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Abstract

Building on work by Ehrnström, Mæhlen and Varholm, we prove the existence of limits at the
origin for all higher-order derivatives of a highest, cusped, travelling-wave solution of the Whitham
equation. We prove the exact values of the limits for the second and third derivative, and show
that the exact value of the limit for the n-th derivative is as conjectured in the above-mentioned
work if a certain expression equals zero for all integers k ∈ {2, ..., n − 1}. We confirm that the
expression equals zero for k = 2, and also for k ∈ {3, ..., 100} using a computer-aided approach,
however the complexity of the expression has prevented us from completing the calculation for the
case of a general k. We expect further considerations to yield an analytic solution to this step.

Sammendrag

Basert p̊a arbeid av Ehrnström, Mæhlen og Varholm, beviser vi eksistensen av grenseverdier ved
origo for alle høyere ordens deriverte av en høyeste, spiss, reisende-bølge løsning av Whitham-
likningen. For den andrederiverte og tredjederiverte finner vi de eksakte verdiene for grensene,
og vi viser at den nøyaktige verdien av grensen til den n-te deriverte er som de ovenfornevnte
forfatterne forventer s̊a lenge verdien av et visst uttrykk er lik null for alle heltall k ∈ {2, ..., n−1}.
Vi bekrefter at uttrykket er lik null for k = 2, og ogs̊a for k ∈ {3, ..., 100} ved å bruke dataprogram,
men uttrykkets kompleksitet har hindret oss fra å fullføre beregningen for en vilk̊arlig k. Vi
forventer at videre arbeid vil føre til et analytisk svar p̊a dette punktet.
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1 Introduction

The Whitham Equation was introduced in [1] as a non-local, non-linear dispersive shallow water
wave model of the form

∂tϕ+ ∂x(K ∗ ϕ+ ϕ2) = 0, (1.1)

where ϕ = ϕ(t, x) is the surface profile, and K = K(x) is defined by its Fourier transform

K̂(ξ) =

∫
R
Ke−ixξdx :=

√
tanh ξ

ξ
. (1.2)

Whitham conjectured that the interplay between the linear dispersion and the nonlinear effects
would give rise to smooth periodic and solitary waves, but also wave breaking and surface singular-
ities, which are properties that the famous KdV equation lacks. Indeed, solutions of the Whitham
equation and Whitham-type equations possessing these features have later been shown to exist [2,
3, 4, 5, 6, 7, 8, 9, 10].
Of particular interest to us is the existence of a highest, cusped, and even periodic traveling-wave

solution φ of the Whitham equation, which was proved in [5] along with many other qualitative
properties of this solution. Among the properties that the solution φ was shown to possess is
smoothness away from the cusps and 1/2-Hölder continuity at the cusps, in particular at the cusp
at the origin. That is, it was shown that φ ∈ C∞(R\PZ), where P denotes the period of φ, and
that c1|x|1/2 ≤ φ(0) − φ(x) ≤ c2|x|1/2 for constants 0 < c1 ≤ c2 and x ≪ 1. The authors of [5]
conjectured that c1 = c2 =

√
π/8, but were not able to prove this result.

Recently, building on the work of [5], this question regarding the exact leading-order asymptotics
at the origin for the highest, cusped wave φ was settled in [11]. Letting u(x) := φ(0) − φ(x), the
authors managed to show that the limit at the origin of u(x)/x1/2 exists, and that

lim
x→0

u(x)

x1/2
=

√
π

8
,

confirming the conjecture posed in [5]. Furthermore, by using this newly determined limit at the
origin of u(x)/x1/2 they also managed to show the corresponding limit

lim
x→0

u′(x)

x−1/2
=

1

2

√
π

8

for the derivative. Throughout this text, we will refer to these limits as the u-limit and the u′-limit
respectively, and so on for higher order derivatives.
The procedure for determining the u′-limit in [11] consists of four main steps:

Step 1: Take the central difference of a certain integral equation containing u. We refer to
this new equation as the central difference equation satisfied by u.

Step 2: Use the central difference equation to find a first estimate of the central difference
|u(x+ h)− u(x− h)|.

Step 3: Use the first estimate to find an improved estimate of |u(x+ h)− u(x− h)|.

Step 4: Use the two estimates to show that the dominated convergence theorem applies for
the integral in the central difference equation, whence we can calculate the u′-limit.

In steps two, three and four one divides the integral in the central difference equation into multiple
smaller integrals by splitting the domain at certain “nice” points, and analyze each of these integrals
independently. When calculating the u′-limit in step four, the u-limit is needed.

The authors of [11] state that the above steps may be performed inductively by replace u with u(i)

(the i-th derivative of u), allowing one to prove corresponding limits for all higher-order derivatives
of u. They conjecture that the n-th derivative of u, denoted by u(n), satisfies

u(n)(x) =

(√
π

8
+ o(1)

)
dn

dxn
x1/2,

1



but refrain from pursuing the question further.
Our goal is to do exactly this; Apply the methods of [11] and develop them further to study

the asymptotic behavior at the origin of u(n). As we will see, the procedure used in [11] does not
seem to translate directly to the study of higher order derivatives of u, so parts of the approach,
particularly the first of the above-mentioned steps, need to be altered somewhat.
We are able to determine the u′′-limit without any drastic changes to the approach for the u′-

limit, however parts of the proof require more care. The reason is that the role played by u in
the analysis of the u′-limit is played by u′ in the analysis of the u′′-limit, and there is a major
qualitative difference between the behavior of u and u′ near the origin; while |u(x)| behaves like
|x|1/2, an increasing function, near the origin, |u′(x)| behaves like |x|−1/2, a decreasing function.
In addition, |x|−1/2 has a singularity at the origin, but the procedure just manages to work since
|x|−1/2 is integrable on a finite domain containing the singularity. There are two main consequences
of the differences between u and u′: The first is that the two estimates of Step 1 and Step 2 now
need an extra factor to compensate for the singularity from |x|−1/2. The second is that we must
split the integral in the central difference equation into one more smaller integral, so as to isolate
the new |x|−1/2-type singularity, in steps three and four.
When moving on to the u′′′-limit, however, the role of u′ is replaced by u′′. This is a problem as

|u′′(x)| behaves like |x|−3/2 near the origin, which is not integrable on a finite domain containing
the singularity. We are, however, able to determine the u′′′-limit if make the following change
to Step 1: we return to the central difference equation satisfied by u and split the integral over
multiple domains in such a way as to isolate the singularities before transforming this equation
to one suitable for studying the u′′′-limit. As we will see, this altered approach for Step 1 lends
itself nicely to an inductive proof. There is, however, a problematic expression that appears in the
Main Theorem 7.6 of this paper, which covers the inductive proof for the general u(n)-limit. This
expression, expression (7.2), has thus far managed to survive all of our attempts at simplification,
forcing us to include a condition on when the value of the u(n)-limit in the statement of the Main
Theorem holds. We expect that (7.2) equals zero for all integers n ≥ 1, and expect that further
considerations will yield an analytical proof of this fact.
The rest of this paper is divided into six sections, of which the first three is a summary of the

relevant parts from papers [5] and [11], while the final three is our own work. We begin with some
setup where we cover and combine some important parts from both [5] and [11] that will be used
throughout this paper. We also cover some notational conventions.
Then we look at paper [5] in more detail. Our focus will be on the proof for the smoothness of

φ away from the cusps, and the 1/2-Hölder continuity at the cusps. The main result of the paper,
the existence of a highest, cusped, even periodic travelling-wave solution φ, is a fact we will take
for granted.
Next, we take a closer look at [11], where our focus will be on presenting the second part of

what is referred to as the main Theorem, where the u- and u′-limits that are stated above are
shown. The results in [11] are proved for a general class of functions of which the highest, cusped
even periodic travelling-wave solution φ of the Whitham equation from [5] is a member. As we
are focusing solely on the Whitham equation in this paper we will not require the same level of
generality, and therefore present the relevant results from [11] for the special case of the solution
φ. In our presentation of the relevant results from [5] and [11] we will elaborate somewhat where
we deem it helpful and show some of the steps in the calculations in more detail.
The remaining three sections cover our study of the u′′-limit, the u′′′-limit and the u(n)-limit

respectively. The Main Theorem 7.6 and Corollary 7.7 in Section 7 are the main results of this
paper, establishing the exact value of the u(n)-limit is established if a certain condition holds, and
the existence of the u(n)-limit, respectively. Outside of some new lemmas needed for the inductive
proof of the Main Theorem, Section 7 is, however, very similar to Section 6 where we study the
u′′′-limit. The new way of finding a usable central difference equation from our study of the u′′′-
limit, along with the new form of the two estimates and the new splitting of the integral from
our study of the u′′-limit, constitute the three most important contributions of this paper to the
framework laid out in [11].
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2 Setup

The search for a highest, cusped wave in [5] begins by looking for steady solutions ϕ(t, x) =
φ(x − ct), i.e. waves that retain their shape as they travel, of the Whitham equation (1.1). This
can be thought of as shifting our reference frame to that of the wave by “matching its speed and
moving along side it”, essentially letting us consider only the spatial coordinate. Here c denotes
the speed of the wave. By substituting ϕ(t, x) with φ(x− ct) in (1.1), we arrive at

−cφ′(x− ct) + (K ∗ φ′)(x− ct) + 2φ(x− ct)φ′(x− ct) = 0,

which becomes
(K ∗ φ)(x̃) = cφ(x̃)− φ(x̃)2 +A, (2.1)

where x̃ = x−ct and A ∈ R is a constant, after integrating the expression and rearranging [5]. The
integration constant A can be set to zero without loss of generality by Galilean transformation as
was done in [5], giving us the equivalent formulation

(K ∗ φ)(x) = cφ(x)− φ(x)2 (2.2)

for steady solutions of the Whitham equation. This is the formulation that was used throughout
[5]. As in [5], by a solution to (2.2) we mean a real-valued, continuous and bounded function φ
that satisfies (2.2). We repeat that the travelling-wave solution φ(x) of the Whitham equation
(2.2) that was shown to exist in [5] is a highest wave (that is, the height of the wave reaches a
height of c/2), is even, and is periodic with period P .
Following the steps of [11], we take a detour through a more general formulation of (2.2) to

arrive at another equivalent formulation that will be of great importance. To this end, denote the
right-hand side of (2.2) as f(t) := ct − N(t), where we have replaced the square with a general
nonlinear operator N [11]. That is, we are now considering the more general equation

(K ∗ φ)(x) = f(φ(x)). (2.3)

Suppose we have a largest wave of height γ, achieved at the origin φ(0) = γ, and that f has a
nondegenerate local maximum at this γ, increasing to the left of it [11]. Also assuming that f is
sufficiently smooth to Taylor expand around γ [11], we can write

f(t) = f(γ) + f ′(γ)(t− γ) +
1

2
f ′′(γ)(t− γ)2 +

1

3!
f ′′′(γ)(t− γ)3 + . . .

Since f was assumed to be a local maximum at γ, the f ′-term vanishes. We rearrange the equation
and pull a factor of (γ − t)2 out of the right-hand side, giving us

f(γ)− f(t) =
(
− 1

2
f ′′(γ) + g(γ − t)

)
(γ − t)2,

after grouping the derivatives of order three and higher into a function g(γ − t) [11]. Note from
the Taylor expansion that g(0) = 0. We now introduce u(x) := γ − φ(x) (this u will end up being
the same as the one from the introduction). Inserting u into (2.3) together with the expression for
f(γ)− f(t), and noting that (K ∗ u)(0) = 0, we see that u is a solution to

(K ∗ u)(x)− (K ∗ u)(0) =
(
− 1

2
f ′′(γ) + g(u(x))

)
u(x)2,

which is non-negative if φ is a solution to (2.3) that achieves φ(0) = γ from below, and that u is
exactly zero at the origin [11]. This motivates the formulation

(1 + n(x))u(x)2 =

∫
R
(K(y − x)−K(y))u(y)dy, (2.4)

where n(0) = 0 [11]. As K̂(ξ) =
√

tanh ξ
ξ is even, K is even, and as φ is even, u is even [11].

Accordingly, we can rewrite (2.4) as∫
R
(K(y − x)−K(y))u(y)dy =

∫ ∞

0

(K(y + x) +K(y − x)− 2K(y))u(y)dy

3



in a straightforward manner [11]. We recognize the first part of the final integrand as a second-order
central difference, which we denote as

δ2xK(y) := K(y + x) +K(y − x)− 2K(y), (2.5)

allowing us to succinctly express (2.4) as

(1 + n(x)))u(x)2 =

∫ ∞

0

δ2xK(y)u(y)dy. (2.6)

We now return to the steady Whitham equation (2.2), which is a special case special case
of (2.3) where the nonlinear operator N is a square. The right-hand side of (2.2) is a quadratic
polynomial in φ that achieves a maximum of φ = c/2, increasing to the left of this maximum. As it
is a quadratic polynomial it is smooth. Its second derivative with respect to φ is (cφ−φ2)′′ = −2,
and the higher order derivatives are zero. Thus, in this particular case we see that all of the
assumptions on f in (2.3) are satisfied, with − 1

2f
′′(γ) = − 1

2 · (−2) = 1 and n(x) = 0. We therefore
have that u = c/2 − φ (the same u as in the introduction), where φ solves the steady Whitham
equation (2.2), satisfies the equation

u(x)2 =

∫ ∞

0

δ2xK(y)u(y)dy (2.7)

[11]. This formulation is the foundation of the method for determining the u- and u′-limits in [11].
We also mention some important properties of the Whitham kernel K (defined in (1.2)) that

were proved in [5]. Most importantly, it was shown that the integral kernel K can be decomposed
into a singular and regular part,

K(x) = Ksing(x) +Kreg(x), (2.8)

Ksing(x) =
1

|2πx|1/2
,

where Kreg(x) is real analytic on R [5]. This can be seen by writing the right-hand side of (1.2) as√
tanh ξ

ξ
=

1

|ξ|1/2
+

(tanh |ξ|)1/2 − 1

|ξ|1/2

and noting that the inverse Fourier transform of the first term is exactly the first term in (2.8),
and that the second term is integrable and exponentially decaying, so its inverse Fourier transform
is real analytic [5]. This decomposition will be heavily used. Note that K is smooth for x ̸= 0. We
will also use [5, Proposition 2.1], which states that K(x) and all of its derivatives are exponentially
decaying. Since Kreg(x) = K(x) − Ksing(x), it is necessarily decaying, which, together with the

fact that Kreg is smooth, implies that ||K(n)
reg ||L∞ < ∞ for all nonnegative integers n. We also

recall from above that K is even, and it is also positive, strictly decreasing and strictly convex for
x > 0 [5, Proposition 2.23].
We will also encounter the periodized Whitham kernel

KP (x) =
∑
n∈Z

K(x+ nP ),

for P ∈ (0,∞) [5]. Note that this sum is absolutely convergent, as K has rapid decay [5]. Many of
the properties of K translate directly to the periodization KP , such as evenness, and the decom-
position into a singular and regular part,

KP (x) =
1√
2π|x|

+KP,reg(x), (2.9)

where KP,reg is real analytic in (−P, P ) [5]. For convenience we accept P = ∞, with the convention
K∞ = K [5]. As in [5], we shall presuppose that any solution φ is P -periodic.

Throughout this paper we will let ≲ and ≳ indicate inequalities that hold up to a uniform
positive factor. If this factor is dependant on some parameter or function µ, this will be indicated
by a subscript such as ≲µ. Similarly, we will also use ≂ to indicate that two expressions are equal
up to some uniform positive factor.

4



3 Smoothness and 1/2-Hölder continuity of the highest, cusped
wave

We now repeat some important results from [5], culminating in a proof for the smoothness of
the highest wave solution φ of the Whitham equation away from the cusps, and its 1/2-Hölder
regularity at the origin. At this point in [5] we do not yet know that a highest, cusped even periodic
travelling wave solution of the Whitham equation exists, so the contents in this section is an a
priori analysis of the highest wave. Again, we will not repeat the proof for the existence of such a
wave, and instead refer the reader to [5] for the proof of this fact. We begin with some definitions.
For a nonnegative integer k we let BUCk(R) be the space of k times continuously differentiable

functions on R, whose derivatives of order less than or equal to k are bounded and uniformly
continuous on R.

Definition 3.1 (Hölder continuity). We say that a function φ : R → R is Hölder continuous of
regularity α ∈ (0, 1) at a point x ∈ R if

|φ|Cα
x
:= sup

h ̸=0

|φ(x+ h)− φ(x)|
|h|α

<∞,

and let

Cα(R) = {φ ∈ BUC(R : sup
x

|φ|Cα
x
<∞},

Ck,α(R) = {φ ∈ BUCk(R : φ(k) ∈ Cα
x <∞}.

Definition 3.2 (Besov spaces). Let s ∈ R, 1 ≤ p ≤ ∞, and 1 ≤ q <∞. Using the Littlewood-Paley
decomposition, the Besov spaces Bs

p,q(R) are then defined by{
f ∈ S ′(R) : ||f ||Bs

p,q(R) :=
[ ∞∑
j=0

(2sj ||γj(D)f ||Lp(R))
q
] 1

q

<∞

}
.

For q = ∞, the Besov space Bs
p,∞(R) is instead defined by{

f ∈ S ′(R) : ||f ||Bs
p,q(R) := sup

j≥0
2sj ||γj(D)f ||Lp(R) <∞

}
.

Definition 3.3 (Zygmund spaces). The Zygmund spaces Cs, where s ∈ R, are defined as Cs(R) =
Bs

∞,∞(R).

Recall that Cs = C⌊s⌋,s−⌊s⌋ for s ∈ R>0\N [5]. We will also need the following lemma which was
used without proof in [5]. We have decided to include the proof here for clarity.

Lemma 3.4. L∞(R) ⊂ B0
∞,∞, and Bs

∞,∞ ⊂ L∞(R) for s > 0.

Proof. For the first statement, let f ∈ L∞(R), i.e ||f ||L∞(R) < ∞. Since γj is defined such that
f =

∑∞
j=0 γj(D)f , we certainly have that supj≥0 ||γj(D)f ||L∞(R) ≤ ||f ||L∞(R) < ∞. But this is

exactly the B0
∞,∞-norm of f , so L∞(R) ⊂ B0

∞,∞. For the second statement, note that

||f ||L∞(R) = ||
∞∑
j=0

γj(D)f · 2sj · 2−sj ||L∞(R) ≤
∞∑
j=0

2sj ||γj(D)f ||L∞(R)2
−sj

≤ sup
j≥0

2sj ||γj(D)f ||L∞(R)

∞∑
j=0

2−sj ≲ ||f ||Bs
∞,∞(R),

where s > 0 ensures that final sum converges. Since the L∞-norm is controlled by the Bs
∞,∞-norm,

a function in Bs
∞,∞ is automatically in L∞. In other words, L∞ ⊂ Bs

∞,∞.

5



In the following we let the operator L denote the action by convolution withK, that is L : f 7→ K∗f ,
defined via duality on the space S ′(R) of tempered distributions [5]. L defines a bounded operator

L : Bs
p,q(R) → B

s+ 1
2

p,q (R),

as stated in [5, p. 18]. In particular,

L : Cs(R) → Cs+ 1
2 (R).

For a continuous periodic function f , L is given by
∫ P/2

−P/2
KP (x − y)f(y) dy, and for a bounded

continuous function f , L is given by
∫
RK(x− y)f(y) dy [5].

We have now covered the necessary preliminaries and are ready to look at the relevant theorems
from [5]. The first theorem we will look at establishes the smoothness of φ if its height is strictly
less than c/2.

Theorem 3.5. [5] Let φ ≤ c
2 be a solution of the steady Whitham equation (2.2). Then the

following statements are true:

(i) If φ < c
2 uniformly on R, then φ ∈ C∞(R) and with derivatives uniformly bounded on R [5].

(ii) φ is smooth on any open set where φ < c/2 [5].

Proof. We follow the proof from [5], but explain some of the steps in more detail. Let φ < c/2

uniformly on R. Recall that L maps Bs
p,q(R) into B

s+ 1
2

p,q (R), and (by Theorem 3.4) L∞ ⊂ B0
∞,∞(R)

into C1/2(R) = B
1/2
∞,∞(R) ⊂ L∞(R). Now we introduce the Nemytskii operator g(v) := c/2 −√

c2/4− v, which maps Bs
p,q(R) ∩ L∞(R) into itself for v < c2/4 and s > 0 [12, Theorem 2.87].

All three maps are continuous. Since we assumed φ < c/2, it follows that Lφ < c2/4. This can be
seen by noting that (2.2) is equivalent to the formulation

φ =
c

2
−
√
c2/4− Lφ, (3.1)

from which Lφ < c2/4 follows easily. Since φ ∈ L∞(R) ⊂ B0
∞,∞, we have that Lφ ∈ B

1
2∞,∞(R) ⊂

L∞(R). Composing the maps L and g gives us that g(Lφ) ∈ B
1/2
∞,∞∩L∞(R) = B

1/2
∞,∞ (the equality

follows from Lemma 3.4). But (3.1) tells us that φ = g(Lφ), so φ ∈ B
1/2
∞,∞. Composing the maps

again, now with the knowledge that φ ∈ B
1/2
∞,∞, implies that φ = g(Lφ) ∈ B1

∞,∞, since Bs
∞,∞ ⊂

L∞(R) when s > 0. Continuing iteratively, it is clear that φ ∈ Bs
∞,∞ for all s ∈ {0, 12 , 1,

3
2 , 2,

5
2 , ...}.

Recall now the Zygmund and Hölder space introduced earlier, and in particular that for any s ∈ N
we have φ ∈ B

s+1/2
∞,∞ = Cs+1/2 = Cs,1/2 = {f ∈ BUCs(R) : f (s) ∈ C1/2(R)}. In particular,

φ ∈ C∞(R) and each derivative is uniformly bounded.
For (ii), let φ be in L∞ and Cs

loc on an open set U in the sense that ψφ ∈ Cs for any ψ ∈ C∞
0 (U).

We now want to show that for such a φ we in fact have that Lφ ∈ Cs+1/2
loc , as this allows us to again

use the above iteration argument to infer that φ is smooth (on any open set U on which φ < c/2).
To this end, let ψ ∈ C∞

0 (U), and let ψ̃ ∈ C∞
0 (U) be a smooth cut-off function with ψ̃ = 1 in a

neighborhood V ⋐ U of supp ψ (that is, V is compactly contained in U). Then

ψLφ = ψL(ψ̃φ) + ψL((1− ψ̃)φ).

Since ψ̃φ ∈ Cs(R) and L : Cs(R) → Cs+1/2(R), the first term on the right-hand side is in Cs+1/2(R).
The second term is given by

ψ(x)(L((1− ψ̃)φ))(x) =

∫ ∞

−∞
K(x− y)ψ(x)(1− ψ̃(y))φ(y)dy.

Since ψ̃ is defined to equal one in a neighborhood of the support of ψ, the integrand vanishes for
all y near x where ψ(x) ̸= 0. If x instead is such that ψ(x) = 0, the integrand is also equal to zero.

The second term is therefore smooth. Hence, Lφ is Cs+1/2
loc in U . Thus, if φ ∈ L∞(R) and φ < c/2

on an open set U , we indeed have that Lφ ∈ C1/2
loc in U . Applying the above iteration argument

used to prove (i) gives the final result.
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The following lemma will be used for the lower bound when we show the 1/2-Hölder continuity
at the origin of φ.

Lemma 3.6. [5] Let P < ∞, and let φ be an even, nonconstant solution of the steady Whitham
equation (2.2) such that φ is nondecreasing on (−P/2, 0) with φ ≤ c/2. Then there exists a
universal constant λK,P > 0, depending only on the kernel K and the period P, such that

c

2
− φ(P/2) ≥ λK,P . (3.2)

More generally,
c

2
− φ(x) ≳K,P |x0|1/2, (3.3)

uniformly for all x ∈ [−P/2, x0], with x0 < 0.

Remark 3.7. Inspecting the proof of the lemma, one finds that estimate (3.3) is uniform in P ≫ 1
and that it also holds in the limiting case P = ∞ (for x ∈ (−∞, x0]) [5].

Proof. We follow the proof from [5], but show the calculations in greater detail. Assume first that
φ(0) < c/2. Then φ is smooth with bounded derivatives by Theorem 3.5. This means that we do
not run into problems when differentiating the identity( c

2
− φ

)2
= c2/4− Lφ,

which comes from rearranging and squaring (3.1). We get

d

dx

( c
2
− φ(x)

)2
= −2

( c
2
− φ(x)

)
φ′(x)

on the left hand side, and

d

dx
(c2/4− Lφ) = −

∫ P/2

−P/2

KP (y)
d

dx
φ(x− y)dy = −

∫ P/2

−P/2

KP (x− t)φ′(t)dt

on the right-hand side, where we make the change of variables t = x− y. Letting x ∈ [− 3P
8 ,−

P
8 ],

this gives the estimate( c
2
− φ(P/2)

)
φ′(x) ≥

( c
2
− φ(x)

)
φ′(x)

=
1

2

∫ P/2

−P/2

KP (x− y)φ′(y)dy

=
1

2

∫ 0

−P/2

(KP (x− y)−KP (x+ y))φ′(y)dy

≥ 1

2

∫ −P/8

−3P/8

(KP (x− y)−KP (x+ y))φ′(y)dy.

(3.4)

In the last step we have used that KP (x − y) > KP (x + y) for x, y ∈ (−P/2, 0). In fact, there
exists a universal constant λ̃K,P > 0 depending only on K and P <∞ such that

min
{
KP (x− y)−KP (x+ y) : x, y ∈

[−3P

8
,
−P
8

]}
≥ λ̃K,P .

Integrating (3.4) over (−3P/8,−P/8) in x, we get( c
2
− φ(P/2)

)
(φ(−P/8)− φ(−3P/8))

≥ 1

2

∫ −P/8

−3P/8

(∫ −P/8

−3P/8

(KP (x− y)−KP (x+ y))dx
)
φ′(y)dy

≥ P

8
λ̃K,P (φ(−P/8)− φ(−3P/8).
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From [5, Theorem 4.9], we have that φ(−3P/8) < φ(−P/8) for φ as in the assumptions. Thus, we
can divide by φ(−3P/8)− φ(−P/8), arriving at

c

2
− φ(P/2) ≥ P

8
λ̃K,P := λK,P .

This proves (3.2) when φ(0) < c/2.
For the proof of (3.3), still assuming φ(0) < c/2, fix x2, x1 such that −P/4 < x2 < x1 < 0, let

x ∈ (x2, x1) and consider ξ ∈ [−P/2, x2]. Then we have( c
2
− φ(ξ)

)
φ′(x) ≥ 1

2

∫ x1

x2

(KP (x− y)−KP (x+ y))φ′(y)dy (3.5)

≥ 1

2

∫ x1

x2

(−2y)K ′
P (y + ζ)φ′(y)dy (3.6)

≥ −x1K ′
p(2x2)(φ(x1)− φ(x2)), (3.7)

where |ζ| < |x| comes from the mean value theorem. Integrating over (x2, x1) in x and dividing,
we get

c

2
− φ(ξ) ≥ |x1(x2 − x1)|K ′

p(2x2).

Letting x2 = x0, x1 = x0/2 and using that K ′
P (x) ∼ |x|−3/2 for 0 < −x≪ 1 (this comes from the

fact that KP can be written as (2.9)), we get that

c

2
− φ(ξ) ≥ 1

4
x20K

′
P (2x0) ≳K,P |x0|1/2.

This proves (3.3) for φ(0) < c/2.
Now, let instead φ(0) = c/2. The problem is that we no longer know if the assumptions on φ

that are required for [5, Theorem 4.9] to hold, are true. Thus we need a new strategy to show that
φ is strictly increasing on (−P/2, 0) to ensure that we are not dividing by zero. To show the strict
monotonicity of φ on the interval we instead use the double symmetrization formula

(Lφ)(x + h) − (Lφ)(x − h) =

∫ 0

−P/2

(KP (y − x) − KP (y + x))(φ(y + h) − φ(y − h))dy, (3.8)

which is a result of the fact that KP and φ are even and periodic. Note that both the factors in
the integrand are nonnegative for x ∈ (−P/2, 0) and h ∈ (0, P/2). In fact, from the properties of
KP we have that the first factor in the integrand is strictly greater than zero for such x and h.
Also, as we assumed that φ is nonconstant and nondecreasing, the second factor must be strictly
positive on some sub-interval of (−P/2, 0). Thus, the integral is strictly greater than zero. From
(2.2) we have the identity

Lφ(x)− Lφ(y) = cφ(x)− φ(x)2 − cφ(y) + φ(y)2

= cφ(x)− φ(x)2 − φ(x)φ(y) + φ(x)φ(y)− cφ(y) + φ(y)2 (3.9)

= (c− φ(x)− φ(y))(φ(x)− φ(y)),

which shows that Lφ(x) = Lφ(y) if φ(x) = φ(y). Here, the first factor is nonzero for x and
y different from zero. Combining this identity and (3.8) yields that φ is strictly increasing
on (−P/2, 0) (recall that φ is nonconstant by assumption). Now we only need to justify the
differentiation under the integral sign in (3.4), which we do by applying Fatou’s Lemma to
(c/2− φ(x))φ′(x) = limh→∞(Lφ(x+ h)− Lφ(x− h))/4h. Using (3.8), we get

(c/2− φ(x))φ′(x) = lim
h→∞

1

4h
(Lφ)(x+ h)− (Lφ)(x− h)

= lim
h→∞

∫ 0

−P/2

(KP (y − x)−KP (y + x))
φ(y + h)− φ(y − h)

4h
dy

≥ 1

2

∫ 0

−P/2

(KP (y − x)−KP (y + x)) lim
h→∞

φ(y + h)− φ(y − h)

2h
dy
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=
1

2

∫ 0

−P/2

(KP (y − x)−KP (y + x))φ′(y)dy.

The existence of the final limit, which comes from the fact that φ is smooth on (−P/2, 0), ensures
that the limit coincides with the limit infimum. The rest of the proof remains unchanged.

Before we can prove the final theorem of this section, we need one more lemma. The statement
of this lemma is used without proof in [5], but we have decided to include the proof here for clarity’s
sake.

Lemma 3.8. Let f ∈ Cα, α ∈ (0, 1). If
√
f is well-defined, then

√
f ∈ Cα/2.

Proof. We need to show that |
√
f(x)−

√
f(y)| ≲ |x− y|α/2. To this end, notice that the left-hand

side can be written as

|
√
f(x)−

√
f(y)| = |

√
f(x)−

√
f(y)|

√
f(x) +

√
f(y)√

f(x) +
√
f(y)

=
|
√
f(x)

2
+
√
f(x)

√
f(y)−

√
f(y)

√
f(x)−

√
f(y)

2
|√

f(x) +
√
f(y)

=
|f(x)− f(y)|√
f(x) +

√
f(y)

.

Rewriting the numerator as
√
|f(x)− f(y)| ·

√
|f(x)− f(y)|, we see that the right-hand side is

bounded by

√
|f(x)− f(y)|

√
f(x) +

√
f(y)√

f(x) +
√
f(y)

=
√
|f(x)− f(y)|.

Now we use that f ∈ Cα, which gives the bound√
|f(x)− f(y)| ≲

√
|x− y|α

= |x− y|α/2.

This concludes the proof.

Now we are ready for the main theorem of this section.

Theorem 3.9. [5] Let φ ≤ c/2 be a solution of the steady Whitham equation (2.2), which is even,
nonconstant, and nondecreasing on (−P/2, 0) with φ(0) = c/2. Then:

(i) φ is smooth on (−P, 0).

(ii) φ has Hölder regularity precisely 1/2 at x = 0, that is, there exist constants 0 < c1 < c2 such
that c1|x|1/2 < c

2 − φ(x) < c2|x|1/2 for |x| ≪ 1.

Remark 3.10. Note that the period P can be infinite in Theorem 3.9 [5].

Proof. We follow the proof from [5], but go through the computations and some of the arguments
in greater detail. Note that (ii) is different in the corresponding Theorem statement in [5], but we
have included it here to more clearly separate the steps of the proof. For (i), note from the proof
of Lemma 3.6 that a φ satisfying the assumptions is strictly increasing on (−P/2, 0). Since φ is
strictly increasing on (−P/2, 0) and achieves c/2 exactly at the origin, we have that φ < c/2 on
(−P/2, 0). In fact, due to the periodicity and evenness of φ, we have that φ < c/2 on (−P, 0).
The claim then follows from Theorem 3.5.

Next we show that φ ∈ Cα(R) for all 0 ≤ α < 1/2. The equality (3.9) implies that φ and Lφ
have the same Hölder regularity at any point where φ(x) < c/2, because for such points we have
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that the factor (c − φ(x) − φ(y)) > 0. Consider now a point x0 where φ(x0) = c/2. For such a
point, (3.9) reduces to

(φ(x0)− φ(x))2 = Lφ(x0)− Lφ(x).

So, if Lφ is 2α-Hölder continuous at x0, then φ is α-Hölder continuous at the same point by Lemma
3.8. Assume now that φ ∈ Cα. We recall that L sends elements of the Zygmund space with
regularity s (which corresponds to the Hölder-space C⌊s⌋,s−⌊s⌋ at positive noninteger regularities)
to an element in the Zygmund space with regularity s + 1/2. So applying L to φ ∈ Cα gives
Lφ ∈ Cα+1/2(R), which implies that φ in-fact has Hölder regularity 1

2 (α + 1
2 ) at x0. Recall that

L in particular maps B0
∞,∞ = C0(R) continuously into C1/2(R) = C1/2(R). Then, since we have

that φ ∈ L∞ (which is a subset of B0
∞,∞), we get Lφ ∈ B

1/2
∞,∞ = C1/2 = C1/2, which gives us

that φ is in-fact in C1/4. Since we now know that φ ∈ C1/4, applying L again gives us that
Lφ ∈ C3/4, which means that we in fact have φ ∈ C3/8. Continuing this process, we can increase
the Hölder-exponent more and more to get that φ ∈ Cα for all α < 1/2 at x0, as

1
2 (α + 1

2 ) > α
for all α < 1/2. We extend this to a global argument as follows. From the fact that φ ≤ c/2, it is
clear that φ(x)− φ(y) ≤ c− φ(x)− φ(y). Together with (3.9), this shows that

(φ(x)− φ(y))2 ≤ |Lφ(x)− Lφ(y)|,

for all x, y ∈ R. Thus φ ∈ Cα(R) for all α < 1/2.
To prove (ii), we first recall from (2.7) that u solves

(u(x))2 =
1

2

∫
R
(K(x+ y) +K(x− y)− 2K(y))u(y)dy. (3.10)

We now make the following claim: There is a constant c2, independent of α, such that

1

2

∫
R
|K(x+ y) +K(x− y)− 2K(y)|(w(y))αdy ≤ c2(w(x))

2α, 0 ≤ α ≤ 1

2
, (3.11)

where
w(x) = min{|x|, 1}.

For |x| ≥ 1 the claim is certainly true, as in this case the right-hand side reduces to c2, and since
K is integrable and ||w(x)||∞ ≤ 1. For |x| ≤ 1 we split K into its singular and a regular part as in
(2.8).
For the regular part, note that∫

R
|Kreg(x+ y) +Kreg(x− y)− 2Kreg(y)|(w(y))α dy

≤
∫
R
|Kreg(x+ y) +Kreg(y − x)− 2Kreg(y)| dy

≲
∫
R

|x|2

(1 + |y|5/2
) dy

≲ |x|2,

for |x| ≤ 1. In the third line we have used a Taylor expansion around y, followed by the estimate

|K ′′
reg(y)| = |K ′′(y)− 3

4
√
2π|y|5/2

| ≲ 1

(1 + |y|)5/2

(which follows from Kreg being smooth and the exponential decay of K and its derivatives). For
the singular part we use the identity∫

R

∣∣∣ 1√
|x+ y|

+
1√

|y − x|
− 2√

|y|

∣∣∣|y|αdy
= |x| 12+α

∫
R

∣∣∣ 1√
|1 + τ |

+
1√

|τ − 1|
− 2√

|τ |

∣∣∣|τ |αdτ, (3.12)
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where we have made the change of variables y = xτ . The integral on the right-hand side converges,
since we have ∣∣∣ 1√

|1 + τ |
+

1√
|τ − 1|

− 2√
|τ |

∣∣∣ ≲ τ−
5
2 , |τ | ≫ 1.

Using this identity we see that the singular part of the integral converges,

1

2

∫
R

∣∣∣ 1√
2π|x+ y|

+
1√

2π|y − x|
− 2√

2π|y|

∣∣∣(w(y))αdy
≤ 1

2
√
2π

∫
R

∣∣∣ 1√
|x+ y|

+
1√

|y − x|
− 2√

|y|

∣∣∣|y|αdy (3.13)

=
1

2
√
2π

|x| 12+α

∫
R

∣∣∣ 1√
|1 + τ |

+
1√

|τ − 1|
− 2√

|τ |

∣∣∣|τ |αdτ <∞.

Since |x| 12+α ≤ |x|2α for |x| ≤ 1 and 0 ≤ α ≤ 1/2, (3.11) follows. We can now combine (3.11) and
(3.10) to finish the proof. Multiplying (3.10) by 1/(w(x))2α we get( |u(x)|

(w(x))α

)2
=

1

2(w(x))2α

∫
R
(K(x+ y) +K(x− y)− 2K(y))u(y)dy

=
1

2(w(x))2α

∫
R
(K(x+ y) +K(x− y)− 2K(y))u(y)

(w(y))α

(w(y))α
dy (3.14)

≤ 1

2(w(x))2α
sup
y∈R

∣∣∣ u(y)

(w(y))α

∣∣∣ ∫
R
|K(x+ y) +K(x− y)− 2K(y)|(w(y))αdy.

We now use the claim on the final integral,( |u(x)|
(w(x))α

)2
≤ 1

(w(x))2α
sup
y∈R

∣∣∣ u(y)

(w(y))α

∣∣∣c2(w(x))2α = c2 sup
y∈R

∣∣∣ u(y)

(w(y))α

∣∣∣.
Since the right hand side now is independent of x, we in fact have that(

sup
x∈R

|u(x)|
(w(x))α

)2
≤ c2 sup

y∈R

∣∣∣ u(y)

(w(y))α

∣∣∣.
From earlier, where we showed that φ ∈ Cα(R) for all α < 1/2, we know that the right-hand side
is bounded for all α < 1/2. Thus, for α < 1/2, we have that

sup
x∈R

|u(x)|
(w(x))α

≤ c2.

In particular, for |x| ≤ 1 we get

|u(x)| ≤ c2|x|α,

whereupon we can let α→ 1/2 to achieve

|u(x)| ≤ c2|x|
1
2

for all |x| ≤ 1. Combining this upper bound with the lower bound from Lemma 3.6, we arrive at
(ii).

As stated in the introduction, the authors were not able to determine the optimal constants c1
and c2 from Theorem 3.9 in [5], but they conjectured that c1 = c2 =

√
π/8. This leads us to the

next section.
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4 The exact leading-order asymptotics at the origin

In this section we summarize the important results we will need from [11], where our goal is
to establish the u- and u′-limit mentioned in the introduction. We repeat that our summary of
[11] in this section is not written in as general a setting as is done in the paper, but adapted
for the specific case of the highest cusped wave solution φ of the Whitham equation (2.1) whose
existence was proved in [5]. We will not work with φ directly, but with u, which we recall is defined
as u(x) := φ(0) − φ(x). For simplicity’s sake, throughout this and subsequent sections we only
consider the limit of u and its derivatives as x decreases towards zero (as is done in [11]).

Following the steps of [11], let us start by taking a closer look at Theorem 3.9 to see exactly what
stops us from determining the optimal constant c2 in (ii). To this end, we start with a heuristic
argument to show what we expect the limit of u(x)/|x|1/2 as x tends to zero to be. We return to
(2.7), but only consider the singular part of the kernel, Ksing(x) = 1/

√
|2πx|,

u(x)2 =

∫ ∞

0

δ2xKsing(y)u(y)dy. (4.1)

We have the identity

δ2xKsing(τx) =
1√

|2π(τx+ x)|
+

1√
|2π(τx− x)|

− 2√
|2πτx|

=
1√
|2πx|

( 1√
|1 + τ |

+
1√

|τ − 1|
− 2√

|τ |

)
= Ksing(x)δ

2
1

( 1√
|τ |

)
,

(4.2)

which we will use in the proof of the following theorem.

Theorem 4.1. [11] Equation (4.1) admits the solution

u(x) =

√
π

8
|x| 12 . (4.3)

Proof. We follow the proof from [11], but for the specific case of the highest, cusped solution φ
of the Whitham equation from [5]. We also show the calculations in greater detail. Making the
change of variables y = τx in (4.1) and using the identity (4.2), we arrive at

u(x)2 =

∫ ∞

0

δ2xKsing(y)u(y)dy =

∫ ∞

0

δ2xKsing(τx)u(τx)|x|dτ

= |x|
∫ ∞

0

Ksing(x)δ
2
1

( 1√
|τ |

)
u(τx)dτ = |x|Ksing(x)

∫ ∞

0

δ21

( 1√
|τ |

)
u(τx)dτ

=
|x| 12√
2π

∫ ∞

0

δ21

( 1√
|τ |

)
u(τx)dτ.

Inserting the proposed solution (4.3) for u, we get that

π

8
|x| = |x|

4

∫ ∞

0

δ21
(
|τ |− 1

2

)
|τ | 12 dτ. (4.4)

To verify that proposed solution is indeed correct, we need to find that the integral on the right-
hand side equals π/2. We will do this by rewriting the integral in terms of the beta function. To
this end, we first need to replace the −1/2 and 1/2 exponents with s− 1 and s, where s ∈ (0, 12 ),
respectively, as some of the integrals in the following calculation start diverging exactly at s = 1/2
(replacing the square root with s in this manner follows from doing the above calculations with
the more general singular kernel |2πx|s−1, instead of Ksing(x) = |2πx|−1/2). Thankfully, we can
then use analytic continuation to extend the result to the s = 1/2-case, which is the one we are
interested in.∫ ∞

0

δ21(|τ |s−1)|τ |sdτ =

∫ 1

0

δ21(|τ |s−1)|τ |sdτ +
∫ ∞

1

δ21(|τ |s−1)|τ |sdτ
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=

∫ 1

0

|1− τ |s−1|τ |sdτ −
∫ 1

0

|τ |s−1|τ |sdτ

+

∫ ∞

0

(
|1 + τ |s−1 − |τ |s−1

)
|τ |sdτ +

∫ ∞

1

(
|τ − 1|s−1 − |τ |s−1

)
|τ |sdτ = (⋆)

Notice that we can drop the absolute value signs in all of the four final integrals, as the inside of
all the absolute values are always positive on their respective domains of integration. In the very
last integral we can do the change of variables τ 7→ (τ + 1) and integrate by parts,∫ ∞

1

(
(τ − 1)s−1 − τs−1

)
τsdτ =

∫ ∞

0

(
τs−1 − (τ + 1)s−1

)
(τ + 1)sdτ

=
[(1
s
τs − 1

s
(τ + 1)s

)
(τ + 1)s

]∞
0

−
∫ ∞

0

(1
s
τs − 1

s
(τ + 1)s

)
s(τ + 1)s−1dτ

=
1

s
−
∫ ∞

0

(
τs − (τ + 1)s

)
(τ + 1)s−1dτ,

where we have used the binomial theorem to expand the terms inside the boundary term-brackets.
Continuing the above calculation and inserting this new expression for the final integral, we see
that all except the first integral cancel each other,

(⋆) =

∫ 1

0

(1− τ)s−1τsdτ −
∫ 1

0

τ2s−1dτ

+

∫ ∞

0

(
(1 + τ)s−1 − τs−1

)
τsdτ +

1

s
−
∫ ∞

0

(
τs − (τ + 1)s

)
(τ + 1)s−1dτ

=

∫ 1

0

(1− τ)s−1τsdτ.

We recognize this final integral as the beta function, so by analytic continuation the equality is also
true for s = 1/2. Using the properties of the beta function, which we denote by B, we therefore
have for s = 1/2 that ∫ ∞

0

δ21(|τ |−
1
2 )|τ | 12 dτ = B

(1
2
+ 1,

1

2

)
=
π

2
. (4.5)

Thus, the integral indeed evaluates to π/2, so the equality in (4.4) is true. Consequently, the
proposed solution (4.3) for the equation (4.1) is indeed a solution.

As the full kernel K behaves like Ksing near the origin (recall (2.8)), we expect a solution u of
the full equation (2.7) to still admit the limit

lim
x→0

u(x)

|x| 12
=

√
π

8
(4.6)

[11]. So what prevented the ascertainment of the optimal constant c2 in Theorem 3.9? Had

δ21
(
|τ |− 1

2

)
inside the integrand on the right hand side of (3.12) been non-negative, (4.5) would

immediately give us that

1

2

∫
R

∣∣∣ 1√
2π|x+ y|

+
1√

2π|y − x|
− 2√

2π|y|

∣∣∣(w(y))αdy ≤ π

8
|x|

as α→ 1/2 in the calculation (3.13) [11]. Continuing the proof from here would indeed result in the

bound |u(x)| ≤
√

π
8 |x|

1
2 , which we expect to be the optimal one based on the heuristic argument

(and as we will soon see, is indeed the optimal bound). Unfortunately δ21
(
|τ |− 1

2

)
does change sign

from negative to positive at a point τ0 ∈ (0, 1), so more work is required. This indicates that the
root τ0 ∈ (0, 1) is important. Also, had we known that the u-limit existed, we could have chosen
α = 1/2 in the first line of (3.14), let x → 0, and used dominated convergence to find (4.6) [11].
Unfortunately, however, proving that the limit exists is exactly what is difficult.
Before we are ready to show the existence and value of the u-limit, we need to establish some

more properties of the kernel K.
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Lemma 4.2. [11] The second difference δ2xK is non-negative on (x,∞), and satisfies

0 ≤
∫ ∞

ν

δ2xK(y)dy ≤ −K ′(ν − x)x2, (4.7)

for any 0 ≤ x < ν.

Proof. We follow the proof from [11], but show the calculations in greater detail. For the non-
negativity claim, note by the convexity of K that

K(y) = K
(1
2
(y + x) +

1

2
(y − x)

)
≤ 1

2
K(y + x) +

1

2
K(y − x),

which, after multiplication by two and rearranging, becomes

0 ≤ K(y + x) +K(y − x)− 2K(y) = δ2xK(y).

For the upper bound, recall that K is smooth away from the origin. We can therefore write∫ x

0

∫ x

0

K ′′(y + t1 − t2)dt1dt2 =

∫ x

0

K ′(y + x− t2)−K ′(y − t2)dt2

= K(y + x) +K(y − x)− 2K(y)

= δ2xK(y).

Thus, we have ∫ ∞

ν

δ2xK(y)dy =

∫ ∞

ν

∫ x

0

∫ x

0

K ′′(y + t1 − t2)dt1dt2dy

=

∫ x

0

∫ x

0

−K ′(ν + t1 − t2)dt1dt2

≤ −K ′(ν − x)x2,

where we have used that −K ′ is nonincreasing on R+.

Lemma 4.3. [11] The second difference δ2xKreg is integrable and satisfies

||δ2xKreg||L1 ≤ x2||K ′′
reg||L1

for all x ∈ R+
0 . Moreover, K ′

reg admits the bound ||K ′
reg||L∞ ≤ ||K ′′

reg||L1 .

Proof. We follow the proof from [11]. Since K ′′
reg is integrable, we have that

||δ2xKreg||L1 =

∫
R

∣∣∣ ∫ x

0

∫ x

0

K ′′
reg(y + t1 − t2) dt1 dt2

∣∣∣ dy
≤
∫ x

0

∫ x

0

∫
R

∣∣K ′′
reg(y + t1 − t2)

∣∣ dy dt1 dt2 = x2||K ′′
reg||L1

for all x ≥ 0. For the second part, note that K ′
reg is odd as Kreg = K −Ksing is necessarily even.

Since K ′
reg is absolutely continuous, we have that

||K ′
reg||L∞ = sup

x∈R
|K ′

reg(x)| = sup
x∈R

∣∣∣ ∫ x

0

K ′′
reg(y) dy

∣∣∣ ≤ ∫
R

∣∣K ′′
reg(y)

∣∣ dy = ||K ′′
reg||L1 .

We also need some properties related to δ21
(
|τ |− 1

2

)
(which appeared in (4.2)).
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Lemma 4.4. [11] The function δ21
(
|τ |− 1

2

)
is increasing on the interval (0, 1), where it has a unique

root τ ∈ ( 12 ,
2
3 ). In addition, δ21

(
|τ |− 1

2

)
is positive on (1,∞),∫ ∞

0

δ21
(
|τ |− 1

2

)
dτ = 0,

∫ ∞

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ =

π

2
, (4.8)

and
1

2
< −

∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ <

3

5
. (4.9)

Proof. We follow the proof from [11], but show some of the calculations in greater detail. For the
first integral in (4.8) we have that∫ ∞

0

δ21
(
|τ |− 1

2

)
dτ

=

∫ 1

0

(τ + 1)−
1
2 + (1− τ)−

1
2 − 2τ−

1
2 dτ +

∫ ∞

1

(τ + 1)−
1
2 + (τ − 1)−

1
2 − 2τ−

1
2 dτ

=

[
2(τ + 1)

1
2 − 2(1− τ)

1
2 − 4τ

1
2

]1
0

+

[
2(τ + 1)

1
2 + 2(τ − 1)

1
2 − 4τ

1
2

]∞
1

= 2
√
2− 4 +

(
lim

T→∞

(
2(T + 1)

1
2 + 2(T − 1)

1
2 − 4T

1
2

)
−
(
2
√
2− 4

))
= lim

T→∞

(
2(T

1
2 +O(T− 1

2 )) + 2(T
1
2 +O(T− 1

2 ))− 4T
1
2

)
= 0,

where we have used the binomial theorem. The second integral in (4.8) is the same as (4.5), which

was proved in Theorem 4.1. To show that δ21
(
|τ |− 1

2

)
is increasing on (0, 1), we differentiate on

(0, 1) to see that

d

dτ
δ21
(
|τ |− 1

2

)
=

d

dτ

(
(τ + 1)−

1
2 + (1− τ)−

1
2 − 2τ−

1
2

)
= −1

2
(τ + 1)−

3
2 +

1

2
(1− τ)−

3
2 + τ−

3
2 >

1

2
τ−

3
2 > 0.

Since we now know that δ21
(
|τ |− 1

2

)
is increasing on (0, 1), it follows from the explicit evaluations

δ21

(∣∣∣1
2

∣∣∣− 1
2

)
< 0 < δ21

(∣∣∣2
3

∣∣∣− 1
2

)

that there is a unique root τ0 ∈ ( 12 ,
2
3 ). For the positivity on (1,∞) we use the strict convexity of

|τ |− 1
2 on R+,

|τ |− 1
2 =

∣∣1
2
(τ + 1) +

1

2
(τ − 1)

∣∣− 1
2 <

1

2
|τ + 1|− 1

2 +
1

2
|τ − 1|− 1

2 ,

which, after multiplication by two and rearranging, becomes

0 < |τ + 1|− 1
2 + |τ − 1|− 1

2 − 2|τ |− 1
2 = δ21(|τ |−

1
2 )

for τ > 1.
To establish (4.9) we note that

−
∫ t

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ = 2t− 2t

3
2

(1 + t)
1
2 + (1− t)

1
2

+ arsinh(t
1
2 )− arcsin(t

1
2 ), (4.10)

for all t ∈ (0, 1). Since τ
1
2 is always positive on the domain of integration, the integral is maximized

at τ0 where δ21
(
|τ |− 1

2

)
changes sign. A lower bound can therefore be established by evaluation at

any other point, for instance at 2/3, which gives us that

−
∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ > −

∫ 2/3

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ >

1

2
.
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For the upper bound, notice by (4.10) and straightforward algebra that

−
∫ t

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ + t

3
2 δ21
(
|t|− 1

2

)
=

1

(t−1 − 1)
1
2

− 1

(1 + t−1)
1
2

+ arsinh(t
1
2 )− arcsin(t

1
2 ),

which is increasing on (0, 1). We can use this to see that

−
∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ

= −
∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ + τ

3
2
0 δ

2
1

(
|τ0|−

1
2

)
< −

∫ 2/3

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ +

(2
3

) 3
2

δ21

(∣∣∣2
3

∣∣∣− 1
2
)
<

3

5
,

where the first equality follows from τ0 being a root of δ21
(
|τ |− 1

2

)
, after which we evaluate at

2/3 > τ0 to establish the inequality.

For the following, define

g(x) :=
u(x)

x
1
2

, (4.11)

for x > 0. The following lemma is an asymptotic rephrasing of (2.7) for g. In this lemma we split
the integrals that appear into three parts, whence we can exploit properties of the integrand on
each of the domains. We will split the integral at the point x, and at the half-period point P/2
which allows us to exploit the fact that u(x) is increasing on [0, P/2] (the exact point at which we
split the integral is not important, as long as u(x) is increasing between the origin and this point).
We are therefore working with x ∈ (0, P/2] in the following lemmas. We also recall that u(x) is
non-negative, and smooth on (0, P ).

Lemma 4.5. [11] With g as in (4.11), there is a function λ : (0, 1) → (0, 1) so that

g(x)2 =

(∫ 1

λ(x)

δ21
(
|τ |− 1

2

)
+o(1)

)
g(x)+

∫ P/2

x

[
δ2xK(y)y1/2

x

]
g(y) dy+

∫ ∞

P/2

δ2xK(y)

x
u(y) dy (4.12)

as x→ 0. Moreover, the square bracket is positive and satisfies

lim
x→0

∫ P/2

x

δ2xK(y)y1/2

x
dy =

∫ ∞

1

δ21
(
|τ |− 1

2

)
τ1/2 dτ, (4.13)

while the final term admits the bound

0 ≤
∫ ∞

P/2

δ2xK(y)

x
u(y) dy ≤ o(1) (4.14)

as x→ 0.

Remark 4.6. The lemma also holds true when P = ∞. To see this, one can instead split the
integral at some ν > 0 small enough so that u(x) is increasing on [0, ν] (and let x ∈ (0, ν]). The
rest of the proof remains unchanged.

Proof. We follow the proof from [11]. We divide each side of (2.7) by x and split the integral,

g(x)2 =
1

x

[∫ x

0

+

∫ P/2

x

+

∫ ∞

P/2

]
δ2xK(y)u(y) dy,

observing that both the left-hand side and the third integral matches equation (4.12). For the
second integral, simply use that u(y) = y1/2g(y) to arrive at the form in equation (4.12).
For the first integral, start by recalling that δ2xKsing(y) changes sign at τ0x (due to the identity

(4.2) and δ21
(
|τ |− 1

2

)
changing sign at τ0). As u is increasing and non-negative on [0, P/2], we can

use the second mean value theorem for integrals on the first integral to conclude that, for every
x ∈ (0, P/2], we have∫ x

0

δ2xK(y)u(y) dy

16



= u(0)

∫ λ(x)x

0

δ2xK(y) dy + u(x)

∫ x

λ(x)x

δ2xK(y)u(y) dy = u(x)

∫ x

λ(x)x

δ2xK(y)u(y) dy,

for some λ(x) ∈ (0, 1). From here we use the identity (4.2) and Lemma 4.3 to find that∫ x

λ(x)x

δ2xK(y)u(y) dy = x1/2
∫ 1

λ(x)

δ21
(
|τ |− 1

2

)
dτ +O(x2),

as x→ 0, which matches the first integral in (4.12).
The positivity of the square brackets in (4.12) for y ∈ (x, P/2] follows directly from the second

difference δ2xK(y) being non-negative, which was shown in Lemma 4.2. The limit (4.13) follows
directly from the identity (3.12) together with Lemma 4.3. Finally, (4.14) follows directly from
Lemma 4.2.

We define
g(x) := min

y∈[x,P/2]
g(y) and g(x) := max

y∈[x,P/2]
g(y), (4.15)

where g is as in (4.11) (again, replace P/2 with ν > 0 if P = ∞). Note that g and g are certainly
non-decreasing and non-increasing respectively, as the minimum and maximum values of g on the
domain [x, P/2] will never be decreased or increased respectively by increasing x (as increasing x
makes the domain smaller).

Lemma 4.7. [11] With g as in (4.11), we have

m := lim inf
x→0

g(x) > 0 and M := lim sup
x→0

g(x) <∞,

for which the inequalities

M2 ≤ m√
2π

∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ +

M√
2π

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ, (4.16)

m2 ≥ 1√
2π

∫ τ0

0

δ21
(
|τ |− 1

2

)
min(m,Mτ

1
2 ) dτ +

m√
2π

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ, (4.17)

hold.

Proof. We follow the proof from [11], but include a short explanation for why the assumptionm = 0
allows us to pick a realizing sequence in the following. We also show some of the calculations in
greater detail. In the following, g and g is as in (4.15). Our strategy will be to establish that
m > 0 and M < ∞, before moving on to the stricter bounds. First we prove that m > 0. From
(4.12) we can deduce that

g(x)2 ≥

(∫ 1

0

δ21
(
|τ |− 1

2

)
dτ + o(1)

)
g(x) + g(x)

∫ P/2

x

[
δ2xK(y)y1/2

x

]
dy, (4.18)

by using that δ21
(
|τ |− 1

2

)
is monotonically increasing on (0, 1) and switches sign from negative to

positive at some τ0 ∈ (0, 1) from Lemma 4.4. That is, by replacing λ(x) with zero in the lower
bound of the first integral in (4.12) we are certainly decreasing the value of the integral. We are
also using the bounds from (4.14) to drop the third integral in (4.12), and the second term on the
right-hand side of (4.18) is certainly smaller than the second integral in (4.12) as we are replacing
g(y) with its smallest value on the domain of integration.
Assume, for the sake of contradiction, that m = 0. We can then pick a realizing sequence

{xk}k∈N ⊂ (0, P/2] for m (that is, xk tends to zero) in such a way that g = g along that sequence.
In other words, we can choose a sequence such that g(xk) = g(xk) for each xk ∈ {xk}k∈N. Note
that the assumption that m = 0 is necessary to pick such a realizing sequence; Since g(x) is non-
negative, assuming m = 0 guarantees that for any point x̃ such that g(x̃) = g(x̃), no matter how
close x̃ is to the origin, we can always find a new point x′ ∈ (0, x̃) such that g(x′) = g(x′). Then
we can include x′ in our realzing sequence. If instead m > 0 such a point in (0, x̃) would not
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necessarily exist. With the realizing sequence at hand, for each xk ∈ {xk}k∈N we then have in
(4.18) that

g(xk)
2 ≥

(∫ 1

0

δ21
(
|τ |− 1

2

)
dτ + o(1)

)
g(xk) + g(xk)

∫ P/2

xk

[
δ2xk

K(y)y1/2

xk

]
dy

=

(∫ 1

0

δ21
(
|τ |− 1

2

)
dτ + o(1)

)
g(xk) + g(xk)

∫ P/2

xk

[
δ2xk

K(y)y1/2

xk

]
dy,

which, after dividing by g(xk), becomes

g(xk) ≥
∫ 1

0

δ21
(
|τ |− 1

2

)
dτ + o(1) +

∫ P/2

xk

[
δ2xk

K(y)y1/2

xk

]
dy,

as k → ∞. Going to the limit and using (4.13) for the second integral on the right-hand side, we
find that

m ≥
∫ 1

0

δ21
(
|τ |− 1

2

)
dτ +

∫ ∞

1

δ21
(
|τ |− 1

2

)
τ1/2 dτ =

∫ ∞

1

δ21
(
|τ |− 1

2

)
(τ1/2 − 1) dτ > 0.

The equality follows from the first integral in (4.8), and the final inequality follows from the
positivity of the integrand on (1,∞) which was proved in Lemma 4.4. Here we have arrived at our
contradiction, proving that m > 0.
Analogous to the above lower bound, we find that

g(x)2 ≤

(∫ 1

τ0

δ21
(
|τ |− 1

2

)
dτ + o(1)

)
g(x) + g(x)

∫ P/2

x

[
δ2xK(y)y1/2

x

]
dy,

as x → 0. Again for the sake of contradiction, we assume M = ∞ and can choose a realizing
sequence along which g = g, resulting in

M ≤
∫ 1

τ0

δ21
(
|τ |− 1

2

)
dτ +

∫ ∞

1

δ21
(
|τ |− 1

2

)
τ1/2 dτ <∞.

Here we have arrived at our contradiction, proving that M <∞.
Now that we know that 0 < m ≤ M < ∞, we can derive the sharper inequalities (4.16) and

(4.17). Knowing that g is bounded allows us to replace (4.12) with the simpler

g(x)2 =
1√
2π

∫ P/2x

0

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ + o(1) (4.19)

as x→ 0. We arrive at (4.19) as follows. For the third integral in (4.12) we split the integral into
the singular and regular part,∫ ∞

P/2

δ2xK(y)

x
u(y) dy =

∫ ∞

P/2

δ2xKsing(y)

x
u(y) dy +

∫ ∞

P/2

δ2xKreg(y)

x
u(y) dy

≤
∫ ∞

P
2x

δ2xKsing(τx)

x
u(τx)x dτ +

supy∈R+ u(y)

x

∫ ∞

P/2

δ2xKreg(y) dy

≤
∫ ∞

P
2x

δ2xKsing(τx)u(τx) dτ +
supy∈R+ u(y)

x
x2||K ′′

reg||L1

=

∫ ∞

P
2x

Ksing(x)δ
2
1

(
|τ |− 1

2

)
g(τx)(τx)1/2 dτ + o(1)

=
1√
2π

∫ ∞

P
2x

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ + o(1)

= o(1),
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as x→ 0. Since g is bounded the integrand in the final integral is integrable, and hence the integral
tends to zero as x→ 0. We also used that u is bounded, and Lemma 4.3. Similarly for the second
integral in (4.12), we find that∫ P/2

x

[
δ2xK(y)y1/2

x

]
g(y) dy =

∫ P/2x

1

δ2xKsing(τx)τ
1/2x1/2g(τx) dτ +

1

x

∫ P/2

x

δ2xKreg(y)u(y) dy

≤ 1√
2π

∫ P/2x

1

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ +

supy∈R+ u(y)

x
x2||δ2xK ′′

reg||L1

=
1√
2π

∫ P/2x

1

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ + o(1),

as x → 0. We recall from the proof of Lemma 4.5 that the first integral in (4.12) is equivalent to
the first integral in the following calculation. This formulation is easier to use in this case as the
integrand is then exactly the same as for the second integral, but now with different bounds.∫ x

0

δ2xK(y)

x
u(y) dy =

∫ x

0

δ2xKsing(y)

x
u(y) dy +

∫ x

0

δ2xKreg(y)

x
u(y) dy

≤ 1√
2π

∫ 1

0

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ +

supy∈R+ u(y)

x
x2||δ2xK ′′

reg||L1

=
1√
2π

∫ 1

0

δ21
(
|τ |− 1

2

)
τ1/2g(τx) dτ + o(1),

as x→ 0. Thus, we can indeed can simplify (4.12) to (4.19) now that we know g is bounded. Now
we use this simpler formulation to show the stricter inequalities.
Recalling from Lemma (4.4) that δ21

(
|τ |− 1

2

)
is negative on (0, τ0) and positive on (τ0,∞), we see

that

M2 ≤
(

inf
y∈(0,ν]

g(y)
) 1√

2π

∫ τ0

0

δ21
(
|τ |− 1

2

)
τ1/2 dτ +

(
sup

y∈(0,ν]

g(y)
) 1√

2π

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ1/2 dτ

when we go to the limit. Here ν is simply introduced as some small positive variable (such that u(x)
is increasing on (0, ν], and with x ∈ (0, ν]), as we then have that lim infx→0 g(x) ≥ infy∈(0,ν] g(y)
(remember, the first integral is negative) and lim supx→0 g(x) ≤ supy∈(0,ν] g(y), giving us the
bound. Letting ν → 0, we arrive at (4.16).
For (4.17), start by noting that

τ1/2g(τx) =
u(τx)

x1/2
≤ u(x)

x1/2
= g(x)

for every τ ∈ (0, 1) and x ∈ (0, ν]. Then we have that

τ1/2g(τx) ≤ min
(
g(x), τ1/2

(
sup

y∈(0,ν]

g(y)
))

for all such x and τ . Then, from (4.19), we obtain the lower bound

g(x)2 ≥ 1√
2π

∫ τ0

0

δ21
(
|τ |− 1

2

)
min

(
g(x),τ1/2

(
sup

y∈(0,ν]

g(y)
))

dτ+

(
inf

y∈(0,ν]
g(y)

) 1√
2π

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ1/2 dτ + o(1),

as x→ 0. We take the limit along a sequence realizing m, then we let ν → 0, after which we arrive
at (4.17).

Now we are ready to prove the u-limit.

Proposition 4.8. [11] The solution u enjoys the limit

lim
x→0

u(x)

x1/2
=

√
π

8
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Proof. We follow the proof from [11]. LetM and m be as in Lemma 4.7. Introducing σ :=M/m ≥
1, we rewrite (4.16) and (4.17) purely in terms of σ and m,

√
2πm ≤ σ−2

∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ + σ−1

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ, (4.20)

√
2πm ≥

∫ τ0

0

δ21
(
|τ |− 1

2

)
min(1, στ

1
2 ) dτ +

∫ ∞

τ0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ, (4.21)

where we have moved the factor 1/
√
2π to the other side of the inequalities. When σ = 1, both

right-hand sides simplify to
∫∞
0
δ21
(
|τ |− 1

2

)
τ1/2 dτ , which equals π/2 by Lemma 4.4, giving us that√

π/8 = m = M/σ = M . Our strategy will therefore be to prove that no m > 0 simultaneously
satisfies both of the above inequalities when σ > 1. We begin by introducing

f(σ) :=

∫ τ0

0

δ21
(
|τ |− 1

2

)
min(1, στ

1
2 ) dτ + σ−2b+

(π
2
+ b
)
(1− σ−1) (4.22)

for σ ≥ 1, where

b := −
∫ τ0

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ.

Note that f(σ) is the right-hand side of (4.21) minus the right-hand side of (4.20). If we can
demonstrate that f is positive on (1,∞), we will have shown that there is no m > 0 satisfying
both (4.21) and (4.20) simultaneously. The reason for this is that a positive f on (1,∞) would
mean that the right-hand side of (4.20) is smaller than the right-hand side of (4.21) which clearly
makes it impossible to satisfy the inequalities simultaneously.

We use the trivial inequality min(1, στ1/2) ≤ στ1/2 together with the fact that δ21
(
|τ |− 1

2

)
is

negative on (0, τ0) to see that

f(σ) ≥ −σb+ σ−2b+
(π
2
+ b
)
(1− σ−1) = (1− σ−1)

(π
2
− b(σ + σ−1)

)
for all σ ≥ 1. The first factor, (1− σ−1), is positive for all σ > 1, while differentiation shows that
the second factor is a decreasing function of σ. Recalling from (4.9) that b < 3/5, straightforward
calculation shows that

f(2) = (1− 2−1)
(π
2
− b(2 + 2−1)

)
≥ (1− 2−1)

(π
2
− 3

5
(2 + 2−1)

)
=

3π

4
− 9

4
> 0.

Thus, we have that f(σ) > 0 on (1, 2].
Suppose now that σ > 21/2. We then have, by Lemma 4.4, that σ−2 < 1/2 < τ0, from which it

follows that∫ τ0

0

δ21
(
|τ |− 1

2

)
min(1, στ

1
2 ) dτ = σ

∫ σ−2

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ +

∫ τ0

σ−2

δ21
(
|τ |− 1

2

)
dτ.

Inserting this into the definition of f in (4.22), we can differentiate to get that

f ′(σ) =

∫ σ−2

0

δ21
(
|τ |− 1

2

)
τ

1
2 dτ − 2σ−3b+

(π
2
+ b
)
σ−2,

for all σ > 21/2. Considering the integrand in this expression, by the convexity of |τ |−1/2 on R+

we have that

δ21
(
|τ |− 1

2

)
τ

1
2 =

( 1

(1 + τ)1/2
+

1

(1− τ)1/2

)
τ1/2 − 2 ≥ 2τ1/2 − 2,

where we can drop the absolute values due to the domain of integration. Inserting this inequality
into the expression, we get that

f ′(σ) ≥ 2

∫ σ−2

0

(τ1/2 − 1) dτ − 2σ−3b+
(π
2
+ b
)
σ−2

=
(π
2
+ b− 2

)
σ−2 +

(4
3
− 2b

)
σ−3

>
π − 3

2
σ−2 +

2

15
σ−3,

for all σ > 21/2 by using the bounds for b given in (4.9). This shows that f is increasing on
(21/2,∞). Since we had that f is positive on (1, 2], this means that f is in fact positive on (1,∞),
which concludes the proof.
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4.1 The limit for the derivative

We now move on to the limit for the derivative. This subsection is also a summary of relevant
content from [11], but we have restructured it somewhat so the four main steps that were listed
in the introduction are as distinct as possible. This will make it easier for us to correlate the
corresponding steps in later sections with this subsection. Also, as many of the proofs in subsequent
sections contain calculations that are completely analogous to the ones we will encounter here, we
write out the calculations in the proofs below in excruciating detail and simply refer back to them
in the corresponding calculations of later proofs.
In this and subsequent sections we will make heavy use of the first-order central difference, so

we introduce the notation

δ2xf = f(·+ x)− f(· − x).

The identity

δ2xK(τx) = δ2xKsing(τx) + δ2xKreg(τx) = Ksing(x)δ2

(
|τ |−1/2

)
+ δ2xKreg(τx),

which follows from

δ2xKsing(τx) =
1√

|2π(τx+ x)|
− 1√

|2π(τx− x)|

=
1√

|2πx|
√
|τ + 1|

− 1√
|2πx|

√
|τ − 1|

= Ksing(x)δ2

(
|τ |−1/2

)
,

will also be useful. We also state now that throughout this and later sections, we will repeatedly
make these changes of variables y = τx or y = τh. We will not always mention explicitly when we
make these change of variables, but it should be clear from the calculations.
This section, and all subsequent sections of this paper, are structured to follow the main steps

form the introduction. We begin with the first one.
Step 1. By the integral equation satisfied by u, (2.7), one finds that

u(x+ h)2 − u(x− h)2 =

∫ ∞

0

(δ2x+hK(y)− δ2x−hK(y))u(y) dy

= −
∫ ∞

0

δ2hK(y)δ2xu(y) dy.

(4.23)

This equation is what we refer to as the central difference equation satisfied by u.
Step 2. Now we show the first estimate for δ2hu(x), which proves that we have more than

1/2-Hölder continuity only at the origin. Note that the following lemma and the lemma in Step
3 below are stated as a single lemma in [11], which is based on [5, Theorem 5.4 (ii)]. The ν that
appears in the results of this and later sections is some small positive number ν ≪ 1 (importantly,
ν < P/2 so that u(x) is increasing on x ∈ [0, ν]), which we will shrink whenever necessary.

Lemma 4.9. [11] There is some ν > 0 so that

|u(x+ h)− u(x− h)| ≲ |h|1/2,

i.e. u is 1/2-Hölder continuous, uniformly on [0, ν].

Remark 4.10. In fact, once the statement of the lemma is established we will have proved that
u ∈ C1/2(R), as u is smooth on (ν, P ) [5, Theorem 5.4 (ii)]. However, we only require this and
following estimates on [0, ν].

Proof. We follow the main beats of the proof from [11], but show the calculations in great detail
so we do not have to write out completely analogous calculations in later sections (we will simply
refer back to the ones here instead). The proof is also restructured to ease comparisons with
corresponding proofs in later sections, and we explain the arguments in great detail as they will
be reused in the sections that follow.
Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. We first note
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that the statemenet of the lemma follows directly from the limit at the origin for “large” h, say
h ∈ [x/2, x]. Indeed, for such h we have that

|u(x+ h)− u(x− h)|
≤ |u(x+ h)|+ |u(x− h)| ≲ |x+ h|1/2 + |x− h|1/2 ≤ |2h+ h|1/2 + |2h− h|1/2 ≃ h1/2,

where we used the u-limit in the second inequality. We now show that it also holds for h < x/2.
We consider the central difference equation satisfied by u, (4.23), and split the integral on the

right-hand side in the following way:

u(x+ h)2 − u(x− h)2 = −
∫ ∞

0

δ2hK(y)δ2xu(y) dy

= −

(∫ x

0

+

∫ ν

x

)
δ2hKsing(y)δ2xu(y) dy (4.24)

−
∫ ν

0

δ2hKreg(y)δ2xu(y) dy −
∫ ∞

ν

δ2hK(y)δ2xu(y) dy,

for all 0 < 2h < x ≤ ν. We will use this formulation to arrive at claimed estimate by bounding
each of the integrals on the right-hand side.
Since u(x± h) behaves like x1/2 for 2h < x ≤ ν (after possibly shrinking ν), we can rewrite the

left-hand side as

|u(x+ h)2 − u(x− h)2| = |
(
u(x+ h) + u(x− h)

)
δ2hu(x)| ≃ |x1/2δ2hu(x)|. (4.25)

As we will see, all the integral bounds will contain a factor x1/2 which will cancel with the one
appearing here.
Using the triangle inequality on δ2xu(y), followed by the estimate for u at the origin, 4.8, we get∣∣∣∣∣

∫ x

0

δ2hKsing(y)δ2xu(y) dy

∣∣∣∣∣ ≲
∫ x

0

∣∣δ2hKsing(y)
∣∣x1/2 dy

= x1/2
∫ x/h

0

∣∣∣δ2hKsing(τh)
∣∣∣h dτ

= x1/2h

∫ x/h

0

∣∣∣Ksing(h)δ2

(
|τ |−1/2

)∣∣∣ dτ
≃ (xh)1/2

∫ x/h

0

∣∣∣δ2(|τ |−1/2
)∣∣∣ dτ ≲ (xh)1/2,

(4.26)

for the first integral. The final inequality follows from the fact that the final integral converges on
R+. Also note that we have bounded u(y ± x) by x1/2 and not y1/2, since x is the larger of the
two variables.
For the third integral we use that Kreg is real analytic and all derivatives decay (so the derivative

is bounded), together with the fact that u(y) is bounded, non-negative and increasing on the domain
of integration. Then we find that∣∣∣ ∫ ν

0

δ2hKreg(y)δ2xu(y) dy
∣∣∣ ≤ ||u||L∞

∫ ν

0

|Kreg(y + h)−Kreg(y − h)| dy

= 2h||u||L∞

∫ ν

0

|Kreg(y + h)−Kreg(y − h)|
2h

dy (4.27)

≤ 2hν||u||L∞ ||K ′
reg||L∞ ≃ h ≤ (hx)1/2.

For the fourth integral, we have that∣∣∣ ∫ ∞

ν

δ2hK(y)δ2xu(y) dy
∣∣∣ = ∣∣∣ ∫ ∞

ν

∫ h

−h

K ′(y + t) dt δ2xu(y) dy
∣∣∣

≤ ||u||L∞

∫ ∞

ν

∫ h

−h

|K ′(y + t)| dt dy
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= ||u||L∞

∫ h

−h

∫ ∞

ν

|K ′(y + t)| dy dt (4.28)

= ||u||L∞

∫ h

−h

| −K(ν + t)| dt

≤ ||u||L∞2hK(ν − h) ≲ hK
(
ν − ν

2

)
≃ h ≤ (hx)1/2,

where we have used that K is smooth away from the origin. The second-to-last inequality comes
from the fact that K is decreasing.
We will not show the bound for the second integral, and simply state that the second integral

can also be bounded by (xh)1/2. The reason for this is that it requires a bit more work than the
bounds for the integrals so far, work which will not be necessary when we show corresponding
estimates for the derivatives of u later. The bound for the second integral is established through
an interpolation argument, and we refer the read to [5, Theorem 5.4 (ii)] or [11, Lemma 5.6] for
the proof.
Combining the left-hand side with the bounds for the integrals on the right-hand side, we see

that the factor x1/2 can be divided away, and we arrive at the claim.

Step 3. With the first estimate at hand, we are ready to show the improved estimate. The
reason we also need the improved estimate, is that the first estimate is not good enough to show
that all the integrals we will encounter in Step 4 are dominated by integrable functions.

Lemma 4.11. [11] The improved estimate

|x1/2
(
u(x+ h)− u(x− h)

)
| ≲ |h|

holds uniformly on [0, ν], for some ν > 0.

Proof. We follow the main beats of the proof from [11], but now show the calculations in excruciat-
ing detail so we can skip the analogous calculations in later sections. This proof is also restructured
to ease comparisons with the corresponding proof in later sections, and we explain the arguments
in great detail as they will be reused in the sections that follow.
Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. It is only

difficult to show the improved estimate when h becomes infinitesimally small, as it follows directly
from Lemma 4.9 for “large” h, say h ∈ [x/2, x]. For such h ∈ [x/2, x] we indeed have that

|u(x+ h)− u(x− h)| ≲ h1/2 =
h

h1/2
≤ h

(x/2)1/2
≲

h

x1/2
.

We now show that it also holds for 0 < 2h < x ≤ ν.
We consider the same central difference equation satisfied by u as we did in the previous lemma.

Notice from the proof of Lemma (4.9), that had all the integrals on the right-hand side been
bounded by h, not (xh)1/2, we would have our improved estimate as the factor x1/2 would not
cancel with the one on the left-hand side. But as we saw, the integrals over (0, ν) and (ν,∞) were
in-fact bounded by h, so we only need to show that integrals over (0, x) and (x, ν) are also bounded
by h. To do this, we will bound these integrals again, but now using Lemma (4.9) instead of the
estimate at the origin.
Note that since u is an even function on R, we have the following symmetry for the first-order

central difference,

δ2xu(y) = u(y + x)− u(y − x) = u(x+ y)− u(−(x− y)) = u(x+ y)− u(x− y) = δ2yu(x).

We write the integral over (0, x), as∫ x

0

δ2hKsing(y)δ2xu(y) dy =

∫ 2h

0

δ2hKsing(y)δ2xu(y) dy +

∫ x

2h

δ2hKsing(y)δ2xu(y) dy.

For the integral over (0, 2h), we have that∣∣∣∣∣
∫ 2h

0

δ2hKsing(y)δ2xu(y) dy

∣∣∣∣∣ ≤
∫ 2h

0

∣∣∣δ2hKsing(y)
∣∣∣∣∣∣δ2yu(x)∣∣∣ dy
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≲
∫ 2h

0

∣∣∣δ2hKsing(y)
∣∣∣y1/2 dy

=

∫ 2

0

∣∣∣δ2hKsing(τh)
∣∣∣(τh)1/2h dτ (4.29)

= h3/2
∫ 2

0

∣∣∣Ksing(h)δ2

(
|τ |−1/2

)∣∣∣τ1/2 dτ

≃ h

∫ 2

0

∣∣∣δ2(|τ |−1/2
)∣∣∣τ1/2 dτ

≃ h,

where we have used Lemma 4.9 to bound δ2yu(x).
For the integral over (x, ν), using Lemma 4.9 results in the bound∣∣∣∣∣
∫ ν

x

δ2hKsing(y)δ2xu(y) dy

∣∣∣∣∣ ≤
∫ ν

x

∣∣∣δ2hKsing(y)
∣∣∣∣∣∣δ2xu(y)∣∣∣ dy ≲

∫ ν

x

∣∣∣δ2hKsing(y)
∣∣∣x1/2 dy

=

∫ ν/h

x/h

∣∣∣δ2hKsing(τh)
∣∣∣x1/2h dτ

=

∫ ν/h

x/h

∣∣∣Ksing(h)δ2

(
|τ |−1/2

)∣∣∣x1/2h dτ

≃ (xh)1/2
∫ ν/h

x/h

∣∣∣δ2(|τ |−1/2
)∣∣∣ dτ

= (xh)1/2
∫ ν/h

x/h

(
1

(τ − 1)1/2
− 1

(τ + 1)1/2

)
dτ

= (xh)1/22
[
(τ − 1)1/2 − (τ + 1)1/2

]ν/h
x/h

≃ (xh)1/2
((ν
h
− 1
)1/2 − (ν

h
+ 1
)1/2 − (x

h
− 1
)1/2

+
(x
h
+ 1
)1/2)

= (xh)1/2

((( ν
h − 1

)1/2 − ( νh + 1
)1/2)(( ν

h + 1
)1/2

+
(
ν
h − 1

)1/2)(
ν
h + 1

)1/2
+
(
ν
h − 1

)1/2
−

((
x
h − 1

)1/2 − (xh + 1
)1/2)((x

h + 1
)1/2

+
(
x
h − 1

)1/2)(
x
h + 1

)1/2
+
(
x
h − 1

)1/2
)

= (xh)1/2

( (
ν
h − 1

)
−
(
ν
h + 1

)(
ν
h + 1

)1/2
+
(
ν
h − 1

)1/2 −
(
x
h − 1

)
−
(
x
h + 1

)(
x
h + 1

)1/2
+
(
x
h − 1

)1/2
)

= (xh)1/2

(
−2(

ν
h + 1

)1/2
+
(
ν
h − 1

)1/2 − −2(
x
h + 1

)1/2
+
(
x
h − 1

)1/2
)

≃ (xh)1/2

(
1(

x
h + 1

)1/2
+
(
x
h − 1

)1/2 − 1(
ν
h + 1

)1/2
+
(
ν
h − 1

)1/2
)

≤ (xh)1/2
1(

x
h + 1

)1/2
+
(
x
h − 1

)1/2 ≤ (xh)1/2
1(

x
h

)1/2
+
(
x
h − x

2h

)1/2 ≃ (xh)1/2
1(

x
h

)1/2 = h.

For the integral over (2h, x), using Lemma 4.9 gives us∣∣∣∣∣
∫ x

2h

δ2hKsing(y)δ2xu(y) dy

∣∣∣∣∣ ≤
∫ x

2h

∣∣∣δ2hKsing(y)
∣∣∣∣∣∣δ2xu(y)∣∣∣ dy

≲
∫ x

2h

∣∣∣δ2hKsing(y)
∣∣∣y1/2 dy

=

∫ x/h

2

∣∣∣δ2hKsing(τh)
∣∣∣(τh)1/2h dτ

24



= h3/2
∫ x/h

2

∣∣∣Ksing(h)δ2

(
|τ |−1/2

)∣∣∣τ1/2 dτ

≃ h

∫ x/h

2

∣∣∣δ2(|τ |−1/2
)∣∣∣τ1/2 dτ

= h

∫ x/h

2

(
1

(τ − 1)1/2
− 1

(τ + 1)1/2

)
τ1/2 dτ

= h

∫ x/h

2

(τ + 1)1/2 − (τ − 1)1/2

(τ − 1)1/2(τ + 1)1/2
τ1/2 dτ (4.30)

≃ h

∫ x/h

2

(τ + 1)1/2 − (τ − 1)1/2

(τ − 1)1/2(τ + 1)1/2(τ + 1− τ + 1)
τ1/2 dτ

= h

∫ x/h

2

(τ + 1)1/2 − (τ − 1)1/2

(τ − 1)1/2(τ + 1)1/2
(
(τ + 1)1/2 + (τ − 1)1/2

)(
(τ + 1)1/2 − (τ − 1)1/2

)τ1/2 dτ

= h

∫ x/h

2

1

(τ − 1)1/2(τ + 1)1/2
(
(τ + 1)1/2 + (τ − 1)1/2

)τ1/2 dτ

≤ h

∫ x/h

2

τ1/2

(τ − 1)1/2(τ − 1)1/2(τ − 1)1/2
dτ

= h

∫ x
h−1

1

(s+ 1)1/2

s3/2
ds

≤ h

∫ x
h

1

s1/2

s3/2
ds+ h

∫ ∞

1

1

s3/2
ds

≃ h ln
(x
h

)
+ h = h ln

((h
x

)−1
)

+ h = h
(
− ln

(h
x

))
+ h = h

(
1 +

∣∣∣ ln(h
x

)∣∣∣).
This estimate is not quite good enough yet. However, we can combine all the estimates we have
so far to get the estimate

|u(x+ h)− u(x− h)| ≲
h(1 +

∣∣ ln(hx )∣∣)
x1/2

.

We use this new estimate to bound the integral on (2h, x) one more time, to find that∣∣∣∣∣
∫ x

2h

δ2hKsing(y)δ2xu(y) dy

∣∣∣∣∣ ≤
∫ x

2h

∣∣∣δ2hKsing(y)
∣∣∣∣∣∣δ2yu(x)∣∣∣ dy

≲
∫ x

2h

∣∣∣δ2hKsing(y)
∣∣∣y(1 + | ln( yx )|)

x1/2
dy

=

∫ 1

2h/x

∣∣∣δ2hKsing(τx)
∣∣∣τx(1 + | ln τ |)

x1/2
x dτ

= x3/2
∫ 1

2h/x

∣∣∣ 1

|2π(τx+ h)|1/2
− 1

|2π(τx− h)|1/2
∣∣∣τ(1 + | ln τ |) dτ

≃ x3/2
∫ 1

2h/x

( 1

(τx− h)1/2
− 1

(τx+ h)1/2

)
τ(1 + | ln τ |) dτ (4.31)

≃ x

∫ 1

2h/x

( 1

(τ − h
x )

1/2
− 1

(τ + h
x )

1/2

)
τ(1 + | ln τ |) dτ

≃ x

∫ 1

2h
x

(τ + h
x )

1/2 − (τ − h
x )

1/2

(τ − h
x )

1/2(τ + h
x )

1/2
(
(τ + h

x )
1/2 + (τ − h

x )
1/2
)(
(τ + h

x )
1/2 − (τ − h

x )
1/2
) h
x
τ(1 + | ln τ |) dτ

= h

∫ 1

2h
x

1

(τ − h
x )

1/2(τ + h
x )

1/2
(
(τ + h

x )
1/2 + (τ − h

x )
1/2
)τ(1 + | ln τ |) dτ

≤ h

∫ 1

2h
x

1

(τ − h
x )

1/2(τ − h
x )

1/2(τ − h
x )

1/2
τ(1 + | ln τ |) dτ
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= h

∫ 1

2h
x

τ(1 + | ln τ |)
(τ − h

x )
3/2

dτ ≲ h

∫ 1

2h
x

1 + | ln τ |
τ1/2

dτ ≤ h

∫ 1

0

1 + | ln τ |
τ1/2

≃ h.

Thus we have shown that all of the right-hand side integrals are bounded by h, which we combine
with the left-hand side (4.25) to arrive at the improved estimate.

Note that since u(x) is smooth on (0, P ), we can take the limit as h tends to zero in this improved
estimate to get the bound

u′(x) ≲ x−1/2

on (0, ν] [11]. This leads us to the final step.
Step 4. With the first estimate and the improved estimate at hand, we are ready for the final

result of this section, where the u′-limit is determined.

Proposition 4.12. [11] The derivative of the solution u enjoys the limit

lim
x→0

u′(x)

x−1/2
=

1

2

√
π

8

Proof. We follow the proof from [11], but show the calculations in excruciating detail so we can
refer back to them later. We consider the same central difference equation satisfied by u as in the
previous lemmas, but now we divide both sides by 2h:

u(x+ h)2 − u(x− h)2

2h
= − 1

2h

∫ ∞

0

δ2hK(y)δ2xu(y) dy

= − 1

2h

(∫ 2h

0

+

∫ x

2h

+

∫ ν

x

)
δ2hKsing(y)δ2xu(y) dy (4.32)

− 1

2h

∫ ν

0

δ2hKreg(y)δ2xu(y) dy −
1

2h

∫ ∞

ν

δ2hK(y)δ2xu(y) dy,

for all 0 < 2h < x ≤ ν.
Taking the limit as h tends to zero, followed by the limit as x tends to zero, we get

lim
x→0

lim
h→0

u(x+ h)2 − u(x− h)2

2h
= lim

x→0
2u(x)u′(x) = 2

√
π

8
lim
x→0

u′(x)

x−1/2

for the left-hand side. Here we used the u-limit in the last equality. We now consider the limits
of the right-hand side integrals to show that this limit does indeed exists (which we do not know
at the moment), and to find its exact value. Our strategy will be to prove that each of the five
integrands in (4.32) are dominated by integrable functions, independently of x and h, which allows
us to use the dominated convergence theorem to interchange limits and integrals.
For the first integral we see that

− 1

2h

∫ 2h

0

δ2hKsing(y)δ2yu(x) dy = − 1

2h

∫ 2

0

δ2hKsing(τh)δ2τhu(x)h dτ

= − 1

2h

∫ 2

0

Ksing(h)δ2

(
|τ |−1/2

)
δ2τhu(x)h dτ (4.33)

=

∫ 2

0

−1√
8πh1/2

δ2

(
|τ |−1/2

)
δ2τhu(x) dτ.

for all 0 < 2h < x ≤ ν. Notice for the integrand that we have∣∣∣− 1√
8πh1/2

δ2

(
|τ |−1/2

)
δ2τhu(x)

∣∣∣ = √
2√
8π

∣∣∣δ2(|τ |−1/2
)∣∣∣τ1/2 |δ2τhu(x)||2τh|1/2

≲
∣∣∣δ2(|τ |−1/2

)∣∣∣τ1/2,
where we use Lemma 4.9 to bound |δ2τhu(x)|. The right-hand side is integrable on [0, 2], so
dominated convergence allows us to interchange the limit and integral. Thus, for each 0 < x ≤ ν,

lim
h→0

−1√
8πh1/2

δ2

(
|τ |−1/2

)
δ2τhu(x) = lim

h→0

−2h1/2√
8π

δ2

(
|τ |−1/2

)
τ
δ2τhu(x)

2τh
= 0.
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The final equality follows from u(x) being differentiable for 0 < x < P (which tells us that the
final fraction is finite in the limit), so the limit tends to zero due to the h1/2 in the numerator.

For the second integral have that

− 1

2h

∫ x

2h

δ2hKsing(y)δ2yu(x) dy = −
∫ 1

2h/x

δ2hKsing(τx)

2h
δ2τxu(x)x dτ.

The integrand can be written as

−δ2hKsing(τx)

2h
δ2τxu(x)x = − 1

2h

(
1

|2π(τx+ h)|1/2
− 1

|2π(τx− h)|1/2

)
xδ2τxu(x)

= − 1√
8πh

(
1

|x(τ + h
x )|1/2

− 1

|x(τ − h
x )|1/2

)
xδ2τxu(x)

= − 1√
8πh

(
1

(τ + h
x )

1/2
− 1

(τ − h
x )

1/2

)
x1/2δ2τxu(x)

=
1√
8πh

( (τ + h
x )

1/2

(τ − h
x )

1/2(τ + h
x )

1/2
−

(τ − h
x )

1/2

(τ + h
x )

1/2(τ − h
x )

1/2

)
x1/2δ2τxu(x)

=
1√
8πh

(τ + h
x )

1/2 − (τ − h
x )

1/2(
τ2 − (hx )

2
)1/2 x1/2δ2τxu(x) (4.34)

=
1√
8πh

(τ + h
x )

1/2 − (τ − h
x )

1/2(
τ2 − (hx )

2
)1/2

(τ + h
x − τ + h

x )

2h

x
x1/2δ2τxu(x)

=
1√
2π

(τ + h
x )

1/2 − (τ − h
x )

1/2(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)(

(τ + h
x )

1/2 − (τ − h
x )

1/2
) 1

x1/2
δ2τxu(x)

=
1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
) δ2τxu(x)x1/2

.

Using the improved estimate to bound the integrand, we get that∣∣∣∣∣ 1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
) x1/2δ2τxu(x)x

∣∣∣∣∣
≃

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣ |x1/2δ2τxu(x)|x

(4.35)

≲

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣τxx

≤

∣∣∣∣∣ τ(
τ2/4

)1/2
τ1/2

∣∣∣∣∣ ≃ 1

τ1/2
,

for all 0 < 2h < x ≤ ν and 2h/x ≤ τ ≤ 1. Thus, the integrand is dominated by 1/τ1/2, which is
integrable on (0, 1), so we can apply the dominated convergence theorem. The h-limit evaluates to

lim
h→0

−δ2hKsing(τx)

2h
δ2τxu(x)x = lim

h→0

1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
) δ2τxu(x)x1/2

=
1√
2π

1(
τ2
)1/2(

τ1/2 + τ1/2
) δ2τxu(x)x1/2

(4.36)

=
1√
2π

1

2τ3/2
δ2τxu(x)

x1/2
,
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where the first equality comes rewriting the integrand as in (4.34). For the x-limit we then get

lim
x→0

1√
2π

1

2τ3/2
δ2τxu(x)

x1/2
= lim

x→0

1√
2π

1

2τ3/2
u(x+ τx)− u(x− τx)

x1/2

= lim
x→0

1√
2π

1

2τ3/2

(
u(x(1 + τ))(1 + τ)1/2

(x(1 + τ))1/2
− u(x(1− τ))(1− τ)1/2

(x(1− τ))1/2

)

=
1√
2π

1

2τ3/2

(
(1 + τ)1/2

√
π

8
− (1− τ)1/2

√
π

8

)

=
1

8τ3/2

(
(1 + τ)1/2 − (1− τ)1/2

)
,

(4.37)

for each τ ∈ (0, 1). We thus have that

lim
x→0

lim
h→0

∫ 1

2h/x

−δ2hKsing(τx)

2h
δ2τxu(x)x dτ =

∫ 1

0

1

8τ3/2

(
(1 + τ)1/2 − (1− τ)1/2

)
dτ.

Moving on to the third integral, we see it can be written as

− 1

2h

∫ ν

x

δ2hKsing(y)δ2xu(y) dy = − 1

2h

∫ ν/x

1

δ2hKsing(τx)δ2xu(τx)x dτ.

This integrand can be expressed in the same way as the integrand of the second integral. For the
bound, we use the improved estimate to find that∣∣∣− 1

2h
δ2hKsing(τx)δ2xu(τx)x

∣∣∣ = ∣∣∣∣∣ 1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
) δ2xu(τx)x1/2

∣∣∣∣∣
≲

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣ |(τx)1/2δ2xu(τx)|τ1/2x

≲

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣ x

τ1/2x

=
τ−1/2(

τ2 − (hx )
2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
) ≲

τ−1/2

τ3/2
=

1

τ2

for all 0 < 2h < x ≤ ν and 1 ≤ τ ≤ ν/x. Since 1/τ2 is integrable on [1,∞), we can interchange
the limits and integral. For the h-limit, we get

lim
h→0

− 1

2h
δ2hKsing(τx)δ2xu(τx)x =

1√
2π

1

2τ3/2
δ2xu(τx)

x1/2

for each fixed x ∈ (0, ν] and τ ∈ (1, ν/x). Similarly, we furthermore get

lim
x→0

1√
2π

1

2τ3/2
δ2xu(τx)

x1/2
=

1

8τ3/2

(
(1 + τ)1/2 − (τ − 1)1/2

)
for every τ > 0.

For the fourth integral we use that Kreg is smooth, and each of its derivatives is decaying,
together with the fact that u is bounded, to see that∣∣∣δ2hKreg(y)

2h
δ2xu(y)

∣∣∣ ≲ ||K ′
reg||L∞ ||u||L∞ ≃ 1,

for all 0 < 2h < x ≤ ν and 0 < y < ν. For the limits we then have

lim
h→0

δ2hKreg(y)

2h
δ2xu(y) = K ′

reg(y)δ2xu(y)
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for 0 < x ≤ ν and 0 < y < ν, and

lim
x→0

K ′
reg(y)δ2xu(y) = 0

for all 0 < y < ν. Thus, the integral evaluates to

lim
x→0

lim
h→0

−1

2h

∫ ν

0

δ2hKreg(y)δ2xu(y) dy = 0.

For the fifth and final integral we bound the integral in the same way as we did in the proof of
Lemma (4.9), ∣∣∣ 1

2h
δ2hK(y)δ2xu(y)

∣∣∣ ≲ 1

2h

∣∣∣ ∫ h

−h

K ′(y + t)dt
∣∣∣ ≲ −K ′(ν/2)

for all 0 < 2h < x ≤ ν and y > ν. For the limits we then get

lim
h→0

1

2h
δ2hK(y)δ2xu(y) = K ′(y)δ2xu(y), (4.38)

for every 0 < x ≤ ν < y, and

lim
x→0

K ′(y)δ2xu(y) = 0

for all y > ν. That is, the fifth integral also vanishes in the limit,

lim
x→0

lim
h→0

−1

2h

∫ ∞

ν

δ2hK(y)δ2xu(y) dy = 0.

Thus, we have that each of the five limits exists. Combining the limits of the left-hand side and
right-hand side give us that

2

√
π

8
lim
x→0

u′(x)

x−1/2
=

∫ ∞

0

1

8τ3/2

(
(1 + τ)1/2 − |1− τ |1/2

)
dτ =

π

8
. (4.39)

After rearranging, this becomes

lim
x→0

u′(x)

x−1/2
=

1

2

√
π

8
,

which concludes the proof.

5 The limit for the second derivative

We are now ready to consider higher order derivatives of u. We follow the ideas proposed by the
authors in [11], but all the work in this and subsequent sections is otherwise our own.
The aim of this section is to determine the u′′-limit. To this end, we will follow the four main

steps from the introduction and try to mirror the procedure for the u′-limit in Subsection 4.1. As
stated in the introduction, our most important contributions from this section is the extra factor
need on the left-hand side of the two estimates, and the new splitting of the integral in the central
difference equation, which, as we will see, are are a consequence of the |x|−1/2-type singularity
from u′. This extra care that is required due to the |x|−1/2-type singularity, when compared to
Subsection 4.1, is the most difficult part of this section.
Step 1. We are searching for a central difference equation satisfied by u′ that corresponds to

(4.23) from the previous section. Recall that we took the central difference of an integral equation
satisfied by u to arrive at (4.23), so we begin by looking for a corresponding integral equation
satisfied by u′.

As suggested in [11], we can find the integral equation satisfied by u′ by taking only the h limit
in (4.32). First, however, we need to move the central difference in h over to u, so we end up
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with u′ when taking the h-limit. If we do not move h over to u, we instead end up with K ′ inside
the integral. This would cause problems, as K ′

sing(x) ≃ |x|−3/2 which is non-integrable on a finite
domain containing the singularity, so we would not be able to bound the integrals in a similar
manner to what we did in the previous section (as we will see, this is exactly what causes problems
with the u′′′-limit, as we end up with a non-integrable singularity inside the domain of integration
no matter where we put h). Through some changes of variables and straightforward calculations,
one can write the integral in (4.32) as

−
∫ ∞

0

δ2hK(y)δ2xu(y) dy = −
∫ ∞

0

δ2xK(y)δ2hu(y) dy.

Using this equality, taking only the h-limit in (4.32) gives us the integral equation

2u(x)u′(x) = −
∫ ∞

0

δ2xK(y)u′(y) dy,

which is satisfied by u′. Taking the central difference of this integral equation, we get

2u(x+ h)u′(x+ h)− 2u(x− h)u′(x− h)

= −
∫ ∞

0

δ2(x+h)K(y)u′(y) dy +

∫ ∞

0

δ2(x−h)K(y)u′(y) dy

= −
∫ ∞

0

δ2hK(y)δ2yu
′(x) dy,

(5.1)

the central difference equation satisfied by u′. The final equality in (5.1) follows from straight-
forward calculation. Note that due to u′ being odd, we no longer have the same symmetry for
δ2yu

′(x) that we had for the central difference of u, δ2xu(y) = δ2yu(x). Recognizing that (5.1) is
similar to (4.24), we split the integral in a similar way:

2u(x+ h)u′(x+ h)− 2u(x− h)u′(x− h) = −
∫ ∞

0

δ2hK(y)δ2yu
′(x) dy

= −
(∫ x

0

+

∫ 2ν

x

)
δ2hKsing(y)δ2yu

′(x) dy

−
∫ 2ν

0

δ2hKreg(y)δ2yu
′(x) dy −

∫ ∞

2ν

δ2hK(y)δ2yu
′(x) dy.

(5.2)

We split the integral at 2ν instead of ν to make some of the calculations in the following proofs
easier, shrinking ν if necessary.

Considering the left-hand side of (5.2), we get

lim
h→0

2u(x+ h)u′(x+ h)− 2u(x− h)u′(x− h)

2h
= 2(u′(x))2 + 2u(x)u′′(x) (5.3)

for the h-limit. Before taking the x-limit, we need to multiply both sides of the equation by x, as
this allows us to use the u- and u′-limits. We then get

lim
x→0

(
2x(u′(x))2 + 2xu(x)u′′(x)

)
= lim

x→0

(
2(x1/2u′(x))2 + 2

u(x)

x1/2
x3/2u′′(x)

)
= 2

(
1

2

√
π

8

)2

+ 2

√
π

8
lim
x→0

u′′(x)

x−3/2

=
π

16
+

√
π

2
lim
x→0

u′′(x)

x−3/2
,

(5.4)

for the left-hand side. Again, we do not know yet if this limit exists; this we will show by considering
the integrals on the right-hand side. First, however, we need the estimates for |δ2yu′(x)|.

Step 2. During the proof for the first estimate in Subsection 4.1, we repeatedly used the fact
that u(x) behaves like x1/2, an increasing function, near the origin. As we can see in (5.1), the
role of u is now replaced by u′, which behaves like the x−1/2 near the origin. Pay close attention
to how this affects the following proofs when compared to Subsection 4.1 (this is for instance why
we need the factor (x − h) in the following lemmas, which was not present in the corresponding
lemmas in Subsection 4.1).
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Lemma 5.1. There is some ν > 0 so that

|(x− h)(u′(x+ h)− u′(x− h))| ≲ h1/2

uniformly on [0, ν].

Proof. Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. As in the
proof of Lemma 4.9, the claim follows directly from u′-limit for large h, say h ∈ [x/2, x]. Indeed,
for such h we have that

|(x− h)(u′(x+ h)− u′(x− h))|
≲ |x− h|(|x+ h|−1/2 + |x− h|−1/2) ≲ |x− h||x− h|−1/2 ≤ |2h− h|1/2 = |h|1/2,

where Proposition (4.12) was used in the first inequality. We now show that the claim also holds
for h < x/2.

Consider the expression (5.2),

2(x− h)u(x+ h)u′(x+ h)− 2(x− h)u(x− h)u′(x− h)

= −
(∫ x

0

+

∫ 2ν

x

)
δ2hKsing(y)δ2yu

′(x)(x− h) dy

−
∫ 2ν

0

δ2hKreg(y)δ2yu
′(x)(x− h) dy −

∫ ∞

2ν

δ2hK(y)δ2yu
′(x)(x− h) dy,

for all 0 < 2h < x ≤ ν. Notice that we have multiplied the equation through by (x− h), and that
taking the h-limit of the left-hand side divided by 2h gives us the same expression as the one on
the left-hand side of (5.4).
Using that u(x ± h) ≃ x1/2 for 2h < x ≤ ν (after possibly shrinking ν), we can rewrite the

left-hand side as

|2(x− h)u(x+ h)u′(x+ h)− 2(x− h)u(x− h)u′(x− h)|
≃ |x1/2(x− h)(u′(x+ h)− u′(x− h))|.

The bounds of the integrals on the right-hand side will all contain a factor x1/2 which will cancel
with the one on the left-hand side.

For the first integral, we get that∣∣∣∣∣
∫ x

0

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣∣∣ ≤ |x− h|
∫ x

0

∣∣δ2hKsing(y)
∣∣|δ2yu′(x)| dy

≲ x

∫ x

0

∣∣δ2hKsing(y)
∣∣|x− y|−1/2 dy

= x

∫ x/h

0

∣∣δ2hKsing(τh)
∣∣|x− τh|−1/2h dτ

= xh
∣∣Ksing(h)

∣∣ ∫ x/h

0

∣∣∣δ2(|τ |−1/2
)∣∣∣∣∣∣1− τ

h

x

∣∣∣−1/2

x−1/2 dτ

≃ (xh)1/2
∫ x/h

0

∣∣∣δ2(|τ |−1/2
)∣∣∣∣∣∣1− τ

h

x

∣∣∣−1/2

dτ

≲ (xh)1/2,

The final integral converges on R+ since
∣∣δ2(|τ |−1/2

)∣∣ behaves like τ−3/2 for large τ (recall cal-
culation (4.30)), and because the singularities (which are integrable) from the two factors in the
integrand do not coincide; the singularity from the first factor is located at τ = 1, while the singu-
larity in the second factor is located at τ = x/h ≥ 2.

Luckily, the second integral does not require as much work as the second integral from the proof
of Lemma 4.9, due to the fact that u′(x) now is bounded by the decreasing function x−1/2 on
(0, 2ν) (again, shrinking ν if necessary):∣∣∣ ∫ 2ν

x

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣
31



≲ |x|
∫ 2ν

x

|δ2hKsing(y)||x− y|−1/2 dy

≲ |x|h
∫ 2ν

x

(y − x)−1/2

(y − ξh)
3/2
ξ∈(−1,1)

dy

≤ |x|h
∫ 2ν

x

(y − x)−1/2

(y − h)3/2
dy

≲ |x|h
∫ 2ν

x

(y − x)−1/2

y3/2
dy

= |x|h
∫ 2ν/x

1

(τx− x)−1/2

(τx)3/2
x dτ

= h

∫ 2ν/x

1

(τ − 1)−1/2

τ3/2
dτ ≲ h ≤ (hx)1/2,

since the final integral converges on [1,∞). The second inequality is simply the mean value theorem.
For the third integral we previously used that u was bounded. As we now are dealing with u′,

which is not bounded, we proceed slightly differently:∣∣∣ ∫ 2ν

0

δ2hKreg(y)δ2yu
′(x)(x− h) dy

∣∣∣
≲ xh

∫ 2ν

0

∣∣∣δ2hKreg(y)
∣∣∣

2h
|x− y|−1/2 dy

≤ xh

∫ 2ν

0

||K ′
reg||L∞

1

|x− y|1/2
dy

≃ xh
(∫ x

0

1

(x− y)1/2
dy +

∫ 2ν

x

1

(y − x)1/2
dy
)

= xh
([

− (x− y)1/2
]x
0
+
[
(y − x)1/2

]2ν
x

)
≲ h ≤ (hx)1/2.

For the fourth integral we need to consider two separate cases. First we consider only consider
solitary wave solutions (i.e. P = ∞), that is solutions that decay, meaning that u has only a single
cusp at the origin. This means that u′(x) is bounded when x is strictly away from the origin. For
solitary wave solutions, we therefore get that∣∣∣ ∫ ∞

2ν

δ2hK(y)δ2yu
′(x)(x− h) dy

∣∣∣
≤ |x| sup

y∈[ν,∞)

|u′(y)|
∫ ∞

2ν

∣∣∣δ2hK(y)
∣∣∣ dy ≲

∫ ∞

2ν

∣∣∣δ2hK(y)
∣∣∣ dy ≲ h ≤ (hx)1/2,

where the final integral is treated exactly as was done in (4.28). If instead u is a periodic solution,
there will be a cusp, behaving exactly as the one at the origin, at every integer multiple of the
period P . Therefore, we here need to use that K(y) and its derivatives decay exponentially (recall
the properties of K listed at the end of Section 2). We begin by splitting the integral in such a
way that isolates the singularities at the integer multiples of P :∣∣∣ ∫ ∞

2ν

δ2hK(y)δ2yu
′(x)(x− h) dy

∣∣∣
≲ x

∫ P
2

2ν

∣∣∣δ2hK(y)
∣∣∣∣∣∣δ2yu′(x)∣∣∣ dy + x

∞∑
i=1

(∫ Pi−2ν

Pi−P
2

+

∫ Pi+2ν

Pi−2ν

+

∫ Pi+P
2

Pi+2ν

)∣∣∣δ2hK(y)
∣∣∣∣∣∣δ2yu′(x)∣∣∣ dy.

The first term can be bounded as in the solitary wave-case above. To bound the sum, notice
that the domains of the first and last integrals inside the sum are bounded strictly away from the
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multiples of P . Consequently, we can pull out the supremum of u′ over these integral domains. In
the middle integral, we use the behavior of u′ near the multiples of P . That is, we have the bound

∞∑
i=1

(∫ Pi−2ν

Pi−P
2

+

∫ Pi+2ν

Pi−2ν

+

∫ Pi+P
2

Pi+2ν

)∣∣∣δ2hK(y)
∣∣∣∣∣∣δ2yu′(x)∣∣∣ dy

≲ sup
y∈[Pi−P

2 −ν,P i−ν)

|u′(y)|
∞∑
i=1

∫ Pi−2ν

Pi−P
2

∣∣∣δ2hK(y)
∣∣∣ dy

+

∞∑
i=1

∫ Pi+ν

Pi−ν

∣∣∣δ2hK(y)
∣∣∣∣∣∣x± y ∓ Pi

∣∣∣−1/2

dy + sup
y∈[Pi+2ν,P i+P

2 )

|u′(y)|
∞∑
i=1

∫ Pi+P
2

Pi+2ν

∣∣∣δ2hK(y)
∣∣∣ dy

≲
∞∑
i=1

∫ Pi−2ν

Pi−P
2

∫ h

−h

∣∣∣K ′(y + t)
∣∣∣ dt dy + ∞∑

i=1

∫ Pi+P
2

Pi+2ν

∫ h

−h

∣∣∣K ′(y + t)
∣∣∣ dt dy

+

∞∑
i=1

∫ Pi+ν

Pi−ν

∫ h

−h

∣∣∣K ′(y + t)
∣∣∣ dt∣∣∣x± y ∓ Pi

∣∣∣−1/2

dy.

Finally, by [5, Proposition 2.1] on the exponential decay of K, this expression can be further
bounded by

h

∞∑
i=1

∫ Pi−2ν

Pi−P
2

e−y+h dy + h

∞∑
i=1

∫ Pi+P
2

Pi+2ν

e−y+h dy + h

∞∑
i=1

∫ Pi+ν

Pi−ν

e−y+h
∣∣∣x± y ∓ Pi

∣∣∣−1/2

dy

≲ h

∞∑
i=1

e−Pi+ν

∫ Pi+ν

Pi−ν

∣∣∣x± y ∓ Pi
∣∣∣−1/2

dy

≲ h ≤ (xh)1/2.

Combining the right-hand sides with the left-hand side and dividing away the factor x1/2 gives
the estimate.

Step 3. Now we use Lemma 5.1 to get the improved estimate.

Lemma 5.2. The improved estimate

|x1/2(x− h)(u′(x+ h)− u′(x− h))| ≲ h

holds uniformly on [0, ν], for some ν > 0.

Proof. Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. For
h ∈ [x/2, x] we have

|(x− h)(u′(x+ h)− u′(x− h))| ≲ h1/2 =
h

h1/2
≤ h

(x/2)1/2
≲

h

x1/2
,

where the first inequality is simply Lemma 5.1. We now show that it also holds for h < x/2, and
again consider the central difference equation satisfied by u′ from Lemma 5.1.
Notice from the proof of Lemma 5.1 that all of the right-hand side integrals, except the one

over (0, x), were in fact bounded by h. We therefore only need to show that this first integral is
also bounded by h to arrive at estimate in the statement of the lemma. To this end, we split the
integral from 0 to x into three integrals, one on (0, 4h/3), one from (4h/3, 2x/3), and final one on
(2x/3, x). The idea behind splitting the domain in this way, is that only one of the factors from the
integrand will have a singularity on that domain at a time, making them easier to work with. This
difference in how we have to split the integral over (0, x), as compared to corresponding integral
in the proof of Lemma 4.11, is a consequence of the singularity |x− y|−1/2 from u′(x− y), which
we did not have to deal with in the previous section.
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We begin with the integral over (0, 4h/3). Using Lemma 5.1 to bound |δ2yu′(x)|, and that
h < x/2, we get ∣∣∣∣∣

∫ 4h/3

0

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣∣∣
≲ (x− h)

∫ 4h/3

0

∣∣∣δ2hKsing(y)
∣∣∣ y1/2

(x− y)
dy

≤ x

∫ 4h/3

0

∣∣∣δ2hKsing(y)
∣∣∣ y1/2

(x− 2x
3 )

dy

≃
∫ 4h/3

0

∣∣∣δ2hKsing(y)
∣∣∣y1/2 dy

≃ h,

where the final equality follows from the same calculation as in (4.29).
To bound the integral over (2x/3, x) we use the estimate at the origin,∣∣∣∣∣

∫ x

2x/3

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣∣∣
≤ (x− h)

∫ x

2x/3

∣∣∣δ2hKsing(y)
∣∣∣∣∣∣δ2yu′(x)∣∣∣ dy

≲ x

∫ x

2x/3

∣∣∣δ2hKsing(y)
∣∣∣|x− y|−1/2 dy

= x

∫ x/h

2x
3h

∣∣∣δ2hKsing(τh)
∣∣∣ 1

(x− τh)1/2
h dτ

≃ (xh)1/2
∫ x/h

2x
3h

∣∣∣δ2(|τ |−1/2
)∣∣∣ 1

(1− τ h
x )

1/2
dτ

≃ (xh)1/2
∫ x/h

2x
3h

1

(τ − 1)3/2
1

(1− τ h
x )

1/2
dτ

≤ (xh)1/2
1

( 2x3h − 1)3/2

∫ x/h

2x
3h

1

(1− τ h
x )

1/2
dτ

= (xh)1/2
1

(xh )
3/2( 23 − h

x )
3/2

[
−2x

h
(1− τ

h

x
)1/2

]x/h
2x
3h

≲ h.

The third equality follows from rewriting |δ2(|τ |−1/2)| as was done in (4.30).
For the integral over (4h/3, 2x/3), we use Lemma 5.1 to find that∣∣∣∣∣
∫ 2x/3

4h/3

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣∣∣
≲ (x− h)

∫ 2x/3

4h/3

∣∣∣δ2hKsing(y)
∣∣∣ y1/2

(x− y)
dy ≲

∫ 2x/3

4h/3

∣∣∣δ2hKsing(y)
∣∣∣y1/2 dy ≲ h

(
1 +

∣∣∣ ln(h
x

)∣∣∣).
The second inequality follows from y being bounded strictly away from x, and the final inequality
follows from the same calculation as in (4.30) (the domain of integration is slightly different, but
not in any way that affects the calculation). As was the case in Lemma (4.11), this bound is not
quite good enough yet, but combining the bounds so far gives us

|x1/2(x− h)(u′(x+ y)− u′(x− y))| ≲ h
(
1 +

∣∣∣ ln(h
x

)∣∣∣),
which we insert back into calculations above to find that∣∣∣∣∣

∫ 2x/3

4h/3

δ2hKsing(y)δ2yu
′(x)(x− h) dy

∣∣∣∣∣ ≲ h,
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by a calculation similar to (4.31).
Thus we have arrived at the improved estimate, as we have managed to show that the integral

over (0, x) from the central difference equation satisfied by u′ is also bounded by h.

Step 4. We are now ready to show the u′′-limit.

Proposition 5.3. The second derivative of the solution u enjoys the limit

lim
x→0

u′′(x)

x−3/2
= −1

4

√
π

8
. (5.5)

Proof. We consider the central difference equation satisfied by u′, divided by 2h and multiplied by
x,

2xu(x+ h)u′(x+ h)− 2xu(x− h)u′(x− h)

2h
= − 1

2h

∫ ∞

0

δ2hK(y)δ2yu
′(x)x dy

= − 1

2h

(∫ 4h/3

0

+

∫ 2x/3

4h/3

+

∫ x

2x/3

+

∫ 2ν

x

)
δ2hKsing(y)δ2yu

′(x)x dy (5.6)

− 1

2h

∫ 2ν

0

δ2hKreg(y)δ2yu
′(x)x dy − 1

2h

∫ ∞

2ν

δ2hK(y)δ2yu
′(x)x dy.

for all 0 < 2h < x ≤ ν. We know from (5.3) and (5.4) at the beginning of this section that

lim
x→0

lim
h→0

2xu(x+ h)u′(x+ h)− 2xu(x− h)u′(x− h)

2h
=

π

16
+

√
π

2
lim
x→0

u′′(x)

x−3/2
.

Our new estimates will allow us to bound the right-hand side integrands by integrable functions,
so that we can move the limits inside the integrals by dominated convergence.
The first integral can be written as

− 1

2h

∫ 4h/3

0

δ2hKsing(y)δ2yu
′(x)x dy =

∫ 4/3

0

−1√
8πh1/2

δ2

(
|τ |−1/2

)
δ2τhu

′(x)x dτ,

for all 0 < 2h < x ≤ ν, by the same calculation as in (4.33). Using Lemma 5.1 to bound |δ2hu′(x)|,
the integrand can be bounded by∣∣∣− 1√

8πh1/2
δ2

(
|τ |−1/2

)
δ2τhu

′(x)x
∣∣∣ ≲ x

∣∣∣δ2(|τ |−1/2
)∣∣∣ (τh)1/2

(x− τh)

=
∣∣∣δ2(|τ |−1/2

)∣∣∣x
x

τ1/2

(1− τ h
x )

≤
∣∣∣δ2(|τ |−1/2

)∣∣∣ τ1/2

(1− 4
3 · 1

2 )

≃
∣∣∣δ2(|τ |−1/2

)∣∣∣τ1/2.
The right-hand side is integrable on (0, 4/3), so dominated convergence allows us to interchange
the limits and integral. Thus, for each 0 < x ≤ ν and τ ∈ (0, 4/3),

lim
h→0

−1√
8πh1/2

δ2

(
|τ |−1/2

)
δ2τhu

′(x)x = lim
h→0

−2h1/2√
8π

δ2

(
|τ |−1/2

)
τx
δ2τhu

′(x)

2τh
= 0,

since u′(x) is differentiable for 0 < x < P .
The second integral can be written as

− 1

2h

∫ 2x/3

4h/3

δ2hKsing(y)δ2yu
′(x)x dy =

∫ 2/3

4h
3x

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 dτ.
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Similarly to calculation (4.34), the integrand can be expressed as

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 =
1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)x1/2δ2τxu′(x),

which, similarly to calculation (4.35), is bounded by∣∣∣∣∣ 1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)x1/2δ2τxu′(x)

∣∣∣∣∣
≲

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣x1/2 τx

x1/2(x− τx)

≲
1

τ1/2(1− τ)
,

for all 0 < 2h < x ≤ ν and 4h
3x < τ < 2/3, where we have used the improved estimate of

Lemma 5.2 to bound |δ2τxu′(x)|. Thus, we have that the original integrand is dominated by the
final expression, which is integrable on (0, 2/3), allowing us to move the limits inside. For each
x ∈ (0, ν] and τ ∈ (0, 2/3), we then have that

lim
h→0

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 =
1√
2π

x1/2δ2τxu
′(x)

2τ3/2
,

and for each τ ∈ (0, 2/3) we get

lim
x→0

1√
2π

1

2τ3/2
x1/2δ2τxu

′(x) =
1

16τ3/2

(
1

(1 + τ)1/2
− 1

(1− τ)1/2

)
.

Both limits follow from calculations similar to (4.36) and (4.37) respectively. In summary, the
second integral can be expressed as

lim
x→0

lim
h→0

∫ 2/3

2h/x

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 dτ =

∫ 2/3

0

1

16τ3/2

(
(1 + τ)−1/2 − (1− τ)−1/2

)
dτ.

For the third integral we also make the change of variables y = τx,

− 1

2h

∫ x

2x/3

δ2hKsing(y)δ2yu
′(x)x dy =

∫ 1

2/3

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 dτ.

As the integrand is the same as for the second integral above, it can be expressed in the same way.
However, when bounding the integrand we now need to use the estimate at the origin for the final
bound to be integrable on (2/3, 1):∣∣∣∣∣ 1√

2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)x1/2δ2τxu′(x)

∣∣∣∣∣
≲

∣∣∣∣∣ 1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)
∣∣∣∣∣x1/2 1

(x− τx)1/2

≲
1

τ3/2
1

(1− τ)1/2
,

for all 0 < 2h < x ≤ ν and 2/3 < τ < 1. Thus, we have that the original integrand is dominated
by the final expression, which is integrable on (2/3, 1), allowing us to move the limits inside. As
τ < 1 and the integrand is exactly the same as for the second integral, only now with τ ∈ (2/3, 1),
we get the same limits. That is, for the third integral we have

lim
x→0

lim
h→0

∫ 1

2/3

−δ2hKsing(τx)

2h
δ2τxu

′(x)x2 dτ =

∫ 1

2/3

1

16τ3/2

(
(1 + τ)−1/2 − (1− τ)−1/2

)
dτ.
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Moving on to the fourth integral, we see it can be written as

− 1

2h

∫ ν

x

δ2hKsing(y)δ2yu
′(x)x dy = − 1

2h

∫ ν/x

1

δ2hKsing(τx)δ2τxu
′(x)x2 dτ,

by the change of variables y = τx. Once more using the estimate at the origin to bound |δ2τxu′(x)|,
the same calculation as for the third integral above gives the bound∣∣∣− 1

2h
δ2hKsing(τx)δ2xu(τx)x

2
∣∣∣ ≲ 1

τ3/2
1

(τ − 1)1/2
,

for all 0 < 2h < x ≤ ν and 1 < τ < ν/x (notice that we now have (τ−1)1/2 instead of (1−τ)1/2, as
we are working with τ > 1). Since the right-hand side is integrable on [1,∞), we can interchange
the limits and integral. The h-limit remains the same as for the third integral, but now for each
fixed x ∈ (0, ν] and τ ∈ (1, ν/x). The x-limit is similar to that of the third integral, except that
we now have (τ − 1)−1/2 instead of (1− τ)−1/2 due to τ > 1. In total, the fourth integral can be
expressed as

lim
x→0

lim
h→0

∫ ν/x

1

−δ2hKsing(τx)

2h
δ2τxu

′(x)(x− h)x dτ =

∫ ∞

1

1

16τ3/2

(
(1 + τ)−1/2 + (τ − 1)−1/2

)
dτ.

The integrand of the fifth integral is dominated by a function that is integrable on (0, 2ν) by the
same argument as for the third integral in Lemma 5.1, whence

lim
x→0

lim
h→0

∫ 2ν

0

−δ2hKreg(y)

2h
δ2yu

′(x)x dy = 0

follows.
Similarly, for the final integral we find that

lim
x→0

lim
h→0

∫ ∞

2ν

−δ2hK(y)

2h
δ2yu

′(x)x dy = 0,

as the dominated convergence theorem holds by same argument used for the final integral in the
proof of Lemma 5.1.
Thus, each of the six right-hand side limits exist, and combining the integrals gives us

π

16
+

√
π

2
lim
x→0

u′′(x)

x−3/2
=

∫ ∞

0

1

16τ3/2

(
(1 + τ)−1/2 + sgn(τ − 1)|τ − 1|−1/2

)
dτ = 0. (5.7)

After rearranging, this becomes

lim
x→0

u′′(x)

x−3/2
= −1

4

√
π

8
,

which concludes the proof.

6 The limit for the third derivative

With the u′′-limit at hand, we now wish to determine the u′′′-limit. As we have alluded to
earlier, we will encounter some problems that prevent us from following the procedure of the
previous sections. As a consequence we will need to alter the first of the four main steps listed
in the introduction, that is, we will need to change our approach for finding a central difference
equation satisfied by u′′. This new way of finding a “good” central difference equation is the most
important idea presented in this paper, and was also the most difficult part of the research process.
Still, before we take a look at the altered approach, let us try to proceed as in Section 4.1 and 5
to get a better sense of the issues that arise.
Step 1 (Original). To get the central difference equation, we first need an integral equation
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satisfied by u′′. In a similar manner to Step 1 in Section 5, we take only the h-limit of (5.6) to get
the integral equation

2(u′(x))2 + 2u(x)u′′(x)

= −
∫ ∞

0

K ′(y)δ2yu
′(x) dy (6.1)

=

∫ ∞

0

(
K(y + x) +K(y − x)

)
u′′(y) dy. (6.2)

In (6.1) we have left the central difference in h on K to get K ′ after taking the limit, while in
(6.2) we moved h over to u′ before we took the limit to get u′′ (it is (6.2) here that corresponds to
(5.1)). As we will see, both expressions cause problems. The central difference equations are then

2(xu′(x+ h))2 + 2x2u(x+ h)u′′(x+ h)− 2(xu′(x− h))2 − 2x2u(x− h)u′′(x− h)

=

∫ ∞

0

δ2hK
′(y)δ2xu

′(y)x2 dy (6.3)

= −
∫ ∞

0

δ2hK(y)δ2xu
′′(y)x2 dy, (6.4)

where (6.3) is the central difference of (6.4), and (6.4) is the central difference of (6.2). Notice that
we have multiplied the equation by x2.
To show how things go wrong, we split the integral in (6.3) into a part over (0, 4h/3) (where

0 < 2h < x). To show the first estimate we would have to bound this part of the integral by
(xh)1/2, but when we try to do so we get∣∣∣∣∣

∫ 4h/3

0

δ2hK
′
sing(y)δ2xu

′(y)x2 dy

∣∣∣∣∣ ≲
∫ 4h/3

0

∣∣∣∣∣ 1

|y + h|3/2
− sgn(y − h)

|y − h|3/2

∣∣∣∣∣(x− y)−3/2x2 dy (6.5)

≲
(x
h

)1/2 ∫ 4/3

0

∣∣∣∣∣ 1

|τ + 1|3/2
− sgn(τ − 1)

|τ − 1|3/2

∣∣∣∣∣ dτ,
which does not converge. Now consider the integral (6.3) instead. If we split the integral in (6.3)
into a part over (2x/3, x), we would have to show that this integral is bounded by (xh)1/2 in the
proof for the first estimate. However, if we try to bound this integral using the estimate at the
origin for u′′, mirroring what was done in the preceding sections, we would find that∣∣∣∣∣−

∫ x

2x/3

δ2hK(y)δ2xu
′′(y)x2 dy

∣∣∣∣∣ ≲ (xh)1/2
∫ x/h

2x
3h

∣∣∣δ2(|τ |−1/2
)∣∣∣ 1

(1− τ h
x )

3/2
dτ (6.6)

≤ (xh)1/2
1(

2x
3h − 1

)3/2
[
2x

h

(
1− τ

h

x

)−1/2
]x/h

2x
3h

,

which also does not converge. As we can see, no matter which formulation we choose, there is a
non-integrable singularity of type |x|−3/2 at y = x or y = h that prevents us from proceeding as
in the previous section. Of course, these calculations do not show that that the integrals above
are not bounded; they only show that a potential bound can not be established as easily as in the
previous sections.
One might try integration by parts on the integrals on the left-hand side of (6.5) and (6.6) to

move the non-integrable singularity over to the factor that does not contain its singularity inside
the domain. Unfortunately, this does still not work. To get a sense for why this is, consider the
integrals on the right-hand side of the final equations we encountered when determining the u′ and
u′′-limits, (4.39) and (5.7). If we were to formally derive the corresponding integral for the general
u(n+1)-limit using the same procedure, we would find it to be∫ ∞

0

τ−3/2
(
(τ + 1)

1
2−n − (sgn(1− τ))n|τ − 1| 12−n

)
dτ, (6.7)

times some constant factor which we ignore. One can try to split this integral at a point to isolate
the singularities, say 2/3. If we then and formally integrate by parts n times the integral over
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(2/3,∞), disregarding the boundary terms, we would find that∫ ∞

0

τ−3/2
(
(τ + 1)

1
2−n − (sgn(1− τ))n|τ − 1| 12−n

)
dτ

≃
∫ 2

3

0

τ−
3
2

(
(τ + 1)

1
2−n − (1− τ)

1
2−n

)
dτ +

∫ ∞

2
3

τ−n− 3
2

(
(−1)n−1(τ + 1)

1
2 + |τ − 1| 12

)
dτ.

(6.8)

These integrals do indeed converge, so why does approach not work? Unfortunately, when we take
the boundary terms into consideration one immediately sees that these explode, so we are not
allowed to integrate by parts. Thus, it is clear that we need a somewhat altered approach to make
headway with the u′′′-limit.
Step 1 (Altered). For the u′′-limit, we first found the central difference equation satisfied by

u′, then we split the integral in this equation in a way that isolated the singularities (recall (5.6)).
The idea that will allow us to make progress on the u′′′-limit, is to reverse this order; we split the
previous central difference equation in such a way as to isolate the singularities before we move
on to the new central difference equation. When reversing the order, we can move h over to the
factor with a non-integrable singularity that is strictly outside of the domain of integration before
taking any derivatives. In fact, even though we are interested in the u′′′-limit, we will return all
the way to the central difference equation (4.23) satisfied by u.

Still considering 0 < 2h < x ≤ ν, we split the integral in (4.23) as

u(x+ h)2 − u(x− h)2 = −
∫ ∞

0

δ2hK(y)δ2xu(y) dy

= −
∫ 4h/3

0

δ2hKsing(y)δ2xu(y) dy −
∫ 2x/3

4h/3

δ2hKsing(y)δ2xu(y) dy

−
∫ 2ν

2x/3

δ2hKsing(y)δ2xu(y) dy −
∫ 2ν

0

δ2hKreg(y)δ2xu(y) dy −
∫ ∞

2ν

δ2hK(y)δ2xu(y) dy.

(6.9)

To get an equation we can use to study the u′′′-limit, we want a central difference equation satisfied
by u′′. To achieve this, we will differentiate the above central difference equation with respect to x
twice (we will differentiate formally under the integral sign, and justify this later). But before we
differentiate with respect to x twice, we need to rewrite some of the integrals so that the derivatives
end up on the correct factors. A derivative will appear from both the differentiation with respect
to x, as well as when we later divide by 2h and let h tend to zero. We therefore need to make sure
that both h and x are moved to the correct factor in the above integrals.

The exact splitting of the integral in (6.9) is inspired by the splitting of the integral in (5.6)1,
and the plan is now to transform the integrals in (6.9) as follows: In the integral over (0, 4h/3),
δ2hKsing(y) has a singularity at h. In this integral we therefore want to move h over to u so we
later end up with the derivative on u, whose singularity located at y = x (which is bounded away
from the domain of integration). We keep the integral over (4h/3, 2x/3) exactly as it is, as the
factors do not contain any singularities in this domain. In the integral over (2x/3, 2ν) we want to
move x over to Ksing, so that the derivatives are placed on Ksing when differentiating with respect
to x, to avoid the non-integrable singularity at y = x in the derivatives of u. In the integral on
(0, 2ν) we move x to Kreg, as Kreg is smooth with decaying derivatives. Similarly, in the final
integral on (2ν,∞) we move x over to K, as δ2hK(y) is smooth away from y = h and since all the
derivatives of K are exponentially decaying.
Following this plan one can show, after many changes of variables and tedious, but straightfor-

ward, calculations, that (6.9) can be rewritten as

u(x+ h)2 − u(x− h)2 =

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u(x) dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu(x) dy

1We note that there might be different ways of splitting the integral in (6.9) that make the following calculations
less tedious. However, this splitting, where we not only isolate the singularities, but also decompose K into the
singular and regular part, has been the easiest to work with of all expressions that we have experimented with, as
it allows us to reuse much of the calculations from earlier sections.
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+

∫ 2ν+x

5x/3

u(y)
(
δ2hKsing(x+ y) + δ2hKsing(x− y)

)
dy

+

∫ 5x/3

−x/3

δ2hKsing(x+ y)u(y) dy

+

∫ 2ν+x

x

u(y)
(
δ2hKreg(x+ y) + δ2hKreg(x− y)

)
dy

+

∫ x

−x

δ2hKreg(x+ y)u(y) dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK(x+ y) + δ2hK(x− y)

)
dy.

Taking the derivative of this equation with respect to x (which we will justify later) gives us

2u(x+ h)u′(x+ h)− 2u(x− h)u′(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′(x) dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′(x) dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′
sing(x+ y) + δ2hK

′
sing(x− y)

)
dy

+

∫ 5x/3

−x/3

δ2hK
′
sing(x+ y)u(y) dy

+

∫ 2ν+x

x

u(y)
(
δ2hK

′
reg(x+ y) + δ2hK

′
reg(x− y)

)
dy

+

∫ x

−x

δ2hK
′
reg(x+ y)u(y) dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK

′(x+ y) + δ2hK
′(x− y)

)
dy

+ δ2hKsing

(2
3
x
)(

u
(5
3
x
)
+ u
(x
3

))
,

where the final term comes from the boundary terms. Differentiating once more gives us

2u′(x+ h)2 + 2u(x+ h)u′′(x+ h)− 2u′(x− h)2 − 2u(x− h)u′′(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x) dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x) dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′′
sing(x+ y) + δ2hK

′′
sing(x− y)

)
dy

+

∫ 5x/3

−x/3

δ2hK
′′
sing(x+ y)u(y) dy (6.10)

+

∫ 2ν+x

x

u(y)
(
δ2hK

′′
reg(x+ y) + δ2hK

′′
reg(x− y)

)
dy

+

∫ x

−x

δ2hK
′′
reg(x+ y)u(y) dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK

′′(x+ y) + δ2hK
′′(x− y)

)
dy

+ δ2hKsing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
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+ δ2hK
′
sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
,

which is the central difference equation we will use to study the u′′′-limit. The right-hand side now
has seven integrals as well as some boundary terms we need to consider, which is somewhat more
tedious than in the previous section, though still manageable.
Consider the left-hand side of (6.10). Multiplying by 1/2h and letting h tend to zero, we get

lim
h→0

2u′(x+ h)2 + 2u(x+ h)u′′(x+ h)− 2u′(x− h)2 − 2u(x− h)u′′(x− h)

2h

= 6u′(x)u′′(x) + 2u(x)u′′′(x).

(6.11)

Multiplying this by x2 (for the same reason we had to multiply by x to get (5.4)) and letting x
tend to zero, we get

lim
x→0

6x2u′(x)u′′(x) + 2x2u(x)u′′′(x) = lim
x→0

6x1/2u′(x)x3/2u′′(x) + 2x−1/2u(x)x5/2u′′′(x)

= 6
1

2

√
π

8

−1

4

√
π

8
+ 2

√
π

8
lim
x→0

u′′′(x)

x−5/2

= −3

4

π

8
+ 2

√
π

8
lim
x→0

u′′′(x)

x−5/2
.

(6.12)

Remark 6.1. So far we have been studying the limits for u, u′, u′′ and u′′′. Consider the h-limits
the respective central difference equations used to study their limits:

n = 0 : u(x)2 = u(x)2,

n = 1 : 2u(x)u′(x) = u(x)u′(x) + u′(x)u(x),

n = 2 : 2u′(x)2 + 2u(x)u′′(x) = u(x)u′′(x) + 2u′(x)2 + u′′(x)u(x),

n = 3 : 6u′(x)u′′(x) + 2u(x)u′′′(x) = u(x)u′′′(x) + 3u′(x)u′′(x) + 3u′′(x)u′(x) + u′′′(x)u(x),

where n denotes the order of the derivative of u we are studying. The right-hand sides seem to
suggest that the general left-hand side to study the u(n)-limit should be

n∑
i=0

(
n

i

)
u(i)u(n−i).

Before we can divide the right-hand side of (6.10) by 2h and take h- and x-limit, we again need
two estimates.
Step 2. We begin by showing the first estimate for the central difference of u′′.

Lemma 6.2. There is some ν > 0 so that

|(x− h)2(u′′(x+ h)− u′′(x− h))| ≲ h1/2

uniformly on [0, ν].

Proof. Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. The
estimate follows directly from the u′′-limit for large h, say h ∈ [x/2, x]. Indeed, for such h we have
that

|(x− h)2(u′′(x+ h)− u′′(x− h))|
≲ |x− h|2(|x+ h|−3/2 + |x− h|−3/2) ≲ |x− h|2|x− h|−3/2 ≤ |2h− h|1/2 = |h|1/2,

after possibly shrinking ν. We now show that the claim also holds for h < x/2.
Consider the central difference equation (6.10) from above multiplied by (x− h)2:

2(x− h)2u′(x+ h)2 + 2(x− h)2u(x+ h)u′′(x+ h)
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− 2(x− h)2u′(x− h)2 − 2(x− h)2u(x− h)u′′(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x)(x− h)2 dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x)(x− h)2 dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′′
sing(x+ y) + δ2hK

′′
sing(x− y)

)
(x− h)2 dy

+

∫ 5x/3

−x/3

δ2hK
′′
sing(x+ y)u(y)(x− h)2 dy

+

∫ 2ν+x

x

u(y)
(
δ2hK

′′
reg(x+ y) + δ2hK

′′
reg(x− y)

)
(x− h)2 dy

+

∫ x

−x

δ2hK
′′
reg(x+ y)u(y)(x− h)2 dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK

′′(x+ y) + δ2hK
′′(x− y)

)
(x− h)2 dy

+ δ2hKsing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
(x− h)2

+ δ2hK
′
sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
(x− h)2

Using that u(x ± h) ≃ x1/2 and u′(x ± h) ≃ x−1/2 for h < x/2 (after possibly shrinking ν), the
left-hand side can be written as

|2(x− h)2u′(x+ h)2 + 2(x− h)2u(x+ h)u′′(x+ h)

− 2(x− h)2u′(x− h)2 − 2(x− h)2u(x− h)u′′(x− h)|
≃ |x1/2(x− h)2(u′′(x+ h)− u′′(x− h))|.

Now we consider the right-hand side.
Using the binomial theorem to expand δ2hKsing and δ2hK

′
sing shows that both of the boundary

terms tend to zero on the order of h.
Using the estimate at the origin for u′′, the first integral can be bounded by∣∣∣∣∣

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x)(x− h)2 dy

∣∣∣∣∣
≤ x2

∫ 7h/3

−h/3

|Ksing(y)|(|x+ y − h|−3/2 + |x− y + h|−3/2) dy

≲ x2
∫ 7h/3

−h/3

|Ksing(y)|
∣∣∣x− 2x

3

∣∣∣−3/2

dy

≃ (xh)1/2
∫ 7/3

−1/3

|Ksing(τ)| dτ

≃ (xh)1/2,

since the final integral converges.
Using the estimate at the origin for u′′, the second integral can be bounded by∣∣∣∣∣

∫ 2x/3

4h/3

− δ2hKsing(y)δ2yu
′′(x)(x− h)2 dy

∣∣∣∣∣
≤ x2

∫ 2x/3

4h/3

|δ2hKsing(y)|(|x+ y|−3/2 + |x− y|−3/2) dy

≲ x2
∫ 2x/3

4h/3

|δ2hKsing(y)|
∣∣∣x− 2x

3

∣∣∣−3/2

dy (6.13)
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≃ (xh)1/2
∫ 2x

3h

4/3

∣∣∣δ2(|τ |−1/2
)∣∣∣ dτ

≲ (xh)1/2,

since the final integral converges on (4/3,∞).
Using the estimate at the origin for u, the third integral can be bounded by∣∣∣∣∣

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′′
sing(x+ y) + δ2hK

′′
sing(x− y)

)
(x− h)2 dy

∣∣∣∣∣
≲ x2

∫ 2ν+x

5x/3

y1/2
( h

(x+ y − ξh)
7/2
ξ∈(−1,1)

+
h

|x− y − ξh|7/2ξ∈(−1,1)

)
dy

≲ x2h

∫ 2ν+x

5x/3

y1/2

(y − x− h)7/2
dy

≤ x2h

∫ 2ν+x

5x/3

y1/2

(y − 9
10y)

7/2
dy

≃ x2h

∫ 2ν
x +1

5/3

1

(xτ)3
x dτ

≲ h ≤ (xh)1/2,

since the final integral converges on (5/3,∞). In the first inequality we have used the mean value
theorem on δ2hK

′′
sing(x± y).

By a similar argument as for the third integral, we can bound the fourth integral by∣∣∣∣∣
∫ 5x/3

−x/3

δ2hK
′′
sing(x+ y)u(y)(x− h)2 dy

∣∣∣∣∣
≲
h

x

∫ 5x/3

−x/3

1 dy =
h

x

(5x
3

− −x
3

)
≃ h ≤ (xh)1/2.

Since Kreg is smooth with decaying derivatives, and K is smooth away from its singularity with
exponentially decaying derivatives, we can bound the fifth, sixth and final integral by∣∣∣∣∣

∫ 2ν+x

x

u(y)
(
δ2hK

′′
reg(x+ y) + δ2hK

′′
reg(x− y)

)
(x− h)2 dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,∣∣∣∣∣
∫ x

−x

δ2hK
′′
reg(x+ y)u(y)(x− h)2 dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,∣∣∣∣∣
∫ ∞

2ν+x

u(y)
(
δ2hK

′′(x+ y) + δ2hK
′′(x− y)

)
(x− h)2 dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

through calculations similar to (4.27), (4.27) and (4.28), respectively. Here we see one advantage of
the central difference equation (6.10) from our altered approach; when bounding the final integral
we can simply use that u is bounded, so we do not need to go through the same tedious calculations
as we did for the final integral in the proof of Lemma 5.1 when u is a periodic solution.
Having shown that all the right-hand side integrals are bounded by (xh)1/2, we combine the

right-hand side estimates with the left-hand side to arrive at the final result.

With the proof of Lemma 6.2 at hand, we can justify the differentiation under the integral sign
we did above. As the justification for all of the integrals can be performed in the same manner, we
only show the procedure for one of them, say the derivative of the second integral in the central
difference equation satisfied by u′. To this end, define the operator

G(x) :=

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′(x) dy,
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and consider

G(x+ t)−G(x)

t

=

∫ 2x/3

4h/3

−δ2hKsing(y)
δ2yu

′(x+ t)− δ2yu
′(x)

t
dy +

∫ 2x
3 + 2t

3

2x/3

−1

t
δ2hKsing(y)δ2yu

′(x+ t) dy.

The first of these integrals can be written as∫ 2x/3

4h/3

−δ2hKsing(y)
δ2yu

′(x+ t)− δ2yu
′(x)

t
dy

=

∫ 2x/3

4h/3

−δ2hKsing(y)
u′(x+ y + t)− u′(x+ y)−

(
u′(x− y + t)− u′(x− y)

)
t

dy

=

∫ 2x/3

4h/3

−δ2hKsing(y)
(
u′′(x+ y + ξ1t)ξ1∈(0,1) − u′′(x− y + ξ2t)ξ2∈(0,1)

)
dy,

where we have used the mean value theorem. By the same calculation as (6.13) in the proof of
Lemma 6.2, this integral is dominated by an integrable function on the domain in question (of
course, the final bound for this integral would be h1/2/x3/2 as we currently do not have the factor
x2 in the numerator to cancel with, but this is not an issue as h1/2/x3/2 < ∞ for a fixed h and
fixed x), and hence we can use the dominated convergence theorem. But before we do so, let us
consider the second integral. Through two changes of variables, first y = s + 2x

3 , then z = ts, we
can rewrite this integral as∫ 2x

3 + 2t
3

2x/3

−1

t
δ2hKsing(y)δ2yu

′(x+ t) dy =

∫ 2t
3

0

−1

t
δ2hKsing

(
s+

2x

3

)
δ
2
(
s+ 2x

3

)u′(x+ t) ds

=

∫ 2
3

0

−δ2hKsing

(
tz +

2x

3

)
δ
2
(
tz+ 2x

3

)u′(x+ t) dz.

As u′ in the final integrand is bounded strictly away from its singularities, the integrand is dom-
inated by an integrable function on the domain in question. Consequently, we can move the limit
inside. In total, by dominated convergence we have that

lim
t→0

G(x+ t)−G(x)

t
=

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x) dy +

2

3

(
− δ2hKsing

(2x
3

)
δ
2
(

2x
3

)u′(x)).
This is indeed the same expression as when we differentiate under the integral sign directly, as the
second term on the right-hand side will, together with the boundary terms from the other integrals,
simplify to the final two terms on the right-hand side of (6.10). Following a similar procedure, one
finds that the differentiation of all the other integrals is also justified.
Step 3. Next, we show the improved estimate.

Lemma 6.3. The improved estimate

|x1/2(x− h)2(u′′(x+ h)− u′′(x− h))| ≲ h

holds uniformly on [0, ν], for some ν > 0.

Proof. Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. For
h ∈ [x/2, x], we have

|(x− h)2(u′′(x+ h)− u′′(x− h))| ≲ h1/2 =
h

h1/2
≤ h

(x/2)1/2
≲

h

x1/2
,

where the first inequality is simply Lemma 6.2. We now show that it also holds for h < x/2, and
consider the same central difference equation as in the proof of Lemma 6.2.
Note from the proof Lemma 6.2 that all the right-hand side integrals, except for the one on

(−h/3, 7h/3) and the one on (4h/3, 2x/3), were in-fact bounded by h. Therefore, we only need to
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show that these two integrals are also bounded by h to arrive at the improved estimate.
First we consider the integral over (−h/3, 7h/3), where we use Lemma 6.2 to bound the integral

by ∣∣∣∣∣
∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x)(x− h)2 dy

∣∣∣∣∣
≲ x2

∫ 7h/3

−h/3

|Ksing(y)|
|y − h|1/2

|x− (y − h)|2
dy

≤ x2
∫ 7h/3

−h/3

|Ksing(y)|
|y − h|1/2

|x− 4
3h|2

dy

≲
∫ 7/3

−1/3

|Ksing(τh)||τh− h|1/2h dτ

= h

∫ 7/3

−1/3

|Ksing(τ)||τ − 1|1/2 dτ ≃ h,

since the final integral converges.
Using Lemma 6.2, the integral on (4h/3, 2x/3) can be bounded by∣∣∣∣∣

∫ 2x/3

4h/3

− δ2hKsing(y)δ2yu
′′(x)(x− h)2 dy

∣∣∣∣∣
≲ x2

∫ 2x/3

4h/3

|δ2hKsing(y)|
y1/2

(x− y)2
dy

≲
∫ 2x/3

4h/3

|δ2hKsing(y)|y1/2 dy

≲ h

(
1 +

∣∣∣ ln(h
x

)∣∣∣),
where the final inequality follows from the same calculation as in (4.30). As was the case in
the proofs for the two previous improved estimates, this bound is not quite good enough yet.
Combining the bounds we have so far, however, gives us the estimate

|x1/2(x− h)2(u′′(x+ h)− u′′(x− h))| ≲ h
(
1 +

∣∣∣ ln(h
x

)∣∣∣),
which we insert back into the calculations above to find that∣∣∣∣∣

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x)(x− h)2 dy

∣∣∣∣∣ ≲ h,

by the same calculation as in (4.31).
As we have managed to show that the two integrals were also bounded by h, we arrive at the

improved estimate.

Step 4. With the first and the improved estimate for the central difference of u′′ at hand, we
are ready for the main result of this section.

Proposition 6.4. The third derivative of the solution u enjoys the limit

lim
x→0

u′′′(x)

x−5/2
=

3

8

√
π

8
.

Proof. With 0 < 2h < x ≤ ν, we consider the central difference equation (6.10) satisfied by u′′,
divided by 2h and multiplied by x2:

1

2h
(2x2u′(x+ h)2 + 2x2u(x+ h)u′′(x+ h)
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− 2x2u′x2 − 2x2u(x− h)u′′(x− h))

=
1

2h

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x)x2 dy

+
1

2h

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x)x2 dy

+
1

2h

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′′
sing(x+ y) + δ2hK

′′
sing(x− y)

)
x2 dy

+
1

2h

∫ 5x/3

−x/3

δ2hK
′′
sing(x+ y)u(y)x2 dy

+
1

2h

∫ 2ν+x

x

u(y)
(
δ2hK

′′
reg(x+ y) + δ2hK

′′
reg(x− y)

)
x2 dy

+
1

2h

∫ x

−x

δ2hK
′′
reg(x+ y)u(y)x2 dy

+
1

2h

∫ ∞

2ν+x

u(y)
(
δ2hK

′′(x+ y) + δ2hK
′′(x− y)

)
x2 dy

+
1

2h
δ2hK

′
sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
x2

+
1

2h
δ2hKsing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
x2.

For the left-hand side, we know from (6.11) and (6.12) that

lim
x→0

lim
h→0

2x2u′(x+ h)2 + 2x2u(x+ h)u′′(x+ h)− 2x2u′x2 − 2x2u(x− h)u′′(x− h))

2h

= −3

4

π

8
+ 2

√
π

8
lim
x→0

u′′′(x)

x−5/2
.

Next we show that the h- and x-limit of the right-hand side evaluates to zero. We will again do
so by showing that each of the integrals are dominated by integrable functions on their respective
domains of integration, whence we can interchange limits and integrals.
The first integral can be written as

1

2h

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
′′(x)x2 dy =

∫ 7/3

−1/3

−1√
8πh1/2

1

|τ |1/2
δ2(τh−h)u

′′(x)x2 dτ,

and the integrand bounded by∣∣∣∣∣ −1√
8πh1/2

1

|τ |1/2
δ2(τh−h)u

′′(x)x2

∣∣∣∣∣ ≲ x2

h1/2
1

|τ |1/2
|τh− h|1/2

|x− (τh− h)|2
≲

|τ − 1|1/2

|τ |1/2
,

where we have used Lemma (6.2). As the right-hand side is integrable on (−1/3, 7/3), we can take
the limit inside the integral to find that

lim
h→0

−1√
8πh1/2

1

|τ |1/2
δ2(τh−h)u

′′(x)x2 = lim
h→0

−h1/2√
8π

1

|τ |1/2
2(τ − 1)

δ2(τh−h)u
′′(x)

2(τh− h)
x2 = 0,

since u′′(x) is differentiable on 0 < x < P .
The second integral can be written as

1

2h

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
′′(x)x2 dy =

∫ 2/3

4h
3x

−δ2hKsing(τx)

2h
δ2τxu

′′(x)x3 dτ,

where the integrand can be expressed as

−δ2hKsing(τx)

2h
δ2τxu

′′(x)x3 =
1√
2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)x3/2δ2τxu′′(x),
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by the same calculation as in (4.34). Using the improved estimate of Lemma (6.3) and a calculation
similar to (4.35), the integrand is bounded by∣∣∣∣∣ 1√

2π

1(
τ2 − (hx )

2
)1/2(

(τ + h
x )

1/2 + (τ − h
x )

1/2
)x3/2δ2τxu′′(x)

∣∣∣∣∣ ≲ 1

τ1/2(1− τ)2
,

for all 0 < 2h < x ≤ ν and 4h
3x < τ < 2/3. Since the right-hand side is integrable on (0, 2/3), we

can move the limits inside the integral. We then get

lim
h→0

−δ2hKsing(τx)

2h
δ2τxu

′′(x)x3 =
1√
2π

x3/2δ2τxu
′′(x)

2τ3/2
,

for each x ∈ (0, ν] and τ ∈ (0, 2/3), and

lim
x→0

1√
2π

x3/2δ2τxu
′′(x)

2τ3/2
= − 1

32τ3/2

(
1

(1 + τ)3/2
− 1

(1− τ)3/2

)
,

for each τ ∈ (0, 2/3) by calculations analogous to (4.36) and (4.37), respectively. In summary, we
have that

lim
x→0

lim
h→0

∫ 2/3

4h
3x

−δ2hKsing(τx)

2h
δ2τxu

′′(x)x3 dτ =

∫ 2/3

0

− 1

32τ3/2

(
1

(1 + τ)3/2
− 1

(1− τ)3/2

)
dτ.

The third integral can be written as

1

2h

∫ 2ν+x

5x/3

u(y)
(
δ2hK

′′
sing(x+ y) + δ2hK

′′
sing(x− y)

)
x2 dy

=

∫ 2ν
x +1

5/3

1

2h
u(τx)

(
δ2hK

′′
sing(x+ τx) + δ2hK

′′
sing(x− τx)

)
x3 dτ

=

∫ 2ν
x +1

5/3

u(τx)
δ2hK

′′
sing(x+ τx)

2h
x3︸ ︷︷ ︸

(A)

dτ +

∫ 2ν
x +1

5/3

u(τx)
δ2hK

′′
sing(x− τx)

2h
x3︸ ︷︷ ︸

(B)

dτ.

We can rewrite (A) as

δ2hK
′′
sing(x+ τx)

2h
u(τx)x3 =

1

2h

(
3√

π|2(x+ τx+ h)|5/2
− 3√

π|2(x+ τx− h)|5/2

)
u(τx)x3

=
3√
27πh

(
(τ + 1− h

x )
5/2 − (τ + 1 + h

x )
5/2

)
(τ + 1 + h

x )
5/2(τ + 1− h

x )
5/2

u(τx)x1/2

=
3√
27πh

(
(τ + 1− h

x )
5/2 − (τ + 1 + h

x )
5/2

)
(τ + 1 + h

x )
5/2(τ + 1− h

x )
5/2

(
2
∑

k=1,3,5

(
5
k

)
(τ + 1)5−k

(
h
x

)k)
(
(τ + 1 + h

x )
5 − (τ + 1− h

x )
5
) u(τx)x1/2

=
3√
27πh

(
(τ + 1− h

x )
5/2 − (τ + 1 + h

x )
5/2

)
(τ + 1 + h

x )
5/2(τ + 1− h

x )
5/2

(6.14)

·

(
2
∑

k=1,3,5

(
5
k

)
(τ + 1)5−k

(
h
x

)k)
(
(τ + 1 + h

x )
5/2 + (τ + 1− h

x )
5/2
)(

(τ + 1 + h
x )

5/2 − (τ + 1− h
x )

5/2
)u(τx)x1/2

=
3√
27πh

−1

(τ + 1 + h
x )

5/2(τ + 1− h
x )

5/2

(
2h
x

∑
k=1,3,5

(
5
k

)
(τ + 1)5−k

(
h
x

)k−1
)

(
(τ + 1 + h

x )
5/2 + (τ + 1− h

x )
5/2
) u(τx)x1/2
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=
−3√
25π

1(
(τ + 1)2 − (hx )

2
)5/2

(∑
k=1,3,5

(
5
k

)
(τ + 1)5−k

(
h
x

)k−1
)

(
(τ + 1 + h

x )
5/2 + (τ + 1− h

x )
5/2
) u(τx)
x1/2

.

While similar to the calculation in (4.34), we have included much of the calculation as we now had
to include a binomial sum in the numerator for the new fraction in the third equality to. This
difference in the calculations is a result of the exponent now being 5/2 instead of 1/2.
In an analogous manner, (B) can be rewritten as

δ2hK
′′
sing(x− τx)

2h
u(τx)x3

=
3√
25π

1(
(τ − 1)2 − (hx )

2
)5/2

(∑
k=1,3,5

(
5
k

)
(τ − 1)5−k

(
h
x

)k−1
)

(
(τ − 1 + h

x )
5/2 + (τ − 1− h

x )
5/2
) u(τx)
x1/2

.

We can bound (A) by

∣∣∣∣∣ −3√
25π

1(
(τ + 1)2 − (hx )

2
)5/2

(∑
k=1,3,5

(
5
k

)
(τ + 1)5−k

(
h
x

)k−1
)

(
(τ + 1 + h

x )
5/2 + (τ + 1− h

x )
5/2
) u(τx)
x1/2

∣∣∣∣∣
≲

1(
(τ + 1)2 − ( 3

16 (τ + 1))2
)5/2

(∑
k=1,3,5(τ + 1)5−k

)
(τ + 1)5/2

(τx)1/2

x1/2

≤

(∑
k=1,3,5(τ + 1)5−k

)
(τ + 1)15/2

(τ + 1)1/2

≤

(∑
k=1,3,5(τ + 1)4

)
(τ + 1)15/2

(τ + 1)1/2

=
1

(τ + 1)3
,

and (B) by

∣∣∣∣∣ 3√
25π

1(
(τ − 1)2 − (hx )

2
)5/2

(∑
k=1,3,5

(
5
k

)
(τ − 1)5−k

(
h
x

)k−1
)

(
(τ − 1 + h

x )
5/2 + (τ − 1− h

x )
5/2
) u(τx)
x1/2

∣∣∣∣∣ ≲ 1

(τ − 1)3

in an analogous manner, both of which are integrable on (5/3,∞). Thus, rewriting (A) and (B) as
above, and noting that all terms except for the first in the binomial sum contain h in the numerator,
we find that

lim
h→0

u(τx)
(δ2hK ′′

sing(x+ τx)

2h
+
δ2hK

′′
sing(x− τx)

2h

)
x3

=
15√
27π

u(τx)

x1/2

(
− 1

(τ + 1)7/2
+

1

(τ − 1)7/2

)
for the h-limit. By using the u-limit, we get

lim
x→0

15√
27π

u(τx)

x1/2

(
− 1

(τ + 1)7/2
+

1

(τ − 1)7/2

)
=

15

25
τ1/2

(
− 1

(τ + 1)7/2
+

1

(τ − 1)7/2

)
,

for the x-limit. In summary, we have that

lim
x→0

lim
h→0

∫ 2ν
x +1

5/3

1

2h
u(τx)

(
δ2hK

′′
sing(x+ τx) + δ2hK

′′
sing(x− τx)

)
x3 dτ
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=

∫ ∞

5/3

15

25
τ1/2

(
− 1

(τ + 1)7/2
+

1

(τ − 1)7/2

)
dτ.

The fourth integral can be written as

1

2h

∫ 5x/3

−x/3

δ2hK
′′
sing(x+ y)u(y)x2 dy =

∫ 5/3

−1/3

δ2hK
′′
sing(x+ τx)

2h
u(τx)x3 dτ.

This integrand is exactly the same as (A) from the third integral. There we saw that (A) is bounded
by (τ + 1)−3, which happens to also integrable on (−1/3, 5/3). We can therefore move the limits
inside the integral, arriving at

lim
x→0

lim
h→0

∫ 5/3

−1/3

δ2hK
′′
sing(x+ τx)

2h
u(τx)x3 dτ =

∫ 5/3

−1/3

−15

25
|τ |1/2

(τ + 1)7/2
dτ.

Notice that we cannot drop the absolute value on |τ |1/2 here due to the domain of integration.
The fifth, sixth and final integral can all be bounded as in Lemma (6.2), and all three limits

tend to zero:

u(y)

(
δ2hK

′′
reg(x+ y)

2h
+
δ2hK

′′
reg(x− y)

2h

)
x2

h→0−−−→ u(y)

(
K ′′′

reg(x+ y) +K ′′′
reg(x− y)

)
x2

x→0−−−→ 0,

u(y)
δ2hK

′′
reg(x+ y)

2h
x2

h→0−−−→ u(y)K ′′′
reg(x+ y)x2

x→0−−−→ 0,

u(y)

(
δ2hK

′′(x+ y)

2h
+
δ2hK

′′(x− y)

2h

)
x2

h→0−−−→ u(y)

(
K ′′′(x+ y) +K ′′′(x− y)

)
x2

x→0−−−→ 0,

respectively.
Now we consider the limits of the boundary terms. For the first one, the h-limit is

lim
h→0

1

2h
δ2hK

′
sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
x2 = K ′′

sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
x2,

followed by

lim
x→0

K ′′
sing

(2
3
x
)(

− u
(5
3
x
)
+ u
(x
3

))
x2 = lim

x→0

37/2

25
√
π

x5/2

x5/2

(
−
(5
3

)1/2 u( 53x)(
5x
3

)1/2 +
1

31/2
u
(
x
3

)(
x
3

)1/2)

=
33(1− 51/2)

213/2
,

for the x-limit. Here we have used the u-limit in the last equality.
For the second one, we have

lim
h→0

1

2h
δ2hKsing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
x2 = K ′

sing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
x2,

followed by

lim
x→0

K ′
sing

(2
3
x
)(

u′
(5
3
x
)
+ u′

(x
3

))
x2

= lim
x→0

−sgn
(
2
3x
)

√
23π
∣∣ 2
3x
∣∣3/2x3/2

(( 5
3x
)1/2

u′
(

5
3x
)

(
5
3

)1/2 +

(
1
3x
)1/2

u′
(

x
3

)
(
1
3

)1/2 )

=
−32

211/2

( 1

51/2
+ 1
)
,

where we have used the u′-limit.
Thus we shown that the limits of the right-hand side exists, and combining all of the above
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limits gives us that

−3

4

π

8
+ 2

√
π

8
lim
x→0

u′′′(x)

x−5/2
=

∫ 2/3

0

− 1

32τ3/2

(
1

(1 + τ)3/2
− 1

(1− τ)3/2

)
dτ

+

∫ ∞

5/3

15

25
τ1/2

(
− 1

(τ + 1)7/2
+

1

(τ − 1)7/2

)
dτ

+

∫ 5/3

−1/3

−15

25
|τ |1/2

(τ + 1)7/2
dτ

+
33(1− 51/2)

213/2
+

−32

211/2

( 1

51/2
+ 1
)
.

(6.15)

Computing the right-hand side, one finds that it equals zero. Thus, we get

lim
x→0

u′′′(x)

x−5/2
=

3

8

√
π

8
,

after rearranging.

7 The limit for the n-th derivative

Inspecting all the proofs from Section 6, we see that the approach lends itself nicely to an
inductive proof for the general u(n)-limit. As we will see in the Main Theorem 7.6, there is,
however, one part of the proof of Proposition 6.4 which is more difficult in the general case of the
n-th derivative, namely the calculation (7.2) which corresponds to the calculation of the right-hand
side of (6.15). In (6.15), the right-hand side expression is a sum of tedious integrals and fractions,
but it was still a manageable computation to do by hand. In the general n-th derivative case, the
corresponding expression is an even more tedious sum of integrals and fractions, now depending
on n. We expect that this expression equals zero for a general n ≥ 1, though we have not been
able to show this. Evaluating the expression for explicit values of n using the computer program
Maple [13] has indeed given the result zero for all the values of n we have tried. We expect further
considerations to yield an analytical solution to this step.
Thankfully, the value of the expression is only necessary for establishing the exact value of the

limit. Consequently, it follows as a corollary to the Main Theorem that the u(n)-limit exists for all
n ∈ N unconditionally. This corollary, Corollary 7.7, is the other main result of this section and of
the entire paper.
This section also follows the four main steps listed in the introduction, and they can be treated

completely analogously to the corresponding steps in Section 6. In addition, now that we are
building up to a general inductive proof, there are two more lemmas that we will also need. We
begin with the first of these lemmas, which confirms Remark 6.1.

Lemma 7.1.

lim
h→0

∑n
i=0

(
n
i

)
u(i)(x+ h)u(n−i)(x+ h)−

∑n
i=0

(
n
i

)
u(i)(x− h)u(n−i)(x− h)

2h

=
d

dx

n∑
i=0

(
n

i

)
u(i)(x)u(n−i)(x)

=

n+1∑
i=0

(
n+ 1

i

)
u(i)(x)u(n+1−i)(x)

Proof. The first equality is the definition of the derivative. Taking the derivative, we find that

d

dx

n∑
i=0

(
n

i

)
u(i)(x)u(n−i)(x) =

n∑
i=0

(
n

i

)
d

dx

(
u(i)(x)u(n−i)(x)

)
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=

n∑
i=0

(
n

i

)(
u(i+1)(x)u(n−i)(x) + u(i)(x)u(n+1−i)(x)

)
=

n∑
i=0

(
n

i

)
u(i+1)(x)u(n−i)(x) +

n∑
i=0

(
n

i

)
u(i)(x)u(n+1−i)(x).

Making the change of variables j = i+ 1, we find that

n∑
i=0

(
n

i

)
u(i+1)(x)u(n−i)(x) +

n∑
i=0

(
n

i

)
u(i)(x)u(n+1−i)(x)

=

n+1∑
j=1

(
n

j − 1

)
u(j)(x)u(n−(j−1))(x) +

n∑
i=0

(
n

i

)
u(i)(x)u(n+1−i)(x)

=

(
n

n

)
u(n+1)(x)u(0)(x) +

n∑
j=1

(
n

j − 1

)
u(j)(x)u(n+1−j)(x)

+

(
n

0

)
u(0)(x)u(n+1)(x) +

n∑
i=1

(
n

i

)
u(i)(x)u(n+1−i)(x)

=

(
n

n

)
u(n+1)(x)u(0)(x) +

(
n

0

)
u(0)(x)u(n+1)(x)

+

n∑
i=1

((
n

i− 1

)
+

(
n

i

))
u(i)(x)u(n+1−i)(x)

=

(
n+ 1

n+ 1

)
u(0)(x)u(n+1)(x) +

(
n+ 1

0

)
u(0)(x)u(n+1)(x)

+

n∑
i=1

(
n+ 1

i

)
u(i)(x)u(n+1−i)(x)

=

n+1∑
i=0

(
n+ 1

i

)
u(i)(x)u(n+1−i)(x),

which is the expression in the statement of the lemma. Here we have used that
(
n
n

)
= 1 =

(
n+1
n+1

)
and

(
n
0

)
= 1 =

(
n+1
0

)
, and the identity

(
n

i−1

)
+
(
n
i

)
=
(
n+1
i

)
.

Step 1. Next, we show the complete general form of the central difference equation satisfied by
u(n), given that differentiating under the integral sign is justified.

Lemma 7.2. Given that differentiating with respect to x under the integral sign is justified, the
n-th derivative of u satisfies the following equation for n ≥ 1 and 0 < 2h < x ≤ ν:

n∑
i=0

(
n

i

)
u(i)(x+ h)u(n−i)(x+ h)−

n∑
i=0

(
n

i

)
u(i)(x− h)u(n−i)(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n)(x) dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x) dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

(n)
sing(x+ y) + δ2hK

(n)
sing(x− y)

)
dy

+

∫ 5x/3

−x/3

δ2hK
(n)
sing(x+ y)u(y) dy (7.1)

+

∫ 2ν+x

x

u(y)
(
δ2hK

(n)
reg (x+ y) + δ2hK

(n)
reg (x− y)

)
dy

+

∫ x

−x

δ2hK
(n)
reg (x+ y)u(y) dy
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+

∫ ∞

2ν+x

u(y)
(
δ2hK

(n)(x+ y) + δ2hK
(n)(x− y)

)
dy

+

n−1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))

Proof. The discussion from Step 1 (Altered) in Section 6 serves as a base case. Now we need to
show that the inductive steps also holds. That is, given that the statement of the lemma is true
for the n-th derivative, we need to show that it also holds for the (n+ 1)-th derivative.

Differentiating the left-hand side of the equation with respect to x, we indeed get

n+1∑
i=0

(
n+ 1

i

)
u(i)(x+ h)u(n+1−i)(x+ h)−

n+1∑
i=0

(
n+ 1

i

)
u(i)(x− h)u(n+1−i)(x− h),

by Lemma 7.1.
We are given that differentiating with respect to x under the integral sign is justified. Differ-

entiating the right-hand side of the equation satisfied by the n-th derivative, it is clear that the
integrals are of the correct form. For the boundary conditions, it is straightforward, though te-
dious, to show that the derivative of the sum on the right-hand side of (7.1), together with the
boundary terms from differentiating the integrals, simplify to the desired sum (though one must
not forget that Ksing is an even function, so its odd derivatives are odd and its even derivatives are
even). In total, when differentiating the equation for the n-th derivative with respect to x we get

n+1∑
i=0

(
n+ 1

i

)
u(i)(x+ h)u(n+1−i)(x+ h)−

n+1∑
i=0

(
n+ 1

i

)
u(i)(x− h)u(n+1−i)(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n+1)(x) dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n+1)(x) dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

(n+1)
sing (x+ y) + δ2hK

(n+1)
sing (x− y)

)
dy

+

∫ 5x/3

−x/3

δ2hK
(n+1)
sing (x+ y)u(y) dy

+

∫ 2ν+x

x

u(y)
(
δ2hK

(n+1)
reg (x+ y) + δ2hK

(n+1)
reg (x− y)

)
dy

+

∫ x

−x

δ2hK
(n+1)
reg (x+ y)u(y) dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK

(n+1)(x+ y) + δ2hK
(n+1)(x− y)

)
dy

+

n+1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−i)
(5
3
x
)
+ u(n−i)

(x
3

))
,

which is satisfied by the (n+1)-th derivative. As this equation is of the same form as the equation
for the n-th derivative, the inductive step holds.

Step 2. Now we show that the first estimate holds for the central difference u(n), given that
the u(n)-limit exists.

Lemma 7.3. Given that

lim
x→0

u(n)(x)

x
1
2−n

exists, it follows that there is some ν > 0 so that

|(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ h1/2
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holds uniformly on [0, ν].

Proof. We prove the lemma by strong induction. With the u-limit known from Proposition 4.8,
we will consider n ≥ 1 in the following and take the u′-limit as our base case. Now we need to
show that the inductive step also holds. That is, given that the statement of the lemma holds for
all k ∈ {1, ..., n}, we need to show that it also holds for n+ 1.
Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. The claim

follows directly from the limit at the origin for large h, say h ∈ [x/2, x]. Indeed, for such h we have
that

|(x− h)n(u(n)(x+ h)− u(n)(x− h))|

≲ |x− h|n(|x+ h| 12−n + |x− h| 12−n) ≲ |x− h|n|x− h| 12−n ≤ |2h− h|1/2 = |h|1/2.

We now show that it also holds for h < x/2.
Consider the central difference equation satisfied by u(n) from Lemma 7.1, multiplied by (x−h)n,

n∑
i=0

(
n

i

)
(x− h)nu(i)(x+ h)u(n−i)(x+ h)−

n∑
i=0

(
n

i

)
(x− h)nu(i)(x− h)u(n−i)(x− h)

=

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n)(x)(x− h)n dy

+

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x)(x− h)n dy

+

∫ 2ν+x

5x/3

u(y)
(
δ2hK

(n)
sing(x+ y) + δ2hK

(n)
sing(x− y)

)
(x− h)n dy

+

∫ 5x/3

−x/3

δ2hK
(n)
sing(x+ y)u(y)(x− h)n dy

+

∫ 2ν+x

x

u(y)
(
δ2hK

(n)
reg (x+ y) + δ2hK

(n)
reg (x− y)

)
(x− h)n dy

+

∫ x

−x

δ2hK
(n)
reg (x+ y)u(y)(x− h)n dy

+

∫ ∞

2ν+x

u(y)
(
δ2hK

(n)(x+ y) + δ2hK
(n)(x− y)

)
(x− h)n dy

+

n−1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))
(x− h)n

From the inductive hypothesis we have that u(i)(x ± h) ≃ x
1
2−i for all i ∈ {0, 1, 2, ..., n − 1} and

for h < x/2 (after possibly shrinking ν), so the left-hand side can be written as∣∣∣∣∣
n∑

i=0

(
n

i

)
(x− h)nu(i)(x+ h)u(n−i)(x+ h)−

n∑
i=0

(
n

i

)
(x− h)nu(i)(x− h)u(n−i)(x− h)

∣∣∣∣∣
≃
∣∣x1/2(x− h)n

(
u(n)(x+ h)− u(n)(x− h)

)∣∣.
Now we consider the right-hand side, beginning with the boundary terms. Expanding the de-

rivatives of Ksing using the binomial theorem shows that they all tend to zero to zero on the order
of h: ∣∣∣∣∣

n−1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))
(x− h)n

∣∣∣∣∣
≲

n−1∑
i=0

∣∣δ2hK(i)
sing

(2
3
x
)∣∣(∣∣5

3
x
∣∣ 12−(n−1−i)

+
∣∣1
3
x
∣∣ 12−(n−1−i)

)
xn

=

n−1∑
i=0

∣∣δ2hK(i)
sing

(2
3
x
)∣∣((5

3
)

1
2−n+1+i +

(1
3

) 1
2−n+1+i

)∣∣x∣∣ 12+1+i
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≲
n−1∑
i=0

∣∣∣∣ (−sgn( 23x+ h))i

| 23x+ h| 12+i
−

(−sgn( 23x− h))i

| 23x− h| 12+i

∣∣∣∣∣∣x∣∣ 12+1+i

=

n−1∑
i=0

∣∣∣∣(23 +
h

x

)− 1
2−i

−
(2
3
− h

x

)− 1
2−i
∣∣∣∣x− 1

2−i
∣∣x∣∣ 12+1+i

= x

n−1∑
i=0

∣∣∣∣ ∞∑
k=0

(
− 1

2 − i

k

)(2
3

)− 1
2−i−k(h

x

)k
−

∞∑
k=0

(
− 1

2 − i

k

)(2
3

)− 1
2−i−k(

− h

x

)k∣∣∣∣
= x

n−1∑
i=0

∣∣∣∣2 ∞∑
k=1,
k odd

(
− 1

2 − i

k

)(2
3

)− 1
2−i−k(h

x

)k∣∣∣∣
= h

n−1∑
i=0

∣∣∣∣2 ∞∑
k=1,
k odd

(
− 1

2 − i

k

)(2
3

)− 1
2−i−k(h

x

)k−1
∣∣∣∣

≃ h ≤ (xh)1/2,

where we recall that the binomial coefficient is defined as
(
r
k

)
= r(r−1)···(r−k+1)

k! for an arbitrary
number r.
Using the estimate at the origin for u(n) and u, the boundedness of u, the mean value theorem

on δ2hKsing(x ± y), and the smoothness and decay of Kreg and K away from its singularity, the
seven integrals can be bounded as∣∣∣∣∣

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n)(x)(x− h)n dy

∣∣∣∣∣ ≲ (xh)1/2,

∣∣∣∣∣
∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x)(x− h)n dy

∣∣∣∣∣ ≲ (xh)1/2,

∣∣∣∣∣
∫ 2ν+x

5x/3

u(y)
(
δ2hK

(n)
sing(x+ y) + δ2hK

(n)
sing(x− y)

)
(x− h)n dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

∣∣∣∣∣
∫ 5x/3

−x/3

δ2hK
(n)
sing(x+ y)u(y)(x− h)n dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

∣∣∣∣∣
∫ 2ν+x

x

u(y)
(
δ2hK

(n)
reg (x+ y) + δ2hK

(n)
reg (x− y)

)
(x− h)n dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

∣∣∣∣∣
∫ x

−x

δ2hK
(n)
reg (x+ y)u(y)(x− h)n dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

∣∣∣∣∣
∫ ∞

2ν+x

u(y)
(
δ2hK

(n)(x+ y) + δ2hK
(n)(x− y)

)
(x− h)n dy

∣∣∣∣∣ ≲ h ≤ (xh)1/2,

by calculations completely analogous to those in the proof of Lemma 6.2.
Combining all the right-hand side estimates with the left-hand side, we arrive at the desired

result after dividing away the factor x1/2.

Step 4. With the first estimate at hand, we move on to the improved estimate.

Lemma 7.4. Given Lemma 7.3, it follows that the improved estimate

|x1/2(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ h

holds uniformly on [0, ν], for some ν > 0.
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Proof. Consider 0 < h ≤ x ≤ ν ≪ 1 for some ν > 0 which we shrink whenever necessary. For
h ∈ [x/2, x] we have

|(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ |h|1/2 =
h

h1/2
≤ h

(x/2)1/2
≲

h

x1/2
,

by the estimate in Lemma 7.3. We now show that it also holds for h < x/2, and consider the same
equation as in the proof of Lemma 7.3. Notice from the proof of Lemma 7.3 that all the terms
on the right-hand side are bounded by h, except for the first two integrals on (−h/3, 7h/3) and
(4h/3, 2x/3). Therefore we only need to show that these two integrals are also bounded by h to
arrive at the statement of the lemma.
The following bounds all follow from calculations analogous to those in the proof of Lemma

(6.3). Applying Lemma 7.3, one can show that∣∣∣∣∣
∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n)(x)(x− h)n dy

∣∣∣∣∣ ≲ h,

and ∣∣∣∣∣
∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x)(x− h)n dy

∣∣∣∣∣ ≲ h

(
1 +

∣∣∣ ln(h
x

)∣∣∣).
Again, the final bound is not quite good enough, but combining the bounds so far gives us the
estimate

|x1/2(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ h
(
1 +

∣∣∣ ln(h
x

)∣∣∣),
which we can use to find that∣∣∣∣∣

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x)(x− h)n dy

∣∣∣∣∣ ≲ h.

Having shown that the integrals on (−h/3, 7h/3) and on (4h/3, 2x/3) are also bounded by h, we
arrive at improved estimate.

We have one more lemma left before we are ready for the u(n)-limit, but first we need to
recall the concept of a double factorial. The double factorial of a number n, denoted by n!!, is
the product of all positive integers up to n with the same parity as n (i.e. for odd numbers,
(2n+1)!! = (2n+1)(2n− 1) · · · 5 · 3 · 1). We will use double factorials, as it allows us to succinctly
express the n-th derivative of x1/2 as

dn

dxn
x1/2 = (−1)n−1 (2n− 3)!!

2n
x

1
2−n,

and the n-th derivative of Ksing as

K
(n)
sing(x) =

dn

dxn
|2πx|−1/2 = (−sgn(x))n

(2n− 1)!!
√
π|2x|n+ 1

2

.

Note that these expressions also hold for the 0-th and 1-st derivative, as one can extend the double
factorial of odd numbers to take any negative odd integer argument. Without going into the details
of how this extension is done, we simply state that it gives us that (−1)!! = 1 and (−3)!! = −1.

Lemma 7.5. For n ∈ N, the identity

n∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2n− 2i− 1)!! = 2 · (2n− 1)!!

holds.
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Proof. We proceed by induction. For n = 1, we find that

1∑
i=1

(
2

i

)
(2i− 3)!!(2 · 1− 2i− 1)!! = 2 = 2 · (2 · 1− 1)!!,

which proves the base case. Now we assume the identity in the statement of the lemma holds for
n, and must show that it holds for n+ 1 as well. Considering the left-hand side of the identity for
n+ 1, Pascal’s identity gives us that

n+1∑
i=1

(
n+ 2

i

)
(2i− 3)!!(2(n+ 1)− 2i− 1)!!

=

n+1∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2(n+ 1)− 2i− 1)!! +

n+1∑
i=1

(
n+ 1

i− 1

)
(2i− 3)!!(2(n+ 1)− 2i− 1)!!.

The right-hand side can be rewritten as

n+1∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2(n+ 1)− 2i− 1)!!

+

n∑
j=0

(
n+ 1

j

)
(2(j + 1)− 3)!!(2(n+ 1)− 2(j + 1)− 1)!!

=
n+1∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2n− 2i− 1)!!(2n− 2i+ 1)

+

n∑
j=0

(
n+ 1

j

)
(2j − 3)!!(2n− 2j − 1)!!(2j − 1),

where we first made the change of variables j = i − 1, then used the definition of the double
factorial. Splitting of the n+1-term and the 0-th term from the first and second sum, respectively,
allows us to rewrite the expression as

2 · (2n− 1)!! +

n∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2n− 2i− 1)!!

(
(2n− 2i+ 1) + (2i− 1)

)
= 2 · (2n− 1)!! + 2n

n∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2n− 2i− 1)!!

= 2 · (2n− 1)!! + 2n · 2 · (2n− 1)!!

= 2 · (2(n+ 1)− 1)!!,

where we used the inductive hypothesis in the second-to-last equality. Thus we have shown that
the inductive step holds, which concludes the proof.

Step 4. Now we arrive at the main result of this paper.

Main Theorem 7.6. The n-th derivative of u admits the limit

lim
x→0

u(n)

x
1
2−n

= (−1)n−1 (2n− 3)!!

2n

√
π

8
,

if

(2k − 3)!!

∫ 2/3

0

1

τ3/2

(
(1 + τ)

1
2−k − (1− τ)

1
2−k
)
dτ

+ (2k + 1)!!

∫ ∞

2/3

1

τk+
3
2

(
|τ − 1|1/2 + (−1)k−1(τ + 1)1/2

)
dτ

+ 3k
k−1∑
i=0

(2i+ 1)!!(2k − 2i− 5)!!

2i+
1
2

(
(−1)i5−k+i+ 3

2 + 1
)
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= 0,

for all k ∈ {2, .., n − 1} when n ≥ 3. This expression has been validated to equal zero for n ∈
{1, .., 100} using a computer-aided approach.

Proof. We will prove the statement by strong induction. We already know that the limit in the
statement of the theorem is true for n = 0, n = 1, n = 2 and n = 3. When n = 3, the expression
in the theorem statement is equal to zero for k = 2 (as we will see later, for k = 2 the expression
is in-fact equivalent to the right-hand side of (6.15) which we recall was equal to zero), and thus
have that a base case holds. In the following we will therefore consider n ≥ 3. We need to show
that the inductive step also holds. That is, given that the statement of the theorem is true for the
k-th derivative of u for all k ∈ {3, ..., n}, we need to show that it is also holds for the (n + 1)-th
derivative.
Since we are given that the statement is true for the n-th derivative, we have that the estimates

|(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ h1/2

and

|x1/2(x− h)n(u(n)(x+ h)− u(n)(x− h))| ≲ h

hold uniformly on [0, ν] for some small enough ν > 0, by Lemma 7.3 and Lemma 7.4 respectively.
Consequently, by an argument analogous to the one used to justify the differentiation under the
integral sign in Section 6, the calculations in the proof of Lemma 7.3 justify the differentiation
under the integral sign so that the assumption in Lemma 7.2 is true.
We consider the central difference equation satisfied by u(n) from Lemma 7.2, divided by 2h and

multiplied by xn:∑n
i=0

(
n
i

)
xnu(i)(x+ h)u(n−i)(x+ h)−

∑n
i=0

(
n
i

)
xnu(i)(x− h)u(n−i)(x− h)

2h

=
1

2h

∫ 7h/3

−h/3

−Ksing(y)δ2(y−h)u
(n)(x)xn dy

+
1

2h

∫ 2x/3

4h/3

−δ2hKsing(y)δ2yu
(n)(x)xn dy

+
1

2h

∫ 2ν+x

5x/3

u(y)
(
δ2hK

(n)
sing(x+ y) + δ2hK

(n)
sing(x− y)

)
xn dy

+
1

2h

∫ 5x/3

−x/3

δ2hK
(n)
sing(x+ y)u(y)xn dy

+
1

2h

∫ 2ν+x

x

u(y)
(
δ2hK

(n)
reg (x+ y) + δ2hK

(n)
reg (x− y)

)
xn dy

+
1

2h

∫ x

−x

δ2hK
(n)
reg (x+ y)u(y)xn dy

+
1

2h

∫ ∞

2ν+x

u(y)
(
δ2hK

(n)(x+ y) + δ2hK
(n)(x− y)

)
xn dy

+
1

2h

n−1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))
xn.

Recall that we are working with 0 < 2h < x ≤ ν.
Consider the left-hand side of the equation. By Lemma (7.1), we get that

lim
h→0

∑n
i=0

(
n
i

)
xnu(i)(x+ h)u(n−i)(x+ h)−

∑n
i=0

(
n
i

)
xnu(i)(x− h)u(n−i)(x− h)

2h

=

n+1∑
i=0

(
n+ 1

i

)
xnu(i)(x)u(n+1−i)(x)
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=

n+1∑
i=0

(
n+ 1

i

)
u(i)(x)

x
1
2−i

u(n+1−i)(x)

x
1
2−(n+1−i)

,

where we use that xn = 1

x
1
2
−i

1

x
1
2
−(n+1−i)

. Using the inductive hypothesis, we take the x-limit of

this expression:

lim
x→0

n+1∑
i=0

(
n+ 1

i

)
u(i)(x)

x
1
2−i

u(n+1−i)(x)

x
1
2−(n+1−i)

=

n+1∑
i=0

(
n+ 1

i

)
lim
x→0

u(i)(x)

x
1
2−i

lim
x→0

u(n+1−i)(x)

x
1
2−(n+1−i)

= 2

√
π

8
lim
x→0

u(n+1)(x)

x
1
2−(n+1)

+

n∑
i=1

(
n+ 1

i

)
lim
x→0

u(i)(x)

x
1
2−i

lim
x→0

u(n+1−i)(x)

x
1
2−(n+1−i)

= 2

√
π

8
lim
x→0

u(n+1)(x)

x
1
2−(n+1)

+
(−1)n−1

2n+1

π

8

n∑
i=1

(
n+ 1

i

)
(2i− 3)!!(2n− 2i− 1)!!

= 2

√
π

8
lim
x→0

u(n+1)(x)

x
1
2−(n+1)

+
(−1)n−1

2n
π

8
(2(n+ 1)− 3)!!.

The final equality follows from Lemma 7.5. Thus, it is clear that we arrive at the desired result if
we are able to show that the limits of the right-hand side equals zero.
For the right-hand side, all seven integrals can be rewritten and bounded in a completely ana-

logous manner to the seven integrals in the proof of Proposition 6.4, only now with the estimates
from Lemma 7.3 and Lemma 7.4 instead. Then, as each integrand is dominated by an integrable
function on their respective domains of integration, we can move the h-limit and x-limit inside of
the integrals, which also are completely analogous to the ones in the proof of Proposition 6.4. The
only change that we would like to explicitly point out, is that in the calculation corresponding to
(6.14), the fraction with the binomial sum in the numerator will here be(

2
2n+1∑
k=1,
k odd

(
2n+1

k

)
(τ + 1)2n+1−k

(
h
x

)k)
(
(τ + 1 + h

x )
2n+1 − (τ + 1− h

x )
2n+1

) .
That is, we have

lim
x→0

lim
h→0

∫ 7h/3

−h/3

− 1

2h
Ksing(y)δ2(y−h)u

(n)(x)xn dy = 0,

lim
x→0

lim
h→0

∫ 2x/3

4h/3

− 1

2h
δ2hKsing(y)δ2yu

(n)(x)xn dy

=

∫ 2/3

0

(−1)n−1 (2n− 3)!!

2n+3

1

τ3/2

(
1

(1 + τ)n−
1
2

− 1

(1− τ)n−
1
2

)
dτ,

lim
x→0

lim
h→0

∫ 2ν+x

5x/3

1

2h
u(y)

(
δ2hK

(n)
sing(x+ y) + δ2hK

(n)
sing(x− y)

)
xn dy

=

∫ ∞

5/3

(2n+ 1)!!

2n+3
τ1/2

(
(−1)n+1 1

(τ + 1)n+
3
2

+
1

(τ − 1)n+
3
2

)
dτ,

lim
x→0

lim
h→0

∫ 5x/3

−x/3

1

2h
δ2hK

(n)
sing(x+ y)u(y)xn dy

=

∫ 5/3

−1/3

(−1)n+1 (2n+ 1)!!

2n+3

|τ |1/2

(τ + 1)n+
3
2

dτ,

lim
x→0

lim
h→0

∫ 2ν+x

x

1

2h
u(y)

(
δ2hK

(n)
reg (x+ y) + δ2hK

(n)
reg (x− y)

)
xn dy = 0,
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lim
x→0

lim
h→0

∫ x

−x

1

2h
δ2hK

(n)
reg (x+ y)u(y)xn dy = 0,

lim
x→0

lim
h→0

∫ ∞

2ν+x

1

2h
u(y)

(
δ2hK

(n)(x+ y) + δ2hK
(n)(x− y)

)
xn dy = 0,

for the limits of the seven integrals.
All that is remaining on the right-hand side is the limits of the boundary terms. For the h-limit,

we get

lim
h→0

1

2h

n−1∑
i=0

δ2hK
(i)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))
xn

=

n−1∑
i=0

K
(i+1)
sing

(2
3
x
)(

(−1)iu(n−1−i)
(5
3
x
)
+ u(n−1−i)

(x
3

))
xn

=

n−1∑
i=0

(−1)i+1 (2i+ 1)!!
√
π
∣∣ 4
3x
∣∣i+ 3

2

(
(−1)iu(n−1−i)

(5
3
x
)
+ u(n−1−i)

(x
3

))
xn.

For the x-limit, we use the inductive hypothesis to find that

lim
x→0

n−1∑
i=0

(−1)i+1 (2i+ 1)!!
√
π
∣∣ 4
3x
∣∣i+ 3

2

(
(−1)iu(n−1−i)

(5
3
x
)
+ u(n−1−i)

(x
3

))
xn

= lim
x→0

n−1∑
i=0

(2i+ 1)!!
√
π
∣∣ 4
3x
∣∣i+ 3

2

xi+
3
2

(
−
(5
3

) 1
2−(n−1−i) u

(n−1−i)
(

5
3x
)

(
5
3x
) 1

2−(n−1−i)

+ (−1)i+1
(1
3

) 1
2−(n−1−i) u(n−1−i)

(
x
3

)
(
1
3x
) 1

2−(n−1−i)

)

=

n−1∑
i=0

(2i+ 1)!!
√
π
(
4
3

)i+ 3
2

(
−
(5
3

) 1
2−(n−1−i)

(−1)n−1−i−1 (2(n− 1− i)− 3)!!

2n−1−i

√
π

8

+ (−1)i+1
(1
3

) 1
2−(n−1−i)

(−1)n−1−i−1 (2(n− 1− i)− 3)!!

2n−1−i

√
π

8

)
=

n−1∑
i=0

(−1)n−1 (2i+ 1)!!(2n− 2i− 5)!!

2n+i+ 7
2

3n
(
(−1)i5−n+i+ 3

2 + 1

)
.

Combining all of the terms, we find that the right-hand side equals∫ 2/3

0

(−1)n−1 (2n− 3)!!

2n+3

1

τ3/2

(
1

(1 + τ)n−
1
2

− 1

(1− τ)n−
1
2

)
dτ

+

∫ ∞

5/3

(2n+ 1)!!

2n+3
τ1/2

(
(−1)n+1 1

(τ + 1)n+
3
2

+
1

(τ − 1)n+
3
2

)
dτ

+

∫ 5/3

−1/3

(−1)n+1 (2n+ 1)!!

2n+3

|τ |1/2

(τ + 1)n+
3
2

dτ

+

n−1∑
i=0

(−1)n−1 (2i+ 1)!!(2n− 2i− 5)!!

2n+i+ 7
2

3n
(
(−1)i5−n+i+ 3

2 + 1

)
,

after taking the h- and x-limits. Note that this expression corresponds to the right-hand side of
(6.15) from the proof of the u′′′-limit. Through changes of variables one finds that the two middle
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integrals can be combined, allowing us to rewrite this as

(−1)n−1

2n+3

(
(2n− 3)!!

∫ 2/3

0

1

τ3/2

(
(1 + τ)

1
2−n − (1− τ)

1
2−n

)
dτ

+ (2n+ 1)!!

∫ ∞

2/3

1

τn+
3
2

(
|τ − 1|1/2 + (−1)n−1(τ + 1)1/2

)
dτ

+ 3n
n−1∑
i=0

(2i+ 1)!!(2n− 2i− 5)!!

2i+
1
2

(
(−1)i5−n+i+ 3

2 + 1
))

,

(7.2)

after pulling out common factors.
Assume for a moment that (7.2) equals zero for all integers n ≥ 3 (we know from Proposition

(6.4) that it equals zero when n = 2). Combining everything we have so far would then give us
that

lim
x→0

u(n+1)(x)

x
1
2−(n+1)

=
(−1)n−1

2n+1

√
π

8
(2(n+ 1)− 3)!!,

after rearranging, which would prove that the inductive step holds. Unfortunately, we have not
been able to show that (7.2) equals zero in the case of a general positive integer n, which is why
the value of the u(n)-limit in the theorem statement is conditional on the value of (7.2). Using the
computer program Maple, (7.2) has been evaluated to zero for the specific cases of n ∈ {1, ..., 100},
but we have not managed to prove the analytical value of (7.2) in the general case. We expect
further considerations will result in an analytical proof for the value of (7.2) in the case of a general
n.

Let us take a closer look at (7.2) from the proof of Theorem 7.6, which we did not manage to
determine the exact value of. One might wish to try integration by parts n times on the middle
integral, as the integrand would then be very similar to the integrand in the first integral, but this
would introduce non-integrable singularities. In-fact, note that the integrals in this expression are
exactly those from (6.8), which we got by formally integrating by parts while trying to get away
from the non-integrable singularities in (6.7). Thus, (7.2) is, in a sense, what we would get if we
could integrate (6.7) by parts, which we could not do due to the boundary terms exploding (and
is why we had to alter our approach for the u′′′-limit and beyond in the first place).

Doing integration by parts only one time on each of the integrals in (7.2) does, however, not
introduce any singularities:

(−1)n

2n+3
(2n− 1)!!

(∫ 2/3

0

1

τ1/2

(
(1 + τ)−

1
2−n + (1− τ)−

1
2−n

)
dτ

+

∫ ∞

2/3

1

τn+
1
2

(
sgn(1− τ)|τ − 1|− 1

2 + (−1)n(τ + 1)−
1
2

)
dτ

− 3n

(2n− 1)!!

n−1∑
i=0

(2i+ 1)!!(2n− 2i− 5)!!

2i+
1
2

(
(−1)i5−n+i+ 3

2 + 1
)

− 3n2
1
2

(−5
1
2−n + 1

2n− 1
+

(−1)n−15
1
2 + 1

2n

))
,

This integration by parts gives us a common factor of (2n− 1)!! in front of the integrals, but also
some new boundary terms, so the new expression is not really any simpler than (7.2), but we
decided to at least mention it.
We have considered the possibility of an inductive proof to show that (7.2) equals zero, but

this seems very difficult as we cannot see a clear way to express the n+ 1-th case of the integrals
in terms of the n-th case. Still, we believe that further considerations of (7.2) will result in an
analytical proof of its exact value.
Anyways, despite the troubles with evaluating (7.2), the proof of Theorem 7.6 at least shows

that u(n)-limit actually exists, as the following corollary shows.
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Corollary 7.7. The limit of the n-th derivative of u,

lim
x→0

u(n)

x
1
2−n

,

exists.

Proof. Switch out the statement of Theorem 7.6 with the statement of this corollary, and proceed
with the proof exactly as before. As we know that (7.2) exists (despite not knowing its exact value)
we get that the u(n+1)-limit exists, which shows that the inductive step holds.
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