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1 Introduction
Traditionally, the study of secure messaging in cryptography has concerned itself with the
communication of two trusted parties, often endearingly called Alice and Bob, over an
insecure line. The adversary, Eve, has the ability to either eavesdrop, thereby the name, or
possibly alter the communication on this line. Though this threat model can give strong
guarantees about the information leaked to third parties, it makes no claims about the
outcome in case one of the legitimate participants are compromised. This is particularly
relevant due to the prevalence of malware and system vulnerabilities like Heartbleed and
Logjam [11] [4], and the present trend of mobile computing. A scheme that is secure
against third party eavesdroppers could totally break down if the encryption keys stored
on a trusted server were leaked, or if the mobile phone used for the communications was
lost. This situation motivates an even stronger threat model; where even the participating
parties are not trusted, and secrets stored by them may be leaked.

1.1 Ratcheting and Ratcheted Key Exchange
A recent technique that has been developed to mitigate issues related to exposure of secrets
is that of ratcheting. The basic idea is that participating parties don’t store long term
secrets (like encryption keys) that could be used to compromise the security of an entire
conversation, but rather use a ratcheting mechanism to frequently update these secrets.
Then in the event of an exposure, only messages encrypted with the current key can be
decrypted, and old messages encrypted with old keys cannot. Essential to this approach is
that the ratcheting mechanism is one way, i.e. it is difficult to recover previous keys even
knowing the current one, thereby the name.

An early utilization of ratcheting as a technique was the OTR (Off the Record)
communication protocol by Borisov, Goldberg, and Brewer in [9]. The technique has since
matured, and is used e.g. in the Signal protocol [16] by Open Whisper Systems which in
turn is used by many popular instant messaging services, like WhatsApp [15], to enable
end to end encrypted messaging. In [8], Bellare et. al. lift ratcheting from a technique to
the cryptographic primitive ratcheted key exchange, and formalize syntax, correctness, and
security definitions and give a provably secure scheme. The authors restrict themselves to
considering single, one-sided ratcheted key exchange, which is a simplification of protocols
like Signal, which are two-sided and doubly ratcheted.

1.2 Our Contributions
In this paper we lift one of the restrictions from [8] by creating a provably secure two-sided
singly ratcheted scheme. We achieve this by using broadcasting; doing the computation
in two rounds, instead of one. We define syntax, correctness and security definitions for
ratcheted key exchange schemes using broadcasting, and give a provably secure scheme
using these definitions. The security proof reduces the security of the scheme to a novel
computational assumption IODHE. This assumption is based on ODHE from [8], and we
give a reduction from IODHE to CDH in a symmetric (type 1) pairing group.

1.3 Selected Related Works
In [17], Poettering and Rösler propose a provably secure, bidirectional ratcheted key
exchange scheme using a HIBE-like component. Their scheme uses single round communi-
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cation, where one message over the wire results in a new key, and so their communication
protocol differs from the one we will develop. The authors also seem to manage stronger
security guarantees than what we will develop using broadcasting, as they allow the
adversary to query exposures for old keys. In relation to this, the authors state that the
scheme from [8] does not satisfy their related security definition for unidirectional ratcheted
key exchange. In [10], Betul Dürak and Vaudenay propose a bidirectional ratcheted key
exchange scheme that is more efficient than that proposed in [17] at the expense of having
what they call “slightly sub-optimal security”. In [6], Balli, Rösler and Vaudenay discuss
the necessity of strong primitives, like those in [17], to construct ratcheted key exchange
schemes with strong security guarantees, and give an even stronger security definition for
unidirectional schemes involving the manipulation of randomness by the adversary.

2 Preliminaries

2.1 Syntax

We use the framework of code based games from [7]. For a game G and an adversary
A we let GA ⇒ 1 be the event that game G outputs 1 when run by adversary A. As a
shorthand, we define Pr

[
GA

]
= Pr

[
GA ⇒ 1

]
. In figures defining multiple games, lines

specific to certain games are annotated with a box naming those games. For two strings
s, t ∈ {0, 1}∗ we let s∥t be the concatenation of the two strings. The concatenation operator
is defined to produce uniquely decodable strings to prevent trivial string padding attacks.
For s ∈ {0, 1}∗ we define s[i] to be the i-th bit of s and s[i . . . j] to be the concatenation
of bits i through j inclusive. When T is a table we define T [i] to be the element in T
indexed by i. We use ⊥ to denote an empty table position, as well as a special error value
that may be returned by algorithms to indicate an error condition. We use ← as the
assignment operator and ?=, ?

̸= as comparison operators. For finite sets S we let v $← S
denote assigning a uniformly random value from S to v. When running an adversary or
an algorithm F, we use v $← F when assigning to v the output of F to denote that F may
be non-deterministic.

2.2 Pairing Groups

We concern ourselves with symmetric (type 1), cyclic, pairing groups PG. These are
described by a tuple (G,Gt, g, p, e), where G is the source group, Gt is the target group,
g is a generator of G, p is the order of G and e : G2 → Gt is a cryptographic bilinear
mapping. Viewing both G and Gt as multiplicative groups and denoting the unity in Gt

as 1Gt , e must satisfy the following:

1. Bilinearity: e (gx, gy) = e (g, g)xy ∀x, y ∈ Zp

2. Non-denegeracy: e (g, g) ̸= 1Gt

3. Computability: e (A, B) must be efficiently computable for all A, B ∈ G

In algorithms intended to work for generic pairing groups we use the syntax PG $←
PGGen

(
1λ

)
to denote the choice of a random pairing group with group size corresponding

to the security parameter λ.
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2.3 MAC Schemes and Strong Unforgeability under Chosen Message Attack

A MAC scheme F defines a key length F.kl and an evaluation function F.Ev. F.Ev takes a
key fk ∈ {0, 1}F.kl and a message from some message space M, and returns a tag σ from
some tag space T . In this paper we only consider schemes where F.Ev is deterministic. A
MAC scheme F is said to have SUFCMA security if every adversary against the SUFCMA
game for F using resources bounded by poly (λ) has an advantage that is negligible in λ,
the security parameter. We define the advantage of adversary F against the SUFCMA
game for F to be AdvSUFCMA

F,F = Pr
[
SUFCMAF

F

]
. We use the definition of the SUFCMA

game given in [8]. The game is shown in Figure 1.

Game SUFCMAF
F

01 fk $← {0, 1}F.kl

02 win← false
03 FTag,Verify

04 return win

Oracle Tag (m)
05 σ ← F.Ev (fk, m)
06 S ← S ∪ {(m, σ)}
07 return σ

Oracle Verify (m, σ)
08 σ∗ ← F.Ev (fk, m)
09 if σ

?= σ∗ and (m, σ) /∈ S then
10 win← true
11 return σ

?= σ∗

Fig. 1. The game defining the strong unforgeability under chosen message attack assumption for MAC scheme F.
To win, the adversary F must compute a valid tag σ on a message m not used in a call to Tag.

2.4 Computational Diffie-Hellman in a Symmetric Pairing Group

The standard computational Diffie-Hellman (CDH) assumption for a group G states,
roughly, that given g, gx, gy it is difficult to compute gxy. Extending this assumption to a
symmetric pairing group we get the bilinear Diffie-Hellman problem (BDH), stating that
given g, gx, gy, gz ∈ G it is difficult to compute e (g, g)xyz. In this paper we will use the
regular CDH assumption in a symmetric pairing group. The game for this assumption is
given in Figure 2. It is clear that CDH in a symmetric pairing group is a weaker assumption,
implied by BDH. In particular, given an adversary A that solves CDH in G, we can make
a trivial reduction that solves BDH by computing e (A (gx, gy) , gz).

Game CDHD

01 PG $← PGGen
(
1λ

)
02 (G,Gt, g, p, e)← PG
03 x $← Zp

04 y $← Zp

05 Z $← D (g, gx, gy,PG)
06 return Z

?= gxy

Fig. 2. The game defining the Computational Diffie-Hellman assumption in a type 1 pairing group. To win, the
adversary D must compute gxy in G.
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3 Independent Oracle Diffie-Hellman with Exposures

We define the Independent Oracle Diffie-Hellman with Exposures (IODHE) assumption
based on the ODHE assumption from [8]. The ODHE assumption states that it is difficult
for an adversary to distinguish hashes of gxy from random strings, somewhat similarly
to the hashed Diffie-Hellman assumption described in [2]. In ODHE, however, the hash
function is given additional input, and the adversary can request for multiple values of gx[i]

where it can either try to distinguish the hash of gx[i]y or query an exposure to obtain x[i].
We extend this assumption in IODHE by removing the static secret y, and returning a pair
gx[i], gy[i] to the adversary at each new index. When querying an exposure the adversary
gets both x[i] and y[i], and some extra bookkeeping is required to prevent trivial attacks.
The code for IODHE is given in Figure 3, and we say that a group G and a hash function
family H has IODHE security if the advantage AdvIODHE

G,H,A = 2 Pr
[
IODHEA

G,H ⇒ 1
]
− 1 is

negligible in the security parameter λ.
Like the ODHE game, IODHE initializes the challenge bit b, a hash key hk, and a

generator g to uniformly random values, and the current index v to −1. The Up oracle
increments the index v, clears the current operation op, generates and stores two random
integers x[i], y[i] ∈ Zp, and returns gx[i], gy[i]. The Exp oracle checks that the current
operation op is not “ch” and, if this holds, sets the current operation to “exp” and returns
the secrets at the current index x[v] and y[v]. Oracles Ch and Hash perform the same
duties as in ODHE, but require some additional machinery to present additional capabilities
to the adversary while preventing trivial attacks. The Hash oracle takes an index i, a
group element X and an exponent that is restricted to the values “x” and “y”. With these
values it attempts to compute H.Ev

(
hk, i ∥Xx[v]

)
or H.Ev

(
hk, i ∥Xy[v]

)
depending on

the value of the parameter exponent, as long as it would not enable a trivial attack. The
Ch oracle returns either H.Ev

(
hk, v ∥ gx[v]y[v]

)
or a random string depending on the value

of the challenge bit b, as long as it would not enable a trivial attack. The random strings
are stored in a table mem so as to be consistent across calls to Ch. The adversary wins the
game if it is able to correctly guess the value of the challenge bit b.

The op variable is used to prevent trivial attacks like the adversary querying Exp to
learn the values of x[v] and y[v] and then querying Ch with full knowledge of what the
oracle should return if b = 1. Additionally, the game keeps track of the calls made to
oracles Hash and Ch to prevent trivial attacks like the adversary querying Ch and then
calling Hash

(
v, gx[v], “y”

)
, which will return the same result when b = 1, but different

results with high probability when b = 0. Oracle Ch keeps track of the value of v for every
call made to it, and rejects a call (by returning ⊥) when the adversary has made a call of
the form

(
v, gx[v], “y”

)
or

(
v, gy[v], “x”

)
to Hash. Oracle Hash similarly keeps track of the

values of i, X, and exponent for every call made to it, and rejects a call (by returning ⊥)
when the adversary has made a call on index i to Ch such that X = gx[i] ∧ exponent = “y”
or X = gy[i] ∧ exponent = “x”.

We do not know of a pair G, H for which this assumption holds in the standard model,
but we give a reduction in Appendix A to an intermediary assumption ISCDHE in the
random oracle model, followed by a standard model reduction to another intermediary
assumption ISCDH and finally to the CDH assumption for a type 1 pairing group.
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Game IODHEA
G,H

01 b $← {0, 1}
02 hk $← {0, 1}H.kl

03 g $← G∗

04 v ← −1
05 b′ $← AUp,Ch,Exp,Hash (hk, g)
06 return b′ ?= b

Oracle Up
07 op← ⊥
08 v ← v + 1
09 x[v] $← Zp

10 y[v] $← Zp

11 return
(
gx[v], gy[v])

Oracle Exp

12 if op ?= “ch” then
13 return ⊥
14 op← “exp”
15 return (x[v], y[v])

Oracle Ch

16 if
(

op ?= “exp”
)

or((
v, gx[v], “y”

)
∈ Shash

)
or((

v, gy[v], “x”
)
∈ Shash

)
then

17 return ⊥
18 op← “ch”
19 Sch ← Sch ∪ {v}
20 e← gx[v]y[v]

21 if mem[v] ?= ⊥ then
22 mem[v] $← {0, 1}H.ol

23 r0 ← mem[v]
24 r1 ← H.Ev (hk, v ∥ e)
25 return rb

Oracle Hash (i, X, exponent)

26 if exponent ?= “x” then
27 if i ∈ Sch and X

?= gy[i] then
28 return ⊥
29 e← Xx[v]

30 else if exponent ?= “y” then
31 if i ∈ Sch and X

?= gx[i] then
32 return ⊥
33 e← Xy[v]

34 if i
?= v then

35 Shash ← Shash ∪ {(i, X, exponent)}
36 return H.Ev (hk, i ∥ e)

Fig. 3. The game defining the Independent Oracle Diffie-Hellman with Exposures (IODHE) assumption. The
game is parametrized by a group G and a keyed hash function H with key length H.kl, output length H.ol, and
evaluation function H.Ev. To win, the adversary A must distinguish the real (b = 1) and random (b = 0) operation
of the game.

4 Ratcheted Key Exchange Using Broadcasting

Ratcheted key exchange allows users to negotiate and re-negotiate shared secrets. Our
work is based on [8], where the authors define correctness and security for two party single
ratcheted key exchange schemes, and give a scheme that is provably secure in their security
model. Their definition designates one party as the sender and the other as the receiver,
and restricts communication to be strictly one way. In our work we lift this restriction
by using broadcasting; each party shares a value with the other that can then be used to
compute the new shared secret, much in the spirit of ordinary Diffie-Hellman key exchange.
Note that we will only consider schemes with one broadcasting step, but the definitions
can be extended to handle multiple steps, potentially allowing for stronger security or
more than 2 parties.

4.1 Definition of Ratcheted Key Exchange Using Broadcasting

A ratcheted key exchange scheme using broadcasting BRKE has 3 algorithms: BRKE.IKg,
BRKE.BCast, and BRKE.Ratchet. A scheme also defines the key length in bits BRKE.kl,
and a randomness space BRKE.RS from which the random seed provided to BRKE.BCast,
r, is sampled. BRKE.IKg does the initial key generation and distributes the initial state to
the two parties. Each party has a static key stki, which is assumed to be public, a session
key seki, which is private, and the current shared secret ki, which is also private. We use
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the subscript i to denote to which party the state belongs, and restrict i to the values 1
and 2 since we are only considering the 2 party case.

Once the two parties have received their initial state, they can start a conversation
to generate a new shared secret k. To do this, both parties use BRKE.BCast to generate
update information upd to be sent to the other party. Once each party receives the update
information from the other party they use BRKE.Ratchet to compute the new shared secret
k using their own state and the update information received from the other party. Once
both parties are done they can use BRKE.BCast and BRKE.Ratchet again to generate
the next key.

Syntactically, BRKE.IKg takes no input and returns static- and session keys for both
parties, including the initial shared secret: (k, (stk1, sek1, stk2, sek2)). BRKE.BCast takes
a party’s static- and session keys as well as a random seed as input (stk, sek; r) and
returns an updated session key and update information for the other party (sek∗, upd).
BRKE.Ratchet takes a party’s static- and session keys along with the old shared secret
and the update information from the other party as input (stk, sek, k, upd) and returns an
updated session key and shared secret along with a flag indicating whether the update
information was accepted (sek∗, k, acc).

4.2 Correctness of Ratcheted Key Exchange Schemes Using Broadcasting

When defining correctness for ratcheted key exchange schemes using broadcasting we adapt
the correctness definition given in [8] to fit our new setting, while providing essentially the
same guarantees. We define correctness using the game BRKE-COR given in Figure 4,
and require that for a scheme to be correct, no adversary exists that can win the game.

In BRKE-COR, the adversary C is given access to two oracles to simulate normal
operation of the scheme. Oracle Up accepts the randomness r1, r2 used in the oracle and
uses BRKE.BCast and BRKE.Ratchet twice to update the state variables of both parties,
essentially performing a legitimate key exchange between them. As long as neither party
has been tampered with, as is the case in BRKE-COR, we require that the legitimate
update information must be accepted and that the keys resulting from the exchange must
match. Oracle RatchetO accepts a party i ∈ {1, 2} to perform the ratcheting, a random
seed r that is passed to BRKE.BCast, and the update information upd that is passed to
BRKE.Ratchet. This emulates a party initiating a key exchange and receiving untrusted
update information over the internet. We require that a party’s session key and shared
secret are not changed when update information is rejected by the ratcheting algorithm.
Rejecting illegitimate update information is not a requirement for correctness, but is
discussed in detail in Section 4.3 on the security of ratcheted key exchange schemes using
broadcasting. Note that RatchetO does not alter the state used in Up, and as such
cannot be used to tamper with the protocol.

Implementations of ratcheted key exchange using broadcasting should be careful to
only ratchet when they have first made a broadcast, and to not broadcast multiple update
informations at the same time, but this is not included in the correctness definition.

4.3 Security of Ratcheted Key Exchange Schemes Using Broadcasting

For the security of ratcheted key exchange schemes using broadcasting we desire certain
strong security guarantees even in the face of adversaries with complete control of the
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Game BRKE-CORC

01 bad← false
02 (k, (stk1, sek1, stk2, sek2)) $← BRKE.IKg
03 k1, k2 ← k, k
04 CUp,RatchetO (stk1, stk2)
05 return bad ?= false

Oracle Up (r1, r2)
06 (sek1, upd1)← BRKE.BCast (stk1, sek1; r1)
07 (sek2, upd2)← BRKE.BCast (stk2, sek2; r2)
08 (k1, sek1, acc1)← BRKE.Ratchet (stk1, sek1, upd1)
09 (k2, sek2, acc2)← BRKE.Ratchet (stk2, sek2, upd2)
10 if not acc1 or not acc2 or k1

?
̸= k2 then

11 bad← true

Oracle RatchetO (i, r, upd)
12 (sek′

i, upd1)← BRKE.BCast (stki, seki; r)
13 (k∗

i , sek∗
i , acc)← BRKE.Ratchet (stki, sek′

i, upd)
14 if not acc and

(
sek′

i

?
̸= sek∗

i or ki
?
̸= k∗

i

)
then

15 bad← true

Fig. 4. Correctness for two party, single broadcast, ratcheted key exchange schemes.

communication channel, and the ability to read the secrets stored by the participants. An
adversary with these capabilities should not be able to distinguish generated keys from
random strings or make the two parties agree on different keys. Additionally, when the
adversary reads the secrets of one party we desire that forward and backward security hold.
Like in [8] we define forward security to be the property that even knowing a current key,
distinguishing prior keys from random strings is difficult. Similarly for backward security;
even knowing a current key it is difficult to distinguish keys generated in the future from
random strings.

The security game BKIND is given in Figure 5, and we define that a ratcheted key
exchange scheme using broadcasting BRKE has BKIND security if any adversaryD against
BKINDBRKE, making an amount of queries to each oracle that is bounded by a polynomial
of the security parameter λ, has advantage AdvBKIND

BRKE,D = 2 Pr
[
BKINDD

BRKE

]
− 1 that is

negligible in λ. The security game is adapted from [8], and therefore follows the two basic
policies defined there. The first is that whenever update information generated by the
adversary is accepted by either party, full knowledge of the key generated by that party
should not leak any information about past or future keys. Additionally, when update
information generated by one party is accepted by the other, the two parties should agree
on the resulting key, and the adversary should not be able to distinguish it from a random
string. In adapting the security definition from [8], we also strengthen it by allowing
exposure of the secrets of both parties, unlike in the original paper where only exposure of
the sender’s secrets is permitted.

In game BKIND from Figure 5 we give the adversary access to oracles to run broad-
casting and ratcheting for either party, an oracle to read the secrets of either party, and
an oracle to read the stored key ki of either party. Note that the oracles only accept
values from {1, 2} for i. Oracle BCastO generates a random seed r and updates the state
of party i by running BRKE.BCast. It then stores the generated update information to
the table auth, and increments the index si, which is the index of the key which will be
generated with this update information. It then returns the update information to the
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adversary. A check is made at the start to ensure that BRKE.BCast is not called multiple
times at the same index.

Oracle RatchetO updates the state of party i by running BRKE.Ratchet using the
update information provided by the adversary. If the update information is accepted, it
checks the value of the op table at the current index to see if the adversary has exposed the
secrets of either party at this index. If the adversary has done this, the flag restrictedi is
set to true, as it is assumed that the adversary has used this information to submit forged
update information, and we therefore don’t expect the output key to appear random or
match the key of the other party. If the submitted update information matches that sent
by the other party at this index, however, the restricted flag is set to false due to our
second policy. This logic assures that restrictedi is false whenever the key computed by
party i should look random, and is true when the adversary has used the Exp oracle to
masquerade as the other party and can itself compute the key. Finally, the index ci is
incremented, which is the index of the current key for party i. A check is made at the start
to ensure that BRKE.Ratchet is not called multiple times at the same index.

Oracle Exp returns to the adversary the last random seed used in BCastO, ri, the
session key seki and the shared secret ki for party i. To prevent trivial attacks, the oracle
checks that the adversary hasn’t made a challenge query on the relevant keys and then sets
values in the op table to note that the adversary queried an exposure. Note that we check
and set the op table at both indicies si and ci due to the fact that one party can store
compromising information about two keys at the same time. If the adversary calls Exp
directly after a call to RatchetO, si and ci will be equal, and the behavior is identical to
that in [8]. If, however, the adversary first calls BCastO, party i may store a secret that
can be used to compute the next key from the incoming update information. When the
adversary then calls Exp it will get both the current key, and the information necessary
to compute the next key. To prevent a trivial attack we therefore also check and set the
op table at index si, which will be ci + 1 in this case.

Oracle Ch returns either the key stored by party i or a random string, depending on
the challenge bit b. Before this, however, it first checks the flag restrictedi, and if it is true
returns the real key regardless of the challenge bit. This is because when the flag is true,
the adversary may know the true value of the key, and could easily distinguish it from
a random string. The oracle then checks the op table to see if the current key has been
exposed, and sets the value in the table to “ch” if it has not, before it finally returns.

Note that we in oracle BCastO set op [ci] to “ch” when it is not already set. This is
not a design feature of the security game, but is an artificial weakness, implanted to enable
the security proof given in Section 4.5. In practice, this means that the adversary can only
query exposures for a party before they have generated their next update information, and
that the adversary cannot query exposures for a party if the other party has ratcheted
to a later key (has a larger value of ci). The exceptions to this are indicies where the op
table already contain “ch”. In these cases, calls to BCastO will not alter the op table,
and the adversary may query an exposure after calling BCastO, or query an exposure on
a party that is far behind its counterpart.

This restriction disallows adversaries that look at the generated update information
before deciding whether to query an exposure or not and adversaries that query exposures
on previous indicies where one wasn’t already queried. Note that the adversary is still
able to expose the session key after a call to BCastO by calling Exp, BCastO and then
Exp again. The purpose of the change is described in detail in the security proof. This
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is a small, but significant, weakening of security; further work could aim to remove this
artificial weakness.

Game BKINDD
BRKE

01 b $← {0, 1}
02 (k, (stk1, sek1, stk2, sek2)) $← BRKE.IKg
03 k1, k2 ← k, k
04 b′ $← DBCastO,RatchetO,Exp,Ch (stk1, stk2)
05 return b′ ?= b

Oracle BCastO (i)

06 if si
?
̸= ci then

07 return ⊥
08 if op[ci]

?= ⊥
09 op[ci]← “ch”
10 ri

$← BRKE.RS
11 (seki, upd)← BRKE.BCast (stki, seki; ri)
12 auth [i] [ci]← upd
13 si ← si + 1
14 return upd

Oracle RatchetO (i, upd)

15 if si
?= ci then

16 return false
17 (ki, seki, acc)← BRKE.Ratchet (stki, seki, upd)
18 if not acc then
19 return false
20 if op[ci]

?= “exp”
21 restrictedi ← true
22 if upd ?= auth [3− i] [ci] then
23 restrictedi ← false
24 ci ← ci + 1
25 return true

Oracle Exp (i)

26 if op[ci]
?= “ch” then

27 return ⊥
28 if op[si]

?= “ch” then
29 return ⊥
30 op[ci]← “exp”
31 op[si]← “exp”
32 return (ri, seki, ki)

Oracle Ch (i)
33 if restrictedi then
34 return ki

35 if op[ci]
?= “exp” then

36 return ⊥
37 op[ci]← “ch”
38 if rkey[ci]

?= ⊥ then
39 rkey[ci] $← {0, 1}RKE.kl

40 if b
?= 1 then

41 return ki

42 return rkey[ci]

Fig. 5. The security of key indistinguishability for ratcheted key exchange schemes using broadcasting.

4.4 Ratcheted Key Exchange Scheme Using Broadcasting

Our ratcheted key exchange scheme using broadcasting is based on the scheme from [8],
and is adapted to fit the new protocol using broadcasting, and to achieve the new security
of BKIND. In [8], the sender generates a secret exponent x, and sends gx to the receiver,
and the key is computed by combining this with the receiver’s long term private/public
pair y and gy to get gxy and then hashing this value. This mechanism is similar to the
key generation used for the encryption scheme DHIES from [1], which is essentially an
implementation of hashed Diffie-Hellman, described in [2]. To avoid certain trivial attacks,
described in Section 4.3 of [8], the scheme also includes the current index and the update
information sent by the sender to the receiver as additional input to the hash function
used to derive the key.

In our bidirectional scheme we remove long term secret y, and require that both parties
generate a secret exponent and send the corresponding group element to the other party at
each broadcasting step. The new key is then computed in a similar way as in [8], but using
two new group elements at each ratcheting step instead of just one. Like in the original



12 A. E. Svandal

scheme, we also include a MAC tag in the update information to ensure the authenticity
of the exchange. Our new scheme is given in Figure 6.

Our scheme derives the key in much the same way as the scheme in [8], but does not
include the update information as input to the hash function. Since we have two sets of
update information for each new key, a naïve implementation including these as input to
the hash function could cause the two parties to disagree on the resulting key, as both
parties would need to include them in the same order to get the same result. This is easily
fixed by assigning an order to the two parties, such that one party’s update information is
always included first, but this is somewhat cumbersome, and ultimately unnecessary. The
main issue of the scheme from [8] mitigated by the inclusion of the update information
as input to the hash function is that of key collision. This occurs when the adversary
is able to make the two parties agree on a key when the restricted flag is set to true
for the receiver. When this is the case, challenge queries to the sender will return the
real or random key depending on the challenge bit b, whereas challenge queries to the
receiver will always return the real key, yielding a good attack. In our scheme, both parties
need to receive update information in order to compute the next key, and for this reason
it is difficult for an adversary to make the two parties agree on a key while setting the
restricted flag to true for only one of them. In order to set the restricted flag to
true for one party, the adversary must create forged update information using the Exp
oracle that is accepted by the party. If the adversary submits update information with
a different group element than that generated by the other party, the two parties will
disagree on the resulting key, and the adversary cannot make them agree again without
altering the restricted flag for either party. If the adversary submits update information
with the same group element, the MAC tag will be the same as well for the same key, and
so restricted will be set to false. These arguments are formalized in the security proof
in Section 4.5.

BRKE.IKg
01 g ← G∗

02 k ← {0, 1}BRKE.kl

03 fk ← {0, 1}F.kl

04 hk ← {0, 1}H.kl

05 stk1, stk2 ← (g, hk) , (g, hk)
06 sek1, sek2 ← (0,⊥, fk) , (0,⊥, fk)
07 return (k, stk1, sek1, stk2, sek2)

BRKE.BCast (stk, sek; r)
08 (g, hk)← stk
09 (c, x, fk)← sek
10 X ← gr

11 σ ← F.Ev (fk, X)
12 upd ← (X, σ)
13 sek∗ ← (c, x, fk)
14 return (sek∗, upd)

BRKE.Ratchet (stk, sek, k, upd)
15 (g, hk)← stk
16 (c, x, fk)← sek
17 (Y, σ)← upd
18 if σ

?
̸= F.Ev (fk, Y ) then

19 return (sek, k, false)
20 h← H.Ev (hk, c ∥ Y x)
21 k∗ ← h [1 . . . BRKE.kl]
22 fk∗ ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
23 sek∗ ← (c + 1,⊥, fk∗)
24 return (sek∗, k∗, true)

Fig. 6. Ratcheted key exchange scheme using broadcasting BRKE, parametrized by the group G, the hash function
family H, and MAC scheme F.
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4.5 Security Proof for the Scheme

Theorem 1. Given an adversary D against the BKIND security of BRKE[G, H, F] making
QR queries to RatchetO, QE queries to Exp, and QC queries to Ch, there are adversaries
O1 and O2 against the IODHE security of G and H and an adversary F against the
SUFCMA security of F such that

AdvBKIND
BRKE,D ≤ 2 · (QR + 1) · AdvSUFCMA

F,F +
2 ·QR · AdvIODHE

G,H,O1+
2 · AdvIODHE

G,H,O2 .

Adversary O1 makes at most QR + 1 queries to its IODHE Up oracle, 2 queries to its
IODHE Ch oracle, QE queries to its IODHE Exp oracle, and QR−2 queries to its IODHE
Hash oracle. Adversary O2 makes at most QR +1 queries to its IODHE Up oracle, QR +1
queries to its IODHE Ch oracle, QE queries to its IODHE Exp oracle, and QR + QE
queries to its IODHE Hash oracle. Adversary F makes at most QR + 1 queries to its
SUFCMA Tag oracle, and QR queries to its SUFCMA Verify oracle.

We prove the security of our scheme using the same method as in [8]. The proof is
adapted slightly to work with the updated assumption and security definition. Note that
the amount of queries to BCastO is bounded by QR + 1.

To simulate the random case (bBKIND = 0) of the BKIND game using an IODHE
instance, we need to replace the key ki and the MAC key fki with random bits, unless
the adversary calls the Exp oracle. However, if the adversary attempts to submit forged
update information before it decides whether to query Exp or the challenge oracles, we
do not know whether to use the real or the random MAC key to verify the provided
update information. To circumvent this issue we first use a hybrid argument with the
IODHE assumption and the security of the MAC-scheme to bound the probability of an
adversary forging valid update information at any step. In subsequent games, all forgeries
are assumed to be invalid, and we can delay committing to the real or random keys until
necessary. At this point we make a reduction from this adapted game to the IODHE
assumption, which concludes the proof.

Proof (Theorem 1). We prove the theorem by using a sequence of games and relating the
probabilities of certain events in these games, like the adversary winning or a flag being
set, to the advantage of the adversary against our scheme. These games are:

Game G0,j. This is the same as BKINDBRKE with the code for the scheme inserted, but
where attempted forgeries for the j first keys are assumed to be invalid. G0,0 is identical
to BKINDBRKE. The code for this game is given in Figure 7.

Game G∗
0,j. This is the same as G0,j, but where forgery attempts for the j + 1-th key are

also rejected. This means that Pr
[
G∗D

0,j

]
= Pr

[
GD

0,j+1

]
. The code for this game is given in

Figure 7.

Game Ij. This is the same as G∗
0,j , but where the hash value used to compute the j + 1-th

key is replaced with a uniformly random value. The code for this game is given in Figure 7.
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Game G1. This is identical to game G0,QR+1, but has been rewritten to simplify the rest
of the proof. The code for this game is given in Figure 8.

Game G2. This is the same as G1, but where the value used to create ki and fki is sampled
randomly, instead of taken as an output from the hash function. If the adversary calls Exp,
the keys are changed to use real hash values. The code for this game is given in Figure 8.

We use the sequences of games G0,j, G∗
0,j and Ij in Figure 7 in a hybrid argument to

prove that the adversary cannot forge valid update information without calling Exp. This
hybrid argument is made exactly akin to the argument in the proof of Theorem 4.1 in
[8], however, the games and the corresponding reductions have been adapted to the new
assumption and security definition. The specific changes will be noted as they come up.

Like in [8], we add a flag unchangedi, which is true when the last update information
passed to party i is the update information produced by the other party for that index.
Novel in this proof is that both parties get such a flag, hence the subscript i. When this
flag is true, ki and fki should be indistinguishable from random, and the adversary should
not be able to forge update information accepted by party i without first calling Exp. We
also add the flag bad, which is set to true if the adversary submits a valid forgery for the
j + 1-th key.

Since G0,j and G∗
0,j are identical until bad, the fundamental lemma of game playing

from [7] gives us that
Pr

[
GD

0,j

]
− Pr

[
G∗D

0,j

]
≤ Pr

[
badG∗D

0,j

]
,

where badG∗D
0,j is the event that the flag bad is set to true in game G∗

0,j when run by
adversary D. To bound the probability of this event we use the two adversaries O1 and F
given in Figures 9 and 10.

Adversary O1 is a reduction to IODHE that works by first randomly picking an index
j’ and then perfectly simulating the view of D in either game G∗

0,j′ or game Ij′ , depending
on the value of the challenge bit in the IODHE instance, bIODHE. It does this by using the
IODHE Hash oracle to compute legitimate hash values for all indicies except j′, where it
uses the IODHE Ch oracle that will either return a real hash value or a random string. If
bIODHE = 1 the IODHE Ch oracle returns real hash values, and O1 perfectly simulates the
view of D in G∗

0,j. If bIODHE = 0 the IODHE Ch oracle returns random strings, and O1
perfectly simulates the view of D in Ij. Special care is taken in Exp to return the correct
values for xi and ri depending on the time it is called.

Note that if the adversary D queries an exposure at index j′ our reduction O1 no
longer perfectly simulates either G∗

0,j′ or Ij′ as we cannot query the IODHE Exp oracle
because we have already made a call to the IODHE Ch oracle. This does not matter
for our calculations, however, as we know that bad will not be set because D querying
Exp prevents this from happening. Inspecting the code of O1 we see that b′, the bit it
returns, starts at 0 and is set to 1 exactly when the flag bad is set to true. Thus, for all
j ∈ {1, . . . , QR} we have that

Pr
[
badG∗D

0,j

]
= Pr [b′ = 1 | bIODHE = 1, j′ = j] ,

Pr
[
badID

j

]
= Pr [b′ = 1 | bIODHE = 0, j′ = j] ,

and from the definition of advantage we get that

AdvIODHE
G,H,O1 = Pr [b′ = 1 | bIODHE = 1]− Pr [b′ = 1 | bIODHE = 0] ,
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which when combined gives us that

AdvIODHE
G,H,O1 = Pr [b′ = 1 | bIODHE = 1]− Pr [b′ = 1 | bIODHE = 0]

=
QR∑
j=1

Pr [j′ = j]
(
Pr

[
badG∗D

0,j

]
− Pr

[
badID

j

])

=
QR∑
j=0

Pr
[
badG∗D

0,j

]
− Pr

[
badID

j

]
QR

.

Note that we could extend the sum to start at 0, as G∗
0,0 and I0 are identical games, and

the probability of bad being set in them is equal when run by the same adversary.
To complete the hybrid argument and arrive at game G1, we bound the probability that

the flag bad is set to true when adversary D is playing game Ij . In this case, the adversary
has forged a valid MAC tag on a message when the MAC key, fki, was uniformly random.
We use this fact to construct the reduction F to the SUFCMA security of the MAC scheme
F. The reduction F works similarly to O1 in that it first picks a random j′ (this time from
0 to QR) and then perfectly simulates the view of adversary D in game Ij′ . The index j′ is
essentially a guess for when the adversary will attempt their first forgery, and the reduction
will simulate tagging and verifying using it’s own values for fki for every index except j′,
where it will use the oracles provided by the SUFCMA instance instead. Similarly to O1,
our reduction F will not perfectly simulate Ij′ if the adversary D queries an exposure
at index j′ as we do not know the key that the underlying SUFCMA instance is using,
and as such don’t know what to return for fki. This does not matter for our calculations,
however, as we know that bad will not be set because D querying Exp prevents this from
happening. Examining the code of F in Figure 10 it is clear that the flag bad is set to
true if and only if adversary D submits update information with a valid, forged MAC tag
at index j′. Thus for j ∈ {0, . . . , QR} we have that Pr

[
badID

j

]
= Pr

[
SUFCMAF

F | j′ = j
]
,

which gives us that ∑QR
j=0 Pr

[
badID

j

]
= (QR + 1) AdvSUFCMA

F,F .
Combining our work we now get that

Pr
[
BKINDD

BRKE

]
= Pr

[
GD

0,0

]
= Pr

[
GD

0,QR+1

]
+

QR∑
j=0

(
Pr

[
GD

0,j

]
− Pr

[
G∗D

0,j

])

≤ Pr
[
GD

1

]
+

QR∑
j=0

Pr
[
badG∗D

0,j

]

= Pr
[
GD

1

]
+ QRAdvIODHE

G,H,O1 +
QR∑
j=0

Pr
[
badIjD ]

= Pr
[
GD

1

]
+ QRAdvIODHE

G,H,O1 + (QR + 1) AdvSUFCMA
F,F ,

where we also used that G0,QR+1 is identical to G1.
We now move on to games G1 and G2. This section of the proof still mostly follows

the logic used in [8], but the relevant parts of the games and the reduction O2 have been
completely rewritten to fit the new scheme and security definition. Starting with G1, this is
identical to G0,QR+1, but has been rewritten to simplify the proof. The nested if statement
at the start of RatchetO has been removed as ci < QR + 1 is always true, such that
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all forgery attempts are rejected. The major difference in syntax between G0,QR+1 and
G1 is that we in G1 delay setting the values of ki and fki until they are known by the
adversary or we are forced to commit to a value (e.g. for tagging update information). We
accomplish this by storing the hash values used for the legitimate conversation between
the two parties in a table hash. When the flag unchangedi is true we use this table to get
the value for fki in BCastO so we can create and later verify MAC tags, and to get the
value for ki when we need to answer a challenge query. If the adversary queries an exposure
and uses this information to submit forged update information to party i, unchangedi

will be set to false, and we switch to directly computing ki and fki as long as the flag
is set. When the adversary queries Exp, we grab the last update information that party
received, stored in recvi, and use it to compute and store the hash value to the hash table
and update the value of ki and fki. These changes gives our reduction O2 the freedom to
not commit to a key before it has to, while making sure that it does not alter the keys
after committing to them. Finally, progressing to game G2, we replace the legitimate hash
value computed in RatchetO when unchangedi is true with a random string.

Our reduction O2 in Figure 11 perfectly simulates the view of adversary D in either
G1 or G2, depending on the challenge bit in the underlying IODHE instance: bIODHE. It
does this by using the IODHE Ch oracle that returns either the correct hash value, used
in G1, or a random string, used in G2. We must, however, take great care in when we use
this oracle, as we must use it for every legitimate key produced by either party, while still
allowing the adversary to query an exposure, at which point we must reset back to a real
hash value using the IODHE Hash oracle.

Like the definition of game G1, our reduction O2 will directly compute ki and fki when
unchangedi is false. It does this by using the IODHE Hash oracle. It also uses this
oracle in ExpSim along with IODHE Exp to compute the legitimate key and return the
last random seed ri and the secret xi. Like in O1, care is taken to return correct values for
ri and xi based on the current state. In oracle ChSim it uses the IODHE Ch oracle to get
the real hash value or a random string, to simulate either G1 or G2, and otherwise operates
exactly like G1 and G2. Unlike G1 and G2, however, O2 does not compute the hash value
for the next key in RatchetO, but rather uses IODHE Ch to compute the hash value for
the current key in BCastO. If the adversary first calls either ExpSim or ChSim, however,
these oracles will compute the value to store in the hash table instead, and BCastO will
not call IODHE Ch. The reduction cannot call IODHE Ch in RatchetO, as it does not
know whether the adversary will query Ch or Exp after ratcheting. Instead, it delays
the call until the adversary calls either Ch or BCastO, or prevents it if the adversary
calls Exp. After the potential call to Ch in BCastO, the reduction uses IODHE Up to
generate a new pair X, Y to use as update information. The values are stored in a table,
and the value corresponding to the party is used. It is important that it calls Up after the
potential call to Ch in order to keep the op table in our reduction in sync with the value
of op in the underlying IODHE instance. It is also important that we do not call Up any
later than at the end of BCastO, like at the start of RatchetO, as this would mean
that the reduction would not be able to provide values for ri when answering ExpSim
queries because the IODHE game would have moved on to the next pair X, Y .

When our reduction responds to BCastO queries, it must commit to a value for fki to
use for tagging the update information. To simulate G2, the reduction must use a random
string for fki unless the adversary D queries an exposure. At the time of a call to BCastO,
however, our reduction does not know whether the adversary will query Exp or not and
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so does not know whether to commit to using a real hash value or a random string for fki.
The reduction also cannot change the value of fki after a call to BCastO as the adversary
can easily validate the MAC tag returned by BCastO by computing F.Ev (fki, X), and
see that the keys have changed. This is where the artificial weakness we implanted in the
security definition in Section 4.3 comes in. This condition sets op [ci] to “ch” in BCastO
if it has no value yet. This prevents the adversary from calling BCastO followed by Exp
for one party when the current key is not already known by the adversary due to an earlier
call to Exp. In this case op [ci] will be set to “ch”, and the call to Exp will be rejected.
The reduction exploits this by commiting to a value for fki in BCastO, as op [ci] will not
be empty, and the reduction will know whether to use a the IODHE Ch or Hash oracle
to compute the key.

After a call to BCastO, op[ci] in our reduction may be “exp” if it had that value
before the call, or “ch” otherwise. The value of op in the IODHE instance will be ⊥, as
BCastO calls Up. At this point, the adversary may do nothing, or may call ChSim or
ExpSim if it is allowed. Note that a call to ChSim after BCastO will not call the IODHE
Ch oracle as op[ci] cannot be empty. This is important, as BCastO calls Up, and so a call
to Ch in ChSim would not only alter the IODHE op value but also return the hash value
used for the next key; not the current one. Doing nothing obviously also does not alter the
op table in the reduction or the op value in the IODHE instance. Once the adversary then
calls RatchetO, ci is incremented and the current value in the reduction’s op table is
empty while the op value in the IODHE instance is also empty. If the adversary after the
call to BCastO instead calls Exp, the IODHE op value will be set to “exp”, and the next
value in the reduction’s op table will be set to “exp” such that after incrementing ci in
RatchetO, both current values will be “exp”. Thus, the op values are kept in sync, and
all the requests made by O2 to the IODHE oracles are permitted. The above argument
is made with respect to the first party to set the values in the op table, as once set they
cannot change, and it is clear that the second party will not violate this invariant when
catching up to the first. Additionally, queries to the oracles are stored in tables so that
when the adversary calls Exp or BCastO on the party that is behind the other, no calls
will be made to the IODHE oracles.

The reduction O2 gets adversary D’s guess, b′, for the value of b and when D guesses
correctly assumes that the IODHE Ch oracle was returning real output (bIODHE = 1) and
returns b∗ = 1, otherwise it returns b∗ = 0. Thus we have that

Pr
[
GD

1

]
= Pr [b∗ = 1 | bIODHE = 1]

Pr
[
GD

2

]
= Pr [b∗ = 1 | bIODHE = 0]

and using the definition of advantage we get that AdvIODHE
G,H,O2 = Pr

[
GD

1

]
− Pr

[
GD

2

]
. Com-

bining this with our last result we get that

Pr
[
BKINDD

BRKE

]
≤ Pr

[
GD

1

]
+ QRAdvIODHE

G,H,O1 + (QR + 1) AdvSUFCMA
F,F

= Pr
[
GD

2

]
+ AdvIODHE

G,H,O2

+ QRAdvIODHE
G,H,O1 + (QR + 1) AdvSUFCMA

F,F .

Additionally, Pr
[
GD

2

]
= 1

2 , as the view of adversary D is independent of the challenge
bit b. The only place b is referenced in G2 is in a branch at the end of oracle Ch. The
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contents of rkey [ci] are random bits, so for the game to depend on the value of b, ki

cannot be random bits. This can only happen if the second branch in RatchetO was
taken, where ki is computed using H.Ev. This branch can only be taken, however, when
restrictedi is true, and as such any call to Ch will exit early and not reach the last
branch. Thus the view of the game is independent of the challenge bit b such that

AdvBKIND
BRKE,D = 2 Pr

[
BKINDD

BRKE

]
− 1

≤ 2AdvIODHE
G,H,O2 + 2QRAdvIODHE

G,H,O1 + 2 (QR + 1) AdvSUFCMA
F,F .

The bounds on the amount of queries each reduction makes can be found by examining
their code. ⊓⊔
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Games G0,j , G∗
0,j , Ij

01 b $← {0, 1}
02 unchanged1 ← true
03 unchanged2 ← true
04 rand $← {0, 1}H.ol

05 g $← G∗

06 k $← {0, 1}BRKE.kl

07 hk $← {0, 1}H.kl

08 fk $← {0, 1}F.kl

09 k1, k2 ← k, k
10 fk1, fk2 ← fk, fk
11 stk1 ← (g, hk)
12 stk2 ← (g, hk)
13 s1, s2 ← 0, 0
14 c1, c2 ← 0, 0
15 x1, x2 ← ⊥,⊥
16 b′ ← DBCastO,RatchetO,Exp,Ch (stk1, stk2)
17 return b′ ?= b

Oracle Exp (i)

18 if op[ci]
?= “ch” then

19 return ⊥
20 if op[si]

?= “ch” then
21 return ⊥
22 op[ci]← “exp”
23 op[si]← “exp”
24 return (ri, (ci, xi, fki) , ki)

Oracle Ch (i)
25 if restrictedi then
26 return ki

27 if op[ci]
?= “exp” then

28 return ⊥
29 op[ci]← “ch”
30 if rkey[ci]

?= ⊥ then
31 rkey[ci] $← {0, 1}RKE.kl

32 if b
?= 1 then

33 return ki

34 return rkey[ci]

Oracle BCastO (i)

35 if si
?
̸= ci then

36 return ⊥
37 if op[ci]

?= ⊥
38 op[ci]← “ch”
39 xi

$← Zp

40 X ← gxi

41 σ ← F.Ev (fki, X)
42 upd ← (X, σ)
43 auth [i] [ci]← upd
44 si ← si + 1
45 return upd

Oracle RatchetO (i, upd)

46 if si
?= ci then

47 return false
48 (Y, σ)← upd
49 forge← op[ci]

?
̸= “exp” and upd

?
̸= auth [3− i] [ci]

50 if unchangedi and forge then
51 if ci < j then
52 return false
53 if ci

?= j then
54 if σ

?
̸= F.Ev (fki, Y ) then

55 return false
56 bad← true
57 return false G∗

0,j , Ij

58 if σ
?
̸= F.Ev (fki, Y ) then

59 return false
60 if op[ci]

?= “exp”
61 restrictedi ← true
62 if upd ?= auth [3− i] [ci] then
63 restrictedi ← false
64 unchangedi ← true
65 else
66 unchangedi ← false
67 h← H.Ev (hk, ci ∥ Y xi )
68 if ci + 1 ?= j then
69 h← rand Ij

70 ki ← h [1 . . . BRKE.kl]
71 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
72 xi ← ⊥
73 ci ← ci + 1
74 return true

Fig. 7. Games G0,j , G∗
0,j , Ij for the proof of Theorem 1
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Games G1, G2

01 b $← {0, 1}
02 unchanged1 ← true
03 unchanged2 ← true
04 g $← G∗

05 k $← {0, 1}BRKE.kl

06 hk $← {0, 1}H.kl

07 fk $← {0, 1}F.kl

08 hash [0]← k ∥ fk
09 k1, k2 ← k, k
10 fk1, fk2 ← fk, fk
11 stk1 ← (g, hk)
12 stk2 ← (g, hk)
13 s1, s2 ← 0, 0
14 c1, c2 ← 0, 0
15 x1, x2 ← ⊥,⊥
16 b′ $← DBCastO,RatchetO,Exp,Ch (stk1, stk2)
17 return b′ ?= b

Oracle Exp (i)

18 if op[ci]
?= “ch” then

19 return ⊥
20 if op[si]

?= “ch” then
21 return ⊥
22 op[ci]← “exp”
23 op[si]← “exp”
24 if ci ≥ 1 then
25 (Y, σ)← recvi

26 h← H.Ev
(

hk, ci − 1 ∥ Y xold
i

)
27 hash [ci]← h
28 ki ← h [1 . . . BRKE.kl]
29 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
30 return

(
xold

i , (ci, xi, fki) , ki

)
Oracle Ch (i)
31 if restrictedi then
32 return ki

33 if op[ci]
?= “exp” then

34 return ⊥
35 if unchangedi then
36 ki ← hash [ci] [0 . . . BRKE.kl]
37 op[ci]← “ch”
38 if rkey[ci]

?= ⊥ then
39 rkey[ci] $← {0, 1}RKE.kl

40 if b
?= 1 then

41 return ki

42 return rkey[ci]

Oracle BCastO (i)

43 if si
?
̸= ci then

44 return ⊥
45 if op[ci]

?= ⊥
46 op[ci]← “ch”
47 xi

$← Zp

48 X ← gxi

49 xold
i ← xi

50 if unchangedi then
51 fki ← hash [ci] [BRKE.kl + 1 . . . BRKE.kl + F.kl]
52 σ ← F.Ev (fki, X)
53 upd ← (X, σ)
54 auth [i] [ci]← upd
55 si ← si + 1
56 return upd

Oracle RatchetO (i, upd)

57 if si
?= ci then

58 return false
59 (Y, σ)← upd
60 forge← op[ci]

?
̸= “exp” and upd

?
̸= auth [3− i] [ci]

61 if unchangedi and forge then
62 return false
63 if σ

?
̸= F.Ev (fki, Y ) then

64 return false
65 recvi ← upd
66 if op[ci]

?= “exp”
67 restrictedi ← true
68 if upd ?= auth [3− i] [ci] then
69 restrictedi ← false
70 unchangedi ← true
71 if hash [ci + 1] ?= ⊥ then
72 hash [ci + 1]← H.Ev (hk, ci ∥ Y xi ) G1

73 hash [ci + 1]← {0, 1}H.ol G2
74 else
75 unchangedi ← false
76 h← H.Ev (hk, ci ∥ Y xi )
77 ki ← h [1 . . . BRKE.kl]
78 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
79 xi ← ⊥
80 ci ← ci + 1
81 return true

Fig. 8. Games G1, G2 for the proof of Theorem 1
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Reduction OUp,Ch,Exp,Hash
1 (hk, g)

01 j′ $← {1, . . . , QRatchetO}
02 b $← {0, 1}
03 b′ ← 0
04 exponent1 ← “x”
05 exponent2 ← “y”
06 unchanged1 ← true
07 unchanged2 ← true
08 rand $← {0, 1}H.ol

09 g $← G∗

10 k $← {0, 1}BRKE.kl

11 fk $← {0, 1}F.kl

12 k1, k2 ← k, k
13 fk1, fk2 ← fk, fk
14 stk1 ← (g, hk)
15 stk2 ← (g, hk)
16 c1, c2 ← 0, 0
17 x1, x2 ← ⊥,⊥
18 b′ $← DBCastO,RatchetO,ExpSim,ChSim (stk1, stk2)
19 return b′ ?= b

Oracle ExpSim (i)

20 if op[ci]
?= “ch” then

21 return ⊥
22 if op[si]

?= “ch” then
23 return ⊥
24 if op [si]

?= ⊥ then
25 x, y ← Exp
26 secret [si] [1]← x
27 secret [si] [2]← y
28 op[ci]← “exp”
29 op[si]← “exp”
30 ri ← secret [si] [i]
31 xi ← ri

32 if ci
?= si then

33 xi ← ⊥
34 return (ri, (ci, xi, fki) , ki)

Oracle ChSim (i)
35 if restrictedi then
36 return ki

37 if op[ci]
?= “exp” then

38 return ⊥
39 op[ci]← “ch”
40 if rkey[ci]

?= ⊥ then
41 rkey[ci] $← {0, 1}RKE.kl

42 if b
?= 1 then

43 return ki

44 return rkey[ci]

Oracle BCastO (i)

45 if si
?
̸= ci then

46 return ⊥
47 if op[ci]

?= ⊥
48 op[ci]← “ch”
49 if elem [ci]

?= ⊥ then
50 X, Y $← Up
51 elem [ci] [1]← X
52 elem [ci] [2]← Y
53 X ← elem [ci] [i]
54 σ ← F.Ev (fki, X)
55 upd ← (X, σ)
56 auth [i] [ci]← upd
57 si ← si + 1
58 return upd

Oracle RatchetO (i, upd)

59 if si
?= ci then

60 return false
61 (Y, σ)← upd
62 forge← op[ci]

?
̸= “exp” and upd

?
̸= auth [3− i] [ci]

63 if unchangedi and forge then
64 if ci < j then
65 return false
66 if ci

?= j then
67 if σ

?
̸= F.Ev (fki, Y ) then

68 return false
69 bad← true
70 b′ ← 1
71 return false
72 if σ

?
̸= F.Ev (fki, Y ) then

73 return false
74 if op[ci]

?= “exp”
75 restrictedi ← true
76 if upd ?= auth [3− i] [ci] then
77 restrictedi ← false
78 unchangedi ← true
79 else
80 unchangedi ← false
81 if ci + 1

?
̸= j then

82 h← Hash (ci, Y, exponenti)
83 else
84 h $← Ch
85 ki ← h [1 . . . BRKE.kl]
86 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
87 xi ← ⊥
88 ci ← ci + 1
89 return true

Fig. 9. Reduction O1 for the proof of Theorem 1
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Reduction FTag,Verify

01 j′ $← {0, . . . , QRatchetO}
02 b $← {0, 1}
03 unchanged1 ← true
04 unchanged2 ← true
05 rand $← {0, 1}H.ol

06 g $← G∗

07 k $← {0, 1}BRKE.kl

08 hk $← {0, 1}H.kl

09 fk $← {0, 1}F.kl

10 k1, k2 ← k, k
11 fk1, fk2 ← fk, fk
12 stk1 ← (g, hk)
13 stk2 ← (g, hk)
14 c1, c2 ← 0, 0
15 x1, x2 ← ⊥,⊥
16 b′ $← DBCastO,RatchetO,Exp,Ch (stk1, stk2)

Oracle Exp (i)

17 if op[ci]
?= “ch” then

18 return ⊥
19 if op[si]

?= “ch” then
20 return ⊥
21 op[ci]← “exp”
22 op[si]← “exp”
23 return (xi, (ci, xi, fki) , ki)

Oracle Ch (i)
24 if restrictedi then
25 return ki

26 if op[ci]
?= “exp” then

27 return ⊥
28 op[ci]← “ch”
29 if rkey[ci]

?= ⊥ then
30 rkey[ci] $← {0, 1}RKE.kl

31 if b
?= 1 then

32 return ki

33 return rkey[ci]

Oracle BCastO (i)

34 if si
?
̸= ci then

35 return ⊥
36 if op[ci]

?= ⊥
37 op[ci]← “ch”
38 xi

$← Zp

39 X ← gxi

40 if ci
?= j′ then

41 σ ← Tag (X)
42 else
43 σ ← F.Ev (fki, X)
44 upd ← (X, σ)
45 auth [i] [ci]← upd
46 si ← si + 1
47 return upd

Oracle RatchetO (i, upd)

48 if si
?= ci then

49 return false
50 (Y, σ)← upd
51 forge← op[ci]

?
̸= “exp” and upd

?
̸= auth [3− i] [ci]

52 if unchangedi and forge then
53 if ci < j′ then
54 return false
55 if ci

?= j′ then
56 if not Verify (Y, σ) then
57 return false
58 bad← true
59 return false
60 if ci

?= j′ then
61 if not Verify (Y, σ) then
62 return false
63 else
64 if σ

?
̸= F.Ev (fki, Y ) then

65 return false
66 if op[ci]

?= “exp”
67 restrictedi ← true
68 if upd ?= auth [3− i] [ci] then
69 restrictedi ← false
70 unchangedi ← true
71 else
72 unchangedi ← false
73 h← H.Ev (hk, ci ∥ Y x)
74 if ci + 1 ?= j′ then
75 h← rand
76 ki ← h [1 . . . BRKE.kl]
77 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
78 xi ← ⊥
79 ci ← ci + 1
80 return true

Fig. 10. Reduction F for the proof of Theorem 1
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Reduction OUp,Ch,Exp,Hash
2 (hk, g)

01 b $← {0, 1}
02 exponent1 ← “x”
03 exponent2 ← “y”
04 unchanged1 ← true
05 unchanged2 ← true
06 k $← {0, 1}BRKE.kl

07 fk $← {0, 1}F.kl

08 hash [0]← k ∥ fk
09 k1, k2 ← k, k
10 fk1, fk2 ← fk, fk
11 stk1 ← (g, hk)
12 stk2 ← (g, hk)
13 s1, s2 ← 0, 0
14 c1, c2 ← 0, 0
15 b′ $← DBCastO,RatchetO,ExpSim,ChSim (stk1, stk2)
16 return b′ ?= b

Oracle ExpSim (i)

17 if op[ci]
?= “ch” then

18 return ⊥
19 if op[si]

?= “ch” then
20 return ⊥
21 if ci ≥ 1 then
22 (Y, σ)← recvi

23 h← Hash (ci − 1, Y, exponenti)
24 hash [ci]← h
25 ki ← h [1 . . . BRKE.kl]
26 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
27 if op [si]

?= ⊥ then
28 x, y ← Exp
29 secret [si] [1]← x
30 secret [si] [2]← y
31 ri ← secret [si] [i]
32 xi ← ri

33 if ci
?= si then

34 xi ← ⊥
35 op[ci]← “exp”
36 op[si]← “exp”
37 return (ri, (ci, xi, fki) , ki)

Oracle ChSim (i)
38 if restrictedi then
39 return ki

40 if op[ci]
?= “exp” then

41 return ⊥
42 if op[ci]

?= ⊥ and ci ≥ 1 then
43 hash [ci] $← Ch
44 op[ci]← “ch”
45 if rkey[ci]

?= ⊥ then
46 rkey[ci] $← {0, 1}RKE.kl

47 if unchangedi then
48 ki ← hash [ci] [0 . . . BRKE.kl]
49 if b

?= 1 then
50 return ki

51 return rkey[ci]

Oracle BCastO (i)

52 if si
?
̸= ci then

53 return ⊥
54 if op[ci]

?= ⊥ then
55 op[ci]← “ch”
56 hash [ci] $← Ch
57 if unchangedi then
58 fki ← hash [ci] [BRKE.kl + 1 . . . BRKE.kl + F.kl]
59 if elem [ci]

?= ⊥ then
60 X, Y $← Up
61 elem [ci] [1]← X
62 elem [ci] [2]← Y
63 X ← elem [ci] [i]
64 σ ← F.Ev (fki, X)
65 upd ← (X, σ)
66 auth [i] [ci]← upd
67 si ← si + 1
68 return upd

Oracle RatchetO (i, upd)

69 if si
?= ci then

70 return false
71 (Y, σ)← upd
72 forge← op[ci]

?
̸= “exp” and upd

?
̸= auth [3− i] [ci]

73 if unchangedi and forge then
74 return false
75 if σ

?
̸= F.Ev (fki, Y ) then

76 return false
77 recvi ← upd
78 if op[ci]

?= “exp”
79 restrictedi ← true
80 if upd ?= auth [3− i] [ci] then
81 restrictedi ← false
82 unchangedi ← true
83 else
84 unchangedi ← false
85 h← Hash (ci, Y, exponenti)
86 ki ← h [1 . . . BRKE.kl]
87 fki ← h [BRKE.kl + 1 . . . BRKE.kl + F.kl]
88 ci ← ci + 1
89 return true

Fig. 11. Reduction O2 for the proof of Theorem 1
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A Reduction from IODHE to CDH in a Type 1 Pairing Group
in the Random Oracle Model

A.1 Reduction from IODHE to ISCDHE in the Random Oracle Model

Lemma 1. Given an adversary A against the IODHE security of G, H in the random
oracle model making QU queries to Up, QH queries to Hash, QE queries to Exp, QC
queries to Ch, and QR queries to RO, there is an adversary B against the ISCDHE
security of G such that

AdvIODHE
G,H,A ≤ AdvISCDHE

G,B + QH

p
.

Adversary B makes at most QU queries to its ISCDHE Up oracle, QE queries to its
ISCDHE Exp oracle, QR (2QH + QC + 1) queries to its ISCDHE DH1 oracle, 2QRQH
queries to its ISCDHE DH2 oracle, and Q2

H queries to its ISCDHE DH3 oracle.

Game ISCDHEB
G

01 g $← G∗; v ← −1
02 (j, Z) $← BUp,Exp,DH1,DH2,DH3 (g)
03 valid← (0 ≤ j ≤ v) and(

op[j]
?
̸= “exp”

)
04 return valid and

(
Z

?= gx[j]y[j]
)

Oracle Up
05 v ← v + 1
06 x[v] $← Zp

07 y[v] $← Zp

08 return
(
gx[v], gy[v])

Oracle DH1 (X, Z, i)

09 return Xy[i] ?= Z

Oracle DH2 (Y, Z, i)

10 return Y x[i] ?= Z

Oracle DH3 (X, Y, i)

11 return Xy[i] ?= Y x[i]

Oracle Exp
12 op[v]← “exp”
13 return (x[v], y[v])

Fig. 12. The game defining the Independent Strong Computational Diffie-Hellman with Exposures (ISCDHE)
assumption. The game is parametrized by a group G. To win, the adversary B must compute gx[j]y[j] for some j
where it did not query the Exp oracle.

We prove this lemma using an argument that closely follows the ODHE to SCDHE
reduction given in Appendix A.1 in [8]. Let IODHERG,H,b∗ to be the IODHE game (defined
in Figure 3) in the random oracle model, where the challenge bit b has been hard-coded to
b∗, and the game returns 1 when b′ = 1, where b′ is the bit returned by A. Note that in
the random oracle model we introduce an additional oracle RO (z, κ) which is the hash
function used by the scheme, modeled as a random function. The oracle returns a random
string from {0, 1}κ for each pair z, κ that is consistent across calls. We introduce 3 games:

Game G0. This is IODHEG,H in the ROM where the challenge bit b has been hard-coded
to equal 1, that is: IODHERG,H,1.

Game G1. This is the same as G0, but hash values are not kept consistent between the
Ch and Hash oracles.

Game G2. This is the same as G1, but hash values are not kept consistent between the
Ch oracle and the RO hash oracle.
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Games G0, G1 and G2 are given in Figure 13. Our goal is to transition from G0 to G2,
and to prove that this is the transition from IODHERG,H,1 to IODHERG,H,0. We then
wish to bound the difference of the games with the advantage of an adversary against
ISCDHE. To complete the proof we use the following 4 claims.

(1) Pr[G0] = Pr[IODHERA
G,H,1]

(2) Pr[G0]− Pr[G1] ≤ QH/p

(3) Pr[G1]− Pr[G2] ≤ AdvISCDHE
G,H,B (For adversary B given in Figure 14)

(4) Pr[G2] = Pr[IODHERA
G,H,0]

Using these claims we get the following in the random oracle model:

AdvIODHE
G,H,A = Pr

[
IODHERA

G,H,1

]
− Pr

[
IODHERA

G,H,0

]
= Pr

[
G0

A
]
− Pr

[
G2

A
]

=
(
Pr

[
G0

A
]
− Pr

[
G1

A
])

+
(
Pr

[
G1

A
]
− Pr

[
G2

A
])

≤ QH/p + AdvISCDHE
G,B .

The proofs of the 4 claims are based on those from [8]. The proofs of claims 1 and 4 are
retold with little modification, while the proofs of claims 2 and 3 have been adapted to fit
the new assumptions.

Claim (1). We modify IODHERG,H,1 to obtain G0. This is done by replacing the accesses
to the random oracle in the Ch, Hash and RO oracles with hash-tables, and ensuring
consistency between them. This is done in each oracle by first checking if a hash value has
been set in any of the two other tables, and propagating that value if it has. The need for
the mem table is eliminated, and the value of r1 is returned directly.

Claim (2). Transitioning from G0 to G1 we no longer maintain consistency between Tch
and Thash. To bound the difference of the two games we use the fundamental theorem of
game playing from [7] as the games are identical-until-bad with respect to the event bad0,1.
Thus we have

Pr
[
G0

A
]
− Pr

[
G1

A
]
≤ Pr

[
badG0

A

0,1

]
, (1)

where Pr
[
badG0

A

0,1

]
is the probability that the flag bad0,1 is set to true when G0 is played

by adversary A.
Consider bad0,1 being set to true in Hash. For this to occur the adversary must

query Hash with either
(
i, gx[i], “y”

)
or

(
i, gy[i], “x”

)
after Tch

[
i, gx[i]y[i]

]
has been set. For

Tch
[
i, gx[i]y[i]

]
to be set, however, we must have i ∈ Sch, meaning that either possible call

to Hash will return ⊥, and that bad0,1 will not be set to true.
Now consider bad0,1 being set to true in Ch. For this to occur we must have neither(

v, gx[v], “y”
)
∈ Shash nor

(
v, gy[v], “x”

)
∈ Shash, but Thash

[
v, gx[v]y[v]

]
must have been set.

This is only possible if the adversary made one of the hash queries before the counter
v was incremented to its current value. Since the exponents x[v] and y[v] are sampled
uniformly randomly at the same time as v is incremented in Up, any hash query has at
most probability 1/p to correctly guess the future challenge value. Using the union bound
over the queries to the Hash oracle, we obtain the bound of Pr

[
badG0

A

0,1

]
≤ QH/p.
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Claim (3). Transitioning from G1 to G2 we no longer maintain consistency between Tch
and T . To bound the difference of the two games we use the fundamental theorem of game
playing, as the games are identical-until-bad w.r.t the event bad1,2 and obtain

Pr
[
G1

A
]
− Pr

[
G2

A
]
≤ Pr

[
badG2

A

1,2

]
. (2)

For the event bad1,2 to be set in G1 the adversary A must call Ch to set Tch [v] and RO
to set T with the corresponding value. This means that the adversary must be able to
compute gx[v]y[v] and pass it to the random oracle. This enables a reduction to ISCDHE
that checks every query to Ch and RO for a solution to the underlying ISCDHE instance.
The reduction B is shown in Figure 14, and is based on the corresponding reduction given
in [8], with modifications to fit the new assumptions. The command abort i, e is used to
immidiately abort the execution of the reduction and return the index i and the challenge
value e as the solution to the ISCDHE instance.

The reduction B simulates the view of adversary A in game G2. While the implementa-
tion of oracles UpSim and ExpSim is trivial, care is taken to correctly manage the tables
used in RO, Hash, and Ch. Since our reduction does not have access to the secrets x[v]
and y[v] it cannot compute the group elements that are required as input to the hash
function in Hash and Ch. This issue is trivial to solve in Ch, as there is exactly one
group element gx[v]y[v] for each index v, and so using v to index the hash table instead is
equivalent, as the mapping from v to gx[v]y[v] is injective. In oracle Hash we use the inputs
i, X, exponent to index the hash table. We know that exponentiation by a constant is
injective, but there are two options for the exponent, and queries with different values of
exponent could map to the same group element and should therefore have the same hash.
Due to this, our reduction must take care to synchronize the hash values for hash queries
with different values of exponent.

In RO, the reduction extracts the values of hk, i and e to compare with previous
queries. If the submission z does not decode into valid hk, i, e or the hash key or output
length do not match those used by the scheme, no further checks are run. The reduction
then checks for the presence of a challenge query at index i and, if one exists, uses oracle
DH1 to check if Xcur[i]y[i] = e and if the challenge query and this random oracle query
should have the same hash value. If this is the case, the adversary has computed gx[i]y[i]

and we immediately return the pair i, e using abort. If not, it then loops over every
query made to the Hash oracle and uses either DH1 or DH2, depending on the value of
exponent, to check if a hash value corresponding to i, e has already be computed. If such
a query is found, the table T is updated with its value to keep RO in sync with Hash.

Oracle Hash uses logic similar to the last step in RO, but from a mirrored perspective,
so it loops over every query to RO and uses oracles DH1 or DH2 to determine if it should
have the same hash value as the current query to Hash. This keeps the values returned by
Hash in sync with those returned by RO. Additionally, since the Hash oracle can accept
queries for both exponents “x” and “y”, it must make sure that queries like (i, ga, “x”) and(
i, gb, “y”

)
return the same hash value if ax = by. To do this, the reduction uses oracle

DH3. Note that oracle Hash does not need to keep in sync with Ch, as our reduction is
simulating G2.

Oracle Ch uses logic similar to the first step in RO, but from a mirrored perspective,
so it loops over every query (v, e) to RO and uses oracle DH1 to check if Xcur[v]y[v] = e
and if the random oracle query and this challenge query should have the same hash value.
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If this is the case, the adversary has computed gx[i]y[i] and we immediately return the pair
v, e using abort.

Our reduction B perfectly simultates the view of A in G2 until bad1,2 is set to true,
at which point the reduction immediately aborts and returns a tuple (i, e), which is a
solution to the ISCDHE instance, and so AdvISCDHE

G,H,B = Pr
[
badG2

A

1,2

]
.

Claim (4). In G2, hash values are consistent between RO and Hash, both of which are
completely disconnected from hash values in Ch. This corresponds to the challenge bit b
being set to 0 and hash values returned from Ch being random; the table Tch taking the
role of mem from IODHERG,H,0.

Games G0, G1, G2

01 hk $← {0, 1}H.kl

02 g $← G∗

03 v ← −1
04 b′ $← OUp,Ch,Exp,Hash,RO (hk, g)
05 return b′ ?= 1

Oracle Up
06 op← ε
07 v ← v + 1
08 x[v] $← Zp

09 y[v] $← Zp

10 return
(
gx[v], gy[v])

Oracle Exp

11 if op ?= “ch” then
12 return ⊥
13 op← “exp”
14 return (x[v], y[v])

Oracle RO (z, κ)

15 if T [z, κ] ?= ⊥ then
16 T [z, κ] $← {0, 1}H.ol

17 hk′ ∥ i ∥ e← z

18 if (hk′, κ) ?= (hk, H.ol) then
19 if Tch[i, e]

?
̸= ⊥ then

20 bad1,2 ← true
21 T [z, κ]← Tch[i, e] G0, G1

22 if Thash[i, e]
?
̸= ⊥ then

23 T [z, κ]← Thash[i, e]
24 return T [z, κ]

Oracle Ch

25 if
(

op ?= “exp”
)

or((
v, gx[v], “y”

)
∈ Shash

)
or((

v, gy[v], “x”
)
∈ Shash

)
then

26 return ⊥
27 op← “ch”
28 Sch ← Sch ∪ {v}
29 e← gx[v]y[v]

30 if Tch[v] ?= ⊥ then
31 Tch[v] $← {0, 1}H.ol

32 if Thash[v]
?
̸= ⊥ then

33 bad0,1 ← true
34 Tch[v]← Thash[v] G0

35 if T [hk ∥ v ∥ e, H.ol]
?
̸= ⊥ then

36 bad1,2 ← true
37 Tch[v]← T [hk ∥ v ∥ e, H.ol] G0, G1

38 return Tch[v]

Oracle Hash (i, X, exponent)

39 if exponent ?= “x” then
40 if i ∈ Sch and X

?= gy[i] then
41 return ⊥
42 e← Xx[v]

43 else if exponent ?= “y” then
44 if i ∈ Sch and X

?= gx[i] then
45 return ⊥
46 e← Xy[v]

47 else
48 return ⊥
49 if i

?= v then
50 Shash ← Shash ∪ {(i, X, exponent)}
51 if Thash[i, e] ?= ⊥ then
52 Thash[i, e] $← {0, 1}H.ol

53 if Tch[i, e]
?
̸= ⊥ then

54 bad0,1 ← true
55 Thash[i, e]← Tch[i, e] G0

56 if T [hk ∥ i ∥ e, H.ol]
?
̸= ⊥ then

57 Thash[i, e]← T [hk ∥ i ∥ e, H.ol]
58 return Thash[i, e]

Fig. 13. Games G0, G1, G2 for the proof of Lemma 1.
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Reduction BUp,DH1,DH2,DH3,Exp (g)

01 hk $← {0, 1}H.kl

02 v ← −1
03 AUpSim,Ch,ExpSim,Hash,RO (hk, g)
04 return ⊥,⊥

Oracle UpSim
05 op← ε
06 v ← v + 1
07 (Xcur[v], Ycur[v]) $← Up
08 return Xcur[v], Ycur[v]

Oracle ExpSim

09 if op ?= “ch” then
10 return ⊥
11 op← “exp”
12 (x, y)← Exp
13 return x, y

Oracle Ch

14 if
(

op ?= “exp”
)

or
((v, Xcur[v], “y”) ∈ Shash) or
((v, Ycur[v], “x”) ∈ Shash) then

15 return ⊥
16 op← “ch”
17 Sch ← Sch ∪ {v}
18 if Tch[v] ?= ⊥ then
19 Tch[v] $← {0, 1}H.ol

20 for (i′, e) ∈ SRO do
21 if i′ ?

̸= v then
22 continue
23 if DH1 (Xcur[v], e, v) then
24 abort i, e
25 return Tch[v]

Oracle RO (z, κ)

26 if T [z, κ] ?= ⊥ then
27 T [z, κ] $← {0, 1}κ

28 hk′ ∥ i ∥ e← z

29 if (hk′, κ) ?= (hk, H.ol) then
30 SRO ← SRO ∪ {(i, e)}
31 if i ∈ Sch then
32 if DH1 (Xcur[i], e, i) then
33 abort i, e
34 for (i′, X ′, exponent) ∈ Shash do
35 if i′ ?

̸= i then
36 continue
37 if exponent ?= “y” and DH1 (X, e, i) then
38 T [z, κ]← Thash[i, X, exponent]
39 if exponent ?= “x” and DH2 (X, e, i) then
40 T [z, κ]← Thash[i, X, exponent]
41 return T [z, κ]

Oracle Hash (i, X, exponent)

42 if exponent ?= “x” then
43 if i ∈ Sch and X

?= Ycur[i] then
44 return ⊥
45 else if exponent ?= “y” then
46 if i ∈ Sch and X

?= Xcur[i] then
47 return ⊥
48 else
49 return ⊥
50 if i

?= v then
51 Shash ← Shash ∪ {(i, X, exponent)}
52 if Thash[i, X, exponent] ?= ⊥ then
53 Thash[i, X, exponent] $← {0, 1}H.ol

54 for (i′, e) ∈ SRO do
55 if i′ ?

̸= i then
56 continue
57 if exponent ?= “y” and DH1 (X, e, i) then
58 abort i, e

59 if exponent ?= “x” and DH2 (X, e, i) then
60 abort i, e
61 for (i′, X ′, exponent′) ∈ Shash do
62 if i′ ?

̸= i then
63 continue
64 if exponent ?= “y” and DH3 (X, X ′, i) then
65 Thash[i, X, exponent]← Thash[i′, X ′, exponent′]
66 if exponent ?= “x” and DH3 (X ′, X, i) then
67 Thash[i, X, exponent]← Thash[i′, X ′, exponent′]
68 return Thash[i, X, exponent]

Fig. 14. Reduction B for the proof of Lemma 1.
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A.2 Reduction from ISCDHE to ISCDH

Lemma 2. Given an adversary B against the ISCDHE security of G making QU queries
to Up, QE queries to Exp, Q1 queries to DH1, Q2 queries to DH2, and Q3 queries to
DH3, there is an adversary C against the ISCDH security of G such that

AdvISCDHE
G,B ≤ QUAdvISCDH

G,C .

Adversary C makes at most Q1 queries to its ISCDH DH1 oracle, Q2 queries to its ISCDH
DH2 oracle, and Q3 queries to its ISCDH DH3 oracle.

Game ISCDHC
G

01 g $← G∗

02 x $← Zp

03 y $← Zp

04 Z $← CDH1,DH2,DH3 (g, gx, gy)
05 return Z

?= gxy

Oracle DH1 (X, Z)

06 return Xy ?= Z

Oracle DH2 (Y, Z)

07 return Y x ?= Z

Oracle DH3 (X, Y )

08 return Xy ?= Y x

Fig. 15. The game defining the Independent Strong Computational Diffie-Hellman (ISCDH) assumption. The
game is parametrized by a group G. To win, the adversary C must compute gxy.

We prove this lemma using a simple guess-the-index attack, incurring a multiplicative
security loss with factor QU. The authors of [8] give a reduction from the related assumption
SCDHE to SCDH using rewinding and the random self-reducibility of CDH in Appendix
A.1. With this they achieve a smaller, additive security loss instead. We note that this
technique may be applicable to our ISCDHE to ISCDH reduction as well.

Our reduction C to the ISCDH security of group G is given in Figure 16. It makes a
guess j′ at the index adversary B will use for its submission, and simulates every other
index by generating its own secrets x[i] and y[i]. At index j′, the reduction returns the
ISCDH group elements X∗ and Y ∗ from Up, delegates the calls to the DH oracles to the
ISCDH DH oracles, and rejects calls to Exp. This perfectly simulates the view of B in the
ISCDHE game when j = j′. When adversary B wins the ISCDHE game, we know that
Z = gx[j]y[j], and as such our reduction C wins the ISCDH game when j = j′. Using this
we get that AdvISCDHE

G,B ≤ QUAdvISCDH
G,C .

A.3 Reduction from ISCDH to CDH in a Type 1 Pairing Group

Lemma 3. Given an adversary C against the ISCDH security of G making Q1 queries to
DH1, Q2 queries to DH2, and Q3 queries to DH3, there is an adversary D against the
CDH security of a type 1 pairing group G such that

AdvISCDH
G,C = AdvCDH

G,D .

We prove this lemma by creating the trivial reduction D in Figure 17. The reduction
perfectly simulates the different DH oracles by using the bilinear pairing e. The reduction
returns the value submitted by C, and wins the game if and only if C would have won its
game. Therefore, AdvISCDH

G,C = AdvCDH
G,D .
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Reduction CDH1,DH2,DH3 (g, X∗, Y ∗)
01 v ← −1
02 j′ $← {0, . . . , QU − 1}
03 (j, Z) $← BUp,Exp,DH1Sim,DH2Sim,DH3Sim (g)
04 return Z

Oracle Up
05 v ← v + 1
06 if v

?= j′ then
07 return (X∗, Y ∗)
08 x[v] $← Zp

09 y[v] $← Zp

10 return
(
gx[v], gy[v])

Oracle Exp

11 if v
?= j′ then

12 abort
13 op[v]← “exp”
14 return (x[v], y[v])

Oracle DH1Sim (X, Z, i)

15 if i
?= j′ then

16 return DH1 (X, Z)
17 return Xy[i] ?= Z

Oracle DH2Sim (Y, Z, i)

18 if i
?= j′ then

19 return DH2 (X, Z)
20 return Y x[i] ?= Z

Oracle DH3Sim (X, Y, i)

21 if i
?= j′ then

22 return DH3 (X, Z)
23 return Xy ?= Y x

Fig. 16. Reduction C for the proof of Lemma 2.

This reduction essentially necessitates the use of pairing groups in our concrete scheme
without any obvious purpose, other than being an artifact of the security proof. Pairing
groups are utilized in many cryptographic schemes [12], but their application is occasionally
problematic. As discussed in [13] and [14], the “black box” application of pairing groups
in cryptographic schemes can sometimes cause issues related to efficiency, instanciability,
and security. According to [14], a type 1 (symmetric) pairing with a large characteristic,
p, would achieve instanciability and security for our scheme, at the cost of efficiency. We
note that work has been done in regards to generic and automatic translation of schemes
using type 1 pairings to schemes using the more efficient type 3 pairings [5] [3], but these
are seen to be less efficient than a manual translation according to [14].

Reduction D (g, X∗, Y ∗)

01 Z $← CDH1,DH2,DH3 (g, X∗, Y ∗)
02 return Z

Oracle DH1 (X, Z)

03 return e (X, Y ∗) ?= e (Z, g)

Oracle DH2 (Y, Z)

04 return e (Y, X∗) ?= e (Z, g)

Oracle DH3 (X, Y )

05 return e (X, Y ∗) ?= e (Y, X∗)

Fig. 17. Reduction D for the proof of Lemma 3.
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