φ ◦ ⋆B are bounded conjugate-linear extensions
of the bounded conjugate-linear map ⋆B′ ◦ Φ = Φ ◦ ⋆B. Thus, they are equal,
so Φ preserves the involution.

B.2.8 Corollary (Uniqueness of Banach ⋆-algebra completions). Let B be a
pre-Banach ⋆-algebra and suppose that iB : B → B and jB : B → B′ are two
Banach ⋆-algebra completions of B. Then, there exists a unique isometric
⋆-algebra isomorphism Φ: B → B′ such that jB = Φ ◦ iB.

Proof. All we need to check is that the unique isometric algebra isomorphism
Φ: B → B′ afforded by Corollary B.2.4 preserves the involution. Since it is
a bounded linear extension of the identity IdB : B → B, this follows from
Proposition B.2.7 (see the proof of Corollary B.2.4 for details).

Finally, we consider not-necessarily-complete versions of C*-algebras. Most
of the work is already done, so this will be swift.

B.2.9 Definition (Pre-C*-algebras). A pre-C*-algebra is a ⋆-algebra A
equipped with a submultiplicative norm that satisfies the C*-equality.

A C*-algebra completion of a pre-C*-algebra A is a C*-algebra A along
with an isometric ⋆-algebra homomorphism iA : A→ A whose image is dense.
Again, the usual variants of the terminology apply here as well.

As we observed immediately after the definition of C*-algebras (Definition
2.2.1), the C*-equality implies that the unit is normalized. Moreover, if one
examines the proof of point (iii) of Lemma 2.2.3, where we showed that
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the involution on a C*-algebra is isometric, one will see that we only used
the C*-equality and submultiplicativity. Thus, the proof carries over to the
setting of pre-C*-algebras. By these observations, a pre-C*-algebra is, in
particular, a pre-Banach ⋆-algebra. This fact makes the following proposition
almost immediate.

B.2.10 Proposition (C*-algebra completions and uniqueness). Let A be a
pre-C*-algebra and let iA : A→ A be a Banach space completion of A. Then,
there is a unique product and a unique involution on A such that iA : A→ A
becomes a ⋆-algebra homomorphism and A becomes a C*-algebra. In other
words: such that iA becomes a C*-algebra completion of A.

Moreover, if jA : A → A′ is any other C*-algebra completion of A, then
there exists a unique (isometric) ⋆-algebra isomorphism Φ: A → A′ such that
jA = Φ ◦ iA.

Proof. By Proposition B.2.6 and Corollary B.2.8, we only need to verify that
the C*-equality holds in A, where A is a Banach ⋆-algebra completion of A.
The rest of the proposition follows from the fact that pre-C*-algebras are
pre-Banach ⋆-algebras.

To do this, we resort to approximating sequences: let a ∈ A be arbitrary
and choose a sequence (an) ⊂ A such that iA(an) → a in A. Using the fact
that iA is an isometric ⋆-algebra homomorphism, along with continuity of the
norm and the algebraic operations on A, we find that

∥a∗a∥ = ∥ lim
n→∞

iA(a
∗
nan)∥ = lim

n→∞
∥iA(a∗nan)∥ = lim

n→∞
∥a∗nan∥

= lim
n→∞

∥an∥2 = lim
n→∞

∥iA(an)∥2 = ∥ lim
n→∞

iA(an)∥2 = ∥a∥2,

which verifies that the C*-equality holds on A in virtue of it holding on A.

B.3 | Completions of Inner Product Modules

In this section we consider completions of inner product modules to Hilbert
C*-modules. The appropriate place to read this section is during or after
Section 4.3, where the relevant concepts are introduced.

Suppose that A is a pre-C*-algebra with C*-algebra completion A. Given
a left inner product A-module E, a (left) Hilbert C*-module completion of E
is a left Hilbert A-module E along with a map jE : E → E that is A-linear,
preserves the inner product and whose image is dense. By preservation of the
inner product, jE must be an isometry, and A-linearity implies C-linearity, so
jE is necessarily a Banach space completion of E.
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B.3.1 Proposition (Hilbert C*-module completions). Let A be a pre-C*-
algebra with C*-algebra completion iA : A→ A. Suppose that E is a left inner
product A-module with action ΦA : A → B(E) and A-valued inner product

A⟨·, ·⟩. Suppose moreover that jE : E → E is a Banach space completion of E
(w.r.t. the norm determined by A⟨·, ·⟩).

Then, there exists a unique action ΦA : A → B(E) and a unique A-valued
inner product A⟨·, ·⟩ : E × E → A such that jE becomes an A-linear map
preserving the inner product and E becomes a left Hilbert A-module. In other
words: such that jE becomes a Hilbert C*-module completion of E. Moreover,
the Banach space completion norm on E equals the norm determined by A⟨·, ·⟩.

Proof. Part 1: Extending the action

By Corollary B.1.5, the extension map Ext: B(E) → B(E) defined by
Ext(T ) = T is an isometric algebra homomorphism. Since B(E) is a Ba-
nach space, we can think of the map Ext: B(E) → B(E) as a Banach space
completion of B(E) followed by an inclusion of its image into B(E).

Lemma 4.3.6 shows that ∥ΦA(a)∥ ≤ ∥a∥ for all a ∈ A, so ΦA is certainly
bounded. By Proposition B.2.3, we now obtain a unique bounded linear
extension (followed by an inclusion) ΦA : A → B(E) that is also an algebra
homomorphism.

With our choices of completions, the fact that ΦA extends ΦA means
that Ext ◦ ΦA = ΦA ◦ iA. That is, Ext(ΦAa) = ΦA(iA(a)) for all a ∈ A. By
definition of the extension map, we now find that

jE ◦ (ΦAa) = Ext(ΦAa) ◦ jE = ΦA(iA(a)) ◦ jE for all a ∈ A,

which is precisely the statement that jE is A-linear (we must identify A with
iA(A) for A-linearity to be a sensible notion here).

As for uniqueness of the action ΦA, we note that jE-linearity, i.e. the
requirement that

jE ◦ (ΦAa) = ΦA(iA(a)) ◦ jE for all a ∈ A,

along with the fact that ΦA must be bounded (by Lemma 4.3.6), implies that
ΦA(iA(a)) = Ext(ΦAa) for all a ∈ A. This shows that our definition of ΦA is
forced upon us.

Part 2: Extending the inner product

The inner product A⟨·, ·⟩ : E × E → A is a sesquilinear map that is bounded
by Proposition 4.3.4, so it has a unique bounded sesquilinear extension
E × E → A (see Theorem B.1.6 and the subsequent discussion).
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The requirement that jE : E → E should preserve the inner product is
precisely the requirement that A⟨·, ·⟩ should be an extension of A⟨·, ·⟩:

A⟨jE(f), jE(g)⟩ = iA
(
A⟨f, g⟩

)
for all f, g ∈ E.

Since any A-valued inner product on E must be bounded by Proposition
4.3.4, our inner product A⟨·, ·⟩ must be the extensions afforded by Theorem
B.1.6. We need to verify that it satisfies the axioms of an A-valued inner
product (Definition 4.3.1).

We begin with A-linearity (this will be a two-step procedure similar to
our proof of associativity for Banach algebra completions). Fix any a ∈ A.
The maps

B1 : E × E → A
(f, g) 7→ iA(a)A⟨f, g⟩

and
B2 : E × E → A

(f, g) 7→ A
〈
iA(a) · f, g

〉
are both bounded sesquilinear extensions of the bounded sesquilinear map
E × E → A defined by (f, g) 7→ aA⟨f, g⟩ = A⟨a · f, g⟩, because

B1

(
jE(f), jE(g)

)
= iA(a)A

〈
jE(f), jE(g)

〉
= iA(a)iA

(
A⟨f, g⟩

)
= iA

(
aA⟨f, g⟩

)
and B2

(
jE(f), jE(g)

)
= A

〈
iA(a) · jE(f), jE(g)

〉
= A

〈
jE(a · f), jE(g)

〉
= iA

(
A⟨a · f, g⟩

)
.

By Theorem B.1.6, we can conclude that B1 = B2. This only gives us
iA(A)-linearity. However, if we now fix f, g ∈ E, then the maps

A → A
a 7→ A⟨a · f, g⟩

and
A → A
a 7→ aA⟨f, g⟩

are two bounded linear extensions of the bounded linear map A→ A defined
by a 7→ A⟨iA(a) · f, g⟩ = iA(a)A⟨f, g⟩, so they are equal, which concludes the
proof of A-linearity.

To show conjugate symmetry, we apply the standard argument to the
bounded sesquilinear map E × E → A defined by (f, g) → A⟨g, f⟩ = A⟨f, g⟩∗
and its two bounded sesquilinear extensions:

E × E → A
(f, g) 7→ A⟨g, f⟩

and
E × E → A
(f, g) 7→ A⟨f, g⟩∗.

For positivty, we resort to approximating sequences: let f ∈ E and choose
a sequence (fn) ⊂ E such that jE(fn) → f . We know that

A
〈
jE(fn), jE(fn)

〉
= iA

(
A⟨fn, fn⟩

)
≥ 0 for all n ∈ N
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by positivity in the A-module E (recall that we require positivity in the
C*-algebra completion of A). Moreover, we know that A⟨jE(fn), jE(fn)⟩ →
A⟨f, f⟩ by boundedness of the claimed inner product (the proof is identical
to that of Corollary 4.3.5; we only need sesquilinearity and boundedness).
Thus, positivity follows if we can show that a limit of positive elements in A
is positive.

Suppose that (an) ⊂ A+ and that an → a ∈ A. By point (ii) of Lemma
2.2.22, we know that∥∥∥an∥1A − an

∥∥ ≤ ∥an∥ for all n ∈ N,

from which taking the limit gives ∥∥a∥1A − a∥ ≤ ∥a∥. We already know that
a∗ = a by continuity of the involution, so by point (i) of the same lemma, we
find that a ≥ 0, as desired.

We will show nondegeneracy, but first we show that the Banach space
completion norm on E, say ∥ · ∥B, agrees with the norm determined by A⟨·, ·⟩.
Appealing again to the continuity of A⟨·, ·⟩, as well as the continuity of all
norms involved, we find that (whenever jE(fn) → f ∈ E)

∥f∥2B = lim
n→∞

∥jE(fn)∥2B = lim
n→∞

∥fn∥2 = lim
n→∞

∥A⟨fn, fn⟩∥

= lim
n→∞

∥∥iA(A⟨fn, fn⟩)∥∥ = lim
n→∞

∥∥A〈jE(fn), jE(fn)〉∥∥ = ∥A⟨f, f⟩∥,

which proves the claimed equality of norms.
Nondegeneracy of the Banach space completion norm on E and the norm

on A now gives:

f ̸= 0 =⇒ ∥A⟨f, f⟩∥ = ∥f∥2B ̸= 0 =⇒ A⟨f, f⟩ ≠ 0.

This shows nondegeneracy of A⟨·, ·⟩ and concludes the proof.

There are many results one could formulate with regard to extensions of
bounded maps between inner product modules. All we have need for is the
following result, which essentially asserts that isomorphisms between inner
product modules extend to isomorphisms between Hilbert C*-modules. For
the notion of an isomorphism between Hilbert C*-modules, i.e. a unitary map,
see Definition 4.3.18.

B.3.2 Proposition. Let A be a pre-C*-algebra and let E and F be two left
inner product A-modules. Suppose that U : E → F is an A-linear bijection
preserving the inner product. Let E and F be Hilbert C*-module completions
of E and F . Then, U ∈ B(E,F ), and the unique bounded linear extension of
U is a unitary map U ∈ L(E,F ).
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Proof. Since U preserves the inner product, it must be isometric: ∥Uf∥2 =
∥⟨Uf, Uf⟩∥ = ∥⟨f, f⟩∥ = ∥f∥2 for all f ∈ E. Since A-linearity implies C-
linearity, we can conclude that U ∈ B(E,F ). Thus, U has a unique bounded
linear extension U : E → F . As a bijective isometry, its inverse has a bounded
linear extension as well.

Preservation of the inner product also implies that

⟨f, U−1g⟩ = ⟨Uf, U(U−1g)⟩ = ⟨Uf, g⟩ for all f ∈ E and g ∈ F.

This means that the bounded sesquilinear maps

E × F → A
(f, g) 7→ ⟨f, U−1g⟩

and
E × F → A
(f, g) 7→ ⟨Uf, g⟩

are both extensions of the bounded sesquilinear map E × F → A defined
by (f, g) 7→ ⟨f, U−1g⟩ = ⟨Uf, g⟩, so they must be equal. This proves that
U is an adjointable map with adjoint U−1 and A-linearity now follows from

Lemma 4.3.10. Finally, U
∗
= U−1 = U

−1
by Proposition B.1.4. This shows

that U ∈ L(E,F ) is unitary and concludes the proof.

As a corollary, we obtain uniqueness of Hilbert C*-module completions.

B.3.3 Corollary (Uniqueness of Hilbert C*-module completions). Let A be a
pre-C*-algebra and let E be a left inner product A-module. If jE : E → E and
kE : E → Ẽ are two Hilbert C*-module completions of E, then there exists a
unique unitary map U ∈ L(E, Ẽ) such that kE = U ◦ jE.

Proof. The argument is the same as always. A unique linear isometry U : E →
Ẽ such that kE = U ◦ jE exists by uniqueness of Banach space completions.
The equation kE = U ◦ jE means that U is an extension of the identity
IdE : E → E (with appropriate choices of completions) and Proposition B.3.2
then implies that U is unitary.
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