
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Liv Breivik

Combining Artificial Neural Networks
with Reduced Order Models with
Applications to Classification
Problems

Master’s thesis in MTFYMA
Supervisor: Brynjulf Owren
July 2023





Liv Breivik

Combining Artificial Neural Networks
with Reduced Order Models with
Applications to Classification Problems

Master’s thesis in MTFYMA
Supervisor: Brynjulf Owren
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

This thesis serves as a proof of concept for the neural network reduction techniques provided
in [36] and [13]. The model that has been reduced is the VGG-16 model, trained on augmented
versions of both the CIFAR-10 dataset and the SVHN dataset. The procedure for constructing
a reduced neural network is to take the output from a layer in a full neural network, project
it to a smaller dimension using a projection matrix, and mapping the output onto the output-
space of the full neural network. The reduced neural network can then be re-trained using
knowledge distillation methods, if the accuracy is inadequate. The projection matrix con-
struction methods used were Proper Orthogonal Decomposition and Active Subspaces. The
input-output mapping methods that have been implemented are Feedforward Neural Net-
works and Polynomial Chaos Expansion. All combinations between the projection matrices
and input-output mappings have been implemented. This thesis provides incremental results
during the construction of the reduced neural network to evaluate the different steps of the
process. Quantitative and quantitative results are provided to see the effect of varying inde-
pendent variables within the reduced neural network methods. After presenting and discussing
the results as well as choices taken during the implementation, we give a recommendation for
the procedure of constructing reduced neural networks.
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Sammendrag

Denne avhandlingen er en konseptutføring for reduksjonsteknikkene for nevrale nettverk som be-
skrevet i [36] og [13]. Modellen som er blitt redusert er VGG-16-modellen, som er trent p̊a augmen-
terte versjoner av b̊ade CIFAR-10-datasettet og SVHN-datasettet. Prosedyren for å konstruere et
redusert nevralt nettverk innebærer å ta ut-dataene fra et lag i et fullstendig nevralt nettverk,
projisere dem til en mindre dimensjon ved hjelp av en projeksjonsmatrise, og kartlegge ut-dataene
til utdatarommet til det fullstendige nevrale nettverket. Det reduserte nevrale nettverket kan der-
etter trenes p̊a nytt ved hjelp av metoder som kunnskapsdestillasjon hvis nøyaktigheten ikke er
tilstrekkelig. Metodene til konstruksjon av projeksjonsmatrisene var Proper Orthogonal Decom-
position og Active Subspaces. De implementerte metodene for kartlegging av in-data og ut-data
er Feedforward Neural Networks og Polynomial Chaos Expansion. Alle kombinasjoner mellom
projeksjonsmatrisene og inndata-utdata-kartleggingene er implementert. Denne avhandlingen gir
gradvise resultater under konstruksjonen av det reduserte nevrale nettverket for å evaluere de
ulike stegene i prosessen. Kvantitative og kvalitative resultater blir presentert for å se effekten av
variasjoner i uavhengige variabler innenfor metodene for reduserte nevrale nettverk. Etter å ha
presentert og diskutert resultatene, samt valgene som ble tatt under implementeringen, gir vi en
anbefaling for prosedyren for å konstruere reduserte nevrale nettverk.
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1 Introduction

An introduction to artificial neural networks is often done by comparing the processes of the neural
network to processes in the brain, as proposed in [35]. The father of AI is generally accredited
to be Alan Turing, the inventor of the Turing test and the author of the 1948 paper Intelligent
Machinery [56]. More than 75 years later, the ideas behind artificial intelligence and machine
learning affect the daily discourse. Image recognition models are utilized to evolve self-driving
cars, based on the driving recorded by Tesla users’ autopilot function[49]. Radiologists are using
AI to enhance their practice[1]. Search engines such as Google are using machine learning and data
from their users to personalize advertisements displayed[16]. Natural language processing models
such as ChatGPT [40] have become household names and have sparked societal debates regarding
the future of AI[31]. All of this is made possible through the advancement of computers, and the
following digitalization.

Python libraries such as PyTorch [42] are available, giving people the opportunity to construct both
complex and simple neural networks from their home office. Famous models can be directly accessed
through the sublibrary Torchvision. An increased knowledge of coding in the human population as
well as an increased interest in neural networks has lead to amateur machine learning competitions
as well as large-scale neural network competitions, giving us new and improved models. Image
classification, for example, has evolved some of its more famous models through the ImageNet
competition[46].

With the tasks of the neural networks becoming more specialized and complex, the repertoire
of deep and complex models increases as well, making their computations more computationally
expensive[55]. The digitalization leading to a higher amount of data yields a higher accuracy, yet
also larger computation time for neural networks. This also restrains the artificial neural networks;
a desired accuracy of a model requires a certain amount of data, available space on the computer,
and time to train the neural network.

For decades, mathematicians have been using model order reduction methods to simplify and
visualize high-dimensional data[33], as well as reduce computational complexity of mathematical
models. Some of the more renowned methods include Finite Elements Method[10] and Principal
Component Analysis[17].

The scope of this thesis will revolve around reduced order modeling of neural networks, as proposed
in [36, 13]. The reduced system we are constructing consists of three parts: a split of the system
into a pre- and post-model, a model reduction layer for projecting the output of the pre-model onto
a lower dimension, and an input-output mapping to map the reduced output onto the space of the
output from the full original model. The numerical methods used for the reduction layer are Active
Subspaces (AS) and Proper Orthogonal Decomposition (POD). Both methods base themselves on
creating a projection matrix using spectral decomposition. The input-output mappings used are
a Feedforward Neural Network (FNN) and Polynomial Chaos Expansion (PCE). Additionally, a
technique called Knowledge Distillation is employed for re-training the reduced neural network
after construction, improving accuracy.

Chapter 2 thoroughly introduces the concept of artificial neural networks. It focuses on mathem-
atical properties, while visualizing various concepts important to the subject matter. Chapter 3
consists of mathematical preliminaries. These are important to have a grasp of the model order
reduction. Some of the topics touched upon here are least squares method, singular value decom-
position, and frequent directions method. Chapter 4 introduces model order reduction of neural
networks. Section 5 consists of a description of the implemented code (for reproduction purposes),
the datasets, the model used, and specifications to the numerical methods. Section 6 consists of
results for the full models, and the reduced models before and after the re-training step. Both a
quantitative and a qualitative analysis of the reduced model is portrayed. Section 7 contains a
discussion of the results. Some of the topics touched upon are the possibilities for a generalized
reduced model, and the extension to datasets of larger dimensions.
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2 Artificial Neural Networks

The aim of an Artificial Neural Network (ANN) is to approximate an unknown function F(x),
given the input x and output y.

The approximation of the unknown function F(x) is done through the construction of different
layers, where each layer has a set amount of neurons. The different layers also have weights and
biases that help determine the worth of each input inside the neuron. The weights and biases have
been determined through a training period characterized by gradient-based methods. Mathemat-
ically, the different layers represent parameterized functions Fi(x; θi), and so the approximation
F(x) is in fact the composition of these.

By propagating the inputs x through the layers in the neural network, one gains an approximated
output ŷ.

Most of the information attained in this section is from [19], [21] and [36].

2.1 The Neuron

The neurons of artificial neural networks are essentially nodes with numerical values dependent on
the input data. In order to explain them more fully, we need to define some necessary terms:

• Input vector x = [x1, x2, . . . , xn] ∈ Rn. The data that is sent into a layer.

• Weights wij , belonging to each respective input i at every neuron j. This means that if
a node has k inputs, there will equivalently be k associated weights that belong to every
connection between the neuron j and the neurons i = [0, . . . , k].

• Bias bj , a scalar value associated to every neuron j. This is independent of the various inputs.

• Activation function σ(x). The purpose of this is to introduce non-linearity to the output of
the artificial neural network.

• Predicted output ŷ. This denotes the output one gets from the neuron.

Figure 2.1: The setup of the individual neurons in a neural network.

The i’th neuron in an ANN is visualized in figure 2.1. Here one can see the inputs x1, . . . , xn being
sent into the neuron, with their associated weights wi. The aim of the weights is to measure the
importance of different neuron connections. The bias term introduces flexibility by allowing the
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neuron to adjust its own output independently, and ensures that the inputs in the neuron do not
necessarily lead to zero.

All the inputs, weights, and biases fed into the neuron give us the linear combination

z =

n∑
j=1

wj · xj + b. (2.1)

The linear combination can better be expressed in matrix form. Denoting an array of inputs as
x = [x1, . . . , xn] and the associated weight vector as W = [w1, . . . , wn]. Still denoting our bias as
the scalar b, we set up the vectorial form

z = xTW + b. (2.2)

The linear combination from the neuron is propagated further to an activation function σ(x). The
purpose of this is to introduce non-linearity, but also to determine whether the neuron in question
should activate more neurons or be deactivated, based on its inputs. For example, if the activation
function σ(x) gives 0 as an output from the linear combination z, all the inputs and weights that
have been assembled in z will have no further importance.

We thereby denote the output from every neuron as

a = σ(xTW + b) = σ(z), (2.3)

otherwise known as the activation of a neuron.

From equations (2.2)-(2.3) we see that sending an input x through a neuron will provide some sort
of transformation. Constructing functions for each separate transformation in a neuron, we have:

• flinear, denoting the linear combination xTW + b.

• σ, the activation function.

• fout, which sends out the output from the neuron to its next connections.

The combination of the three separate transformations gives us a general expression for the neuron
as a function,

f = fout ◦ σ ◦ flinear. (2.4)

This applies to any neuron in a neural network.

2.2 Topology of artificial neural networks

Artificial neural networks consist of several layers with different amounts of neurons in each layer.
These are all interconnected.

The topology of an ANN is comprised of three layer types:

• Input layer: The first layer of the ANN, where the input data x(0) is received.

• Hidden layers: The layers within the ANN that are not directly connected to the input nor
the output. The amount of hidden layers and nodes within the hidden layers is dependent
on the network architecture and complexity.

• Output layer: The final layer of the ANN, producing the network output. The amount of
nodes are dependent on the task of the neural network, but are generally equivalent to the
amount of classes that the problem deals with.
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Figure 2.2: Depiction of the different layers in a neural network.

From figure 2.2 we clearly see the topology of a neural network, with the hidden layers being any
layer that is not directly connected to the input nor the output.

The ANN is used to approximate an unknown function F(x). Say we have an ANN consisting of L
layers, where from equation (2.4) we know that each neuron will act as a function f transforming
the input they receive. Denoting fi as all the neuron transformations present in a layer i. This
means that, given an input x(0), the first layer will have the output a(1) = f1(x(0)). The second
layer will have the output a(2) = f2(f1(x(0))). This continues recursively, so that the n’th layer will
have the output a(n) = fn(fn−1(. . . (f1(x(0))) . . . )). Formulating this for the ANN with L layers,
we get

ANN(x(0)) = fL+1 ◦ fL ◦ · · · ◦ f2 ◦ f1(x(0)) = F(x(0)), (2.5)

with each function fi denoting the transformation at a respective layer i.

From section 2.1, we know that every neuron produces an output a = σ(wTx+ b). This notation
can be taken further to describe the output of every layer.

Denoting x = [x1, . . . , xn] as an input vector consisting of all the nodal values in a layer k. Using
the structure of figure 2.2, where every neuron in layer k is connected to every neuron in layer
k + 1.

Supposing there are n neurons in layer k, and m neurons in layer k + 1. For every existing
connection between any neuron in layer k and k+ 1, there must exist a weight matrix W ∈ Rn×m

that describe all the weight connections. The matrix product xTW thus gives us a vector denoting
the input of neurons with weights from layer k to layer k + 1. At layer k + 1 there must also be
bias existing for every neuron, so that there will be a vector b = [b1, . . . , bn] consisting of the bias
values. The matrix form for describing the input from layer k to layer k + 1 will be

σ(xTW + b) = σ(z) = a(k), (2.6)

where we use z as notation for the total linear output from a layer, and ak as the activation from
neuron k.
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Figure 2.3: An illustration of the notation used for the different connections in a neural network.

Notationwise we will consistently write w(l) for the weight matrix at layer l, and b(l) for the bias at

layer l. If the notations have subscripts, such as w
(l)
j and b

(l)
j , this specifically concerns neuron j of

the layer l. In those cases the weight is a vector and the bias is a scalar. This notation obviously

holds for the input x
(l)
j , weighted input z(l), and output x

(l+1)
j of a neuron.

2.3 Training and testing process

The datasets that are sent through neural networks are divided into two categories: a training and
a testing set.

The training set is used for the initialization of the neural network. In order for the weights and
biases to be set properly for the respective network, they need to ”learn” from members of the same
dataset. Therefore, the training set is passed through in a gradient-based process called backward
propagation.

Accuracy is measured using loss functions. The loss function measures the difference between
the actual labels and the output of the neural network. In order to enhance the performance, a
gradient-based optimizer is used to minimize the loss.

The testing set is used to check accuracy after the training process. Distinguishing the testing set
from the training set is important for measuring the neural network’s performance using unbiased
validation.

2.3.1 Loss functions

Loss functions are used to measure the accuracy, and are extremely important for optimization
of weights and biases. The loss function takes the true labels y and the model output ŷ as input
values, and calculates the difference between the two. The loss function used is dependent on the
problem that one aims to solve.

Introducing some loss functions that will be used for the purpose of this thesis.

Example 2.1 (Mean Squared Error). The Mean Squared Error is one of the more simple loss
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functions to understand.

Denoting N as the amount of samples in a dataset, we define the MSE-loss as

LMSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2, (2.7)

equivalent to the squared l2-norm of the difference between yi and ŷi. It is widely used in regression
problems. A downside of this loss function is that it heavily penalizes outliers.

Example 2.2 (Negative Log-Likelihood Loss). Negative Log-Likelihood Loss is often used in clas-
sification problems, and is to be done after applying a probabilistic activation function.

Denoting C as the amount of classes, i.e. the output of our respective model. The NLL-Loss for a
single sample will be given as

LNLL(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

tji · log ŷji, (2.8)

where tji is defined as a binary truth value that outputs 1 if yj belongs to the i’th class, and 0
otherwise. As the output of the model has been sent through a probabilistic activation function,
such as for example Softplus, the model output ŷji will be the probability for the variable being in
the respective class.

The NLL-Loss thereby penalizes giving low probabilities to the correct classes.

Example 2.3 (Cross-Entropy Loss). The Cross-Entropy Loss, in this case for multiple classes, is
a variant of the Negative Log-Likelihood Loss for the multi-class problem.

Defined as

LCE(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

[yj ln ŷj + (1 − yj) ln(1 − ŷj)] , (2.9)

we see that it, instead of discarding values through the binary truth value, it calculates the loss
from all the probabilities given in the input. This means that the Cross-Entropy, in addition to
penalizing low probabilities to the correct classes, also penalizes high probabilities to the wrong ones.

Example 2.4 (Kullback-Leibler Divergence Loss). Another name for the Kullback-Leibler Diver-
gence Loss is relative entropy. Instead of looking directly at the input values of the model output
y and the desired output, it computes a loss according to the difference between the respective
probability distributions of the input values.

Denoting p(x) as the probability distribution for y, and q(x) as the probability distribution for ŷ.
The Kullback-Leibler Divergence is given as

DKL(p|q) =

N∑
i=0

p(xi) log

(
p(xi)

q(xi)

)
. (2.10)

By looking at the probability distributions, we can calculate the amount of information lost when
approximating one probability distribution with another.

Due to the loss functions measuring accuracy, one aims to keep it as low as possible. This means
that updating the parameters W, b needs to be done whilst trying to minimize the loss. The
optimization problem we are trying to solve during the training process is therefore given as

min
(W,b)

{
1

ntrain

ntrain∑
i=1

Li
W,b(y

i, ŷi)

}
. (2.11)

In order to perform gradient-wise operations on the loss functions, we depend on the following two
assumptions:
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1. The total loss will be the average of the loss functions of all inputs.

2. The loss function can be written as a function of the outputs.

Note that these assumptions hold for the loss functions already introduced in this thesis.

2.3.2 Backward propagation

Backward propagation refers to the scheme of updating the weights and biases according to the
loss function. There are three key components to the backward propagation algorithm:

1. Forward pass: The input is propagated through the neural network. The loss function and
the accuracy is calculated afterwards.

2. Backward pass: The loss is propagated backwards into the network, and the gradients of the
loss with respect to the weights and biases are calculated.

3. Weight and bias updates: An optimization algorithm is used, using the gradients to update
the weights and biases according to what will minimize the loss.

These steps repeat themselves for several iterations, or epochs. Note that it is common to send
in the input in different batches, meaning that from ns samples one may send in a set amount of
j < ns samples at a time.

Forward pass We can use figure 2.3 to visualize the forward pass from a layer l to a layer l+ 1.
This is the same process as explained in section 2.2, where the output of a layer k is sent to a layer
k+1. The output from layer l is multplied with a matrix W featuring the weight components of all
connections from layer l to layer l+ 1. All the nodal biases from layer l+ 1 are then added to the
weighted output. The linear combination of the weights, inputs and biases is denoted as z(l). The
full output at layer l+ 1 will be the activation of z(l), so that we use the notation a(l+1) = σ(z(l))
as the output.

The forward pass therefore consists of computing

x(l) = σ(z(l)) = σ(w(l)a(l) + b(l)) = σ(w(l)x(l−1) + b(l)) = a(l+1) (2.12)

for all layers l = 1, . . . , L.

Backward pass: The whole aim of the backward pass step is to compute the gradient of the
loss with regards to the weights and the biases. This is to see how changing the parameters of the
neural network changes the accuracy, or the loss function.

Derivations of the backward pass formulas can be found in [43], [19] and [39]:

Recall the identities from section 2.2, where the weighted input to neuron j at the layer l is given
as

zlj =

n∑
k=0

wl
jka

l−1
k + blj . (2.13)

and the activation of neuron j at layer l is given as

alj = σ(zlj) (2.14)

In order to derive the equations for ∂L
∂w and ∂L

∂b , we need to introduce the concept of an error δlj
in the j’th neuron of the l’th layer. The error is found by introducing a perturbation or change
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in the input. The change in the input will lead to a change in the weighted input zlj , denoted

as ∆zlj . The shifted input will directly lead to a change in the activation, so that it becomes

aj = l = σ(zlj + ∆zlj). When this propagates through all the network layers, it will give a final

change to the system of ∂L
∂zl

j

∆zlj .

This means that the error from the change in the system is given as

δlj =
∂L
∂zlj

. (2.15)

We wish to find an expression for the error in the output layer of the entire system. Denoting the
total amount of layers in the system as L. Using expression (2.15) with the chain rule applied, we
get

δLj =
∂L
∂zLj

=
∂L
∂aLj

∂aLj
∂zLj

. (2.16)

Recall from equation (2.14) that aLj = σ(zLj ). We can thus rewrite equation (2.16) so that

∂L
∂aLj

∂aLj
∂zLj

=
∂L
∂aLj

∂σ(zLj )

∂zLj
=

∂L
∂aLj

σ′(zLj ). (2.17)

We thus have that the error of neuron j in the output layer L is given as

δLj =
δL
δaLj

σ′(zLj ). (2.18)

Componentwise, δL
δxL

j
denotes the rate of change of the loss as a function of the j’th output neuron.

Meanwhile, σ′(zLj ) denotes the rate of change of σ at zLj i.e. the weighted input of neuron j at the
output (before going through the activation function).

The output error in layer L on matrix form is given as

δL = ∇aLL ⊙ σ′(zL), (2.19)

where we have a vector of partial derivatives ∇aLL =
[

∂L
∂aL

1
, . . . , ∂L

∂aL
n

]
. Note that ⊙ denotes the

Hadamard product i.e. elementwise multiplication.

Another function we are interested in is the error in a layer l given in terms of the next layer,
which would be layer l + 1. Using the chain rule in vectorial form on equation (2.15) gives us

δlj =
δL
δzlj

=
∑
k

∂L
∂zl+1

k

∂zl+1
k

∂zlj
. (2.20)

The term ∂L
∂zl+1

k

is by definition equivalent to δl+1, so that we have

δlj =
∑
k

∂zl+1
k

∂zlj
δl+1. (2.21)

By the definition given in equation (2.13) we know that zl+1
k =

∑
j w

l+1
kj alj + bl+1

k . Furthermore,

we know that zlj = σ(zlj). The expression
∂zl+1

k

∂zl
j

is thus reduced to

∂zl+1
k

∂zlj
=

∂

∂zlj

∑
j

wl+1
kj alj + bl+1

k

 =
∂

∂zlj

∑
j

wl+1
kj σ(zlj) + bl+1

k

 = wl+1
kj σ′(zlj), (2.22)
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where all the terms that had a j ̸= k and all bias terms were discarded under the derivation
operation due to them being independent of the variable being differentiated.

Setting expression (2.22) into equation (2.21), we have that

δlj =
∑
k

(wl+1
kj δl+1

k )σ′(zlj). (2.23)

This is given in vectorial form as

δl = ((wl+1)T δl+1) ⊙ σ′(zl). (2.24)

Taking the transpose of the weight wl+1 and multiplying it with δl+1 is equivalent to moving the
error backward through the network. Furthermore, taking the Hadamard product between this
and σ(zl) is equivalent to moving the error back through the activation function in l.

The next equation we wish to derive is the rate of change of loss with respect to the bias. Con-
structing the expression for this and utilizing the chain rule for vectors gives us

∂L
∂bj

=
∑
k

(
∂L
∂zlk

∂zlk
∂bj

)
. (2.25)

Note that
∂zl

k

∂blj
= 0 when j ̸= k due to independence. This gives us

∂L
∂bj

=
∂L
∂zlj

∂zlj
∂bj

= δlj
∂zlj
∂bj

, (2.26)

where the definition of δlj has been used to simplify the expression.

Using the fact that zlj = (
∑

k w
l
jka

l−1
k + blj), we see the only term in

∂zl
j

∂blj
that will not equate zero

when differentiated with respect to the bias is in fact the bias. Furthermore, all the biases are
independent of each other, meaning we have

∂zlj
∂blj

=
∂

∂blj
(
∑
k

wl
jka

l−1
k + blj) =

∂blj
∂blj

= 1. (2.27)

The equation for the rate of change of the loss function with respect to the bias is therefore given
as

∂L
∂bj

= δlj . (2.28)

Physically this makes sense as the bias is not related to the different inputs, but the neuron in
itself. In matrix form this can be written as

∂L
∂b

= δ. (2.29)

The last equation we want to derive is the rate of change of the loss with respect to the weights.
Constructing this expression and using the chain rule, we have

∂L
∂wl

jk

=
∑
m

(
∂L
∂zlm

∂zlm
∂wl

jk

)
. (2.30)

Again, terms of the sum disappear when m ̸= j due to independence between neurons, leaving us
with

∂L
∂wl

jk

=
∂L
∂zlj

∂zlj
∂wl

jk

= δlj
∂zlj
∂wl

jk

. (2.31)

Using the expression zlj =
∑

k(wl
jka

l−1
k + blj) to find

∂zl
j

∂wl
jk

, we get
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∂zlj
∂wl

jk

=
∂

∂wl
jk

∑
m

(wl
jma

l−1
m + blj) =

∂wl
jk

∂wl
jk

al−1
j = al−1

j , (2.32)

where again terms disappear due to independence when k ̸= m.

The equation for the rate of change of the loss with respect to the weight is therefore given as

∂L
∂wl

jk

= al−1
k δlj . (2.33)

The expression looks complicated due to the weight matrix being multi-indexed. What the ex-
pression is saying is that the derivative of any connection between the neuron k in layer l− 1 and
neuron j in layer l will be the product of the input in the connection (i.e. neuron k in layer l− 1)
multiplied with the error of the output (i.e. the error of neuron j in layer l).

We have thus derived the fundamental equations of backward propagation:

δ(L) = ∇aL ⊙ σ′(z(L)),

δl = ((w(l+1))T δ(l+1)) ⊙ σ′(z(l)),

∂L
∂w

(l)
jk

= a
(l−1)
k δ

(l)
j ,

∂L
∂b

(l)
j

= δ
(l)
j . (2.34)

From equations 2.34 we have expressions that can be used to optimize the weights and biases
of the network. The relevance of them can be seen more clearly in the algorithm for backward
propagation:

Algorithm 1 Backward propagation

1: Pass x(0) to the first layer of the network. ▷ Input
2: Compute a(1) = σ(w(1)x(0) + b(1))
3: for each layer l = 2, . . . , L: do ▷ Forward pass
4: z(l) = w(l)a(l−1) + b(l)

5: a(l) = σ(z(l))
6: end for
7: Compute δ(L) = ∇aLL ⊙ σ′(z(L)) ▷ Output error
8: for each layer l = L− 1, L− 2, . . . , 2: do ▷ Backward pass
9: δl = ((w(l+1))T δ(l+1)) ⊙ σ′(z(l))

10: end for
11: Compute ∂L

∂w
(l)
jk

= a
(l−1)
k δ

(l)
j ▷ Computing the output

12: Compute ∂L
∂b

(l)
j

= δ
(l)
j

return ∂L
∂w(l) and ∂L

∂b(l)
▷ To be used in an optimzation algorithm

2.3.3 Optimization algorithms

Taking the derivatives calculated as inputs, the optimization schemes are crucial for finding the best
possible combination of bias and weights. There is an abundance of schemes to choose between,
as well as parameters that can be tweaked.

As stated in [26], there are some hyper parameters that will are relevant in all optimization al-
gorithms:

• Learning rate: The learning rate, denoted α for the sake of this thesis, is defined as the step
size for the parameter update. It has a big influence on the convergence of the optimization
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algorithm: if the learning rate is too small there will be very slow convergence, and the
scheme may even get stuck in a bad local minima. However, if the learning rate is too large
the optimization scheme may diverge. Some schemes implement adaptive learning rates,
where the learning rate may change throughout the iterations of the algorithm.

• Batch size: The batch size is defined as the number of inputs sent through the model during an
iteration, and so in an optimization scheme will also affect the amount of gradients calculated
at any given time. Some optimization schemes use the entire training set, however this
requires a large amount of memory and may not be feasible for many computers. Other
schemes use mini-batches, where the samples are sent in one-at-a-time. The batch size also
determines how often the model parameters are updated, where a small batch size will have
fewer computations and therefore more frequent updates.

• Convergence criteria: The convergence criteria is used for deciding when to stop the training
process. In many cases, a set amount of iterations, or epochs, is chosen beforehand. It is also
possible to have a loss value to stop at, in order to prevent over-fitting.

With this in mind, we can introduce some of the optimization schemes that will be used in the
scope of this thesis. For notations’ sake, the parameters that will be updated (i.e. W (l) and
b(l)) will be denoted θ. This is done with the aim of generalization. Furthermore, when choosing
one scheme both variables are updated in the same manner, meaning there is no need for double
notation. Additionally, it is already implied that the parameter within every layer i.e. weights and
biases need to be updated, meaning there is no need for layer specifications.

Note that all the schemes are implemented within iterations ranging from t = 0, 1, . . . , nepochs. We
therefore have that θt = θ(t) = (W (t), b(t)), where t denotes the iteration.

Example 2.5 (Gradient Descent (GD)). Gradient descent is the most fundamental optimization
scheme. The scheme is given as

θt+1 = θt − α∇θL(θt). (2.35)

As one can see in the equation, the parameters θ are adjusted at every iteration according to the
opposite direction of the gradient of the loss. The role of the learning rate α is pretty clear here,
giving weight to how big of an influence the gradient of the loss will have.

Note that Gradient Descent bases itself on the whole dataset being sent in as a batch.

Example 2.6 (Stochastic Gradient Descent (SGD)). Stochastic Gradient Descent is adaption of
regular Gradient Descent, but with the usage of mini-batches. Therefore, the scheme is instead
given as

θt+1 = θt − α∇θL(θt;x
(i);x(i)). (2.36)

Due to the usage of mini-batches, the updates are more frequent within SGD - actually there is an
update for every sample in the training set. The convergence is usually quicker as a result, as well
as less memory being used per iteration.

Example 2.7 (Stochastic Gradient Descent with Momentum). Momentum is a technique that can
be used within optimization schemes. Instead of only basing itself on the gradient in the current
step, momentum accumulates gradients of past steps in order to determine the direction to go [27].

One chooses a momentum coefficient η in the range [0, 1] that determines the importance of past
gradient directions.

The scheme is on the form

vt+1 = ηvt − α∇θL(θt),

θt+1 = θt − vt. (2.37)

This means that the retained gradient multiplied with the momentum coefficient is used for electing
parameters.

Adding momentum to the scheme can both help overcoming local minima, as well as accelerating
convergence. However, it does mean that there is yet another hyper parameter to tune.
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Example 2.8 (Adaptive Moment Estimation (Adam)). The Adam scheme combines an adaptive
learning rate with the advantages of using momentum within a scheme.

The scheme is given as[24]:

mt = β1mt−1 + (1 − β1)∇θL(θt),

vt = β2vt−1 + (1 − β2)(∇θL(θt))
2,

θt = θt−1 − α
mt

(1 − βt
1)(
√
vt(a− βt

2)−1 + ϵ)
. (2.38)

The hyper parameters β1 and β2 are exponential decay rates and so are in the domain [0, 1]. The
parameter ϵ is a small number added to avoid division by zero.

The Adam optimization scheme has generally good convergence properties, however it does use a
lot of storage as well and therefore requires a lot of memory.

2.4 Relevant layer types

The layers of an artificial neural network perform transformations to the input, reducing or in-
creasing the dimensions of the data. The different types of layers will perform different types of
transformations.

Additionally, there are also some enhancements that determine the dimensional output of the layer
when performing a transformation.

Note that the terms filter and kernel are frequently used and have the same definition. These are
small matrices used on input data to commit transformations or feature extractions.

2.4.1 Enhancements for ANN layers

The stride is defined as the amount of cells that the filter moves by per operation. The difference
in output of a filter is visualized in figure 2.4.

Figure 2.4: The difference in output of a fil-
ter, dependent on the stride.

Figure 2.5: Padding demonstrated on an in-
put of size (2,2). Note that this is a padding
of size 1.

Padding is a technique used in order to preserve spatial dimensions and prevent information loss.
When using padding, we are essentially adding zeros to the edges of the input before performing
feature extraction. The usage of padding thus gives a larger dimensional output, as it gives us
prominent features from edges and corners. This is demonstrated in figure 2.5, where a padding of
size 1 is applied to an input matrix of size (2,2). Note that it is possible to increase the padding.
The padding size denotes the amount of rows and columns of zeros to add to the image.

Weight decay, otherwise known as regularization, is the action of adding a penalty term λ to the
loss function. Given a loss function L(θ), we thereby denote the new loss function with weight
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decay as
Lwd(θ) = L(θ) + λ||w||, (2.39)

where the norm can be chosen from preferences, but is commonly the L2 or L1 norm. The
addition of the norm of the weights multiplied with the decay encourages the model to minimize
their weights. Ultimately the goal is to prevent over-fitting, as it is penalized when a model is
overly complex or dependent on a dominating set of weights.

Dropout is an action that is implemented in the beginning of a layer. It sets a random fraction of
the input to zero during each training iteration, which should improve generalization and prevent
over-fitting. The dropout fraction can be chosen according to preferences.

When we implement batch normalization, it is usually done for the input of every single layer.
Batch normalization is normalizing the inputs of each layer so that they have mean µ = 0 and
standard deviation σ = 1. This implies that every input follows the normal distribution. Batch
normalization reduces the importance of having fitting initial values (as they all will be scaled
equally regardlessly), and encourages the model to focus on trends rather than memorizing training
samples.

Data augmentation is a technique for making the model more robust by preventing over-fitting
and improving the generalization[50]. The aim is to augment parts of the training data whilst
preserving the respective labels. Some examples of augmentation could be horizontal flipping,
random cropping, color transformations, and so on. This allows the model to train on a wider
variation of data, and thereby recognize more features or patterns.

2.4.2 Fully connected layers

Fully connected layers are layers where every neuron in one layer is connected to every neuron in
the subsequent layer. This is depicted in figure 2.2.

Using the expression of the forward pass from equation 2.12, the output from a fully connected
layer l would be on the form

x(l) = σ(w(l)x(l−1) + b(l)). (2.40)

Fully connected layers typically expect one-dimensional arrays as inputs. This means that if fully
connected layers are connected with other layers that deal with multi-dimensional data, the input
to the fully connected layer would need to be flattened i.e. mapped to a one-dimensional array.

2.4.3 Pooling layers

The pooling layer performs a dimensionality reduction and feature extraction. The aim is to
downsample the spatial dimensions while still retaining the most important information. Another
purpose is to introduce translational invariance, which is when the system produces the same
output regardless of shifts in the input.

Note that pooling operates independently on the different channels in the layers. This means
that if one were to send in a colored picture, the pooling operations would happen on the Red,
Green and Blue channels independently. Thus, the amount of channels stays the same despite the
downsampling.

Figure 2.6: Demonstration of average pooling. Figure 2.7: Demonstration of max pooling.
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In figure 2.6, average pooling is shown visually. Here we see how, given a 2x2 input matrix, the
input is downsampled to a single value that describes the features of the input. On the other
hand, in figure 2.7 the same input is downsampled using max pooling. Although both methods
are efficiently downsampling, they may lead to very different results dependent on the difference
between the input values.

Max-pooling captures more dominant features, and is therefore useful for cases where it is important
to capture the most prominant features in a specific region. This is therefore widely used in object
recognition or pattern detection. Average pooling, on the other hand, summarizes the local spatial
information whilst giving a smoother representation. It is often used in the final stages of networks
to gain a global representation of the features extracted from other layers.

2.4.4 Convolutional filters

The aim of the convolutional layer is to extract features using convolution. Essentially the idea is
to apply a transformation to the input. This is done through applying a kernel, i.e. a small matrix
consisting of weights, to the input.

Mathematically, a convolution is defined as a mathematical operation between two functions that
produce a third one. As the convolution operation is shifting the one function, g, over to the other,
f , the third integral produced (i.e. the convolution) will reflect how much they overlap[61]. The
convolution between f and g is given as

(f ∗ g)(x) =

∫ ∞

−∞
f(τ)g(t− τ)dτ. (2.41)

The inputs in neural networks are generally multi-dimensional arrays, and so we are more interested
in the equation for convolution in its discrete form:

(f ∗ g)(x) =

∞∑
−∞

f(τ)g(t− τ). (2.42)

The two tensors that are used in a convolution process are, as stated, the input tensor I and a
kernel K. The input tensor is typically multi-dimensional, meaning one needs to apply convolution
to several axis at the same time. We thereby have

(I ∗K)(i, j) =
∑
α

∑
β

I(α, β)K(i− α, j − β) (2.43)

as the equation for the convolution between I and K. This can be rewritten as

(I ∗K)(i, j) =
∑
α

∑
β

I(i− α, i− β)K(α, β), (2.44)

due to convolution being commutative.

Changing the subtraction symbols to addition, we have the cross-correlation function

(I ∗K)(i, j) =
∑
α

∑
β

I(i+ α, i+ β)K(α, β). (2.45)

Equation 2.45 is from where the convolutional filters in neural networks are actually based[19].
The shift in the sign means that the focus is on the similarities between I and K when the input
I is shifted relative to the kernel K.

In figure 2.8 we visualize the effects of a convolutional kernel being applied on some input. By
applying the kernel, we can decrease the dimensions of an image and bring all relevant information
into a single feature.
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Figure 2.8: Visualization of a discrete 2d conovolutional layer, which is a more common one for
image recognition. The convolution kernel compresses the values of the input-data into a smaller
output, extracting features from neighboring nodes.

Figure 2.9: Various famous activation functions in the domain [-10,10].

2.4.5 Activation functions

Activation functions[52], as introduced in section 2.1, introduce non-linearity to the layers of the
neural network. They can be incorporated into convolutional layers, or be used for classification
in the final layers of a network.

There are many different kinds of activation functions, and the type of activation function to be
used depends on the given task.

Example 2.9 (Sigmoid function). The Sigmoid function is otherwise known as the logistic func-
tion. It is a widely employed activation function.

The Sigmoid function is given as

σ(x) =
1

1 + e−x
. (2.46)

Inputs to the activation function that are much smaller than -1 will be mapped to 0, whilst inputs
much larger than 1 will be mapped to 1. Inputs that are in between this domain will be mapped
somewhere in between 0 and 1.
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Example 2.10 (Tanh function). The Tanh activation function is given as

σ(x) = tanh(x) =
ez − e−z

ez + e−z
. (2.47)

The Tanh activation function works in a similar manner to the Sigmoid function, with an ”S”
shape in the primary domain that it’s based.

Example 2.11 (ReLU function). The Rectified Linear Unit function (ReLU) is a piecewise linear
activation function.

Given as
σ(x) = max(0, x), (2.48)

ReLU directly provides x provided x is positive. Otherwise it returns 0.

Example 2.12 (Softmax function). Softmax is a probability-based activation function. It provides
a value based on the entire input, meaning an arbitrary value a gets a different output dependent
on the other input values. It is given as

σ(xi) =
exi∑n
j=1 e

xj
. (2.49)

The σ(x) values for the softmax function in figure 2.9 are much smaller than for the other activation
functions. The range for this activation function is indeed [0,1], however it works as a probability
distribution. This means that, for a given input x = [x1, . . . , xn] we will have

∑n
i=1 σ(xi) = 1.

Example 2.13 (Softplus function). The Softplus activation function is a smooth continuous ver-
sion of ReLU, and is given as

σ(x) = log(1 + ex). (2.50)

Note that the function has similarities to Sigmoid. As x→ −∞, they are in fact the same function.

2.5 Feed-Forward Neural Networks

Feed-forward Neural Networks are the most simple kind of neural networks, and serves as a building
block for many other neural network architectures.

Their most important feature is that their layers are only connected in one direction, from input to
output. Each layer provides as output a transformation to the input, as explained in section 2.2.
Each parameter i.e. weight or bias is used exactly once in the network, as there are no recurring
layers. Every neuron is variable i.e. the amount of hidden layers and neurons per layer is flexible.

Defining an FNN consisting of L hidden layers, with an output from the network given as ŷ. From
the recursiveness of the functions of the various layers, we have that

ŷj = σ(z(L)) = σ

(
nL∑
i=0

w
(L)
ij x

(L−1)
i + b

(L)
j

)
= σ

(
nL∑
i=0

w
(L)
ji σ

(
nL−1∑
q=0

w
(L−1)
iq x(L−2)

q + b
(L−1)
i

)
+ b

(L)
j

)

= · · · = σ

(
nL∑
i=0

w
(L)
ij σ

(
nL−1∑
q=0

w
(L−1)
jq σ

(
. . .

(
σ

(
n1∑
p=0

w(1)
sp x

(0)
p + b(1)s

)
+ b(2)r

)
. . .

)
+ b

(L−1)
j

)
+ b

(L)
i

)
,

(2.51)

where ŷj denotes the output from the neuron j at the output layer.

Due to all the neurons being interconnected and independent, all the parameters are independent
and none are shared. This means that deep Feedforward Neural Networks have a lot of parameters,
which may be computationally expensive during the training process as well as susceptible to over-
fitting.

FNNs are widely used for classification problems, both on their own and in combination with other
layers. It is viable, in classification tasks, to for example plant them at the end of the network to
do the sorting and classification.
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2.6 Convolutional Neural Networks

Convolutional Neural Networks are a subgroup of FNNs. This means they have the same structure,
following one direction from input to output. CNN’s are specifically designed to receive grid-like
data, making them suitable for tasks such as image processing.

Figure 2.10: The architecture of a convolutional layer.

A CNN is defined as a Neural Network that consists of at least one convolutional layer. As shown in
figure 2.10, the convolutional layer consists in fact of three layers: a convolution filter, an activation
function, and a pooling layer. This architecture is so common that one groups the combination of
the three together under this term.

The convolutional layer has three advantages over other layer types[19, 14]:

• Sparse connectivity : The usage of convolutional kernels that are smaller than the input means
that the output of the convolutional layer will only be connected to a small, local field of
the input. The fact that the output is only dependent on a small amount of inputs is called
sparse connectivity. This leads to fewer operations for getting the output and more storage
space.

• Parameter sharing : The kernels in convolutional layers are generally applied multiple times
to all the different sections of the input data. The essence is that the feature detector useful
in one part of the input is useful in other parts of the input. The reusage of the kernel over
the entire input significantly reduces the amount of parameters needed, and is what we call
parameter sharing.

• Translation invariance: Translation invariance signifies that a shift in the input doesn’t affect
the output. The aim here is that, in spite of the shift, similar features will still be detected.
The convolutional layer has this advantage due to the same filter and thus the same specific
feature detector being applied everywhere. This makes the convolutional layer more robust.

Due to the CNNs having at least one convolutional layer, they all inhibit the same advantages.

The general architecture of CNNs is portrayed in figure 2.11. Here we see how the input is generally
sent through convolutional layers and pooling layers for feature extraction. After sufficient feature
extraction has taken place, dependent on the network architecture, the data is flattened before
being sent through a FNN. The FNN ultimately gives its predictions as its output.
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Figure 2.11: The architecture of a Convolutional Neural Network.

3 Mathematical preliminaries

The concepts presented here build an important foundation regarding spectral decomposition and
solutions to optimization problems. They are not directly related to model order reduction meth-
ods. However, they play a big role in the reduction methods presented for the scope of this thesis,
making them necessary preliminaries.

3.1 Least Squares Method (LSM)

Given some independent variables x = [x1, x2, . . . , xn] and corresponding observations y = [y1, y2, . . . , yn],
a common problem posed is how to best fit a model to the data. The method of least squares
provides a solution to this issue that can be applied to both linear and non-linear data [5].

Introducing the best fitted model as
η = f(x, β), (3.1)

where β denotes the parameters that are to be estimated in order to give the best possible fit.

In experiments, it is assumed that observations can be affected by random errors. This means that
the observations can be expressed as

yi = ηi + ei, (3.2)

where ei denotes the residual error. Essentially, equation (3.2) tells us that the observations will
be a sum of the residual error and the underlying value of the response ηi.

In order to have an output that is as accurate as possible, one aims to minimize the residual error.
The least squares method bases itself on the best estimates being those that minimize the sum of
the squared residuals, solving

min
β

∑
i

(ei)
2 = min

β

∑
i

(yi − ηi)
2. (3.3)

This can also be seen as minimizing the sum of the squared differences between the true and the
calculated output.

Given a linear system of equations Ax = b, where we have A ∈ Rn×m, b ∈ Rn, and x ∈ Rm, and
n > m. Let us say A is singular, meaning there exists no inverse for A. The solution of the system
of equations can be, in this case, found through least squares method.
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The residual of the system is given as r = Ax−b. The least squares method is based on minimizing
the residual, i.e. it solves the optimization problem

min
x∈R⋗

||Ax− b||2, (3.4)

and is the optimal solution to the minimization problem.

Proof. The length or inner product of the residual is denoted as

rT r = (b−Ax)T (b−Ax) = (bT − xTAT )(b−Ax),

and the aim is to minimize the length of the residual with x as subject to change.

By differentiating the inner product of the residual with respect to x, we get

∂(rT r)

∂x
= 2AT (b−Ax) = 2AT b− 2ATAx. (3.5)

Setting this to zero implies that we have a local optimum of the error x∗, and gives us the rela-
tionship

AT b = ATAx∗. (3.6)

Assuming that ATA has an inverse, we left multiply this on both sides of the equation in order to
gain the optimum

x∗ = (ATA)−1AT b, (3.7)

which is otherwise known as the method of least squares.

Note that, in the cases where ATA does in fact not have an inverse, it is still possible that x∗ has
an optimal parameter that minimizes the residual, but this needs to be found in that case through
methods such as singular value decomposition or finding the pseudoinverse.

3.2 Singular Value Decomposition (SVD)

The following section is taken directly from [4].

Given a matrix Y ∈ Rm×n, the singular value decomposition[2] allows us to factor the matrix Y
into a product of three matrices UΣV∗ instead, where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n.

The columns of U and V are in fact the left and right eigenvectors of Y respectively. Additionally,
these are unitary orthogonal matrices. This means that they have the property

UU∗ = U∗U = I, V V ∗ = V ∗V = I.

Our matrix Σ consists of the singular values of Y on the diagonal, and 0 elsewhere. Mathematically
this is expressed as

Σ = diag(σ1, σ2, . . . , σp), p = min{m,n}.

The singular values will be arranged in descending order, meaning σ1 ≥ σ2 ≥ · · · ≥ σp.

Matrices describe linear transformations, and what the SVD actually does is to break the action of
matrix Y into three parts. The matrix Σ denotes the stretch or compression, whilst our matrices U
and V denote rotations. Therefore, the singular values in Σ actually give us information regarding
the significance of the various rotations within the linear system.
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From elementary matrix operations, we know that

Rm×r × Rr×r × Rr×n → Rm×n.

This provides an important idea for matrix operations: we can truncate our matrices gained from
singular value decomposition into Ũ ∈ Rm×r, Σ̃ ∈ Rr×r, and Ṽ ∈ Rr×n, and their product will
still be the matrix Y ∈ Rm×n.

Figure 3.1: Illustration of singular value composition for an arbitrary matrix Y.

Figure 3.2: Illustration of singular value composition for an arbitrary matrix Y, with reduction.
The grey area marks the parts of the matrices that are cut off.

From the singular value decomposition we can thereby approximate matrices using a lower rank.

Proposition 1. Given a matrix A ∈ Rm×n, the lower-rank matrix Ak = UkΣkV
T
k found from the

singular value decomposition is optimal.

Proof. The idea behind this proof is found in [3] and [60]. Mathematically, we want to show that

||A−Ak||2F = min
B∈Rd×k,C∈Rk×n

||A−BC||2F . (3.8)

We assume that B is fixed as the optimal orthonormal matrix. Given this assumption, what would
the optimal C be?

Figure 3.3: Visualization of the projection of an element ai from A onto a column of B, in the 1D
case. ci needs to be chosen so that cib will be the respective projection.

Geometrically, the optimal C would be the projection of A onto b. This is visualized for the 1-
dimensional problem in 3.3, where one can clearly see that the minimum distance between any ai
and cib would be the fine line denoting the projection ci = ⟨ai, b⟩.

We therefore have that C = BTA. Our problem can thus be rewritten as

min
B∈Rd×k,BBT=I

||A−BBTA||2F . (3.9)

We know that ||(A−BBTA) +BBTA||2F = ||A||2F .

The matrix Pythagorean theorem states that if we have two mutually orthogonal matrices M and
N so that MTN = 0, then ||M +N ||2 = ||M ||2 + ||N ||2 holds.
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Using this quality, we have that

||A−BBTA+BBTA||2F = ||A−BBTA||2F + ||BBTA||2F .
⇒ ||A−BBTA||2F = ||A||2F − ||BBTA||2F ,

which means that our optimalization problem can be rewritten as

min
B∈Rd×k,BBT=I

||A||2F − ||BBTA||2F . (3.10)

Obviously, with a set A, this cost function would be at its lowest when ||BBTA||2F is largest
possible. Therefore, this is equivalent to

max
B∈Rd×k,BBT=I

||BBTA||2F . (3.11)

We rewrite A to its singular value decomposition, so that our problem is restated as

max
B∈Rd×k,BBT=I

||BBTUΣV T ||2F . (3.12)

As B and V both are orthonormal by definition, multiplying on the left hand side of the norm
with B and the right hand side with V T will just change the basis in a norm-preserving manner.
This means that the left hand side multiplication of B and right hand side multiplication of V T

can be omitted from the optimization problem, so that we restate the problem as

max
B∈Rd×k,BBT=I

||BTUΣ||2F . (3.13)

BT and U are both orthonormal, meaning Q = BTU will have orthonormal columns, and so the
norm of these cannot be greater than 1. This means that the sum of all the norms of Q’s columns
will be at most k.

We therefore know that

||QΣ||2F =
∑
i

||q||2iσ2
i ≤ σ2

1 + σ2
2 + · · · + σ2

k.

Maximizing ||BTUΣ||2F would therefore be at most the sum of all the singular values squared.
Remember that U is orthonormal; when B = Uk, we obtain the maximum as it would give us the
sum of all singular values squared up to the point of truncation.

So, it is thus proven that the optimal lower-rank matrix for a matrix A would be the truncated
SVD, showing the importance of utilizing exactly this approximation in numerical methods.

In order to show how the singular values can be of different importance, we have made a visu-
alization of the singular values of a dynamical system, with the amount of timesteps it has been
integrated varying.

Figure 3.4 shows how the singular values of a system vary, on a logarithmic scale, from the first
singular value to the last. In order to make this consistent, the same inital values y are used,
however the amount of timesteps used to integrate it varies, thus giving a variation in the column-
amount. The opacity of the colors on the graph denote the difference in total amount of columns.

In this case, our chosen system consists of 100 particles. We clearly see that the worth of the
singular values will vary - especially when there are few columns taken into consideration. This
makes sense from a physical point of view, as less columns gives us less information about the
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Figure 3.4: Singular values of varying amount of columns, using Y from example 1.

system. The lines of greater opacity, on the other hand, are closer to a set value. This signifies
that as long as the amount of columns we have is sufficient, the singular values will converge to
some set values. Furthermore, we see that for all cases there is a quick decay in the values. Even
in the case of 50 columns, there are only ∼ 13 singular values of a size larger than 10−14, showing
that an increased amount of time steps will not lead to more singular values of ”importance”.

So to sum up having a sufficient amount of columns is the most important when finding the singular
values of a system such as the one in problem 1. As long as this is done, if we are truncating U
based on the value of σk the amount of singular values that we ”keep” will be around the same
regardlessly.

3.3 Frequent Directions Method

Frequent Directions method (FD) was first proposed by [30] in 2013 as a matrix sketching proced-
ure, and later revised in [18]. A matrix sketching procedure is a scheme where a matrix A ∈ Rn×m

of large dimensions is approximated using a smaller matrix B ∈ Rl×m, where l << m << n. The
sketching in FD is done using a streaming process, where we iterate through the rows of A one at
a time.

Frequent Directions aims to maintain the best rank-l approximation of A[41]. Recall from section
3.2 that the best rank-l approximation is the truncation of the SVD of matrix A. Generating the
SVD can be extremely computationally expensive when handling matrices of large dimensions. FD
therefore generates an approximation of the truncated SVD, and thereby finds the best lower-rank
approximation to A.

Denoting the rows of A = [a1, a2, . . . , an]T , and the rows of B = [b1, b2, . . . , bn]T , where ai, bi ∈
Rn ∀ i. B is initialized with the first l rows of A, so that B(0) = [a1, . . . , al]

T .

The FD algorithm consists in receiving the streams of the various ai, and updating the last row of
B i.e. bl with the incoming ai-row. The singular value decomposition of B is then taken, and the
singular value of lowest significance is subtracted from every diagonal of the singular value matrix
Σ, giving us S′ = Σ−σl. This means that the last row in S′ will be a zero-row. We then update B
to be the product of S′ and the right singular vector V T . The last row of B will therefore always
be zero, giving space for the next incoming row ai+1 in the stream.

Doing this procedure iteratively will give the most dominant directions, as it is the singular values
and thereby directions of lowest value that are always discarded when computing B. Note that B
is also always at most of rank l − 1, as it continuously has a zero-row.
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Algorithm 2 Frequent Directions

Input: large matrix A ∈ Rn×m, sketch matrix B ∈ Rl×m consisting only of zeros

1: Initialize the first l− 1 rows of B with the l− 1 first rows of A, [a1, . . . , al]. ▷ The last row, bl,
will be zero-valued

2: for i = l, . . . ,m do
3: bl = ai ▷ Setting the last row of B to ai
4: UΣV T = svd(B) ▷ Recall Σ = diag(σ1, . . . , σl)

5: S′ = diag
(√

σ2
1 − σ2

l ,
√
σ2
2 − σ2

l , . . . ,
√
σ2
l−1 − σ2

l ,
√
σ2
l − σ2

l

)
6: B = S′V T ▷ The last row will be zero-valued (

√
σ2
l − σ2

l = 0)
7: end for

return B

4 System reduction

Model order reduction of artificial neural networks aims to approximate the function of a full,
complex artificial neural network, but with less computation time and space taken up. A pre-
requisite to conduct model order reduction is thus to have a fully trained model.

The system reduction of the neural network as described in [36] gives us a reduced model consisting
of three parts:

Figure 4.1: A visualization of the architecture of the reduced model in three parts.

1. Network splitting. The aim of this step is to process the data through l layers, according
to the information amount we are interested in. We therefore split the network into a pre-
and post-model, and send data through the pre-model.

2. Reduction layer. The aim here is to project the output of the pre-model to a lower
dimensional space. This is done by creating a projection matrix. Proposed methods for this
are Active Subspaces and Proper Orthogonal Decomposition.

3. Input-output mapping. The aim of this step is to map the reduced data variables to
the labels determined by the full neural network. Proposed methods for this are Polynomial
Chaos Expansion and Forwardfeeding Neural Network.
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After conducting the model order reduction, it is vital to have a re-learning period for the reduced
model, where the parameters of all the three reduced model parts are shifted. This is done using
a technique called knowledge distilliation. The details regarding the parts of the reduced model as
well as the re-learning step will be discussed further.

Algorithm 3 Full Network Reduction Procedure pseudocode

Input:

• The training data set with ntrain input samples, Dtrain = {x(0),i, yi}ntrain
i=0 ;

• A fully trained artificial neural network, ANN (x);

• The output of the artificial network, {ŷi}ntrain
i=0 = {ANN (xi)}ntrain

i=0 ;

• The reduced dimension r;

• The index l for the network splitting;

1: ANN pre,ANN post = network splitting(ANN , l)
2: x(l) = ANN pre(x

(0))
3: z = reduction layer(x(l), r) ▷ POD or AS
4: ỹ = input output map(z, ŷ) ▷ PCE or FNN
5: Retraining of the reduced neural network

return reduced neural network

4.1 Network splitting

This consists of splitting the fully trained neural network into a pre- and post-model, depending
on a chosen cutoff layer l.

A full artificial neural network consisting of L layers is on the form

ANNL(x(0)) = fL+1 ◦ fL ◦ · · · ◦ f1(x(0)) = x(L+1), (4.1)

where x(0) denotes the system input and x(L+1) the system output.

The network splitting consists of choosing the first l layers as the pre-model and the last L−l layers
as the post-model. The artificial neural network can therefore be divided into the two following
models:

ANNl
pre(x

(0)) = fl ◦ fl−1 ◦ · · · ◦ f1(x(0)) (4.2)

ANNL−l
post(x

(0)) = fL+1 ◦ fL ◦ · · · ◦ fl+1(x(0)), (4.3)

with the property

ANNL(x(0)) = ANNL−l
post ◦ ANNl

pre(x
(0)), (4.4)

meaning the architecture of the full model will be equivalent to the architecture of the composition
of the post- and pre-model.

The output from the pre-model will be denoted as x(l) = ANNl
pre(x

(0)). Note that the weights and
biases from the full model are to be completely restored to the layers of the reduced model.

4.2 Reduction layer

It is important to note that by sending the training set {x(0),i}Ntrain
i=1 into the pre-model, we gain

the set of pre-model outputs {x(l),i}Ntrain
i=1 . The pre-model outputs is thus the different nodal values
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of the l’th layer, for each input in the training set.

Our aim is to project the pre-model output x(l) into a space of lower dimension n. Both the
methods described in this subsection consist of trying to find a projection matrix Wproj , in order
to obtain the reduced solution

z = WT
projx

(l). (4.5)

4.2.1 Active Subspaces (AS)

Active Subspaces method [53, 45, 12, 21, 36, 37] is a method basing itself on important directions
within the vector space. It is not completely data-driven, but instead based on on probability
distributions and relationships between spatial gradients.

We are given an input vector µ = [µ1, . . . , µn]T with a related probability distribution function
ρ(µ). We introduce a so-called function of interest[36][p. 82] g : Rn → R. The Active Subspaces
method is based on the use of the gradient ∇g to find the low-dimensional subspace of the input
where g varies the most on average.

As g is, in this case, defined as a scalar quantity whilst µ ∈ Rn, we have that ∇g(µ) ∈ Rn, thus
denoting the spatial derivative of g(µ) with regards to every element in µ. The computation of the
derivative can be done either numerically or analytically.

We use the outer product of the average of the gradient with itself to construct an empirical
covariance matrix,

C = E[∇g(µ)∇g(µ)T ] =

∫
∇g(µ)∇g(µ)T ρdµ, (4.6)

where E denotes the expected value.

The outer product of ∇g(µ) with itself leads to C being positive definite and symmetric. Such
matrices yield solely positive eigenvalues.

It is thereby possible to use eigenvalue decomposition on C, so that we have

C = VΛVT , Λ = diag(λ1, . . . , λn), λ1 ≥ λ2 ≥ · · · ≥ λn. (4.7)

As stated above, Λ is a matrix with the diagonal consisting of eigenvalues in descending order. The
columns of V are the respective eigenvectors [v1, . . . , vn]. The eigenvectors are thus in descending
order according to the importance of them as directions.

Choosing an integer nas < n. We decompose V by constructing a matrix V1 that is composed of
the nas first columns, and a matrix V2 that is composed of the n− nas columns. Λ is equivalently
decomposed into a matrix Λ1 ∈ Rnas×nas and a matrix Λ2 ∈ Rn×n. We thereby have

V =
[
V1 V2

]
, Λ =

[
Λ1

Λ2

]
, V1 ∈ Rn×nas , V2 ∈ Rn×n−nas . (4.8)

V1 denotes the range of the active subspace and V2 that of the inactive subspace. We aim to project
the input µ onto the active subspace.

The orthogonality of the eigenvector basis gives us the property VVT = In, where In denotes the
identity matrix of dimension n.

We can thereby rewrite our input as

µ = VVTµ = [V1 V2][V1 V2]Tµ = V1V
T
1 µ + V2V

T
2 µ. (4.9)

From the above equations we define the reduced variables µ̃1 = V T
1 µ ∈ RnAS and µ̃2 = V T

2 µ ∈
Rn−nAS , respectively denoted as the active variable and inactive variable. This effectively reduces
our equation to

µ = V1µ̃1 + V2µ̃2, (4.10)
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where our input µ is thus expressed as the sum of the active and inactive subspace multiplied with
an active and inactive variable.

From this we can find the approximation

µ ≈ V1µ̃1, (4.11)

where the inactive variable is discarded due to insignificance.

Using V1 as a projection matrix thus gives a reduced variable where the directions of the active
subspace is taken into consideration.

4.2.2 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition [22, 37, 36] is a data-driven method for constructing a reduced
order model. It relies solely on the data points of the input vector to construct a reduced order
basis. POD is used in many different areas of study, for example in the solution of differential
equations [4]. The same terminology will therefore be used here.

We denote S = [u1, . . . , uns
] as a matrix where each column contains an input vector ui, and ns

denotes the amount of samples within the data set. As we have that the input vectors ui ∈ Rn,
we must have that S ∈ Rn×ns . Our matrix S is often referred as the Snapshot matrix, as it may
contain the snapshots of various solutions.

Using Singular Value Decomposition as described in 3.2, we decompose S so that

S = UΣV H . (4.12)

Σ contains singular values in descending order, U consists of the respective singular left vectors,
and V H the respective singular right vectors.

For the sake of notation, we denote the columns of U as modes. Our aim here is to project our
matrix S onto a low dimensional space spanned by its modes. Choosing an integer nPOD < n, we
can truncate U by discarding the n− nPOD last modes, so that we have

U ≈ UnPOD
∈ Rn×nPOD , (4.13)

where the modes that are retained in the reduced matrix are the nPOD first modes. We’ve thereby
discarded the less significant modes, as they belong to the smaller singular values due to the
descending order.

Using our truncated matrix UnPOD
as a projection matrix gives us the reduced variable

SPOD = UT
nPOD

S ∈ RnPOD×ns , (4.14)

which now is spanned within the reduced subspace of the most significant nodes.

4.3 Input-output mapping

Here we need a mapping to correlate z to ŷ (the final output of the full model). Note that we are
not correlating them to their actual labels, but to the labels predicted by the full neural network.
This is done with the aim of having the input-output mapping approximate the full model ; not to
generate a new model altogether.

4.3.1 Polynomial Chaos Expansion (PCE)

The theory of Polynomial Chaos Expansion [25] states that the a model output X : RR → R can
be expanded as a sum of orthogonal multivariate polynomials, so that
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X(ξ) =

∞∑
i=0

ciϕi(ξ), (4.15)

where ξ denotes the input vector ξ = [ξ1, ξ2, . . . , ξR]. For each orthogonal multivariate polynomial
ϕi(x), we have an associated unknown coefficient ci representing the weight of the polynomial.

Note that the input vector ξ is assumed to consist of independent, random variables that have an
associated probability density function ρ(ξi). The basis functions Φ(ξi) will thus be orthonormal
to one another with respect to the density function.

The finite representation of this can be found by truncating at the (P + 1)’th term, so that we
have an approximation

X(ξ) ≈
P∑
i=0

ciϕi(ξ). (4.16)

Recall that R denotes the dimension of the input vector ξ. Let p denote the highest order of the
multivariate polynomials in the dimension R, so that given any index i, we have that ϕi(x) ∈ Rp.

The term of truncation is given, by the combination formula, as P + 1 = (p+R)!
p!R! . The number of

unknown coefficients ci will thereby also be P + 1.

The assumption that ξ1, . . . , ξR are independent parameters allows us to rewrite the multivariate
ϕi(x) as the product of one-dimensional functions:

ϕi(ξ) = ϕi(ξ1, . . . , ξR) =

R∏
k=1

ϕdk

k (ξk), i = 0, . . . , P, dk = 0, . . . , p,

R∑
k=1

dk ≤ p. (4.17)

What this essentially means is that each multivariate function ϕi(ξ) can be rewritten as the product
of one-dimensional functions belonging to each parameter of the input vector, ϕi(ξi). The order
dk of the one-dimensional functions ϕi(x) can be anywhere in the domain [0, . . . , p], so as long
as the order of the multivariate function ϕi(x) doesn’t surpass p, meaning that the restriction∑R

K=1 dk ≤ p needs to be held.

What is left is to determine the one-dimensional orthogonal functions ϕi(x) and the coefficients of
the multivariate functions ci. X(ξ) consists of independent random variables, and so they must
follow a probability distribution of some sort. From [28] we can set the orthogonal polynomials
as those belonging to the respective distribution. For example, assuming a Gaussian distribution
would lead us to use the Hermite polynomials as univariate polynomials ϕi(x).

In order to estimate the coefficients ci we use a regression method, as described in section 3.1. The
following minimization problem will be solved:

c = arg min
c∗∈RP

1

ninput

ninput∑
j=1

X̂ −
p∑

j=0

c∗, ϕ,(ξ
i)

 , (4.18)

where ninput denotes the amount of input samples ξj used for the optimization problem. The
asterics j of ξj thus denotes the sample number of the respective input.

Solving this as a least squares problem, we define the following matrix Φ which will be analogous
to our matrix A from equation (3.4):

Φ =


ϕ1(ξ1) ϕ2(ξ1) . . . ϕP (ξ1)
ϕ1(ξ2) ϕ2(ξ2) . . . ϕP (ξ2)

...
...

. . .
...

ϕ1(ξninput) ϕ2(ξninput) . . . ϕP (ξninput)

 . (4.19)
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Each row of Φ thus denotes the polynomial chaos expansion of an arbitrary sample ξj of the input,
with each column belonging to one of the orthogonal functions ϕ. This means that the amount of
columns is equivalent to the amount of unknown coefficients, P + 1.

Example 4.1. Setting p = 0. Assuming that X has a Gaussian distribution. Our amount of

columns in Φ would be P + 1 = (p+R)!
p!R! = (R)!

R! = 1.

The only Hermite polynomial of an order that is equivalent or less to p would be H0(x) = 1, and
so our matrix Φ would be on the following form:

Φ =


H0(ξ1)
H0(ξ2)

...
H0(ξninput)

 =


1
1
...
1

 . (4.20)

Example 4.2. Setting p = 1. Assuming that X has a Gaussian distribution. The amount of

columns in Φ would be P + 1 = (1+R)!
1!R! = (1+R)!

R! = (1 +R).

The only relevant Hermite polynomials would be H0(x) = 1 and H1(x) = 2x. From [refer to

equation about the product of equations here] we have the property that
∑R

k=0 dk ≤ p, meaning
that any H1(ξi) can only be multiplied with H0(ξj) = 1 for the remainder of the terms. Thus, we
will have one column denoting the 1-vector from the p = 0 basis, and R columns denoting H1(ξi),
where i = 1, . . . , R. Our matrix Φ would thus be on the following form:

Φ =


H0(ξ1) H1(ξ11) . . . H1(ξ1R)
H0(ξ2) H1(ξ21) . . . H1(ξ2R)

...
...

. . .
...

H0(ξninput) H1(ξ
ninput

1 ) . . . H1(ξ
ninput

R )

 =


1 2ξ11 . . . 2ξ1R
1 2ξ21 . . . 2ξ2R
...

...
. . .

...
1 2ξ

ninput

1 . . . 2ξ
ninput

R

 . (4.21)

Example 4.3. Setting p = 2. Assuming that X has a Gaussian distribution. The amount of

columns in Φ would be P + 1 = (2+R)!
2!R! = (R+1)(R+2)

2 .

The relevant Hermite polynomials would be H0(x) = 1, H1(x) = 2x and H2(x) = 4x2 − 2. Again

due to
∑R

k=0 dk ≤ 2, we have a larger yet still limited amount of combinations available. From the
p = 1 basis we have the columns of H0(ξi). Furthermore, there will be R columns of H1(ξj), where
j = 1, . . . , R.

Our second order Hermite polynomial can only be combined with polynomials of order 0, so that
there must be R columns of H2(ξj) as well.

The only combination of polynomials (not including 0’th order polynomials) will be Hermite poly-
nomials of first order. It is only possible to combine two Hermite polynomials of first order with
one another without surpassing the limit of the order. We thereby have P + 1 columns of

H1(ξi) ·H1(ξj), i, j = 0, . . . , R, i ̸= j, (4.22)

where the commutativity of multiplication should make it obvious that all columns will be unique.

Thus, Φ will be on the following form:

Φ =


1 H1(ξ11) . . . H1(ξ1R) H1(ξ11) ·H1(ξ12) . . . H1(ξ1R−1) ·H1(ξ1R) H2(ξ11) . . . H2(ξ1R)
1 H1(ξ21) . . . H1(ξ2R) H1(ξ21) ·H1(ξ22) . . . H1(ξ2R−1) ·H1(ξ2R) H2(ξ21) . . . H2(ξ2R)
...

... . . .
...

... . . .
...

... . . .
...

1 H1(ξnin
1 ) . . . H1(ξnin

R ) H1(ξnin
1 ) ·H1(ξnin

2 ) . . . H1(ξnin

R−1) ·H1(ξnin

R ) H2(ξnin
1 ) . . . H2(ξnin

R )

 .
(4.23)

We use the method presented in section 3.1 to compute the coefficients c:

c = (ΦTΦ)−1ΦT X̂, (4.24)

giving us the most optimal solution to the minimization problem presented.
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4.3.2 Forward-feeding Neural Network (FNN)

In order to have an input-output function, we can use a form of function approximation of which
this thesis is based on, namely using an artificial neural network.

Note that we utilize a fully connected forward-feeding neural network here. As stated in section
2.4.2, feed-forward neural networks are ANNs where every connection between layers is in the same
direction; from input to output direction. Fully connected means that each respective node in a
layer i points to every node in the next layer i+ 1.

Defining an FNN consisting of L hidden layers, with an output from the network given as ŷ. We
have from section 2.4.2 that the output from a FNN is given as

ŷj
FNN = σ(z(L)) = σ

(
nL∑
i=0

w
(L)
ij x

(L−1)
i + b

(L)
j

)
= σ

(
nL∑
i=0

w
(L)
ji σ

(
nL−1∑
q=0

w
(L−1)
iq x(L−2)

q + b
(L−1)
i

)
+ b

(L)
j

)

= · · · = σ

(
nL∑
i=0

w
(L)
ij σ

(
nL−1∑
q=0

w
(L−1)
jq σ

(
. . .

(
σ

(
n1∑
p=0

w(1)
sp x

(0)
p + b(1)s

)
+ b(2)r

)
. . .

)
+ b

(L−1)
j

)
+ b

(L)
i

)
.

(4.25)

Note that the various ni denote the amount of neurons at the respective layer i.

4.4 Re-Training

After constructing the reduced neural network, it is vital to re-train the model to improve the
accuracy. The re-training is done using Knowledge Distillation methods, following the procedure
of [13, 37].

The thought behind Knowledge Distillation methods (KD) is to distill the knowledge from a large
model to a smaller model through a training process[20, 23]. We train our smaller model using the
soft labels from the large model[6]. The soft labels could be the activation from the softmax- or
softplus-function, giving class distributions, with a temperature factor to decrease the certainty of
the predictions.

We refer to the full model as the teacher model, whilst the smaller model will be referred to as the
student model. This is intact with the name of the method, Knowledge Distillation, as it is the
student model that will ”learn” from the teacher model.

We denote ŷ as the output of the last layer in a deep neural network. The probability that an
input belongs to a certain class i is given by the softmax function as introduced in section 2.4.5,

pi =
exp(ŷi)∑nclass

j=0 exp(ŷj)
. (4.26)

We introduce a temperature factor T here, used to control the importance of each target[57]. The
softmax function with a temperature factor is given as

pi =
exp( ŷi

T )∑nclass

j=0 exp(
ŷj

T )
, (4.27)

where the temperature ”softens” the output ŷ within the loss function i.e. makes its predictions
less certain. The aim of the temperature factor is to avoid high penalizations of wrong results from
the model. Note that, for the purpose of this thesis, it is assumed that the temperature factor T is
always greater than 1. The cases where T is equivalent to 1 are equivalent to using no temperature
factor at all.

The distillation loss refers to the loss between the output of the teacher model and the student
model. It is given as

LD(p(ŷt, T ), p(ŷs, T )) = LKL(p(ŷt, T ), p(ŷs, T )), (4.28)
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where LKL denotes the Kullback-Leibler Divergence Loss function, as described in section 2.3.1.
Note that ŷs and ŷt denote the output of the student model and the teacher model respectively.
Recall that this loss function based itself on the probability distributions of the model output and
the desired output, given in the case of a temperature factor as

LKL(p(ŷt, T ), p(ŷs, t)) = T 2
N∑
i=0

pi(ŷt,i, T ) log

(
pi(ŷt,i, T )

pi(ŷs,i, T )

)
, (4.29)

where p(x) is the probability distribution of the teacher model and q(x) is the probability distri-
bution of the student model, in the case of knowledge distillation.

The student loss is given as

LS(ŷ, p(ŷs, T )) = LCE(y, p(ŷs, T )), (4.30)

where LCE denotes the cross-entropy loss as provided in section 2.3.1. Recall that y from the
cross-entropy was not an output, but instead the binary truth value of a model. From section 2.3.1
we have the cross-entropy loss function given as

LCE(y, ŷ) = − 1

N

N∑
i=1

C∑
j=1

[yj ln ŷj + (1 − yj) ln(1 − ŷj)] . (4.31)

Knowledge distillation is a response-based method that transfers the knowledge from the teacher
model to the student model by mimicking the final prediction of the teacher model. The final loss
used in the training process is therefore the weighted sum between the distillation loss and the
student loss, given as

L(x(0), w) = λLD(p(ŷt, T ), p(ŷs, T )) + (1 − λ)LS(y, p(ŷs, T = 1)), (4.32)

where x(0) is the input to the model and w the weights of the student model. The parameters λ
acts a regularization parameter, affecting the importance of either the student model or the teacher
model in the equation. A larger λ giver lower significance to the output of the student model, and
more significance to the difference between the teacher and student model.
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5 Implementation

All numerical implementations were done in Python, using the package torchvision for loading
the data sets and constructing the full neural network. Torchvision is a part of the PyTorch[42]
project, which is an open-sourced machine learning framework. The rest of the implementations
were done manually, with the exception of Active Subspaces for which I imported the ATHENA
library[11].

The code that has been implemented can be found in the github repository [32]. It is important
to keep in mind that the implementation of the re-training using knowledge distillation is taken
from [8, 34].

5.1 Data sets

Two different data sets (CIFAR-10 and SVHN) were utilized for the purpose of this thesis. Both
consist of 32 × 32 color images i.e. with 3 channels and thus the input size (32, 32, 3). This
means that the images are not of very high resolution [59], which can cause difficulties in the
task of classifying them. The model we used has a pre-determined input size of (3, 224, 224).
A transformation to this size was tried on both data sets, however this led to large challenges
regarding memory on both local and external servers. Instead, we opted for a modification of the
input size of the neural network.

Both data sets consist of 10 labeled classes, with a difference in the data imbalance. Although
image classification will be implemented on both data sets, the subclass of image classification
varies: CIFAR-10 deals with object recognition, whilst SVHN deals with digit recognition. Due
to the large differences in what the data sets represent, there will be two fully trained models
accommodating directly to the data sets: ANNCIFAR and ANN SVHN. There will also be two
models for each respective data set that have been trained on augmented data, in order to see the
impact of the robustness of the networks on the reduced models. The models trained on augmented
data will be denoted ANNCIFAR-augm and ANN SVHN-augm.

5.1.1 CIFAR-10

The CIFAR-10 data set[29, 9] is a data set consisting of 60000 pictures with belonging labels:
50000 are in the training set, whilst 10000 are in the testing set.

There are 10 classes altogether, comprised of different vehicles and animals. The data set is
perfectly well-balanced: each of the 10 classes has exactly 6000 images with labels represented in
the set, where 5000 are in the training set and 1000 in the testing set.

Figure 5.1 shows some samples from each class of the original CIFAR-10 images.

The augmentation consisted of normalizing the color scale according to the standard deviation and
mean of CIFAR-10, random horizontal flips, and random crops of images with a padding of 4.

5.1.2 Street House View Numbers (SVHN)

The Street House View Numbers data set [38, 54] consists of 99289 images of house numbers from
a street view, obtained from Google Street View images. It therefore closely resembles the famous
data set with handwritten letters, MNIST[15], with the difference that it is with colors and with
a perhaps more ”blurred” view of the various numbers due to the pictures being taken from the
streets. In cases where a house has a multi-digit number, the image is cropped so that the label of
the image is given is at the centre of the image.

In figure 5.3 one can see some samples from the SVHN data set. As described, at times the images
are cropped due to multiples digits in the house number.
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Figure 5.1: 10 randomly selected images from each class of the CIFAR-10 data set. The class of
each row is captioned to the left, with their respective label.

Figure 5.4 shows the same images after data augmentation and normalization using statistics from
the data set. Many digits are not readable to the human eye after this due to small color distinctions
in different shots.

The amounts and percentages of each class represented in the dataset is given in table 1. We can
see that this is a dataset that is not particularly well-balanced, with percentages in the training
set ranging from 6.36% to 18.92%. This may lead to challenges for the classification model, as it
will in most cases

5.2 CNN model

In order to replicate the procedure from [36], we have constructed the VGG-16 neural network [51].
VGG stands for ”Visual Geometry Group”, and is a convolutional neural network group presented
by Oxford University that won the ImageNet competition in 2015, performing with a 92.7% top-5
accuracy. There are several models in the VGG-group, all named VGG-xx, where xx denotes the
amount of layers in the respective network. Note that this does not take into account pooling
layers.
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Figure 5.2: The same 10 images from each class of CIFAR-10 as in figure 5.1, but with normalization
and random data augmentation.

Digit Training set Testing set Full data set
Amount Percentage Amount Percentage Amount Percentage

0 4948 6.75% 1744 6.7% 6692 6.74%
1 13861 18.92% 5099 19.59% 18960 19.1%
2 10585 14.45% 4149 15.94% 14734 14.84%
3 8497 11.6% 2882 11.07% 11379 11.46%
4 7458 10.18% 2523 9.69% 9981 10.05%
5 6882 9.39% 2384 9.16% 9266 9.33%
6 5727 7.82% 1977 7.59% 7704 7.76%
7 5595 7.64% 2019 7.76% 7614 7.67%
8 5045 6.89% 1660 6.38% 6705 6.75%
9 4659 6.36% 1595 6.13% 6254 6.3%

Total 73257 100% 26032 100% 99289 100%

Table 1: The representation of the different digits within the SVHN dataset.

The VGG-group is based on (3 × 3) convolutions, however each layer consists of a lot of filters.
Due to the large amount of filters, the entire VGG-16 model has 138 million parameters that
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Figure 5.3: 10 randomly selected images from each class of the SVHN data set. The class of each
row is captioned to the left.

need tuning. This results in the training process, as well as any forward pass in general, being
computationally expensive and time-consuming. This motivates the usage of model order reduction
on the VGG-16 model.

The VGG-16 model consists of 13 convolutional layers with 5 max-pooling layers well-spread
between convolutional blocks. After the 13 convolutional + 5 max-pooling layers, there are three
fully connected layers, followed by the softmax activation function. The final three layers in the ar-
chitecture, together comprising a FNN as decribed in 2.1, force the model to commit classification.
The final softmax function gives a probabilistic score of the classes each input image belongs to,
meaning the predicted label is found as the index of the largest value gathered from the softmax
function.

Figure 5.5 depicts the general architecture of a VGG-16 model, with the original amount of para-
meters being present.

Some important specifications to the model architecture, in case of manual re-production of the
model:

• Each convolutional layer consists of (3 × 3) filters with stride=1 and padding=1.
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Figure 5.4: 10 randomly selected images from each class of the SVHN data set. The class of each
row is captioned to the left.

• The activation function implemented after each convolutional layer is ReLU. This is not visu-
alized in 5.5, as it is already specified in section 2 that this is the structure of a convolutional
layer.

• Each max-pooling layer is of size 2 with stride=2.

In order to accommodate for a classification problem with 10 labels featuring images of 32 × 32
pixels, the architecture of VGG-16 was modified to the architecture of figure 5.6. This especially
affects the outputs of the various layers, which is viable in the case of data-driven model reduction.

It is important to note that, for the scope of this thesis, the layers will not be enumerated according
to the amount of convolutional layers as in figure 5.6. When decomposing the VGG-16 model from
torchvision sequentially, the activation layers ReLU are taken into consideration as a full layer.
When referring to indices of layers and so on, a convolutional layer will therefore take up the space
of two indices, where one index will consist of the filters and the other of the activation function
that follows.
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Figure 5.5: General architecture of the convolutional network VGG-16, with an input image con-
sisting of 224 × 224 pixels, for a classification problem with 1000 categories

Figure 5.6: Modifications to the VGG-16 model for input images of 32 × 32 pixels, belonging to a
classification problem consisting of 10 labels.

5.3 Specifications to methods

Section 4 introduced various numerical methods for system reduction. The specifications to these
according to our model and data sets will be presented here.

5.3.1 Network splitting

As described in section 4, a layer-index l is chosen to be where we want to split our full model into
a pre-model and a post-model:

ANN l
pre(x

(0)) = fl−1 ◦ fl−1 ◦ · · · ◦ f0(x(0)) (5.1)

ANNL−l
post(x

(0)) = fL ◦ fL−1 ◦ · · · ◦ fl(x(0)), (5.2)

The parameters of the full model are kept intact, so that

ANNL(x(0)) = ANNL−l
post ◦ ANN l

pre(x
(0)).
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As the convolutional layers consist of the convolutional filters combined with an activation function
layer, it is viable not to separate these. Therefore, the parameter l will not be chosen to be any
index separating a convolutional layer. From [36] and [8] we see that the indices chosen are not
directly in contact with a pooling layer. The pooling layer does not have any parameters such as
weights and biases, which is why model reduction with the aim of reducing parameters does not
deem pooling layers as candidates for the split. On the other hand, performing network splitting
at a layer l following a max-pooling layer, we reduce the dimension of the pre-model output whilst
retaining the most important features.

5.3.2 Model reduction layer

From our reduced model ANN pre, we compute the pre-model output

x(l) = ANN l
pre(x

(0)). (5.3)

The pre-model output is the variable that we want to reduce. This is done through constructing a
projection matrix Wproj ∈ Rnl×r, where r is the lower dimension we want to project the pre-model
output onto. This gives us the reduced output

z = WT
projx

(l). (5.4)

We implement either Active Subspaces or Proper Orthogonal Decomposition to construct the
projection matrix. They have been introduced more in-depth in section 4, however the specifics
will be detailed here.

Active Subspaces We can assume that that x(l) is characterized by a probability density func-
tion ρ(µ).

Introducing the function of interest, which in our case is the loss-function of the post-model, so
that we have

gl(x
(l)) = loss(ANNl

post(x
(l))). (5.5)

We want to find the empirical covariance matrix. As all our input and output is discrete, we need
the discrete equation for the empirical covariance matrix as well. In our case it is given as

Ĉ =
1

ntrain

ntrain∑
i=1

∇lg(xi,(l))∇lg(xi,(l))T , (5.6)

where i denotes the respective sample in the training set.

Calculating the eigenvalue decomposition can be computationally expensive. Due to this the
Frequent Directions method has been proposed in [36] for approximating the SVD decomposition.
The Frequent Directions method is already implemented in the Python library utilized, ATHENA.

Following the procedure of Frequent Directions method, we introduce

Ĝ =
[
∇lg(x1,(l)) ∇lg(x2,(l)) . . . ∇lg(xntrain,(l))

]
, (5.7)

where each row is a flattened version of the gradient of the r first input values. The SVD is given
as Ĝ = Û Σ̂V̂ T . From the fact that ĜT Ĝ = Ĉ, we have the singular value decomposition

Ĉ = (Û Σ̂V̂ T )T Û Σ̂V̂ T = V̂ Σ̂ÛT Û Σ̂V̂ T = V̂ Σ̂Σ̂V̂ T , (5.8)

where the orthogonality of the singular vectors gives us that ÛT Û = I. Notice that the term to the
right of equation (5.8) is identical to that of an eigenvalue decomposition, but with D = Σ2. This
shows that the eigenvalues and eigenvectors of Ĉ can be approximated with the singular values
and right singular vector of Ĝ.
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The SVD decomposition can therefore be implemented as a replacement for the eigenvalue decom-
position in this case due to the matrix being symmetric and positive definite[58]. This motivates
the usage of Frequent Directions for Active Subspaces.

The rest of the procedure is as described in section 3.3, where a reduced version of Ĝ is stored.
We therefore truncate it so that our Ĝred is given as

Ĝred =
[
∇lg(x1,(l)) ∇lg(x2,(l)) . . . ∇lg(xr,(l))

]
. (5.9)

We then iterate through the rest of the samples in the training set, i = r+ 1, . . . , ntrain. For every
sample we update the reduced matrix so that

Ĝred = V̂red

√
Σ̂red − λ̂r. (5.10)

This gives us a Ĝred in descending order according to important directions, with the last column as
the zero-vector. We then replace this with ∇lg(xi,(l)), and continue with these two steps iteratively,
eventually giving us our projection matrix

Wproj = V̂red. (5.11)

Proper Orthogonal Decomposition We construct the Snapshot matrix from section 4 by
setting the flattened pre-model outputs as columns, so that we have

S =
[
x1,(l) x2,(l) . . . xNtrain,(l).

]
. (5.12)

The snapshot matrix is then split up using singular value decomposition, giving us

S = UΣVT . (5.13)

By truncating U, as done in [4], we gain the projection matrix

Wproj = Ur ∈ Rnl×r, (5.14)

consisting of the r first modes of the Snapshot matrix.

5.3.3 Input-output mapping

The input-output mapping consists of mapping the reduced output zj ∈ Rr to the full model
output ŷj ∈ RC , where C denotes the amount of classes, for any input j.

Polynomial Chaos Expansion We use the discrete approximation of the PCE model so that

ỹ ≈
ntrain∑
j=1

cαψα(z), (5.15)

where ψα(z) are multivariate polynomial functions that are based on the probability density func-
tion ρ(z). Due to our data sets being large, we assume that they follow a Gaussian distribution
and therefore use Hermite polynomials as our ψα.

It is necessary to estimate the coefficients cα. These can be found through solving the minimization
problem

min
cα

1

ntrain

ntrain∑
j=1

||ŷj −
p∑

|α|=0

cαψα(zj)||, (5.16)
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which can be done through linear regression or equivalently through solving

(ΨT Ψ)−1ΨT X̂. (5.17)

For the sake of having a non-linear input-output mapping, the scheme with p = 2 is used.

Feedforward Neural Network Following our definition from section 2, we construct a FNN
with one hidden layer.

The network input will be reduced output z, and so the amount of nodes for the input layer will be
r. The amount of nodes in the hidden layer is chosen to be 20 from the work of [36]. The amount
of nodes in the output layer will be C = 10, and the activation from the output layer will be linear.

The output from the net at any node i, ỹi, will be given as

ỹi = z
(2)
i =

C∑
k=0

w
(2)
ik z

(1)
k + b

(2)
i =

C∑
k=0

w
(2)
ik σ

 n1∑
j=0

w
(1)
kj z

(0)
j + b

(1)
j

+ b
(2)
i . (5.18)

The activation function in the hidden layer could be any of the proposed functions from section
2.4.5. We have chosen the Softplus function, as done in [36]. As defined in section 2.4.5, it is given
as

σ(x) =
1

β
log(1 + eβx). (5.19)

5.3.4 Re-learning phase

The re-learning phase using knowledge distillation was described as in section 4, implemented with
the same code and parameters as in [34, 8]. The teacher model for the knowledge distillation is
the full model ANN for the respective data set, whilst the student models trained have been the
different reduced neural network combinations, denoted in general as ANN red.

Denoting LKD as the Kullback-Leibler loss function, LCE as the cross-entropy loss function, Q(x)
to be the probability distribution of ANN , and P (x) to be the probability distribution of ANN red.
The loss function for the knowledge distillation re-learning process is given as

L(x(0), w) = λLKL

(
Q(x(0)), P (x(0)), T

)
+ (1 − λ)LCE

(
y, P (x(0))

)
, (5.20)

where y is a binary truth value, T is a temperature factor and λ is a regularization factor.

5.4 Numerical implementation

All source code used can be found in [32], if one wishes to follow the implementation.

The full model was taken from torchvision, initializing it as the fully trained model. As the fully
trained model is adept at image recognition, the thought was that training the model for CIFAR-
10 and SVHN would be quicker due to the weights perhaps being optimized towards some image
recognition, and therefore the image recognition on a more specific data set (with fewer classes)
would have similar weights. We re-trained it twice, creating two separate models to be used on
each their data set: ANNCIFAR and ANN SVHN.

All hyperparameters for training the full models were chosen according to Grad Student Descent[7].
The optimizer used was Stochastic Gradient Descent (SGD), with a learning rate of α = 0.0001,
momentum coefficient η = 0.9 and weight decay λ = 5 · 10−5. The batch size was mb = 64 in both
cases, and the total amount of epochs were set to be 100. The loss function used was Cross-Entropy
Loss.
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The construction of the pre- and post-model, ANNpre and ANNpost, was done based on the source
code of the full model VGG-16 [42], with modifications so that no flattening was done in the last
layer of the pre-model. In order to ensure that the composition of the pre- and post-model still gave
the correct output, we ran tests that computed ŷ = ANN full(x) and ŷ = ANN post(ANN pre(x))

simultaneously for the testing set, and compared the accuracy. Generally they performed equally
good, with perhaps a difference in accuracy to the order 10−3, which we gathered to be some
round-off error in an activation function and therefore negligent.

Construction of POD was done using the PyTorch library.

Construction of Active Subspaces was done using a combination PyTorch and the ATHENA Act-
ive Subspaces library [44]. The spatial gradients required for the function are computed using
automatic differentiation, which is done through PyTorch’s autograd function.

Construction of the Feedforward Neural Network was done in PyTorch.

Construction of the Polynomial Chaos Expansion was done using PyTorch tensors, and SciPy[48]
for the orthogonal basis functions. Additionally, linear regression from the sklearn[47] library was
implemented to find the coefficients of the multivariate polynomials in PCE.

The re-training using knowledge distillation was implemented from the code of [34, 8]. In order
to pass the reduced neural network through the knowledge distillations, the different steps of the
reduction process were set in as layers of a sequential model in PyTorch.

The Adam optimizer was used for the re-training process, with a step size α = 10−4 for the
pre-model layers, and α = 10−5 for the reduction layer and the input-output mapping. The
temperature factor was set to be T = 1, and the regularization factor was set to be λ = 0.1. The
re-training was carried out for 10 epochs. This took approximately 1 hour per model, when using
32 CPUs.

It is worth stating that a lot of the numerical procedures from this thesis are time consuming and
computationally expensive. High Performance computing has been utilized for the majority of the
calculations undertaken, leading to a vastly smaller computation time than for regular devices.
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6 Results

The results will initially be presented as comparisons between the full model trained with the
augmented data, and the full model trained with the original data. Some preliminary values gained
when conducting model reduction will also be investigated. A quantitative analysis of various
parameters in the model reduction will follow, and their impact on the accuracy and function of
the reduced model. Additionally, there will be a qualitative analysis of various combinations and
the results gained from their predictions.

All the different combinations of reduction layers and input-output mappings have been imple-
mented successfully, and will be examined in detail. Both the results before and after knowledge
distillation are of interest. No direct comparison between the performance of the reduced net
between SVHN and CIFAR will be made, as they solved different classification tasks. Any critical
difference in performance can be blamed on the choice of the neural network or hyperparameters,
as opposed to the reduction methods.

6.1 Full model results

The full model is the fundamental model from which we are doing the model reduction. Due to the
weights being inherited for the pre-model and the input-output layer mapping to the full model
output, it is obvious that the positive and negative qualities from the full model will be inherited
by the reduced model. It is therefore crucial to take a deep-dive into the specifics of the full model.

VGG-16 was trained with the same hyperparameters for CIFAR, SVHN, CIFAR-augm and SVHN-
augm. For each epoch, the training loss and validation loss was calculated. Plotting the training
and validation loss can give important information about the model behavior. In order to compare
the model trained on augmented, normalized data with the model trained on the original data, the
two are be plotted against each other.

Figure 6.1: Training loss and validation loss of the CIFAR dataset.

Both figure 6.1 and figure 6.2 show that there are clear tendencies to over-fitting in the models
that are trained on the original data. In both cases the validation loss is significantly worse than
the training loss. The models trained on augmented and normalized data, on the other hand, have
validation and training loss curves that are improving synchronized. These models are therefore
more viable as they, despite having a lower training accuracy, have a greater validation accuracy.
The validation-loss curves therefore suggest that models trained on normalized, augmented data
may give more accurate predictions.

Table 2 shows some quantitative results for the full models. The accuracy is the accuracy when
sending the testing set through the network. The size is the amount of bytes it took to save the
model as a pth file, and the time is the amount of time it took to send the testing set through
the network. The testing set of SVHN is significantly larger than the CIFAR testing set, which
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Figure 6.2: Training loss and validation loss of the SVHN dataset.

ANNmodel Accuracy Storage size Time (s)
CIFAR 66.99% 1 GB 22

CIFAR-augm 79.77% 1 GB 22
SVHN 89.87% 1 GB 50

SVHN-augm 91.85% 1 GB 50

Table 2: Quantitative results from the full model.

explains why the computation time was much slower for this instance. All models have the same
amount of parameters, and therefore take up the same space on a computer.

The accuracy of the CIFAR-trained models are, in both instances, significantly worse than the
SVHN-trained models. However, CIFAR consists of different vehicles and animals and can be
deemed to be more complex than SVHN, consisting only of digits. It is therefore not surprising
that it is more difficult to classify CIFAR, and especially in the cases where the data is not
normalized nor augmented.

Already from the validation-loss curves and the accuracy, we are seeing tendencies that the models
trained on the original data are performing below desired capacity.

Figure 6.3: Confusion matrix from the
testing of ANNCIFAR.

Figure 6.4: Confusion matrix from the
testing of ANNCIFAR-augm.

Figure 6.4, 6.3, 6.6 and 6.5 visualize the confusion matrix for the respective data sets during
evaluation. The confusion matrix pairs the predicted labels with the true labels, to give a rep-
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Figure 6.5: Confusion matrix from the
testing of ANN SVHN.

Figure 6.6: Confusion matrix from the
testing of ANN SVHN-augm.

resentation of how accurate the predictions are for each respective class. Here we see that all the
models are generally able to predict the different classes, with the models for CIFAR performing
noticeably worse than the models for SVHN. Furthermore, we see that the accuracy is much worse
for the models without data augmentation and normalization. The general pattern of the confu-
sion matrices showed here is a strong diagonal tendency, which is desirable as it means that most
predictions are correct.

It is by far, as already found in table 2, the model trained on the original CIFAR-data that performs
the poorest. When looking at figure 6.4 we can see that some of the largest mistakes it makes are
between similar classes in the data set. The model is, for example, not good at making a distinction
between a cat and a dog. It is also struggling at distinguishing horses from deers and trucks from
cars, and generally has a low accuracy score for cats, birds and deers. It seems to almost randomly
guess at other categories when presented with a bird, which is problematic, though it shows a
strong tendency to at least recognize that birds must be in the animal category. On the other
hand, it makes obviously wrong mistakes such as mistaking a deer for a car or a ship for a horse.

Figure 6.3 shows large improvements in the classification done by the model. Although the largest
misclassifications, namely distinguishing a cat from a dog, are still prevalent, the model is able to
classify the samples of all classes with an accuracy larger than 55%, and the desirable diagonal
tendencies of the confusion matrix are much more prevalent here. Furthermore, it seems to in-
sinuate that the classification of a cat is perhaps one of the harder tasks of the data set due to
similarities with other classes, which there may be some truth in.

Figure 6.6 and 6.5 are very similar to each other, with a strong diagonal element and no clear
outliers in terms of misclassifications. From table 2 we saw that they both had a high accuracy,
with the model trained on augmented data being slightly more accurate. It is interesting to see
that there are some minuscule differences in the diagonal elements of the confusion matrices. For
example, ANN SV HN−augm struggles more with classifying the cipher 3. However the rest of the
diagonal elements, especially in the lower part of the matrix, are generally better classified leading
to an overall better classification score.

Due to the large discrepancy between the predictions of the model trained on the original data, and
the correct labels of the testing set, it is viable to discard the models trained on the original data. A
poorly performing model will lead to poorly performing reduced models, which is not desirable. For
the rest of the numerical procedures in this thesis we will therefore only use ANNCIFAR−augm

and ANN SV HN−augm. Any usage of the data set names CIFAR and SVHN will refer to the
augmented and normalized data, unless specified.
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6.2 Incremental results

The incremental results contain results from the pre-model layer and the reduction layer. Res-
ults from the input-output mapping are omitted from the incremental results as they provide
classifications, and are therefore comparable with the results after re-learning.

6.2.1 Pre-model results

From section 5, the choice of cutoff layer was discussed. As mentioned, the works of [36, 13] choose
a cutoff layer that is not in direct contact with the max-pooling layers. This is done with the
intention of using a cutoff that reduces the amount of parameters in the model.

Figure 6.7: The amount of parameters per layer of the sequential version of the VGG-16 model.

Figure 6.7 depicts the cumulative amount of parameters in our modified version of VGG-16. Es-
pecially in the latter layers of the model, one can see that the amount of parameters is extremely
high. A high amount of parameters takes up a lot of space storage-wise, and is time-consuming
to train. Choosing a cutoff layer before the accumulation of parameters becomes too high, i.e.
around layer 15 or somewhere in the surrounding area, would therefore be ideal. However, there is
a trade-off when splitting the full model into a pre- and post-model too early. The various layers
that are dependent on the numerous parameters are feature extractors, and can gather important
non-linear patterns from the data set. By choosing a split very early on the model, one may risk
losing the non-linear connections gathered from the different filters.

Figure 6.8: SVD of the output of VGG-16 at various layers, for the CIFAR training set.

Figure 6.8 and 6.9 show the descending singular values according to the cut-off layer chosen for
the pre-model. The color bar on the right denotes the cutoff layer. The plots on the left show the
entire span of the singular values. Here one can also see that there are fewer singular values for
the latter layers, meaning that the outputs are of smaller dimensions. The plots on the right show
the first 50 singular values. This is to see the impact of the cut-off layer on the singular values
on a more close-up scale. This is also the maximum reduction dimension tested in this thesis, and
so the directions belonging to the rest of the rest of the singular values will anyways be discarded
during model reduction.
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Figure 6.9: SVD of the output of VGG-16 at various layers, for the SVHN training set.

In both figure 6.8 and 6.9, the singular values of the later layers in the model are the ones that
descend the quickest. A quick descent is important for model order reduction. In both Active
Subspaces and Proper Orthogonal Decomposition, we reduce the model by projecting it onto the
most important directions of the high-dimensional data. A quick descent of singular values signifies
that some directions are indeed much more important than others. A quick descent can imply that
a model reduction is appropriate, as not too much information will be lost in the process. The
SVD figures thereby show that a cutoff for a latter layer may give better results due to the singular
values descending faster.

6.2.2 Projection matrix results

We want to illustrate how much information is lost when projecting the input to a lower dimension.
This is mainly to see whether there is a huge information loss in either Active Subspaces or
Proper Orthogonal Decomposition. There is no point in utilizing a method that discards a lot of
information during the model reduction.

Our reduced pre-model output is given as z = WT
projx

(l), whilst our pre-model output is given as

x(l). We aim to get some qualitative view of the difference between x(l) and the reduced variable
z.

Recall that our projection matrices will be orthogonal, meaning WprojW
T
proj = I. This means

that x̃(l) = Wprojz should be equivalent to x(l), however due to information loss there will be a
difference.

Looking at the difference relative the initial value of x(l). The relative difference is given as

||x(l) − x̃(l)||
||x(l)||

=
||x(l) −WprojW

T
projx

(l)||
||x(l)||

=
||(I −WprojW

T
proj)x

(l)||
||x(l)||

. (6.1)

Using the Cauchy-Schwartz inequality here, we get the upper bound

||x(l) − x̃(l)||
||x(l)||

≤
||I −WprojW

T
proj || · ||x(l)||

||x(l)||
= ||I −WprojW

T
proj ||. (6.2)

We therefore wish to use ||I − WprojW
T
proj || as a relative measure of the upper bound of the

information loss, where the norm ||.|| can be chosen according to preference.

The upper bound of the projection matrix is plotted as a function of the cutoff value, the reduction
dimension value r, and the sample amount in figure 6.11 and 6.10. The norm used is the Frobenius
norm. For the instances with the upper bound as a function of the cutoff and the r value, the
labels are omitted due to the curves being identical. In the figures where the upper bound varies
according to ntrain, we see that two cases of POD and AS produces a slightly different upper
bound of information loss. However, one can see that the scale is in the area of 10−10, meaning
the difference is almost insignificant.
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Figure 6.10: The loss of information in the projection matrix according to hyperparameters, for
CIFAR.

Figure 6.11: The loss of information in the projection matrix according to hyperparameters, for
SVHN.

It is worth noting that the zig-zag patterns in the bound as a function of the cutoff are taking place
at the max-pool layers. This makes sense, as the max-pool layers halve the output. The norm is
not a relative norm, so that a matrix of smaller dimensions will give a smaller norm. The loss of
information as a function of r is linear, however the change in the y-axis is not very steep. This
suggests that r does not really have a big impact on the information loss of the projection matrix,
as one always retains the most important direction regardless.

The equivalence of information loss in the projection matrices stemming from both AS and POD
suggests that the two methods are projecting the model onto the same subspace. Both methods
are utilizing singular value decomposition, but it is done on different matrices: POD is completely
data-driven and relying on the pre-model output, whilst AS is relying on the gradient of the output
of the full model.

6.3 Quantitative results

Note that this is a study of proof of concept. There has therefore not been a large focus on
optimizing the numerical methods utilized in the model reduction and training part. The accuracy,
computational space and time spent may vary dependent on hyperparameters chosen, packages
implemented and so on, so that the results presented here may vary considerably from the results
of those with a completely approach to coding. The results should therefore be taken with a grain
of salt: a specific method can perform worse in this exact setting with these exact parameters, but
this doesn’t necessarily mean that it will always perform worse.

The figures of this subsection all show quantitative results of the model reduction according to cutoff
layer l, reduction dimension r, and the amount of training samples nsamples used for constructing
the projection matrix and input-output layer in the neural network. The metrics of importance
that were presumed to be affected by these parameters were deemed to be accuracy, the running
time and the storage space for the model.

The baseline parameters for the reduced models are chosen to be

• ntrain = 50000,
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• r = 50,

• l = 16.

All the figures contain the four different combinations of reduced model types (AS + PCE, AS
+ FNN, POD + PCE, POD + FNN) with the baseline parameters kept constant, except for the
variable plotted on the x-axis. The aim is to see trends and coherences between the parameters of
the reduced model and its respective output.

6.3.1 Before re-learning

Figure 6.12: Reduced model accuracy according to the cutoff, for the CIFAR data set.

Figure 6.13: Reduced model time usage according to the cutoff, for the CIFAR data set.

In all figures concerning accuracy i.e. figure 6.12, 6.12, 6.18, 6.18, 6.27 and 6.24, we can see that
there is a clear order of accuracy between the different reduced models. The models that use
AS to find the projection matrix are generally performing better than the models using POD.
Furthermore, the models using PCE as an input-output map have a higher accuracy than those
using FNN. However, in all figures the ”fuller” reduced models i.e. the reduced models with a
larger r value or taken at a later cut-off have a more similar level of accuracy than the ”less full”
models.

From figure 6.15 and 6.12 we observe that the relationship between the accuracy of the models
and the cutoff almost look linear, i.e. a later cutoff in the model will give a proportionally better
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Figure 6.14: Reduced model storage size according to the cutoff, for the CIFAR data set.

Figure 6.15: Reduced model accuracy according to the cutoff, for the SVHN data set.

Figure 6.16: Reduced model time usage according to the cutoff, for the SVHN data set.

accuracy score. The relationships between the accuracy and the reduction dimension r as shown
in figure 6.21 and 6.18, on the other hand, appear to be stagnating. It seems as if all accuracy,
when r is increased, converges to some high percentage. This suggests that there is no point in
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Figure 6.17: Reduced model storage size according to the cutoff, for the SVHN data set.

Figure 6.18: Reduced model accuracy according to the reduction dimension, for the CIFAR data
set.

Figure 6.19: Reduced model time usage according to the reduction dimension, for the CIFAR data
set.
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Figure 6.20: Reduced model storage size according to the reduction dimension, for the CIFAR
data set.

Figure 6.21: Reduced model accuracy according to the reduction dimension, for the SVHN dataset.

Figure 6.22: Reduced model time usage according to the reduction dimension, for the SVHN data
set.
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Figure 6.23: Reduced model storage size according to the reduction dimension, for the SVHN data
set.

Figure 6.24: Reduced model accuracy according to the size of the training set, for the SVHN data
set.

Figure 6.25: Reduced model time usage according to the size of the training set, for the SVHN
dataset.

51



Figure 6.26: Reduced model storage size according to the size of the training set, for the SVHN
data set.

Figure 6.27: Reduced model accuracy according to the size of the training set, for the CIFAR data
set.

Figure 6.28: Reduced model time usage according to the size of the training set, for the CIFAR
data set.
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Figure 6.29: Reduced model storage size according to the size of the training set, for the CIFAR
data set.

increasing the r value unless it is extraordinarily small and severely damaging the accuracy of the
neural network altogether.

Figures 6.24 and 6.27 suggest that the amount of training samples used for constructing the reduced
neural network does not particularly influence its accuracy. This is of course restricted to a certain
amount: The accuracy in both plots are extremely low when using as few as 100 samples. We see
in both plots that there are sharp increases and decreases in the area between 100 samples and
5000 samples, but one can attribute this to coincidence according to the samples used. In some
cases one may have a selection of well-balanced samples that represent a large part of the entire
data set, whilst in other cases one may have a huge class imbalance in the training set, leading
to a poorer accuracy. Generally, it seems that having 5000 samples in the training set or having
50000 does not impact the accuracy at all, when constructing the reduced model.

Figures 6.13 and 6.16 show an almost linear relationship with the cutoff value and the time taken
to send the training set through the model. The relationship shows that the reduced model is
quicker at computing predictions than the full model, and motivates reduction at an earlier cutoff.

Figures 6.14, 6.17, 6.20, 6.23, 6.29 and 6.26 imply that the biggest impact on storage size is
the method for finding the projection matrix. In all cases, the projection matrix found through
POD seems to take up the most space. Figures 6.29 and 6.26 show that the storage space used is
influenced in POD by the amount of samples in the training set, up until a fixed amount of samples.
Figures 6.14 and 6.17 show that the storage space used by the reduced model decreases according
to the cutoff layer chosen. This makes sense, as the dimensions in the earlier layers of VGG-16 are
extremely high, and so the flattened output will be large, giving us huge projection matrices and
a lot of parameters when mapping the reduced variable onto the solution space. The dimensions
in the latter layers are much lower, giving less parameters to save in the projection matrix and
the input-output mapping. Also, figures 6.14 and 6.17 show that the storage space decreases at
max-pooling layers, thus indicating that choosing an appropriate pre-model cutoff may be one of
the parameters affecting the storage space the most.

Figures 6.19 and 6.22 suggest a linear relationship between the time usage of PCE and the reduction
dimension r. Recall that the amount of polynomials in PCE is dependent on the order of the
polynomials and r, meaning this does indeed have a strong relationship. A larger r leads to
more polynomials in PCE, thus yielding a greater computation time for the reduced model. The
reduction dimension, however, does not affect the amount of layers in the FNN nor the size of the
hidden layer (with the exception of the input), and so the computation time of FNNs do not seem
to be influenced by r at all.
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6.3.2 After re-learning

The time and storage aspect will not be taken into consideration when comparing the post-re-
learning results with the pre-re-learning results. The time taken to run the test set through the
models, as well as the storage space taken up by the models trained by knowledge distillation, are
equivalent to those presented in section 5. Furthermore, different CPUs have been used for the
different tests and so any difference in time spent can be the result of the change in CPUs.

All different reduced models have been re-trained with the same parameters and amount of epochs,
using knowledge distillations. The new accuracy as a function of cutoff, reduction dimension and
samples in the training set will be presented, as well as the percentage-wise change in accuracy.

Figure 6.30: CIFAR reduced model accuracy according to cutoff, after re-learning.

Figure 6.31: CIFAR reduced model accuracy according to reduction dimension, after re-learning.

From figures 6.30, 6.33, 6.31, 6.34, 6.32 and 6.35 we can see a clear trend in the reduced model
type that improve the most through the re-training. In all cases it can be observed that the
accuracy does not change much for the reduced models that are dependent on PCE. It should be
noted that they are already of very high accuracy, so that when the models dependent on FNN are
improved through re-learning it leads to all the reduced models being of around the same accuracy.
Ultimately, the figures suggest that re-learning is only useful in cases of subpar accuracy.

Figures 6.30 and 6.33 show the increase or decrease in accuracy according to cutoff, as a result of
knowledge distillation. Immediately one can observe that knowledge distillation will increase the
accuracy for models with an early cutoff layer, and decrease the accuracy for models with a late
cutoff layer. The plots to the left show that for the models with the late cutoff layer, the accuracy
is already quite high. The decrease in accuracy can therefore be due to over-fitting. The plots
suggest that there is no need for re-learning when choosing cut-off layers that are after layer 18 or
so, as they will already be fairly accurate.

In figures 6.31 and 6.34 there is a stagnation of the accuracy according to the reduction dimension.
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Figure 6.32: CIFAR reduced model accuracy according to amount of training samples, after re-
learning.

Figure 6.33: SVHN reduced model accuracy according to cutoff, after re-learning.

Figure 6.34: SVHN reduced model accuracy according to reduction dimension, after re-learning.

As a contrast to the accuracy curves before re-learning, it seems that the accuracy after re-learning
according to r converges to a high accuracy quicker. This also holds for figures 6.27 and 6.24,
suggesting that the usage of re-learning allows us to use smaller parameters whilst obtaining the
same accuracy as for a higher parameter. There is of course a trade-off: 10 epochs of re-learning
for one reduced model took approximately an hour.

Ultimately, it is shown that re-learning will, in most cases, efficiently improve the accuracy.
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Figure 6.35: SVHN reduced model accuracy according to amount of training samples, after re-
learning.

6.4 Qualitative results

In order to give a greater picture of the parameters affecting the performance of a reduced model,
a smaller subset of the possible parameters were chosen. From the quantitative results, these seem
to give a big variance in the performance of the reduced model whilst simultaneously not severely
distorting the results. The aim of the qualitative results is to visualize the effects of tweaking the
parameters.

The parameters that will be varied are:

1. The reduced variable r,

2. The cutoff layer l,

3. The amount of samples ntrain for constructing the projection matrix.

There are obviously other parameters that can be varied as well, such as the learning rate of the
FNN, the amount of epochs for the FNN etc. However, the amount of samples, cutoff layer, and
reduced variable are known to directly affect both accuracy and computational complexity of the
reduced model, and are applicable to all the different combinations available for the reduced model

Such as in section 6.3, the parameters that we keep constant as a base model are ntrain = 50000,
r = 50, l = 16.

The shifts in parameters that will be explored are

• ntrain = 5000,

• r = 10,

• l = 11.

The shifts in parameters will happen on an isolated basis, i.e. the combination between them will
not be explored.

The various combinations are denoted in 3, where the letter given to the combination denotes the
variable that is shifted in the respective reduced model, and B denotes the baseline model.

6.4.1 Before re-learning

Table 4 shows the accuracy before conducting re-training on the models. The highest reduced
model accuracy for each data set is in bold font. It is easy to observe that the combination of AS
and PCE yields the highest accuracy in almost all cases.

56



Combination ntrain r l
B 50 000 50 16
L 50 000 50 11
R 50 000 10 16
N 5000 50 16

Table 3: Combinations of parameters for the qualitative study.

Data set Combination AS+PCE AS+FNN POD+PCE POD+FNN
CIFAR B 0.8895 0.8597 0.8231 0.7651

L 0.8415 0.7854 0.7753 0.7116
R 0.8327 0.8336 0.5951 0.6033
N 0.8501 0.8360 0.7802 0.7160

SVHN B 0.9265 0.9101 0.8744 0.8111
L 0.8578 0.8112 0.8055 0.7722
R 0.8870 0.8834 0.6285 0.6655
N 0.9021 0.8892 0.8309 0.76

Table 4: Accuracy of the qualitative combinations, before re-learning.

Figure 6.36: Confusion matrices for the reduced models, combination B. (CIFAR)

Figure 6.37: Confusion matrices for the reduced models, combination L. (CIFAR)

Figure 6.38: Confusion matrices for the reduced models, combination R. (CIFAR)

Figures 6.36, 6.37, 6.39, 6.38, 6.40, 6.41, 6.43, and 6.42 visualize the of the confusion matrices for
the output of the qualitative combinations. These can be connected row-wise to the accuracies in
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Figure 6.39: Confusion matrices for the reduced models, combination N. (CIFAR)

Figure 6.40: Confusion matrices for the reduced models, combination B. (SVHN)

Figure 6.41: Confusion matrices for the reduced models, combination L. (SVHN)

Figure 6.42: Confusion matrices for the reduced models, combination R. (SVHN)

table 4. The numerical value of the per-class-accuracies have been omitted from the plots, however
the color bar to the right give an indication of the accuracy of the predictions in the confusion
matrix.

The general trend for all combinations is that the diagonal element is quite strong, which is desirable
as this indicates that pictures are generally classified correctly. Figure 6.42 and 6.38 feature the
highest disruptions of the diagonal pattern, with the POD + PCE and POD + FNN combinations
performing poorly. This suggests that using POD in combination with a low reduction dimension
r may not be viable. This could indicate that the order of the directions found in AS, that x(l)

is projected onto, may be more accurate than the order of the directions found in POD. There
does not seem to be a large difference between the confusion matrices obtained from the baseline
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Figure 6.43: Confusion matrices for the reduced models, combination N. (SVHN)

in figure 6.40 and 6.36, indicating that for a larger r the matrices are projecting onto the same
subspace. Therefore, the ordering of directions according to the method may be the critical factor
for the discrepancies of POD.

On a bright note, when looking closer at the confusion matrices one can see that the predictions
with a high false classification rate are between classes where the misclassification is explainable.
For example, in figure 6.36 the largest misclassifications are between objects of similar subclasses:
cars and trucks, ships and planes, dogs and cats, dogs and horses. Digits that are similar, such as
3 with 5 and 3 with 8, are also the victims of misclassification. There are also misclassifications
that appear to be random - for example between 4 and 3 - which may only be explained by poor
performance of the model.

Several of the confusion matrices are also having a less strong score on the diagonal for certain
elements, indicating that these may be more challenging categories. For example, in figure 6.41,
6.41 and 6.43 there is a lower accuracy score on element 8 and 4 on the diagonal for several of the
methods, indicating that these categories may be more ambiguous or too similar to the rest of the
classes. The same can be seen in figure 6.36, 6.37, 6.39 and 6.38, where almost all the confusion
matrices are having a slightly lower score on the diagonal elements belonging to cat and dog, which
are also classes that often are mixed up even in the full model.

Other than the strong diagonal elements in all confusion matrices with some specific exceptions, and
the discrepancy in the patterns for combinations using POD with a low r value, there are not any
immediately apparent trends. There are some non-diagonal elements of low-medium strength for
several of the confusion matrices, however not noticeable enough to comment on them specifically
and not showing any clear pattern according to the respective reduced model.

6.4.2 After re-learning

The re-learning process was done with the same hyperparameters for all inputs, as described in
section 5. This was to see the effect of knowledge distillation on the different reduced models after
10 epochs, in order to compare them with one another.

Figure 6.44: The general shape of the training losses for the qualitative combinations.

The training loss curves looked generic for all the combinations listed, with the initial training loss
value being quite high, such as in figure 6.44. In epoch 1 the training loss had decreased to some
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values around 10−5, where it stayed for the rest of the epochs. This also indicates that there is
perhaps no need to train the reduced neural network for more than one or two epochs.

Figure 6.45: The accuracy of the CIFAR models at each epoch of the re-training.

Figure 6.46: The accuracy of the SVHN models at each epoch of the re-training.

From figure 6.45 and figure 6.46 we see the validation of each of the reduced models at every epoch,
belonging to the various combinations. In general it is easy to see some trends that apply to both
data sets. Firstly, the reduced models using PCE as the input-output mapping are not particularly
improving their accuracy during the re-learning process. It is clear to see that, in all cases, the
reduced model using POD as a reduction layer and FNN as an input-output mapping is the one
gaining the most accuracy during re-learning. However, this is also the combination that starts off
with the lowest accuracy, and when looking at the final epoch (10) we can see that all the models
converge to around the same accuracy.

For both figures, the combination of POD with PCE generally has the lowest overall accuracy
for most parameter combinations, showing that this is a model combination with parameters that
are hard to train. It does neither start off with a large accuracy nor improve significantly during
the re-training processes. This could also indicate that perhaps the hyperparameters should have
been larger for the re-training of particular combination, and can perhaps be attributed to large
parameter values in the various layers, so that the small learning rate had little significance during
the 10 epochs of re-training.

Data set Combination AS+PCE AS+FNN POD+PCE POD+FNN
CIFAR B 0.8832 0.8785 0.8337 0.8441

L 0.8523 0.8311 0.7944 0.7734
R 0.8279 0.8698 0.6041 0.7837
N 0.8540 0.8784 0.8245 0.8489

SVHN B 0.9341 0.9306 0.8921 0.9066
L 0.8892 0.8687 0.8446 0.8397
R 0.8886 0.9236 0.6501 0.8717
N 0.9161 0.9320 0.8872 0.9038

Table 5: Accuracy of the qualitative combinations, after re-learning.

In table 5 we see the accuracy after the re-learning step. Any accuracy that has decreased during
the re-training process is in italic font. The highest accuracy for each combination is in bold font.
It can be observed that the accuracy of most of the combinations increases after kd-learning. This
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coincides with the results from the quantitative results, where the reduced models with a cutoff
before l = 18 generally increased its accuracy through re-training.

One may observe in table 5 that the highest accuracy for each combination is equally spread between
AS + PCE and AS + FNN. This suggests that AS is a more accurate method for computing the
projection method. We can further observe that AS + PCE seems to give a high accuracy for
the baseline and combinations with an earlier cutoff-layer, whilst AS + FNN seems to give a
higher accuracy for combinations with a lower reduction dimension r or fewer training samples.
However, it should be noted that the differences here are minuscule and could vary according to
hyperparameters and data sets used.

Figure 6.47: The fractional change in accuracy after re-training, for reduced models with Combin-
ation B (CIFAR).

Figure 6.48: The fractional change in accuracy after re-training, for reduced models with Combin-
ation L (CIFAR).

Figure 6.49: The fractional change in accuracy after re-training, for reduced models with Combin-
ation R (CIFAR).

Figures 6.47-6.54 show the fractional changes in the confusion matrices after re-learning. The aim
of the plots is to get a representative idea of the direct effect of the re-learning on the reduced
models. The blue elements in the confusion matrices show that there has been a decrease in the
amount of predictions at this particular element. The red elements show an increase in the amount
of predictions. Ideally, we want a red diagonal and blue non-diagonals, as this indicates an increase
in the correct predictions and a decrease in misclassifications.

A trend of a red diagonal and blue surrounding areas can be viewed in all the figures. Especially for
figures 6.53, 6.54, 6.49 and 6.50, we see that the diagonal pattern for the POD + FNN combination
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Figure 6.50: The fractional change in accuracy after re-training, for reduced models with Combin-
ation N (CIFAR).

Figure 6.51: The fractional change in accuracy after re-training, for reduced models with Combin-
ation B (SVHN).

Figure 6.52: The fractional change in accuracy after re-training, for reduced models with Combin-
ation L (SVHN).

Figure 6.53: The fractional change in accuracy after re-training, for reduced models with Combin-
ation R (SVHN).

is both clear and strong, signifying that this is a combination that has improved significantly from
the re-training. This correlates with our findings from figures 6.46 and 6.45, where we saw that
POD + FNN curves had in general the largest increase in accuracy during re-learning. However,
one must recall that these are fractional increases. Although the increase in POD + FNN is
tremendous, the accuracy as given in table 5 is still the highest from AS + PCE or AS + FNN.

We can further gather, especially from figures 6.42 and 6.40, that there is very little to the re-
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Figure 6.54: The fractional change in accuracy after re-training, for reduced models with Combin-
ation N (SVHN).

duced models featuring AS + PCE. This was also found in figures 6.46 and 6.45. The lack of
change in the AS + PCE combinations again suggest that we could perhaps have tried with other
hyperparameters for the re-training process, or that these combinations already were optimized.

Figures 6.36, 6.37, and 6.38 also reveal the ambiguous categories that we have previously touched
upon. We see that there is blue on the diagonal for class 3 i.e. the dog-class, and that generally
there is red on the misclassification of dogs as cats and vice versa. This shows negative development
in the re-training. During the re-training, the reduced models are training based on the probability
distribution of the full model. We have seen that the full model has difficulties with misclassification
of cats and dogs, so it is inevitable that the reduced model inherits this trait during the re-
training process. Exactly situations like these is why the temperature factor is utilized in the
knowledge distillation loss function; to give ambiguity to the outputs of the full model, so that
misclassifications are not strongly inherited to the reduced model.

In general, the figures have shown that the re-learning aspect is in the desired direction. Further-
more, that re-learning is more effective and useful for some combinations than others.

6.5 Proximity to solution, using random starting weights

We have seen how model reduction is successful when constructing a reduced model from an
already existing model. Although not documented in this thesis, the training and construction
of the reduced net are procedures that are time-consuming. The re-learning step with knowledge
distillation is shown to be successful for improving models that with low accuracy. A question to
pose is whether we can construct a general reduced neural network, and train it with a few epochs
to approximate any fully trained neural net.

Using our baseline parameters, we take into consideration the four reduced neural networks that
are trained on CIFAR-10, and the four that are trained on SVHN. In both cases they are trained on
image classification with 10 classes. The question we pose ourselves is whether they are better at
image classification on each other’s data sets than a random model (i.e. using their parameters as
starting weights are better than using random weights), and whether they can acquire a satisfactory
accuracy after an acceptable amount of epochs.

Running the SVHN data set through the CIFAR-trained reduced models, and vice versa, we get
the following results:

Input-output mapping
Reduction method FNN PCE

AS 9.25% 8.28%
POD 9.36% 9.38%

Table 6: Accuracy of the SVHN-trained reduced models on classifying the CIFAR data set, after
re-training.

Table 8 is slightly worse than random guessing for a multi-class problem of nC = 10, whilst table 9 is
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Input-output mapping
Reduction method FNN PCE

AS 13.87% 13.72%
POD 12.85% 12.97%

Table 7: Accuracy of the CIFAR-trained reduced models on classifying the SVHN data set, after
re-training.

performing slightly better than random guessing. Technically this could make sense, as the objects
shown in CIFAR are perhaps more complex than SVHN from a human perspective. However, by
plotting the confusion matrices as heatmaps we can deem this to be pure coincidence.

Figure 6.55: Resulting confusion matrices from the classification of the SVHN data set using
CIFAR-trained reduced neural networks.

Figure 6.56: Resulting confusion matrices from the classification of the CIFAR data set using
SVHN-trained reduced neural networks.

There does not seem to be any clear pattern in figures 6.56 and 6.55. The predictions seem to
centered around the middle indexed labels, but this is coincidental.

Following the re-training procedure of the reduced neural network, we ran a knowledge distillation
training session of all networks. Note that the hyperparameters used in for the previous re-training
processes are not changed, and with the same amount of epochs as well as the same learning rate.

The validation curves in 6.58 and 6.58 immediately show an increase in validation of the experi-
mental models. In both figures, there is a clear order to which reduced models increase the most
using re-training: the models using FNN as input-output-mapping are attaining a high accuracy
much faster than those using PCE.

All the reduced models start with the same low accuracy. The fact that AS + PCE and POD +
PCE does not improve as quick as the FNN-based reduced models suggests what we have previously
observed. In general, it seems as if PCE is a method that is poorly poised for the re-training with
knowledge distillation using the same hyperparameters as done in the scope of this thesis. The
validation curves also suggest that the reason for AS-based reduced models having a high accuracy
was solely that it correctly ranked the most important directions. In figure 6.58 and 6.57 it seems
purely coincidental the AS + FNN has a higher accuracy than POD + FNN.

Figures 6.60 and 6.59 show the resulting confusion matrices after the re-training for 10 epochs.
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Figure 6.57: Training loss and validation curves for the re-training of the SVHN-trained models,
with CIFAR-data.

Figure 6.58: Training loss and validation curves for the re-training of the CIFAR-trained models,
with SVHN-data.

Figure 6.59: Resulting confusion matrices from the classification of the CIFAR data set using
SVHN-trained reduced neural networks.

Figure 6.60: Resulting confusion matrices from the classification of the SVHN data set using
CIFAR-trained reduced neural networks, after re-training.

The results here coincide with the validation-accuracy curves, and are extremely promising for the
notion of a general reduced model The combinations such as AS + FNN and POD + FNN have
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Input-output mapping
Reduction method FNN PCE

AS 75.70% 27.17%
POD 73.12% 50.72%

Table 8: Accuracy of the SVHN-trained reduced models on classifying the CIFAR data set, after
re-training.

Input-output mapping
Reduction method FNN PCE

AS 88.53% 39.13%
POD 87.35% 62.92%

Table 9: Accuracy of the CIFAR-trained reduced models on classifying the SVHN data set, after
re-training.

confusion matrices that are almost equivalent to the reduced models that were carefully reduced
to attain for the full models. It also indicates that random initial weights for the pre-model, the
projection matrix and the FNN can be an alternative for the AS + FNN method. There are also
some pitfalls of these results, of course. AS + PCE and POD + PCE have earlier performed with
the highest accuracy, however it seems that re-training PCE with random initial weights does not
give desirable results. The accuracy attained from AS + PCE have been higher than the ones seen
in tables 9 and 8 for POD + FNN. The hyperparameters, however, have not been tuned specifically
for any of the reduced model combinations and so it is unclear whether it is the nature of PCE
that is at fault or just the hyperparameters used.
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7 Discussion

In section 6, the augmented data of the CIFAR-10 and SVHN data sets were used to train two
different models in image classification. The models ANNCIFAR and ANN SV HN were both well-
performing full models of the class VGG-16. We used the model reduction techniques presented in
section 4 and 5 to construct reduced models, obtaining four different combinations for each data
set. There were three hyperparameters that were considered to be independent variables subject
to change: the cutoff layer l, the reduction dimension r, and the amount of training samples ntrain
used to construct the reduced neural network.

Incremental, qualitative and quantitative results were found from the reduced models. Here are
some of the most significant observations:

• Some combinations of projection matrices and input-output mappings are consistently per-
forming better than the rest for any hyperparameter. This can especially be observed before
the re-training process. The clear ”winner” is the combination of AS + PCE.

• Some combinations are not easily trained during the re-training. This includes all models
that have PCE as the input-output-mapping.

• Accuracy is improved by choosing a cutoff layer at a later stage in the model, by choosing a
reduction dimension above a certain threshold, and by having a sufficient amount of training
samples. It is not necessary to increase the amount of training samples or the reduction
dimension excessively to attain a high accuracy. The relationship between the index of the
cutoff layer and the accuracy, however, appears to be linear and strictly positive.

• The time spent for calculations is reduced by choosing an early cutoff, and by not using
PCE. It seems, when using PCE as an input-output mapping, that there is a positive linear
relationship between the calculation time and the reduction dimension r. It also seems that,
in general, models using PCE have a greater computation time than models using FNN.

• The storage space taken up by the model is reduced by choosing a late cutoff. It is directly
affected by the dimension of the flattened output of the pre-model.

• The re-training using knowledge distillation works very well on reduced models with FNN as
the input-output-mapping. It is very unsuccessful for reduced models using PCE.

• In general, reduced models with a very high accuracy perform poorer after re-learning. This
may be accredited to over-fitting.

• It is possible and proved successful to use random weights on reduced models, and train them
using KD-learning. This seems to be equally successful reducing the models specifically for
each data set as presented in 4, for the models using FNN as the input-output layer.

The choice of cutoff, reduction dimension, neural network type, re-learning epochs and so on is
clearly a complex issue, as there are trade-offs whenever taking an active choice.

7.1 Computational limitations

Although the reduced model has proven to be successful on the SVHN and CIFAR-10 data sets in
terms of accuracy, computation time and so on, there are several limitations to the method. Just
the construction of the projection matrices is demanding time-wise and storage-wise. In fact, we
were not able to construct it for earlier layers than the ones that were tested in section 6 due to
constraints on the Random Access Memory.

It should be emphasized that the data sets used in this study were of size 32 × 32, which is
approximately the size of the icons on the computer screen. In other words, they are abnormally
small.
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When extending the model reduction method onto data sets of larger sizes, we will run into
problems relatively early. In fact, the first months of this thesis were spent trying to perform
model reduction on 224 × 224 size images. Even with High-performance computing, this was in
general unsuccessful due to the dimensions simply being too big, and especially in the stage of
constructing the projection matrix. Not only does one need to allocate space for the large pre-
model output, but taking the SVD of such a huge matrix is extremely computationally expensive.

One could get around this issue by using sketching methods such as Frequent Directions method to
construct the projection matrix. This is already implemented within the Active Subspaces library
in python (ATHENA), for calculating an approximation to the eigenvalue decomposition. If this
method is adequate for AS, it must surely be adequate for POD. In both [34] and [8], it seems
that randomized SVD was implemented to attain a truncated SVD. This is also a viable option in
order to save both computation time and storage space.

7.2 Tuning of hyperparameters

When introducing the various results in section 6, it was often noted how the hyperparameters
were set for all the different models. Furthermore, there was no specific hyperparameter search
implemented. This was done in order to have a fair comparison between the results attained, and
also due to the thesis being a proof of concept. However, this also restrains the thesis as it excludes
the possibility of seeing the extent of accuracy a reduced neural network can provide.

The output of the reduced neural networks have been compared with the output of the full neural
networks for the scope of this thesis. Therefore, the accuracies actually serve as replication rates.
If the full model output is 90% accurate and the replication rate of the reduced neural network
is 90%, it would mean that the reduced model accuracy is actually 81% with regards to the real
labels. Although this may be an adequate accuracy, it means that the accuracies provided for the
scope of this thesis are much lower with regards to the true labels of the data set.

A possible future research project could be to try to entirely replicate the function of a full neural
network, using a reduced neural network. This would require extensive hyperparameter searches
for both the construction process and the re-training process of the reduced neural network. Some
hyperparameters that would be interesting to look into would be in general those related to the
re-training process, such as the optimizer, the temperature factor, the learning rates, batch sizes,
and the amount of epochs. Optimizing the parameters during the reduced model construction,
such as the choice of cutoff, the reduction dimension, and the amount of training samples can also
be beneficial. Already we have seen the relationship between the accuracy and these paramet-
ers independently, however different combinations should also be explored and given a numerical
accuracy through parameter searches.

7.3 Extension to a more general model

The process of obtaining a reduced model output consisted of training a full model, perform-
ing model order reduction of the pre-model output, and either training a FNN or obtaining the
coefficients to a PCE model. The time usage of the construction of the reduced model was not
documented due to a varying usage of CPUs, which would lead to unfair comparisons. However,
this process was approximately equally time demanding to the re-training process. Time usage
of re-training was noted in section 5 to be around 1 hour for 10 epochs per model when using 32
CPUs.

In the combination of model order reduction with PCE, we saw that the results were of very
high accuracy before the re-training process. There did not seem to be any need for knowledge
distillation, as the accuracy did not particularly improve nor had any need for improvement. This
was consistent for most combinations that implemented PCE.

In the combination of model order reduction with FNN, the results were generally of lower accur-
acy before re-training. For these implementations, re-training with knowledge distillation greatly
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enhanced the results. This was a necessity for implementations using FNN to attain performance
on par with those using PCE.

In section 6.5, we entertained and tested the idea of using random weights on a reduced model.
This was to investigate how great of an impact knowledge distillation could have on the reduced
model. It was observed that re-training a reduced model using FNN as the input-output mapping
gave very a very high accuracy. This opens the possibility of having reduced neural network
classes with randomized initial weights. The weights in this context would mean the weights of
the pre-model, the weights of the FNN input-output map, and the values of the projection matrix.
One could thereby import the reduced neural network, and train it to mimic a full model using
knowledge distillation. This approach looks quite similar to the construction of full neural networks
using packages such as torchvision. The benefit of this approach, versus just having a full neural
networks, is that it produces a neural network that requires less computational time and storage
allocation.

Due to the time required for both construction and re-training of reduced neural networks, we thus
propose two different approaches for reduced neural networks:

1. Constructing a model-specific reduced neural network with PCE as the input-output map.
No re-training.

2. Importing a general reduced neural network with FNN as the input-output map, and with
random weights. Re-training it using knowledge distillation.

This is in line with the motivation of creating a reduced neural network i.e. it reduces the model
complexity. Both these methods have almost the same time duration and give models that are of
around the same accuracy.

8 Conclusion

This thesis has served as a proof of concept to reduced model implementations. Reduced neural
networks have been created for the CIFAR-10 and SVHN data sets. The aim of the reduced neural
networks have been to reduce model complexity and processing time. The results have shown clear
relationships between the desired achievements and various parameters within the reduced models,
both quantitatively and qualitatively. Furthermore, the usage of randomly initialized weights in
reduced neural networks has been investigated, where we have seen success with some (but not
all) reduced neural networks. We have additionally come with two proposals for further work with
reduced neural networks, based on the implementation time and accuracy gained. According to
results gained, reduced neural networks using PCE can be constructed from scratch without any re-
training, whilst reduced neural networks using FNN can be imported with randomized weights and
re-trained according to the chosen. The proposals for further work are in line with the objectives
of using reduced neural networks, such that they ensure less complex neural networks as well as
reduced computation as well as implementation times. Further work in this area would be to find
the optimal hyperparameters for the reduced neural networks, and to investigate data sets with
larger images.
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