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Abstract

For an extensive physical variable we can formulate a general balance law based on the
principle that the production of the physical variable inside a domain is balanced by the
flux over the boundary of said domain. Furthermore, the balance law can be formulated for
different coordinate systems. The most common choices for coordinates systems are Euler
and Lagrange coordinates. The formulation of conservation of mass, momentum, and energy
in Euler and Lagrange coordinates will result in the Euler and the Lagrange equations. The
main objective of this master thesis is to increase the understanding about the proof of
the equivalence between weak solutions of balance laws in Euler and Lagrange coordinates.
These equations are known for admitting discontinuous solutions in finite time, even for
smooth initial conditions. Thus, throughout the master thesis we work with weak solutions
and distributions.

This master thesis consists of two main proofs. The first proof is that a general formulation
of a balance law is preserved under a bi-Lipschitz change of coordinates. This proof consists
of three main steps. First, we show that we can reduce a general balance law to a field
equation. Next, we show that the field equation is preserved under a bi-Lipschitz change of
coordinates. Lastly, we show that we can obtain the original formulation of the balance law
from the field equation. The second main proof is the equivalence between the weak solutions
of the one-dimensional Euler equations and the one-dimensional Lagrange equations. We
start by assuming no vacuum, and use the theory proved in the first part of the thesis to
show equivalence. Thereafter we show that the equivalence still holds for solutions with
vacuum. As a part of this proof we have to strengthen the definition of a weak solution in
Lagrange coordinates.
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Sammendrag

Vi kan utlede en generell balanselov for alle ekstensive fysiske variabler ved å bruke prins-
ippet om at produksjonen av variabelen i et domene er balansert av fluksen av den samme
variabelen over randen til domenet. Det er flere mulige valg for koordinatsystem n̊ar man
utleder en balanselov, men de vanligste er Euler- og Lagrangekoordinater. Hvis man ut-
leder masse-, impuls- og energibevarelse i Euler- og i Lagrangekoordinater vil det resultere
i Eulerlikningene og Lagrangelikningene. Hovedm̊alet for denne masteroppgaven er å øke
forst̊aelsen om beviset av ekvivalensen mellom svake løsninger av balanselover i Euler- og
Lagrangekoordinater. Disse likningene er kjent for å resultere i diskontinuerlige løsninger i
løpet av endelig tid, selv for glatte initialbetingelser. Dermed jobber vi med svake løsninger
og distribusjoner gjennom hele masteroppgaven.

Denne masteroppgaven best̊ar av to hovedbevis. Det første beviset er at en generell bal-
anselov er bevart under et bi-Lipschitz variabelskift. Dette beviset best̊ar av tre hovedsteg.
Vi starter med å vise at en generell balanselov kan reduseres til en feltlikning. Deretter
viser vi at feltlikningen er bevart under et bi-Lipschitz variabelskifte. Til slutt viser vi at
det er mulig å oppn̊a den opprinnelige formuleringen av balanseloven fra feltlikningen. Det
andre hovedbeviset er ekvivalensen mellom de svake løsningene av de endimensjonale Euler-
og Lagrangelikningene. Vi starter med å bruke teorien vist i det første beviset til å vise
ekvivalensen n̊ar vi antar at løsningene er vakuumfrie. Deretter, viser vi at ekvivalensen
fortsatt holder hvis vi tillater løsninger med vakuum. En viktig del av dette beviset er at vi
m̊a innføre en ny definisjon av svake løsninger i Lagrangekoordinater.
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Notation

ρ Mass density.

τ Specific volume.

u Velocity.

S Specific entropy.

e Specific internal energy.

p Pressure.

∂Ω The boundary of Ω.

N Outward unit normal.

Ei The ith unit base-vector.

K Compact subspace.

Br(x) Open ball in Rn with center at x and radius r, Br(x) = {a ∈ Rn : |x − a| < r}. If
the ball is centered at x = 0 we write Br.

B An arbitrary ball in Rn.

A Let A be a set, then A is the closure of that set.

Ac The complement of the set A, Ac = Rn \A = {x ∈ Rn : x /∈ A}.

R+ All the non-negative real numbers, R+ = [0,∞].

R The set of all real numbers including infinity and negative infinity, R = R∪{∞}∪{−∞}.

Mn×k The vector space of n× k matrices. When k = 1 will Mn×1 = Rn.

Ci(Ω) The function space with i-differentiable functions defined over Ω. If i = ∞ this is the
function space with infinitely differentiable functions, i.e., C∞ =

⋂∞
i=0C

i. If the set Ω
is obvious we may only write Ci.

Cic(Ω) The function space with i-differentiable functions with compact support over Ω. If
the set Ω is obvious we may only write Cic.

Lp(Ω;µ) The function space with p-integrable functions, i.e., f ∈ Lp(Ω) if
∫
Ω |f |pdµ < ∞.

For p = ∞, f ∈ L∞(Ω) if supx∈Ω |f | < ∞. If the set Ω and the measure µ is obvious
we may only write Lp.
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Notation Notation

L1
loc(Ω;µ) The function space with locally integrable functions, i.e., f ∈ L1

loc(Ω) if∫
K |f |dµ <∞ for all K compact subset of Ω. If the set Ω and the measure µ is obvious
we may only write L1

loc.

W k,p(Ω) The Sobolev space where k is an integer and 1 ≤ p ≤ ∞,
W k,p(Ω) = {f ∈ Lp(Ω) : ∀|c| ≤ k, ∂cf

∂c1x1...∂cnxn
∈ Lp(Ω)}, where c = (c1, . . . cn),

|c| = ∑n
i=1 ci, and the derivation holds in the weak sense.

fx The partial derivative of f with respect to x, fx = ∂xf = ∂f
∂x .

divx f The divergence of f with respect to x, divxf = ∇x · f = ∂f1
∂x1

+ . . . + ∂fn
∂xn

. If it is
obvious what we differentiate with respect to we may write divf .

∇xf The gradient of f with respect to x, ∇xf = gradxf =
[
∂f
∂x1

. . . ∂f
∂xn

]
. If it is obvious

what we differentiate with respect to we may write ∇f .

∇2
xf The Hessian matrix of function f with respect to x,

(
∇2

xf
)
ij
= ∂2f

∂xi∂xj
. If it is obvious

what we differentiate with respect to we may write ∇2f .

curlf The vector operator describing the infinitesimal circulation of a vector field in R3,
curlf = ∇× f = [∂f3x2 − ∂f2

x3
, ∂f1x3 − ∂f3

x1
, ∂f2x1 − ∂f1

x2
].

JF The Jacobian matrix for the function F , (JF )ij =
∂Fi
∂xj

.

det JF The determinant of the Jacobian matrix for F .

f |t=t0 The function at t = t0.

(f ◦ g)(x) The composition of f and g, (f ◦ g)(x) = f(g(x)).

(f ∗ g)(x) The convolution of f and g, (f ∗ g)(x) =
∫
f(x− y)g(y)dy =

∫
g(x− y)f(y)dy.

supx∈Ω f(x) The supremum of the function f over the domain Ω, which is the least upper
bound for f(x) when x ∈ Ω.

infx∈Ω f(x) The infimum of the function f over the domain Ω, which is the greatest lower
bound for f(x) when x ∈ Ω.

supp f The support of the function f , i.e., the set of points x such that f(x) is non-zero,
suppf = {x : f(x) ̸= 0}.

f(A) The image of the function f , f(A) = {f(x) : x ∈ A}.

f−1(A) The preimage of the function f , f−1(A) = {x : f(x) ∈ A}.

diam(A) The diameter for the set A, diam(A) = sup{|x− y| : x,y ∈ A}.

lEf(x0) The approximate limit of the function f in E, which means that for all ε > 0 the
point x0 is a point of rarefaction of the set {x ∈ E : |f(x)− lEf(x0)| > ε}. If E = Rn
we denote the approximate limit by lf(x0) and if E is the half space (x− x0) · a > 0
we denote the approximate limit by laf(x0).

f̂(u(x)) The functional superposition of the function f ,
f̂(u(x)) =

∫ 1
0 f

(
lau(x)t+ l−au(x)(1− t)

)
dt.

| · | The Euclidean norm in Rn, |x| =
√
x21 + . . .+ x2n.
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Notation Notation

∥ · ∥Lp The Lp norm of a function for 1 ≤ p <∞, ∥f∥Lp =
( ∫

|f |pdx
)1/p

.

∥ · ∥∞ The L∞ norm of a function, ∥f∥∞ = ∥f∥L∞ = supx |f(x)|.

v ·w The scalar product between the vector v = [v1, v2, . . . , vn] and w = [w1, w2, . . . , wn],
v ·w =

∑
i viwi.

α(n) The volume of the unit ball B1 in Rn.

µ A general measure.

mn The Lebesgue measure in Rn.

Hs The s-dimensional Hausdorff measure in Rn.

µ A The measure µ restricted to A, µ A(E) = µ(A ∩ E).

ν ≪ µ The measure ν is absolutely continuous with respect to the measure µ, i.e., ν(A) = 0
for all A with µ(A).

ν ⊥ µ The measures ν and µ are mutually singular, i.e., there exists a Borel set B ⊂ Ω such
that µ(Ω \B) = ν(B) = 0.

f#µ The push forward measure constructed by the function f and measure µ, f#µ(A) =
µ(f−1(A)).

χA The characteristic function for the set A, χA(x) = 1 if x ∈ A and zero otherwise.

a.e. almost everywhere.

xi





Chapter 1

Introduction

The purpose of this thesis is to increase the understanding of the proof of the equivalence
between the weak solutions of the spatial and the referential formulation of a balance law.

1.1 Background

1.1.1 Short historical background

The theory of continuum physics and conservation laws has a rich history, with its beginning
in the 18th century, and still to this day, it is an active topic of research. In the beginning
most of the research was intertwined with gas dynamics. For instance, the oldest system of
conservation laws is the Euler equations for barotropic gas flow [8, p. XVIII]. Furthermore,
in this period of time, Euler introduced the referential description of motion, which later has
been named Lagrange description. In addition, the spatial, or Euler, description of motion
was conceived by d’Alembert and Daniel Bernoulli [8, Section 2.9]. In the beginning of
the 19th century the principles of the theory of general balance laws were introduced and
stemmed from the development of the theory of elasticity. Throughout the next 150 years the
theory was thoroughly investigated by mathematicians, physicists, chemists, and engineers [8,
p. XXX]. In 1948 Courant and Friedrichs gathered the theory about balance laws to write the
book Supersonic Flow and Shock Waves [5] in the language of mathematics. Furthermore,
in 1987 Wagner showed the equivalence of the spatial and the referential formulations of
the one-dimensional Euler equations for a compressible, inviscid, and non-heat-conducting
gas [31]. Thereafter, Dafermos wrote the article Equivalence of referential and spatial field
equations in continuum physics [7] in 1993, where he showed the equivalence of Lagrange
and Euler formulation of a multidimensional conservation law. Later, he continued his work
in the book Hyperbolic Conservation Laws in Continuum Physics [8], where he, among
other topics, proved that a general balance law is preserved under a bi-Lipschitz change of
coordinates.

1.1.2 Spatial and referential formulation

In continuum physics, there are two main choices for point of view when deriving physical
laws. The first one is the spatial, also called Euler, point of view, where we observe the
physical system from a fixed external frame of reference. Thus, the independent variables

1



1.1. Background Chapter 1. Introduction

will be the spatial coordinates and time [27, p. 4]. The other choice for point of view is
the referential, also called Lagrange, point of view, where we describe the physical system
from the perspective of particles in the system and every particle is labeled by the position
at time t = 0. So, the independent variables will be the label of the particles and time
[27, p. 4]. Both points of view have advantages and disadvantages, which mean that in some
cases one point of view is more preferable than the other. For instance, Euler point of view is
useful when we want to study the overall motion of a system as a whole. However, Lagrange
point of view will be a better choice if we want to analyze local phenomena and understand
the interaction between and behavior of individual particles. Furthermore, Newton’s laws
are formulated from the perspective of a particle and thus conservation laws derived from
Newton’s laws will be in Lagrange representation. However, most of the mathematical theory
is developed in Euler coordinates. This is due to the Lagrange equations becoming highly
non-linear in higher dimensions [11]. In addition, in Lagrange representation it is easy to
retrieve the trajectories of a particle, and thus compute the acceleration by taking the second
time derivative of the position. Using this and Newton’s second law, we can easily find the
force acting on the fluid [24, Chapter 2.1].

As we can see from the examples above, in some cases it is more preferable to use Euler point
of view over Lagrange and sometimes the opposite is true. This is one reason it is interesting
to prove the equivalence of the two points of view. The equivalence will allow us to use the
description that works best for the particular problem we are facing. In addition, we can
construct methods based on a combination of Euler and Lagrange description, where we use
the strengths from both descriptions. Furthermore, the equivalence will give use an increased
theoretical understanding of the physical properties, since Euler and Lagrange formulations
give us different insight to the physical properties. It will result in a connection between
the macroscopic understanding from Euler point of view and the microscopic understanding
from Lagrange point of view.

1.1.3 Balance laws

We have two types of physical properties, extensive and intensive. The physical properties
that are dependent on the amount of material are called extensive properties and for these
we can formulate balance laws. The idea behind balance laws, is that nothing can be created
or destroyed. Another way to formulate this is that the production of a quantity in a domain
has to be balanced by the flux of said quantity over the boundary of the domain. We can
write the general balance law for a physical quantity on a domain D as

QD(∂D) = P (D), (1.1)

where QD describes the flux over the boundary and P describes the production within
the domain [8, Chapter 1.1]. Furthermore, three of the most used balance laws are the
conservation of mass, momentum, and energy. The derivation of these conservation laws is
based on the following three principles. [3, Chapter 1.1]

• Mass can neither be destroyed nor created.

• The rate of change of the momentum on a fluid is equal to the forces applied to it.

• Energy can neither be destroyed nor created.

For a one-dimensional compressible, inviscid, non-heat-conducting gas the conservation of
mass, momentum, and energy from Euler point of view will result in the Euler equations

2
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given by [31, Equations (1.1)]

ρt + (ρu)x = 0, (1.2a)

(ρu)t + (ρu2 + p)x = 0, (1.2b)(
ρe+

1

2
ρu2

)
t
+
(
u
(
ρe+

1

2
ρu2 + p

))
x
= 0. (1.2c)

Furthermore, from Lagrange point of view the conservation of mass, momentum, and energy,
for the same gas, will result in the Lagrange equations given by [31, Equation (1.3)]

τt − uy = 0, (1.3a)

ut + py = 0, (1.3b)(
e+

1

2
u2

)
t
+

(
pu

)
y
= 0, (1.3c)

where τ = 1/ρ.

The partial differential equations presented in this section are known for developing discon-
tinuities. Thus, we often have to consider weak solutions for the systems of partial differential
equations.

1.2 Research question

In the Chapters 1.1-1.3 in the book Hyperbolic conservation laws in continuum physics [8]
Dafermos shows that we can reduce the general balance law (1.1) to a field equation

divA = P. (1.4)

Furthermore, he shows that the conservation law written as a field equation is preserved
under a bi-Lipschitz change of coordinates. Lastly, he shows that we can retrieve the original
general formulation of the balance law from a field equation.

In the article Equivalence of the Euler and Lagrangian equations of gas dynamics for weak
solutions by Wagner [31] he proves that the Euler and Lagrange equations for a one-
dimensional compressible, inviscid, non-heat-conduction gas are equivalent. First, he proves
the equivalence when he assumes that the there is no vacuum. Thereafter, he proves that
if he strengthens the definition of a weak solution in Lagrange coordinates the equivalence
still holds when he allows there to be vacuum.

In both the chapters by Dafermos and the article by Wagner most of the intermediate calcu-
lations are skipped. Understanding the intermediate calculations in detail will increase our
understanding of the two formulations of the balance laws, and developing these calculations
is our main research goal.

1.3 Proof outline

To answer the research question we are going to start by following Dafermos’ proofs to show
that a general balance law is conserved under a bi-Lipschitz coordinate. As a part of these
we will use multiple properties of Radon and Hausdorff measures. Furthermore, we will show
that the theory by Dafermos and the theory byWagner coincide for the one-dimensional Euler

3



1.4. Thesis outline Chapter 1. Introduction

equations when the solutions are without vacuum. Lastly, we will show that the equivalence
still holds in some cases if we allow the solutions to include vacuum. Here we will follow the
proof done by Wagner. Among other things we will introduce a stronger definition for weak
solutions in Lagrange coordinates, which ensures the test function in Lagrange coordinates
to be discontinuous in the vacuum set. Throughout both parts of the thesis we will use weak
formulations and standard mollifiers since we will be considering non-differentiable solutions
of the balance laws.

1.4 Thesis outline

This thesis is composed of the following chapters, of which Chapter 4 and 5 are the main
contribution of this work. Some of the sections and chapter in this thesis are based on sections
in my project thesis [20]. Which sections and chapters are specified in the list below.

• Chapter 1: Introduction. In this chapter we present some motivation for the importance
of the results presented in this thesis, by providing some background information about
Euler and Lagrange description and balance laws. Additionally, we present the research
question for the thesis and the proof outline.

• Chapter 2: Theoretical background. This chapter includes some useful theorems and
definitions from measure theory, about convergence, about mollifiers, about weak for-
mulation of conservation laws and from the theory of functions of bounded variations.
These theorems and definitions will be important for the main proofs in this thesis.
Section 2.4 is based on Section 2.3.1 and Theorem 4.9 in [20]. However, it is rewritten
to be consider a multidimensional balance law.

• Chapter 3: Balance laws. Here we derive the formulation of a general balance law
and the conservation of mass, momentum, and energy for a compressible, inviscid,
non-heat-conducting gas from both Euler and Lagrange point of view. This chapter is
taken from Section 2.2 in [20] and is included for completeness.

• Chapter 4: Multidimensional balance law. The proof that a general formulation of a
balance law can be reduced to a field equation and that this field equation is conserved
under a bi-Lipschitz change of coordinates is found in this chapter. In addition, we
show that we can retrieve the original general formulation of the balance law from a
field equation.

• Chapter 5: One-dimensional Euler and Lagrange equations. In this chapter we start
by showing that we can use the main theorem from Chapter 4 to show that the Euler
and Lagrange equations are equivalent when we consider solutions without vacuum.
Then we proceed to show that in some cases the equivalence still holds true when we
allow there to be vacuum. Section 5.1.1 is based on Section 4.1 in [20] and included
for completeness.

• Chapter 6: Conclusion and future research. This chapter includes some concluding
remarks. In addition, it includes two suggestions for future research, which are BV
transformations of a general balance law and entropy solutions.

4



Chapter 2

Theoretical background

In this chapter we present some mathematical theory that is useful to understand before
tackling the main proofs in this thesis. It includes topics in measure theory, convergence,
mollifiers, weak solutions, and functions of bounded variation. The section about weak
solutions is based on sections from my project thesis [20].

2.1 Measure theory

We start this section with some fundamental definitions and theorems from measure theory,
before defining Radon and Hausdorff measure and stating some useful theorems and lemmas.

Let X be a nonempty set and denote the set of all subsets of X by 2X . We start by defining
a σ-algebra. From [9, Definition 1.4] we have the following definition.

Definition 2.1 (σ-algebra). A collection of subsets A ⊆ 2X is called a σ-algebra if it satisfies

(i) ∅, X ∈ A,

(ii) A ∈ A implies Ac ∈ A,

(iii) Ak ∈ A, k ∈ N implies
⋃
k∈NAk ∈ A,

(iv) Ak ∈ A, k ∈ N implies
⋂
k∈NAk ∈ A.

The smallest σ-algebra containing all open subsets is called a Borel σ-algebra and a set in a
Borel σ-algebra is called a Borel set. Next, we define some useful properties of set functions.

Definition 2.2 (Properties of a set function [13, p. 283]). Let µ be a set functions from
A ⊆ 2X to R. We say that

(i) µ is monotone if for every A,B ∈ A with A ⊂ B we have µ(A) ≤ µ(B).

(ii) µ is additive if for all finite collections of pairwise disjoint subsets Ak ∈ A, k = 1, . . . , N
we have µ

(
∪Nk=1 Ak

)
=

∑N
k=1Ak. If the equality also holds for all countable infinite

collection of subsets, we say that µ is countable additive.

(iii) µ is countable subadditive if for all countable collections of subsets Ak ∈ A, k ∈ N we
have µ

(
∪k∈N Ak

)
≤ ∑

k∈N µ(Ak).

5



2.1. Measure theory Chapter 2. Theoretical background

Furthermore, an outer measure is defined as follows.

Definition 2.3 (Outer measure). A set function µ : 2X → R that satisfies µ(∅) = 0, and
is monotone and subadditive is a signed outer measure. If µ only takes positive values, i.e.,
µ : 2X → [0,∞], we say that µ is an unsigned outer measure.

For simplicity, in the rest of this thesis we will say measure when we are referring to an outer
measure.

Definition 2.4 (Borel measure [23, Definition 1.5(2) and 1.5(3)]). We say that a measure
µ is a Borel measure if every Borel set is a µ-measurable set. Furthermore, a Borel measure
µ is Borel regular if there for every A ⊆ Rn exists a Borel set B such that A ⊆ B and
µ(A) = µ(B).

From [10, p. 54] we have the following criterion for a measurable subset.

Proposition 2.1 (Measurable subset). We say that a subset A is measurable if it satisfies

µ(B) = µ(B ∩A) + µ(B \A) ∀B ⊆ X.

The following formulation of Fubini’s Theorem can be found in [10, Section 2.6.2].

Theorem 2.2 (Fubini’s Theorem). 1 Suppose α is a measure on X, and β is a measure on
Y . If f is an α× β integrable, i.e., f has finite α× β integral, then∫

fd(α× β) =

∫∫
f(x, y)dα(x)dβ(y) =

∫∫
f(x, y)dβ(y)dα(x).

Proof. See [10, Section 2.6.2].

Lastly, we define simple functions and µ-measurable functions. In [9, Definition 1.10] meas-
urable function is defined as

Definition 2.5 (Measurable function). A function f : X → Y is said to be a µ-measurable
function if for all open sets U ⊂ Y the set f−1(U) is a µ-measurable set.

In [13, Section 5.2.1b] we find following definition of a simple function.

Definition 2.6 (Simple function). A function f : X → R is called a simple function if it
takes finitely many finite distinct values a1, . . . , aN . Thus, we can write a simple function as

f(x) =

N∑
i=1

aiχEi ,

where Ei := {x ∈ X : f(x) = ai} and χE is the characteristic function. A simple function is
µ-measurable if and only if all Ei are µ-measurable sets.

Furthermore, we have the following useful lemma from [13, Lemma 5.45].

1We have only included (4) from the theorem in [10].
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Lemma 2.3 (Approximation of a simple function). A non-negative function g : X → R+ ∪
∞ is a µ-measurable function if and only if there exists a non-decreasing sequence of µ-
measurable simple functions {fk} such that fk(x) → g(x) pointwise.

Proof. See [13, p. 308].

In this thesis we will consider the case where X = Rn, thus for the rest of this chapter we
will define Radon and Hausdorff measure and state theorems and lemmas for the case when
X = Rn.

2.1.1 Radon measure

In [10, Section 2.2.5] we find the following definition of a Radon measure.

Definition 2.7 (Radon measure). A Borel measure µ on Rn is said to be a Radon measure
on Rn if it satisfies that

(i) All compact subsets K have finite measure, i.e., µ(K) <∞

(ii) For all A ⊂ Rn we have

µ(A) = inf{µ(U) : U ⊃ A,U open}.

This property is called outer regularity.

(iii) For all U ⊂ Rn open, U is a µ-measurable and

µ(U) = sup{µ(K) : K ⊂ U,K compact}.

This property is called inner regularity.

Next, we define what we mean by a measure restricted to A.

Definition 2.8 (Restricted to A [9, Definition 1.2]). Let µ be a measure on Rn and A ⊆ Rn.
We say µ A is µ restricted to A and define it by

(µ A)(B) := µ(A ∩B) ∀B ⊆ Rn.

Furthermore, in [23, Theorem 1.9] we find the following theorem about µ A.

Theorem 2.4. Let A ⊆ Rn, µ be the measure and let µ A be µ restricted to A. Then we
have

(i) If E is a µ-measurable set, E is also a µ A-measurable set.

(ii) If µ is a Borel regular measure and µ(A) <∞, then µ A is a Borel regular measure.

Proof. See [23, Theorem 1.9].

To show that a Borel measure is a Radon measure if and only if it is Borel regular and finite
for every compact set, we use the following theorem from [23, Theorem 1.10].
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2.1. Measure theory Chapter 2. Theoretical background

Theorem 2.5. Let µ be a Borel regular measure on Rn, A a µ-measurable set, and ε > 0.

(i) If µ(A) <∞, there is a closed set C ⊂ A such that µ(A \ C) < ε.

(ii) If there are open sets U1, U2, . . ., such that A ⊂ ⋃∞
i=1 Ui and µ(Ui) <∞ for all i, then

there is an open set U such that A ⊂ U and µ(U \A) < ε.

Proof. See [23, Theorem 1.10].

Proposition 2.6. A Borel measure is a Radon measure if and only if it is Borel regular and
finite for every compact set K ⊂ Rn.

Proof. We start by assuming µ is a Borel regular measure such that µ(K) < ∞ for all
compact K. Clearly, property (i) in Definition 2.7 is satisfied.

To prove property (iii) we start by observing that since U is an open set, and thus a Borel
set, U will be a µ-measurable set. To show inner regularity, we first assume µ(U) < ∞ and
use assertion (i) in Theorem 2.5, to conclude that for every ε > 0 there exists a closed set
C ⊂ U such that µ(U \ C) < ε. C is a compact set, since µ(C) ≤ µ(U) < ∞. So, we have
proved inner regularity for open sets with finite measure. The next part of the proof, the
proof of inner regularity for U with infinite measure, is based on the proof of Theorem 1.8 in
[9]. Let Di = {x ∈ Rn : i−1 < |x| < i} be the torus with inner radius i−1 and outer radius i.
Since Di ⊂ Di and Di is a compact set, µ(Di) <∞. Thus, µ(A∩Di) <∞ and, by the above
argument, for every ε > 0 there exists Ci closed such that µ

(
(A∩Di)\Ci

)
≤ ε. In fact, there

exists a Ci such that µ(A ∩Di)− 1/2i ≤ µ(Ci). Furthermore, ∞ = µ(A) =
∑∞

i=1 µ(A ∩Di)
and ∪∞

i=1Ci ⊆ A. So,

lim
k→∞

µ
( k⋃
i=1

Ci

)
= µ

( ∞⋃
i=1

Ci

)
=

∞∑
i=1

µ(Ci) ≥
∞∑
i=1

µ(A ∩Di)− 1/2i = ∞.

In addition,
⋃k
i=1Ci is closed for all k. Thus, for an open set U with infinity measure the

following is true
µ(U) = sup{µ(C) : C ⊂ U,C closed}.

The last step of the proof of property (iii) is to show that

sup{µ(C) : C ⊂ U,C closed} = sup{µ(K) : K ⊂ U,K compact}, (2.1)

for all open subsets U . Let Br be the closed ball with center at x = 0 and radius r. Then,
C ∩ Br will be a compact set and limr→∞C ∩ Br = C. Thus Equation (2.1) holds true.

Furthermore, we prove property (ii) in Definition 2.7. Assume A is µ-measurable and let Br
be an open ball with center at x = 0 and radius r. Then A ⊂ ⋃∞

r=1 Br and µ(Br) <∞, since
Br is a compact subset and Br ⊂ Br. Thus, by assertion (ii) in Theorem 2.5 for every ε there
exists an open set U such that U ⊃ A and µ(U \A) < ε. Thus property (ii) in Definition 2.7
is proved for measurable A. For a subset A which is not measurable we use that µ is Borel
regular, i.e., there exists a Borel set B such that A ⊂ B and µ(A) = µ(B). Furthermore, B
is a measurable set and thus

µ(B) = inf{µ(U) : U ⊃ B,U open}.

In addition, since B ⊃ A,

inf{µ(U) : U ⊃ B,U open} ≥ inf{µ(U) : U ⊃ A,U open}.

8



Chapter 2. Theoretical background 2.1. Measure theory

Using this we obtain
µ(A) ≥ inf{µ(U) : U ⊃ A,U open},

and equality is due to µ being monotone.

Now, we prove that a Radon measure is Borel regular. Let A be a set and by property (ii)
in Definition 2.7

µ(A) = inf{µ(U) : U ⊃ A,U open}.
So, for every ε > 0 an open set U exists such that

µ(U \A) < ε.

Using this we construct a sequence Ui such that µ(Ui) < ε + µ(A). Furthermore, the set⋂k
i=1 Ui ⊃ A for every k, since Ui ⊃ A for all i. In addition, µ

(⋂k
i=1 Ui

)
→ µ(A) as k → ∞.

Thus, since the countable intersection of open sets is a Borel set, B =
⋂∞
i=1 Ui will satisfy

A ⊂ B and µ(A) = µ(B). Thus, a Radon measure is a Borel regular measure which is finite
for all compact subsets.

In addition, we can prove the following property of µ A.

Theorem 2.7. If µ is a Borel regular measure and µ(A) < ∞, then µ A is a Radon
measure.

Proof. By assertion (ii) in Theorem 2.4 we have that µ A is a Borel regular measure. In
addition, µ A(K) = µ(K∩A) ≤ µ(A) <∞ for all compact subsets K. Thus, by Proposition
2.6 µ A is a Radon measure.

Next, we want to state the Lebesgue’s Decomposition Theorem [19, Theorem 7.33] and
Radon-Nikodym Theorem [19, Corollary 7.34], but first we have to define absolute continuity,
mutual singularity, equivalent measures and density of a measure. From [19, Definition 7.30]
we have the following definition.

Definition 2.9. 2 Assume µ and ν are Borel measures on Ω ⊆ Rn.

(i) The measure ν is absolutely continuous with respect to µ, written ν ≪ µ, if ν(A) = 0
for all A ⊆ Ω with µ(A) = 0.

(ii) The measures ν and µ are mutually singular, written ν ⊥ µ, if there exists a Borel
subset B ⊆ Rn such that µ(Ω \B) = ν(B) = 0.

(iii) The measures ν and µ are equivalent if µ≪ ν and ν ≪ µ.

(iv) Let f : Ω → R be a measurable map. Define the measure ν by

ν(A) :=

∫
A
fdµ

for A ⊂ Ω. We say that f is the density of ν := fµ with respect to µ.

Theorem 2.8 (Lebesgue’s Decomposition Theorem). Let µ and ν be two Radon measures
on Ω ⊆ Rn. Then ν can be uniquely decomposed into an absolutely continuous part νa.c. and
a singular part νs with respect to µ, i.e., ν = νa.c.+ νs, where νa.c. ≪ µ and νs ⊥ µ. νa.c. has
a density with respect to µ, denoted dνa.c.

dµ , which is µ-measurable and finite µ-a.e.
2Have included Definition 4.13 from [19] and rewritten to coincide with the notation in this thesis.
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Proof. See [19, p. 157].

Theorem 2.9 (Radon-Nikodym Theorem). Let µ and ν be Radon measures on Ω ⊆ Rn.
Then ν has a density with respect to µ if and only if ν ≪ µ. In this case, dν

dµ is µ-measurable

and finite µ-a.e. dν
dµ is called the Radon-Nikodym derivative of ν with respect to µ.

Proof. See [19, p. 157].

Thus, if a measure ν is absolutely continuous with respect to µ, there exists a measurable
function f = dν

dµ such that

ν(A) =

∫
A
fdµ ∀A ⊆ Ω.

Furthermore we have the Lebesgue Differentiation Theorem [9, Theorem 1.32].

Theorem 2.10 (Lebesgue Differentiation Theorem). Let µ be a Radon measure on Rn and
f ∈ L1

loc(Rn;µ). Then

lim
r→0

1

µ(Br(x))

∫
Br(x)

fdµ = f(x) for µ-a.e. x ∈ Rn. (2.2)

Proof. See [9, Theorem 1.32].

A point x satisfying (2.2), is called a Lebesgue point for the Radon measure µ.

Corollary 2.11 (Lebesgue Differentiation Theorem). Let µ be a Radon measure on Rn,
f ∈ L1

loc(Rn;µ) and {Er} a sequence of set which shrinks nicely when r ↓ 0, i.e., there exist
an α such that µ(Er) = αµ(Br(x)) and Br(x) ⊃ Er. Then

lim
1

µ(Er)

∫
Er

fdµ = f(x) for µ-a.e. x ∈ Rn.

Proof. This proof is a rewritten version of the proof of Theorem 3.21 in [12], where we have
used an arbitrary Radon measure instead of the Lebesgue measure. Consider∣∣∣ 1

µ(Er)

∫
Er

f(y)dµ(y)− f(x)
∣∣∣ ≤ 1

µ(Er)

∫
Er

|f(y)− f(x)|dµ(y)

≤ 1

αµ(Br(x))

∫
Br(x)

|f(y)− f(x)|dµ(y) = 0,

where we have used Theorem 2.10.

The next lemma is taken from [26, Proposition 7.1.1].

Lemma 2.12 (Urysohn’s Lemma). Let Ω ⊂ Rn, F a closed subset of Ω, and U an open set
containing F . Then there exists a continuous function f from Ω into [0, 1], equal to 1 on F
and to 0 on U c.

Proof. See [26, Proposition 7.1.1].

Before stating the Vitali Covering Theorem [13, Theorem 6.64] we have to define a fine cover
[13, Definition 6.63].

10



Chapter 2. Theoretical background 2.1. Measure theory

Definition 2.10 (Fine cover). Let F be a family of closed subsets of Rn. We say that F
finely covers A ⊂ Rn if for any x ∈ A and for any ε > 0 there is an F ∈ F and diam(F ) < ε.

Here, diam A = sup{|x− y| : x,y ∈ A}.

Theorem 2.13 (Vitali Covering Theorem). Every Radon measure µ in Rn has the following
property: If A ⊂ Rn is a bounded Borel set and F is a family of closed balls that finely covers
A, then there is a disjoint countable subfamily F ′ ⊂ F such that

µ
(
A \

⋃
B∈F ′

B
)
= 0.

Proof. See [13, Theorem 6.64].

Lastly, we will state two theorems defined by Wagner in [31, Formulae 1 and 2] that will be
useful to do a change of variables later in this thesis. He has obtained the formulae from
[10]. First, we define the measure f#(µ).

Definition 2.11 (Push-forward of a measure by a function [10, p. 54]). Let f : X → Y be
a function, where X ⊂ Rn and Y ⊂ Rm. Then f induces a map f# which associates the
measure f#(µ) on Y for each measure µ on X by the formula

f#(µ)
(
B
)
= µ

(
f−1(B)

)
for B ⊂ Y,

where f−1 is the preimage of f .

Proposition 2.14. f−1(B) is µ-measurable if and only if B is f#(µ A)-measurable for
every A ⊂ X.

Proof. First, assume that f−1(B) is µ-measurable, then by Proposition 2.1

µ(E) = µ
(
E ∩ f−1(B)

)
+ µ

(
E \ f−1(B)

)
∀E ⊂ X. (2.3)

Let E = f−1(C) ∩A. Then we have

µ
(
f−1(C) ∩A

)
= µ

(
(f−1(C) ∩A) ∩ f−1(B)

)
+ µ

(
f−1(C) ∩A \ f−1(B)

)
. (2.4)

Furthermore,

f−1(C) ∩ f−1(B) = {x ∈ Rn : f(x) ∈ C} ∩ {x ∈ Rn : f(x) ∈ B} = {x ∈ Rn : f(x) ∈ C ∩B}
= f−1(C ∩B).

Similarly, f−1(C) \ f−1(B) = f−1(C \B). Thus, Equation (2.4) becomes

f#(µ A)
(
C
)
= f#(µ A)

(
C ∩B

)
+ f#(µ A)

(
C \B

)
.

For every A and C there exists a set E such that E = f−1(C) ∩ A. Thus, for every A ⊂ X
the above equation will hold for every C ⊂ Y , since (2.3) holds for every E. Hence, B is
f#(µ A) measurable for all A ⊂ X.

Next, assume that B is f#(µ A) for all A ⊂ X. Then

f#(µ A)
(
C
)
= f#(µ A)

(
C ∩B

)
+ f#(µ A)

(
C \B

)
∀C ⊂ Y. (2.5)

11
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We can rewrite this as

µ
(
f−1(C) ∩A

)
= µ

(
(f−1(C) ∩A) ∩ f−1(B)

)
+ µ

(
(f−1(C) ∩A) \B

)
.

For all E a set A and a set C exist such that f−1(C) ∩A = E, and since for all A Equation
(2.5) holds for all C

µ
(
E
)
= µ

(
E ∩ f−1(B)

)
+ µ

(
E \B

)
∀E ⊂ X.

Thus, f−1(B) is µ-measurable and the proposition is proved.

Next, we state the definition of a proper function.

Definition 2.12 (Proper function [10, Section 2.2.17]). We say that a function f : Rn → Rm
is proper if for every compact subset K ⊂ Rm the preimage of K is compact, i.e., f−1(K) is
compact.

From [10, Section 2.2.17] we have the following theorem.

Theorem 2.15. Let X,Y ⊂ Rn be countable unions of compact sets. If µ is a Radon
measure on X and T : X → Y is a proper map, then T#µ is a Radon measure on Y .

Proof. To prove T#µ is a Radon measure, we prove that

(i) T#µ(K) <∞ for all compact subsets, K ⊂ Y .

(ii) For all A
T#µ(A) = inf{T#µ(U) : U ⊃ A,U open}.

(iii) for all U open, U is measurable and

T#µ(U) = sup{T#µ(K) : K ⊂ U,K compact}.

First, we observe that T#µ(K) = µ
(
T−1(K)

)
< ∞, where we have used that T is proper,

thus T−1(K) is a compact subset of X. So, property (i) is proved.

Furthermore, in Section 2.2.17 in [10] they have proved that for every A ⊂ Y and ε > 0
there exists an open subset U ⊂ Y such that A ⊂ U and

T#µ(U) ≤ ε+ T#µ(A).

In addition, we always have T#µ(A) ≤ T#µ(U) since A ⊂ U . Thus, by letting ε → 0 we
get that for every A the following holds true T#µ(A) = inf{T#µ(U) : U ⊃ A,U open}, and
property (ii) is proved.

Lastly, to prove property (iii). Since T is a proper function, it is continuous and thus every
preimage of open sets is open, and we have

T#µ(U) = µ
(
T−1(U)

)
= sup{µ(K) : K ⊂ T−1(U),K compact}

≤ sup{µ
(
T−1(K)

)
: K ⊂ U,K compact} = sup{T#µ(K) : K ⊂ U,K compact}.

We have equality by using that K ⊂ U implies that T#µ(K) ≤ T#µ(U).

Thus, we have proved that T#µ is a Radon measure.
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Furthermore, from [10, Theorem 2.4.18] we obtain the following theorem.

Theorem 2.16. 3 Let X,Y ⊂ Rn be countable unions of compact sets. Suppose T : X → Y
and f maps T#µ-a.e. y ∈ Y into R.

(i) If f ◦ T is µ-measurable then f is T#µ measurable and∫
(f ◦ T )dµ =

∫
fd(T#µ). (2.6)

(ii) If f is T#µ-measurable, µ is a Radon measure and T is proper, then f ◦ T is µ-
measurable.

Proof. The proof is based on the proof of Theorem 2.4.18 in [10]. However, we generalize the
proof to include the case when µ not necessarily satisfies µ(X) <∞, but instead we require
that µ is a Radon measure, T is proper and the spaces X and Y are countable unions of
compact sets.

Assume that f ◦T is µ-measurable, i.e., for every µ-measurable set E the set (f ◦T )−1(E) =
T−1

(
f−1(E)

)
is a µ-measurable set. By Proposition 2.14 this implies that f−1(E) is a

T#(µ A)-measurable set for all A. Thus, by choosing A = X, f is a T#(µ)-measurable
function. Next, assume that f = χE is a characteristic function. We start by observing

χE ◦ T = χE(T (x)) =

{
1 T (x) ∈ E

0 T (x) /∈ E
= χ

T−1(E).

Thus, for characteristic functions we have∫
χEd(T#µ) = T#µ(E) = µ

(
T−1(E)

)
=

∫
χ
T−1(E)dµ =

∫
χE ◦ Tdµ.

By Lemma 2.3 for every non-negative f there exists an increasing sequence of simple functions
gk such that gk(x) → f(x) pointwise. Thus, by using the Monotone Convergence Theorem
2.21 we can conclude that the (2.6) holds true for non-negative functions. Furthermore, to
conclude that the equality holds for a general function, we use Theorem 2.4.4(6) in [10],
which state that for a measure ν and measurable function f∫

fdν =

∫
f+dν −

∫
f−dν,

where f+ = sup{f, 0} and f− = − inf{f, 0}. Then by the fact that the equality holds for
non-negative functions, the equality holds for general functions. Thus, assertion (i) is proved.

Next, we prove assertion (ii). We start by observing that from Theorem 2.15, T#µ is a
Radon measure, since µ is a Radon measure and T is proper. Furthermore, assume that
f is a T#µ-measurable function, then f−1(E) is a T#µ-measurable set for all measurable
set E. Let K ⊂ Y be a compact set, then since T is proper T−1(K) ⊂ X is compact.
Additionally, from Section 2.1.5(4) in [10] we have the following statement If µ(X) < ∞,
T : X → Y and C is an T#µ-measurable set, then f−1(C) is µ-measurable. So, if we
consider f |T−1(K) : T

−1(K) → K we can use the previous statement to conclude that since(
f |T−1(K)

)−1
(E) is T#µ-measurable, then T−1 ◦

(
f |T−1(K)

)−1
(E) =

(
f |T−1(K) ◦ T

)−1
(E) is

µ-measurable and thus f |T−1(K) ◦ T is a µ-measurable function. This result holds true for
all compact subsets K. Since both X and Y are countable unions of compact sets will the
result extend to f by a straightforward partition of unity argument.

3The theorem is slightly altered. We consider a Radon measure µ and a proper function T defined on a
countable union of compact sets, instead of considering a measure µ satisfying µ(X) < ∞.
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2.1. Measure theory Chapter 2. Theoretical background

The two previous theorems will result in Formula 1 from [31]. Next, we define the number
N(T,y).

Definition 2.13 ([10, Section 2.10.9]). Let N(f,y) be the number, possibly infinite, of
points x in Rn such that f(x) = y and N(f |A,y) is the number of points x ∈ A such that
f(x) = y.

Furthermore, in [10, Section 3.1.6] we have the following formulation of Rademacher’s the-
orem.

Theorem 2.17 (Rademacher’s theorem). If f : Rn → Rm is a Lipschitz function, then f is
differentiable mn-a.e. in Rn.

The second change of variables theorem [31, Formula 2] is obtained from [10, Section 3.2.3]

Theorem 2.18. Let X and Y be subsets of Rn and let T : X → Y be Lipschitz. Then

(i) If A is an mn-measurable set, then∫
A
JTdx =

∫
N(T |A,y)dy.

(ii) If u ∈ L1(Rn), then ∫
u(x)JTdx =

∫ ∑
{u(x) : T (x) = y}dy.

Proof. See [10, Section 3.2.3].

Corollary 2.19. Let X and Y be subsets of Rn, T : X → Y be Lipschitz and u ∈ L1(Rn).
Then ∫

u
(
T (x)

)
JTdx =

∫
u(y)N(T,y)dy.

Proof. From assertion (ii) in Theorem 2.18 we have∫
u
(
T (x)

)
JTdx =

∫ ∑
{u

(
T (x)

)
: T (x) = y}dy.

Furthermore, we observe that∑
{u

(
T (x)

)
: T (x) = y} = u(y)N(T,y),

since N(T,y) is the number of points x such that T (x) = y and for each such x will
u
(
T (x)

)
= u(y). The corollary is proved.

2.1.2 Hausdorff measure

In this section we will define Hausdorff measure and state some useful properties. In [9,
Definition 2.1] we find the following definition of a Hausdorff measure.
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Definition 2.14 (Hausdorff measure). Let A ⊆ Rn, 0 ≤ s <∞, 0 ≤ δ ≤ ∞. We write

Hs
δ(A) := inf

{ ∞∑
j=1

α(s)
(diam Cj

2

)s
: A ⊆

∞⋃
j=1

Cj ,diam Cj ≤ δ
}
,

where

α(s) :=
πs/2

Γ(s/2 + 1)
.

For A and s as above, define

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs
δ(A).

We call Hs s-dimensional Hausdorff measure on Rn.

Next, we state some properties of Hausdorff measure

Lemma 2.20. We consider the s-dimensional Hausdorff measure on Rn and let A ⊂ Rn.
Then

(i) The s-dimensional Hausdorff measure is a Borel regular measure for all 0 ≤ s <∞.

(ii) If Ht(A) <∞, then Hs(A) = 0 for all t < s.

(iii) If Hs(A) > 0, then Ht(A) = ∞ for all t < s.

(iv) In Rn the Hn = mn.

(v) If 0 ≤ s < n the s-dimensional Hausdorff measure is not a Radon measure.

(vi) If A is a set of finite Hs-measure, i.e., Hs(A) < ∞, the s-dimensional Hausdorff
measure restricted to A, H A, is a Radon measure.

Proof. See proof of Theorem 2.1 in [9] for a proof of assertion (i).

For the proof of assertion (ii), see [12, Proposition 10.22].

The proof of assertion (iii) is the contrapositive of assertion (ii). However, we write out the
proof, which is based on the proof of Proposition 10.22 in [12]. Assume Ht(A) < ∞. From
the definition of Hausdorff measure, we have that for every δ > 0 there exists {Cj} such that

diam Cj ≤ δ and A ⊂ ⋃
j Cj . Furthermore,

∑
j
α(t)
2t (diam Cj)

t ≤ Ht(A) + 1. Thus, we get

Hs
δ(A) ≤

∑
j

α(s)

2s
(diam Cj)

s ≤ (2δ)s−t
α(s)

α(t)

∑
j

α(t)

2t
(diam Ctj) ≤ (2δ)s−t

α(s)

α(t)

(
Ht(A) + 1

)
,

where 2s−tα(s)/α(t) is a constant. So,

Hs
δ(A) ≤ 2s−t

α(s)

α(t)
δs−t(Ht(A) + 1) → 0 as δ → 0,

since we have assumed that Ht(A) <∞ and s > t. This is a contradiction since Hs(A) > 0
and thus Ht(A) = ∞ for all t < s.

The proof of assertion (iv) can be found in [13, Theorem 6.75].
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Next, we will prove assertion (v), by using assertion (iii) to show that the s-dimensional
Hausdorff measure it is not finite for all compact sets. Consider the closed unit ball B1 ⊂ Rn,
which is a compact set in Rn. For the n-dimensional Hausdorff measure this ball has finite
measure, in fact Hn(B1) = α(n) < ∞. By the claim above, Hs(B1) = ∞ for all s < n and
we have shown assertion (v).

Assertion (vi) is a direct result of assertion (i) and Theorem 2.7.

2.2 Convergence

In this section we present some concepts and theorems regarding convergence. We start by
defining L∞ weak* convergence.

Definition 2.15 (L∞ weak* convergence). Let µ be a measure. We say that a sequence un
converge to u in L∞(Ω) weak* if it satisfies

lim
n→∞

∫
Ω
unϕdµ =

∫
Ω
uϕµ ∀ϕ ∈ L1(Ω).

Next, we define Monotone Convergence Theorem [10, Section 2.4.7] and Dominated Conver-
gence Theorem [10, Section 2.4.9].

Theorem 2.21 (Monotone Convergence Theorem). Let fi, i = 1, 2, 3, . . . be µ-measurable
functions such that 0 ≤ fi(x) ≤ fi+1(x), for i = 1, 2, 3, . . ., and for x ∈ Rn, then

lim
n→∞

∫
fndµ =

∫
lim
n→∞

fn(x)dµ(x).

Proof. See [10, Section 2.4.7].

Theorem 2.22 (Dominated Convergence Theorem). Suppose h is a µ-integrable function,
i.e., the µ-integral of h is finite. If fi, i = 1, 2, 3 . . . and g are µ-measurable functions such
that

|fi(x)| ≤ h(x) for i = 1, 2, 3, . . . , fn(x) → g(x) as n→ ∞
whenever x ∈ Rn, then∫

|fi − g|dµ→ 0, hence

∫
fidµ→

∫
gdµ, as n→ ∞.

Proof. See [10, Section 2.4.9].

Furthermore, we state the Moore-Osgood Theorem [14, p. 100].

Theorem 2.23 (Moore-Osgood Theorem). Let x ∈ X and y ∈ Y . Suppose that the functions
f(x, y), g(x) and h(y) are real-finite-valued and that

lim
x→a

f(x, y) = h(y) on Y,

lim
y→b

f(x, y) = g(x) uniformly on X.

Then the limits
lim
x→a
y→b

f(x, y), lim
x→a

g(x), lim
y→b

h(y),

all exists and are equal and finite.
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Proof. See [14, p. 101].

Lastly, we define a uniformly bounded family of functions and an equicontinuous family of
functions before stating the Arzelà-Ascoli Theorem. In [32, Definition 1 in Section 16.4] we
are given the following definition for a uniformly bounded family of functions.

Definition 2.16 (Uniformly bounded family of functions). A family F of functions f : X →
Y defined on a set X ⊆ Rn and assuming values in Y ⊆ Rm is uniformly bounded on X if
the set of values

V = {y ∈ Y | ∃f ∈ F , ∃x ∈ X s.t. y = f(x)}
of functions in the family is bounded in Y .

In addition, we have the following definition for an equicontinuous family of functions [32,
Definition 2 in Section 16.4].

Definition 2.17 (Equicontinuous family of functions). Let X ⊆ Rn and Y ⊆ Rm. A family
of functions f : X → Y is equicontinuous on X if for every ε > 0 there exists δ > 0 such that
|f(x1)− f(x2)| < ε for any function f in the family and x1, x2 ∈ X such that |x1 − x2| < δ.

Additionally, [32, Theorem 1 in Section 16.4] then goes on to state the following formulation
of the Arzelà-Ascoli Theorem.

Theorem 2.24 (The Arzelà-Ascoli Theorem). 4 Let F be a family of functions f : K → Rn
defined on a compact metric space K with values in Rn. A necessary and sufficient condition
for every sequence {fk ∈ F | k ∈ N} to contain a uniformly convergent subsequence is that
the family F be uniformly bounded and equicontinuous.

Proof. See [32, Theorem 1 in Section 16.4].

2.3 Mollifier

We start by defining a mollifier.

Definition 2.18 (Mollifier). A mollifier is a function ω ∈ C∞
c (Rn) which satisfies the

following conditions

• 0 ≤ ω ≤ 1,

•
∫
Rn ωdx = 1,

• supp ω = B1(0).

We define a standard mollifier to be

ωε =
1

εn
ω
(x
ε

)
,

where ε > 0. Lastly, we define the mollification of f by

fε(x) = (f ∗ ωε)(x) =
∫
Rn

f(x− z)ωε(z)dz =

∫
Rn

f(z)ωε(x− z)dz.

4In Mathematical Analysis II by Zorich the statement is “... the family F be totally bounded and equicon-
tinuous.”, but when Y = Rn totally boundedness and uniformly boundedness are equivalent [32, Page 395].
Thus, we instead use the statement “... the family F be uniformly bounded and equicontinuous.”
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2.4. Weak formulation Chapter 2. Theoretical background

We have that a standard mollifier ωε also satisfies the two first conditions for a mollifier given
in Definition 2.18. It is trivial that ωε ≥ 0 since both ε and ω are positive. Furthermore,∫

Rn

ωεdx =

∫
Rn

1

εn
ω
(x
ε

)
dx =

∫
Rn

ω(a)da = 1,

where we have used a = x/ε, and hence dx = εnda. Lastly, we have that supp ωε = Bε
since |x/ε| < 1 =⇒ |x| < ε. Next, we state a theorem with some properties of a mollifier.

Theorem 2.25 (Properties of mollifiers [9, Theorem 4.1]). 5 Let fε be the mollification of
f and Ωε :=

{
x ∈ Ω : inf{|x− a| : a ∈ ∂Ω} > ε

}
. Then

(i) fε ∈ C∞(Ωε).

(ii) If f ∈ C(Ω), then fε → f uniformly on compact subsets of Ω.

(iii) If 1 ≤ p <∞ and f ∈ Lploc(Ω), then fε → f in Lploc(Ω).

(iv) fε → f pointwise mn-a.e.

Proof. See [9, Theorem 4.1].

2.4 Weak formulation

Before we derive the weak formulation of a conservation law, we define a weak derivative.

Definition 2.19 (Weak derivative). Let f ∈ L1
loc(Ω) be a function. The weak derivative of

f with respect to xi is the function g that satisfies∫
fϕxidx = −

∫
gϕdx ∀ϕ ∈ C∞

c .

The first part of this section is a based on Section 2.3.1 in [20], but here the formulation of
weak solutions is written in the multidimensional case. Let Ω ⊂ Rn be an open domain. We
can write a general multidimensional balance law on Ω as

divA(X) = P (X), (2.7)

where A(X) : Ω → Rn and P (X) : Ω → R. First, we have to introduce the notion of
test functions. A test function is a sufficiently smooth function with compact support. We
often use ϕ ∈ C∞

0 (Ω) as a test function. Here, C∞
0 is the set of all infinitely differentiable

functions with compact support. We start by assuming that A ∈ C1(Ω), multiply (2.7) by
ϕ and integrate over Ω. We obtain∫

Ω
divA(X)ϕ(X)dX =

∫
Ω
P (X)ϕ(X)dX. (2.8)

Using the product rule we have div(Aϕ) = ϕ divA+∇ϕ ·A, where we have used that A is a
vector field and ϕ is a function. Thus,∫

Ω
divA(X)ϕ(X)dX =

∫
Ω
div(A(X)ϕ(X))dX −

∫
Ω
∇ϕ(X) ·A(X)dX

=

∫
∂Ω
ϕ(X)A(X) ·NdHn−1(X)−

∫
Ω
∇ϕ(X) ·A(X)dX,

5We have only included the properties we will use later in the thesis.
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where N is the outward unit normal and we have used the Divergence Theorem [22, Theorem
8.3] to obtain the last equality. We often consider ϕ(X) with compact support in the domain
we are integrating over and thus ϕ(X)|∂Ω = 0 and the weak formulation is∫

Ω
∇ϕ(X) ·A(X) + P (X)ϕ(X)dX = 0.

However, when X = (x, t) we often include the initial condition in weak formulation. In
these cases we consider ϕ(X) where the support includes t = 0 and we obtain the following
weak formulation∫

Ω
∇ϕ(x, t) ·A(x, t) + P (x, t)ϕ(x, t)dxdt+

∫
∂Ω
ϕ(x, 0)A(x, 0) ·Endx = 0,

where En is the nth unit base-vector. From these formulations to be satisfied we no longer
need to require that A is differentiable, we only need that A,P are locally integrable func-
tions. In fact, we can allow P to merely be a Radon measure such that

⟨P, ϕ⟩ =
∫
ϕdP.

Then we rewrite the weak formulation as∫
Ω
∇ϕ(x, t) ·A(x, t)dxdt+ ⟨P, ϕ⟩Ω +

∫
∂Ω
ϕ(x, 0)A(x, 0) ·Endx = 0.

If this equation holds, divA = P in the sense of distributions.

The rest of this section is based on [20, pp. 19–21], but we have rewritten Theorem 4.9 in
[20] such that we are considering a general multidimensional balance law. We will show that
it is sufficient that ϕ ∈ W 1,∞

c , i.e., ϕ is a Lipschitz function with compact support, for ϕ to
be a test function. To do this we propose the following theorem.

Theorem 2.26. Let A ∈ L1
loc(Ω,M1×n) and P a Radon measure. We say that divA = P

in the sense of distributions, if∫
Ω
∇ϕ(x, t) ·A(x, t)dxdt+ ⟨P, ϕ⟩Ω +

∫
∂Ω
ϕ(x, 0)A(x, 0) ·Endx = 0 ∀ϕ ∈ C∞

c .

It is sufficient that ϕ ∈ W 1,∞
c for the above equation represent divA = P in the sense of

distributions.

Proof. This proof is based on the proof of Theorem 4.9 in [20]. However, it is rewritten to
consider a general multidimensional balance law. We start by assuming that ϕ ∈W 1,∞

c and
use a standard mollifier ωε to obtain ϕε = ωε ∗ ϕ, (ϕxi)ε = ωε ∗ ϕxi and (ϕt)ε = ωε ∗ ϕt. We
observe that

(ϕε)t =
d

dt

∫∫
ϕ(x− z, t− s)ωε(z, s)dzds =

∫∫
(ϕ(x− z, t− s))tωε(z, s)dzds = (ϕt)ε,

and, with an equivalent calculation, we get (ϕε)xi = (ϕxi)ε. From Theorem 2.25 property
(i), and the fact that ϕ has compact support, ϕε ∈ C∞

c . So, we have that∫
Ω
∇ϕε(x, t) ·A(x, t)dxdt+ ⟨P, ϕε⟩Ω +

∫
∂Ω
ϕε(x, 0)A(x, 0) ·Endx = 0.
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The next step is to show that∫
Ω
∇ϕε(x, t) ·A(x, t)dxdt+ ⟨P, ϕε⟩Ω +

∫
∂Ω
ϕε(x, 0)A(x, 0) ·Endx

→
∫
Ω
∇ϕ(x, t) ·A(x, t)dxdt+ ⟨P, ϕ⟩Ω +

∫
∂Ω
ϕ(x, 0)A(x, 0) ·Endx

as ε→ 0. We start by showing that∫
ϕε(x, 0)A(x, 0) ·Endx →

∫
ϕ(x, 0)A(x, 0) ·Endx as ε→ 0.

By property (ii) in Theorem 2.25 and that ϕ is a Lipschitz continuous function, we have
that ϕε → ϕ uniformly on compact subsets of Ω. Using this we get∣∣∣∣∫ A(x, 0) ·En

[
ϕε(x, 0)− ϕ(x, 0)

]
dx

∣∣∣∣ ≤ ∫ ∣∣∣A(x, 0) ·En

∣∣∣∣∣∣ϕε(x, 0)− ϕ(x, 0)
∣∣∣dx

≤ δ∥A(x, 0) ·En∥L1
loc
.

Since ∥A(x, 0) ·En∥L1
loc
<∞, will δ∥A(x, 0)∥L1

loc
→ 0 as δ → 0. Hence,∫

ϕε(x, 0)A(x, 0) ·Endx →
∫
ϕ(x, 0)A(x, 0)dx as ε→ 0.

Next, we show that ∫∫
∇ϕε ·Adxdt→

∫∫
∇ϕ ·Adxdt as ε→ 0.

To prove this we use the Dominated Convergence Theorem 2.22. We start by showing that
|∇ϕε| is bounded, by showing that |(ϕt)ε| and |(ϕxi)ε|, i = 1, . . . , n− 1, are bounded.

|(ϕt)ε| =
∣∣∣∣∫∫

Rn

ϕt(x− z, t− s)ωε(z, s)dzds

∣∣∣∣ ≤ ∫∫
Rn

ωε(z, s)|ϕt(x− z, t− s)|dzds

≤ sup
(x,t)∈Rn

|ϕt(x, t)|
∫∫

Rn

ω(z, s)dzds = ∥ϕt∥∞ ≤M <∞.

Here we have used the properties of ωε, and that ϕ ∈W 1,∞
c implies that ϕt ∈ L∞. Similarly,

we can show that |(ϕxi)ε|, i = 1, . . . , n− 1, are bounded. Using this we get

|∇ϕε ·A(x, t)| ≤M
n∑
i=1

|A(x, t) ·Ei|,

and A(x, t) ·Ei are integrable functions for all i = 1, . . . , n. From (iv) in Theorem 2.25 we
have that (ϕt)ε converges to ϕt pointwise almost everywhere. Thus all the conditions in the
Dominated Convergence Theorem 2.22 are fulfilled and we have that

lim
ε→0

∫∫
∇ϕε ·Adxdt =

∫∫
∇ϕ ·Adxdt.

Lastly, we show that ⟨P, ϕε⟩ converges to ⟨P, ϕ⟩ as ε→ 0. Let K be the compact support of
ϕ and consider,

|⟨P, ϕε⟩ − ⟨P, ϕ⟩| ≤
∫
K
|ϕε − ϕ|dP ≤ δP (K),

where we have used that ϕε → ϕ uniformly on compact subsets. This will converge to zero
as ε→ 0 since P being a Radon measure implies P (K) <∞ as K is compact.

So, we have shown that it is sufficient that ϕ ∈W 1,∞
c for ϕ to be a test function.
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2.5 BV functions

In this section we present the concept of functions with bounded variation and some useful
properties of such functions. The definitions and theorems in this section are taken from
[30], if not otherwise stated.

We start by defining a weak derivative as local measures and total variation for a measure
or a function.

Definition 2.20 (Weak derivative as locally measure). We say that the weak derivatives are
local measures if there exists a vector-valued set function µ = (µ1, . . . , µn) which is defined
for all bounded Borel subsets, B, which satisfies B ⊂ Ω with the following properties

(i) µ(B) <∞, for all B satisfying B ⊂ Ω,

(ii) countably additive, for all B satisfying B ⊂ Ω,

(iii)
∫
Ω f(x)

∂ψ(x)
∂xi

dx = −
∫
Ω ψ(x)µi(dx).

Remark. A Radon measure will satisfy the properties in the definition above, and thus a
Radon measure will be a local measure.

Definition 2.21 (Total variation of a measure). The total variation of a vector-valued
measure, µ, on Ω ⊂ Rn is defined as

T.V.(µ)(E) = sup
{∑
i∈N

|µ(Ei)| :
⋃
i∈N

Ei = E, Ei µ−measurable
}
.

Definition 2.22 (Total variation of a function). The total variation of a function of one
variable, f , is defined as

T.V.(f)([a, b]) = sup
{∑
i∈I

|f(xi)− f(xi−1)| : I finite partition of [a,b]
}
.

The total variation of a function F of n ≥ 2 variables is defined as

T.V.(F )(E) = sup
{∫

E
F div ϕdx : ϕ ∈ C1

c (E;Rn), |ϕ| ≤ 1
}
.

We are ready to define BV (Ω).

Definition 2.23 (Function space BV (Ω)). 6 The function space BVloc(Ω) denotes the set
of all the functions u ∈ L1

loc with weak derivatives that are locally measures. If u ∈ L1

and the weak derivatives µ are countably additive on all Borel subsets of Ω and satisfies
T.V.(µ)(Ω) <∞ we call the function space BV (Ω).

The next two concept we define are a point of density and a point of rarefaction.

Definition 2.24 (Point of density/rarefaction). We say that x is a point of density for the
set E if it satisfies

lim
r→0

mn

(
E ∩ Br(x)

)
mn

(
Br(x)

) = 1.

6Note that when we say BVloc we refer to the BV in [30, p. 226] and we say BV when we refer to BV in
[30, p. 226].
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A point x that satisfies

lim
r→0

mn

(
E ∩ Br(x)

)
mn

(
Br(x)

) = 0,

is called a point of rarefaction for the set E.

Now we are ready to define the approximate limit and approximate continuity.

Definition 2.25 (Approximate limit). Let u(x) be a function defined on E ⊆ Rn and x0

not be a point of rarefaction for E. Then we say that lEu(x0) is the approximate limit if for
every ε > 0 it satisfies

lim
r→0

mn

(
{x ∈ E : |u(x)− lEu(x0)| > ε} ∩ Br(x0)

)
mn

(
Br(x0)

) = 0,

i.e., x0 is a point of rarefaction of the set {x ∈ E : |u(x) − lEu(x0)| > ε}. If E = Rn we
denote the approximate limit by lu(x0) and if E is the half space (x−x0) · a > 0 we denote
the approximate limit by lau(x0).

Definition 2.26 (Approximate continuity). We say that a function, u, is approximately
continuous at a point x0 ∈ E if

lEu(x0) = u(x0).

Furthermore, from [9, Theorem 1.37] we have the following useful theorem.

Theorem 2.27 (Measurability and approximate continuity). Suppose that f : Rn → Rm is
mn-measurable. Then f is approximately continuous mn-a.e.

Proof. See [9, Theorem 1.37].

Next, we define regular points.

Definition 2.27 (Regular point). Let u(x) be a vector-valued function defined in some
neighborhood of the point x0. Then x0 is a regular point of u(x) if a unit vector a exists
such that lau(x0) and l−au(x0) exist and are finite.

Furthermore, we have the following theorem.

Theorem 2.28. Let u(x) = (u1(x), . . . , ud(x)) ∈ BVloc(Ω) be a vector-valued function
where each ui(x) is bounded. Furthermore let E be the set of all regular points of u(x).
Then Hn−1(Ω \ E) = 0, i.e., Hn−1-a.e. x is a regular point of u(x).

Proof. See [30, Lemma 9.1].

Lastly, we want to study how we can differentiate a discontinuous function. To be able to
do this we have to introduce functional superposition.

Definition 2.28 (Functional superposition). Suppose x is a regular point of the vector-
valued function u(x) and let f(u) be a integrable function in Rn of n variables defined on
the interval lau(x)t+ l−au(x)(1−t) for t ∈ [0, 1]. Then, the functional superposition is given
by

f̂(u(x)) =

∫ 1

0
f
(
lau(x)t+ l−au(x)(1− t)

)
dt.
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At a point x of approximate continuity for u(x) we have that f̂(u(x)) = f(u(x)). The
following theorem state how we can differentiate a discontinuous function.

Theorem 2.29. Let u = (u1, . . . , ud) ∈ BVloc(Ω) and let ∂f̂(u(x))/∂uk be locally integrable
with respect to the measure ∂uk/∂xi in Ω (k = 1, . . . , d; i = 1, . . . , n). Then f(u(x)) ∈
BVloc(Ω) and

∂

∂xi
f(u(x)) =

d∑
k=1

∂f̂(u(x))

∂uk

∂uk
∂xi

, (i = 1, . . . , n).

Proof. See [30, Sections 13.3-13.5].

Lastly, we state the following useful theorem for functions of bounded total variation from
[18, Corollary A.10].

Theorem 2.30 (Helly’s Selection Theorem). Let {fk} be a sequence of functions defined on
an interval [a, b] and assume that this sequence satisfies

T.V.(fk) < M and ∥fk∥∞ < M,

where M is some constant independent of k. Then there exists a subsequence fki that con-
verges almost everywhere to some function f of bounded variation.

Proof. See [18, Corollary A.10].
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Chapter 3

Balance laws

3.1 Multidimensional balance law

The formulation of the general balance law in this subsection is based on Section 1.1 in [8]. Let
Ω be an open subset of Rn and D ⊂ Ω be an open subset with a piecewise twice continuously
differentiable boundary, which means that the graph of the boundary is a piecewise twice
continuously differentiable function. We are going to derive the formulation of a general
balance law on the domain D by using the concept that for any extensive quantity the flux
over the boundary of a domain, ∂D is balanced by the production inside the domain D. We
start by introducing P (D) which gives the value of the production inside D. In this thesis
we assume that P is a Radon measure which is absolutely continuous with respect to the
Lebesgue measure, i.e., there exists a production density function p̃ ∈ L1

loc

(
Ω;mn

)
such that

P (D) =

∫
D
p̃(X)dX.

Furthermore, we introduce QD which gives the value of the flux across the boundary of
D. We assume that QD is a measure, which is absolutely continuous with respect to the
(n− 1)-dimensional Hausdorff measure, Hn−1. Again, this implies that we can write

QD(C) =
∫
C
qD(X)dHn−1(X), (3.1)

where qD(X) ∈ L1
(
∂D;Hn−1

)
is the flux density function. Then for each D in Ω we have

the following general balance law

QD(∂D) = P (D). (3.2)

3.2 Specific conservation law

In Section 2.2 in my project thesis [20] I derived the conservation of mass, momentum, and
energy for a compressible, inviscid, non-heat-conducting gas. This section is taken from [20,
Section 2.2] and is included for completeness. We start by making some assumptions, and
make the same assumptions as in the article Equivalence of the Euler and Lagrange equations
of gas dynamics for weak solutions [31], which uses the book Supersonic flow and shock waves
by Courant and Friedrichs [5] to obtain the equations for conservation of mass, momentum,
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and energy. They assume that the only force acting on the fluid is the pressure force, i.e.,
they neglect the forces due to gravity and assume that the fluid is non-heat-conducting.
This means that there are no thermal forces. In addition, they assume that the fluid is
compressible and inviscid. As mentioned in Section 1.1.2 a fluid can be described either by
an Euler or by a Lagrange point of view. This will result in two different systems of partial
differential equations. For each conservation law we are first going to derive it from the Euler
point of view followed by the derivation of the Lagrange representation of the equation. This
will result in the Euler and the Lagrange equations.

We consider a gas and define ρ to be the mass density, u = (u1, . . . , un) to be the velocity
vector and S to be the entropy per mass unit. Furthermore, we define p to be the pressure
and e to be the internal energy of the gas per unit mass. We assume both p and e to be
functions of the mass density and entropy only. In addition, we denote the specific volume
by τ = 1/ρ.

3.2.1 Conservation of mass

Euler point of view

We start by considering the conservation of mass in Euler representation and obtain our
derivation of the conservation law from [3, Section i in Chapter 1.1]. We choose a control
volume Ω ∈ Rn fixated in space and therefore independent of time. By the fact that mass
neither can be created nor destroyed, we have that the change of mass in Ω has to be equal
to the mass flux over the boundary of Ω, ∂Ω. The mass in Ω is given by

M(Ω) =

∫
Ω
ρ(x, t)dΩ,

where ρ is the mass density of the gas. We denote N to be the outward unit normal on ∂Ω
and have that the volume flow rate over ∂Ω is given by u ·N , where u is the velocity vector.
From this we get that the mass flow over the boundary is given by

Mass flow over ∂Ω =

∫
∂Ω
ρ(x, t)u(x, t) ·Nd∂Ω.

Thus, as the increase of mass is equal to the inward mass flow over the boundary, we obtain

d

dt
M(Ω) =

d

dt

∫
Ω
ρ(x, t)dΩ(t) =

∫
Ω

∂

∂t
ρ(x, t)dΩ(t) = −

∫
∂Ω
ρ(x, t)u(x, t) ·Nd∂Ω.

We assume that the boundary of Ω, ∂Ω, to be sufficiently smooth and ρ, ui ∈ C1 for i =
1, . . . , n, so we can use the Divergence Theorem [22, Theorem 8.3]. We then get∫

Ω
[ρt + divx(ρu)] dΩ = 0,

and since Ω was chosen arbitrary we get

ρt + divx(ρu) = 0. (3.3)

This is conservation of mass in Euler representation. In one dimension this equation becomes

ρt + (ρu)x = 0.
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Lagrange point of view

The derivation of conservation of mass in Lagrange representation is obtained from [2,
Chapter 3.1]. We start by denoting Ω(t) to be a volume element with the same fluid particles
over time. No particles can leave or enter Ω(t), so the mass in Ω(t) is conserved over time,
but the volume and shape of Ω(t) can change over time. To be able to represent conservation
of mass on integral form in Lagrange coordinates we have to start in Euler coordinates. We
can write the Euler representation of conservation of mass as

d

dt

∫
Ω(t)

ρ(x, t)dΩ(t) = 0.

To convert to the Lagrange representation, we do a change of variables where we define
x = x̂(y, t) and use that

Jx =


∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

 . (3.4)

We then get that mass conservation in Lagrange representation is given by

d

dt

∫
W
ρ(y, t) detJxdW = 0,

where W is the domain of the particles in Ω(t) in Lagrange coordinates. In Lagrange rep-
resentation we follow the particles, hence W will not be dependent on time and we get∫

W

∂

∂t
{ρ(y, t) det Jx}dW = 0.

This equation holds for all W and hence we have that

(ρ det Jx)t = 0.

In one dimension we can create an easy description for the Lagrange coordinate y such that
we can eliminate the Jacobian. There are different choices to obtain this, but Courant and
Friedrichs [5, Page 30] suggest using conservation of mass to define y. The idea is that we
define y by saying that a particle can neither appear nor disappear. To do this they consider
a tube around the x-axis and define a start section of this tube where y = 0. This is moving
with the fluid. Then they define y to be the mass of the fluid between this start section and
the current position, i.e., they define y to be

y =

∫ x(y,t)

x(0,t)
ρ(s, t)ds. (3.5)

Furthermore, they differentiate (3.5) with respect to y and obtain

1 = ρ(x(y, t), t)xy(x(y, t)) =⇒ xy = τ.

Using that Jx = xy = τ , and that xt = u, we get

0 = (ρxy)t = ρtxy + ρxyt = ρ2xy

(
ρt
ρ2

+
xty
ρxy

)
= ρ

(
−
(
1

ρ

)
t

+ uy

)
,

where we have used that the mixed derivatives are equal, (xy)t = xyt = xty = (xt)y [22,
Theorem 3.10]. By using the assumption of no vacuum, we can rewrite the Lagrange repres-
entation of mass in one dimension to be

τt − uy = 0.
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3.2.2 Conservation of momentum

Euler point of view

Next, we want to derive the conservation of momentum. We start by defining Ω(t) ⊂ Rn to
be a domain of the gas that consists of the same amount of material over time. Recall that
we assumed that the only forces acting on the gas are the pressure forces. Hence, the rate
of change of momentum in Ω(t) will be equal to the pressure forces acting on the boundary
of Ω(t). Again, we have that ρ is the mass density and u is the velocity, so that the total
momentum in Ω(t) is given by

Total momentum in Ω(t) =

∫
Ω(t)

ρ(x, t)u(x, t)dΩ(t).

Since we are considering an inviscid gas, all forces acting on the gas are normal to the
boundary. Thus, the pressure forces on the boundary can be written as

Pressure forces on ∂Ω(t) =

∫
∂Ω(t)

p(x, t)Nd∂Ω(t),

where N is the outward unit normal on ∂Ω(t). The rate of change of momentum is equal to
the pressure forces, where we have that an increase of momentum is due to pressure forces
acting in the opposite direction of the normal vector. Thus, we get

d

dt

∫
Ω(t)

ρ(x, t)u(x, t)dΩ(t) = −
∫
∂Ω(t)

p(x, t)Nd∂Ω(t). (3.6)

Here, we get n equations, one for each spatial dimension. We first consider the right-hand
side. To be able to use the Divergence Theorem [22, Theorem 8.3] we multiply the right-hand
side by a fixed vector v [3, Section ii Chapter 1.1]

v ·
∫
∂Ω(t)

pNd∂Ω(t) =

∫
∂Ω(t)

pv ·Nd∂Ω(t) =

∫
Ω(t)

divx(pv)dΩ(t) = v ·
∫
Ω(t)

∇pdΩ(t),

and we get that

−
∫
∂Ω(t)

pNd∂Ω(t) = −
∫
Ω(t)

∇pdΩ(t). (3.7)

We consider one of the equations in (3.6), i.e.,

d

dt

∫
Ω(t)

ρuidΩ(t) = −
∫
Ω(t)

∂p

∂xi
dΩ(t), (3.8)

where we have used Equation (3.7) to obtain the right-hand side. Since the domain is time
dependent, we have to be more careful when calculating the left-hand side of the equation.
We use Reynolds Transport Theorem [21, Equation 3.35 in Chapter 3.6] which states that

d

dt

∫
Ω(t)

f(x, t)dΩ(t) =

∫
Ω(t)

∂f(x, t)

∂t
dΩ(t) +

∫
∂Ω(t)

f(x, t)u ·Nd∂Ω(t).

Using the Divergence Theorem [22, Theorem 8.3] we obtain the following representation of
the Reynolds Transport Theorem

d

dt

∫
Ω(t)

f(x, t)dΩ(t) =

∫
Ω(t)

[
∂f(x, t)

∂t
+ divx(f(x, t)u(x, t))

]
dΩ(t). (3.9)
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Then by (3.9) we get

d

dt

∫
Ω(t)

ρuidΩ(t) =

∫
Ω(t)

[(ρui)t + divx(ρuiu)] dΩ(t),

and by inserting this in (3.8) we get∫
Ω(t)

[
(ρui)t + divx(ρuiu) +

∂p

∂xi

]
dΩ(t) = 0.

Again, since we chose Ω(t) arbitrary we have that

(ρui)t + divx(ρuiu) +
∂p

∂xi
= 0,

for i = 1, . . . , n, which is equivalent to

(ρui)t + divx(ρuiu+ pEi) = 0,

where Ei = [0, . . . , 1, . . . , 0] is the ith unit base vector. This is the conservation of momentum
in Euler representation. Thus, in one dimension we get one equation which is the following
equation

(ρu)t + (ρu2 + p)x = 0.

Lagrange point of view

Next, we want to derive the Lagrange representation of conservation of momentum. To do
this we use Newton’s second law

F =
d

dt
(ρ(x, t)xt),

where F is the sum of the forces acting on the fluid. We have assumed that the only force
acting on the fluid is the pressure force, which is given by the negative pressure gradient,
i.e., F = −∇xp [5, Section 7]. We get a negative sign since the force is acting inwards. We
then obtain the following equation

d

dt
(ρ(x, t)xt) = −∇xp(x, t).

This is written in Euler coordinates, and we have to convert it to Lagrange coordinates by
using a similar technique as we did when deriving conservation of mass. In addition, we use
conservation of mass and obtain

ρ(y, t)xtt = −∇xp(y, t).

Next, we want to expand the derivation using the chain rule, and we get

ρ(y, t)xtt = −∇yp(y, t)Jy,

where we have used that

Jy =


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xn

 . (3.10)
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In addition, if we use that xt = u, we find the Lagrange representation of the conservation
of momentum is the given by the following vector equation

ρut +∇ypJy = 0.

In one dimension we can use the definition of the Lagrange coordinates given in (3.5), which
means that we get Jy = yx = ρ. Consequently,

ρut + pyρ = 0 =⇒ ut + py = 0,

is a rewritten version of the Lagrange representation of conservation of momentum.

3.2.3 Conservation of energy

Euler point of view

The total energy per mass unit is given by the sum of the internal energy per mass unit, e,
and the kinetic energy per mass unit, which is given by 1

2u ·u [3, Section iii in Chapter 1.1].
Thus, the total energy in Ω(t) is

Total energy in Ω(t) =

∫
Ω(t)

ρ(x, t)

(
e(x, t) +

1

2
u(x, t) · u(x, t)

)
dΩ(t).

To derive the conservation of energy equation we use the assumption that the rate of change
in energy is only due to the work done by the pressure force on the boundary of Ω(t). The
work done by the pressure force per area on the boundary is given by (pu) ·N [3, Section
iii in Chapter 1.1] and thus we get

d

dt

∫
Ω(t)

ρ(x, t)

(
e(x, t) +

1

2
u(x, t) · u(x, t)

)
dΩ(t) =

∫
∂Ω(t)

(p(x, t)u(x, t)) ·Nd∂Ω(t).

Using Reynolds Transport Theorem, as stated in Equation (3.9), on the left-hand side and
the Divergence Theorem [22, Theorem 8.3] on the right-hand side we get∫

Ω(t)

(
ρe+

1

2
ρu · u

)
t

+ divx

(
u

(
ρe+

1

2
ρu · u+ p

))
dΩ(t) = 0.

This holds for all Ω(t) and hence we have that the conservation of energy in Euler repres-
entation is given by(

ρe+
1

2
ρu · u

)
t

+ divx

(
u

(
ρe+

1

2
ρu · u+ p

))
= 0.

In one dimension, this is equivalent to(
ρe+

1

2
ρu2

)
t

+

(
u

(
ρe+

1

2
ρu2 + p

))
x

= 0.

Lagrange point of view

To derive the Lagrange representation of the conservation of energy we again assume that
the only force acting on the fluid is the pressure force. The work done by the pressure force
per unit volume per time is −divx(pxt) = −divx(pu) [5, Page 16]. Using this, and that
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the total energy per unit mass is given by e + 1
2u · u, we get the following formulation for

conservation of energy(
ρ(x, t)

(
e(x, t) +

1

2
u(x, t) · u(x, t)

))
t

+ divx(p(x, t)u(x, t)) = 0.

The variables are given in Euler coordinates, and we again have to convert to Lagrange
coordinates by a similar technique as before. Doing this, and again using conservation of
mass we get

ρ(y, t)

(
e(y, t) +

1

2
u(y, t) · u(y, t)

)
t

+ divx(p(y, t)u(y, t)) = 0.

The next step is to expand the differentiation with respect to x such that the differentiation
is with respect to y. Using the chain rule, we get

divx(pu) =
∂(pu1)

∂x1
+ . . .+

∂(pun)

∂xn

=

(
∂(pu1)

∂y1

∂y1
∂x1

+ . . .+
∂(pu1)

∂yn

∂yn
∂x1

)
+ . . .+

(
∂(pun)

∂y1

∂y1
∂xn

+ . . .+
∂(pun)

∂yn

∂yn
∂xn

)
=

n∑
i=1

∇y(pui) · yxi ,

where ∇y(pui) = [(pui)y1 , . . . , (pui)yn ] and yxi = [(y1)xi , . . . , (yn)xi ] = Coli(Jy), i.e., the ith
column of the matrix Jy given in (3.10). This results in

ρ

(
e+

1

2
u · u

)
t

+
n∑
i=1

∇y(pui) · Coli(Jy) = 0.

Using that y can be defined by (3.5) and thus Jy = yx = ρ, we get the following equation
for the Lagrange representation of energy conservation in one dimension(

e+
1

2
u2

)
t

+ (pu)y = 0.
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Chapter 4

Multidimensional balance law

In this chapter we will show that a general multidimensional balance law is preserved under
a coordinate change. This can be used to show that different balance laws are equivalent in
spatial and referential coordinates. In [8] Dafermos shows that the divergence formulation
of a balance law is conserved under a bi-Lipschitz homeomorphism. In fact he starts out
with a general formulation of a balance law, then shows that this can be reduced to a
field equation. Furthermore, he proves that the field equation is indifferent to a change of
coordinates. Lastly, he shows that we can obtain the original general formulation of the
balance law from a field equation. In this chapter we are going to present the same proof as
Dafermos, but with additional calculations and some other assumptions. Thus, many of the
theorems and the proofs in this section are based on [8].

In Section 3.1 we derived the following formulation of a general balance law in the open
domain D with piecewise twice continuous differentiable boundary

QD
(
∂D

)
= P

(
D
)
. (4.1)

Throughout this chapter we assume that P is an absolutely continuous Radon measure with
respect to the Lebesgue measure.

In the proof that the general formulation of the balance law can reduce to a field equation,
we will use the following lemma.

Lemma 4.1. Let Ω ⊆ Rn, C a hyperplane with co-dimension one and W = C ∩ Ω ⊂ Rn−1.
The set {∑

i

χBi : Bi ⊂ W open ball
}

is dense in L1
(
W;Hn−1

)
.

Proof. This proof is divided into the proof of five claims.
Claim 1: The simple functions are dense in L1.
Proof of Claim 1: Let f be an arbitrary non-negative function in L1, i.e., f is Hn−1-
measurable and

∫
W |f |dHn−1 < ∞. By Lemma 2.3 there exists an increasing sequence of

simple functions, {hk} such that hk converges to f pointwise, i.e., limk→∞ hk(X) = f(X).
Thus, by using Monotone Convergence Theorem 2.21 we get∫

f(X)dHn−1(X) = lim
k→∞

∫
hk(X)dHn−1(X),
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so ∥hk − f∥L1 → 0 as k → ∞. To extend this to an arbitrary L1-function, define f+ =
sup{f, 0} and f− = − inf{f, 0}, and write f = f+ − f−. By the above calculations, there
exists a sequence of simple functions, ĥk, satisfying ∥ĥk − f+∥L1 → 0 and a sequence of
simple functions, h̃k, satisfying ∥h̃k − f−∥L1 → 0. Furthermore, the function hk = ĥk − h̃k
will be a simple function and

∥f − hk∥L1 ≤ ∥f+ − ĥk∥L1 + ∥f− − h̃k∥L1 → 0 as k → ∞.

Thus, the claim is proved.
Claim 2: The set of functions R = {∑i aiχRi : Ri = [ai,1, bi,1]× . . .× [ai,n−1, bi,n−1] ⊂ W}
is dense in the set of simple functions.
Proof of Claim 2: The proof of this claim is based on the proof of Proposition 10 in Section 7.4
in [25]. Since every simple function is a finite linear combination of characteristic functions,
we only need to show that for every measurable A with finite measure, there exists a sequence
gk ∈ R such that ∥gk−χA∥∞ → 0 as k → ∞. It is sufficient to consider the sets A with finite
Hn−1-measure, since the simple function hk = ∪Ni=1aiχAi should approximate an integrable
f , i.e.,

∫
hkdHn−1 →

∫
fdHn−1 < ∞ and

∫
hkdHn−1 =

∑N
i=1 aiHn−1(Ai) < ∞. Thus,

Hn−1(Ai) <∞ as long as ai ̸= 0.

By the Borel regularity of Hn−1 for all measurable A and all ε > 0 there exists an open set
U ⊃ A such that Hn−1(U \A) < ε. Furthermore, we have that every open set can be written
as a countable union of pairwise disjoint rectangles Ri, such that Hn−1(U) = Hn−1(∪iRi) =∑

iHn−1(Ri). Let

gk =
k∑
i=1

χRi = χ⋃k
i=1Ri

,

where the last equality is due to {Ri} being pairwise disjoint. For all ε > 0 we can choose
K > 0 such that for all k > K

Hn−1
(
U \

k⋃
i=1

Ri

)
< ε,

where ε→ 0 as k → ∞. Now, let us consider

∥gk − χA∥L1 ≤ ∥gk − χU∥L1 + ∥χU − χA∥L1 = Hn−1
(
U \

k⋃
i=1

Ri

)
+Hn−1

(
U \A

)
< 2ε.

Thus, gk → χA in L1
(
W;Hn−1

)
as k → ∞ and the claim is proved.

Claim 3: Let B = {All closed balls, B ⊂ W}. For every R ⊂ A and ε > 0, there exists a
disjoint countable subfamily of B, {Bi}, such that ∪iBi ⊂ R and Hn−1

(
R \ ∪iBi

)
< ε.

Proof of Claim 3: To prove this claim we use Vitali Covering Theorem 2.13. First, observe
that since Hn−1(A) < ∞ and by Theorem 2.7, Hn−1 A is a Radon measure, and for all
subset E ⊂ A, Hn−1 A(E) = Hn−1(E). In addition, since B consist of all closed balls we
can choose a family of closed balls B̃ ⊂ B that finely covers R such that R ⊃ ∪B∈B̃B. Thus,
by Vitali Covering Theorem, we have that a countable disjoint subfamily B̃′ ⊂ B̃ exists,
such that

Hn−1
(
R \

⋃
B∈B̃′

B
)
= Hn−1 A

(
R \

⋃
B∈B̃′

B
)
= 0

and the claim is proved.
Claim 5: The set {∑i

χBi : Bi ⊂ W open ball} is dense in L1
(
W;Hn−1

)
.
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Proof of Claim 5: Let f ∈ L1
(
W;Hn−1

)
, ϕ be a simple function and consider∥∥∥∑

i

aiχBi − f
∥∥∥
L1

≤
∥∥∥∑

i

aiχBi −
∑
i

aiχBi

∥∥∥
L1

+
∥∥∥∑

i

aiχBi
−
∑
j

bjχRj

∥∥∥
L1

+
∥∥∥∑

j

bjχRj − ϕ
∥∥∥
L1

+
∥∥ϕ− f

∥∥
L1 < ε.

We have used the four previous claims in addition to the fact that Hn−1
(
B
)
= Hn−1

(
B
)
.

The lemma is thus proved.

The following theorem states that we can reduce the general balance law to a field equation,
i.e., the balance law can be written as divA = P .

Theorem 4.2 (Adapted from [8, Theorem 1.2.1]). Consider the balance law (4.1) on Ω
where P is a signed Radon measure that is absolute continuous with respect to the Lebesgue
measure and the QD are induced, through (3.1), by density flux functions qD. Assume that
qD is bounded, i.e., |qD(X)| ≤ C, for all domains D with piecewise twice continuously
differentiable boundary and any X ∈ ∂D. Then,

(i) Let N be a unit normal vector in Rn−1, which is associated with a bounded measurable
function aN on Ω, with the following property: Let D be any domain with piecewise
twice continuously differentiable boundary in Ω and suppose X is some point on ∂D
where the outward normal to D exists and is N . Then qD(X) = aN (X) for Hn−1

almost every X.

(ii) There exists a vector field A ∈ L∞(
Ω,M1×n) such that, for any fixed unit normal vector

N , aN (X) = A(X)N , a.e. on Ω.

(iii) The function A satisfies the field equation divA = P , in the sense of distributions on
Ω.

Proof. Let N be a unit normal vector in Rn−1 and define C to be a hyperplane with co-
dimension one and normal vector N . Furthermore, let the intersection with Ω be nonempty.
In addition, let Br(X) be the ball with center at X and radius r and let B−

r (X) = {Y ∈
Br(X) : (X − Y ) ·N < 0}. Furthermore, we define

aN (X) = lim
r→0

1

Hn−1
(
C ∩ Br(X)

) ∫
C∩Br(X)

qB−
r (X)(Y )dHn−1(Y ). (4.2)

Since Hn−1 is not a Radon measure, as stated in Lemma 2.20(v), we cannot directly use the
Lebesgue Differentiation Theorem 2.11. However, we can use assertion (vi) in Lemma 2.20
to construct a Radon measure. Let R > 0 and BR(X) be the ball with radius R in Rn. Since
C is a hyperplane with co-dimension one, BR(X)∩C is the ball with radius R0 ≤ R in Rn−1.
Thus, Hn−1

(
BR(X)∩ C

)
is the volume of the ball BR(X)∩ C in Rn−1, which is finite for all

finite R, i.e., Hn−1
(
BR(X) ∩ C

)
< ∞. Thus, Hn−1 {BR(X) ∩ C} is a Radon measure. In

addition,

Hn−1
(
Br(X) ∩ C

)
= Hn−1 {BR(X) ∩ C}

(
Br(X) ∩ C

)
∀r < R,

since Br(X) ⊂ BR(X) for all r < R, So, we can use the Lebesgue Differentiation Theorem
2.11 for the measure Hn−1 {BR(X) ∩ C} and if we consider all balls in Ω, we get that
aN exists for almost all X ∈ C ∩ Ω. Furthermore, we get that aN is bounded and Hn−1-
measurable since |qD| <∞ and qD ∈ L1

(
∂D;Hn−1(X)

)
for all D. Next, we want to consider
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the properties of aN . Fix a hyperplane C with the normal N and let X0 ∈ C ∩ Ω be the
center of the fixed ball B. Furthermore, define

Aτ = {X : X − τY ∈ C ∩ B}, (4.3)

and the domain
D =

⋃
−β<τ<α

Aτ , (4.4)

where α, β are small non-negative numbers. We write the balance law for the cylindrical
domain D as ∫

D
qD(X)dHn−1(X) = P (D).

We denote the lateral side of the cylinder with base C ∩ B and height τ by Cylτ . Using
that both the production inside of D and the flux over the boundary of D are additive over
disjoint subsets we can rewrite the balance law as∫

Aα

aN (X)dHn−1(X) +

∫
A−β

a−N (X)dHn−1(X) +

∫
Cylα

qD(X)dHn−1(X)

+

∫
Cyl−β

qD(X)dHn−1(X) = P (D),

where we have used that at Aα and A−β, by definition, qD is equal to aN and a−N , respect-
ively. The integrals over Cylα and Cyl−β can be estimated by∣∣∣ ∫

Cylα

qDdHn−1(X)
∣∣∣ ≤ ∫

Cylα

|qD(X)|dHn−1(X) ≤ C

∫
Cylα

dHn−1 = CHn−2(C ∩ ∂B)α

= O(α).

We have used that the Hn−1(Cylα) is the surface area of the lateral side of the cylinder,
which is given by the height of the cylinder times the surface area of the boundary of the
base, i.e., Hn−1(Cylα) = Hn−2(C ∩ ∂B)α. So, we have rewritten the balance law as∫

Aα

aN (X)dHn−1(X) +

∫
A−β

a−N (X)dHn−1(X) = P (D) +O(α) +O(β). (4.5)

By letting β = 0 and α ↓ 0 we get

lim
α↓0

∫
Aα

aN (Y )dHn−1(Y ) +

∫
C∩B

a−N (X)dHn−1(X) = lim
α↓0

P (D),

where we have used that Aβ = C ∩B when β = 0. By doing a change of variables in the first
integral, given by X = Y − αN , we get

lim
α↓0

∫
C∩B

aN (X + αN)dHn−1(X) +

∫
C∩B

a−N (X)dHn−1(X) = lim
α↓0

P (D).

The domain D converges to C ∩ B when α ↓ 0. Furthermore,

|P (C ∩ B)| =
∣∣∣ ∫

C∩B
p̃(X)dX

∣∣∣ ≤ Cmn(C ∩ B) = 0,

where we have used that P is absolutely continuous with respect to the Lebesgue measure
in addition to mn(C ∩ B) = 0 since C ∩ B ∈ Rn−1. Thus,

lim
α↓0

P (D) = 0.
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Hence,

lim
τ↓0

∫
C∩Ω

aN (X + τN)χC∩BdHn−1(X) = −
∫
C∩Ω

a−N (X)χC∩BdHn−1(X), ∀B ⊂ Ω. (4.6)

Let B̃ = C ∩B, which is an open ball in Rn−1, and let {B̃i} be a disjoint family of open balls
such that Hn−1(∪iB̃i) <∞. We want to show that

lim
τ↓0

∫
C∩Ω

aN (X + τN)
∞∑
i=1

χ
B̃i
dHn−1(X) = −

∫
C∩Ω

a−N (X)
∞∑
i=1

χ
B̃i
dHn−1(X).

To do this we have to show that∫
C∩Ω

a−N (X)χ∪∞
i=1B̃i

dHn−1(X) =
∞∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X) (4.7)

and

lim
τ↓0

∫
C∩Ω

aN (X + τN)χ∪∞
i=1B̃i

dHn−1(X) =
∞∑
i=1

lim
τ↓0

∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X). (4.8)

First, let us consider (4.7) and start by showing that the sum on the right-hand side is finite.∣∣∣ K∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X)

∣∣∣ ≤ ∫
C∩Ω

|a−N (X)|
K∑
i=1

χ
B̃i
dHn−1

≤ ∥a−N∥∞
∫
C∩Ω

χ
∪K
i=1B̃i

dHn−1

= ∥a−N∥∞Hn−1
(
∪Ki=1 B̃i

)
≤ ∥a−N∥∞Hn−1

(
∪∞
i=1 B̃i

)
<∞, ∀K.

Hence, we have

lim
K→∞

K∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X) <∞,

and we can write

lim
K→∞

K∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X) =

∞∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X).

We are now ready to show (4.7).

∞∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X) = lim

K→∞

K∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X)

= lim
K→∞

∫
C∩Ω

K∑
i=1

a−N (X)χB̃i
dHn−1(X),

where the last equality is due to the finite sum. To use the Dominated Convergence Theorem
2.22, we have to show that

∑K
i=1 a−N (X)χB̃i

(X) converges pointwise to a Hn−1-measurable

limit function and
∑K

i=1 a−N (X)χB̃i
(X) is pointwise bounded by an unsigned absolutely

integrable function G for all K. We have

lim
K→∞

K∑
i=1

a−N (X)χB̃i
(X) = a−N (X) lim

K→∞
χ
∪K
i=1B̃i

(X) = a−N (X)χ∪∞
i=1B̃i

(X),
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which is a Hn−1-measurable function since a−N is measurable by definition and χ∪∞
i=1B̃i

(X)

is a characteristic function for a Hn−1-measurable set and thus measurable. Furthermore,

∣∣∣ K∑
i=1

a−N (X)χB̃i
(X)

∣∣∣ ≤ ∥a−N∥∞χ∪∞
i=1B̃i

(X) = G(X)

and∫
C∩Ω

G(X)Hn−1(X) = ∥a−N∥∞
∫
C∩Ω

χ
∪∞
i=1B̃i

(X)Hn−1(X) = ∥a−N∥∞Hn−1
( ∞⋃
i=1

B̃i
)
<∞.

Thus, we can use the Dominated Convergence Theorem 2.22 to conclude (4.7). Next, we
consider (4.8). Again, we have to start by showing that the sum is finite.

∣∣∣ K∑
i=1

lim
τ↓0

∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X)

∣∣∣ ≤ lim
τ↓0

∫
C∩Ω

|aN (X + τN)|χ∪K
i=1B̃i

dHn−1(X)

≤ lim
τ→0

∥aN∥∞
∫
C∩Ω

χ
∪K
i=1B̃i

dHn−1(X)

= ∥aN∥∞Hn−1
(
∪Ki=1 B̃i

)
≤ ∥aN∥∞Hn−1

(
∪∞
i=1 B̃i

)
<∞, ∀K.

So, as above we can write

lim
K→∞

K∑
i=1

lim
τ↓0

∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X) =

∞∑
i=1

lim
τ↓0

∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X),

and are ready to prove (4.8). First, we use Moore-Osgood’s Theorem 2.23 to show that we
can interchange the limit order. Due to Equation (4.6) we have that for all ε > 0 a τ > 0
exists such that∣∣∣ K∑

i=1

∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X) +

K∑
i=1

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X)

∣∣∣
≤

K∑
i=1

∣∣∣ ∫
C∩Ω

aN (X + τN)χB̃i
dHn−1(X) +

∫
C∩Ω

a−N (X)χB̃i
dHn−1(X)

∣∣∣ < K∑
i=1

ε/K = ε.

Since Hn−1
(
∪Ki=1 B̃i

)
≤ Hn−1

(
∪∞
i=1 B̃i

)
< ∞ for every K, for every ε > 0 there exists a

K > 0 such that Hn−1
(
∪∞
i=1 B̃i \ ∪Ki=1B̃i

)
< ε. We can use this to conclude

∣∣∣ ∫
C∩Ω

K∑
i=1

aN (X + τN)χB̃i
dHn−1(X)−

∫
C∩Ω

∞∑
i=1

aN (X + τN)χB̃i
dHn−1(X)

∣∣∣
≤

∫
C∩Ω

|aN (X + τN)|
∣∣χ

∪K
i=1B̃i

− χ
∪∞
i=1B̃i

∣∣dHn−1(X) ≤ ∥aN∥∞Hn−1
(
∪∞
i=1 B̃i \ ∪Ki=1B̃i

)
< ε,

where ε is independent of τ . So,∫
C∩Ω

K∑
i=1

aN (X + τN)χB̃i
dHn−1(X) →

∫
C∩Ω

∞∑
i=1

aN (X + τN)χB̃i
dHn−1(X)
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uniformly in τ . Thus, the conditions in Moore-Osgood Theorem 2.23 are satisfied, and we
can interchange the order of the limits. Again, we use the Dominated Convergence Theorem
2.22 to change the order of integration and the limit. Since

K∑
i=1

χ
B̃i

→
∞∑
i=1

χ
B̃i

as k → ∞,

aN is bounded and Hn−1
(
∪∞
i=1

χ
B̃i

)
<∞ the limit function is a Hn−1-measurable function.

Furthermore, we have

∣∣∣aN (X + τN)
K∑
i=1

χ
B̃i
(X)

∣∣∣ = ∣∣∣aN (X + τN)χ∪K
i=1B̃i

(X)
∣∣∣ ≤ ∣∣∣aN (X + τN)χ∪∞

i=1B̃i
(X)

∣∣∣
with ∫

C∩Ω

∣∣∣aN (X + τN)χ∪∞
i=1B̃i

(X)
∣∣∣dHn−1(X) ≤ ∥aN∥∞Hn−1(∪∞

i=1B̃i) <∞.

Thus, the conditions of Dominated Convergence Theorem 2.22 are satisfied, and we have
shown (4.8). So, by using (4.6), (4.7) and (4.8) we can conclude that

lim
τ↓0

∫
C∩Ω

aN (X + τN)
∞∑
i=1

χ
B̃i
(X)dHn−1(X) = −

∫
C∩Ω

a−N (X)
∞∑
i=1

χ
B̃i
(X)dHn−1(X).

So, by Lemma 4.1 we get

lim
τ↓0

∫
C∩Ω

aN (X + τN)ϕdHn−1(X) = −
∫
C∩Ω

a−N (X)ϕdHn−1(X), ∀ϕ ∈ L1(C ∩Ω), (4.9)

and aN (X + τN) → −a−N (X) as τ ↓ 0 in L∞(C ∩ Ω) weak*.

If we now let α = 0 and β ↓ 0 we get that, by a similar argumentation, a−N (X + τN) →
−aN (X) as τ ↑ 0 in L∞(C ∩ Ω) weak*. Thus, aN is Lebesgue measurable.

Now, we let α ↓ 0 and β ↓ 0 in (4.5) and get

0 = lim
α,β↓0

{∫
Aα

aN (X)dHn−1(X) +

∫
A−β

a−N (X)dHn−1(X)
}

= lim
α,β↓0

{∫
C∩B

aN (X + αN)dHn−1(X) +

∫
C∩B

a−N (X − βN)dHn−1(X)
}

=

∫
C∩B

{aN (X) + a−N (X)}dHn−1(X),

(4.10)

where the second equality is due to a same change of variables as above and the third
equality is due to Equation (4.9). Since Equation (4.10) holds true for all B ⊂ Ω we have
that a−N (X) = −aN (X) Hn−1-a.e. in C ∩Ω. We are now ready to show qD(X) = aN (X).
We start by considering any domain D ⊂ Ω with piecewise twice continuously differentiable
boundary. Fix a point X ∈ ∂D. The outward normal at X is denoted N and C is the
tangential hyperplane. Let r > 0 be small, Br(X) the ball with center at X and radius r
and B−

r (X) be the semiball defined above. Furthermore, the balance law for D ∩ Br(X) is∫
∂D∩Br(X)

qD(Y )dHn−1(Y ) +

∫
D∩∂Br(X)

qBr(X)(Y )dHn−1(Y ) = P
(
D ∩ Br(X)

)
(4.11)
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and for B−
r (X) the balance law is∫

C∩Br(X)
aN (Y )dHn−1(Y ) +

∫
D∩∂Br(X)

qBr(X)(Y )dHn−1(Y )

+

∫
B−
r (X)\(C∪D)

qBr(X)(Y )dHn−1(Y ) = P
(
B−
r (X)

)
.

(4.12)

If we subtract (4.12) from (4.11) we obtain∫
∂D∩Br(X)

qD(Y )dHn−1(Y )−
∫
C∩Br(X)

aN (Y )dHn−1(Y )

=

∫
∂B−

r (X)\(C∪D)
qBr(X)(Y )dHn−1(Y ) + P

(
B−
r (X) \ D

)
, (4.13)

where we have used that the production is additive over disjoint subsets. To bound the
right-hand side of the equation, we first consider∣∣∣ ∫

∂B−
r \(C∪D)

qBr(X)(Y )dHn−1(Y )
∣∣∣ ≤ ∫

∂B−
r \(C∪D)

|qBr(X)(Y )|dHn−1(Y )

≤ CHn−1
(
∂B−

r \ (C ∪ D)
)

= CRatio(r)Hn−1
(
∂Br

)
= CRatio(r)O(rn−1).

To determine how Ratio(r) depend on r we start by considering the case when D is a ball. In
Figure 4.1 we see the domain D and the ball Br(X) in the two-dimensional case. First, we
calculate the area of the triangle depicted in Figure 4.1 by using Heron’s formula [6, p. 12]

A =
√
s(s− a)(s− b)(s− c),

where a, b, c are the sides of the triangle and s = (a+ b+ c)/2. Using this we get that

h =
2A

R
=

r

R

√
R2 − r2

4
.

Next, we want to determine the angle θ = arccos hr = arccos
(

1
R

√
R2 − r2

4

)
. So,

Ratio(r) =
θ

2π
=

1

2π
arccos

( 1

R

√
R2 − r2

4

)
.

To determine the r-dependence we consider

lim
r→0

Ratio(r)√
r

= lim
r→0

arccos
(

1
R

√
R2 − r2

4

)
2π

√
r

= lim
r→0

2
√
r√

4R2 − r2
= 0.

Thus, we have shown that in two-dimension Ratio(r) = o(r1/2). This result can easily be
extended to higher dimensions. Every piecewise twice differentiable function can locally be
approximated by a circle a.e., in fact the best circle approximation of a curve at a given point
is the osculating circle which has the same tangent and curvature [15, pp. 99–100]. Hence,∣∣∣ ∫

∂B−
r \(C∪D)

qBr(X)(Y )dHn−1(Y )
∣∣∣ = o(rn−1).
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C

D

R

L

h

r

θ

θ

γ

Figure 4.1: The figure illustrates the domain D as a circle with the tangent plane C in two
dimensions. In addition, in the figure we can see the definition of the radii R and r, the
angles γ and θ, the arc length L and lastly h.

Next, to bound P
(
B−
r (X) \ D

)
we use Radon-Nikodym Theorem 2.9 to conclude that

|p̃(X)| = | dPdmn
| ≤ K <∞ mn-a.e. Thus,

|P
(
B−
r (X) \ D

)
| =

∣∣∣ ∫
B−
r (X)\D

p̃(X)dX
∣∣∣ ≤ ∫

B−
r (X)\D

∣∣∣ dP
dmn

(X)
∣∣∣dX ≤ Kmn

(
B−
r (X) \ D

)
= O(rn).

So, we have∫
∂D∩Br(X)

qD(Y )dHn−1(Y )−
∫
C∩Br(X)

aN (Y )dHn−1(Y ) = o(rn−1). (4.14)

Let c(n− 1) = Hn−1(B1), where B1 is the unit ball in Rn−1, such that Hn−1
(
Br(X) ∩ C

)
=

c(n− 1)rn−1. Furthermore, we can show that when r is small Hn−1(∂D∩C) ≈ c(n− 1)rn−1.
We are going to prove this in the two-dimensional case, but as before we can extend the
proof to higher dimensions. In two dimensions c(1) = 2 and Hn−1(Br(X) ∩ C) = 2r Let L
and ϕ be the arc length and angle depicted in Figure 4.1. By a similar computation as for
θ, we get

γ = arcsin
h

R
= arcsin

( r

R2

√
R2 − r2

4

)
,

and thus

L = Rγ = R arcsin
( r

R2

√
R2 − r2

4

)
.

When r is small the series expansion of L is given by

L = R
( r
R

+
r3

24R3
+O

(
r5
))

= r +O
(
r3
)
,

where we have used that the series expansion of arcsinx at x = 0 is

arcsinx = x+
x3

6
+O

(
x5

)
.
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So, in two dimensions, we have Hn−1
(
∂D ∩ C

)
= 2L ≈ 2r = Hn−1

(
Br(X) ∩ C

)
, for small r.

By dividing (4.14) by c(n− 1)rn−1 and letting r ↓ 0 we obtain

lim
r↓0

1

c(n− 1)rn−1

{∫
∂D∩Br(X)

qD(Y )dHn−1(Y )−
∫
C∩Br(X)

aN (Y )dHn−1(Y )
}

= lim
r↓0

o(rn−1)

c(n− 1)rn−1
,

where the right-hand side is equal to zero by the definition of o(rn−1). Thus, by Lebesgue
Differentiation Theorem 2.11 qD = aN Hn−1-a.e.

We are going to use Cauchy tetrahedron argument [28, pp. 15–17] to prove assertion (ii).
Let {Ei}ni=1 be the standard orthonormal basis for Rn and define the vector field A ∈
L∞(

Ω,M1×n) by
A(X) =

[
aEi(X) . . . aEn(X)

]
.

Furthermore, let N be a unit normal with components Ni. We assume that all of the
components Ni are nonzero. In addition, let X be a Lebesgue point for aEi , for all i =
1, . . . , n, and aN . Next, let r > 0 and define

D = {Y : (Yi −Xi) sgnNi > −r, i = 1, . . . , n; (Y −X) ·N < r}.

The domain D has n+1 sides, given by Yi = − sgnNir+Xi for i = 1, . . . , n and (Y −X)·N =
r, and the ball Br(X) is the inscribed sphere of D. For instance, in two dimensions D is
a triangle, and in three dimension a tetrahedron. We denote the side described by the
equation (Y − X) · N = r and inequalities (Yi − Xi) sgnNi > −r, for i = 1, . . . , n, by C,
with the normal N , and, for a given i, Ci will denote the side described by the equation
Yi = − sgnNir+Xi and inequalities (Yj −Xj) sgnNj > −r, for j ̸= i, and (Y −X) ·N < r,
with the normal − sgnNiEi. We observe that D indeed have a piecewise twice continuously
differentiable boundary and we can use the results proved above. Now, consider the balance
law for the domain D ∫

D
qD(X)dHn−1(X) = P (D).

Again, we use that the flux over the boundary of a domain is additive and divide the boundary
of D in the sides Ci, i = 1, . . . , n, and C. We then get the following formulation of the balance
law ∫

C
aN (X)dHn−1(X) +

n∑
i=1

∫
Ci
a− sgnNiEi(X)dHn−1(X) = P (D).

By using that a−N = −aN and dividing by Hn−1(C), in addition to observing that
Hn−1(Ci) = |Ni|Hn−1(C), we get

1

Hn−1(C)

∫
C
aN (X)dHn−1(X)−

n∑
i=1

Ni
1

Hn−1(Ci)

∫
Ci
aEi(X)dHn−1(X) =

P (D)

Hn−1(C) ,

where we have used that Ni = sgnNi|Ni|. Furthermore, we observe that P (D) = O(rn)
and Hn−1(C) = O(rn−1), thus limr→0 P (D)/Hn−1(C) = 0. So, by letting r → 0 and using
Lebesgue Differential Theorem 2.11 we can conclude

aN (X) =
n∑
i=1

NiaEi(X) = A(X)N ,

and assertion (ii) is proved.
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Lastly, we prove assertion (iii), i.e., divA = P in the sense of distributions. Let ωε be a
standard mollifier and let Aε = A ∗ ωε and Pε = P ∗ ωε. We start by observing that, since
P is absolutely continuous with respect to the Lebesgue measure,

Pε(X) =

∫
Rn

ωε(Y )dP (X − Y ) =

∫
Rn

ωε(Y )p̃(X − Y )dY = p̃ε(X),

where we have used that p̃ is the production density function.

Let D ⊂ Ω be a hypercube and consider the Divergence Theorem [22, Theorem 8.3] for Aε
on D ∫

D
divAε(X)dX =

∫
∂D
Aε(X)N(X)dHn−1(X)

=

∫
∂D

∫
Rn

A(X − Y )N(X − Y )ωε(Y )dY dHn−1(X)

=

∫
Rn

ωε(Y )

∫
∂D
A(X − Y )N(X − Y )dHn−1(X)dY

=

∫
Rn

ωε(Y )

∫
∂DY

A(Z)N(Z)dHn−1(Z)dY .

Here, Z = X−Y such that DY = {Z : Z+Y ∈ D} is the Y -transformation of D. To arrive
at the equation above we have used the definition of Aε = A ∗ ωε and Fubini’s Theorem 2.2.
Next, we use the balance law to conclude that∫

∂D
A(Z)N(Z)dHn−1(Z) =

∫
∂D
aN (Z)dHn−1(Z) = P (DY ),

for almost all Y satisfying |Y | < ε. Thus,∫
D
divAε(X)dX =

∫
Rn

ωε(Y )P (DY )dY =

∫
Rn

ωε(Y )

∫
DY

p̃(Z)dZdY

=

∫
D

∫
Rn

ωε(Y )p̃(X − Y )dY dX =

∫
D
Pε(X)dX

and divAε = Pε. So, for all test functions ϕ we can write∫
Rn

divAε(X)ϕ(X)dX =

∫
Rn

Pε(X)ϕ(X)dX,

which we will use to show that the equality holds in the sense of distributions when ε → 0.
We start by observing that A ∈ L∞(

Ω,M1×n) implies that A ∈ L1
loc

(
Ω,M1×n). Thus, from

property (iii) in Theorem 2.25 we have that Aε → A in L1
loc, and

ϕ 7→
∫
Rn

A(X)Eiϕ(X)dX

defines a distribution. Furthermore, since P is absolutely continuous with respect to Le-
besgue measure

ϕ 7→
∫
Rn

p̃(X)ϕ(X)dX

will also define a distribution. Here, p̃ ∈ L1
loc is the production density function. Thus, if we

show that∫
Rn

divAε(X)ϕ(X)dX → −
∫
Rn

A(X)∇ϕ(X)dX, ∀ϕ test function
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and ∫
Rn

Pε(X)ϕ(X)dX →
∫
Rn

p̃(X)ϕ(X)dX, ∀ϕ test function

we have proved the assertion. We have∣∣∣ ∫
Rn

divAε(X)ϕ(X)dX +

∫
Rn

A(X)∇ϕ(X)dX
∣∣∣ = ∣∣∣− ∫

Rn

Aε(X)∇ϕ(X)dX

+

∫
Rn

A(X)∇ϕ(X)dX
∣∣∣

≤
∫
Rn

∣∣Aε(X)−A(X)
∣∣|∇ϕ(X)|dX

< δ∥∇ϕ∥∞,

where we used that ∇ϕ has compact support and Aε → A in L1
loc. δ∥∇ϕ∥∞ → 0 as δ → 0,

since ∥∂ϕ/∂Xi∥∞ <∞ for all i = 1, . . . , n. In addition, we have∣∣∣ ∫
Rn

p̃ε(X)ϕ(X)dX −
∫
Rn

p(X)ϕ(X)dX
∣∣∣ ≤ ∫

Rn

|p̃ε(X)− p(X)|ϕ(X)dX
ε→0−−−→ 0,

since ϕ has compact support, ∥ϕ∥∞ < ∞ for all i = 1, . . . , n and p̃ε → p̃ in L1
loc, by

proposition (iii) in Theorem 2.25. Thus, we have∫
Rn

divAε(X)ϕ(X)dX =

∫
Rn

Pε(X)ϕ(X)dX
ε→0−−−→

∫
Rn

A(X)∇ϕ(X)dX + ⟨P, ϕ⟩ = 0,

where ⟨P, ϕ⟩ =
∫
p̃(X)ϕ(X)dX. So, we have proved that divA = P in the sense of distri-

butions.

The next theorem state that the field equation divA = P is preserved under a bi-Lipschitz
coordinate change. In this theorem, X ∈ Ω and Y ∈ Ω∗. Furthermore, A = A(X) and
A∗ = A∗(Y ), similarly for P , ϕ and a.

Theorem 4.3 (Adapted from [8, Theorem 1.3.1]). Let Ω be an open subset of Rn, A ∈
L1
loc

(
Ω,M1×n) and P be a Radon measure on Ω. Furthermore, let A and P satisfy the field

equation
divA = P, (4.15)

in the sense of distributions on Ω. Consider any bi-Lipschitz homeomorphism T of Ω to a
subset Ω∗ of Rn, with Jacobian matrix

J =
∂Y

∂X
(4.16)

such that
det J ≥ a > 0, a.e. on Ω. (4.17)

The, A∗ ∈ L1
loc

(
Ω∗,M1×n) and P ∗, Radon measure, defined by

A∗ ◦ T = (det J)−1AJ⊤, (4.18)

⟨P ∗, ϕ∗⟩ = ⟨P, ϕ⟩, where ϕ = ϕ∗ ◦ T, (4.19)

satisfy the field equation
divA∗ = P ∗, (4.20)

in the sense of distributions on Ω∗.
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Proof. We start by stating the weak formulation of divA = P . In Section 2.4 we have shown
that it is sufficient that ϕ is a Lipschitz function with compact support, i.e., ϕ ∈ W 1,∞

c (Ω),
for ϕ to be test function. Thus the weak formulation is∫

Ω
A(X)∇ϕ(X)dX + ⟨P, ϕ⟩ = 0, ∀ϕ ∈W 1,∞

c (Ω).

Let ϕ∗ be a test function in Ω∗. Since T is a bi-Lipschitz function, we then have that
ϕ = ϕ∗ ◦ T is a test function as well. Furthermore, we have that

∇ϕ = ∇(ϕ∗ ◦ T ) =
[ ∂

∂X1
(ϕ∗ ◦ T )1, . . . ,

∂

∂Xn
(ϕ∗ ◦ T )n

]
=

[∂ϕ∗1
∂Y1

∂Y1
∂X1

+ . . .+
∂ϕ∗1
∂Yn

∂Yn
∂X1

, . . . ,
∂ϕ∗n
∂Y1

∂Y1
∂Xn

+ . . .+
∂ϕ∗n
∂Yn

∂Yn
∂Xn

]
= J⊤∇ϕ∗,

and dY = detJdX. Using this we get,∫
Ω∗
A∗(Y )∇ϕ∗(Y )dY + ⟨P ∗, ϕ∗⟩ =

∫
Ω
(A∗ ◦ T )(J⊤)−1∇ϕ det JdX + ⟨P, ϕ⟩

=

∫
Ω
(det J)−1AJ⊤(J⊤)−1∇ϕ det JdX + ⟨P, ϕ⟩

=

∫
Ω
A∇ϕdX + ⟨P, ϕ⟩ = 0,

where we have used (4.18), (4.19) and that since T is invertible, so is J .

Furthermore, we want to show that we can obtain the original balance law from a field
equation. We start by showing this when we are considering planar surfaces. In this thesis
we have assumed that P is absolutely continuous with respect to Lebesgue measure, thus we
have rewritten Lemma 1.3.3 in [8] as the following lemma.

Lemma 4.4. Let A ∈ L∞(
K,M1×n) and P be a Radon measure which is absolutely con-

tinuous with respect to Lebesgue measure, such that divA = P in the sense of distributions,
on a cylindrical domain K = B × (α, β), where B is a ball in Rn−1. Let En denote the nth
unit base-vector in Rn and set X = (x, t), with x in B and t in (α, β). Since, P is abso-
lutely continuous with respect to Lebesgue measure, the function τ 7→ a(·, τ) is continuous on
(α, β), in the weak* topology of L∞(B).

Then, after one modifies, if necessary, A on a set of measure zero, the function a(x, t) =
A(x, t) ·En satisfies

a(x, τ) = lim
δ↓0

1

δ

∫ τ

τ−ε
A(x, t)Endt, (4.21a)

a(x, τ) = lim
δ↓0

1

δ

∫ τ+ε

τ
A(x, t)Endt. (4.21b)

Furthermore, for any τ ∈ (α, β) and any Lipschitz continuous function ϕ with compact
support in K,∫

B
a(x, τ)ϕ(x, τ)dx =

∫
B×(α,τ)

A(X)∇ϕ(X)dX + ⟨P, ϕ⟩B×(α,τ), (4.22a)

−
∫
B
a(x, τ)ϕ(x, τ)dx =

∫
B×(τ,β)

A(X)∇ϕ(X)dX + ⟨P, ϕ⟩B×(τ,β). (4.22b)
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Proof. Let B be a ball in Rn−1 with radius r and Bε be the ball with the same center as B
and radius r − ε. Furthermore, let ωε be a standard mollifier and define Aε = A ∗ ωε and
Pε = P ∗ ωε. Then Aε and Pε are smooth fields that satisfy divAε = Pε. Furthermore, we
define aε = Aε ·En. By multiplying divAε = Pε by a test function ϕ(x) ∈ W 1,∞

c

(
Bε,Rn−1

)
and integrating over Bε × (r, s), α+ ε < r < s < β − ε we obtain∫ s

r

∫
Bε

divAε(x, t)ϕ(x)dxdt =

∫ s

r

∫
Bε

Pε(x, t)ϕ(x)dxdt.

Next, we do integration by parts on the left-hand side. This results in∫ s

r

∫
Bε

divAε(x, t)ϕ(x)dxdt =

∫
Bε

Aε(x, t) ·Enϕ(x)dx|t=st=r −
∫ s

r

∫
Bε

Aε(x, t) · ∇xϕ(x)dxdt,

where we have used that ∂
∂tϕ(x) = 0 and, due to the compact support of ϕ, ϕ(x)|x∈∂Bε = 0.

If we use that aε(x, t) = Aε(x, t) ·En, we get∫
Bε

aε(x, s)ϕ(x)dx−
∫
Bε

aε(x, t)ϕ(x)dx

=

∫ s

r

∫
Bε

{
Aε(x, t)∇xϕ(x) + Pε(x, t)ϕ(x)

}
dxdt.

(4.23)

The next step is to show that the total variation of the function t 7→
∫
Bε
aε(x, t)ϕ(x)dx, over

the interval (α+ε, β−ε), is bounded, uniformly in ε > 0. From Definition 2.22 we have that

T.V.(f) = sup
I

∑
i∈I

|f(xi+1)− f(xi)|, (4.24)

where the supremum is taken over all finite partitions, I, of (α + ε, β − ε). Using this and
Equation (4.23) we get

T.V.
(∫

Bε

aε(x, t)ϕ(x)dx
)
= sup

I

∑
i∈I

∣∣∣ ∫
Bε

aε(x, ti+1)ϕ(x)dx−
∫
Bε

aε(x, ti)ϕ(x)dx
∣∣∣

= sup
I

∑
i∈I

∣∣∣ ∫ ti+1

ti

∫
Bε

{
Aε(x, t) · ∇xϕ(x) + Pε(x, t)ϕ(x)

}
dxdt

∣∣∣
≤ sup

I

∑
i∈I

∫ ti+1

ti

∫
Bε

{
|Aε(x, t) · ∇xϕ(x) + Pε(x, t)ϕ(x)|

}
dxdt

≤ sup
I

∑
i∈I

(ti+1 − ti)
{ n∑
j=1

sup
x∈B

t∈(α,β)

|Aε(x, t) ·Ej |
∫
Bε

|∇xϕ(x) ·Ej |dx

+ sup
x∈B

t∈(α,β)

|Pε(x, t)|
∫
Bε

|ϕ(x)|dx
}

< K(β − α)

To show that there exists a constant K <∞ independent of ε, such that the last inequality
above holds true, we use that A ∈ L∞(

K,M1×n) and that P is absolutely continuous with
respect to Lebesgue measure. We have that

|Aε ·En| =
∣∣∣ ∫ A(X − Y ) ·Enωε(Y )dY

∣∣∣ ≤ ∥A ·En∥∞
∣∣∣ ∫ ωε(Y )dY

∣∣∣ = ∥A ·En∥∞ <∞,

and hence ∥Aε ·En∥∞ ≤ K1 <∞, where K1 is independent of ε. Furthermore, we have that

|Pε| =
∣∣∣ ∫ ωε(X − Y )dP (X)

∣∣∣ = ∣∣∣ ∫ ωε(X − Y )p̃(Y )dY ≤ ∥p̃∥∞ <∞,
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since p̃ ∈ L1
loc(Ω). Thus, ∥Pε∥∞ ≤ ∥P∥∞ ≤ K2 < ∞, K2 independent of ε. In addition,

we use that ϕ,∇xϕ ∈ L1
loc, since ϕ ∈ W 1,∞

c . We then get that T.V.
( ∫

Bε
aε(x, t)ϕ(x)dx

)
is

uniformly bounded in ε > 0. In addition,∥∥∥∫
Bε

aε(x, t)ϕ(x)dx
∥∥∥
∞

= sup
t∈(α,β)

∣∣∣ ∫
Bε

Aε(x, t) ·Enϕ(x)dx
∣∣∣

≤ sup
t∈(α,β),x∈B

|A(x, t) ·En|
∫
B
ϕ(x)dx ≤ ∥A ·En∥∞C <∞,

where
∫
B ϕ(x)dx ≤ C < ∞. Let ϕl be a countable family of test functions that is dense in

L1(B). We are going to use Helly’s Selection Theorem 2.30 together with a diagonal argument
to obtain a subsequence {εm} such that

∫
B aεmϕldx converge for all ϕl. The conditions in

Helly’s Selection Theorem 2.30 are fulfilled and we have that there exist a subsequence∫
B aεkϕ1(x)dx that is convergent for almost all t ∈ (α, β), except t ∈ G with m1(G) = 0.
From this we extract a subsequence such that

∫
B aεjϕ2(x)dx converges. Continue this such

that for all ϕl there exist a convergent subsequence. We now extract the diagonal sequence
and obtain a subsequence {

∫
B aεmϕl(x)dx} that is convergent, for almost all t ∈ (α, β), for

all ϕl. For some function t 7→ a(·, t) we define the limit function as
∫
B aϕl(x)dx for all

l = 1, 2, . . ., which has bounded variation over (α, β). To prove that a(x, t) = A(x, t) · En

we consider

lim
m→∞

∫
B
aεm(x, t)ϕl(x)dx = lim

m→∞

∫
B
Aεm(x, t) ·Enϕl(x)dx =

∫
B
A(x, t) ·Enϕl(x)dx.

The last inequality is due to Aε · En → A · En in L1
loc as ε → 0, by proposition (iii) in

Theorem 2.25, since A ·En ∈ L1
loc. Furthermore, we have that

lim
m→∞

∫
B
aεm(x, t)ϕl(x)dx =

∫
B
a(x, t)ϕl(x)dx.

Thus, ∫
B
a(x, t)ϕl(x)dx =

∫
B
A(x, t) ·Enϕl(x)dx, ∀ϕl,

and hence a(x, t) = A(x, t) ·En a.e. in K. So, the function a(·, t) is independent of the choice
of subsequence {εm}.

Let us again consider (4.23), but now to prove that, since P is absolutely continuous with
respect to Lebesgue measure, a(·, t) is continuous on (α, β) in the weak* topology of L∞(B).
We start by proving that {

∫
B aε(x, r)ϕ(x)dx} is an equicontinuous family of functions.∣∣∣ ∫

B
aε(x, s)ϕ(x)dx−

∫
B
aε(x, r)ϕ(x)dx

∣∣∣ = ∣∣∣ ∫ s

r

∫
B

{
Aε(x, t) · ∇xϕ(x) + Pε(x, t)ϕ(x)

}
dxdt

∣∣∣
≤ |s− r|

( n∑
j=1

∥A ·Ej∥∞
∫
B
∇xϕ(x) ·Ejdx

+ ∥P∥∞
∫
B
ϕ(x)dx

)
.

By a similar argument as in the proof of bounded variation of {
∫
B aε(x, t)ϕ(x)dx} we get

n∑
j=1

∥A ·Ej∥∞
∫
B
∇xϕ(x) ·Ejdx+ ∥P∥∞

∫
B
ϕ(x)dx ≤M <∞,
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where M is independent of ε. Thus, if we choose δ = ϵ/M we get∣∣∣ ∫
B
aε(x, s)ϕ(x)dx−

∫
B
aε(x, r)ϕ(x)dx

∣∣∣ < ϵ when |s− r| < δ,

and by Definition 2.17 the family of functions t 7→
∫
B aε(x, t)ϕ(x)dx is equicontinuous.

Hence,
∫
B a(x, t)ϕ(x)dx is continuous on (α, β), for any l = 1, 2, . . .. Thus, t 7→ a(·, t) is

continuous on (α, β), in L∞(B) weak*.

To conclude (4.21a), we consider

lim
δ↓

1

δ

∫ δ

τ−δ

∫
B
a(x, t)ϕl(x)dxdt = lim

δ↓

1

δ

∫ δ

τ−δ

∫
B
A(x, t) ·Enϕl(x)dxdt.

We can use Lebesgue Differentiation Theorem 2.10 to conclude that the left-hand side is
equal to

∫
B a(x, τ)ϕl(x)dx since a(·, t) is continuous in the L∞ weak* topology. Next, let us

consider the right-hand side

RS = lim
δ↓0

1

δ

∫ τ

τ−δ

∫
B
A(x, t) ·Enϕl(x)dxdt.

Since we have∣∣∣ ∫∫
(τ−δ,τ)×B

A(x, t) ·Enϕl(x)dtdx
∣∣∣ ≤ ∥A ·En∥∞

∫∫
(τ−δ,τ)×B

|ϕl(x)|dtdx ≤ ∥A ·En∥∞Clδ,

where
∫∫

(τ−δ,τ)×B |ϕl(x)|dtdx ≤ Cl < ∞, we can use Fubini’s Theorem 2.2 to interchange
the order of integration. So,

RS = lim
δ↓0

∫
B

1

δ

∫ τ

τ−δ
A(x, t) ·Enϕl(x)dxdt.

Furthermore, we observe that∣∣∣1
δ

∫ τ

τ−δ
A(x, t) ·Enϕl(x)dt

∣∣∣ ≤ 1

δ

∫ τ

τ−δ

∣∣∣A(x, t) ·Enϕl(x)
∣∣∣dt ≤ ∥A(x, t) ·En∥∞|ϕl(x)|.

In addition, ∫
B
∥A(x, t) ·En∥∞|ϕl(x)|dx ≤ ∥A(x, t) ·En∥∞Cl <∞.

Thus, by Dominated Convergence Theorem 2.22 we have

RS =

∫
B
lim
δ↓0

1

δ

∫ τ

τ−δ
A(x, t) ·Enϕl(x)dtdx.

So, ∫
B
a(x, τ)ϕl(x)dx =

∫
B
lim
δ↓0

1

δ

∫ τ

τ−δ
A(x, t) ·Enϕl(x)dtdx, ∀ϕl,

for all balls B, and thus

a(x, τ) = lim
δ↓0

1

δ

∫ τ

τ−δ
A(x, t) ·Endt.

We can show (4.21b) in a similar matter.

Lastly, we want to show (4.22a). Start by fixing a τ ∈ (α, β) and again multiply divAε = Pε
by a test function ϕ and integrate over (α+ ε, s)× Bε where s ∈ (α+ ε, τ) \G. This yields∫ s

α+ε

∫
Bε

divAε(x, t)ϕ(x, t) =

∫ s

α+ε

∫
Bε

Pε(x, t)ϕ(x, t)dxdt.
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Doing integration by parts on the left-hand side yields∫ s

α+ε

∫
Bε

divAε(x, t)ϕ(x, t)dxdt =

∫
Bε

aε(x, s)ϕ(x, s)dx−
∫ s

α+ε

∫
Bε

Aε(x, t) · ∇ϕ(x, t)dxdt,

where we have used ϕ|x∈∂Bε = 0 and ϕ(x, α + ε) = 0, due to the compact support of ϕ.
Thus, we get∫

Bε

aε(x, s)ϕ(x, s)dx =

∫∫
(α+ε,s)×Bε

{
Aε(x, t) · ∇ϕ(x, t) + Pε(x, t)ϕ(x, t)

}
dxdt.

Since ϕ(x, t) has compact support in (α+ ε, s)× Bε, we have∫
B
aε(x, s)ϕ(x, s)dx =

∫∫
(α,s)×B

{
Aε(x, t) · ∇ϕ(x, t) + Pε(x, t)ϕ(x, t)

}
dxdt.

Now, we let ε→ 0. In the proof of assertion (iii) in Theorem 4.2 we showed that∫∫
(α,s)×B

Pε(x, t)ϕ(x, t)dxdt→ ⟨P, ϕ⟩(α,s)×B

and ∫∫
(α,s)×B

Aε(x, t) · ∇ϕ(x, t)dxdt→
∫∫

(α,s)×B
A(x, t) · ∇ϕ(x, t)

as ε→ 0. Thus, for almost all s ∈ (α, τ) we have∫
B
a(x, s)ϕ(x, s)dx =

∫∫
(α,s)×B

A(x, t) · ∇ϕ(x, t)dxdt+ ⟨P (x, t), ϕ(x, t)⟩(α,s)×B.

Next, we let s ↑ τ . We first consider∫∫
(α,s)×B

A(x, t) · ∇ϕ(x, t)dxdt =
∫∫

(α,τ)×B
χ
(α,s)×BA(x, t) · ∇ϕ(x, t)dxdt

+

∫∫
(α,τ)×B

χ
(α,s)×Bp(x, t)ϕ(x, t)dxdt.

If we let s ↑ τ , we have χ(α,s)×B → χ
(α,τ)×B and thus∫∫

(α,s)×B
A(x, t) · ∇ϕ(x, t)dxdt→

∫∫
(α,τ)×B

A(x, t) · ∇ϕ(x, t)dxdt.

Similarly, we can show that

⟨P (x, t)ϕ(x, t)⟩(α,s)×B → ⟨P (x, t)ϕ(x, t)⟩(α,s)×B as s ↑ τ.

Thus, we get∫
B
a(x, τ)ϕ(x, τ)dx =

∫∫
(α,τ)×B

A(x, t) · ∇ϕ(x, t)dxdt+ ⟨P (x, t)ϕ(x, t)⟩(α,τ)×B, (4.25)

where the limit on the left-hand side is due to the map t 7→
∫
B a(x, t)ϕ(x, t)dx being

continuous. The proof of (4.22b) is similar, but we integrate over (s, β − ε) × Bε where
s ∈ (τ, β − ε) \G.

The lemma above proved that it is possible to retrieve the density flux function aEn when
we are considering planar surfaces. The next theorem state that we can retrieve the density
flux function qD even for arbitrary domains D.
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Theorem 4.5 (Adapted from [8, Theorem 1.3.4]). Let A ∈ L∞(
Ω,M1×n) and P be a

Radon measure which is absolutely continuous with respect to the Lebesgue measure, such
that divA = P is satisfied in the sense of distributions, on an open subset Ω of Rn. Then,
for any proper domain D in Ω there exists a bounded Hn−1-measurable function qD on ∂D
such that ∫

∂D
qD(X)ϕ(X)dHn−1(X) =

∫
D
A(X) · ∇ϕ(X)dX + ⟨P, ϕ⟩D, (4.26)

for any Lipschitz continuous function ϕ on Rn, with compact support in Ω.

Proof. Let B be the unit ball in Rn−1. Furthermore, define the cylindrical domain

K∗ = {Y = (y, t) : y ∈ B, t ∈ (−1, 1)}.

Let D be a domain with twice continuously differentiable boundary, i.e., the boundary is
a Lipschitz boundary. Thus, there exists a bi-Lipschitz homeomorphism Q form K∗ to
some open subset K of Ω. This bi-Lipschitz homeomorphism satisfies Q(0) = X ∈ ∂D,
Q(B × (−1, 0)) = D ∩ K and Q(B × {0}) = ∂D ∩ K. Furthermore, let T be the inverse of
Q with J = ∂Y

∂X as the Jacobian matrix, which satisfies det J ≥ a > 0. Next, we construct
A∗ such that it satisfies A∗ ◦ T = (det J)−1AJ⊤ and P ∗ such that ⟨P ∗, ϕ∗⟩ = ⟨P, ϕ⟩ for
ϕ = ϕ∗ ◦ T , in the sense of distributions.

By Lemma 4.4 there exists a∗ = A∗ ·En that satisfies∫
B
a∗(y, 0)ϕ∗(y, 0)dy =

∫∫
B×(−1,0)

A∗(Y )∇ϕ∗(Y )dY + ⟨P ∗, ϕ∗⟩.

Transforming the equation above to an equation on Ω, by transformation given by T and
using that ∇ϕ = J⊤∇ϕ∗ we get∫

B
a∗(y, 0)ϕ∗(y, 0)dy =

∫
∂D

(a∗ ◦ T )(x, 0)(ϕ∗ ◦ T )(x, 0) dy

dHn−1
dHn−1(x)

=

∫
∂D
a(x, 0)ϕ(x, 0)

dy

dHk−1
dHn−1(x),

and∫∫
B×(−1,0)

A∗(Y )∇ϕ∗(Y )dY + ⟨P ∗, ϕ∗⟩ =
∫∫

D∩K
(A∗ ◦ T )(J⊤)−1∇ϕ det JdX + ⟨P, ϕ⟩D∩K

=

∫∫
D∩K

A · ∇ϕdX + ⟨P, ϕ⟩D∩K,

where we have used that A∗ ◦ T = (det J)−1AJ⊤. Then, if we define

qD = a∗ ◦ T dy

dHn−1
= a∗ ◦ T det J

E⊤
n JN

. (4.27)

we get ∫
∂D
qDdHn−1(x) =

∫∫
D∩K

A · ∇ϕdX + ⟨P, ϕ⟩D∩K.

In the next lemma
dy

dHn−1
=

det J

E⊤
n JN

is proved for the case Q(y, s) = (ay + bs, cy + ds). We assume the result holds in higher
dimensions and for more complex Q. We have now proved Equation (4.26), but only for test
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Chapter 4. Multidimensional balance law

functions with compact support in the set K. We can extend the result to an arbitrary test
function with compact support in Ω. To do this, we start by observing that integrand on
the right-hand side is independent of the homeomorphism, since A and P are given in the
theorem. Thus, the values of qD in D ∩ K are not dependent on the construction above, so
they are not dependent on K or the homeomorphism. Thus, by a standard partition of unity
argument we can conclude that the result holds for an arbitrary test function.

y

s

E2

Q

T
x

t

N

X

Figure 4.2: The figure illustrates how the unit square, [−1, 1]× [−1, 1], in the (y, s)-plane is
mapped by Q(Y ) = (ay + bs, cy + ds) into the (x, t)-plane. In addition, the figure depicts
the standard unit normal in s-direction and N , which is the normal at some point X.

Lemma 4.6. If X = (x, t) = Q(Y ) = (ay + bs, cy + ds), where Y = (y, s), we have that

dy

dH1
(x, t) =

det J

E⊤
2 JN

,

when J = ∂Y
∂X , E2 is the standard unit normal in s-direction and N is the normal at some

point X.

Proof. In Figure 4.2 we can see a possible transformation of the unit square in R2, using
(x, t) = Q(y, s) = (ay+ bs, cy+ ds). In this case, we have that the endpoints of the blue line
segment in the right plot in Figure 4.2 are (−a,−c) and (a, c). In addition, we have

E2 =

[
0
1

]
, and N =

1√
∆x2 +∆t2

[
−∆t
∆x

]
=

1√
4a2 + 4c2

[
−2c
2a

]
=

1√
a2 + c2

[
−c
a

]
.

As in the figure we denote Q−1 by T . The Jacobian matrix for Q will be the inverse Jacobian
matrix for T , so we denote Jacobian matrix for Q by J−1. Thus,

J−1 =
∂X

∂Y
=

[
a b
c d

]
=⇒ J =

∂Y

∂X
=

1

ad− bc

[
d −b
−c a

]
,

and det J = 1
ad−bc . So, we have

E⊤
2 JN =

1

ad− bc

1√
a2 + c2

[
0 1

] [ d −b
−c a

] [
−c
a

]
=

1

ad− bc

1√
a2 + c2

(a2 + c2) =

√
a2 + c2

ad− bc

and
det J

E⊤
2 JN

=
1√

a2 + c2
.
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Chapter 4. Multidimensional balance law

Next, we calculate dH1(x,t)
dy , with x = ay and t = cy, by using the definition of derivative.

dH1(x, t)

dy
=
dH1(ay, cy)

dy
= lim

∆y→0

H1
(
(a, c)(y +∆y)

)
−H1

(
(a, c)y

)
∆y

= lim
∆y→0

H1
(
(a, c)∆y

)
∆y

= lim
∆y→0

√
(a∆y)2 + (c∆y)2

∆y
=

√
a2 + c2,

where we have used that H1 is additive. Thus,

dy

dH1(x, t)
=

1√
a2 + c2

=
det J

E⊤
2 JN

,

and the lemma is proved.
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Chapter 5

One-dimensional Euler and
Lagrange equations

In the previous section we showed that the divergence form of a general multidimensional
balance law is conserved under a bi-Lipschitz transformation. In this chapter we are going
to consider a specific system of conservation laws in one dimension, namely the Euler and
Lagrange equation for a compressible, inviscid, and non-heat-conducting gas. The Euler
equations are given by

ρt + (ρu)x = 0, (5.1a)

(ρu)t + (ρu2 + p(ρ, S))x = 0, (5.1b)(
ρe(ρ, S) +

ρu2

2

)
t

+

(
u

(
ρe(ρ, S) +

ρu2

2
+ p(ρ, S)

))
x

= 0, (5.1c)

and the Lagrange equations are given by

τt − ũy = 0, (5.2a)

ũt + p̃(τ, S̃)y = 0, (5.2b)(
ẽ(τ, S̃) +

ũ2

2

)
t

+ (ũp̃(τ, S̃))y = 0, (5.2c)

where p̃(τ, S) = p(ρ̃, S̃) and ẽ(τ, S) = e(ρ̃, S̃).

5.1 No vacuum

The equivalence of these two systems of partial differential equations, given that ρ > 0,
is shown in detail in my project thesis [20]. However, we can easily use Theorem 4.3 to
show that these two systems are equivalent. First, we include the proof of existence of a
transformation function T (x, t) done in Section 4 in [20] for completeness.
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5.1. No vacuum Chapter 5. One-dimensional Euler and Lagrange equations

5.1.1 Existence of transformation function T (x, t)

We will need the following theorem to prove the existence of the transformation function
T (x, t) with the Jacobi matrix

JT =

[ ∂y
∂x

∂y
∂t

∂t
∂x

∂t
∂t

]
=

[
ρ −ρu
0 1

]
.

Theorem 5.1. Suppose a vector field F is C1 on an open simply connected set Ω in R3 on
which curlF = 0. Then there is a function g from Ω to R so that ∇g = F.

We start by showing the existence of a function y(x, t) that satisfies

∂y

∂x
= ρ and

∂y

∂t
= −ρu.

However, since ρ and u can be non-differentiable functions and ρt + (ρu)x = 0 only holds
weakly we cannot directly use Theorem 5.1. Therefore, we will use standard mollifiers to
prove the existence. We define ρε = ρ∗ωε and (ρu)ε = (ρu)∗ωε, which are smooth functions
and satisfy

(ρε)t +
(
(ρu)ε

)
x
= 0.

We want to show that there exists a yε that satisfies (yε)x = ρε and (yε)t = −(ρu)ε. To do
this we use that (yε)xt = (ρε)t = −

(
(ρu)ε

)
x
= (yε)tx. Therefore, the conditions in Theorem

5.1 are satisfied and there exists a function yε satisfying our requirements.

Next, we want to show that there exists a function y such that yε → y satisfying yx = ρ and
yt = −ρu weakly. The first step is to show that for all yε are Lipschitz continuous functions
with the same Lipschitz constant for all ε. We use the following theorem from [9, Theorem
4.5].

Theorem 5.2 (Lipschitz continuity and W 1,∞). Let f : Ω −→ R. Then f is locally Lipschitz
in Ω if and only if f ∈W 1,∞

loc (Ω).

By the assumption that u ∈ L∞(R× R+) and 0 < δ ≤ ρ ≤M <∞, we have that

|(yε)x| = |ρε| =
∣∣∣∣∫∫

R×R+

ρ(z, s)ωε(x− z, t− s)dzds

∣∣∣∣
≤

∫∫
R×R+

|ρ(z, s)|ωε(x− z, t− s)dzds ≤M <∞

and

|(yε)t| = |(ρu)ε| =
∣∣∣∣∫∫

R×R+

(ρu)(z, s)ωε(x− z, t− s)dzds

∣∣∣∣
≤

∫∫
R×R+

|ρ(z, s)||u(z, s)|ωε(x− z, t− s)dz ≤M sup
(x,t)∈R×R+

|u(x, t)| <∞.

Therefore, since ρ and u are locally integrable function, yε ∈W 1,∞
loc (R×R+) for all ε. Thus,

by Theorem 5.2, yε is locally Lipschitz continuous with the same Lipschitz constant for all
ε > 0.

The next step is to show that yε has a convergent subsequence. Using that yε are locally
Lipschitz continuous with the same Lipschitz constant for all ε, we can show that the family
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of functions Y = {yε : ε > 0} is equicontinuous on compact sets. We have that on a
compact subset K ⊂ Rn, a locally Lipschitz function is a Lipschitz function. Hence for
(x1, t1), (x2, t2) ∈ K, if we assume that |(x1, t1)− (x2, t2)| < δ, and choose δ = ϵ/K̃ for each
ϵ, we get

|yε(x1, t1)− yε(x2, t2)| ≤ K̃|(x1, t1)− (x2, t2)| < ϵ ∀ϵ > 0,

for all yε ∈ Y. Thus by Definition 2.17 Y is an equicontinuous family of functions on compact
sets. Furthermore, we want to show that Y is uniformly bounded on K when K is a compact
subset of R × R+. When defining yε we can choose yε(0, 0) = 0, and from the fact that yε
are Lipschitz continuous with the same Lipschitz constant we get

|yε(x, t)| ≤ K̃|(x, t)|.

For all compact sets, there exists an open ball with the radius r such that the compact set
is a subset of said open ball. Thus, we have that |(x, t)|, which is the Euclidean distance
from the origin in R2, is bounded by an r < ∞ for all (x, t) ∈ K. So, |yε(x, t)| ≤ rK̃ for all
yε ∈ Y. Thus, by Definition 2.16 Y is uniformly bounded on K.

We have shown that the family of functions Y satisfies the conditions in the Arzelà-Ascoli
Theorem 2.24 and hence there exists a subsequence yεn , n = 1, 2, . . ., where εn → 0, such
that yεn −→ y uniformly on compact subsets of R × R+. So, we have a candidate for the
transformation function. The next step is to show that yx = ρ weakly. Since yεn −→ y
uniformly on compact subsets, K, we have that∣∣∣∣∫∫

K
ydxdt−

∫∫
K
yεndxdt

∣∣∣∣ ≤ ∫∫
K
|y − yεn | dxdt ≤ δm2(K)

n−→∞−−−−→ 0,

where we have used that m2(K), the Lebesgue measure of K, is finite and that δ is inde-
pendent of (x, t), due to the uniform convergence. Using this we get the following∫∫

yϕxdxdt = lim
n−→∞

∫∫
yεnϕxdxdt = − lim

n−→∞

∫∫
(yεn)xϕdxdt = − lim

n−→∞

∫∫
ρεnϕdxdt.

To finish showing that yx = ρ weakly, we have to show that

lim
n−→∞

∫∫
ρεnϕdxdt =

∫∫
ρϕdxdt. (5.3)

Since ρ is a locally integrable function, we can use property (iii) in Theorem 2.25 and get
that ρεn → ρ in L1

loc. Using this we have∣∣∣∣∫∫
R×R+

ρεnϕdxdt−
∫∫

R×R+

ρϕdxdt

∣∣∣∣ ≤ ∫∫
K
|ρεn − ρ| |ϕ|dxdt ≤ ∥ϕ∥∞∥ρεn − ρ∥L1

loc
,

where K = suppϕ is a compact set. Furthermore, ∥ϕ∥∞ < ∞ since ϕ has compact support
and is a continuous function. Thus, we have shown Equation (5.3) and consequently that
yx = ρ weakly. With a similar argumentation, we can show that yt = −ρu in the weak sense.
Since y ∈ L1

loc and the weak derivative yx, yt ∈ L∞, we have that y ∈ W 1,∞
loc and thus, by

Theorem 5.2, y is Lipschitz continuous.

By Rademacher’s Theorem 2.17, and the fact that y is Lipschitz continuous on every compact
set, y is differentiable a.e. We have shown that there exists a function y(x, t) = y which is
Lipschitz and satisfies yx = ρ and yt = −ρu a.e. From this we can define a map T (x, t) =
(y(x, t), t) = (y, t) with the following Jacobian matrix

JT =

[ ∂y
∂x

∂y
∂t

∂t
∂x

∂t
∂t

]
=

[
ρ −ρu
0 1

]
,
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which holds a.e. JT will have maximal rank, whenever it exists, since the Jacobian determ-
inant is given by det JT = ρ and we have assumed no vacuum. From [4, Definition 1] we
have the following definition.

Definition 5.1 (Generalized Jacobian). The generalized Jacobian of f at x0, denoted
∂f(x0), is the convex hull of all matrices M of the form

M = lim
i→∞

Jf(xi),

where xi converges to x0 and f is differentiable at xi for each i.

When the function f is in C1(Ω), the generalized Jacobian ∂f(x0) coincides with Jf(x0) [4].
Furthermore, we have the following theorem from [4, Theorem 1].

Theorem 5.3. If ∂f(x0) is of maximal rank, then there exist neighborhoods U and V of x0
and f(x0) respectively, and a Lipschitz function g : V → Rn such that

(a) g(f(u)) = u for every u ∈ U ,

(b) f(g(v)) = v for every v ∈ V .

The Jacobian of the map T has maximal rank for almost every (x, t). Hence, by Theorem
5.3, T has a Lipschitz inverse function almost everywhere. So, the transformation (x, t) =
T−1(y, t) = Q(y, t) exists a.e.

5.1.2 Using Theorem 4.3 to show equivalence

In this section we will show how we can use Theorem 4.3 to conclude that a weak solution
of (5.1) also is a weak solution of (5.2), and vice versa. From the subsection above we have
that there exists a transformation T (x, t) = (y, t) from Euler to Lagrange coordinates with
the following Jacobian matrix

JT =

[ ∂y
∂x

∂y
∂t

∂t
∂x

∂t
∂t

]
=

[
ρ −ρu
0 1

]
,

even in the case where (5.1a) only holds weakly. If we assume that there is no vacuum, i.e.,
that ρ > 0, the conditions of Theorem 4.3 are satisfied and through tedious calculation we
can show that a weak solution of the Euler equations also is a weak solution of the Lagrange
equations. The calculations can be found in Appendix A. Furthermore, T has inverse function
Q which is Lipschitz. Q is the transformation from Lagrange to Euler coordinates, given by
Q(y, t) = (x, t), and satisfies

JQ =

[
∂x
∂y

∂x
∂t

∂t
∂y

∂t
∂t

]
=

[
τ ũ
0 1

]
.

Thus the conditions of Theorem 4.3 are again satisfied and we can show that the Lagrange
equations imply the Euler equations.
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5.2 Vacuum

In this section we will allow the mass density to be zero in some set, i.e., we allow there to
be a set with vacuum. The idea of vacuum in Lagrange coordinates may sound nonphysical,
but in [31] Wagner shows that if we strengthen the definition of weak solutions in Lagrange
coordinates, we can prove that the equivalence between the Euler and the Lagrange equations
still holds true for these weak solutions. Thus, the proofs in this section will be heavily based
on the proofs in [31] by Wagner. However, it will include additional calculations to make the
proofs more understandable. We will first assume that the Euler equations holds weakly and
show how we have to strengthen the definition of a weak solution in Lagrange coordinates to
conclude that the Lagrange equations holds weakly as well. Furthermore, we will show that
given that the Lagrange equations hold weakly with the new definition of weak solutions the
Euler equations will also hold weakly.

5.2.1 The Euler formulation implies the Lagrange formulation

We start by assuming that (5.1) holds weakly. Furthermore, define T as T (x, t) = (y(x, t), t)
where

y(x, t) =

∫ x

x(t)
ρ(s, t)ds, (5.4)

where x(t) is the trajectory of a particle. Then we get

JT =

[ ∂y
∂x

∂y
∂t

∂t
∂x

∂t
∂t

]
=

[
ρ −ρu
0 1

]
,

as before. From Section 5.1.1 we have that there exists a T (x, t) = (y(x, t), t) which is
Lipschitz. However, we see that since detJT = ρ = 0 in some subset of Rn, T will no
longer be invertible in this subset, i.e., there no longer exists an inverse function Q(y, t). In
addition, the condition det JT ≥ a > 0 in Theorem 4.3 is no longer satisfied so we cannot
use this theorem. In fact, T may map a set of positive measure, the vacuum set, to a set of
measure zero. Thus, we can no longer consider τ as a function, but it may be considered as
a measure. It is natural to consider τ to be the following measure τ = T#m2.

Theorem 5.4 (Adapted from [31, Lemma 1]). Assume that∫ ∞

0
ρ(x, 0)dx =

∫ 0

−∞
ρ(x, 0)dx = ∞,

i.e., no half-line has finite measure at t = 0. Then T is a proper and onto function and
hence τ is a Radon measure.

Proof. We start by assuming
∫∞
0 ρ(x, 0)dx =

∫ 0
−∞ ρ(x, 0)dx = ∞. Furthermore, we define

the following test function φ(x, t) = ψ(x)ϕ(t), where ψ, ϕ ≥ 0, and ψ(x) = 1 when x ∈ [a, b]
for a < b and ϕ(t) = 1 when t ∈ [0, t1] for t1 > 0. In addition, for ε1 > 0 and ε2 > 0
we assume

∫
R ψ(x)dx < b − a + ε1,

∫
R+ ϕ(t)dt < t1 + ε2 and thus

∫
R |ψ′(x)|dx = 2 and∫

R+ |ϕ′(t)|dt = 1. By assumption that the Euler equations holds weakly,∫∫
R×R+

ψ(x)ϕ′(t)ρ(x, t) + ψ′(x)ϕ(t)(ρu)(x, t)dxdt+

∫
R
ψ(x)ρ(x, 0)dx = 0. (5.5)
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From this, we want to conclude that given
∫∞
0 ρ(x, 0)dx = ∞ we have that

∫∞
0 ρ(x, t1)dx = ∞

for almost all t1. We start by considering∣∣∣ ∫∫
R×R+

ψ′(x)ϕ(t)(ρu)(x, t)dxdt
∣∣∣ ≤ ∫∫

R×R+

|ψ′(x)ϕ(t)(ρu)(x, t)|dxdt

≤ ∥ρu∥∞
∫
R+

ϕ(t)

∫
R
|ψ′(x)|dxdt (5.6)

≤ ∥ρu∥∞(t1 + ε2)

∫
R
|ψ′(x)|dx = 2∥ρu∥∞(t1 + ε2).

Since we have assumed that ρ, u ∈ L∞, and thus 2∥ρu∥∞(t1 + ε2) <∞, we get∣∣∣ ∫∫
R×R+

(ρu)(x, t)ψ′(x)ϕ(t)dxdt
∣∣∣ ≤ 2∥ρu∥∞t1

as ε2 → 0. Next, we consider ∫∫
R×R+

ψ(x)ϕ′(t)ρ(x, t)dxdt

as ε2 → 0. First, we investigate what happens to ϕ as ε2 → 0. By construction, we have
that ϕ ≥ 0, ϕ(t) = 1 for t ∈ [0, t1] and

∫∞
0 ϕ(t) < t1 + ε2. Thus,∫

R+

ϕ(t)dt =

∫ t1

0
ϕ(t)dt+

∫ ∞

t1

ϕ(t)dt = t1 +

∫ ∞

t1

ϕ(t)dt < t1 + ε2.

This implies
∫∞
t1
ϕ(t)dt < ε2 and letting ε2 → 0 we get∫ ∞

t1

ϕ(t)dt = 0,

since ϕ ≥ 0. So, ϕ = 0 for a.e. t > t1 and we can conclude that ϕ(t) → χ
[0,t1](t) as ε2 → 0.

However, we are interested in ϕ′(t). It is natural to think that ϕ′(t) → −δt1(t), where δt1 is
the Dirac delta function. To show this we start by calculating∫

R+

ϕ′(t)dt =

∫ t1+h

t1

ϕ′(t)dt = ϕ(t1 + h)− ϕ(t1) = 0− 1 = −1.

Here, h is the length of the support of ϕ′(t), thus h→ 0 as ε→ 0. We are ready to consider∣∣∣ ∫
R+

ϕ′(t)f(x, t)dt+ f(x, t1)
∣∣∣ = ∣∣∣ ∫ t1+h

t1

ϕ′(t)
(
f(x, t)− f(x, t1)

)
dt
∣∣∣

≤
∫ t1+h

t1

|ϕ′(t)||f(x, t)− f(x, t1)|dt

≤ ∥ϕ′∥∞h
1

h

∫ t1+h

t1

|f(x, t)− f(x, t1)|dt.

Since
∫
|ϕ′|dt is finite and equal for all h, ∥ϕ′∥∞h is bounded by some constant independent

of h for all h. By Lebesgue Differential Theorem 2.10 we have

1

h

∫ t1+h

t1

|f(x, t)− f(x, t1)|dt→ 0,

for all Lebesgue points t1 for the function f(·, t). This implies that∣∣∣ ∫
R+

ϕ′(t)f(x, t)dt+ f(x, t1)
∣∣∣ → 0,
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for all Lebesgue points t1. Thus, we have∣∣∣ ∫∫
R×R+

ϕ′(t)ψ(x)ρ(x, t)dtdx+

∫
R
ψ(x)ρ(x, 0)dx

∣∣∣ → ∣∣∣ ∫
R
ψ(x)

(
ρ(x, 0)− ρ(x, t1)

)
dx

∣∣∣ (5.7)

as ε2 → 0. If we return to (5.5) and insert (5.6) we obtain

0 =
∣∣∣ ∫∫

R×R+

ϕ′(t)ψ(x)ρ(x, t)dxdt+

∫∫
R×R+

ϕ(t)ψ′(x)(ρu)(x, t)dxdt+

∫
R
ψ(x)ρ(x, 0)dx

∣∣∣
≥

∣∣∣ ∫∫
R×R+

ϕ′(t)ψ(x)ρ(x, t)dtdx+

∫
R
ψ(x)ρ(x, 0)dx

∣∣∣− ∣∣∣ ∫∫
R×R+

ϕ(t)ψ′(x)(ρu)(x, t)dxdt
∣∣∣

≥
∣∣∣ ∫∫

R×R+

ϕ′(t)ψ(x)ρ(x, t)dtdx+

∫
R
ψ(x)ρ(x, 0)dx

∣∣∣− 2(t1 + ε2)∥ρu∥∞.

By letting ε2 → 0 and inserting (5.7) we get∣∣∣ ∫
R
ψ(x)

(
ρ(x, t1)− ρ(x, 0)

)
dx

∣∣∣ ≤ 2t1∥ρu∥∞, (5.8)

for any Lebesgue point, t1, for the function t→
∫
ψ(x)ρ(x, t)dx. Next, we want to determine

what happens to ψ(x) as ε1 → 0. By a similar argument as for ϕ, where we now use that
ψ(x) = 1 when x ∈ [a, b] and

∫
R ψ(x)dx < b− a+ ε1, we get that ψ(x) → χ

[a,b](x) as ε1 → 0.
Thus, as ε1 → 0 Equation (5.8) converges to∫ b

a

{
ρ(x, t1)− ρ(x, 0)

}
dx ≤ 2t1∥ρu∥∞.

Furthermore, if we fix a, we have

sup
b>a

∫ b

a

{
ρ(x, t1)− ρ(x, 0)

}
dx ≤ 2t1∥ρu∥∞.

Thus, we have shown that∫ ∞

0

{
ρ(x, t1)− ρ(x, 0)

}
dx ≤ 2t1∥ρu∥∞ <∞,

and since we have assumed
∫∞
0 ρ(x, 0)dx = ∞ we get that∫ ∞

0
ρ(x, t1)dx = ∞, for almost all t1. (5.9)

Next, we want to use this to argue that y(x, t1) is proper and onto for almost all t1. Since

y(x, t1) =

∫ x

x(t1)
ρ(s, t1)ds

and ρ is bounded we have that y−1[a, b] is a compact set and thus y is proper for almost all
t1. Furthermore, since ρ is bounded, for each ỹ there will exist a x such that y(x, t) ≤ ỹ.
Thus, since y is a continuous function, and due to (5.9), there has to exist a x̃ such that
y(x̃, t) = ỹ. Hence y is onto. Since t is mapped to t in T (x, t), T will also be a proper and
onto map. Thus, by Theorem 2.15 τ is a Radon measure.

Before we are ready to state the new definition of weak solutions in Lagrange coordinates and
prove the equivalence between the weak solutions, we have to prove some relations between
τ , ρ and the Lebesgue measure, m2. We start by stating the following theorem.
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Theorem 5.5 ([31, Lemma 2]). T#ρ = m2.

To prove this theorem we will use the following lemma.

Lemma 5.6. Let U be an open subset of Rn and χU be the characteristic function. Further-
more, let µ be a Radon measure. Then there exists a sequence of continuous functions fk
such that fk → χU in µ, i.e., µ(|fk − χU |) < 1/k for all k ∈ N.

Proof. By the regularity properties of a Radon measure we have that for every open set
U there exists a sequence Fk of compact set such that µ(U \ Fk) < 1/k for all k ∈ N.
Furthermore, by Urysohn’s Lemma 2.12 for each Fk there exists a continuous function fk
that is equal to 1 on Fk and 0 on U c. We can write these functions as

fk =


1, on Fk,

gk, on U \ Fk,
0, on U c,

where gk is a continuous function. So, we get

µ
(
|fk − χU |

)
=

∫
Rn

|fk − χU |dµ =

∫
U\Fk

|gk|dµ ≤ ∥gk∥∞µ(U \ Fk) <
1

k
.

Hence, the lemma is proved.

Proof (Theorem 5.5). First, we observe that ρ is a Radon measure and, by the proof of
Theorem 5.4, T is proper and onto. Thus, by Theorem 2.15, T#ρ is a Radon measure. Let
ϕ be a test function. Using assertion (i) in Theorem 2.16 we get

T#ρ(ϕ) =

∫
ϕdT#ρ =

∫
ϕ ◦ Tρdxdt =

∫
ϕ ◦ T ∂y

∂x
dxdt.

The last equality is due to the definition of y in Equation (5.4). Furthermore, we use
Corollary 2.19 to conclude

T#ρ(ϕ) =

∫
ϕ ◦ T ∂y

∂x
dxdt =

∫
ϕN(T, y)dydt = m2(ϕ).

For the last equality to be true, we have to show that N(T, (y, t)) = 1 m2-a.e. We start by
defining

A =
{
(y, t) : N(T, (y, t)) > 1

}
and B = T−1(A) =

{
(x, t) : T (x, t) ∈ A

}
, i.e., if (x, t) ∈ B there exists an (x′, t) ∈ B such

that x ̸= x′ and T (x, t) = T (x′, t). However, since T (x, t) = T (x′, t) for almost all t is only
satisfied if ∂y/∂x(x, t) = ρ(x, t) = 0 for almost all t and almost all x < x < x′, for each t we
have

m2

(
B ∩

{∂y
∂x

̸= 0 or do not exists
})

= 0.

So, ∂y/∂x = 0 m2-a.e. on B. Furthermore, we have∫∫
A
N(T, (y, t))dydt =

∫∫
B

∂y

∂x
dxdt = 0.

From this equation we can conclude that N(T, (y, t)) = 0 a.e. on A and, by the definition
of A, this implies that m2(A) = 0. So, N(T, (y, t)) = 1 m2-a.e., and we have proved that
T#ρ(ϕ) = m2(ϕ) for all test functions ϕ. By the Lemma 5.6 the measures are equal on open
sets. Thus, by the regularity of a Radon measure, given in Definition 2.7, we have that
the measure of every subset A ⊂ R2 can be approximated by the measure of an open set.
Consequently, the measures are equal as Radon measures.
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Furthermore, since y(x1, t) = y(x2, t) for almost all t is only satisfied if ρ(x, t) = 0 for almost
all t and almost all x1 < x < x2, we can define ρ̃ τ -a.e. such that ρ̃(T (x, t)) = ρ(x, t).
By assertion (i) in Theorem 2.16 and that ρ = ρ̃ ◦ T is m2-measurable we have that ρ̃ is
τ = T#m2-measurable.

Lemma 5.7 (Adapted from [31, p. 128]). m2 is absolutely continuous with respect to τ , in
fact m2 = ρ̃τ .

Proof. We start by considering

ρ̃τ(ϕ) =

∫
ϕρ̃dτ =

∫
ϕρ̃dT#m2 =

∫
(ϕ ◦ T )(ρ̃ ◦ T )dm2 =

∫
ϕ ◦ Tdρ = T#ρ(ϕ) = m2(ϕ).

We have used that τ = T#m2, m2 = T#ρ and ρ = ρ̃ ◦ T , in addition to assertion (i) in
Theorem 2.16. So, by a similar argumentation as in the proof of Theorem 5.5 we get that
m2 = ρ̃τ . Consequently, m2 is absolutely continuous with respect to τ .

Due to the vacuum set, τ will not be absolutely continuous with respect to the Lebesgue
measure. However, we can use the Lebesgue’s Decomposition Theorem 2.8 to decompose τ
into an absolutely continuous part, τa.c., and a singular part, τs, with respect to the Lebesgue
measure. Since τs is singular with respect to Lebesgue measure, we can divide R× R+ into
Borel sets V and V c such that m2(V ) = τs(V

c) = 0. In fact, V is the vacuum set in Lagrange
coordinates. Furthermore, we denote the density of τa.c. with respect to m2 by τ̃ , i.e.,

τa.c.(A) =

∫
A
τ̃ dydt.

Lemma 5.8 (Adapted from [31, p. 128]). ρ̃τ̃ = 1 m2-a.e.

Proof. Let ϕ be a test function. Then consider∫∫
R×R+

ϕρ̃τ̃dydt =

∫∫
V c

ϕρ̃τ̃dydt =

∫∫
V c

ϕρ̃dτa.c. =

∫∫
V c

ϕρ̃dτa.c +

∫∫
V c

ϕρ̃dτs

=

∫∫
V c

ϕρ̃dτ =

∫∫
V c

ϕdydt =

∫∫
R×R+

ϕdydt,

where we have used that m2(V ) = τs(V
c) = 0, τ̃ is the density of τa.c. with respect to m2,

τ = τa.c + τs and ρ̃τ = m2. Since∫∫
R×R+

ϕρ̃τ̃dydt =

∫∫
R×R+

ϕdydt

for all ϕ, we have that ρ̃τ̃ = 1 m2-a.e.

Next, we state the new definition of a weak solution in Lagrange coordinates. We will later
illustrate the intuition behind the new definition. This definition is formulated by Wagner
in [31, Definition 2].

Definition 5.2. We say that (τ, u, S) is a weak solution of (5.2), if τ is a Radon measure on
R×R+, and u and S are bounded τ -measurable functions such that (5.2a) holds in the sense
of distributions, and the weak formulation of (5.2b) and (5.2c) holds with all test functions
ϕ with compact support such that ϕy = fτ , and ϕt = g, with f, g ∈ L∞(τ).
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From this definition we can observe that the density function in (5.2b) and (5.2c) will be
integrated with respect to gm2 and thus can be changed on a set of m2-measure zero. In
addition, from (5.2b) and (5.2c) we see that e only appears in a density and the value of
e can be changed on a set of m2-measure zero. Thus the value of e in the vacuum set is
irrelevant. Furthermore, by the assumption that p(ρ, S) = 0 as ρ = 0 and that S only occurs
as an argument of p or e, we can conclude that the value of S in the vacuum set is irrelevant
as well. Lastly, we can conclude that the value of u also is irrelevant in the vacuum set since
it either occurs as a part of a density function or multiplied by p and is bounded. From
these observations we have that u, D and F in (5.2) can all be changed in the vacuum set,
and thus be chosen to vanish in the vacuum set. So, similarly to ρ, we can define (ũ, D̃, F̃ )
τ -a.e. such that (ũ, D̃, F̃ )(T (x, t)) = (u,D, F ).

Theorem 5.9 ([31, Lemma 3]). τt − ũy = 0 in sense of distributions.

Proof. We let τ0 = T#m1. Since τ is a Radon measure and u ∈ L∞, τt − ũy = 0 in sense of
distributions is given by ∫∫

R×R+

ϕtdτ − ũϕydydt+

∫
R
ϕdτ0 = 0.

We start by considering∫∫
R×R+

ϕtdτ − ũϕydydt+

∫
R
ϕdτ0 =

∫∫
t>0

{ϕt − ϕyρ̃ũ}dτ +
∫
t=0

ϕdτ0

=

∫∫
R×R+

{ϕt ◦ T − ϕy ◦ Tρu}dxdt+
∫
R
ϕ ◦ Tdx

=

∫∫
R×R+

(ϕ ◦ T )xdxdt+
∫
R
ϕ ◦ Tdx.

T is a Lipschitz continuous function, so ϕ ◦ T is a test function, and thus∫∫
R×R+

(ϕ ◦ T )tdxdt+
∫
R
ϕ ◦ Tdx = 0

is the weak formulation of the trivial conservation law 1t+0x = 0. Hence, τt− ũy = 0 in the
sense of distributions.

Next, we want to prove that if we assume that τt− ũy = 0 in the sense of distributions, then
there exists a function Q ∈ BVloc with a unique Lipschitz left inverse T .

Lemma 5.10 (Adapted from [31, p. 129]). Let τ be a positive Radon measure which dom-
inates m2, i.e., there exists a constant k > 0 such that τ(E) ≥ km2(E) for all sets E, and
u ∈ L∞ which satisfies τt − ũy = 0 in sense of distributions. Then there exists a map x(y, t)
such that

∂x

∂y
= τ and

∂x

∂t
= u. (5.10)

In addition, x ∈ BVloc and for each t the map x is monotone increasing in y. Furthermore,
we can define a map Q such that Q(y, t) = (x(y, t), t). Then there exists a unique left inverse
T , i.e., T (Q(y, t)) = (y, t), which is Lipschitz.

Proof. By using convolution and Theorem 5.1 it can be proved that there exists an x such
that (5.10) is satisfied in the sense of distributions, see [1]. The function x ∈ L1

loc, and
xy is a Radon measure and xt ∈ L∞, thus, by Definition 2.23, x ∈ BVloc. Furthermore,
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since τ is a positive Radon measure x will be monotone increasing in y for each fixed t.
So, there will exist a unique left inverse y(x, t) = x. Next, we define the map Q such that
Q(y, t) = (x(y, t), t) and since t is map to t will Q have the same properties as x and we can
construct the unique left inverse T (x, t) = (y, t) such that T (Q(y, t)) = (y, t).

Furthermore, to show that T is a Lipschitz function we use a standard mollifier ωε and define
Qε(y, t) = (xε(y, t), t) where xε = x ∗ ωε. In addition, let τε = τ ∗ ωε and uε = u ∗ ωε. Since
τ(E) ≥ km2(E) for all E, the set of characteristic functions is dense in L1 and ωε ∈ L1, we
can conclude

τε =

∫
ωε(x− z, t− s)dτ(z, s) ≥

∫
ωε(x− z, t− s)kdzds = k.

By the Mean Value Theorem [22, Theorem 3.2] we have

|(xε)1 − (xε)2| = |xε(y1, t1)− xε(y2, t2)|

=
∣∣∣∂xε
∂y

(y0, t0)
∣∣∣|y1 − y2|+

∣∣∣∂xε
∂t

(y0, t0)
∣∣∣|t1 − t2| ≥ k|y1 − y2|,

where y1 ≤ y0 ≤ y2 and t1 ≤ t0 ≤ t2. Thus,∣∣T (x1, t1)− T (x2, t2)
∣∣ = |(y1, t1)− (y2, t2)| =

√
(y1 − y2)2 + (t1 − t2)2

≤
√
k2
(
(xε)1 − (xε)2

)2
+ (t1 − t2)2

≤ min{1, k}
∣∣((xε)1, t1)− ((xε)1, t1)

∣∣.
By property (iv) in Theorem 2.25, xε converges to x pointwise a.e. Thus, letting ε → 0 we
get

|T (x1, t1)− T (x2, t2)| ≤ C|(x1, t1)− (x2, t2)| a.e.

and we have shown that T is Lipschitz a.e.

To show the intuition behind the new definition of a weak solution in Lagrange coordinates,
we consider a test function ψ in Euler coordinates and see what happens when we transform
this to Lagrange coordinates. Let ϕ = ψ ◦ Q. To calculate the derivatives, ϕt and ϕy, we
have to use functional superposition, since Q is a discontinuous function. The functional
superposition is only defined on regular points, so we first have to show that m2-a.e. point
is regular. Let A be the set of irregular points of Q. Since Q ∈ BVloc and bounded, we
can use Theorem 2.28 to conclude that H1-a.e. point is a regular point, i.e., Hn−1(A) = 0.
Furthermore, by assertion (ii) and (iv) in Lemma 2.20, H1(A) = 0 will imply that m2 =
H2(A) = 0. So, almost every point with respect to the Lebesgue measure is a regular
point. Thus, the functional superposition is defined m2-a.e. and we can use Theorem 2.29
to calculate the partial derivative of ϕ. We get

ϕt = (ψ ◦Q)t = ψ̂t ◦Q+ ψ̂x ◦Qxt = ψ̂t ◦Q+ ψ̂x ◦Qu

and
ϕy = (ψ ◦Q)y = ψ̂x ◦Qxy = ψ̂x ◦Qτ.

By using the definition of functional superposition given in Definition 2.28 we have

|ψ̂x ◦Q| =
∣∣∣ ∫ 1

0
ψx

(
laQ(x, t)s+ l−aQ(x, t)(1− s)

)
ds
∣∣∣ ≤ ∥ψx∥∞ <∞.

The last inequality is due to ψ being a Lipschitz function and hence, by Theorem 5.2,

ψx ∈ L∞. Thus, ψ̂x ◦Q ∈ L∞ and by a similar argument ψ̂t ◦Q ∈ L∞. So, we get that ϕ

63



5.2. Vacuum Chapter 5. One-dimensional Euler and Lagrange equations

no longer is a Lipschitz continuous function, but rather a BV function that satisfies ϕt = g
and ϕy = fτ , where f, g ∈ L∞. Thus, in this illustrative example the test function will
satisfy the conditions imposed in Definition 5.2. These test functions will be discontinuous
in the vacuum set, which is reasonable, since in Lagrange coordinates, we can assume that
the values of the densities or fluxes vanishes in the vacuum set.

Lemma 5.11 ([31, Lemma 4]). If τ is a Radon measure on R×R+ such that τ(E) ≥ km2(E),
for all E ⊂ R×R+, u ∈ L∞(τ), ϕ is a function with compact support, and ϕy = fτ , ϕt = g,
where f, g ∈ L∞(τ), then there is at least one function ψ such that ψ is Lipschitz with
compact support, and ψ ◦Q = ϕ a.e.

Proof. To prove this lemma we use a standard mollifier ωε. We let Qε = Q ∗ωε, ϕε = ϕ ∗ωε,
xε = x∗ωε, τε = τ ∗ωε, uε = u∗ωε, fε = f ∗ωε, gε = g ∗ωε, (fτ)ε = (fτ)∗ωε and Tε = Q−1

ε .
Thus, we have ∂xε/∂y = τε, ∂xε/∂t = uε, ∂ϕε/∂y = (fτ)ε and ∂ϕε/∂t = gε. Furthermore,
we construct the sequence ψε = ϕε ◦ Tε. We now show that the partial derivatives of ψε is
bounded. By using the chain rule we obtain

∂ψε
∂x

=
∂ϕε
∂y

∂y

∂x
=

(fτ)ε
τε

and
∂ψε
∂t

=
∂ϕε
∂t

+
∂ϕε
∂y

∂y

∂x

∂xε
∂t

= gε +
(fτ)εuε
τε

.

Next, we observe that

|(fτ)ε(y0, t0)| =
∣∣∣ ∫∫ f(y, t)ωε(y0 − y, t0 − t)dτ(y, t)

∣∣∣
≤ ∥f(y, t)∥∞

∫∫
ωε(y0 − y, t0 − t)dτ(y, t) = ∥f∥∞|τε|,

and hence ∣∣∣(fτ)ε(y0, t0)
τε(y0, t0)

∣∣∣ ≤ ∥f∥∞ =⇒
∥∥∥(fτ)ε

τε

∥∥∥
∞

≤ ∥f∥∞.

Thus, we get ∥∥∥∂ψε
∂x

∥∥∥
∞

≤ ∥f∥∞
and ∥∥∥∂ψε

∂t

∥∥∥
∞

≤ ∥g∥∞ + ∥f∥∞∥u∥∞.

In the last equation we have used that ∥gε∥∞ ≤ ∥g∥∞, ∥uε∥∞ ≤ ∥u∥∞ and that

|(fτ)εuε| ≤ ∥f∥∞|τε||uε| =⇒
∥∥∥(fτ)εuε

τε

∥∥∥
∞

≤ ∥f∥∞∥u∥∞.

Next, we want to show that {ψε : ε > 0} is an equicontinuous family of functions. Let
x1 ≤ x0 ≤ x2 and t1 ≤ t0 ≤ t2. Then by using the Mean Value Theorem [22, Theorem 3.2]
we get

|ψε(x1, t1)− ψε(x2, t2)| =
∣∣∣∂ψε
∂x

(x0, t0)
∣∣∣|x1 − x2|+

∣∣∣∂ψε
∂t

(x0, t0)
∣∣∣|t1 − t2|

≤
∥∥∥∂ψε
∂x

∥∥∥
∞
|x1 − x2|+

∥∥∥∂ψε
∂t

∥∥∥
∞
|t1 − t2|

≤ ∥f∥∞|x1 − x2|+ (∥g∥∞ + ∥f∥∞∥u∥∞)|t1 − t2|
≤ C

(
|x1 − x2|+ |t1 − t2|

)
,
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where C = ∥f∥∞ + ∥g∥∞ + ∥f∥∞∥u∥∞ is independent of ε. Thus, by Definition 2.17 the
family of functions {ψε : ε > 0} is equicontinuous. Furthermore, consider

∥ψε∥∞ = ∥ϕε ◦ Tε∥∞ = sup
x,t

|ϕε(Tε(x, t))| ≤ sup
y,t

|ϕε(y, t)| = ∥ϕε∥∞ ≤ ∥ϕ∥∞,

and by Definition 2.16 {ψε : ε > 0} is uniformly bounded. Then all the conditions in Arzelà-
Ascoli Theorem 2.24 are satisfied and there exists a subsequence ψn that converges uniformly
to some function ψ on compact sets. Here we have defined n = 1/ε, so n→ ∞ when ε→ 0.
By Theorem 5.2 and the fact that both ψn and its partial derivatives are uniformly bounded,
the limit function ψ is a Lipschitz function. The support of ψn is uniformly bounded, since
supp(ψn) = supp(ϕn ◦Tn) ⊆ supp(ϕn) ⊆ supp(ϕ)+ supp(ωn) <∞, where we have used that
ϕ and ωn have compact support. Thus, ψ has compact support. The next step is to show
that ψ ◦ Q = ϕ, m2-a.e. Since ψn = ϕn ◦ Tn and Tn = Q−1

n we have that ψn ◦ Qn = ϕn.
Furthermore,

|ψn(Qn(y, t))− ψ(Q(y, t))| = |ψn(Qn(y, t))− ψn(Q(y, t)) + ψn(Q(y, t))− ψ(Q(y, t))|
≤ |ψn(Qn(y, t))− ψn(Q(y, t))|+ |ψn(x, t)− ψ(x, t)|
≤ C|Qn(y, t)−Q(y, t)|+ ε.

In the last inequality we have used that ψn is infinitely continuously differentiable and ψn
uniformly converges to ψ. Furthermore, by property (iv) in 2.25, Qn → Q pointwise a.e.
Thus, ψn ◦Qn → ψ ◦Q a.e. Similarly, ϕn converging to ϕ pointwise a.e., and we get

ϕ = lim
n→∞

ϕ = lim
n→∞

ψn ◦Qn = ψ ◦Q a.e.

Theorem 5.12 ([31, Lemma 5]). Let (D,F ) be a density-flux pair of (5.1b) or (5.1c)
from a weak solution of (5.1) wherein ρ, u and S are bounded. Suppose p(0, S) = 0 and
e(0, S) is finite for finite S. Then ũ, D̃, F̃ , satisfying (ũ, D̃, F̃ )

(
T (x, t)

)
= (u,D, F ), satisfy

(τD̃)t + (F̃ − ũD̃)y = 0 in the sense of Definition 5.2.

Proof. We start by calculating (ψ ◦ Q)y and (ψ ◦ Q)t. Since Q ∈ BVloc and discontinuous,
we use Theorem 2.29. We get

(ψ ◦Q)y = ̂(ψx ◦Q)
∂x

∂y
= ̂(ψx ◦Q)τ

and

(ψ ◦Q)t = ̂(ψt ◦Q) + ̂(ψx ◦Q)
∂x

∂t
= ̂(ψt ◦Q) + ̂(ψx ◦Q)ũ.

Here ̂(ψt ◦Q) denote the functional superposition of ψt ◦ Q given in Definition 2.28. Let ϕ
be a test function that satisfies ϕy = fτ and ϕt = g. From Lemma 5.11 there exists a ψ such
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that ϕ = ψ ◦Q a.e. Using this we get∫∫
R×R+

D̃ϕtdτ +

∫∫
R×R+

(F̃ − ũD̃)ϕydydt+

∫
R
D̃0ϕ0dτ0

=

∫∫
R×R+

D̃(ψ ◦Q)tdτ +

∫∫
R×R+

(F̃ − ũD̃)(ψ ◦Q)ydydt

+

∫
R
D̃0(ψ0 ◦Q)dτ0

=

∫∫
R×R+

D̃
[ ̂(ψt ◦Q) + ̂(ψx ◦Q)ũ

]
+ (F̃ − ũD̃) ̂(ψx ◦Q)dτ (5.11)

+

∫
R
D̃0(ψ0 ◦Q)dτ0

=

∫∫
R×R+

D̃ ̂(ψt ◦Q) + F̃ ̂(ψx ◦Q)dτ +

∫
R
D̃0(ψ0 ◦Q)dτ0

=

∫∫
R×R+

D ̂(ψt ◦Q) ◦ T + F ̂(ψx ◦Q) ◦ Tdxdt+
∫
R
D0(ψ0 ◦Q) ◦ Tdx.

In the last equality we have used assertion (i) in Theorem 2.16. Moreover, we have to prove

that D ̂(ψt ◦Q) ◦ T = Dψt and F ̂(ψx ◦Q) ◦ T = Fψx m2-a.e., and D0(ψ0 ◦ Q) ◦ T = D0ψ0

m1-a.e.

First, we recall that p(0, S) = 0, e(0, S) is finite for finite S and u ∈ L∞. Thus for D,F in
(5.1b) and (5.1c) we have ρ = 0 implies D = F = 0. Since both ψt and ψx are bounded, we
get that equality holds.

Next, we show that the equality D ̂(ψt ◦Q) ◦ T = Dψt holds m2-a.e. also in the case when

ρ ̸= 0. The proof that F ̂(ψx ◦Q) ◦ T = Fψx holds m2-a.e. is equivalent. We start by
observing that since Q is a m2-measurable function, by Theorem 2.27, Q is approximately

continuous m2-a.e. Thus, by [30, Eq. (5.3) p. 246] ̂(ψt ◦Q) = (ψt ◦ Q) m2-a.e. Let E be

the set where ̂(ψt ◦Q) ̸= (ψt ◦ Q), so m2(E) = 0 Furthermore, if we use that m2 = ρ̃τ and
assertion (i) in Theorem 2.16 we get

0 = m2(E) =

∫
E
dm2 =

∫
E
ρ̃dτ =

∫
T−1(E)

ρ̃ ◦ Tdxdt =
∫
T−1(E)

ρdxdt.

Thus, ̂(ψt ◦Q) = (ψt ◦ Q) ρ-a.e. To continue the proof, we use mollifiers. Again, let Qε =
Q ∗ ωε and let Tε = Q−1

ε . At the points of approximate continuity of Q, there exists a
subsequence Qn that converges to Q. We have again defined n = 1/ε, such that n → ∞
as ε → 0. To conclude that there exists a subsequence of {Tn} that converges uniformly to
some function T on compacts we show that {Tn} is uniformly Lipschitz and use Arzelà-Ascoli
Theorem 2.24. Since Tn is defined as Tn = Q−1

n = (x−1
n (x, t), t), let yn(x, t) = x−1

n (x, t) and
consider

∂yn
∂x

=
1
∂xn
∂y

=
1

τn
and

∂yn
∂t

=
∂yn
∂x

∂x

∂t
=
un
τn
.

Furthermore, we use that τ dominates m2, i.e., τ(E) ≥ km2(E) for all E ⊂ R × R+, to
bound 1/τn. From the proof of Lemma 5.10 we have τn ≥ k. So, we get∥∥∥∂yn

∂x

∥∥∥
∞

≤ 1

k
,

and ∥∥∥∂yn
∂t

∥∥∥
∞

≤ ∥u∥∞
k

.
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Thus, by using the Mean Value Theorem [22, Theorem 3.2] we obtain

|Tn(x1, t1)− Tn(x2, t2)| ≤
∣∣∣∂yn
∂x

(x0, t0)
∣∣∣|x1 − x2|+

(∣∣∣∂yn
∂t

(x0, t0)
∣∣∣+ 1

)
|t1 − t2|

≤ 1

k
|x1 − x2|+

(∥u∥∞
k

+ 1
)
|t1 − t2| ≤ C|(x1, t1)− (x2, t2)|,

where C is independent of n and hence {Tn} is uniformly Lipschitz with Lipschitz constant
LT . By a similar argument as in the proof of Lemma 5.11 we can use the Arzelà-Ascoli The-
orem 2.24 to conclude that there exists a subsequence that converges uniformly on compacts
to some Lipschitz function T̃ . Furthermore, we want to show that this limit function in fact
is the left inverse of Q. We start by considering

|T̃ (Q(y, t))− (y, t)| ≤ |T̃ (Q(y, t))− Tn(Q(y, t))|+ |Tn(Q(y, t))− Tn(Qn(y, t))|
≤ |T̃ (x, t)− Tn(x, t)|+ LT |Q(y, t)−Qn(y, t)|
< ε+ LT |Q(y, t)−Qn(y, t)|,

since Tn → T̃ uniformly on compacts. Furthermore, by property (iv) in Theorem 2.25,
Qn(X) → Q(X) a.e. Using this we conclude that T̃ (Q(y, t)) = (y, t) a.e. and thus T̃ is the
left inverse of Q a.e. and by the uniqueness of inverse will T̃ be the left inverse T introduced
in Lemma 5.10.

Furthermore, let T (x0, t0) = (y0, t0) be a point of approximate continuity of Q. We wish to
show that Q ◦ T (x0, t0) = (x0, t0). We start by considering

|Qn(Tn(x0, t0))−Q(T (x0, t0))| =
∣∣∣ ∫∫

R×R+

Q(y, t)ωn
(
Tn(x0, t0)− (y, t)

)
dydt−Q(y0, t0)

∣∣∣
=

∣∣∣ ∫∫
R×R+

[
Q(y, t)−Q(y0, t0)

]
ωn

(
Tn(x0, t0)− (y, t)

)
dydt

∣∣∣
≤

∫∫
R×R+

∣∣Q(y, t)−Q(y0, t0)
∣∣ωn(Tn(x0, t0)− (y, t)

)
dydt

(5.12)

where we have used that
∫∫

ωndydt = 1. By Definition 2.25 we have that lQ(y0, t0) is the
approximate limit if for every δ1 > 0 it satisfies

lim
r→0

m2

(
{(y, t) ∈ R× R+ : |Q(y, t)− lQ(y0, t0)| > δ1} ∩ Br(x)

)
m2(Br(x))

= 0.

Let r = 1/n. Then the above limit implies

lim
n→∞

n2

π
m2

(
{(y, t) ∈ R× R+ : |Q(y, t)− lQ(y0, t0)| > δ1, |(y0 − y, t0 − t)| < 1/n}

)
= 0,

where we have used that m2(Br(x)) = πr2. Since (y0, t0) is a point of approximate continuity
ofQ we have lQ(y0, t0) = Q(y0, t0). Now, letR be small such that for all n satisfying 1/n < R,
we get can rewrite the above limit as

m2

(
{(y, t) ∈ R× R+ : |Q(y, t)−Q(y0, t0)| > δ1, |(y0 − y, t0 − t)| < 1/n}

)
< δ2

π

n2
. (5.13)

Furthermore, choose n large such that

|Tn(x0, t0)− (y0, t0)| < R/2 and supp(ωn) ⊂ {(y, t) : |(y, t)| < R/2}. (5.14)
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We again consider (5.12), and divide the integration domain into two sets given by A =
{(y, t) : |Q(y, t)−Q(y0, t0| > δ1} and Ac = {(y, t) : |Q(y, t)−Q(y0, t0| ≤ δ1},

|Qn(Tn(x0, t0))−Q(T (x0, t0))| ≤
∫∫

A

∣∣Q(y, t)−Q(y0, t0)
∣∣ωn(Tn(x0, t0)− (y, t)

)
dydt

+

∫∫
Ac

∣∣Q(y, t)−Q(y0, t0)
∣∣ωn(Tn(x0, t0)− (y, t)

)
dydt

≤ ∥Q(y, t)−Q(y0, t0)∥∞,BR(y0,t0)∥ωn∥∞
∫∫

A
dydt

+ δ1

∫∫
Ac

ωn(
(
Tn(x0, t0)− (y, t)

)
dydt.

By using (5.13), (5.14) and that
∫∫

R×R+ ωndydt = 1 we get

|Qn(Tn(x0, t0))−Q(T (x0, t0))| ≤ ∥Q(y, t)−Q(y0, t0)∥∞,BR(y0,t0)δ2∥ωn∥∞/n2 + δ1.

To conclude, the proof that Q(T (x0, t0)) = (x0, t0), we show that ∥ωn∥∞/n2 is bounded
independent of n. In fact,

∥ωn∥∞/n2 = ∥ωn2∥∞/n2 = ∥ω∥∞,
since ωn is defined by ωn = n2ω(ny, nt). In addition, by Definition 2.18, 0 ≤ ω ≤ 1,
hence ∥ω∥∞ ≤ 1 and ∥ωn∥∞/n2 is bounded independent of n. Thus, we are free to choose
δ1 and δ2 arbitrary small and we get that Q(T (x0, t0)) = (x0, t0) ρ-a.e. Then, we have

shown that D ̂(ψt ◦Q) ◦ T = D(ψt ◦ Q) ◦ T = Dψt ρ-a.e. Since ρ = 0 implies D = 0 will

D ̂(ψt ◦Q) ◦ T = Dψt hold m2-a.e.

Next, we want to prove that D0(ψ0 ◦Q)◦T = D0ψ0 m1-a.e. First, we observe that Q(y, 0) =
x(y, 0) is monotone. Thus, x(y, 0) is discontinuous for at most a countable number of points
and is a measurable function. So, by Theorem 2.27 x(y, 0) is approximate continuous a.e.
and we have that

m1

(
{y ∈ R : |x(y, 0)− x(y0, 0)| > δ1, |y − y0| < 1/n}

)
≤ δ22/n. (5.15)

Let Qn and Tn be define as above and let T (x0, 0) = (y0, 0) be a point of approximate
continuity. Furthermore, we consider

|Qn(Tn(x0, 0))−Q(T (x0, 0))| =
∣∣∣ ∫ (

x(y, 0)− x(y0, 0)
)
ωn

(
Tn(x0, 0)− (y, 0)

)
dy

∣∣∣
≤

∫ ∣∣x(y, 0)− x(y0, 0)
∣∣ωn(Tn(x0, 0)− (y, 0)

)
dy

≤ δ2∥x(y, 0)− x(y0, 0)∥∞,BR(y0)∥ωn∥∞2/n+ δ1.

The last inequality is due to Equation (5.15) and a similar argument as above. Thus, we
can again choose δ1 and δ2 arbitrary small and we get that Q(T (x0, 0)) = x0 ρ0-a.e. Since
ρ0 = 0 implies that D0 = 0 we have that the equality holds m1-a.e. and we get that
D0(ψ0 ◦Q) ◦ T = D0ψ0 m1-a.e.

Now, returning to Equation (5.11) we have∫∫
R×R+

D̃ϕtdτ +

∫∫
R×R+

(F̃ − ũD̃)ϕydydt+

∫
R
D̃0ϕ0dτ0

=

∫∫
R×R+

D ̂(ψt ◦Q) ◦ T + F ̂(ψx ◦Q) ◦ Tdxdt+
∫
R
D0(ψ0 ◦Q) ◦ Tdx

=

∫∫
R×R+

Dψt + Fψxdxdt+

∫
R
D0ψ0dx = 0.
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The last equality is due to the assumption that (D,F ) is a density-flux pair of (5.1b) or
(5.1c) from a weak solution of (5.1).

So, we have now proved that ũ, D̃, F̃ satisfy

(τD̃)t + (F̃ − ũD̃)y = 0 (5.16)

in the sense of Definition 5.2. First, let D = ρu and F = ρu2 + p. Then, if we insert this in
(5.16) and rewrite, we get

ũt + p̃y = 0,

which is conservation of momentum in Lagrange coordinates. Furthermore, if we let D =
ρe+ ρu2/2 and F = u(ρe+ ρu2/2 + p) and rewrite (5.16) we get(

ẽ+
ũ2

2

)
t
+ (ũp̃)y = 0.

This is conservation of energy in Euler coordinates. Thus, with the new definition for weak
solutions in Lagrange coordinates, the Euler equations will still imply the Lagrange equations.

5.2.2 The Lagrange formulation implies the Euler formulation

Next, we want to show that the reverse implication also holds true. Let (τ, u, S) satisfy (5.2)
in the sense of Definition 5.2 and τ dominate m2. From Lemma 5.10 there exists a function
Q(y, t) = (x(y, t), t) satisfying

∂x

∂y
= τ and

∂x

∂t
= u,

with the unique monotone left inverse T , i.e., T (Q(y, t)) = (y, t). T is Lipschitz continuous
with respect to τ . By the uniqueness of inverse, T will be the function defined by (5.4).
Furthermore, let ρ = Q#m2.

Since we have assumed that τ dominates m2, we have that m2 is absolutely continuous with
respect to τ . Let ρ̃ be the density of m2 with respect to τ and τ̃ the density of τa.c. with
respect to m2. Then, we can show that ρ̃τ̃ = 1 m2-a.e. Let ϕ be a test function and consider∫∫

R×R+

ϕρ̃τ̃dydt =

∫∫
V c

ϕρ̃τ̃dydt =

∫∫
V c

ϕρ̃dτa.c. +

∫∫
V c

ϕρ̃dτs =

∫∫
V c

ϕρ̃dτ

=

∫∫
V c

ϕdydt =

∫∫
R×R+

ϕdydt,

(5.17)

where we have used that m2(V ) = τs(V
c) = 0. Since this holds true for all ϕ we have that

ρ̃τ̃ = 1 m2-a.e.

Lemma 5.13 ([31, Lemma 6]). ρ = ∂y
∂x = ρ̃ ◦ T .

Proof. We first observe that

T#Q#m2(E) = Q#m2

(
T−1(E)

)
= m2

(
Q−1(T−1(E)

)
,

and that

Q−1
(
T−1(E)

)
= Q−1

(
{(x, t) ∈ R× R+ : T (x, t) ∈ E}

)
=

{
(y, t) ∈ R× R+ : Q(y, t) ∈ {(x, t) ∈ R× R+ : T (x, t) ∈ E}

}
=

{
(y, t) ∈ R× R+ : T (Q(y, t)) ∈ E

}
=

{
(y, t) ∈ R× R+ : (y, t) ∈ E

}
= E,

(5.18)
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where we have used that T is the left inverse of Q. Thus, we have T#ρ = T#Q#m2 = m2.
Let ϕ be any test function, then∫∫

R×R+

ϕdT#

(∂y
∂x

)
=

∫∫
R×R+

ϕ ◦ T ∂y
∂x
dxdt =

∫∫
R×R+

ϕ(y, t)N(T, (y, t))dydt,

where the first equality is due to assertion (i) in Theorem 2.16 and the second equality is
due to Corollary 2.19. From the proof of Theorem 5.5 we have that N(T, y) = 1 m2-a.e.
So, we have proved that T#∂y/∂x = m2 on test functions, and by a similar argumentation
as in Theorem 5.5, T#∂y/∂x = m2 = T#ρ as measures. Using Definition 2.11, we get that
∂y/∂x(T−1(E)) = ρ(T−1(E)), hence ∂y/∂x = ρ = ρ̃ ◦ T for all F on the form T−1(E).
Now, let F be any other set and (x, t) ∈ T−1(T (F )) \ F , then there exists x′ ̸= x such that
T (x′, t) = T (x, t). Thus, x ∈ B and consequently T−1(T (F )) ⊆ B. Using this and that
∂y/∂x(B) = 0, we have

∂y

∂x

(
T−1

(
T (F )

)
\ F

)
≤ ∂y

∂x

(
B
)

=⇒ ∂y

∂x

(
T−1

(
T (F )

))
≤ ∂y

∂x

(
F
)
.

Furthermore, T−1(T (F )) =
{
(x, t) : T (x, t) ∈ T (F )

}
and for (x, t) ∈ F we have T (x, t) ∈

T (F ). Thus, F ⊆ T−1(T (F )) and we can conclude that

∂y

∂x

(
F
)
=
∂y

∂x

(
T−1

(
T (F )

))
.

Furthermore, using that ρ(F ) = Q#m2(F ) = m2(Q
−1(F )) and Q−1

(
T−1(F )

)
= F we have

ρ
(
T−1(T (F ))

)
= m2

(
Q−1(T−1(T (F )))

)
= m2

(
T (F )

)
.

Next, we want to show that T (F ) \A ⊆ Q−1(F ) ⊆ T (F ). We have that

T (F ) =
{
(y, t) : ∃(x, t) ∈ F s.t. T (x, t) = (y, t)},

Q−1(F ) =
{
(y, t) : Q(y, t) ∈ F

}
, and

T (F ) \A =
{
(y, t) : ∃(x, t) ∈ F s.t. T (x, t) = (y, t), ∄x′ s.t. x′ ̸= x and T (x, t) = T (x′, t)

}
.

If (y, t) ∈ Q−1(F ) we have that there exists (x, t) = Q(y, t) ∈ F such that T (x, t) =
T (Q(y, t)) = (y, t), since T is the left inverse of Q. Thus, (y, t) ∈ T (F ) and Q−1(F ) ⊆ T (F ).
Furthermore, if we let (y, t) ∈ T (F )\A, we have that there exists a unique (x, t) ∈ F such that
T (x, t) = (y, t). Thus, Q(y, t) = (x, t) and T (Q(y, t)) = (y, t) and we have (y, t) ∈ Q−1(F ).
Hence T (F )\A ⊆ Q−1(F ). So, we have T (F )\A ⊆ Q−1(F ) ⊂ T (F ) and consequently, since
m2(A) = 0, we have m2(T (F )) = m2(Q

−1(F )). Hence, we have

ρ
(
T−1(T (F ))

)
= m2

(
T (F )

)
= m2

(
Q−1(F )

)
= ρ(F ).

We can conclude that ρ(F ) = ρ
(
T−1(T (F ))

)
= ∂y/∂x

(
T−1(T (F ))

)
= ∂y/∂x(F ). Thus,

ρ = ∂y/∂x = ρ̃ ◦ T are equal as Radon measures.

Lemma 5.14 ([31, Lemma 7]). τ = T#m2.

Proof. Since T is onto and proper and m2 is a Radon measure, T#m2 is a Radon measure.
For any test function ϕ we have

T#m2(ϕ) =

∫∫
R×R+

ϕdT#m2 =

∫∫
R×R+

ϕ ◦ Tdxdt =
∫∫

R×R+

ϕ ◦ T 1

∂y/∂x
∂y/∂xdxdt

=

∫∫
R×R+

ϕ ◦ T 1

ρ̃ ◦ T ∂y/∂xdxdt =
∫∫

R×R+

ϕ
1

ρ̃
dydt

=

∫∫
R×R+

ϕτ̃dydt = τ(ϕ),
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where we have used Theorem 2.16, Corollary 2.19, Lemma 5.13 and that ρ̃τ̃ = 1 m2-a.e. In
addition, the last equality is due to a similar argument as in (5.17). Furthermore, by a similar
argument as in Theorem 5.5 we get that T#m2 and τ are equal as Radon measures.

Next, we want to show that (5.1a) holds in the sense of distributions. Here, u is the velocity
in Euler coordinates, and will satisfy u(x, t) = ũ(T (x, t)). In addition, addition ρ is the mass
density, satisfying ρ = Q#m2.

Theorem 5.15. ρt + (ρu)x = 0 in the sense of a distribution.

Proof. Let ρ0 = Q#m1. We start by considering∫∫
R×R+

ψt + ψxudρ+

∫
R
ψdρ0 =

∫∫
R×R+

ψt ◦Q+ ψx ◦Qũdydt+
∫
R
ψ ◦Qdy

=

∫∫
R×R+

(ψ ◦Q)tdydt+

∫
R
ψ ◦Qdy

=

∫∫
R×R+

ϕtdydt+

∫
R
ϕdy.

We have used that (ψ ◦ Q)t = (ψt ◦ Q) + (ψx ◦ Q)xt = ψt ◦ Q + (ψx ◦ Q)ũ at each point
of approximate continuity of Q, i.e., almost everywhere. Furthermore, we let ϕ = ψ ◦ Q.

From previous calculations, see page 63, we have that ϕt = (ψ̂t ◦Q) + (ψ̂x ◦Q)ũ and ϕy =

(ψ̂x ◦Q)τ , where ψ̂x ◦Q, ψ̂t ◦Q ∈ L∞. Thus, ϕ is a discontinuous test function that satisfies
ϕt = g and ϕy = fτ , for given f, g ∈ L∞ and∫∫

R×R+

ϕtdydt+

∫
R
ϕdy = 0

is the weak formulation of the trivial balance law 1t + 0y = 0. So, we have proved that
ρt + (ρu)x = 0 in the sense of a distribution.

Lastly, we show that given a density-flux pair, D̃, F̃ , satisfying (5.2b) or (5.2c) in the sense
of Definition 5.2, the density-flux pair D,F satisfying (D,F )(x, t) = (D̃, F̃ )(T (x, t)), will
satisfy (5.1) in the weak sense.

Theorem 5.16 (Adapted from [31, p. 134]). Let (D,F ) be a density-flux pair of (5.2b) or
(5.2c) from a weak solution of (5.2) in the sense of Definition 5.2, wherein τ , u and S are
bounded. Then (u,D, F )(x, t) = (ũ, D̃, F̃ )(T (x, t)), satisfy (ρD)t + (F + ρuD)x = 0 weakly.

Proof. Let ψ be a test function. The goal is to show that for a density-flux pair D, F the
following equation, holds true∫∫

R×R+

(ψtD + ψxuD)dρ+

∫∫
R×R+

ψxFdxdt+

∫
R
ψD0dρ0 = 0 ∀ψ ∈W 1,∞

c (R× R+).

To conclude this, we start by dividing the left-hand side of the equation into two, one
considering the density function D and one considering the flux function F . First, let us
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consider D.∫∫
R×R+

(ψtD + ψxuD)dρ+

∫
R
ψD0dρ0 =

∫∫
R×R+

(ψtD + ψxuD)dQ#m2 +

∫
R
ψD0dQ#m1

=

∫∫
R×R+

{
(ψt ◦Q)D̃ + (ψx ◦Q)ũD̃

}
dydt

+

∫
R
(ψ ◦Q)D̃0dy

(5.19)

=

∫∫
R×R+

(ψ ◦Q)tD̃dydt+

∫
R
(ψ ◦Q)D̃0dy,

where we have used assertion (i) in Theorem 2.16, and that (u,D)◦Q = (ũ, D̃)◦T◦Q = (ũ, D̃),
since T is the left inverse of Q. In addition, we used that (ψ ◦Q)t = (ψt ◦Q) + (ψx ◦Q)xt =
(ψt ◦Q)+ (ψx ◦Q)ũ at a point of approximate continuity of Q, i.e., a.e. Next, we consider F∫∫

R×R+

ψxFdxdt =

∫∫
R×R+

ψx(F̃ ◦ T )dxdt =
∫∫

R×R+

(F̃ ◦ T )dψx =

∫∫
R×R+

F̃ dT#ψx.

To evaluate T#ψx, we choose a smooth function σ with compact support

T#ψx(σ) =

∫∫
R×R+

σdT#ψx =

∫∫
R×R+

(σ ◦ T )ψxdxdt = −
∫∫

R×R+

(σ ◦ T )xψdxdt

= −
∫∫

R×R+

(σy ◦ T )ψd∂y/∂x = −
∫∫

R×R+

(σy ◦ T )ψdρ

= −
∫∫

R×R+

(σy ◦ T )ψdQ#m2 = −
∫∫

R×R+

(σy ◦ T ◦Q)(ψ ◦Q)dydt

= −
∫∫

R×R+

σy(ψ ◦Q)dydt =

∫∫
R×R+

σd(ψ ◦Q)y = (ψ ◦Q)y(σ),

where we have done integration by parts, used that T ◦Q is the identity map and assertion
(i) in Theorem 2.16. Thus, by a similar argument as in Theorem 5.5, T#ψx and (ψ ◦Q)y are
equal as signed Radon measures, and we have∫∫

R×R+

ϕxFdxdt =

∫∫
R×R+

F̃ (ϕ ◦Q)ydydt. (5.20)

If we combine (5.19) and (5.20) we get∫∫
R×R+

(ψtD + ψxuD)dρ+ ψxFdxdt+

∫
R
ψD0dρ0 =

∫∫
R×R+

ϕtD̃ + F̃ ϕydydt+

∫
R
ϕD̃0dy,

where ϕ = ψ ◦ Q. From the proof of Theorem 5.15 we have that ϕ is a discontinuous test
function satisfying ϕt = g and ϕy = fτ , for given f, g ∈ L∞. Thus,∫∫

R×R+

ϕtD̃ + F̃ ϕydydt+

∫
R
ϕD̃0dy = 0

is the weak formulation of D̃t + F̃y = 0 in the sense of Definition 5.2 and consequently∫∫
R×R+

(ψtD + ψxuD)dρ+

∫∫
R×R+

ψxFdxdt+

∫
R
ψD0dρ0 = 0.

So, we have proved that (ρD)t + (F + ρuD)x = 0 weakly.
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We can use this theorem to show that a weak solution of the conservation of momentum or
energy in Lagrange coordinates also is a weak solution in Euler coordinates. First, let D̃ = ũ
and F̃ = p̃. We then get

(ρu)t + (p+ ρu2)x = 0,

which is the conservation of momentum in Euler coordinates. Furthermore, if we let D̃ =
ẽ+ ũ2/2 and F̃ = ũp̃, we get the conservation of Euler coordinates given by

(ρe+ ρu2/2)t + (up+ ρue+ ρu3/2)x = 0.

Thus in this chapter we have shown that, with a strengthen definition of the weak solutions
in Lagrange coordinates the weak solutions of Euler and Lagrange equations are equivalent.
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Chapter 6

Conclusion and future research

The main goal of this master thesis was to increase the understanding of the proofs of
equivalence between spatial and referential formulations of a balance law. This has been
achieved through first proving that a general formulation of a balance law is preserved under
a bi-Lipschitz change of coordinates. Furthermore, this was used to show that the weak
solutions of the one-dimensional Euler and Lagrange equations are equivalent, but only
when we assume the solutions to be without vacuum. Furthermore, we showed that if we
allow for vacuum, the equivalence still holds true, given a strengthened definition of the
weak solutions in Lagrange coordinates. This definition imposes that the test functions in
Lagrange coordinates are discontinuous in the vacuum set.

Thus, in this master thesis we have shown the equivalence between weak solutions of balance
laws in different coordinate systems. However, a weak solution is not unique. In fact, some
of the weak solutions may be nonphysical solutions. To remedy this, one should include an
entropy condition to ensure that the weak solutions are physically relevant, and hopefully
unique. Let us consider the following conservation law

(U(x, t))t + divxF (U(x, t)) = 0, (6.1)

where x ∈ Rn and U : Rn × R+ → Rm. To formulate an entropy condition for this system
we often introduce an entropy density η(U) and an associated entropy flux q(U) such that

(∇q)i = ∇ηJFi, i = 1, . . . , n, (6.2)

where JF is the Jacobi matrix of F and JFi is the column vectors. We say that a solution
of (6.1) is a weak entropy condition if it satisfies

ηt + divxq ≤ 0, (6.3)

in the sense of distributions. The existence of an entropy density η with an associated entropy
flux q is dependent on the following condition

∇2ηJFi = JFi∇2η i = 1, . . . , n. (6.4)

For m = 1 this is trivially satisfied and for m = 2 and n = 1 the equation will reduce to a
scalar, linear, second-order partial differential equation [16, Section 6.4]. However, for the
remaining cases the function η is over-determined and we are not guaranteed that such a
function exists, since Equation (6.4) imposes 1

2m(m − 1)n conditions on η [8, Section 3.2].
Though, for some cases we still can find entropy densities. For instance, if (6.1) is symmetric,
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i.e., JF⊤ = JF , then η(U) = 1
2 |U |2 satisfies (6.4) in a non-trivial matter [16, Section 6.4]. All

the hyperbolic conservation laws derived from continuum physics will be symmetrizable, and
thus attain an entropy/entropy flux pair [16, Section 6.4]. So, for the Euler equations there
exists an entropy condition. In [17] Harten et al. derive a family of entropy conditions for the
Euler equations for ρ > 0, i.e., for solutions with no vacuum. Thus, it would be interesting to
investigate if these are entropy conditions even when the solutions include a vacuum set. If
we are given an entropy/entropy flux pair η, q satisfying (6.2), we could show that the weak
formulation of (6.3) in Euler coordinates imply a weak formulation of an entropy condition
in Lagrange coordinate, and vice versa, by a similar proof as in Theorems 5.12 and 5.16.
Furthermore, in the multidimensional case we can see from the proof of Theorem 4.3 that
an entropy condition like (6.3) will be preserved under a bi-Lipschitz change of coordinates.
Thus, an interesting topic for future work, would be to research possible entropy conditions
for general balance laws, since most of the developed theory is for specific systems [29].
However, recent research show that for a system of balance laws, the entropy condition will
not guarantee uniqueness as first expected [29].

An additional proposition for further research is to see if there is a possibility to prove that
the field equation of a general balance law is preserved under a different transformation,
for instance a BV transformation. This would connect the theory for multidimensional
balance laws with the theory for the one-dimensional Euler and Lagrange equations for weak
solutions with vacuum. It would be interesting to see if there is a possibility to generalize the
result from the Euler equations, or if the proof of equivalence under a BV transformation is
dependent on the specific balance laws.
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Appendix A

Equivalence between Euler and
Lagrange equations using Theorem
4.3

This appendix includes the calculations done to show the equivalence between the weak
solutions of the Euler and the Lagrange equations using Theorem 4.3. We start by considering
the Euler equations given by

ρt + (ρu)x = 0, (A.1a)

(ρu)t + (ρu2 + p(ρ, S))x = 0, (A.1b)(
ρe(ρ, S) +

ρu2

2

)
t

+

(
u

(
ρe(ρ, S) +

ρu2

2
+ p(ρ, S)

))
x

= 0, (A.1c)

and the transformation T (x, t) = (y, t) with the following Jacobian matrix

JT =

[ ∂t
∂t

∂t
∂x

∂y
∂t

∂y
∂x

]
=

[
1 0

−ρu ρ

]
,

with det JT = ρ. For the conservation laws in (A.1) the production measure P is zero. Thus,
to obtain the Lagrange equations we use Theorem 4.3 to conclude that if

divA = 0

in the sense of distributions, then A∗ ◦ T = (det J)−1AJ⊤ satisfies

divA∗ = 0.

For (A.1a) we have A = [ρ, ρu] and thus

A∗ ◦ T =
1

ρ

[
ρ ρu

] [1 −ρu
0 ρ

]
=

[
1 0

]
,

which is the trivial partial differential equation 1t+0y = 0. Next, we consider (A.1b), where
A = [ρu, ρu2 + p] and we get

A∗ ◦ T =
1

ρ

[
ρu ρu2 + p

] [1 −ρu
0 ρ

]
=

[
u −ρu2 + ρu2 + p

]
=

[
u p

]
.
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This implies that the partial differential equation ũt + p̃(τ, S̃)y = 0 holds in the sense of
distributions. Furthermore, for (A.1c) A = [ρe+ ρu2/2, u(ρe+ ρu2/2 + p)] and we get

A∗ ◦ T =
1

ρ

[
ρe+ ρu2

2 u(ρe+ ρu2

2 + p)
] [1 −ρu

0 ρ

]
=

[
e+ u2

2 −uρe− ρu3

2 + uρe+ ρu3

2 + up
]
=

[
e+ u2

2 up
]
.

Thus, we have that (ẽ(τ, S̃)+ ũ2

2 )t+(ũp̃(τ, S̃))y = 0 holds in the sense of distributions. Lastly,
we consider the trivial partial differential equation 1t + 0x = 0, with A = [1, 0] and thus

A ∗ ◦T =
1

ρ

[
1 0

] [1 −ρu
0 ρ

]
=

[
1
ρ −u

]
,

which implies that τt− ũy = 0 holds in the sense of distributions. Thus, we have shown that
the Euler equations holds in the sense of distributions implies that the following equations
hold in the sense of distributions

τt − ũy = 0, (A.2a)

ũt + p̃(τ, S̃)y = 0, (A.2b)(
ẽ(τ, S̃) +

ũ2

2

)
t

+ (ũp̃(τ, S̃))y = 0. (A.2c)

This is the Lagrange equations. To obtain the opposite implication we start out by assuming
that (A.2) holds in the sense of distributions and use the transformation Q(y, t) = (x, t) with
the Jacobian matrix

JQ =

[
∂t
∂t

∂t
∂y

∂x
∂t

∂x
∂y

]
=

[
1 0
u τ

]
,

with determinate det JQ = τ . By a similar calculation as above we can show that (A.2a)
implies that 1t+0x = 0 holds in the sense of distributions, (A.2b) implies that (A.1b) holds
in the sense of distributions and (A.2c) implies that (A.1c) holds in the sense of distributions.
Lastly, 1t + 0y = 0 implies that (A.1a) holds in the sense of distributions.
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