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Abstract

Equipped with a host of sensors, modern public transport fleets generate a wealth of
data, like Automatic Vehicle Location (AVL) and Automatic Passenger Counts (APC),
although errors in this automatically collected data presents a challenge. The collabo-
rative APT-R project seeks to realize the potential of automatic sensor data from public
transport vehicles, through the development of innovative methods and tools.

This thesis considers APC data supplied by AtB, the public transport operator in
Trondheim, Norway. The aim is to better understand how the APC data reflects the true
passenger count (PC), and the creation of models to better utilize this data. We develop
probabilistic models for the true PC of boarding passengers at door-level, using APC
data. For this purpose, two modeling approaches were employed.

We first used the framework of generalized linear models (GLMs), for PC with APC
as the explanatory variable. For the response, PC, we first considered the Poisson distri-
bution, and then the double Poisson to account for the significant underdispersion. The
double Poisson was inadequate in accounting for all the underdispersion, due to peaks
in the data where APC is correct in its count of PC. Therefore, we make use of the k-
inflated double Poisson distribution, and propose an extension where the inflation point
k is allowed to vary with the discrete, explanatory variable APC. k-inflated distribu-
tions have been employed in regression settings previously, but only with fixed inflation
points.

Further, a model that is based in the data generating process is proposed. The data
generating process is considered the combination of an undercounting- and an over-
counting process, modeled as a Binomial and a Poisson respectively. Empirical Bayes
is used to do inference on the true passenger count for this model.

The models are fitted to, and evaluated on, door-level counts. In addition we inves-
tigate their performance on stop- and journey-level aggregates.

Our extension of the k-inflated double Poisson GLM shows promising results, im-
proving on the double Poisson and demonstrating good fit to door-level counts. It also
outperforms the model based in the data generating process, though this model also pro-
vides a good fit considering the relatively strict assumptions. Investigation of stop- and
journey-level aggregates show clear dependency between door-level observations within
these groups. This results in non-satisfactory uncertainty quantification for aggregates.
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Sammendrag

Moderne offentlige transportkjøretøy er utstyrt med en rekke sensorer og genererer store
mengder data, som Automatisk Kjøretøy Lokalisering (Automatic Vehicle Location,
AVL) og Automatisk Passasjertelling (Automatic Passenger Counts, APC). Feil i disse
dataene er en utfordring, og samarbeisprosjektet APT-R har som mål å realisere poten-
sialet i automatisk sensordata fra kollektivsystemet, gjennom utvikling av innovative
metoder og verktøy.

Denne masteroppgaven tar for seg APC-data levert av AtB, kollektivtransportsel-
skapet i Trondheim. Målet er å bedre forstå hvordan APC-dataene gjenspeiler den
virkelige passasjertellingen (PC), og å lage modeller for å bedre ta i bruk denne dataen.
Vi utvikler probabilistiske modeller for den sanne tellingen av påstigende passasjerer
på dørnivå, ved bruk av APC-data. Til dette formålet ble to modelleringsmetoder tatt i
bruk.

Vi brukte først det fleksible rammeverket for generaliserte lineære modeller (GLM),
med PC som respons og APC som forklarende variabel. For responsen, PC, vurderte
vi først Poisson-fordelingen, og deretter double-Poisson-fordelingen for å ta hensyn til
den betydelige underspredningen (underdispersion). Double-Poisson-fordelingen klarte
ikke å ta hensyn til all underspredningen, dette skyldtes topper i dataene hvor APC er
korrekt. Vi bruker derfor k-inflated double-Poisson-fordelingen, og foreslår en utvidelse
av denne hvor inflasjonspunktet k får variere med den diskrete, forklaringsvariabelen
APC. k-inflated-fordelinger har vært brukt i regresjonssammenhenger tidligere, men
kun med fastsatte inflasjonspunkter.

Videre foreslår vi en modell som er basert på den data-genererende prosessen. Den
data-genererende prosessen antas å være kombinasjonen av en undertellingsprosess og
en overtellingsprosess, som vi modellerer med henholdsvis en binomial- og en Poisson-
fordeling. For denne modellen tar vi i bruk empirisk Bayes metode for å gjøre inferens
på den sanne passasjertellingen.

Modellene er tilpasset, og evaluert på, tellinger på dørnivå. I tillegg undersøker vi
modellprestasjon på tellinger som er aggregert til stopp- og turnivå.

Vi ser lovende resultater for den implementerte k-inflated double Poisson GLM-en.
Den er en forbedring av double-Poisson-fordelingen og viser generelt god tilpasning til
tellinger på dørnivå. Den yter også bedre enn modellen som baserer seg på den data
genererende prosessen, selv om denne modellen også viser god tilpasning, til tross for
de relativt strenge antagelsene. Undersøkelse av aggregater på stopp- og reisenivå viser
tydelig avhengighet mellom tellinger på dørnivå, noe som resulterer i dårlig usikkerhet-
skvantifisering av aggregater.
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1
Introduction

Recent societal trends highlight the need for sustainable transportation systems, and
data from modern public transport fleets, are instrumental in this quest. The wealth of
archived and real-time automatic sensor data, particularly Automatic Vehicle Location
(AVL) and Automatic Passenger Counting (APC), harbors untapped potential for en-
abling data-driven monitoring, planning, and execution of sustainable, efficient public
transport services.

The APT-R project is a joint effort among the Institute of Transport Economics
(Transportøkonomisk institutt), the Norwegian University of Science and Technology
(NTNU), the Norwegian Computing Center, and public transport operators Entur, Kolum-
bus, and AtB. This initiative strives to create innovative methods and tools to extract
valuable insights from public transport automatic sensor data (Transportøkonomisk in-
stitutt, 2022). In this thesis, we examine automatic passenger counting (APC) data col-
lected from buses operating in the Norwegian town of Trondheim. We aim to develop
probabilistic models that predict actual passenger count (PC) using APC data, in order
to better understand the relationship between these two variables.

APC is a technology developed to automatically count the number of passengers
boarding and alighting public transport vehicles by utilizing various sensors. These
sensors detect the entry and exit of passengers, thereby equipping public transport op-
erators with valuable information to enhance management and optimization of their
services. Over the past few decades, the deployment of APC technology has witnessed
substantial growth, fueled by consistent advancements in sensor technology and the in-
creasingly sophisticated techniques employed in data processing.

Mccarthy et al. (2021) gives a good account of the most widely adopted APC tech-
nologies, namely floor-based, WiFi, infrared and video sensing systems. Among these,
video-based counting, leveraging algorithms rooted in pre-trained convolutional neu-
ral networks is the most commonly used (Mccarthy et al., 2021). This technology is
also employed by AtB. Mccarthy et al. (2021) further notes that while video-based sys-
tems offer a wealth of information, they also pose considerable challenges that must be
addressed by the software. These include distinguishing between people and objects,
handling individuals moving in close proximity, and dealing with passengers already on
board appearing in the frame. For the purposes of this thesis this implies a complex data
generating process (DGP).

AtB (2016) state that their purpose in counting passengers is to collect data on board-

1



1 Introduction

ing and alighting passengers and compile this data into statistics. These statistics can
provide insights into passenger load on routes and journeys, which in turn is valuable
information for route planning and reporting. AtB also shares passenger statistics with
local and national authorities, serving as essential input for informed decision-making,
and notes the importance of reliable passenger statistics for such purposes (AtB, 2016).

The increasingly enormous amount of available APC data, presents opportunities
beyond the reporting of statistics. Nagaraj et al. (2022) proposes the application of deep
learning for short-term passenger flow models using APC data. Similarly, Halyal et al.
(2022) use APC data to forecast passenger demand using neural networks. Mccarthy
et al. (2021) highlight the potential of APC in providing real-time passenger load esti-
mates for planning and customer information.

Berrebi et al. (2022) notes that despite the vast amount of information available to
public transport agencies through APC data, it has rarely been used to its’ full potential
due to concerns about the data quality. Much of the prior research has primarily focused
on evaluating the accuracy of APC data by cross-referencing it with manual counts,
counts from fare collection, and counts from video sources (Boyle (2008), as cited in
Berrebi et al. (2022)). Strathman (1989) cross-checks with manual counts and Kimpel
et al. (2003) with counts from video sources, both finding APC to be consistent with the
respective reference data (Berrebi et al., 2022, p.2).

AtB, on the other hand, recognizes that their present APC system has a tendency
to systematically underestimate passenger data. In response they apply a scalar adjust-
ment to the APC data when reporting passenger counts. Although this method may be
adequate when handling large volumes of data, its effectiveness for smaller subsets of
selected data remains uncertain. Moreover, this approach does not quantify the uncer-
tainty associated with the reported figures, and is not applicable in real-time scenarios.

Developing a model that establishes a connection between PC and APC data would
give a deeper understanding of how APC data reflects PC. By analyzing this relation-
ship, such a model could provide valuable context and insights when utilizing APC data,
allowing for more accurate assessments and informed decision making. Ultimately, this
approach has the potential to improve the reliability of reported passenger count data
and contribute to the effective management of public transport services.

It is evident that the true DGP operates from PC to APC, and APC can be considered
an error-prone meassurement of the true, underlying variable PC. Cameron and Trivedi
(2013) note that the classical measurement error model with normal errors is inappropri-
ate for count variables as it violates their non-negativity and discreteness. They instead
introduce some alternative parametric models, each necessitating distinct assumptions
on the mechanisms of the measurement error. In order to preserve non-negativity, the
error model must necessarily be a finite mixture to account for both over- and under-
estimation. The selection of an appropriate finite mixture error model will require a
thorough understanding of the complex DGP. Additionally, we will need a prior on PC
to obtain a model for PC conditional on APC, and this approach rarely produces a para-
metric model for PC.

Alternatively it would be convenient to avoid making assumptions on the DGP, and
employ a pure statistical approach. A generalized linear model (GLM) for PC with
APC as the explanatory variable, lets us model a linear relation from the readily avail-
able APC to the variable of interest, PC. This yields a parametric probabilistic function
for PC which could be easily employed by public transport operators in a variety of

2



1 Introduction

scenarios.
In addition to the GLM, we also construct a model aiming to capture the true DGP.

APC is modeled as a finite mixture, with PC as a parameter. Utilizing Bayes’ theorem
with an empirical prior on PC, we then derive a model for PC conditional on APC.

Both approaches results in models for PC with quantified uncertainty, which we call
probabilistic models. The developed probabilistic models for PC use door-level obser-
vations of APC. We also explore how the models perform when applied to stop- and
journey-level aggregates, offering a more comprehensive understanding of the behavior
and usefulness of these models in various scenarios.

The text is structured as follows:

Chapter 2 outlines our data’s origin, collection process, observed errors and implica-
tions, concluding with an initial exploratory data analysis that guides the subse-
quent modeling procedure.

Chapter 3 outlines the theoretical foundations of the statistical methods and models
applied in Chapter 4. The focus is primarily on count data, its attributes, probabil-
ity functions, and linear count regression. It further explores maximum likelihood
estimation and Bayesian inference, concluding with a discussion on model assess-
ment criteria, including AIC, (C)RPS and PIT histograms.

Chapter 4 proposes two door-level probabilistic models for PC conditional on APC:
a GLM with APC as an explanatory variable using Poisson, double Poisson, and
k-inflated double Poisson distributions, and DGP-M, which emulates the true data
generating process. After detailing the models and their application to stop- and
journey-level aggregates, the chapter ends with a section on model evaluation and
an overview of the utilized software.

Chapter 5 presents results for the probabilistic models for PC as detailed in Chapter
4. These include parameter estimates, fitted PMFs, AIC- and (C)RPS-values,
and PIT histograms. We first assess four door-level models for PC, three GLMs
and the DGP-M model, then proceed to the results for stop- and journey-level
aggregates.

Chapter 6 gives a discussion of the results, and provides some final remarks.

Appendix A is a derivation of expressions for the approximate expectation and vari-
ance of the k-inflated double Poisson distribution. These were ultimately found
to deviate too much from the numerical calculations.
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2
Data

In this chapter, we detail the specifics of the data used in the thesis. We start by dis-
cussing the origin of the data, and the data collection process. Then, we make some
observations and discuss sources of errors discovered during data collection, and the
further implications of these. The chapter concludes with some exploratory data analy-
sis (EDA), providing some initial insights for the modeling procedure.

2.1 Data Collection and Preprocessing
This thesis utilizes data provided by AtB, the public bus operator in Trondheim, Norway.
The dataset includes passenger count (PC) of passengers boarding and alighting the bus
through each door during a stop, as well as the corresponding automatic passenger count
(APC) for both boarding and alighting passengers. All of AtB’s buses in Trondheim
come equipped with DILAX optical sensors that utilize 3D stereo vision technology
(DILAX). These sensors are also capable of providing video recordings. By capturing
video from the sensors and manually counting passengers, we have gathered data on
the actual number of passengers (PC). Though some errors may have occurred during
manual counting, the PC data collected is considered to be the ground truth.

The data set comprises data from five selected bus routes: 1, 3, 10, 11, and 14. These
routes operate on some of the same stops and are serviced by three different models
of buses. Route 1 is a popular commuter route, its journey between the residential
areas Heimdal and Ranheim taking it through the city center. Route 3 is also used
by commuters as well as students, journeying through the residential Byåsen, the city
center, and university campuses at Gløshaugen and Dragvoll. Routes 1 and 3 often
carry a high volume of passengers throughout their journeys, and are operated by high
capacity metro buses, bus type = ”metro”. For these routes, high passenger counts are
not uncommon, especially at the central ”Kongens gate” and ”Prinsens gate” bus stops,
as well as the bus stops at university campuses.

The routes 10, 11 and 14 are operated by lower capacity buses, bus type = ”ordinary”,
and make more sprawling journeys along less trafficked roads. We expect lower pas-
senger counts for these routes, but 10 and 11 follow stretches of the heavily trafficked
”Elgeseter-/Prinsens gate” and will see an uptick in this area.

The selection of data provides a cross-section of highly populated and lower popu-
lated routes, as well as a variety of bus models, for a somewhat overlapping set of bus

5



2 Data 2.2 Data Description

stops. The data was collected in the period December 2022, through January 2023. It
is important to note that due to the manual nature of video recording, all data has been
collected during weekdays and within working hours (7:00-17:00).

For the data collection procedure we used screen recordings of the live video feed
from the APC sensors, and of the real-time APC recordings. AtB uses backend logic that
groups the boarding and alighting APC from all four doors and matches this stop-level
count with a bus stop. This logic sometimes places an APC observation at the wrong
stop, and the passengers boarding or alighting the bus at the last stop of a journey might
be registered for the first stop of the next journey. When manually counting passengers
from the screen recordings we were able to correct for these errors placing both PC and
APC at the correct bus stop and door. Thus we can be sure that every paired PC and
APC correspond to the same counting instance.

Another substantial source of error were discovered during data collection. In AtB’s
implementation the sensor is activated when the corresponding door is registered as
open. The door registration is sometimes slow, resulting in several passengers being able
to board and/or alight before the sensor is activated. This flaw in the system can thus
create extreme outliers. It has by far the biggest impact on alighting data, as alighting
passengers tend to go first and are often ready to leave the bus the instant the door
opens. As many as 10 passengers can sometimes alight before the sensor is activated.
Boarding data is also affected, but not nearly as much. AtB is now aware of the flaw
and are working on adapting their APC system. In the remaining chapters we will refer
to this source of error as ”door-issues”.

Given that this dominant source of error primarily affects alighting data, we have
decided to focus exclusively on boarding passengers for this thesis. A model solely
for boardings can still adequately report on the total number of passengers, as each
passenger is accounted for upon entry, but a model for alightings will be needed for
applications such as load estimation. It is further our opinion that insights gained for
boarding passengers should be useful for alighting passengers as well.

2.2 Data Description

The data set comprises 2752 door-level counts, and the available variables are presented
in Table 2.1. Our key variables of focus are PC and the corresponding APC. In
addition the variables door, bus stop, stop, route and journey are available, and give
context to the counts. The true and automatic passenger counts are represented by the
variables PC and APC respectively. bus stop denotes the name of the bus stop where
the passenger counts are recorded. stop is a categorical factor that signifies one instance
of a bus stopping at a bus stop, it encompasses four distinct counts, one for each of the
bus’s four doors. The door variable is another factor that specifies at which of these
four doors the counts were logged. route indicates the specific route or pathway that
the bus follows, and bus type whether it is operated by a ”metro” bus or an ”ordinary”
bus. Finally, journey is a categorical factor that signifies one instance of a bus traveling
along one route, it consolidates all counts from the start to the end of a single journey
or trip. Table 2.2 gives an illustration of the data structure.

6



2 Data 2.3 Exploratory Data Analysis (EDA)

PC APC door stop journey route bus stop bus type

0 0 1 1.159 1 ”3” ”Skansen” ”metro”
3 4 2 1.159 1 ”3” ”Skansen” ”metro”
5 3 3 1.159 1 ”3” ”Skansen” ”metro”
0 0 4 1.159 1 ”3” ”Skansen” ”metro”
0 1 1 1.160 1 ”3” ”Ila” ”metro”
2 2 2 1.160 1 ”3” ”Ila” ”metro”
4 0 3 1.160 1 ”3” ”Ila” ”metro”
0 2 4 1.160 1 ”3” ”Ila” ”metro”

Table 2.2: Example of data collected during two stops of one journey. (Not actual data, only for
illustration purposes.)

Variable Type Description

PC Integer The true count of passengers boarding the bus.

APC Integer The corresponding automatic count.

door Factor The id of a door. 1 through 4, front to back.

bus stop String The name of the bus stop.

stop Factor The unique id of a stop.

route String The name of the route.

journey Factor The unique id of a journey.

bus type String ”metro” or ”ordinary”

Table 2.1: Description of variables.

2.3 Exploratory Data Analysis (EDA)

2.3.1 Door-Level
The data set has values for APC in the range [0, 14], and PC in the range [0, 16]. Tables
2.3 and 2.4, shows how the number of data points are distributed across these ranges,
along with the accuracy of APC. We see that APC = 0 constitutes about 71% of the
data set. APC is also highly accurate in this case, when APC = 0 it is correct 96.44%
of the time. Consequently, a model for PC that predicts PC = 0 all the time would
perform fairly well and we should consider fitting APC = 0 separately from the rest
of the data. We also note that APC has an accuracy of 99.63% when PC = 0, in fact
APC only registers a value other than 0, 7 out of the 1904 instances of PC = 0.

Logically, the larger counts represent a relatively larger fraction of total passengers
compared to their proportion of data points, and a useful model would need perform
adequately on the entire range of APC. However, as APC increases, the number of
data points dramatically decreases. We also note that as APC increases, its accuracy
seem to decrease, though not necessarily linearly. The goal should therefore be to apply
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2 Data 2.3.1 Door-Level

APC n %-of-data accurate (PC=APC) %-accuracy
0 1967 71.48 1897 96.44
1 368 13.37 297 80.71
2 192 6.98 139 72.40
3 100 3.63 63 63.00
4 44 1.60 24 54.55
5 26 0.94 15 57.69
6 20 0.73 13 65.00
7 14 0.51 8 57.14
8 8 0.29 2 25.00
9 7 0.25 2 28.57

10 3 0.11 1 33.33
11 1 0.04 0 0.00
13 1 0.04 0 0.00
14 1 0.04 0 0.00

Table 2.3: Distribution of data points on the range of APC, with accuracy.

PC n %-of-data accurate (APC=PC) %-accuracy
0 1904 69.19 1897 99.63
1 366 13.3 297 81.15
2 211 7.67 139 65.88
3 117 4.25 63 53.85
4 50 1.82 24 48
5 36 1.31 15 41.67
6 21 0.76 13 61.9
7 16 0.58 8 50
8 10 0.36 2 20
9 7 0.25 2 28.57

10 6 0.22 1 16.67
12 2 0.07 0 0.00
13 2 0.07 0 0.00
14 2 0.07 0 0.00
16 2 0.07 0 0.00

Table 2.4: Distribution of data points on the range of PC, with accuracy.
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2 Data 2.3.1 Door-Level

Figure 2.1: Empirical mean and variance of PC, with 95%-confidence intervals.
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2 Data 2.3.2 Stop- and Journey-Level

Total PC
Grouping Variable n Min Median Mean Max
stop 686 0 1 3.02 48

journey 22 16 73 94.09 330

Table 2.5: Summary Statistics, stop- and journey-level.

insights from lower values to higher APC values as well. In Figure 2.1, we plot the
mean and variance of PC as functions of APC, which reveals a linear relation for the
mean. This suggests that a GLM for the expectation of PC could be a suitable option.

It is evident that the variance increases at a slower rate than the mean. When the
variance is lower than the mean, the data exhibits underdispersion compared to the
Poisson distribution. We might also notice a linear trend for the variance, suggesting
a consistent level of underdispersion. Given the scarcity of data points in the upper
range of APC, we only have reliable estimates of the variance for APC ≤ 7.

In Figure 2.2a, we display the empirical, marginal distribution of PC, for APC val-
ues ranging from 1 to 6. There is a pronounced peak in PC = APC which decreases in
height as APC increases. The distribution around this peak is tight and seems slightly
positively skewed. This indicates a tendency to undercount, confirmed by the fact that
the mean is consistently above the dotted line y = APC in Figure 2.1. This under-
counting tendency is consistent with AtB’s experiences.

We then plot the empirical, marginal distribution of APC, given PC, in Figure
2.2b. In this figure, we observe a strong negative skew, clearly illustrating the tendency
to undercount. The distribution resembles a triangle in the range APC ≤ PC, which is
reminiscent of a binomial distribution with parameter n = PC. A binomial distribution
for APC would make sense as it would correspond to a straightforward DGP with a
probability of counting each passenger. However, we notice that APC occasionally
overcounts, so a binomial distribution alone would not be sufficient.

2.3.2 Stop- and Journey-Level
Stop- and journey-level data sets are created by grouping and aggregating door-level
counts by the variables stop and journey respectively. Figure 2.3 displays the distribu-
tion of PC at stop- and journey-level, and how this differs between metro and ordinary
buses. Table 2.5 presents some summary statistics for the total PC. From Figure 2.3a
we note that there are around 300 stops where with no boarding passengers, most of
which are from the routes 10, 11, 14, with bus type =”ordinary”. The bulk of the larger
counts, PC ∈ [5, 20], are from routes 1 and 3, with bus type =”metro”. Metro buses
also accounts for almost all very large counts, PC > 20. These observations are further
reflected in Figure 2.3b, which shows that journeys made by metro buses tend to have a
higher number of total passengers. It is also noteworthy that there are two outliers that
have a much higher total PC than both the median and the mean.
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2 Data 2.3.2 Stop- and Journey-Level

(a) Marginal distribution of PC, given APC.

(b) Marginal distribution of APC, given PC.

Figure 2.2: Empirical distributions.
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2 Data 2.3.2 Stop- and Journey-Level

(a) Stops

(b) Journeys

Figure 2.3: Distribution of total PC at stop- and journey-level.
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3
Background

This chapter presents the necessary theoretical background for the statistical methods
and models which are employed in Chapter 4. The main bulk is attributed to count
data, its characteristics, probability functions and linear count regression. We then give
an account of maximum likelihood estimation and Bayesian inference. The last section
concerns model assessment criteria, specifically the Akaike information criterion (AIC),
(continuous) ranked probability score ((C)RPS) and probability integral transform (PIT)
histograms.

3.1 Probability Functions for Count Data
Count data represents the number of occurrences of an event within a fixed interval.
Illustrative examples are the number of patrons entering a store during a designated
time frame, or as investigated in this thesis, the count of passengers boarding a bus at a
particular stop. It is crucial to acknowledge the distinct characteristics of count data, as
count random variables are inherently integer valued and non-negative. To effectively
model and analyze count data, we utilize a range of count probability functions, tailored
to its unique properties. Subsequent sections introduces a selection of these functions,
which play a vital role in our analysis.

3.1.1 Poisson

If Y is Poisson distributed with parameter µ > 0, then its probability mass function,
PMF, is given by

P [Y = y | µ] = (µ)y

y!
e−µ, for y ∈ {0, 1, 2, . . .}, (3.1)

with expectation and variance

E[Y ] = V [Y ] = µ.

The Poisson PMF involves a single parameter and is equidispersed, the mean and
variance is always equal. (Cameron and Trivedi, 2013, p.3)
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3 Background 3.1.2 Binomial

3.1.2 Binomial
A Bernoulli trial is a a trial with exactly two possible outcomes which we denote ”suc-
cess” and ”fiasco”. Let Y be a random variable representing the number of successes in
a sequence of n independent Bernoulli trials, each with probability p of success. Y then
follows the binomial distribution with PMF given by

P[Y = y | n, p] =
(

n
y

)
py(1− p)n−y, for y ∈ {0, 1, . . . , n}, (3.2)

where 0 < p < 1. The expectation and variance of Y is given by

E[Y ] = np, V [Y ] = np(1− p).

(Rigby et al., 2019, p.167,168)

3.1.3 Negative Binomial
The negative binomial distribution has several parametrizations, the most common of
which is the NB2 (Cameron and Trivedi, 2013, p.81). The PMF of an NB2 distributed
random variable, Y , is given by

P [Y = y | µ, σ] =
Γ
(
y + 1

σ

)
Γ
(
1
σ

)
Γ(y + 1)

(
σµ

1 + σµ

)y (
1

1 + σµ

)1/σ

, (3.3)

for y ∈ {0, 1, 2, . . .}, µ > 0 and σ > 0.
This is an equivalent parametrization to the one employed by Anscombe (1950),

with the distinction being his use of α = 1/σ rather than σ (Rigby et al., 2019, p.483).
The expectation and variance is given by

E[Y ] = µ, V [Y ] = µ+
1

σ
µ.

Thus V [Y ] ≥ E[Y ] and it follows that the NB distribution only allow for overdispersion.

3.1.4 Poisson-Inverse Gaussian
For long-tailed data the negative binomial distribution has limitations. The Sichel dis-
tribution is a distribution more suited for this type of data and a special case of the
Sichel is the Poisson-inverse Gaussian (PIG) distribution. (Cameron and Trivedi, 2013,
p.123,124)

The PMF of a PIG distributed random variable Y is given by

P[Y = y | µ, σ] =
(
2α

π

)1/2 µye1/σKy− 1
2
(α)

y!(ασ)y
, for y ∈ {0, 1, 2, . . .}, (3.4)

where µ > 0, σ > 0, α2 = σ−2 + 2µσ−1 and α > 0 (Rigby et al., 2019, p.487). Kλ(t)
is the modified Bessel function of the second kind given by

Kλ(t) =
1

2

∫ ∞

0

xλ−1 exp

[
−1

2
t
(
x+ x−1

)]
dx
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3 Background 3.1.5 Double Poisson

(Abramowitz (1965), as cited in Rigby et al. (2019, p.487)).
The expectation and variance of Y is given by

E[Y ] = µ, V [Y ] = µ+ σµ2

(Rigby et al., 2019).

3.1.5 Double Poisson

The double Poisson distribution was introduced by Efron (1986) in his article on double
exponential families. Double exponential families can be used to generalize any one
parameter exponential family distribution to include an additional dispersion parameter
in such a way that it enjoys exponential family properties for both parameters simulta-
neously.

The PMF of a double Poisson distributed random variable, Y , is given by

P [Y = y | µ, σ] =
(
1

σ

)1/2

e−µ/σ

(
e−yyy

y!

)(
eµ

y

)y/σ

· C(µ, σ) (3.5)

for y ∈ {0, 1, 2, . . .}, µ > 0 and σ > 0. C(µ, σ) is a normalizing constant given by

C(µ, σ) =

[
∞∑
y=0

σ−1/2e−µ/σ

(
µ

y

)y/σ
ey/σ−yyy

y!

]−1

.

The expectation and variance is approximately

E[Y ] ≈ µ, V [Y ] ≈ µ · σ, (3.6)

these are very accurate approximations (Efron, 1986, p.715). As such the double Pois-
son distribution allows for both overdispersion, σ > 1, and underdispersion, σ < 1.

3.1.6 K-inflated Distributions

A common source of over- and underdispersion is the inflated presence of a certain
value relative to the assumed distribution. Much consideration has been given to the
class of models accounting for excess zeros. These models are known as zero-inflated
models and are particularly useful in situations where zeros might arise from two dif-
ferent processes, one generating ”true zeros” and the other generating non-zero values
that can sometimes be zero. This is done by adding a binary component which inflates
the probability of zero. For a count PMF, f(y | θ), the zero-inflated PMF is given by

P[Y = y | θ, ν] =

{
ν + (1− ν)f(y), if y = 0

(1− ν)f(y) if y > 0
, where 0 < ν < 1.

Recently some consideration has been given to the more general model where the
PMF is inflated at one or several values k ≥ 0 (Mohammadpour and Stasinopoulos
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(2018), Arora et al. (2021), Arora and Chaganty (2021), Payandeh Najafabadi and Mo-
hammadpour (2018)). In this thesis one such model, the k-inflated double Poisson, is
given consideration. It inflates exactly one value, k, and has PMF

P [Y = y | µ, σ, ν] =

{
ν + (1− ν)f(k | µ, σ), if y = k

(1− ν)f(y | µ, σ) if y ̸= k
(3.7)

where f(y | µ, σ) is the PMF of the double Poisson distribution (3.5) and 0 ≤ ν ≤ 1.

3.2 Linear Count Regression
Considering a count response variable, Y , and a set of explanatory variables,
X = [X1, X2, ..., Xp], combined in the linear predictor

ηi = x′β = β0 + β1 · xi1 + β2 · xi2, . . . , βp · xip.

A linear count regression model assumes that Y follows a count distribution, such as
Poisson or negative binomial. The mean, and potentially other parameters, are con-
nected to the linear predictor through a link function, g(·) (Fahrmeir et al., 2013, p.293).

The classical linear model assumes normal distribution for Y , while linear count re-
gression models fit within the broader framework of generalized linear models (GLMs)
(Fahrmeir et al., 2013, p.269)

3.2.1 Link Functions

The selection of an appropriate link function is crucial, as it depends on the parameter
domain, the covariate domain, and the assumed nature of their relationship. In the case
of Poisson and other count distributions, the log-link function is frequently employed
for the mean, µ,

log(µi) = ηi. (3.8)

Utilizing the log-link function ensures that µ remains non-negative and causes the co-
variates to have an exponential multiplicative effect on the expected value of Y . In cases
where an additive effect is desired, one would use the direct relationship

µi = ηi, (3.9)

known as the identity link. To guarantee non-negativity when employing the identity
link, it may be necessary to impose constraints on the parameter space of X and β.

In some cases, it may be desirable to incorporate parameters such as the probability,
p, in the Binomial and the weight, ν, in the k-inflated models. To accommodate this, a
link function with a domain in the interval [0, 1] should be selected for these parameters.
The logit-link

logit (pi) = ln

(
pi

1− pi

)
= ηi (3.10)

is a commonly used option.
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3.3 Maximum Likelihood Estimation

For the set of n random variables Y = [Y1, Y2, . . . , Yn], with densities f(yi|θ),

L(θ) =
n∏

i=1

f(yi|θ)

is the joint likelihood of the realized data y = [y1, y2, . . . , yn]. Now the maximum
likelihood estimate (MLE), θ̂, maximizes L(θ). In most situations working with the log-
likelihood, l(θ) = log(L(θ)), is preferred as the joint log-likelihood can be expressed
as a sum rather than a product. l(θ) and L(θ) share maximum due to log being a strictly
monotonic function. (Givens and Hoeting, 2012, p.9)

3.4 Bayesian Inference

When doing Bayesian inference one view the parameters θ of the likelihood f(y|θ) as
random variables. The prior distribution f(θ) is the density of θ prior to observing the
data. This prior knowledge is updated after observing the data y = [y1, y2, . . . , yn] using
Bayes theorem:

f(θ|y) = f(θ) · f(y|θ)
f(y)

, (3.11)

where f(y) =
∫
Θ
f(θ) · f(y|θ)dθ. f(θ|y) is the posterior distribution and represents

the density of θ after observing the data. (Givens and Hoeting, 2012, p.11)
For a single, discrete parameter θ, (3.11) can be rewritten as

f(θ|y) = f(θ) · f(y|θ)∑
Θ f(θ) · f(y|θ)

. (3.12)

3.4.1 Empirical Bayes

In traditional Bayesian statistics, the prior distribution, f(θ), is chosen based on prior
knowledge. However, in many practical situations, this prior knowledge may not be
readily available or might be hard to quantify. The empirical Bayesian estimates the
prior from the data itself, and can often obtain better results (Casella, 1985).

3.5 Model Assessment

In order to differentiate between models, certain criteria must be established. The
Akaike information criterion (AIC) offers a quantitative criteria by which the model
goodness-of-fit can be evaluated. The Continuous Ranked Probability Score (CRPS)
allows us to gauge the accuracy of probabilistic predictions and the Probability Integral
Transform (PIT) histograms provides a visual tool to assess the calibration.
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3.5.1 AIC
The Akaike information criterion (AIC) can be used as a criteria to compare non-nested
models. AIC is among the most popular model choice criteria (Fahrmeir et al., 2013,
p.148) and is defined as

AIC = −2log(L(y)) + 2k, (3.13)

where L(y) is the likelihood of the observed data y for the given model, and k is the
number of estimated parameters. A lower AIC value is preferred as this suggests good
model fit through a larger log-likelihood while penalizing model complexity through k.

The AIC is easily calculated when doing maximum likelihood estimation as the
likelihood is already available.

3.5.2 (C)RPS
The Ranked Probability Score (RPS) is a scoring rule used to evaluate the accuracy of
probabilistic predictions. It is used for ordinal predictions, where the possible outcomes
have a natural successive order. It is a strictly proper scoring rule, meaning the score
cannot be improved by trying to hedge the prediction (Wilks, 2011, p.418). Among
strictly proper scoring rules, RPS is by far the most popular (Wilks, 2011, p.420). Con-
tinuous ranked probability score (CRPS) is the extension of RPS to continuous out-
comes.

The intuition for (C)RPS is that it is a measure of the deviation from a perfect pre-
diction. A perfect prediction would predict the observed outcome with absolute cer-
tainty, probability equal 1. If we express our predictions as cumulative density functions
(CDFs), the CDF of the perfect prediction is the unit step function at the observation,
we call this the cumulative observation. Now RPS is the squared difference between
the prediction model CDF and the cumulative observation. A lower score is better for
both RPS and CRPS, rewarding a probabilistic prediction that is concentrated about the
observed value. This is illustrated for continuous outcomes in Figure 3.1, where the
better prediction model has a CDF closer to the cumulative observation, resulting in a
lower CRPS.

When evaluating a set of n observations we simply average the (C)RPS values,

(C)RPS =
1

n

n∑
k=1

(C)RPSk. (3.14)

RPS

Following the notation of Wilks (2011) let [1, . . . ,M ] be the set of possible outcomes
with prediction probabilities y = [y1, . . . , yM ]. The cumulative prediction is defined to
be the vector

Y = [Y1, . . . , YM ],

where

Yj =

j∑
m=1

ym, j ∈ [1, . . . ,M ].
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Figure 3.1: CRPS illustration.

The observation vector is defined as o = [o1, . . . , oM ], where for observed outcome k,
oj = 1 for j = k and oj = 0 for j ̸= k. We define the cumulative observation to be the
vector

O = [O1, . . . , OM ],

where

Oj =

j∑
m=1

om, j ∈ [1, . . . ,M ].

The RPS is defined as

RPS =
M∑
j=1

(Yj −Oj)
2. (3.15)

CRPS

Continuous ranked probability score (CRPS) is the extension of RPS to continuous out-
comes. Again following the notation of Wilks (2011), the prediction is now given as a a
probability density function (PDF) f(y) with cumulative density function (CDF) F (y).
Define the cumulative observation as the step function

Fo(y) =

{
0, for y < o

1, for y ≥ o,

when the observed outcome is y = o. CRPS is then defined as

CRPS =

∫ ∞

−∞
[F (y)− Fo(y)]

2dy. (3.16)

3.5.3 PIT
The probability integral transformation (PIT) theorem states that for a random variable
Y with continuous CDF FY (), U = FY (Y ) is uniformly distributed on (0, 1) (Casella
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and Berger, 2002). This property can be used to create PIT histograms, which allows us
to visually evaluate the calibration of a modeled CDF F ′(). The procedure is as follows:

• For observed data y, transform to PIT residuals

u = F ′(y). (3.17)

• Plot a histogram of u.

• The PIT histogram should resemble that of the uniform distribution on (0, 1) if
F ′() = FY ().

When FY () is discrete, the PIT theorem does not hold and we need a more general
definition of the PIT residuals. Following Dunn and Smyth (1996) we let

ai = lim
y→yi

FY (y) and (3.18)

bi = FY (yi), (3.19)

and define the randomized quantile residuals as

ri = Φ−1(ui), (3.20)

where ui is a random variable that is uniformly distributed on (ai, bi]. Now ri are exactly
standard normal (Dunn and Smyth, 1996) irrespective of the exact values of ai and bi.
It follows from the PIT theorem that ui are uniformly distributed on (0,1).

A limitation of PIT histograms is that they don’t differentiate between observations
with extreme PIT residuals, close to 0 or 1, and outright outliers (Dunn and Smyth,
1996).
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4
Probabilistic Models and Methods for PC

In this chapter we propose two different door-level, probabilistic models for PC condi-
tional on APC. The first is a GLM, with APC as explanatory variable, for which we
consider the Poisson, double Poisson and k-inflated double Poisson distributions, the
latter two to account for the underdispersion. For the second model, DGP-M, we seek
to model the true data generating process (DGP) and we make inference on PC using
empirical Bayes. The chapter starts by presenting the models, and the choices made
during the modeling procedure. We then discuss how the door-level models are applied
to stop- and journey-level aggregates. The chapter concludes with a section on model
evaluation and an account of the software used.

4.1 Generalized Linear Model - GLM
The EDA in Section 2.3 revealed a linear relation between APC and the mean of PC.
Ignoring the fact that the true DGP clearly operates in the opposite direction, a logical
approach is a GLM for PC, with APC as explanatory variable, and a count distribution
for PC. By fitting separate parameter estimates for the scenario in which APC = 0,
and by assuming a0 = 0 and a1 > 1, we can ensure a strictly positive predictor,

ηµ,i = a0 + a1 · apci. (4.1)

A positive predictor allows the use of identity link which lets us model an additive effect
of APC on the expected value of PC. We use the predictor (4.1) with identity link (3.9)
for the mean parameter of all considered distributions.

4.1.1 Poisson
PC is a count variable, limiting our choice of probability distribution. The ”simplest
and most widely used choice” (Fahrmeir et al. (2013), p. 293) for count variables is the
Poisson distribution. The Poisson-PMF (3.1) is equidispersed, the mean and variance
is equal. This equidispersion property of the Poisson is often too restrictive, and this is
in fact the case for our data set. As found during the EDA the conditional variance is
smaller than the conditional mean by a considerable amount (2.1). PC, given APC, is
therefore underdispersed relative to the Poisson-PMF.
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4 Probabilistic Models and Methods for PC 4.1.2 Double Poisson

When the Poisson proves to be too restrictive, it is natural to consider more flexible
models such as the negative binomial which breaks the equidispersion restriction by in-
troducing an extra parameter (Cameron and Trivedi, 2013, p.18). However most of the
popular alternative models, including the negative binomial, only account for overdis-
persion and offers no improvement on the Poisson for underdispersed data. In this thesis
the Poisson distribution is used as a benchmark. The double Poisson and k-inflated dou-
ble Poisson distributions are considered to account for the underdispersion relative to
the Poisson.

4.1.2 Double Poisson

Most research seem to tackle the issue of overdispersion and this is understandable
since, as Cameron and Trivedi (2013, p.169) note, ”overdispersion is far more common
than underdispersion.” Still there are some two-parameter extensions of the Poisson
distribution that accommodate underdispersed counts. The generalized Poisson distri-
bution theoretically allows for underdispersion (Hilbe, 2014, p.211); however, all R im-
plementations encountered were limited to handling overdispersion only. The two other
options of note are the Conway-Maxwell-Poisson (CMP) distribution and the double
Poisson distribution, neither of which has been investigated much until recently (Zou
et al., 2013, p.498). Zou et al. (2013) found CMP and double Poisson to be comparable
in terms of goodness-of-fit. double Poisson is our choice as it is implemented in the R
package gamlss.dist (Stasinopoulos and Rigby, 2022).

The double Poisson-PMF (3.5) has an additional dispersion parameter which can
be modeled separately from the mean. This should allow us to obtain a better fit. The
variance is approximately σ · µ (3.6), so σ < 1 gives underdispersion relative to the
Poisson. We use the log-link (3.8) for the dispersion parameter σ. Both a model with
constant level of underdispersion,

ησ,i = b0, (4.2)

and a model with linear predictor,

ησ,i = b0 + b1 · apci, (4.3)

were considered. The inclusion of b1 was found to be insignificant, so we exclude it
going forward.

4.1.3 K-inflated Double Poisson

We found in the EDA that in the empiric marginal distributions of PC, given APC,
there is a peak in frequency of PC = APC. To include this property of the data
we consider the k-inflated double Poisson distribution (3.7). This distribution is useful
when there is inflation of a specific value, k, relative to the double Poisson.

Research has been conducted on k-inflated count models within regression frame-
works (Arora and Chaganty (2021), Arora et al. (2021), Payandeh Najafabadi and Mo-
hammadpour (2018)). In all the studies reviewed, the inflation point, k, remained con-
stant for all predictor values. However, our unique situation calls for the incorporation
of k as a parameter in the model.

22



4 Probabilistic Models and Methods for PC 4.1.4 Zero-Counts

To achieve this we propose a model where the inflation point is directly determined
by the APC value:

ki = apci.

The weight put on the inflation is determined by the parameter ν, and it is modeled
through a logit-link (3.10) with the linear predictor

ην,i = c0 + c1 · apci.

4.1.4 Zero-Counts

As noted in Section 2.3, APC = 0 makes up about 71% of the data set and is correct
about 96% of the time. We therefore have concerns that the model would lean too
heavily on fitting the zeros correctly, if they were included. The choice was made to
separate out APC = 0 and estimate the parameters separately. As we have already
mentioned, this also allows for the use of identity-link (3.9) for µ.

For the zero-counts the choice of link functions are less complicated as we don’t
have any covariates to worry about. We use the log-link (3.8) for µ and σ, ensuring
non-negativity, and logit-link (3.10) for ν, as 0 < ν < 1.

4.1.5 Summary of Mathematical Model Specifications

Three GLMs are considered for PCi | apci. We utilize the identity-link with intercept
a0 = 0 for the mean parameter, µ, for all models. A single estimate is used for the
dispersion parameter, σ, of the double Poisson and k-inflated double Poisson. A linear
logit-link is used for the inflation weight parameter, ν, of the k-inflated double Poisson.
When apci = 0, the log-link (3.8) is used for µ and σ, and the logit-link (3.10) for ν.

Poisson - PO

PCi | apci ∼ Poisson(µi) (4.4)

µi =

{
exp(azero), if apci = 0

a1 · apci, if apci ̸= 0

Double Poisson - DPO

PCi | apci ∼ DPO(µi, σi) (4.5)

µi =

{
exp(azero), if apci = 0

a1 · apci, if apci ̸= 0

σi =

{
exp(bzero), if apci = 0

exp(b0), if apci ̸= 0
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K-inflated Double Poisson - KIDPO

PCi | apci ∼ KIDPO(µi, σi, νi, ki) (4.6)

µi =

{
exp(azero), if apci = 0

a1 · apci, if apci ̸= 0

σi =

{
exp(bzero), if apci = 0

exp(b0), if apci ̸= 0

νi =

{
exp(czero)

1+exp(czero)
, if apci = 0

exp(c0+c1·apci)
1+exp(c0+c1·apci) , if apci ̸= 0

ki = apci

4.2 Data Generating Process Model - DGP-M
We also propose an alternative to the GLMs considered thus far, which focuses on mod-
eling the APC counting process. By doing so, we can better represent the true DGP and
obtain a model for APC conditional on PC. Still our primary objective remains the
development of a model for PC conditional on APC.

To accomplish this, we assume a distribution for PC and apply Bayes’ theorem
(3.11), effectively treating the distribution of PC as a prior distribution in a Bayesian
context. We have no strong beliefs or knowledge about the distribution of PC, and the
modeling of passenger flow is beyond the scope of this thesis. We therefore choose to
use an empirical prior on PC, based on the observed data. It is crucial to emphasize
that our approach is predominantly frequentist in nature, as opposed to a pure Bayesian
methodology that would place priors on all included parameters, thereby incorporating
the uncertainty from these parameters throughout the model.

The proposed model takes the form of Bayes theorem:

f(pc|apc) = f(pc) · f(apc|pc)∑
PC f(pc) · f(apc|pc)

(4.7)

Where the likelihood function, f(apc | pc), is a model for the DGP, and f(pc) is the prior
on PC. Both the prior and the likelihood is fit individually by maximum likelihood.
Then if we assume a finite number of possible values for PC, we can calculate the
normalizing constant fairly easily.

4.2.1 Likelihood function
The first step is a model for the likelihood function f(apci | pci). If X is a measurement
with error of the true varaible Y , the typical way to model X is too assume X = Y + ϵ,
where Y is a deterministic component and ϵ is a (normal) random variable. This is fine
for continuous variables, but count variables are non-negative. Therefore ϵ would have
to be non-negative and the model can only describe overestimation of the true variable.
In our case APC can be both smaller and larger than PC, so we need an alternative

24



4 Probabilistic Models and Methods for PC 4.2.2 Prior

approach. Cameron and Trivedi (2013, p.486) propose a model for the measurement
error of a random count variable which allows for both undercounting and overcounting.
Using our variable names: APC is assumed a sum of a binomial distributed variable
with a probability, p, of counting a passenger and number of boarding passengers, n =
PC; and a Poisson distributed variable with mean µ. The binomial component models
the undercount and the Poisson the overcount.

APCi | pci = X + Y, (4.8)
where X ∼ Bi(pi, ni = pci)

and Y ∼ Po(µi).

The calculation of f(apci | pci) can be done easily as the convolution of the two
distributions. Let fX(x | pci) denote the PMF of X and fY (y) the PMF of Y. Then

f(apci | pci) =
apci∑
m=0

X[m] · Y [apci −m], (4.9)

where X = [fX(0 | pci) , fX(1 | pci), . . .],
Y = [fY (0) , fY (1) , . . .].

The mean parameter of Y , µ, is modeled with the log-link (3.8) and is assumed to
be constant for all pci ≥ 1. We use the logit-link (3.10) for the parameter p of X , and
also assume it to be constant.

When there are no boarding passengers, PC = 0, only overcounting is possible. It
could therefore be natural to assume the same overcounting error for both pci = 0 and
pci ≥ 1. However these are quite different situations. When pci = 0 the door might not
even have opened at all. We also noted in Section 2.3 that when there are no boarding
passengers, overcounting only occurred 7 out of 1904 times. We choose to fit separate
estimates for µ for PC = 0 and PC ̸= 0.

The parameters of (4.8) is modeled as follows:

pi =
exp(p0)

1 + exp(p0)
(4.10)

µi =

{
exp(bzero), if pci = 0

exp(b0), if pci ̸= 0

4.2.2 Prior
In order to obtain a model for PC conditional on APC, we also need a prior distribution
on PC. We take an empirical Bayesian approach in which we estimate the parameters
of this distribution from the data. Because there are no covariates, it is fairly straight
forward to fit a range of count distributions by maximum likelihood, and select the best
fit by AIC.

The zero-inflated Poisson-inverse Gaussian (ZIPIG) distribution is found to be the
best fit, with parameters

µ = 1.5081, σ = 1.1811 and ν = 0.50122.
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The empirical prior has PMF:

f(pc | µ, σ, ν) =

{
ν + (1− ν)f(y | µ, σ), if y = 0

(1− ν)f(y | µ, σ) if y ̸= 0
(4.11)

where f(y | µ, σ) is the PMF of the Poisson-inverse Gaussian distribution (3.4) and
0 ≤ ν ≤ 1.

4.2.3 Normalizing Constant
Having specified and found parameter estimates for the prior and likelihood, the final
piece is the normalizing constant in the denominator of (4.7). While this sum in theory
goes to infinity, in practice we can safely set an upper limit on the possible values of PC.
It is clear that there is a limit to how many passenger boards through one door during
a stop. We noted in Section 2.3, that the maximum value of PC in our data set is 16,
and that the frequency of observations decrease as PC increases. We conservatively set
the upper limit to 25. Now the normalizing constant is a finite sum, and the calculations
needed to find the values of f(pc|apc) are simple and executed quickly in R.

4.3 Aggregate Models
The following subsections describe how we apply the proposed door-level models to
stop- and journey-level aggregates.

4.3.1 Stop Level
There are four doors on a bus, so during a stop we have four door-level counts. We
denote the random variable for the total number of boarding passengers at a single stop
PCstop. It is the sum of four, assumed independently distributed, random variables.

PCstop,i = PC1,i + PC2,i + PC3,i + PC4,i.

At a stop we have the set of observations

apci = [apc1,i, apc2,i, apc3,i, apc4,i].

Given the set of observations we from our models calculate the probability vectors

PCj,i = [P (PCj,i = 0), P (PCj,i = 1), . . . , P (PCj,i = 25)]

for each door j ∈ [1, 2, 3, 4], assuming PC only takes values in [0, 25]. This assumption
has already been made for DGP-M. The probability vectors from GLM nearly always
sum to one, but are still normalized. Now the probability vector for PCstop,i can be
calculated by repeated convolution.

PCstop,i = [[[PC1,i ∗ PC2,i] ∗ PC3,i] ∗ PC4,i]

= [P (PCstop,i = 0), P (PCstop,i = 1), . . . , P (PCstop,i = 100)].

The models GLM and DGP-M are both applied in such a way to clusters of four door-
level observations, grouped by the variable stop. The resulting probability vectors are
considered discrete probabilistic models with possible outcomes [0, 1, . . . , 100].
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4.3.2 Journey Level
There are 22 distinct journeys in our data set, these have between 96 and 164 observa-
tions at door-level 2.5. Assuming that these observations are independently distributed,
the total number of boarding passengers for a single journey, denoted as PCjourney,
follows a normal distribution, by the central limit theorem. The expected value and
variance of PCjourney can be calculated as the sum of the individual expectations and
variances, respectively, for each door-level observation.

The individual expectations and variances at door-level,

E[PCi] =
∑
PC

pc · f(PCi = pc)

and

V [PCi] = E[PC2
i ]− (E[PCi])

2

=
∑
PC

[pc2 · f(PCi = pc)]− (
∑
PC

pc · f(PCi = pc))2,

are calculated numerically for both GLM and DGP-M. Theoretical expressions for the
approximate expectation and variance of the k-inflated double Poisson-distribution were
derived, but these deviated too much from the numerical calculations, especially for
smaller values. The derived theoretical approximations can be found in Appendix A.

Door-level observations are grouped by the variable journey and the total expecta-
tions and variances are calculated for both GLM and DGP-M. This results in continuous
normal probabilistic models for PCjourney.

In addition to grouping door-level observations by journey we create random group-
ings of 100 observations, we denote these groupings ”random journeys”. Four sets of
random journeys are generated and provide contrast to the actual journeys. This allows
us to investigate whether there are any correlation between door-level observations in
the true journeys which are not present for the random journeys.

4.4 Model Evaluation
We now have four probabilistic models for the number of boarding passengers at door-
level, PC, given the corresponding automatic count, APC. These are PO, DPO,
KIDPO and DGP-M. We first compare PO, DPO and KIDPO and denote the preferred
one GLM. GLM is then compared to DGP-M. We also investigate the performance of
GLM and DGP-M on PCstop and PCjourney.

In assessing the various models, we employ several statistical measures. At the
door-level, the models are compared using AIC, RPS and PIT histograms. Each of these
provide unique insights. AIC (3.13) measures the goodness-of-fit of the models to the
training data, RPS (3.15) evaluates the accuracy of the probabilistic predictions, and PIT
histograms visually presents the distribution of the PIT residuals (3.17), which is ideally
close to the uniform distribution on [0, 1], thus allowing us to assess the calibration of
the models.

Further, at both the stop- and journey-level, the GLM and the DGP-M are compared
using CRPS (3.16) and PIT histograms. The CRPS generalizes the RPS to the case of
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continuous outcomes. PIT histograms again provide a visualization for assessing the
calibration.

4.5 Software and Implementation
All data analysis and implementation is performed in R (R Core Team, 2021), through
extensive use of the tidyverse (Wickham et al., 2019) and gamlss (Rigby and Stasinopou-
los, 2005) packages. Plots are created using ggplot2 (Wickham, 2016).

The PO- and DPO-models are fitted using the gamlss()-function from the gamlss
package for R, with method = RS() (Rigby and Stasinopoulos, 2005). It finds MLEs
for the parameters using the RS algorithm which is thoroughly explained in Stasinopou-
los et al. (2017, p.59-69).

Our proposed KIDPO-model expands on the existing framework by allowing k to
vary as a function of the explanatory variable. No current implementations were found
to allow for this novel approach. The gamlss-framework for example is only able to
fit k-inflated models with fixed k. We therefore implement the log-likelihood for model
(4.6) ourselves in R using dKIDPO() from gamlss.countKinf (Mohammadpour and
Stasinopoulos, 2018). To find MLEs for the parameters of the KIDPO-model, we em-
ploy the optim()-function from base R. The log-likelihood is maximized directly using
box-constrained quasi-newton, L-BFGS-B.

MLEs for the parameters in the likelihood function in DGP-M, are found similarly.
(4.9) is implemented in R using dpois() and dbinom() which are included in base R.
This is again maximized using optim().

To find the best fit for the empirical prior, we make use of the fitDist(type =
”counts”)-function from gamlss (Rigby and Stasinopoulos, 2005). This function fits
all relevant parametric, count distributions, by maximum likelihood and presents their
AIC.

AIC (3.13) is provided for all fits made using gamlss(), and are otherwise eas-
ily calculated from the log-likelihood. RPS (3.15) is calculated using rps() from the
verification-package (Laboratory, 2015), and for CRPS (3.16) we make use of crps.numeric()
from the package scoringRules (Jordan et al., 2019).

4.5.1 PIT
The PIT residuals (3.17) represents the likelihood that a random variable is less than
or equal to the observed value, according to the model. These are easily calculated for
journey-level aggregates as the distributions are continuous.

For door- and stop-level however, our predictive distributions are discrete, and we
must adjust for this so that the PIT histogram appears uniform for a well-fitting model.
As presented in Subsection 3.5.3, the PIT residuals ui are random variables for discrete
distributions, uniformly distributed on (ai, bi] (3.18) (3.19). Instead of computing a sin-
gle PIT residual for each observation, we repeatedly sample ui. This process generates
a collection of PIT values for each observation. Subsequently, we merge these sets into
a single vector, from which we construct the histogram. This approach enables us to
account for the discreteness of our predictive distributions, ensuring that a uniform PIT
histogram corresponds to a reliable model.
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Figure 4.1: Discrete PIT illustration.

The approach can be illustrated using Figure 4.1 which shows a discrete, predictive
CDF. The upper red line shows bi = 0.690 and the lower red line shows ai = 0.126.
For an observation pci = 3 we repeatedly sample from the uniform distribution on the
interval (0.126, 0.690], between the red lines. 100 PIT samples are generated for each
observation.
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5
Results

In this chapter we present and compare the results for the probabilistic models for PC
described in Chapter 4. We show parameter estimates and fitted PMFs, and present AIC-
and (C)RPS-values as well as PIT histograms. We begin by considering the results of
four door-level models for PC, first the three generalized linear models (GLMs), and
then the data generating process model DGP-M. We then move on to the results for
stop- and journey-level aggregates, PCstop and PCjourney.

5.1 Results for Door-Level Probabilistic Models for PC
This section considers and compares the three GLMs; PO, DPO and KIDPO; both in
terms of AIC and RPS, and visually by inspection of the respective PMFs and PIT
histograms.

5.1.1 Generalized Linear Model - GLM
The three GLMs are presented in Table 5.1 with estimated predictors and AIC values,
and parameter estimates and AIC values for zero-counts, APC = 0, in Table 5.2. The
total AIC is presented along with RPS in Table 5.3. The fitted PMFs are plotted for some
selected values of APC in Figure 5.1, and together over the empirical distributions in
Figure 5.2. The PIT histograms are shown in Figure 5.3.

As expected, due to the PO being equidispersed, the resulting model has too much
variance. When plotted over the empirical distribution in Figure 5.2 it is obvious that it
is too flat. This is also confirmed by the PIT histogram (5.3) which shows a clear peak
in the middle.

The DPO was included to improve on this shortcoming of the PO, and it is able to do
so as we can see from the AIC value and in Figure 5.1. It has a much tighter distribution
about the mean, and in Figure 5.2 it is clear that it is a better fit to the data. The PIT
histogram of the DPO is an obvious improvement but the asymmetry is an indication
that there is some skew in the data relative to the model predictions. There is also still an
excess of observations at PC = APC relative to the DPO, especially for larger values
of APC.

The KIDPO was implemented in an effort to capture this peak in the empirical data.
In Figure 5.1 it is clear that the model behaves like we wanted. The PMF has a peak
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Figure 5.1: PMFs of the three GLMs, each shown for three selected values of APC.

in PC = APC the weight of which decrease linearly with APC. The k-inflation also
allows the double Poisson component to be shifted, as seen by the steeper ηµ,i (5.1).
This lets the model reflect the skewed nature of the data. Figure 5.2 seem to indicate a
much better fit to the data. This is confirmed by a considerably smaller AIC value (5.1)
and the PIT histogram is now very close to uniform.

For zero-counts the situation is different as we don’t have underdispersion. In fact
we see that DPO and KIDPO fit a large overdispersion, σ > 1. Nevertheless, KIDPO is
the best fit also here with a smaller AIC than the two others.

KIDPO is the best fit among the considered distributions in terms of AIC and PIT
histograms, for APC ̸= 0 and also for APC = 0. RPS values (5.3) backs this conclu-
sion, with KIDPO having the smallest average RPS among the GLMs. We select it as
our preferred GLM, and denote it GLM.

Model ηµ,i = µi ησ,i = log(σi) ην,i = logit(νi) AIC
PO 1.113 · apci 2225.7

DPO 1.097 · apci −1.323 1625.4
KIDPO 1.196 · apci −0.854 0.350− 0.143 · apci 1496.3

Table 5.1: The three GLMs with estimated predictors; ηµ,i, ησ,i and ην,i; and AIC values for
apci ≥ 1.

Model µi σi νi AIC
PO 0.049836 835.536

DPO 2.036762 · 10−16 16.57673 764.181
KIDPO 0.003997 6.196595 0.8211267 727.63

Table 5.2: The three GLMs with estimated parameters; µi, σi and νi; and AIC values for zero-
counts.
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Figure 5.2: Fitted PMFs for the three GLMs compared to empirical data. The histograms shows
the distribution of observed data.
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Figure 5.3: PIT histograms for the GLMs.

Model AIC Average RPS
PO 3071.241 0.1670

DPO 2395.596 0.1333
KIDPO 2223.909 0.1296

Table 5.3: Total AIC and average RPS for the GLMs.

5.1.2 Data Generating Process Model - DGP-M

We now consider the data generating process model DGP-M for door-level PC. Param-
eter estimates for the likelihood function are presented in Table 5.4. The total AIC and
average RPS is listed in Table 5.5 along with that of GLM. Plots of the fitted PMF for
selected APC values are presented in Figure 5.4. Figure 5.5 show plots of the DGP-
M and GLM PMFs over empirical distributions and their PIT histograms are shown
together in Figure 5.6.

Visually the DGP-M looks quite similar to the GLM for small values of APC. For
larger values however they begin to differ substantially and we specifically note that the
DGP-M fails to adequately capture the peak we see in the empirical data, this is due to
the relatively strict assumptions we have made for DGP-M. Our suspicion from visual
inspection is that DGP-M provides a slightly worse fit, this is belief is strengthened
by consulting the AIC values. Though the AIC of DGP-M is of the same order of
magnitude as that of the GLM-AIC, it is still markedly worse with |∆AIC | = 28.138.
RPS gives further evidence to GLM outperforming DGP-M, as it has a slightly higher
average RPS. DGP-M is still an improvement on both PO and DPO though.

The PIT histogram of DGP-M looks very close to uniform for PIT values below 0.65
but then has a small dip and a peak. This indicates that when the model underestimates,
it tends to underestimate by a larger amount then what would be ideal.

The model DGP-M provides a slightly worse fit than the GLM. It does however per-
form surprisingly well considering the simple, and straight forward assumed data gen-
erating process and we suspect an even better fit should be possible with some changes
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Figure 5.4: PMF of DGP-M shown for selected values of APC.

to the model assumptions.

Parameter Estimate
p 0.8141423

µ

{
0.09283607, if PC ̸= 0

0.00367642, if PC = 0

Table 5.4: Parameter estimates of the likelihood function in DGP-M.

Model AIC Average RPS
GLM 2223.9 0.1296
DGP-M 2253.8 0.1304

Table 5.5: Total AIC and average RPS for GLM and DGP-M.

5.2 Results for Stop- and Journey-Level PC
We further consider GLM and DGP-M on stop and journey aggregates, PCstop and
PCjourney. Stop-level PIT histograms are shown in Figure 5.7 and journey-level in
Figure 5.8. Figure 5.9 show PIT histograms for the random journeys. The average RPS
of both models for stop-level aggregates are presented in Table 5.6, and average CRPS
for journey-level aggregates in Table 5.7.

We first note that GLM outperforms DGP-M at stop-level in terms of RPS and at
journey-level in terms of CRPS. This is what we would expect from GLM being the
better model for door-level observations.

Next we observe that while both GLM and DGP-M had PIT histograms that closely
mirror uniform distributions at the door-level, this uniformity does not extend to stop-
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Figure 5.5: PMFs of GLM and DGP-M. The histogram shows the distribution of observed data.
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Figure 5.6: PIT histograms for GLM and DGP-M on door-level observations.

Figure 5.7: PIT histograms for GLM and DGP-M on stop-level aggregates.
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Figure 5.8: PIT histograms for GLM and DGP-M on journey-level aggregates.

Model Average RPS
GLM 0.3945
DGP-M 0.3996

Table 5.6: Average RPS of GLM and DGP-M for prediction of stop-level aggregates.

Model Average CRPS
GLM 10.9810
DGP-M 11.1352

Table 5.7: Average CRPS of GLM and DGP-M for prediction of journey-level aggregates.

and journey-level aggregates. Looking at the stop-level PIT histograms both models
tend to overestimate, with PIT values below 0.5, too frequently. The peak at the right
border of the PIT histograms are most likely due to outliers, this is then an indication that
when the models don’t overestimate, they tend to make substantial underestimations,
with PIT values close or equal to 1.

For journey-level aggregates, we should interpret the PIT histograms with caution
due to the limited number of data points, 22 (2.5). Nonetheless, the deviation from
uniformity is striking, with the PIT histograms demonstrating a conspicuous U-shape.
Both models exhibit a tendency to significantly overestimate the aggregates, while still
sometimes producing extreme underestimates.

The discrepancy between the door-level PIT histograms and those at the stop- and
journey-levels suggests the presence of correlations between observations at the same
stops and journeys. This, in turn, indicates that the independence assumptions we made
when applying the models to stop- and journey-level aggregates are not being met. This
observation is further validated by the PIT histograms for the random journeys depicted
in Figure 5.9, which do appear to more closely resemble a uniform distribution.
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Figure 5.9: PIT histograms for GLM and DGP-M on aggregates of random groupings of 100
door-level observations. Four realizations shown.

39



5 Results 5.2 Results for Stop- and Journey-Level PC

40



6
Discussion and Final Remarks

In this thesis we have sought to develop door-level, probabilistic models for the pas-
senger count, PC, using the automatic count, APC. Specifically a generalized linear
model, GLM, was identified as desirable due to the complex data generating process,
DGP, and the linear relation between APC and the expected value of PC. However,
conventional GLMs fail to adequately model the specific characteristics of our data.
The data is significantly underdispersed relative to the Poisson, and the double Poisson
distribution is insufficient in modeling this underdispersion due to the high frequency
of certain values. Although previous research has treated 0- and k-inflated distribu-
tions within the context of GLMs to rectify such issues, the current implementations are
insufficient as they require the inflation point to be fixed.

In response to these challenges, we propose a GLM that utilizes the k-inflated double
Poisson, KIDPO, in a way that allows the inflation point k to vary with the explanatory
variable. This allows for the modeling of data where the marginal distributions are all
KIDPO, but with variable inflation points ki.

Initial evaluations of the proposed KIDPO-GLM indicate promising results for mod-
eling this kind of data. It displays an excellent fit to the door-level observations, with the
PIT histogram closely resembling a uniform distribution, suggesting a well-calibrated
model. Additionally, it outperforms the other proposed model, DGP-M, which attempts
to capture the true DGP, both in terms of AIC at the door-level and in terms of (C)RPS
for stop- and journey-level aggregates. It is worth noting, though, that the DGP-M
could likely be improved with a more rigorous analysis than undertaken in this thesis.
However, such an improvement would necessitate a comprehensive understanding of
the DGP and its potential sources of error.

The DGP-M model does offer some notable benefits. Firstly, it attempts to model
the true DGP, offering a more representative depiction of the underlying phenomenon.
Secondly, it provides a straightforward mechanism for incorporating prior knowledge
on PC. Factors such as the time of day, bus stop location, and day of the week provide
valuable insights into the amount of passengers that are expected. This information can
be readily integrated into the model’s prior assumptions, a feat that might pose a greater
challenge with a GLM.

Applying the models to stop- and journey-level aggregates of PC, revealed an un-
deniable dependency among door-level observations. A portion of this dependency can
likely be attributed to door-issues, as discussed in Section 2.1, on the specific journey
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or at the specific stop. The door-issues tend to persist throughout a journey, resulting in
extreme outliers relative to the rest of the data. Consequently, the models overestimate
the mean due to the presence of outliers. When aggregating, this overestimation is com-
pounded and the models tend to consistently overestimate the true PC aggregates when
door-issues are absent, yet underestimate significantly in their presence.

To account for the intra-group dependency that exist within the journey and stop
variables during the modeling process, we could incorporate certain random effects cor-
responding to these variables. However, it’s crucial to note that these would be inher-
ently unavailable for use in a practical scenario on other data. A strength of GLMs is
that random effects can be included fairly easily. A random intercept for journey on
both or either of µ in the double Poisson-component and ν for the inflation, should be
able account for the door-issues.

Incorporating random effects into the DGP-M model is less straightforward. One
could include a random effect on the parameter p of the binomial component, or the
parameter µ of the Poisson component. An additional possibility involves expanding
the model to include a component that directly accounts for the door-issues. In general
it does however provide more of a challenge than for GLMs, as we would need to better
understand the source of dependency.

While we suspect that the door-issues are the primary source of dependency, other
sources could potentially contribute. For instance, similar APC values might tend to oc-
cur together at stop- or journey-level, and the models might show varying performance
across different ranges of APC. Additionally, inherent differences in the APC system
performance may exist between different bus models due to variations in sensor place-
ment or during different weather conditions. Employing the our proposed KIDPO-GLM
can enable public transport agencies to identify the factors that impact the performance
of their APC systems, and include effects for these.

For this thesis, we have chosen to omit data pertaining to alighting passengers due
to substantial errors present in that data. Consequently, estimators for the aggregated
number of passengers based on our models utilize a single count for each passenger.
Incorporating alighting data could potentially enhance aggregate models as each pas-
senger would essentially be counted twice. Furthermore, at the door-level, alighting
passengers form an integral part of the true DGP. Thus it should be included as a vari-
able in DGP-M, and could potentially improve the GLM as well.

Finally it should also be noted that the vast majority of the data set contains small
values for APC and that there are very few data points in the upper range of APC.
This imbalance makes it challenging to evaluate the performance of the model on larger
counts. However as discussed in Section 2.3, these larger counts logically represent a
relatively larger fraction of total passengers compared to their proportion of data points.
Thus, any useful model should perform adequately also in this range. Consequently
efforts should be made to gather more data also in the upper range of APC, in order to
improve model fit in these ranges.
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Appendix

A Expectation And Variance of the K-inflated Double Poisson Dis-
tribution

The k-inflated double Poisson PMF is stated in (3.7), and using the accurate approx-
imations for the expectation and variance of the double Poisson (3.6) we can derive
expressions for the approximate expectation and variance of the k-inflated double Pois-
son distribution.

First we establish that for a double Poisson distributed random variable X , with
PMF g(x) (3.5):

E[X] =
∑
X

x · g(x)

and

V [X] = E[X2]− (E[X])2

=
∑
X

[x2 · g(x)]− (
∑
X

x · g(x))2∑
X

[x2 · g(x)] = V [X] + (
∑
X

x · g(x))2.

It follows from (3.6) that∑
X

x · g(x) ≈ µ, (6.1)

and ∑
X

[x2 · g(x)] ≈ µσ + µ2. (6.2)

The PMF of a k-inflated double Poisson distributed random variable Y is

f(y | ν, µ, σ) =

{
ν + (1− ν)g(y | µ, σ), if y = k

(1− ν)g(y | µ, σ), if y ̸= k
(6.3)

where g(y) is the double Poisson-PMF (3.5). The expected value of Y is derived as
follows:

E[Y ] =
∑
Y

y · f(y)

= 0(1− ν)g(0) + 1(1− ν)g(1) + . . .+ kν + k(1− ν)g(k) + . . .

= kν + (1− ν) ·
∑
Y

y · g(y)
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and it follows from (6.1) that

E[Y ] ≈ kν + (1− ν) · µ. (6.4)

The variance is derived similarly

E[Y 2] =
∑
Y

y2 · f(y)

= 02(1− ν)g(0) + 12(1− ν)g(1) + . . .+ k2ν + k(1− ν)g(k) + . . .

= k2ν + (1− ν) ·
∑
Y

y2 · g(y)

V [Y ] = E[Y 2]− (E[Y ])2

= k2ν + (1− ν) ·
∑
Y

y2 · g(y)− (E[Y ])2

and it follows from (6.1) and (6.2) that

V [Y ] ≈ ν(1− ν)(k − µ)2 + (1− ν)µσ. (6.5)
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