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Abstract

This master thesis investigates the application of Physics Informed Neural Networks
(PINNs) for uncertainty quantification in poroelastic problems. The main research ques-
tion focuses on evaluating the accuracy and computational efficiency of PINNs, specifically
in comparison to traditional numerical methods and commercial Finite Element Method
(FEM) programs. The overarching objective is to assess the potential benefits of PINNs for
uncertainty quantification and statistical analysis of high-dimensional transient problems
and their suitability for solving forward and inverse problems.

The thesis presents the results obtained from testing PINNs on several poroelastic prob-
lems. The investigated problems include simple 1D and 2D uncoupled consolidation prob-
lems where the total stresses are assumed to be constant, as well as a more advanced
coupled 2D problem. The coupled 2D consolidation problem was solved using a sequential
model split, where the partial differential equations (PDEs) describing the flow problem
of the fluid and the PDEs describing the equilibrium equations of the soil were solved it-
eratively. The PINN model demonstrates its capability to accurately capture the physical
behavior of all three problems. Notably, the PINN model showcases its ability to learn
and represent advanced poroelastic phenomena even in the absence of data.

While the accuracy of forward computations using PINNs is found to be slightly lower than
that of commercial FEM programs, the overall results are promising. The PINN model
successfully captures the essential physical behavior of the poroelastic problems tested,
making it a valuable tool for simulations. The computational efficiency of PINNs signif-
icantly outperforms traditional numerical methods once the model is trained, providing
substantial time savings.

In conclusion, this study establishes the potential of PINNs as a computational tool for
expensive simulations in poroelastic problems. Despite minor differences in accuracy com-
pared to commercial FEM programs, PINNs offer a sufficient level of accuracy for many
practical applications. The exceptional computational efficiency of PINNs, combined with
their ability to handle high-dimensional problems, positions them as a promising approach
for uncertainty quantification, parameter estimation, and similar simulation tasks of poroe-
lastic phenomena.

Keywords: Physics Informed Neural Networks (PINNs), uncertainty quantification, max-
imum likelihood estimation, poroelastic problems, computational efficiency.
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Sammendrag

Denne masteroppgaven utforsker anvendeligheten til Fysikk informerte Neurale Nettverk
(PINNs) for å kvantifisere usikkerhet og parameterestimere i typiske problemstillinger
knyttet til poroelastisitet. Hovedfokuset til oppgaven er å evaluere nøyaktigheten til
predikeringen av modellen, samt beregningsmessig effektivitet. Disse prestasjonsm̊alene
har blitt brukt i en sammenligning med tradisjonelle numeriske metoder og kommersielle
elementmetode (FEM) program. Det overordnede form̊alet med oppgaven er å vurdere
potensielle fordeler med bruk av PINNs for flerdimensjonale transiente analyser, samt
brukbarheten i vanlige beregninger og inverterte problemstillinger.

Oppgaven presenterer resultater fra bruk av PINNs for å løse flere klassiske problemer knyt-
tet til poroelastisitet. De løste problemene varierer fra enkle en- og todimensjonale kon-
solideringsproblemer hvor totalspenningene er antatt å være konstante til en mer avansert
todimensjonal problemstilling hvor vannstrømning og deformasjon av løsmassene p̊avirker
hverandre. Det koblede problemet ble løst med en sekvensiell PINN modell, hvor de
partielle differensialligningene som beskriver vannstrømningen og likevekstligningen for
løsmassene ble løst iterativt. Resultatene fra modellenes prediksjoner viser at PINNs er
kapabel til å lære alt fra en- og todimensjonal diffusjon, til likevektsligninger, til koblede
likningssett med transiente partielle differensialligninger, helt uten data.

Nøyaktigheten til beregningene med bruk av PINNs ble vist å være litt lavere enn beregnin-
gene til kommersielle FEM program, men generelt er resultatene lovende. PINN modellen
klarer å lære de grunnleggende fysiske fenomenene som beskriver de ulike problemene, noe
som gjør det til et verdifullt verktøy for simulering av problemer med usikre parametre.
Tidsbruken som g̊ar med for å gjøre en prediksjon med PINNs etter at den er ferdig trent
er betydelig lavere enn tilsvarende beregning med tradisjonelle numeriske metoder. Dette
gir betydelige tidsbesparelser for statistiske analyser av probabilistiske problemer, noe som
resultatene og diskusjonen viser.

Konklusjonen er at resultatet av denne masteroppgaven viser potensialet til PINNs som
beregningsverktøy for beregningskrevende simulering av probabilistiske poroelastiske prob-
lemer. Sett bort i fra sm̊a forskjeller i nøyaktighet sammenlignet med kommersielle FEM
program, viser resultatene at PINNs nøyaktighet vil være godt nok for bruk i mange prak-
tiske situsjoner. Den eksepsjonelle beregningseffektiviteten, kombinert med egenskaper
som kan takle flerdimensjonale optimaliseringsproblemer, tilsier at PINNs er en lovende
metode for usikkerhetskvantifisering, parameteroptimalisering og andre simuleringsopp-
gaver, innen poroelastiske og andre geotekniske problemstillinger.
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1 Introduction

1.1 Background

Poroelasticity is the study of the interaction between a fluid and a porous solid, which
has important applications in various fields, such as soil mechanics, engineering geology,
reservoir engineering, biomechanics, and other related engineering fields. In many cases,
understanding the behavior of poroelastic interaction requires solving complex partial dif-
ferential equations (PDEs), which can be computationally expensive and time-consuming.
Recently, there has been growing interest in using Artificial Neural Networks (ANN) to
approximate the solutions of these PDEs, leading to the development of Physics-Informed
Neural Networks (PINNs). Combining observed data with governing physical laws allows
for efficient modeling of both forward and inverse problems. This is especially useful for
scientific fields which require efficient surrogate models or engineering fields working with
uncertain parameters.

The interaction between fluid flow and deformation in porous media gives rise to complex
phenomena characterized by inherent uncertainties. Accurate estimation of parameters
such as hydraulic conductivity, porosity, and elastic properties is essential for predict-
ing the behavior of poroelastic systems. However, these parameters exhibit spatial and
temporal variability, posing challenges in their characterization and quantification. Uncer-
tainties arising from sources such as measurement errors and model assumptions further
contribute to the overall uncertainty in poroelastic analysis. Therefore, rigorous quan-
tification and propagation of uncertainty in poroelastic modeling are crucial for reliable
predictions and informed decision-making in geotechnical engineering. Incorporating the
temporal variability of parameters and addressing uncertainties could benefit the entire
field of geotechnical engineering, enabling the design and assessment of geotechnical works
under transient conditions with improved accuracy and robustness.

Dealing with uncertainty is a crucial aspect of geotechnical engineering, particularly in
the context of parameter and model uncertainty. Accurate in-situ measurements and
laboratory tests of soil behavior are both difficult and costly. In regards to poroelasticity,
which is often associated with transient problems like consolidation or fluid injection,
both parameter and model uncertainty are present. Additionally, uncertainties regarding
changes in external factors like external loading, groundwater conditions, climate, and
surrounding development may require extensive scenario analyses.

The importance of model accuracy in the context of uncertainty quantification and op-
timization problems cannot be overstated. In the domain of uncertainty quantification,
precise and trustworthy estimations of uncertainties associated with input parameters or
variables are of great value. Achieving a high degree of accuracy in the model ensures
that the quantified uncertainties possess a commendable level of reliability. Consequently,
decision-makers can make well-informed choices based on the confidence levels derived
from the model. Likewise, in the field of optimization problems, accurate models facilitate
the generation of precise predictions and evaluations of functions and constraints. Such
accuracy proves instrumental in enabling efficient and effective optimization processes, as
it guides the search for optimal solutions, mitigating the need for excessive iterations and
minimizing computational costs. In both uncertainty quantification and optimization, the
dependability and resilience of outcomes are dependent upon the accuracy of the under-
lying model, thereby making the accuracy a critical factor for the successful resolution of
complex problems and the facilitation of well-informed decision-making.
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1.2 Research objectives

The primary aim of this thesis is to investigate the applicability of PINNs as effective
numerical approximators for uncertainty quantification in problems related to poroelas-
ticity. To evaluate the performance of a numerical model, the main criterion is usually its
accuracy in describing the physical behavior. However, computational efficiency is almost
equally important for uncertainty quantification, particularly when dealing with exten-
sive simulation and optimization tasks necessary for evaluating the statistical moments or
finding the optimal solution with multiple variables.

To evaluate the viability of PINNs in this context, several performance criteria will be
addressed. First and foremost, the accuracy of PINNs as numerical approximators will be
assessed to ensure reliable predictions and realistic modeling of the physical phenomena.
Additionally, precision, referring to the ability of PINNs to provide precise estimations
and capture subtle variations, will be examined. Efficiency will also be considered, assess-
ing the computational effectiveness of PINNs compared to traditional numerical methods
and analytical approximation. Furthermore, the interpretability and explainability of
the PINN-based approach will be frequently evaluated and discussed, with the objective
of gaining insights into the model’s learning ability and exploring potential benefits or
shortcomings. By addressing these performance criteria, this research aims to provide a
comprehensive understanding of the potential benefits and limitations of PINNs in tasks
related to uncertainty quantification for poroelastic problems.

1.2.1 Sub objectives

To evaluate these performance criteria, the following tests were conducted

• PINNs performance in predicting problems related to Terzhagi’s one-dimensional
(1D) consolidation theory was tested by comparisons with traditional numerical
methods and approximation of the analytical solution. Particularly the models’
ability to interpolate and extrapolate the learning from the training was tested, to
evaluate one of the core advantages of PINNs compared with FEM.

• PINNs behavior when exposed to probabilistic variables was tested and compared
with simulations of the analytical solution, both in terms of accuracy and computa-
tional efficiency.

• PINNs efficiency and accuracy in solving inverse problems through parameter esti-
mation was tested. Both for solving a deterministic problem and uncertainty quan-
tification for noisy measurements.

• Lastly, PINNs performance in solving two-dimensional (2D) transient problems of
coupled and uncoupled flow-deformation problems in consolidation theory was eval-
uated and compared with FEM results. The model’s performance in the coupled
problem serves the purpose as a benchmark for how advanced poroelastic models it
is able to learn without data, and with limited computational power.

1.3 Limitations

While this thesis delves into the investigation of poroelasticity, it is important to acknowl-
edge the limitations of the scope of this research. Firstly, the analysis is restricted to
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the application of poroelasticity, which by definition is limited to elastic materials. The
focus primarily revolves around materials with highly compressible pores, thereby plac-
ing relatively less emphasis on the compressibility of the solid and fluid. Moreover, this
research predominantly addresses fully saturated problems, assuming the fluid to be wa-
ter. Consequently, the findings and conclusions of this thesis should be interpreted within
the confines of these limitations, which may impact the generalizability of the results to
scenarios involving different material characteristics, nonlinear behavior, or diverse fluid
compositions.

Due to limited computational power and memory capacity, only problems demanding less
than 6GB RAM were possible to compute. This rules out most three-dimensional (3D)
problems and some 2D problems because of the memory-demanding storage of weights
and tensors during training. This is also the reason why the problems with additional
input parameters were done for the 1D consolidation problem, and not 2D.

The primary aim of this thesis is to investigate the capability of PINN as a numerical tool.
Therefore, the discussion will mainly focus on the relevant topics linking neural networks
and numerical methods. PINNs and other machine learning models’ efficacy in data-rich
scenarios, such as image classification or unsupervised pattern recognition, is beyond the
intended scope of this thesis.

3



2 Theory

The theory chapter is divided into two main subcategories: poroelasticity and PINNs.

The chapter on poroelasticity gives a brief overview of the relevant theory on soil mechan-
ics, fluid flow in porous media, and how they are combined in poroelastic theory.

The chapter on PINNs gives a brief introduction to ANNs in general, to establish the
theoretical foundation PINNs are built off of. This section emphasizes the primary dis-
tinctions between ANNs and PINNs, highlighting the unique aspects, advantages, and
challenges of PINNs. Furthermore, the theory behind computational methods for uncer-
tainty quantification and parameter estimation is presented, supplementing the theory on
PINNs. Some basic aspects of the relationship between data or measurements and PINNs
are also mentioned, with some relevant examples from poroelastic problems to bridge the
gap between the sections.

2.1 Poroelasticity

Poroelasticity is commonly associated with consolidation processes, fluid injection, reser-
voir engineering, and other fields where fluid interacts with or flows through a porous
media (Cheng, 2016). Consolidation theory is an important sub-field of soil mechanics
because it is used to describe the long-term settlement of low-permeable soil. For soil
mechanics purposes, the porousness and the elasticity of the soil material are the fun-
damental material properties in regard to poroelastic computations. The porousness of
a soil material is dependent on grain size, grain shape, and degree of compaction. This
implies that in regard to poroelasticity, fine-grained materials and coarse materials behave
inherently differently.

2.1.1 Isotropic elasticity

Elasticity is the most common and basic mathematical framework describing the mechan-
ical behavior of a material in both soil mechanics and continuum mechanics in general.
The common form of elasticity assumes a linear stress-strain relationship, isotropic ma-
terial, and small deformations (Irgens, 2008). All governing equations in this theory are
linear partial differential equations, which means that the principle of superposition may
be applied.

The general form of Hooke’s law, relating stresses and strains for an elastic material, is

σij = cijklεkl (1)

The strain tensor, εij for infinitesimal strains, is defined as

εij =
1

2
(ui,j + uj,i) (2)

Isotropic conditions in elasticity theory refer to the assumption that the material’s stiffness
properties are uniform in all directions. The stiffness tensor cijkl for isotropic conditions
is defined as
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cijkl =
3K − 2G

3
δijδkl +G(δikδjl + δilδjk) (3)

where K is the bulk modulus and G is the shear modulus, defined as

K =
E

3(1− 2ν)
(4)

G =
E

2(1 + ν)
(5)

Inserting Equation (3) in Hooke’s law from Equation (1) gives

σij =
3K − 2G

3
δijεkk +G(εij + εji) (6)

By assuming small strains and isotropic conditions, the normal strain components can be
added together to approximate the volumetric strain (Cheng, 2016).

εv =
∆V

V
≈ ε11 + ε22 + ε33 = ∇ · u (7)

The deviatoric part of the total strain tensor can followingly be defined as

ε̄ij = εij − δij
εv
3

(8)

where δij is the Kronecker delta function defined as

δij =

{
1 if j = i

0 if j ̸= i
(9)

Similarly for stress, defining the mean isotropic total stress p as

p =
σ11 + σ22 + σ33

3
(10)

gives the deviatoric stress as

σ̄ij = σij − δijp. (11)

2.1.2 Effective stress

The first underlying assumption of poroelasticity, as first introduced by Terzahgi, is that
the total stress affecting an isotropic soil body can be decomposed into effective stress
caused by intergranular contact of particles in the soil skeleton and the pressure exerted
by the fluid in the pores (Skempton, 1984).
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σij = σ′
ij + αpwδij (12)

This calls for a secondary definition of mean isotropic stress, namely mean isotropic effec-
tive stress

∆p′ =
∆σ′

11 +∆σ′
22 +∆σ′

33

3
(13)

The volumetric stress-strain relation for small strains can then be described as

∆p′ = K∆εv (14)

For geotechnical engineering purposes, the relevant fluids are both liquid and gas. There-
fore, soils are in general a three-phase material of solid grains surrounded by pores filled
with air and water. The Biot coefficient α from equation (12) can be used to consider the
effect of compressible pores in relation to the solid particles

α = 1− K

Ks
(15)

For soils with high porosity, the bulk modulus of the solid particles is much larger than
the material as a whole. The Biot coefficient will therefore typically be set to one for soft
soils like clay and silt, and close to one for granular soil.

2.1.3 Isotropic plane strain conditions

Plane strain conditions are perhaps the most common assumptions when modeling 3D
problems in 2D. The assumption is that the out-of-plane strain is zero, i.e. ε22 = 0.
This is realistic for problems with loading in one plane and a relatively large width in
the direction of the zeroed strain component (Irgens, 2008). For problems where isotropic
plane strain conditions can be assumed, Hooke’s law reduces to

σ′
ij =

3K − 2G

3
δijεkk + 2G(εij) (16)

where σ′
12 = σ′

21 because of symmetry. In matrix form, this is equivalent to

σ′
11

σ′
22

σ′
12

 =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

ε11ε22
ε12

 (17)

Similarly, the strain vector reduces to

ε11ε22
ε12

 =


∂u1

∂x1

∂u2

∂x2

1

2

(
∂u1

∂x2
+

∂u2

∂x1

)

 (18)

where ε12 = ε21 because of symmetry.
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2.1.4 Undrained conditions

Introducing external loading to a soil material in equilibrium will, in accordance with
equation (12), be balanced by increased effective stress and pore pressure. For soils with
a high Biot coefficient, the deformation of the soil is almost exclusively due to compaction
of the pore space. This causes a high initial increase in pore pressure if the loading is
applied faster than the velocity of the fluid in the pores. For an instant loading of soil
with α = 1, all strains depend solely on the pore fluid’s bulk modulus (Nordal, 2020).

Pores filled with both air and water will, on the other hand, typically have Kw << inf
thus resulting in α < 1, and therefore contract upon loading causing immediate volume
reduction (Skempton, 1984). Pores filled with only water will have a large bulk modulus
and therefore barely contract, causing in many cases negligible volume change. According
to Hooke’s law from equation (1), stress is dependent on strain, so declaring ∆εv = 0
simultaneously declares a change in mean stress in the soil skeleton ∆p′ = 0. Fluids are
on the other hand exerting pressure regardless of volume change. So for instant loading
of a fully saturated soil body, the change in normal total stress at t = 0 is

δij∆σij = δij∆pw . (19)

The assumption that water cannot take any shear stresses from equation 12 still holds,
which implies that the grain skeleton takes all shear stresses

(1− δij)∆σij = (1− δij)∆σ′
ij . (20)

This short-term undrained condition can last from seconds in highly permeable soil to
months in low permeable soil.

Numerical modeling of undrained conditions is often done with an alternative set of
parameters. For realistic scenarios, ∆εv ̸= 0 due to somewhat compressible fluid and
solid (Nordal, 2020). The FEM program Plaxis 2D offers multiple options for modeling
the short-term stress-strain relationship. For undrained effective stress analysis, called
undrained A in Plaxis, there are two primary ways to define the undrained parameters.
One of the alternatives is to define the material’s Biot parameter α and water bulk mod-
ulus Kw (Skempton, 1984). The alternative, which is the default option, is to define
limν→0.5 so that the bulk modulus limKu→∞. To avoid singularity in the stiffness matrix,
the default value for ν is 0.495. Further is Skempton’s B-parameter, relating the rate of
change in excess pore pressure and rate of change in mean total stress, ∆u = B∆p defined
as

B =
α

α+ n
(

K
Kw

+ α− 1
) . (21)

Inserting Skempton’s B-parameter in Equation (12) gives the relation between mean ef-
fective and total stress defined in Equation (13) and (10) (Skempton, 1984).

∆p′ = (1− αB)∆p (22)
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2.1.5 Equation of motion

Based on the assumptions of balanced linear and angular momentum, the equation of
motion for continuous materials is the Cauchy equation of motion (Irgens, 2008).

σij,j + ρbi = ρai (23)

Equivalently in matrix notation

∇ · σ + ρb = ρa (24)

Combining Hooke’s law (1) and the relation between effective stress and total stress from
Equation (12) gives a combined equation of stress, strains, and pore pressure

∆σij = cijklεkl + δijα∆pw (25)

For isotropic plane strain conditions as Equation (16), this is simplified to

σij =
3K − 2G

3
δijεkk + 2G(εij) + δijα∆pw (26)

which can be rewritten as

σij = δij(Kεkk + α∆pw) + 2G(εij −
1

3
δijεkk) (27)

Inserting the displacement tensors for the strains in the latter expression yields

εij −
1

3
δijεkk =

1

2
(ui,j + uj,i)−

1

3
ui,i = δij

1

6
∇ · u+

1

2
∇Tu (28)

Inserting the expression of strain, displacement and pore pressure for the stress tensor in
the equation of motion (23), and utilizing the Laplace-operator

δij
1

6
∇ · (∇ · u) = δij

1

6

∂εvol
∂xi

1

2
∇ ·∇Tu =

1

2
∇2ui

(29)

gives the Navier equations for the displacement field

(
K +

G

3

)
∂εvol
∂xi

+ α
∂pw
∂xi

+G∇2ui + ρbi = ρai. (30)

By enforcing equilibrium, i.e. the acceleration a is prescribed to zero, the equations of
equilibrium in the differential form are obtained (Cheng, 2016). Written out, the 2D
equilibrium equations for isotropic plane strain conditions are (Verruijt, 2016).
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(
K +

G

3

)
∂εvol
∂x1

+ α
∂pw
∂x1

+G∇2u1 + ρb1 = 0(
K +

G

3

)
∂εvol
∂x2

+ α
∂pw
∂x2

+G∇2u2 + ρb2 = 0.

(31)

Equivalently, the equations in regard to stresses are

∂σ11
∂x1

+
∂σ12
∂x2

+ f1 = 0

∂σ22
∂x2

+
∂σ12
∂x1

+ f2 = 0

(32)

2.1.6 Flow in porous media

Fluid flow in porous media is highly dependent on the degree of saturation, the permeabil-
ity of the soil, and the pressure distribution. The governing equation for incompressible
fluid flow through porous media is Darcy’s law (Whitaker, 1986).

qi = −
κij
µf

(∇pf − ρfgi) (33)

where qi is the Darcy velocity, κij is the permeability tensor of the soil, µf is the viscosity of
the fluid, ρf is the mass density of the fluid and gi is the gravity tensor. In soil mechanics,
the permeability kij is commonly given as hydraulic conductivity

kij = κij
ρfgi
µf

(34)

which reduces Darcy’s law to

qi = −
kij
γf

(∇pf − ρfgi) = −kij∇h (35)

by assuming gravity in one direction and introducing the hydraulic head h = pfγ
−1
f + z,

where z is the elevation head in the direction of gravity. By enforcing mass conservation
for both the fluid and the solid, the net change of mass in a soil body can be described by
the storage equation (Verruijt, 2016).

∇qi +
∂εv
∂t

+ n

(
1

Kf
− 1

Ks

)
∂p

∂t
+

1

Ks

∂pf
∂t

= 0. (36)

where p is the isotropic mean stress from equation (14) and n is the porosity. By substitut-
ing ∇qi with Darcy’s law from Equation (35), a second-order partial differential equation
is obtained (Verruijt, 2016).

α
∂εv
∂t

+ S
∂pf
∂t

= ∇
(
kij
γf
∇pf

)
(37)
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Equation (37) is commonly known as the storage equation, which describes transient fluid
flow in porous media. The storage equation is a coupled PDE, which involves solving a
differential equation for two functions simultaneously. In this case, this means that the
deformation of the soil material affects the fluid flow and vice versa. Coupled PDEs are
notoriously hard to solve, and numerical approximations are computationally expensive
since multiple equations have to be solved simultaneously. The methods for solving coupled
flow-deformation problems can be divided into two categories, fully coupled methods and
sequential methods (Kim et al., 2011). Fully coupled methods solve the coupled problem
simultaneously for small time increments, whereas sequential methods divide the coupled
problem into a set of smaller equations that can be solved separately and then couple
the physical behavior by updating the overlapping parameters through iteration back and
forth. The stability of two possible sequential methods, fixed-strain and fixed-stress split,
were evaluated in a study by Kim et al. (2011). The findings showed that the fixed-stress
split was stable for α ≥ 0.5, where α is the control parameter of the time integration via
the generalized midpoint rule. The fixed-strain split, on the other hand, showed instability
for fully coupled flow-deformation. Both methods involve solving the flow problem first,
and then the equilibrium equations using the results from the flow problem.

Algorithm 1 Sequential solver

1: procedure Fixed-strain split(uinit, εv,init)
2: u = uinit
3: εv = εv,init
4: for n number of iterations do
5: Solve storage equation for u(δε̇v = 0)
6: u← Storage equation

7: Solve equilibrium equations for εv(u)
8: εv ← Equilibrium equations

9: procedure Fixed-stress split(uinit, pinit)
10: u = uinit
11: p = pinit
12: for n number of iterations do
13: Solve storage equation for u(δṗ = 0)
14: u← Storage equation

15: Solve equilibrium equations for p(u)
16: p← Equilibrium equations

2.1.7 Uncoupled consolidation

There are two main assumptions that can simplify the coupled storage equation to an
uncoupled consolidation equation.

If only the vertical displacement of the surface is of interest, and the load covers a relatively
large surface area compared with depth, the horizontal strains εxx and εyy can be assumed
to be negligible (Nordal, 2020). Strain in one direction causes

∂εv
∂t

=
∂εzz
∂t
∝ ∂(σzz − u)

∂t
(38)

If the vertical total stress is constant in time, the storage equation (79) effectively reduces
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to a 3D transient diffusion equation (Verruijt, 2016).

∂u

∂t
= Cx

∂2u

∂x2
+ Cy

∂2u

∂y2
+ Cz

∂2u

∂z2
(39)

Another possible uncoupling assumption is that the total isotropic stress stays constant
in time (Verruijt, 2016). The result is the same as for horizontally confined problems

∂εv
∂t
∝ ∂(p− u)

∂t
=

∂(−u)
∂t

(40)

With strain in two directions,

∆εv =
∆u

K
(41)

Inserting (41) in the storage equation gives a similar equation to (39), but the bulk modulus
replaces the consolidation coefficients(

1

K
+ S

)
∂u

∂t
=

kx
γw

∂2u

∂x2
+

ky
γw

∂2u

∂y2
+

kz
γw

∂2u

∂z2
(42)

2.2 Physics-Informed Neural networks

The following chapter is based on a project work by Haga (2022). The chapter starts by
introducing and defining hybrid modeling, an overarching discipline of various modeling
techniques, which includes PINNs. Followingly, Artificial Neural Networks (ANNs) are
introduced, providing a comprehensive discussion of their general aspects as well as the
specific components relevant to PINNs.

2.2.1 Hybrid modelling

When developing or designing material products or structures, computational models and
simulations are commonly used to simulate physical behavior. The classical method,
physics-based models, uses numerical methods to solve problems defined by mathematical
equations. The emerging alternative method is data-driven modeling, which utilizes data
from measurements or simulations to create predictions for new scenarios through high
dimensional interpolation (Kurz et al., 2022). Combining the two approaches creates a
new third methodology, commonly called hybrid modeling.

As illustrated in Figure 1, hybrid modeling can be defined as models that combine physics-
based computation and data-driven computation in one model architecture. This defini-
tion includes PINNs, so PINNs can be regarded as a methodology within hybrid modeling.
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Figure 1: An illustration of hybrid modeling as the intersection between data-driven and physics-
based modeling. Figure from Haga (2022).

The focus in this thesis going forward will be on PINNs specifically, but due to loose
definitions, a lot of the theoretical basis overlaps with for instance scientific machine
learning. Based on the definitions in Kurz et al. (2022), PINNs is a methodology within
scientific machine learning, which, in turn, is a methodology within hybrid modeling,
demonstrating its hierarchical nature within the broader field of computational modeling.

2.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are among the most widespread types of machine
learning due to their versatility and effectiveness (Engelbrecht, 2007). ANNs are in general
algorithms whose functionality is designed to mimic that of the human brain. The primary
objective for ANNs is to utilize the large processing power of modern-day computers with
the human capability of pattern recognition and rationality.

ANNs are commonly categorized after functionality. For hybrid modeling, the most rele-
vant methodology is Feedforward Neural Networks (FNN). FNNs are capable of serving
as universal function estimators because of their abilities in dimension reduction and rec-
ognizing non-linear relations between input and output. FNNs have gained the most
attention for use in regards to hybrid modeling, but some research exists on utilizing re-
cursive neural networks for sequential time series analysis, like this research from Wu et al.
(2022) for NVIDIA.

Due to the scope of this thesis, ANNs will imply FNN models for further reading.

2.2.3 Architecture

The architecture of an ANN algorithm is a design inspired by the biology of the human
brain. It consists of linked neurons, where information flows in the form of mathematical
matrix operations (Russell and Norvig, 2009). Figure 2 shows a simple network architec-
ture where the inputs are connected to a network of neurons which again is connected to
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the output. The illustration shows one sample with h number of inputs and h∗ number of
outputs, and a network of n x m neurons. Models with more than one hidden layer are of-
ten associated with the term deep learning, as opposed to shallow networks or perceptrons
which respectively consist of one hidden layer and only one neuron.

Figure 2: An illustrative example of a simple ANN architecture. Figure from Haga (2022).

2.2.4 Flow of information in forward propagation

Forward propagation or forward pass, are terms used to describe the information flow
when the model predicts output from input (Russell and Norvig, 2009). The size of the
input layer, h in Figure 2, is determined by the dimensionality of the problem. More
rigorously, for an h-dimensional problem space, the input layer can be represented by an
h x 1 vector. Each link, indicated by black lines in Figure 2, between inputs, neurons,
and output consists of a scalar value, as illustrated in Figure 3. These links are commonly
denoted weights. The weights determine the relative contribution each input and each
neuron should have in determining the output of the next neuron or the entire model. The
weights can effectively be represented using matrix or tensor notation, because of their
tight structure and symmetry. This facilitates both effective computation and efficient
data storage. The notation differs depending on the network architecture. If the number
of neurons in the hidden layers is constant, one weight tensor can describe all connections
between neurons. The first and last weight tensor is usually defined separately.

Figure 3: An undirected flowchart of information in a simple ANN model. Figure from Haga
(2022).

The role of neurons in the information flow can be described mathematically as summing
the incoming weighted information, adding bias, and calculating its output with an acti-
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vation function. For the first hidden layer in a model with h inputs, this can be written
as:

z1j =

h∑
i=1

ŵij × ai + b1j (43)

The neuron calculates its output based on an activation function with zkj as input. A
specific activation function may be chosen for individual neurons, layers, or globally for
the entire model.

Neuronk
j : fk

j (z
k
j ) = ykj (44)

For hidden layer k:

zkj =

n∑
i=1

wk−1
ij × yk−1

i + bkj (45)

For the output layer:

ẑj =
n∑

i=1

ŵ∗
ij × ymi + b̂j (46)

The activation function determines the size of the output and may deactivate the output
altogether. The choice of activation functions is dependent on the nature of the prob-
lem, network size, and desired computational efficiency. Activation functions are further
discussed in relation to PINNs in chapter 2.3.3.

2.2.5 Training process

The training process of an ANN is dependent on whether the learning is supervised or
unsupervised (Goodfellow et al., 2016). Supervised learning involves feeding the model
labeled input and output data, to train the model in seeing recurring patterns between the
value of the inputs and the value of the belonging outputs. Unsupervised learning involves
feeding the model unlabeled input and output, thus training the model to explore patterns
by itself and not make it dependent on provided solutions. For PINNs, the training is more
similar to supervised learning than unsupervised, mostly due to the data being labeled.

Before the training starts, the dataset is usually normalized and split into training, valida-
tion, and testing sets. The normalization of the dataset is usually making sure the inputs
and outputs are of roughly the same magnitude. Preprocessing will be further elaborated
in the chapter on PINNs, due to some unique challenges and possibilities. After the pre-
processing, the network architecture and hyperparameters should be determined based on
the dimensionality of the input and the complexity of the relation between input and out-
put. Hyperparameters are the user-specified parameters in the network. The counterpart
is parameters, which the model evaluates by itself during the training.

The training phase in supervised learning is similar to an optimization problem through
trial and error. When training starts, the weights and biases are initialized, and the first
batch of labeled input is sent through the forward pass. The forward pass ends with a
predicted output, which is evaluated against the labeled output data with a loss function.
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Relevant loss functions for regression analysis are:

Mean Square Error: (MSE) =
1

n

n∑
i=1

(yi − ŷi)
2 (47)

Mean Absolute Error: (MAE) =
1

n

n∑
i=1

(|yi − ŷi|) (48)

Mean Square Logarithmic Error: (MSLE) =
1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (49)

MSE MSE is considered to be the default loss function because of its simplicity and history
in classic statistical methods (Russell and Norvig, 2009). MSE computes the square of
the error, which may be unfortunate for predictions of data with many outliers.MAE is a
variant of MSE that works better with outliers but is only first-order differentiable. MSLE
is another option, which provides a relative error estimate. It also introduces asymmetry
where underestimation yields a bigger loss than overestimation. This can be useful in
reliability analysis for engineering purposes.

ANNs use the total loss from the loss function to train the model through backpropagation
(Russell and Norvig, 2009). After the first prediction, when the error is calculated, the
system starts backcalculating the gradients of the loss function in regard to the model
parameters. The gradients are calculated with automatic differentiation, which effectively
calculates the derivatives based on the chain rule (Raissi et al., 2017).

The gradients of the weights in the output layer can be described mathematically as:

∂E

∂ŵij
=

∂E

∂ŷj

∂ŷj
∂ẑj

∂ẑj
∂ŵij

(50)

where the loss function is defined as E(yi, ŷi).

The gradients in the hidden layer before the output layer can be described as:

∂E

∂wm
ij

=
∂E

∂ŷj

∂ŷj
∂ẑj

∂ẑj
∂ŷmj

∂ymj
∂zmj

∂zmj
∂wm

ij

(51)

The gradients in hidden layer r can be described as:

∂E

∂wr
ij

=
∂E

∂ŷj

∂ŷj
∂ẑj

∂ẑj
∂ymj

∂ymj
∂zmj

∂zrj
∂wr

ij

m−1∏
l=r

∂zl+1
j

∂ylij

∂ylj

∂zlj
(52)

The gradients of the loss in regard to the biases, ∂E
∂brj

, are calculated in a similar pattern.

By definition, gradients quantify the impact of a small change in a system. In the context
of backpropagation in ANNs, if parameters associated with large gradients undergo a small
change, it will have a relatively large effect on the result of the loss function (Raissi et al.,
2017). This suggests that optimizing these parameters is beneficial. These parameters,
namely weights and biases, are updated through optimization algorithms.

Optimization algorithms seek to minimize the loss function, which in turn reduces the
model error and increases performance. Numerous mathematical optimization techniques
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exist, many of which are suitable for ANNs. The primary method, accompanied by var-
ious variants, is gradient descent. This approach utilizes gradients computed through
automatic differentiation during backpropagation to iteratively update the model param-
eters. The gradient descent algorithm traverses in the negative direction within the space
of E(yi, ŷi), as depicted in Figure 4. The learning rate η determines the magnitude of
changes in weights and biases during this iterative process. A larger η may lead to faster,
but inaccurate convergence. Smaller η, on the other hand, may get stuck in local minima.

∆wr
ij = −η

∂E

∂wr
ij

(53)

wr
ij,(Updated) = wr

ij,(Old) +∆wr
ij (54)

∆brj = −η
∂E

∂brj
(55)

brj,(Updated) = brj,(Old) +∆brj (56)

Figure 4: A simple illustration of gradient descent. Figure from Haga (2022)

Deep neural networks often consist of large architectures, resulting in complex gradients as
depicted in equation 52. However, evaluating gradients for the entire dataset at each iter-
ation is impractical due to computational cost. To address this, a common approach is to
employ a variant of gradient descent known as stochastic gradient descent (Bottou, 2012).
Stochastic gradient descent involves randomly selecting a single input instead of using
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the entire training set, which significantly accelerates computation and reduces memory
requirements. On the other hand, introducing randomness and using small samples may
lead to noisy predictions.

To strike a balance between efficiency and accuracy, most optimizers based on stochastic
gradient descent employ mini-batches, which involve using subsets of data rather than
individual samples (Brownlee, 2018). This approach offers a trade-off between computa-
tional speed and accuracy. The size of the random subset, known as the batch size, can
be adjusted as a hyperparameter.

Both Tensorflow and PyTorch provide built-in optimizers, with the most popular options
being variants of stochastic gradient descent. One widely used optimizer is the Adam opti-
mizer, which combines stochastic gradient descent with an adaptive learning rate (Kingma
and Ba, 2014). Adam utilizes the first and second statistical moments of the gradients to
dynamically adjust the learning rate based on the characteristics of the gradients. This
adaptive approach enables larger steps at the beginning and smaller steps as the optimizer
approaches a potential global minimum.

In addition to the mentioned hyperparameters, there are some tuning parameters related
to the learning process. The number of epochs determines how many times the training
dataset is processed by the network during training (Brownlee, 2018). Increasing the
number of epochs often leads to better predictions of the training set and a decrease in
the loss function. However, using a high number of epochs can result in overfitting, where
the model becomes excessively specialized to the training data.

The iterations per epoch, calculated as the number of epochs divided by the batch size,
is important to consider when fixing number of epochs and batch size. Understanding
the relationship between epochs and batch size is particularly important in the context of
the backpropagation mentioned earlier. Utilizing numerous epochs and small batch sizes
results in a higher number of forward- and backpropagation iterations, in turn leading to
increased computational costs. Consequently, the selection of the number of epochs and
batch size should be made with consideration to their interdependence.

Another important aspect of training the ANN is how to initialize the weights and bi-
ases (Glorot and Bengio, 2010). A poor choice of weight initialization may cause slower
convergence or even divergence. If the weights are initialized to small or large values,
the gradients may vanish or explode during the backpropagation. Symmetric weight ini-
tialization should be avoided to reduce the risk of symmetric learning which could cause
ineffective neurons. Glorot and Bengio (2010) proposed a popular weight initialization
that ensures small values, non-symmetry and scales the standard deviation of the weights
according to the input and output size of the network.

wn
ij ∼ N

(
µ = 0, σ =

√
2

h+ h∗

)
(57)

Or the similar uniformly distributed

wn
ij ∼ U

(
−
√

6

h+ h∗
,

√
6

h+ h∗

)
(58)
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2.3 Physics Informed Neural Networks

The concept of Physics-Informed Neural Networks (PINNs) was first introduced in 2017 by
Raissi et al. (2017). The primary objective was to establish a framework that combines the
governing physical principles with data-driven computational methods. The underlying
motivation of the objective was to utilize physics as a means to achieve faster convergence
in data-driven predictions, and reversely utilize data-driven prediction to increase the
efficiency of numerical modeling. In many instances, accurately predicting non-linear,
high-dimensional physical phenomena solely through data-driven approaches requires a
significant amount of data.

The idea behind PINNs was to incorporate physical constraints into the learning phase by
penalizing the model when its predictions contradict established physical behavior.

Ltotal = Lpde + Lic + Lbc + Ldata (59)

This approach can be viewed as a form of regularization in traditional supervised learning.
It also shares similarities with the concept of soft constraints from optimization theory.

In subsequent discussions, the physics integrated into the ANN network will be referred
to as ”physical constraints”.

2.3.1 Applications

Raissi et al. (2017) highlighted three applications for PINNs: Forward solving, inverse solv-
ing, and data-driven discovery. The following definition of forward and inverse problems
are used in this thesis:

• Forward problems are equations where the functional is the unknown

• Inverse problems or parameter estimation are problems where backcalculating the
causal effect from observed data is the primary goal.

In comparison with purely data-driven approaches, there are other benefits besides faster
convergence and increased accuracy. One of the main challenges with ANNs, is the lack of
interpretability, which could lead to difficulties in trusting the output. Good implementa-
tion of PINNs can reveal parts of the machine learning process during the training phase
that remains unknown in regular ANNs. For instance, the user may monitor how the
losses are developing for each constraint. The losses after training the model may reveal
if any of the constraints has a high residual error relative to the others, which could have
been missed if only the total loss was calculated.

2.3.2 Preprocessing of the constraints

Data preprocessing plays a crucial role in various tasks related to ML. Preprocessing is
usually viewed as a phase in the learning process, where different tasks in regard to data
cleaning and preparation are done to ensure effective training of the model. For PINNs,
the unique aspects when it comes to preprocessing are normalization and train-test split
(Haghighat et al., 2022).
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The purpose of data normalization is to address issues arising from the relative magnitudes
of different data inputs. When certain inputs have significantly larger values compared
to others, it can introduce bias in the model and impede learning convergence. In ANNs,
normalization typically involves scaling all inputs and outputs to a range of 0 to 1 or -1
to 1, which is commonly referred to as min-max scaling.

For PINNs, the procedure of normalization is less straightforward due to the dependencies
of the physical properties and their units. In order to normalize the PDEs, nondimen-
sionalization has to be performed on both the variables occurring in the PDE and the
PDE itself. Like standard normalization, this is usually done by min-max scaling, where
the maximum values of the variables are used as the scale so the range of values is 0 to
1. This creates a set of new variables, usually denoted ẑ = z

H or t∗ = t
T . By inserting

the nondimensionalized variables in the PDE, a nondimensionalized equation is obtained
which the literature in unison promotes as being optimal to ensure efficient convergence.

The train-validation-test split can be done in two ways: randomly or user-picked (Xu and
Goodacre, 2018). A random split of training and testing data ensures an unbiased selection
of samples and is the default option for supervised learning. However, if the models’
capability of interpolation or extrapolation is of interest, test data can be extracted from
a specified area. This is especially relevant for PINNs, where the domain may be spatial or
temporal. For instance, picking the last time steps in a transient problem to be in the test
set will test the models’ ability to extrapolate to a greater degree than random selection.
If the problem domain is spatial, picking an entire section of an area to be the test data
can test the models’ ability to interpolate.

2.3.3 Activation functions

The choice of activation function for PINNs is limited to the functions that are differen-
tiable up to the degree of the governing equations (Raissi et al., 2017). The most popular
functions in the literature are listed in Table 1.

Table 1: Table of relevant activation functions for PINNs.

Name Function Characteristic

Hyperbolic Tangent f(x) = 2
1+e−2x − 1 A continuous nonlinear func-

tion which is infinitely differ-
entiable

Sigmoid f(x) = f(x) = 1
1+e−x A continuous nonlinear func-

tion which is infinitely differ-
entiable

Swish f(x) = x
1+e−x A continuous nonlinear func-

tion which is infinitely differ-
entiable

Figure 5 shows the behavior of the listed activation function for relevant input ranges.
Hyperbolic tangent (Tanh) and sigmoid behave similarly, but Tanh ranges from −1 to 1
whereas sigmoid ranges from 0 to 1. The activation happens in the same input range, so
the gradient of Tanh is considerably steeper than the sigmoid which is relevant for the
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gradient decent optimization. Swish has similar gradient steepness as Tanh, but does not
have an upper bound and is asymmetrical around 0.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
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0.5

0.0

0.5
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1.5

2.0 Tanh
Sigmoid
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Figure 5: Plot of the activation functions behavior for relevant input values.

There are no agreed-upon guidelines for choosing an activation function, apart from the
differentiability. The three mentioned activation functions are all infinitely differentiable,
so they qualify as activation functions for any PDE.

2.3.4 PINNs for coupled problem

PINNs have previously been tested for related problems to those conducted in this project,
both in solid mechanics, poromechanics, and other fields of physics and engineering. A pa-
per by Bekele (2020) studied PINNs performance for forward and inverse calculation of the
1D consolidation problem. The researchers behind the computational framework SCIANN
Haghighat and Juanes (2021) has explored PINNs applicability in coupled poroelasticity,
in addition to several related fields like elasticity, elastoplasticity and fluid mechanics
(Haghighat et al., 2022). The coupled flow-deformation problem discussed in Haghighat
et al. (2022) was Mandel´s problem, and the sequential solver from Algorithm (1) was
used to train the model.

2.4 Uncertainty quantification and statistical inference

Uncertainty quantification is the collective term of all attempts of quantifying the uncer-
tainty of a system or a model (Smith, 2013). For modeling purposes, the uncertainty is
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commonly classified into two categories, epistemic and aleatoric uncertainty. The definition
states that epistemic uncertainty is uncertainty that can be reduced by more knowledge,
whereas aleatoric uncertainty is nonreducible (Box and Tiao, 2011). Epistemic uncertainty
is therefore often described as the uncertainty of the model, which can occur due to nu-
merical errors like in FEM, simplifications like dimension reduction, or limited knowledge
of parameters or variables. Aleatoric uncertainty occurs from inherent randomness in the
nature of the problem like stochastic processes or random fields. The total uncertainty
of a model can therefore be quantified by adding the epistemic uncertainty of the model
and the aleatoric uncertainty of the problem. Estimating the uncertainty of a model can
be done by comparison with a benchmark like analytical solutions, test measurements, or
other similar models. PINNs provide some information about their confidence via the loss
function. The loss function for PINNs gives information on not only the global error but
also the local error in each boundary, PDE, or other constraints. Due to the inherent ran-
domness in the stochastic gradient descent algorithm and the weight initialization, each
training will give a different final weight matrix. For some aspects like reproducibility
and interpretability, this inherent randomness is unwanted. However, randomness can be
used to identify uncertainty and variability in the model output. Dropout regularization,
a technique frequently used for regularizing ANNs to prevent overfitting, can be used for
this purpose (Gal and Ghahramani, 2016). The term Dropout simply refers to a random
deactivation of neurons, thus creating slightly different models for each training iteration,
illustrated in Figure 6.

Figure 6: A simple illustration of the dropout concept.

This can help with preventing symmetrical training and inactive neurons, and the added
randomness can also be used for measuring precision in the model output. By keeping the
random deactivation of neurons after the training, the model prediction will be slightly
different for the same input. The deviance of the predictions can be estimated through
Monte Carlo simulations to determine the mean and standard deviation of the model.
This method is particularly useful if there is a lack of benchmark methods to compare the
output with.

2.4.1 Maximum likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method commonly used for estimating the
parameters of a probability distribution (Myung, 2003). The likelihood function L(θ) =
P (D|θ) evaluates the likelihood that the observed data was caused by a fixed θ. L(θ) can

21



be estimated by evaluating

L(θ) = P (D|θ) =
k∏

i=1

P (Di|.θ) (60)

The MLE can then be found by finding

θ̂ = argmaxL(θ). (61)

If the posterior probability distribution of the random variable is of interest, Bayes theorem
can be used if prior knowledge of the random variable exists.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(62)

The likelihood is used as new evidence to update the prior belief of P (θ). The normalizing
constant P (D) can be evaluated as

P (D) =

∫
θ
P (D|θ)P (θ)dθ. (63)

2.4.2 Monte Carlo sampling

Estimating the likelihood function P (X|θ) can be a computationally demanding task due
to the wide range of possible θ values. To limit the number of computations needed
for sufficient convergence, utilizing sampling techniques is common practice. Some of
the easiest and most popular sampling techniques are based on Monte Carlo methods.
Monte Carlo methods involve evaluating the numerical problem for random samples of
the problem’s random variables. For stochastic processes, this usually involves calculating
the average outcome, the standard deviation of the outcomes, or logging the number of
extreme events.

Monte Carlo methods can also be used in the inverse problem to estimate a probability
function for the unknown parameters. Markov Chain Monte Carlo (MCMC) methods,
a combination of Monte Carlo theory and Markov Chain theory, are often used for this
task (Chib and Greenberg, 1995). Markov chains are commonly used for simplifying the
degrees of freedom in stochastic processes, by assuming that the probability of each event
is only dependent on the previous event. This simplification allows for multi-dimensional
random walks which can be used to sample effectively from multi-dimensional probability
distributions. An example of an MCMC algorithm is the Metropolis-Hasting algorithm.
The Metropolis-Hastings algorithm performs what is essentially a random walk rejection
sampling, where the direction is drawn from a chosen probability distribution and the
rejection of samples is determined based on a random evaluation of the new state based
on the previous.
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Algorithm 2 Metropolis-Hastings

1: procedure Metropolis-Hastings(f, x, n)
2: x = random.choice(x)
3: f = f(x)
4: xlist = []
5: flist = []
6: for n number of iterations do
7: xnew = random.normal(x, σ)
8: fnew = f(xnew)
9: α = fnew

f
10: u = random.randint(0, 1)
11: if α > u then
12: x = xnew
13: xlist.append(x)
14: f = fnew
15: flist.append(f)

16: return xlist, flist

2.5 Data and measurements

It is always necessary to talk about data when dealing with ML models because its primary
purpose is to extract, process, and utilize information contained in datasets. For PINNs,
data is not obligatory for the model to learn, but the primary advantage lies in its ability to
optimize in regard to physical equations and data simultaneously. An important feature of
this is the fact that PINNs are mesh-free, so a model can easily be adapted to the domain
of the data (Yang et al., 2021). For instance, data spread over time is more cumbersome
to implement in a FEM algorithm due to limitations of time discretization. In regards to
PINNs, the three relevant data types are measurement data, empirical data, and simulation
data. The focus of this work is on the former, but the latter is also important for PINNs
in general.

2.5.1 Measurements

Measurements from physical phenomena often contain unwanted noise that infers with
the actual behavior. Noisy data can cause problems with outliers and skewed behavior
resulting in increased aleatoric uncertainty. Noise can roughly be divided into two main
categories, correlated and uncorrelated noise, both illustrated in Figure 7.
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(b) Random walk noise

Figure 7: A visualization of noisy measurements.

Figure 7 shows an example of uncorrelated Gaussian noise and correlated Random walk
noise. In many cases, both spatially and temporally, modeling measurement error as
Gaussian white noise is realistic due to random fluctuations independent of time and
space. For other problems, where for instance seasonal changes or other cyclic behaviors
are relevant, the assumption of uncorrelated noise may be less accurate. Modeling with
correlated noise demands knowledge of the expected dependencies of the noise, which is
often unrealistic.

2.5.2 Hydraulic measurements

Subsurface hydraulic measurements are often conducted for geotechnical engineering pur-
poses to determine both the mechanical, biological, and chemical properties of the site’s
groundwater conditions. The three most relevant characteristics for soil mechanics are
groundwater level, groundwater flow, and groundwater pressure. To determine both
groundwater level and groundwater pressure, the most common instruments are piezome-
ters and Cone Penetration Test with water pressure measurement (CPTU). Piezometers
are installed to a certain depth on-site to determine the hydraulic pressure. It is therefore
common to install multiple piezometers at the same site to determine if there are differ-
ences in the water pressure between depths, other than simply decreased elevation head.
CPTU tests are also conducted on-site, but the water pressure at the tip of the CPTU
cone is measured for the entire borehole. CPTU measurements only tells the pressure
at one point in time, whereas a piezometer can be installed and continue to measure for
years. For surveying consolidation processes, piezometers are therefore the most relevant.

According to Rau et al. (2019), closed piezometer measurements denoted closed GMI in the
article, are the method most commonly associated with geotechnical ground investigation.
Closed piezometers are prone to multiple measurement errors due to factors like:

• Human error

• Equipment error

• Varying barometric conditions

• Varying fluid density
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• Temperature fluctuations

• Time delay

• Sample frequency

Rau et al. (2019) highlights that estimating hydraulic head gradients or fluid velocity
requires multiple measurements from varying spatial coordinates. Hydraulic pressure on
the other hand requires only a single piezometer and is therefore cheaper to measure
accurately compared with fluid flow.

2.5.3 Displacement measurements

Measuring the displacement of soil has changed drastically with the introduction of new
technology. Today, automatic measurement systems like GPS, ground sensors, imagery,
and radar continuously monitor displacements of soil in urban construction work, haz-
ardous areas, or costly infrastructure projects. The choice of monitoring system often
depends on:

• Cost

• Desired accuracy

• Number of dimensions

• Size of the area of interest

• Integration with other systems

Remote monitoring systems like InSAR or drone imagery are able to cover large areas,
measure 3D displacements of the surface, but are only accurate on centimeter level .
Ground sensors and GPS may be more accurate but are less effective for larger areas. For
geotechnical engineering purposes, the expected displacement ranges from millimeters to
meters, depending on the site’s soil conditions and type of construction. It is therefore
important to choose a monitoring system with a high enough resolution to capture the
displacement rate.
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3 Method

The methodology chapter is divided into the main subsections 1D Terzhagi’s consolidation
problem and 2D consolidation of a soil layer.

The first subsection introduces the problem and how the traditional solutions were ob-
tained. Subsequently, the PINN implementation is described, both for the deterministic
forward problem, uncertainty quantification, and parameter estimation.

The second subsection introduces the 2D problem and how the traditional solutions were
obtained by both commercial software and numerical algorithms. Lastly, the PINN im-
plementation is described, with emphasis on the differences between the coupled and
uncoupled versions of the problem.

3.1 1D Terzhagi’s consolidation theory

Terzhagis’s theory for one-dimensional consolidation is one of the first theoretical frame-
works for modeling consolidation (CRYER, 1963). The original theory is valid for one-
dimensional displacement and flow of noncompressible fluid and solid. The resulting equa-
tion is a one-dimensional diffusion equation describing the dissipation of excess pore pres-
sure after an initial undrained loading:

cv
∂2u

∂z2
=

∂u

∂t
. (64)

The coefficient of consolidation cv determines the rate of pore pressure dissipation over
time, and is proportional to the compressibility and permeability of the soil:

cv =
Eoedkz
γw

The following parameters were used to normalize the PDE

z∗ =
z

H
, t∗ =

t

T
, u∗ =

u

u0
.

Combining the normalized parameters with equation (4.1) gives

Cv
∂2(u∗u0)

∂(z∗H)2
=

∂(u∗u0)

∂(t∗T )
.

Moving all the constants to one side, and introducing the normalized consolidation coef-
ficient

Cv
∗ = Cv

∗ T

H2

gives the normalized 1D diffusion equation

c∗v
∂2u∗

∂z∗2
=

∂u∗

∂t∗
. (65)

The classical problem is usually solved for either closed or open water flow at the bottom
end of the soil column. Fully drained ends give two Dirichlet boundaries u(t, z = 1) = 0
and u(t, z = 0) = 0, while closed water boundary at the bottom implies a Neumann
boundary condition ∂u

∂z |z=0 = 0. The initial condition is u(t = 0, z) = q where q is the
external load. The closed water boundary at the bottom gives two different types of
boundary conditions, so this was chosen as the benchmark problem for testing the PINN
method.
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3.1.1 Analytical and numerical approximation

The analytical solution for the 1D consolidation problem was approximated with the
following Fourier series as proposed by Churchill (1971)

u∗(t, z) ≈ 4

π

1000∑
k=1

(−1)k−1

2k − 1
cos[(2k − 1)

πz∗

2
] exp

(
−(2k − 1)2

π2Cv
∗t∗

4

)
(66)

The associated vertical displacement was approximated by first calculating the final dis-
placement by integrating the vertical strain. According to elasticity theory, combining
equation (17) and (18), the vertical settlement is

lim
t→∞

w∗(t) =

∫
z
∆εzzdz =

1

E∗
oed

∫
z
∆σ∗

zz = 1 (67)

And then approximating the degree of consolidation with the following Fourier series

U∗
p ≈ 1− 8

π2

1000∑
k=1

1

(2k − 1)2
exp

(
−(2k − 1)2

π2Cv
∗t∗

4

)
(68)

The finite difference method (FDM) approximation was calculated using the following
Forward Time Central Space scheme. All variables are normalized.

un+1
i − uni

∆t
= cv

uni+1 − 2uni + uni−1

∆z2

{
tn = n∆t, n = {0, 1, ..., 30000},∆t = 1

30000

zi = i∆z, i = {0, 1, ..., 100},∆z = 1
100

(69)

The Neumann boundary condition was treated by introducing ghost nodes to approximate
the closed flow boundary. The boundary condition in itself can be approximated by a first-
order finite difference scheme

∂u

∂z

∣∣
z=0
≈

un1 − un−1

∆z
= 0

implying un1 = un−1, where un−1 are ghost nodes.

The FEM approximation was calculated with linear elements and forward time integration.
All variables are normalized

un+1 = un +C−1(fn −Kun)∆t
{
tn = 0 + n∆t, n = {0, 1, 2, ..., 30000},∆t = 1

30000

(70)
where K is the stiffness matrix defined as

Kel =

∫ 1

0
BTAkBdξ (71)

and C is the capasity matrix

Cel =

∫ 1

0
NT ρAcNdξ (72)

un =


un1
un2
...

un100

 ,fn =


fn
1

0
...
0
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3.1.2 PINN implementation

The training domain was established as a rectangular grid of t and z values, using the
following discretization, which is visualized in Figure 8. All variables are normalized.

u(tn, zi) ∈ R

{
tn = 0 + n∆t, n = {0, 1, 2, ..., 700},∆t = 1

700

zi = 0 + i∆z, i = {0, 1, 2, ..., 100},∆z = 1
100

(74)

The loss function was established based on the governing equation, initial condition, and
boundary conditions. A user-defined scaling of the terms in the loss function was imple-
mented, which is further discussed in the general discussion chapter on page 93.

L(tn, zi) = L(tn, zi)PDE + 10 ∗ L(t0, zi)IC + L(tn, z0)BC1 + L(tn, z100)BC2 (75)

Figure 8: A visualization of the training domain and physical constraints.

The following hyperparameters were used for the forward problem:
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Table 2: Hyperparameters forward problem.

Hyperparameter Value

Number of hidden layers 5

Number of neurons per layer 75

Activation function Swish

Number of epochs 5000

Batch size 100

Loss function MSE

Optimizer Adam

Initial learning rate 0.001

Weight initializer Xavier

Bias initializer Zeros

The forward problem of one-dimensional consolidation can be described by the graphical
model presented in Figure 9.

Figure 9: A flowchart of the forward problem. The green color indicates desired outputs.

The deterministic nodes are used as inputs to the model, both for training and prediction.
The model prediction of excess pore pressure was used in post-processing to calculate the
vertical displacement combining Hooke’s law from Equation (1), the definition of strains
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from Equation (2), and effective stresses from Equation (12).

δv(t) =
1

Eoed

∫ 1

0
∆σ

′
v(t, z)dz ≈

∆z

Eoed

100∑
0

∆σ
′
v(t, zi) (76)

To test the accuracy of the mesh-free ability of the PINN model, different training grids
were created. Figure 10 shows the testing grids compared with the training grid. The
grids were created to test the efficiency of the interpolation and to check if the model was
more sensitive to interpolation in the time or space domain.
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Figure 10: A visualization of the different grids used to test the model’s ability to interpolate.

The accuracy of the model’s ability to extrapolate was simply tested by feeding the model
with increasing Cv values outside of the training domain. Since the Cv value effectively
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controls the entire problem domain due to the nondimensionalization, this is equivalent
to increasing the time period or increasing the height of the soil column.

For the forward probabilistic problem, the hydraulic conductivity kz was treated as a
random variable thus making Cv a random variable. The model was therefore trained
on three inputs, u(t, z, Cv), where Cv ∼ N (µ = 1, σ = 0.3). To evaluate the model,
Monte Carlo simulations were used to evaluate the model prediction where Cv values were
sampled randomly from its distribution. For each time step, ∆t, the vertical settlement
of the column top was evaluated for each sampled Cv value. This allowed for calculating
the average of the vertical deformation each time step, as well as the standard deviation.
In addition, histograms were produced for settlement at three different points in time to
check the distribution of P (δv|Cv). The same procedure was afterward conducted for the
analytical solution.

By utilizing measurements of the pore pressure, the consolidation coefficient can be deter-
mined by inverting the calculation flow. The partly observed excess pore pressure gives
a unique solution for the consolidation coefficient. The calculated consolidation coeffi-
cient can then be used to calculate the forward problem which gives the unobserved pore
pressure values and the unknown vertical displacement. The flowchart of the problem is
visualized in Figure 11. The vertical displacement is dependent on both effective overbur-
den pressure and oedometer stiffness. So this information flow is dependent on a known
oedometer modulus but allows for unknown permeability.

Figure 11: A flowchart of the inverse problem with one random variable. The green color indicates
desired outputs.

The likelihood function P (D|C∗
v ) was estimated using the Metropolis-Hastings Algorithm

(2), with P (D|C∗
v ) as

P (D|C∗
v ) =

n∏
i=1

1

σ
√
2π

exp

{
−1

2

(
pred(ti, C

∗
v )−Di

σ

)2
}

(77)

The alternative option to MLE in postprocessing is to include the Cv parameter in the
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optimization algorithm. This option provides less control over tested Cv values since the
model may converge to one specific range of parameter values and stay there for the entire
training period. this option is more prone to local minima issues and provides a narrower
overview of the likelihood of possible values. On the other hand, this option is as accurate
and reduces the number of inputs to the model. For comparison with the MLE in the
postprocessing, the likelihood during training can be estimated with Algorithm 3. The
likelihood during training is of course dependent on the training stage. The likelihood is
mostly interesting for a well-trained model, so the values from the early stages of training
were disregarded. Since the Cv value from epoch to epoch varies little due to relatively
small learning rates, storing likelihood values for consecutive epochs can cause overlapping
values.

Algorithm 3 Likelihood during training

1: procedure Likelihood(self,training-grid,measurements, σ)
2: ŷ = self.predict(training-grid)
3: if epoch > 300 and batch=last and epoch%10 == 0 then
4: sum = 0
5: for sample in ŷ do
6: Product *= Normal.pdf(x =sample, µ = measurements, σ)

7: self.list.append(Product)

To simulate realistic data from common geotechnical measurements relevant for soil pa-
rameters used in poroelastic computations, artificial data was created from the analytical
solution. The relevant measurement types are piezometer measurements for monitoring
changes in pore pressure over time, and displacement measurements to monitor the verti-
cal deformation of the surface over time. Both piezometer measurements and displacement
measurements have restricted spatial coverage, so the artificial data was only generated for
surface displacement and one piezometer depth, as illustrated in Figure 12. The datasets
with measurements were created with and without white Gaussian noise.
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Figure 12: An illustration of the grid provided in the inverse problem.

By introducing measurements of the vertical displacement of the surface, the oedometer
modulus can be uniquely defined. The oedometer modulus is conditionally independent of
the permeability given the vertical displacement and consolidation coefficient. So both the
components of the consolidation coefficient can be determined by these two measurements.
The flowchart for this problem is presented in the graphical model in Figure 13.
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Figure 13: A flowchart of the inverse problem with two random variables. The green color indicates
desired outputs.

3.2 Strip load on soil layer

The second problem is the two-dimensional consolidation of a soil layer, illustrated in
Figure 14. This problem is generally a coupled flow-deformation problem, but several
decoupling assumptions can be made.

Figure 14: A simple illustration of the 2D consolidation problem.
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The boundary conditions for the problem can be seen in Figure 14, where rollers indicate
normally constrained movement and no rollers indicate constrained movement in all direc-
tions. The groundwater flow is closed at the bottom, and fully drained at the ends. The
soil is loaded with a constant line load q.

The governing PDEs are the equilibrium equations for plane strain (32), in cartesian
coordinates

∂σxx
∂x

+
∂σxz
∂z

+ fx = 0

∂σzz
∂z

+
∂σxz
∂x

+ fz = 0

(78)

And the storage equation (37)
∂εv
∂t

=
k

γw
∇2u (79)

The problem is further divided into two parts, uncoupled and coupled flow.

By assuming negligible horizontal strains and constant isotropic total stress, the storage
equation reduces to the 2D transient diffusion equation as seen in Equation (39). To
evaluate the accuracy and efficiency of the model, the same problem was solved in Python
using FDM. For comparison of the validity of the assumptions, the problem was also solved
with Plaxis 2D without the assumption of negligible horizontal strain and constant total
stress. The full procedure for all three methods was as follows:

1. Initial stress state from self-weight and hydrostatic pore pressure

2. Introduce external load as undrained loading

3. Consolidation analysis to a fixed time

The full problem of coupled flow was solved with PINNs and Plaxis 2D, but this time with
the default Plaxis parameters for undrained behavior, see Table 3.
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Table 3: Problem definition.

Properties Uncoupled Coupled

Soil model Linear elastic Linear elastic

Eoed 1000 1498

ν 0.33 0.33

νu - 0.495

α 1 1

Kw
n ∞ 36.39E3

B 1 0.9733

γw 0.5 0.5

γsat 1.0 1.0

K0 0.5 0.5

kz[m/year]/kz[m/day] 5 ∗ 10−5/1.37 ∗ 10−7 5 ∗ 10−4/1.37 ∗ 10−6

kx[m/year]/kx[m/day] 5 ∗ 10−5/1.37 ∗ 10−7 5 ∗ 10−4/1.37 ∗ 10−6

q 1 1

The finite difference approximation for the uncoupled problem was calculated using the
following Forward Time Central Space scheme, utilizing the symmetry of the problem to
calculate only half of the grid.

un+1
i,j − uni,j

∆t
= K

uni+1,j − 2uni,j + uni−1,j

∆x2
+

uni,j+1 − 2uni,j + uni,j−1

∆z2

Grid


tn = n∆t, n = {0, 1, 2, ..., 20000},∆t = 1

20000

xi = i∆x, i = {0, 1, 2, ..., 50},∆x = 1
50

zj = j∆z, j = {0, 1, 2, ..., 50},∆z = 1
50

(80)

The Neumann boundary conditions were approximated with ghost nodes, similar to the
procedure for the 1D problem

∂u

∂x

∣∣
x=0
≈

un1,j − un−1,j

∆x
= 0

∂u

∂z

∣∣
z=−1

≈
uni,1 − uni,−1

∆z
= 0

(81)
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3.2.1 PINN implementation uncoupled

The PINN implementation for the uncoupled problem can be split into three parts, one
for each phase.

For the initial in-situ stress state, a two-dimensional grid of length L
2 = 1 and depth

D = −1 was created. The governing equations are the equilibrium equations (78), where
fz = γsat and fx = 0. The hydrostatic pore pressure was defined as pw = γwz The
boundary and model conditions are:

1. Left: ∂σxx
∂x = 0, ∂σzz

∂x = 0 and σxz = 0

2. Right: ∂σxx
∂x = 0, ∂σzz

∂x = 0 and σxz = 0

3. Bottom: σxz = 0

4. Top: σzz = 0, σxx = 0 and σxz = 0

5. Constitutive relations: ∆σ′
xx = ∆σ′

zzK
′
0 and ∆σ′

yy = ν(∆σ′
xx +∆σ′

zz)

By definition, the effective stresses can be derived using Equation 15, after the total stress
and pore pressure distribution are calculated.

The phase introducing external loading follows the same governing equations. The external
load was modeled as a surface load along the boundary z = 0. With α = 1 and B = 1,
∆εv = ∆p′ = 0 for undrained loading. This further implies that ∆σzz = ∆σxx = ∆σyy =
∆u = 1, making the top boundaries:

4. Top: σzz = 1, σxx = 1 and σxz = 0

The pore pressure distribution is now pw = psteady + u = γwz + 1

The consolidation phase introduces a new variable t, making the training grid 20x20x50.
Furthermore, the uncoupled storage equation replaces the equilibrium equations in the
loss function along with the boundary condition for the water flow. The new boundary
conditions are:

1. Left: ∂u
∂x = 0

2. Right: u = 0,

3. Bottom: ∂u
∂z = 0

4. Top: u = 0

5. Initial condition: u = 1

The resulting effective stresses can be calculated by subtracting u(t) from ∆σzz and finally
calculating strain and displacement from the resulting effective stresses.
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3.2.2 PINN implementation coupled

The PINN implementation for the coupled problem can equivalently to the uncoupled
problem be split into three parts.

The consolidation phase and all boundary conditions in all phases except the following are
unchanged from the uncoupled problem. The changes are

1. Initial: εv = εzz =
∆p
Ku

in addition to adding the full storage equation to the loss function. The model was trained
with a fixed-stress split in accordance with 1, because of its less constrained stability region.

The non-dimensional parameters can be defined as (Haghighat et al., 2022):

x∗ =
x

αl
, z∗ =

z

αl
, t∗ =

t

αt
, σ∗

xx =
σxx
ασ

, σ∗
zz =

σzz
ασ

v∗ =
v

αd
, w∗ =

w

αd
, u∗ =

u

ασ
, ε∗xx =

εxx
αε

, ε∗zz =
εzz
αε

(82)

Were l is length, t is time, σ is stress, and ε is strain. Because of the potentially big
relative magnitude of displacement and domain, d for displacement is used instead of l.
These nondimensionalized parameters further define

p∗ =
σ∗
xx + σ∗

xx + σ∗
xx

3
= ασp (83)

ε∗v = ε∗xx + ε∗zz = αεεv (84)

Insert the dimensionless parameters in the stress-split storage equation combining Algo-
rithm 1 and Equation (37)

ασ

αt

(
α2

K
+

n

Kw

)
∂u∗

∂t∗
+

ασ

αt

α

K

∂p∗

∂t∗
− kx

γw

ασ

α2
l

∂2u∗

∂x∗2
− kz

γw

ασ

α2
l

∂2u∗

∂z∗2
= 0 (85)

The equation can be simplified considerably by first canceling out ασ. Defining αt as

αt =

(
α2

K
+

n

Kw

)
γw
k
α∗
l
2 (86)

is valid for isotropic flow, i.e. kz = kx, and reduces the equation to

k

γwα2
l

∂u∗

∂t∗
+

k

γwα2
l

α

α2 + nK
Kw

∂p∗

∂t∗
− k

γwα2
l

∂2u∗

∂x∗2
− k

γwα2
l

∂2u∗

∂z∗2
= 0

∂u∗

∂t∗
+

α

α2 + nK
Kw

∂p∗

∂t∗
−∇∗2u∗ = 0

(87)

The equilibrium equations
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K

(
1 +

1− 2ν

2(1 + ν)

)
αε

αl

∂ε∗v
∂x∗

+K
3(1− 2ν)

2(1 + ν)

αd

α2
l

∇∗2v∗ − α
ασ

αl

∂u∗

∂x∗
= 0

K

(
1 +

1− 2ν

2(1 + ν)

)
αε

αl

∂ε∗v
∂z∗

+K
3(1− 2ν)

2(1 + ν)

αd

α2
l

∇∗2w∗ − α
ασ

αl

∂u∗

∂z∗
= 0

(88)

Defining the normalized strain and displacement so the bulk stiffness cancels from the
equilibrium equations

αε =
αd

αl
, αd =

aσ
K

(89)

Inserting the values from the problem definition yields the final equations

1.125
∂ε∗v
∂x∗

+ 0.376∇∗2v∗ − ∂u∗

∂x∗
= 0

1.125
∂ε∗v
∂z∗

+ 0.376∇∗2w∗ − ∂u∗

∂z∗
= 0

(90)
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4 Results and discussion

The results and discussion chapter provides a comprehensive presentation and analysis of
the findings obtained from the research. The discussion will be localized to the individual
results. A more general discussion of the findings in terms of the research questions can
be found in the General Discussion Chapter (5).

The results are presented in the following order:

1. One-dimensional Terzhagi consolidation p. 40

(a) Forward problem deterministic p. 40

(b) Forward problem probabilistic p. 49

(c) Inverse problem with one random variable p. 52

(d) Inverse problem with two random variables p. 64

(e) Computational efficiency p. 67

2. Two-dimensional consolidation p. 69

(a) Uncoupled problem p. 69

(b) Coupled problem p. 78

(c) Computational efficiency of 2D problems p. 88

4.1 One-dimensional Terzhagi consolidation

The results from the model predictions are categorized into three subsections, forward
deterministic, forward probabilistic, inverse probabilistic, and inverse probabilistic with
noisy measurements.

4.1.1 Forward problem deterministic

The model prediction for the forward problem is visualized in a contour plot in Figure 15.
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Figure 15: A visualization of the model prediction of excess pore pressure over time. Fluid pressure
is considered positive.

The prediction in Figure 15 shows that the model is able to capture the physics of the
problem, even without data. As shown by the values on the color scale, the output ranges
between u ≈ 1 and u ≈ 0, with some slight overshooting and undershooting.

In Figure 16, the resulting change in vertical effective stress due to pore pressure dissipation
is calculated and integrated, giving the resulting vertical displacement of the surface as in
Equation (76).

(a) Vertical deformation over time (b) Deviance from the analytical solution

Figure 16: A comparison of the numerical method’s performance in calculating the vertical dis-
placement of the top of the soil column. Displacement in the direction of gravity is considered
positive.
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Compared with the traditional numerical methods, the PINN performs quite similarly
with some exceptions. The deviance from the analytical solution is especially large for the
first timesteps, which is also where the analytical solution is the most inaccurate. Unlike
the numerical solutions, the analytical solution for excess pore pressure at t = 0 is not
exactly one. This is the reason for the initial deviance between the numerical methods
and the analytical solution. The PINN prediction undershoots the initial conditions by a
small margin. This could be due to the point u(0, 1) highlighted in Figure 17b.

(a) Entire domain (b) Clip from upper left corner

Figure 17: Deviance plots comparing the PINN prediction with the analytical solution. The color
levels in the plot for the entire domain are in log-scale.

This point is the intersection between two opposing boundary conditions u(0, z) = 1
and u(t > 0, 1). This can be enforced in traditional numerical methods, but the algorithm
optimizing the gradients of Equation (59) probably learns z = 1 =⇒ u = 0 and t = 0 =⇒
u = 1, which results in an estimate somewhere in between. Since the time discretization
was finer than space, the model’s bias leans towards the boundary condition and not the
initial condition because it was trained on more points on the boundary than the initial
conditions. Altering the discretization to a more uniform grid, and possibly feeding the
network with more points at (0, 1) during training could lower the error in that area. This
could on the other hand affect the network with biases that contradicts the governing
equation. The continuous strip of error ≈ 0 in Figure 17a is quite interesting, and shows
the borders of where the model overshoots and undershoots the analytical solution.

Figure 18 shows an alternative plot of the analytical solution to the forward problem,
which puts more emphasis on the numerical values of the excess pore pressure u.
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(b) Focused plot of the non-linearity

Figure 18: Analytical solution of excess pore pressure over time for different z-values. Fluid pressure
is considered positive.

By comparing the upper left corner, 18b and 19b, the problem area of the PINN prediction
is clear. The nonlinearity is not learned, which clearly affects the dissipation rate for early
time steps. The problems seem to be mostly localized, and the error does not seem to
propagate substantially. Figure 18b also shows the reason for the initial deviance between
the numerical methods and the analytical solution. The initial excess pore pressure should
be u(t = 0, z) = 1, but u ̸= 1 at the upper boundary due to the finite Fourier series
approximation. The numerical methods treat this as a hard constraint and it will therefore
be enforced regardless of mesh size, element type, grid size, or time step if the time
integration is of forward type.
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Figure 19: Model prediction of excess pore pressure over time for different z-values. Fluid pressure
is considered positive.

The model’s capability to interpolate from the training grid to the different testing grids
is showcased in Figure 20. The accuracy is not affected by the grid at all, which is further
emphasized in Figure 21.
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Figure 20: Contour plots of the model prediction for the different test grids. The contour levels in
the deviance plots are plotted with a logarithmic scale.
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Figure 21: Comparison of the model’s performance for the different testing grids. The deviances
are normalized based on the highest measured deviance of the interpolation tests, appearing in
Figure 23.

When it comes to the interpolation of the Cv values, the model shows more variation in
the results. The results are visualized in Figure 22 and Figure 23.
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Figure 22: Plot of interpolated and trained Cv values. Each row of subplots is associated with a
Cv value, where Cv = 0.3 and Cv = 0.75 are interpolated predictions.

The trend from the predictions with Cv values from the training data is that the deviance
from the analytical solution increases with increasing Cv values. Figure 22 emphasizes the
earlier observation that the majority of deviance is due to the irregularity at the upper
boundary for small values of t.

Integrating the error for the entire grid, shown in Figure 23, shows that the interpolated
Cv values between 0.1 and 0.5 give a considerably less accurate result than the interpolated
Cv values between 0.5 and 1.0. This opposes the general trend from the training data,
that the deviance increases with increasing Cv values.
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Figure 23: Comparison of the model performance for the interpolated Cv values. The deviances
are normalized based on the deviance for Cv = 0.2.

The results for the extrapolated Cv values, presented in Figure 24, show much of the same
as the interpolated values. The values close to the training data show little to no deviance
from the training predictions. However, the predictions become unstable for Cv ≈ 1.7
where the contour lines start to show non-physical behavior, deviating from the regular
shape of the PDE. It is also worth noticing how the predicted pressures for Cv >= 1.7 in
Figure 24 start to contradict the boundary conditions. Both non-zero pressure values at
the upper boundary and non-zero gradients at the lower boundary can be observed.
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Figure 24: Model prediction for the extrapolated Cv values

Integrating the error shows some interesting results for the extrapolated Cv values, illus-
trated in Figure 25. The deviance is smallest for Cv = 1.5 which is a 50% increase from
the highest training value. In fact, this is the second lowest deviance after Cv = 0.1.
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Figure 25: Comparison of the model performance for the extrapolated Cv values. The deviances
are normalized based on the highest measured deviance of the interpolation tests, appearing in
Figure 23.

4.1.2 Forward probabilistic problem

The result of the model with dropout implemented in both the training phase and in the
prediction is presented in Figure 26. Both the mean prediction and the 95% confidence
interval were estimated by sample mean and sample standard deviation with Monte Carlo
simulations.
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Figure 26: Visualization of the modeling uncertainty using dropout. The pore pressure values are
the average over the height of the soil column. Fluid pressure is considered positive.

The wide band in Figure 26 that represents the 95% confidence interval indicates that the
model is relatively sensitive to small changes in architecture structure. However, the trend
of dissipation is continuous also in the border of the error band, which could indicate that
the physical behavior of dissipation is kept through the differing model compilations.

To be able to efficiently compute the statistical moments of the target distribution, the
underlying probability distribution of the function needs to be determined. The distri-
bution can be estimated by running Monte Carlo simulations with a wide variety of Cv

values at certain time steps. The resulting vertical displacements can then be gathered
and presented in histograms, as illustrated in Figure 27.
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Figure 27: Histogram of calculated vertical displacements with Cv values.
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The histograms show that assuming the target distribution to be normally distributed is
fairly accurate for the tested timesteps, which implies that the likelihood function can be
estimated with a Gaussian function in Equation (60) and that the relation 95th percentile
≈ µ± 1.96σ is valid.

The results of the forward problem with Cv as a random variable are presented in Figure
28. The predictions of the different consolidation equation compilations coincide well with
the analytical solutions, and the mean prediction is actually closer to the deterministic
analytical solution than the prediction of the deterministic model, by comparison of Figure
28b and Figure 16b.

(a) Vertical deformation of column top with time (b) Deviance from the analytical solution

Figure 28: Results from the prediction of vertical displacement over time with uncertain Cv values.
Displacement in the direction of gravity is considered positive.

The deviance is approximately reduced by 50% by adding Gaussian white noise and cal-
culating the mean prediction. However, this adds a computational cost that in most cases
outweighs the slight increase in accuracy, since the main merit of PINNs as forward solvers
is computational efficiency.

Treating Cv as a random variable, and using it as an input to the model, opens the
possibility of creating a parameterized model, visualized in Figure 29. Because the nondi-
mensionalized PDE from (65) is the driving force of the model, scaling the model output
to fit any of the input parameters is trivial and computationally efficient.
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Figure 29: Illustration of a PINN-driven parameterized consolidation model.

Having an efficient parameterized model for one-dimensional consolidation is not especially
practical, but increasing the number of dimensions or adding the number of inputs will not
increase the computation time drastically since PINN predictions, in reality, are nothing
more than matrix operations. So for forward problems, the main benefit of PINNs is the
highly efficient computation of predictions after the training. It can therefore be used as
first-order approximations for parameterized models which require responsive calculations
more than accuracy. FEM, and in the cases where FDM is practical, outperforms PINN
in accuracy, interpretability, and reproducibility. So without data, PINNs are less suitable
for numerical modeling than their counterparts, especially for more advanced geometries.

4.1.3 Inverse problem with uncertain hydraulic conductivity

For the inverse problem with one random variable, the hydraulic conductivity kz was
treated as unknown. Since Cv is proportional to kz, the Cv value was used as the random
variable in the model.

Figure 30 shows the histogram of the randomly sampled Cv values from the assumed prior
distribution Cv ∼ N (µ = 1, σ = 0.3).
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Figure 30: Histogram of Cv values used for training and prior for Bayesian updating.

The results from the MLE without utilizing Markov Chain Monte Carlo (MCMC) infer-
ence are shown in Figure 31. The likelihood P (Data|Cv) shows that a Cv just over 1.0
minimizes the deviance between the measurements and the model prediction, thus maxi-
mizing P (Measurements = Data). By utilizing Bayes theorem and multiplying with the
prior, the distribution gets more concentrated around µ = 1.

(a) Likelihood (b) Likelihood x Prior

Figure 31: Likelihood functions of the Cv value given the entire data set.

Due to the relatively large range of possible Cv values, calculating the likelihood of all
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the possible Cv values was not a computationally efficient way of estimating the likeli-
hood function. The likelihood functions presented in Figure 32 are estimated with the
Metropolis-Hastings Algorithm 2, which was faster and equally precise in estimating the
likelihood functions.
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Figure 32: Estimated likelihood functions of the Cv value at different time steps by utilizing an
MCMC algorithm.

Cv estimates during the consolidation process are shown as likelihood functions in Figure
32. The mean of the likelihood function estimates converges to the Cv value from the
analytical solution with time, as expected. The relative variance in likelihood is not
affected as much, due to using the same expected variance of the likelihood function at
all time steps. The likelihood functions in Figure 32 are obviously not normalized to
probability density functions (PDF), but they do indicate something about the relative
size of the standard deviation. This is especially apparent when comparing the shape of
the distribution for t∗ = 0.05 and t∗ = 1. A narrower shape indicates a more concentrated
likelihood, much like a PDF, which again indicates that the model is more confident of
its prediction for t∗ = 1 compared with t∗ = 0.05. This could be further emphasized
by changing the expected variance in the likelihood estimation function, but in reality,
this will require prior knowledge of how the model uncertainty changes at the different
timesteps.

The likelihood from Figure 32 can be reduced to a scalar value that represents the MLE.
The Cv values with the highest likelihood for the selected time steps are plotted and
tabulated in Figure 33.
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(a) Convergence plot

Time [-] Cv [-]

0.01 0.475
0.03 1.408
0.05 1.334
0.1 1.196
0.2 1.121
0.3 1.093
0.4 1.076
0.5 1.061
0.6 1.054
0.7 1.051
0.8 1.043
0.9 1.040
1.0 1.039

(b) Table of Cv values

Figure 33: Convergence plot of Cv-Time of prediction, with underlying values tabulated.

After an apparent initialization at Cv ≈ 0.475, the estimation mostly overshoots the ana-
lytical value. The prediction for the smallest time step is greatly affected by the numerical
challenges discussed for the forward problem, so discarding the earliest time step can
therefore provide a more interesting insight into the relationship between the measure-
ments and the model predictions. Disregarding t∗ = 0.05 provides a clear trend that the
MLE converges from above, which is a recurring theme. There are clear similarities be-
tween the convergence plot of the MLE and the dissipation rate of the excess pore pressure
illustrated in Figure 26, which may be an important correlation to consider when assessing
the model precision.

The updated predictions of vertical displacement with time based on Cv values from the
MLE are visualized in Figure 34. This form of Bayesian updating with new evidence
provides a robust way of incorporating measurements to update model predictions and
can be used for other numerical methods as well. The evolution of predictions of vertical
displacement with time follows the same trend as the MLE, where the earliest time step
undershoots the analytical solution and the rest overshoots. The later the prediction, the
closer to the analytical solution. The last few predictions where Cv → 1 is only slightly
more deviant from the analytical solution than the deterministic model.
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Figure 34: Plot of predictions of vertical deformation of the column top at different time steps.
Displacement in the direction of gravity is considered positive.

The prediction for the final settlement can be isolated from the values from Figure 34 by
focusing on the prediction for Time = 1. The deviances of the predictions compared with
the analytical solution are presented in Figure 35. The convergence rate of the decline in
error in final settlement prediction is similar to that of the Cv estimation. Starting from
a value well above 7% at t∗ = 0.03, the deviance quickly converges to roughly 3.7% at
t∗ = 0.1. The deviance seems to fully converge and stabilize at 1.5% for what essentially
is a prediction of the current state.
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Figure 35: Plot of the deviance between analytical solution and predictions of final settlement
at different time steps. The deviance is relative to the absolute value of δv from the analytical
solution.

The results from the alternative option, where the MLE calculation is performed inside
the PINN model as per Algorithm (3), are presented in Figure 36. The results show that
the PINN optimization of the parameter follows the same overshooting trend as MLE
in postprocessing. The accuracy is quite similar in terms of MLE for t∗ = 1, but the
range of tested Cv values is less diverse in the inbuilt option and the accuracy is of course
dependent on the training stage. The benefit of this method is that the Cv parameter is
treated as a parameter and not additional input. So in addition to the MLE calculation,
the parameter is being optimized in the same manner as the weights and biases of the
model. The returned scalar is then the optimized value of Cv based on the provided
measurements.
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Figure 36: Plot of the likelihood estimates during training.

By disregarding the earliest time steps, the deviance between the MLE and the analytical
Cv value decreases. Figure 37 compares the estimates with and without the time steps
before t∗ = 0.00025. The results from the computation of the deterministic forward
problem showed that the deviation between the model predictions and the analytical
solution was relatively high for the early time steps. This error seems to propagate to
the MLE calculations for later time steps. The fact that the early time steps affect
the prediction at t∗ = 1 to the extent that the deviance is 50% larger, emphasizes the
importance of extensive knowledge of model behavior.
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(a) MLE at different timesteps
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Figure 37: A comparison of the original MLE calculation and the MLE calculation disregarding
early time steps.
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4.1.4 Predictions with noisy measurements

Adding Gaussian white noise to the piezometer data affects the MLE results moderately
overall, with some exceptions, as illustrated in Figure 38.
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(a) MLE at different timesteps
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Figure 38: A comparison of the analytical solution and model predictions with and without noise.

The predictions are especially sensitive to noisy data for the early and late time steps. Since
the time derivative of u is small for small values of t∗, the rate of change in measurements
is almost exclusively decided by noise and not change in pore pressure. This leads to
inaccurate and imprecise Cv estimates for t∗ < 0.05T . The precision increases with time,
and the upper and lower bounds are practically equal for 0.05T < t∗ < 0.3T which is
where the time derivative of u is largest. The precision decreases for t∗ > 0.3T , where the
time derivative of u decreases again.

The mean MLE with noisy measurements shows the same tendency as the probabilistic
forward problem. The accuracy of the mean prediction seems to be unaffected by Gaussian
noise, as long as the mean is calculated for a sufficiently large number of samples. This
coincides with the expected outcome of predictions with white Gaussian noise from a
statistical point of view.

Figure 39 shows the extremal results after Monte Carlo simulations of MLE for different
levels of noise. The results are consistent with the previous findings, but the plot of the
maxima estimates highlights the problem with measurements at early and late time steps.
The sensitivity to noise is heightened by a considerable amount when the rate of change
in u is low. For the timesteps in the middle, however, only the maxima for the highest
noise level show unstable behavior.
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Figure 39: Figures displaying the extremal MLE plots for the unknown Cv value obtained through
Monte Carlo simulations at various timesteps and noise levels.

It is also interesting that the lowest MLE results for the lower noise levels are higher than
the analytical Cv. This provides further evidence as to how strong the model bias is.
Another interesting observation is that the lowest MLE predictions do not suffer from the
same instability for the latest timesteps. The difference between the noisiest prediction
and the prediction without noise is almost linear after t∗ = 0.1.

The mean prediction at different timesteps after the Monte Carlo simulations for different
noise levels is shown in Figure 40.
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Figure 40: Average of the MLE at different timesteps with varying noise levels.

The overall tendency shows again that the noise levels effectively cancel out if the number
of Monte Carlo simulations is sufficiently large. However, there are some interesting new
observations to be made at the last timestep. The bias is clearly towards higher Cv

estimates at the last timestep for all noise levels except σ = 0.1 which dips notably
downwards.

4.1.5 Displacement measurements

If the piezometer measurements are replaced with displacement measurements, the accu-
racy increases but so does also the computation time. Instead of evaluating u for one value
of z, u has to be evaluated and integrated for the entire soil column each time step.

The line plot and table in Figure 41 show the results from the MLE with displacement
measurements.
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(a) Convergence plot

Time [-] Cv [-]

0.01 2.615
0.03 1.872
0.05 1.514
0.1 1.161
0.2 1.051
0.3 1.026
0.4 1.017
0.5 1.007
0.6 1.000
0.7 0.980
0.8 0.994
0.9 0.991
1.0 0.991

(b) Table of Cv values

Figure 41: Convergence plot of Cv-Time of prediction, for displacement measurements.

The results show that the MLE with displacement measurements converges much faster
and more accurately toward the analytical solution than the equivalent algorithm with
piezometer measurements. After just t∗ = 0.3 the prediction beats the accuracy of the
piezometer at t∗ = 1.

Figure 42 shows that the deviance in the predictions of final settlement is effectively
halved with displacement measurements. Both Figure 41 and 42 show a turning point at
t∗ = 0.7, which may be connected to the intersection point of the PINN predictions and
the analytical solution as seen in Figure 28 and 16. The fact that this intersection point
changes from t∗ = 0.4 to t∗ = 0.5 and lastly t∗ = 0.7 for different models is unfortunate
regarding model precision.
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Figure 42: Comparison of the deviation in final settlement prediction for different measurement
types at different timesteps.

Adding noise to the displacement measurements yields similar results compared with the
piezometer measurements, however, due to the computational demand of integrating the
strains, there are fewer evaluation points in the MLE per Monte Carlo simulation. There-
fore, these results show more erratic behavior, showcased in Figure 43. The erratic behav-
ior implies that the number of evaluation points in the MLE algorithm should be increased
to ensure accurate predictions.
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Figure 43: MLE of the Cv parameter over time with different levels of noise added to the displace-
ment measurements.
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Despite the sparse number of MLE evaluations, the mean estimate of the Monte Carlo
simulations, visualized in Figure 44, yields similar results compared with the clean mea-
surements. Interestingly, the mean predictions seem to converge to a slightly lower Cv

value than shown in Figure 41 for t∗ = 1.
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Figure 44: Average of the MLE estimates at different timesteps with different levels of added noise
to the displacement measurements.

4.1.6 Two random variables

By utilizing both types of measurements, MLE can provide estimates for both the perme-
ability kz and the compressibility Eoed.

64



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cv [-]

0

1000

2000

3000

4000

5000
Fr

eq
ue

nc
y 

[-]

Figure 45: Histogram of Cv values based on prior for Eoed and kz

The calculation of Cv based on random sampling of the two normally distributed random
variables yields a slightly skewed histogram of Cv values. This is mainly due to the fact
that negative values for kz and Eoed is impossible. Assuming Cv to be normally distributed
in the computations will therefore yield a small modeling error.

The only thing changing in the likelihood calculation of Cv with two random variables is
that the standard deviation of the prior distribution Eoedkz

γw
now is larger, which is evident

in Figure 46. Nonetheless, the end result of the MLE for the entire range of prior Cv

values is similarly accurate as for one random variable.
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Figure 46: Likelihood functions of the Cv value given the entire data set.

The results of the MLE at different time steps for both of the random variables are
shown in Figure 47. The estimate for Eoed has fully converged after t∗ = 0.05, which
is considerably faster than the estimates for Cv with just piezometer or displacement
measurements. The estimates of the permeability kz, on the other hand, exhibit more
similar behavior compared with the previous results.
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Figure 47: MLE of the two random variables at different time steps

In the end, the deviance of the predictions with both measurement types converges much
faster, as illustrated in Figure 48. The final predictions are also closer to the analytical
solution. So in addition to the possibility of treating both the compressibility Eoed and
permeability kz as random variables, the accuracy increases for almost all time steps. The
exception is the earliest time steps, where none of the results were close to the analytical
solution.
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Figure 48: Deviance in final settlement prediction over time with two random variables.

4.1.7 Computational efficiency

Table 4 shows an overview for comparison of computation time for the different methods
used to obtain the results. Some of the more computationally heavy calculations are
sensitive to fluctuations in available processor power, so these are not exact measurements
and should therefore be interpreted as approximate values.
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Table 4: Computational efficiency 1D.

Task Parameters Time

Training time forward 3000 epochs, 100.000 sam-
ples, 2 inputs

≈ 12000s

Training time inverse 3000 epochs, 100.000 sam-
ples, 3 inputs

≈ 12000s

Prediction time forward 100.000 samples 0.14s

Prediction time inverse 100.000 samples 0.14s

Calculation time Fourier series 100.000 samples, n=10 3.04s

Calculation time FEM 100 linear elements, 20000
time steps

1.58s

Calculation time FDM 200.000 samples 2.23s

Calculation time MLE(u) MCMC(n=300), L(n = 10) 6s
timestep

Calculation time MLE(δv) MCMC(n=300), L(n = 10) 60s
timestep

The results show that when trained, predictions with PINNs are very computationally
effective compared with the other methods. The uncertainty quantification with noisy
measurements took 12736.4s with piezometer measurements and 131587.3s with displace-
ment measurements. Extrapolating the times listed in Table 4 with these numbers shows
the importance of computational efficiency in these types of problems.
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4.2 Two-dimensional uncoupled flow

The results from the 2D analysis of a line load on a homogenous soil layer are presented
and compared with results from traditional numerical methods. The predictions from
the PINN model and the FDM solution assume negligible horizontal strains, whereas the
Plaxis model does not. The performance of the PINN model in regards to accuracy for
solving 2D diffusion problems should therefore mainly rely on comparison with the FDM
approximation.

The calculation and therefore also presentation of results consists of three different phases,
the initial phase, loading phase, and consolidation phase. They are presented in chrono-
logical order. The results from the first two phases consist of the model prediction and
the deviance from the Plaxis analysis. All the relevant stresses are plotted and compared,
whereas strain and displacement are dropped for the first two phases since they are all
zero due to the problem definition. Each plot consists of two horizontally aligned subplots,
prediction and deviance. So each row represents a stress or pressure component and the
columns represent prediction or deviance.

The presentation of the consolidation phase differs considerably from the previous phases.
The FDM approximation of 2D diffusion is included, and the spatial distribution of stress,
pore pressure, and displacement is plotted for three different time steps. For the uncoupled
problem, the vertical displacement is of primary interest, so only the results regarding
vertical stress, displacement, and excess pore pressure are presented. Each plot represents
a functional, where each row of subplots represents a time step and each column represents
the numerical method used.
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4.2.1 Initial phase
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(a) Model prediction
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(b) Deviance from Plaxis results
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(d) Deviance from Plaxis results

Figure 49: Results from the in-situ stress initialization and comparison with Plaxis results. Each
row is a stress or pressure component identified with the label of the color scale. The sign convention
is that both compression and pore pressure is positive.

The results from the stress initialization of the soil layer in the initial phase are presented
in Figure 49. The model prediction of the initial stress distribution is in general accurate,
both in terms of absolute values and physical behavior.

Some interesting results can be found by taking a closer look at the error plots. The model
prediction is performed on the stress points from Plaxis, which differs from the training
grid. However, the results from the 1D problem, showcased in Figure 21, showed that this
kind of interpolation results in little to no error.

The relative deviance from the Plaxis results is the smallest for vertical total stress and
pore pressure. This could result from the fact that those two properties are uniquely
defined by one equation each, Equation (78) for vertical stress, and the linear equation
pw = γwz for hydrostatic pore pressure. The prediction of the vertical effective stress
is influenced by the prediction of both pore pressure and total stress. The prediction is
therefore prone to inherit the error of both predictions, which may cancel each other out
or accumulate. A closer inspection of the deviances related to the three mentioned stresses
and pressures shows that the deviance is highest in the lower corners. This indicates that
the deviance of pore pressure and vertical total stress accumulates, and not cancels in the
prediction of vertical effective stress. The deviance is in this case relatively small, but
since the initial stresses affect further calculations and results, the accumulated error may
propagate and cause considerable uncertainty in the final prediction.

The horizontal effective stress is defined by its relation to three functionals. Vertical effec-
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tive stress through the constitutive relation of effective stresses at rest and the difference
between horizontal total stress and pore pressure. Since the stress initialization is de-
fined by the gravitational body force in the vertical direction, it is natural to think of the
causality or computational order as:

(σzz, σxz, u)→ (σ′
zz)→ (σ′

xx)→ (σxx) (91)

However, the optimization algorithm in ANNs is not sequential, so all the dependencies
should be multidirectional in the batch optimization. It is therefore interesting to see that
the vertical total stress and shear stress seem to be so strongly influenced by the PDE, as
is evidenced in the smoothness of the deviance plots. The horizontal total stress, which
is also directly involved in a PDE, does not have a smooth deviance plot. It is likely that
part of the explanation is that the contribution of the PDE in the gradient optimization
is relatively large, thus overshadowing the other constraints. The inclusion of a body
force in the vertical equilibrium equation can have skewed the bias in favor of optimizing
this equilibrium equation before everything else. This can in many cases be solved by
extending the training to reach a more optimal solution. Another possibility is to use
adaptive weights, which can scale down the gradients of the overly sensitive components
in the loss function.

In general, the largest relative deviances seem to be in the corners, and all the deviance
plots have symmetrical tendencies.
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4.2.2 Phase 2 - undrained loading
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(a) Model prediction
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(b) Deviance from Plaxis results
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(d) Deviance from Plaxis results

Figure 50: Results from the undrained loading and comparison with Plaxis results. Each row is
a stress or pressure component identified with the label of the color scale. The sign convention is
that both compression and pore pressure is positive.

The results from the undrained loading of the soil layer are presented in Figure 50. The
model prediction of the soil’s response to the undrained loading is in general accurate,
both in terms of absolute values and physical behavior.

The tendencies are the same as for the initial phase, which is natural since the only
change is the introduction of a surface load and increased pore pressure. The values in
the deviance plots increase a little more than the relative change in stress values, but the
accuracy is still high. The irregularities in the corners are still prominent, especially for
the pore pressure and the effective stresses.
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4.2.3 Consolidation phase

The consolidation phase introduces a new dimension, so the presentation of the results will
be structured differently. The relevant outputs for the vertical displacement are presented
in their own plots. Each plot is structured in a row-column format, where the rows
correspond to specific timesteps and the columns correspond to the computational method
used. The contour plots are presented to show the physical behavior of the PINN prediction
in comparison with the numerical methods, so the axis system of the plots has been
removed for a more compact presentation.

The results from the prediction of the dissipation of excess pore pressure during the con-
solidation phase are presented in Figure 51. The model predictions are accurate for all
three timesteps, both compared with FDM and Plaxis. Even though the Plaxis results
are for coupled flow-deformation, the pore pressure levels are virtually identical. However,
this is highly dependent on the magnitude of the deformation of the soil.
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Figure 51: Plot of the excess pore pressure at different timesteps. The colorbar is representative
of the pressure levels in all the subplots. Fluid pressure is considered positive.

The predictions of the excess pore pressures can be used to derive the effective stresses
directly, because of the assumption of negligible horizontal strain and constant vertical
total stress. The same equation for vertical strain as for the 1D problem can then be
used to calculate the vertical strains in the entire 2D domain. The resulting vertical
displacement can then be found by integrating the strains, starting from the bottom of
the soil layer.

The resulting vertical displacement of the grid is illustrated in Figure 52 for the three
timesteps. The resulting displacements of the PINN prediction and the FDM calculations
are naturally much larger than the Plaxis results, due to the assumption of negligible
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redistribution of stress. The conformity between the results obtained from the PINN
model and the FDM calculations is naturally equivalent to that of the pore pressure.

-0.2
-0.4
-0.6
-0.8

-0.2
-0.4
-0.6
-0.8

0.25 0.50 0.75

-0.2
-0.4
-0.6
-0.8

0.25 0.50 0.75 0.25 0.50 0.75
0.0

1.5

3.0

4.5

6.0

7.5

9.0

Ve
rti

ca
l d

isp
la

ce
m

en
t [

-]

1e 4

PINN FDM Plaxis

Ti
m

e
=

0.
1

Ti
m

e
=

0.
5

Ti
m

e
=

1
z [

-]
z [

-]
z [

-]

x [-] x [-] x [-]

Figure 52: Plot of the vertical displacement at different time steps. The colorbar is representative
of the pressure levels in all the subplots. Displacements in the direction of gravity are considered
positive.

To compare the differences between coupled and uncoupled consolidation analysis, the
predicted vertical effective stress is presented in Figure 53, along with the results from
Plaxis. The deviance between the coupled and uncoupled problem was small for the pore
pressure, but there are substantial differences in the calculated stresses. Along the right
boundary, where the model is horizontally confined and drained, the deviance in vertical
effective stress is almost 33%. This is due to the assumption of constant vertical stress,
which is a fair assumption for the situation in the middle of the loaded area but is evidently
less accurate at the edges of the strip load. The redistribution of total stress causes higher
horizontal stresses and strains in this area, defying the modeling assumptions of both the
uncoupled storage equation and the one-dimensional strain.
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Figure 53: Plot of the vertical effective stress at different timesteps. The colorbar is representative
of the pressure levels in all the subplots. Compression forces are considered positive.

The deviance in excess pore pressure and vertical effective stress between uncoupled and
coupled consolidation is emphasized in 54. The deviance in the vertical stress is an order
of magnitude larger compared with the pore pressure. The stress deviance is considerably
smaller for x = 0 which is under the middle of the load when considering the full problem.
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Figure 54: Plot of the deviance between the uncoupled and coupled calculation of excess pore
pressure and vertical effective stress. The colorbar is representative of the deviance levels in all
the subplots.

4.3 Coupled flow

The results from the coupled flow computation are structured in the same manner as for
the consolidation phase of the uncoupled flow computation. The FDM results are, however,
replaced by fully coupled flow-deformation computation with Plaxis. The initial stresses
from the stress initialization in the uncoupled problem are reused for the computation of
the new stress distribution. The contour plots are presented to show the physical behavior
of the PINN prediction, whereas the line plots are included to emphasize the numerical
values.

The results from the prediction of excess pore pressure for fully coupled flow show greater
deviance than for the uncoupled problem. Figure 55 shows that the PINN model predicts
a faster dissipation compared with both consolidation analysis and fully coupled flow-
deformation in Plaxis. The behavior of the model prediction is closer to the results from
the fully coupled soil model. The bottom left plot in Figure 55 shows that the model
begins to defy the physical laws it has been trained on as time goes by. This is likely
due to the fact that the absolute values of the gradients of both the governing equations
and boundary conditions converge to zero. The model may therefore neglect to change
its weights due to the small contribution to the global error, thus risking non-physical
behavior. The contour lines show that only the lower and left boundary conditions are
upheld.
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Figure 55: Plots of the excess pore pressure at different time steps with PINN and comparable
numerical analysis with Plaxis. The colorbars are representative of the pressure levels for the
respective timesteps. Fluid pressure is considered positive.

The plots of the deviances are shown in Figure 56. The deviance plots show that the PINN
prediction is better than indicated by the slightly deceiving Figure 55. The deviance of
the PINN model compared with the fully coupled flow model shows similarities to the
deviance between consolidation analysis and fully coupled flow. Especially the plots of
the last timestep show that the result from the fully coupled flow is approximately the
average of the PINN prediction and the consolidation analysis.
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Figure 56: Plots of the deviances of the excess pore pressure calculations at different time steps
between PINN and the numerical analysis with Plaxis. Abbreviations: CA = Consolidation Anal-
ysis, FCF = Fully coupled flow. The colorbars are representative of the deviance for the respective
timesteps.

As can be seen in Figure 57, the model prediction is not so wrong as indicated in Figure
55. The choice of timesteps for the illustration was determined critically to emphasize the
struggle areas of the PINN model, especially where the model starts to defy the physical
constraints. The visualization in Figure 57 shows that the model is able to predict the
initial increase in excess pore pressure at the middle of the lower boundary furthest away
from the draining boundaries, which is called the Mandel-Cryer effect. However, the values
are a little lower than the ones from the numerical solutions from Plaxis. The behavior
over time is accurate compared with the fully coupled flow analysis, both for point (0,−1)
and (0.5,−0.5). It is interesting that the biggest deviance is for the initial condition at the
bottom, where the value for u is implicitly given by the relation ∆u = B∆p. The model
undershoots the initial pore pressure level at (0,−1) and overshoots at (0.5,−0.5), when
they should be identical given the initial condition. Numerical instabilities at the corners,
previously addressed during the initial phase of stress initialization, might explain the
substantial deviance observed between the predictions of the two points. The corners may
suffer from instabilities due to overlapping boundary conditions and being the extremal
points of the PDE domain.
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Figure 57: Plots of the excess pore pressure over time at two different spatial coordinates. Fluid
pressure is considered as positive.

Figure 58 shows the predicted vertical total stress at Time = 0.1 and Time = 0.5. The
last time step was omitted due to the small changes in total stress after Time = 0.5. The
results show that the PINN model accurately predicts the redistribution of stress caused
by the pore pressure dissipation. Similarly to the predictions of the excess pore pressure,
the PINN model predicts a slightly faster dissipation and following stress redistribution
than the FEM calculations with Plaxis. This is more prominent in the pore pressure
prediction visualized in Figure 55, but can also be observed in the contour lines in Figure
58.
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Figure 58: Plots of the vertical total stress at different time steps with PINN and comparable
numerical analysis with Plaxis. Compression is considered positive.

The comparisons made in the chapter on uncoupled consolidation showed the importance
of accurately estimating the redistribution of stress to model the soil behavior in the whole
domain. The effect of redistribution can be further emphasized by subtracting the initial
stress in the soil to isolate the change in stress from the external loading. Figure 59 shows
the isolated change in stress due to external loading at the same time steps as the total
stress in Figure 58. At Time = 0.1, there is a clear distinction in stress level between the
middle of the soil layer and the lateral boundaries. The vertical total stress level in the
middle is greater than the introduced surface load, whereas the vertical total stress level
on the sides is lower.

Comparing the predictions of the PINN model with the Plaxis results show that the model
predicts a slightly more pronounced difference between the middle and the boundaries,
as shown in Figure 59. However, the physical behavior is captured in the same manner
as the FEM solutions. The plots for Time = 0.5 show that the redistribution of stress
has virtually converged to a steady state. A comparison with the calculated excess pore
pressure levels for the same timestep, illustrated in Figure 55, shows that the convergence
is expected since most of the excess pore pressure has dissipated by then, implying that
the majority of the settlement has occurred.
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Figure 59: Change in vertical total stress due to external loading at two different timesteps.
Compression is considered positive.

Figure 60 illustrates the results obtained from the model prediction of the vertical dis-
placements. The accuracy of the displacement predictions appears to be comparable to
that of the vertical stress. Notably, at Time = 0.1, the model predicts a slightly less
prominent displacement at the drained boundary compared to Plaxis, which opposes the
results from the simplified uncoupled model prediction. The change in prediction or calcu-
lation between Time = 0.5 and Time = 1 is marginal, confirming the indications from the
results for excess pore pressure and total stress that the consolidation process has mostly
converged by Time = 0.5.

83



-0.8
-0.6
-0.4
-0.2

-0.8
-0.6
-0.4
-0.2

0.25 0.50 0.75

-0.8
-0.6
-0.4
-0.2

0.25 0.50 0.75 0.25 0.50 0.75

0.00010

0.00045

0.0002

0.0006

Ve
rti

ca
l d

isp
la

ce
m

en
t [

-]

0.0002

0.0006

PINN Consolidation analysis Fully coupled flow

Ti
m

e
=

0.
1

Ti
m

e
=

0.
5

Ti
m

e
=

1
z [

-]
z [

-]
z [

-]

x [-] x [-] x [-]

Figure 60: Plots of the vertical displacement at different time steps with PINN and comparable
numerical analysis with Plaxis. Displacement in the direction of gravity is considered positive.

The deviances of the vertical displacement calculations are presented in Figure 61. Com-
pared with the Plaxis calculations, the PINN model is the least accurate at Time = 0.1,
where the model underestimates the vertical displacement. For Time = 0.5, the PINN
prediction and the fully coupled flow calculation are almost equal, similar to the results
from the excess pore pressure. At the last timestep, the deviance is the smallest between
the consolidation analysis and the PINN prediction. By assessing the total figure, the
subfigures showing the least deviance form a diagonal in the matrix representation. This
implies that the behavior of the PINN model varies with time, both in regard to accuracy
and physical interpretation.
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Figure 61: Plots of the deviances of the vertical displacement calculations at different time steps
between PINN and the numerical analysis with Plaxis. Abbreviations: CA = Consolidation Anal-
ysis, FCF = Fully coupled flow. The colorbars are representative of the deviance for the respective
timesteps.

Concentrating on the boundary points of the surface and the middle point of the domain
enables a continuous illustration of displacement over time. Figure 62 shows that the
predictions of the model show the same behavior as the Plaxis calculations, but are to
some degree delayed in time. The rate of change in the model predictions is lower than
for the Plaxis results for all three points. This trend was also apparent in the results of
the vertical displacement in the 1D problem. The slightly higher deviance for point (1,0)
compared with (0,0) is caused by this phenomenon since the rate of change for t < 0.01
is considerably higher at the drained boundary. The model is also able to encapture this
effect, but the difference is less pronounced. The behavior of the convergence to the fully
consolidated state is similar across all three methods.
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Figure 62: Vertical displacement at different time steps

The predictions of the horizontal displacements are presented in Figure 63 for three dif-
ferent timesteps. The horizontal displacements are small compared with the vertical dis-
placement which greatly affects the accuracy of the model. The shape of the contour plot
is reasonably accurate for Time = 0.1 and to some degree also T = 0.5, but the correct
physical behavior steadily diminishes with the absolute values of the displacements. The
physical constraint of no displacement along the bottom of the soil layer is contradicted for
all three timesteps. For Time = 1 the contour lines reveal that the prediction contradicts
the provided physical constraints at the lateral boundaries as well.
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Figure 63: Vertical displacement at different time steps

Similarly to Figure 62 for the vertical displacement, Figure 64 shows the horizontal dis-
placement over time at three selected spatial coordinates. The coordinates are at the
boundary (0,0) where the horizontal displacement is supposed to be zero, the midpoint of
the halved surface (0.5,0) where the horizontal displacement is relatively large, and the
midpoint of the halved domain (0.5,-0.5) where there is a certain degree of horizontal dis-
placement. The results show that the model predicts an initial horizontal displacement at
the horizontally confined boundary. A similarly large, but mirrored, displacement is found
at the opposite boundary, with the same horizontal confinement, for point (1,0). The pre-
diction stabilizes at around zero displacement after roughly Time > 0.1. The prediction
for point (0.5,0) shows that the relative error in the prediction of horizontal displacement
is considerably larger than the relative error in the prediction of vertical displacement.
The predicted maximum horizontal displacement is roughly 60% of the calculated max-
imum horizontal displacement from the Plaxis results. A possible cause of this deviance
is the relatively small magnitude of horizontal displacement compared with vertical dis-
placement and pore pressure. As previously discussed in the theory chapter and for the
stress initialization phase, the optimization algorithm prioritizes to update the weights
that contribute the most to the total loss of the prediction. So for finite training time, the
model may be stuck on searching for a minima related to the biggest contributors to the
loss, and barely learn the small contributors, like horizontal displacement in this case. A
possible solution to this problem is the use of user-defined weighting of the loss functions,
or alternatively adaptive weights. If the horizontal displacement is of primary interest, the
loss function related to vx may be weighted with a scalar to artificially increase the value
of the loss related to the functional, thus directing the model to prioritize optimization of
the weights in relation to horizontal displacement.
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Figure 64: Vertical displacement at different time steps

4.3.1 Computational efficiency 2D

Table 4 shows an overview for comparison of computation time for the different methods
used to obtain the results for the 2D problems. The structure is the same as for the 1D
problem, as well as the limitation of the accuracy of the measurements due to fluctuations
in available processing power.
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Table 5: Computational efficiency 2D.

Task Parameters Time

Training time stress initializa-
tion

500 epochs, 2500 samples, 2 in-
puts

63.66s

Training time undrained loading 500 epochs, 2500 samples, 2 in-
puts

156.20s

Training time uncoupled consol-
idation

1000 epochs, 125000 samples, 3
inputs

≈ 9000s

Training time coupled consolida-
tion

2000 epochs, 125000 samples, 3
inputs

≈ 20.000s

Prediction time stress initializa-
tion

2500 samples, 6 outputs 0.024s

Prediction time undrained load-
ing

2500 samples, 6 outputs 0.024s

Prediction time coupled consoli-
dation

12000 samples, 6 outputs 1.02s

Calculation time stress initial-
ization

288 elements, 2401 nodes, De-
fault iteration parameters

0.0

Calculation time undrained
loading

288 elements, 2401 nodes, De-
fault iteration parameters

1.53s

Calculation time consolidation
analysis

288 elements, 2401 nodes, De-
fault iteration parameters

4.15s

Calculation time fully coupled
flow

288 elements, 2401 nodes, De-
fault iteration parameters

3.91s

Calculation time FDM uncou-
pled

Discretization: 50x50 in space,
20.000 in time

533.88s

The results for the computational efficiency of the 2D problems show much of the same
as for the 1D case. However, the introduction of Plaxis to the list showcases the efficiency
of their numerical solvers. With default iteration parameters, the calculations are done
for relatively large time steps, so in contrast with PINN and FDM, the Plaxis calculation
only stores the results for a few points in time. This numerical efficiency is very beneficial
for forward solving, but for inverse problems where measurements are received frequently
over time, this is less relevant to some degree.
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5 General discussion

The general discussion will try to relate the obtained results from the result and discussion
chapter to the research questions and limitations presented in the introduction chapter.
A more focused discussion of individual results can be found in the results and discussion
chapter. The interpretability of the model is discussed parallel with the accuracy due to
their close relation.

5.1 Accuracy

The first research question is related to the accuracy of the model, and how it compares
with the alternative traditional methods. The results from the Terzhagis problem show
that the PINN is able to accurately predict the physical behavior of a 1D diffusion prob-
lem with mixed boundary conditions. Compared with the analytical solution, see Figure
16, the accuracy can be deemed as on par and fully competitive with traditional methods
for time >> 0. For early time steps, the accuracy of the PINN is negatively affected by
the overlapping boundary and initial conditions, in contrast to the numerical methods.
However, the approximation of the analytical solution to the problem is also fairly inac-
curate for small-time steps, making the comparison with the numerical methods slightly
more relevant in the early stages. In a comparable study of PINN performance on a 1D
consolidation problem by Bekele (2020), the results showed a similar pattern of elevated
error for early timesteps. However, the primary objective of this study was not uncer-
tainty quantification, so the deviance for the early timesteps was not highlighted in the
same manner.

For the case of the forward problem, an argument can be made that the early stages of a
consolidation problem are less important than the long-term prediction. For the predic-
tion of final settlement and time of consolidation, the model is as accurate as numerical
methods. Which is worth noting for the important overarching question of applicability.
An interesting and important observation is that the accuracy increases considerably when
infusing Gaussian white noise into the model, running Monte Carlo simulations, and esti-
mating the mean simulation. A 50% decrease in deviance makes the mean prediction with
Gaussian noise more accurate than the numerical approximations for time >> 0. The
fact that it reduces the total deviance is one thing, but the deviance reduction for the first
time steps is quite interesting since the initial pore pressure level is kept constant. This
can be caused by the fact that PINNs are solved as an optimization problem. In contrast
to the numerical methods, where the calculation flow is in one direction, the predictions
in PINNs during training affects the whole training domain. So new predictions for later
timesteps may propagate backward in time and update the prediction for early timesteps.
This calculation flow is important to keep in mind when dealing with uncertainty, because
errors may propagate through time and space both forward and backward.

For the inverse problem, the accuracy for the early timesteps becomes much more relevant.
The results from the parameter optimization and MLE show that the parameter estima-
tion for early timesteps is greatly affected by the lacking accuracy, thus leading to poor
predictions of future behavior. However, by utilizing previous knowledge of the problem’s
nature and model behavior, the global error due to lack of accuracy for the early timesteps
can be reduced. For instance, altering the optimization algorithm to prioritize updating
the unknown parameters based on measurements from domain points where the data and
the prediction are in agreement. The results also show that increased accuracy can be
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obtained by considering alternative or even multiple measurement types. The accuracy
of MLE with displacement measurements outperformed the equivalent algorithm with
piezometer measurements, and combining the two made inferences of both Eoed and kz
possible simultaneously due to conditional independency given Cv, where the conditional
independence is based on the problem and modeling assumptions.

The model prediction of the 2D diffusion problem, where the storage equation is uncoupled
by assuming negligible horizontal strains and constant vertical total stress, is similarly
accurate as for the 1D problem. The results from the predictions of the initial stress state
show that the PINN model is able to learn the basic equilibrium equations from continuum
mechanics, again completely independent of data. The deviations from the Plaxis model
are the largest for the unknown physical quantities that are not directly tied to the PDE,
which may be due to inherent bias in the optimization algorithm. For soil mechanics
purposes, the boundary conditions, initial conditions, and constitutive relations between
the physical quantities are equally important as the PDE. So for PINNs to be applicable
as numerical solvers in problems related to soil mechanics, a comprehensive approach
needs to be established to ensure an even holistic treatment of the PDE and all the other
physical constraints. Utilizing adaptive weights, as in the research from Haghighat et al.
(2022), is a possible solution that evens out the magnitudes of the gradients in a neural
network. However, this may slow down the training process considerably due to the
additional numerical operation for each epoch. Another approach is to utilize previous
domain knowledge by feeding the model with more training data from the boundaries.
However, this approach essentially introduces a new bias to counterbalance the previous
bias, which may be unfortunate for the ability of the model to generalize its knowledge
for use in other domains. A similar, less computationally expensive solution is to simply
utilize a user-defined scaling of the loss functions

L = α1Lbc + α2Lic + α3Lpde + α4Ldata (92)

This was done for the 1D consolidation problem, where the loss term related to the initial
condition was amplified in an attempt to increase the accuracy for the early timesteps. The
deviance of a biased model was slightly lower than an unbiased model compared with the
analytical solution. The differences between the models with different loss configurations
diminished for longer training time, and a perfectly trained model should be independent
of the scaling. However, the global minimum is seldom achieved, so in realistic scenarios,
the model behavior may be slightly different.

The advantage of user-defined scaling is the ability to prioritize certain aspects of the prob-
lem that are of special interest or highlight irregularities or nonlinearities. For instance, if
the horizontal displacements in the 2D soil layer are of great interest, the loss connected
to the constraints of the horizontal displacement may be scaled by a factor reflecting the
difference in magnitude between vertical and horizontal stress. As shown in the results
for the coupled 2D problem, the model prediction of vertical displacement is substantially
more accurate than the prediction of horizontal displacement. This may be due to the
fact that the vertical displacements are an order of magnitude larger than the horizontal
displacements, thus prioritized in the weight and bias optimization. Amplifying the losses
connected to the lateral confinements and the equilibrium equation for the x-direction
could therefore benefit the accuracy of the prediction of horizontal displacement. How-
ever, this may affect the accuracy of the prediction of the other physical quantities, and
should therefore be done critically and only for instances where the small quantity is of pri-
mary interest. Usually, the largest quantities of the stresses, strains, and displacement are
of primary interest, like the vertical displacement of the surface in consolidation analysis.
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Due to the normalization of the quantities in the nondimensionalization, the issue with
model bias is mainly apparent between directional components of different magnitudes
within the same tensor.

The overall results from the coupled consolidation problem showed that the PINN model
was able to predict the behavior of coupled PDEs, even without data. The model was
able to learn the general tendencies of all the relevant stresses and displacements, some
more accurately than others. However, compared with advanced commercial numerical
solvers, the accuracy is considerably lower and the behavior is less stable. The problem
was not solved with an optimized model, so significant improvement in both accuracy and
efficiency may be obtainable by tweaking the model’s architecture and hyperparameters.
This is on the other hand also one of the drawbacks of the methodology. The accuracy
is dependent on what is to some extent random choices of parameters and network size.
A parallel may be drawn to FEM and the choice of element type and mesh size, which
both the accuracy and convergence rate depend on. Similarly, deeper neural networks
are usually associated with higher accuracy but demand greater computational power to
train.

The total uncertainty of a model is the sum of the Aleatoric and the Epistemic uncer-
tainty. The results in this thesis show that PINN models contribute to increased Epistemic
uncertainty, compared with commercial FEM, due to its inferior accuracy in predicting
the correct physical behavior. So for deterministic problems, uncertainty quantification
with PINNs will probably lead to a higher total uncertainty due to this inherent error.
Nonetheless, the results from the predictions on the independent test grids show that a
well-trained PINN model is able to predict independently of the training grid. So for deter-
ministic tasks like parametric design where interpolation and extrapolation independent
of grid or mesh is beneficial, PINNs can prove valuable even for deterministic tasks.

5.2 Efficiency

The results from the evaluation of computational efficiency showed that the PINN model
is considerably faster than the other numerical methods. Even for the low-dimensional
problems explored in this project, the differences are considerable. For the 1D probabilistic
forward problem, where the Cv parameter was treated as a random variable, estimating
the mean and standard deviation of the predictions involves Monte Carlo simulations
over the sample space. Monte Carlo simulations in general involve solving variants of
a problem repeatedly in an iterative process storing the outcomes for analysis of the
statistical moments of the target distribution. So even for relatively simple problems,
like the 1D consolidation problem with one random variable, the computation time may
be significant if the sample space of the random variable is large. The sample space is
usually dependent on a prior belief of the underlying distribution, so according to Bayesian
statistics, a stronger prior belief will reduce the sample space and consequently reduce the
computational cost. However, this requires prior knowledge of the underlying distribution
which is not always obtainable due to inherent randomness or practical reasons.

By extrapolating the time per prediction with the number of necessary predictions to cover
the sample space, the computational time would have been 0.14s ∗ 100000 ≈ 3.89h with
the PINN model, 1.58s ∗ 100000 ≈ 43.89h for FEM, 2.23s ∗ 100000 ≈ 61.94h for FDM and
1.58s ∗ 100000 ≈ 84.44h with the approximation of the Fourier series. These differences
showcase the efficiency of matrix operations in Python compared with nested loops. FEM
and PINN are drastically faster than FDM and Fourier series approximation due to this
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fact. The reason PINN is faster than FEM is the time integration scheme necessary for
calculating transient problems with FEM. For stationary problems, FEM will be equally
fast, thus diminishing the main advantage of PINNs for forward problems. It is worth
noting that these times are extrapolated for a larger-than-necessary solution space, and
that there exist efficient sampling techniques, like MCMC used in the inverse problem, to
reduce the number of necessary calculations.

Summarized, the results show great promise for probabilistic problems, where the contri-
bution of Aleatoric uncertainty to the total uncertainty is significant. The PINN model
proves its effectiveness in exploring the target distribution of the stochastic PDE more
efficiently, enabling better mapping of the aleatoric uncertainty compared with FEM for
the same calculation time.

Another computationally demanding task is parameter estimation in the inverse problem.
The results show that the prediction time is unaffected by an additional input parame-
ter, which is highly beneficial for the efficiency of the MLE for use in multi-dimensional
parameter spaces. However, when the dimensions of the parameter space increase, the
necessary computations of MLE increase exponentially

FX1(X1) =

∫
X1

fX1(x1)dx1

FX1,X2(X1, X2) =

∫
X1,X2

fX1,X2(x1, x2)dx1dx2

...

(93)

By fixingX1 and evaluating for allX2, and vice versa, the MLE of two independent random
parameters can be solved with brute force MCMC. Alternatively, the optimization problem
can be solved by gradient descent in the PINN algorithm. The latter is considerably
more computationally efficient and effectively facilitates for computations with multiple
random variables, which until recently demanded substantial computational power for
most problems.

Due to the findings in regard to computational efficiency, a possible beneficial framework
may be to use PINNs for a preliminary assessment of the solution space. The PINN model’s
predictions can be used to receive an initial first-order approximation of the problem and
possibly be able to reduce the parameter space by dimensionality reduction or updating
the prior belief of the underlying parameter distributions. As seen from the results from
the MLE and parameter optimization in the inverse problem, the PINN model is able to
effectively update the prior distribution of the unknown parameter, even at early time
steps. The model is then able to utilize the updated belief to make new predictions, all in
a matter of seconds.
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6 Concluding remarks

In conclusion, the results of this work show that PINNs offer a promising alternative
to computationally expensive simulations of probabilistic numerical models. Although
the accuracy was shown to be inferior compared with FEM, the computational efficiency
and generality of the PINN approach offer efficient integration with data and measure-
ments ideal for uncertainty quantification and parameter estimation in inverse problems.
Although not explicitly proven in this project due to limitations in processing power,
combining the proven efficiency from the parameter estimation and the acceptable accu-
racy from the coupled flow-deformation problem, indicates that PINN models are capable
and efficient in performing high-dimensional optimization tasks related to poroelasticity
and soil mechanics in general. While this methodology may be redundant for forward
deterministic modeling, the prospect seems promising for multi-dimensional parameter
estimation and simulation for statistical analysis of stochastic PDEs.
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7 Recommendations for further work

There are several ways to explore the capabilities and applicability of PINNs further, both
in relation to poromechanics and soil mechanics in general.

• Geometry: The work in this project has only dealt with idealized geometries, which
limits the applicability to a narrow range of problems. To prove the PINN model’s
ability to learn the physical behavior of an arbitrary problem domain, performance
tests for problems with more than one soil layer, varying depths to bedrock, or
inclined surfaces could be investigated.

• Advanced soil models: Linear stress-strain relationship has been assumed in this
project work, which is unrealistic for many problems in soil mechanics. Therefore,
the PINN model’s ability to learn the stress-strain relation and unloading-reloading
characteristics of elastoplastic soil models is of interest for applicability in advanced
soil modeling. Both in problems with soil-fluid interaction, soil-structure interaction
or just focusing on soil behavior for an arbitrary loading.

• Periodic loading: The PINN model’s ability to predict the behavior of soils subjected
to cyclic loading could be investigated. This could be done in combination with
elastoplastic soil models, to see if the model is able to predict long-term elastoplastic
deformation patterns due to for instance cyclic loading.

• Increased dimensionality: PINNs capability and efficiency in solving high-dimensional
optimization problems for design optimization and uncertainty quantification could
be investigated, note that this will most likely demand extensive computational
power.
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