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Abstract

The illicit inflow of water to urban drainage systems refers to the unauthorized
entry of water, through improper disposal or wrongly made connections to drain-
age systems causing inflow of sewer to stormwater systems and stormwater to
sewer systems. This has the potential to increase operating costs and could cause
an exceedance of the capacity of the systems. The predominant strategies for de-
tecting illicit connections in sewer systems are inefficient because the most effect-
ive methods, which are also the most time-consuming, must be applied throughout
the entire system. Illicit connections often occur when storm drains from houses
and streets are incorrectly connected, leading to an influx of excess water into the
sewer systems. This causes a temporary increase in discharge and alters the wa-
ter composition. Detection can be achieved through intrusive techniques such as
sampling, flow measurement, or Distributed Temperature Sensing (DTS). How-
ever, these methods suffer from being either too expensive, too inaccurate, or too
time-consuming. A non-intrusive sensor strategy is being researched in this mas-
ter thesis project, involving the use of cameras, Computer Vision (CV) and Optical
Velocimetry (OV) algorithms to observe increased flow during periods following
rain events in order to detect illicit connections to the system. This sensor strategy
is being applied in a real sewer system in the Municipality of Tilburg, NL. A de-
tailed account of the process and concepts will be provided in this master thesis.
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Summary

The illicit inflow of water to urban drainage systems refers to the unauthorized
entry of water, through improper disposal or wrongly made connections to drain-
age systems causing inflow of sewer to stormwater systems and stormwater to
sewer systems. This has the potential to increase operating costs and could cause
an exceedance of the capacity of the systems. Mitigating illicit inflow in sewer
systems reduces the potential for environmental pollution and decreases the cost
of operation by removing excess water. A cost-effective and efficient method for
identifying and locating illicit connections is needed since present methods are
time-consuming and may not always provide reliable results. Illicit inflow can be
detected by correlating rain data with increased velocity observed in the system.
Capturing videos with a camera and processing them with Optical Velocimetry
(OV) algorithms to produce a series of velocity estimates could be a good non-
intrusive alternative to other velocity measurement methods.

Three different OV algorithms were shown capable of estimating the flow ve-
locity in the context of sewers when processing footage from both high-quality
and lower-quality videos. However, the success of the different algorithms is very
dependent on image quality, wastewater characteristics, and particle character-
istics. The detection sensitivity of the algorithms and the variation in velocities
produced in a conducted experiment showed that Optical Flow (OF) and Particle
Tracking Velocimetry (PTV) are less susceptible to image noise when compared
to Particle Image Velocimetry (PIV), making them better suited for distinguishing
the presence of flow from no flow. PTV also produced the series with the least vari-
ation between velocities estimated from each frame of the videos. The experiment
also proved that increasing the time between evaluations of displacement effect-
ively reduces uncertainty and increases sensitivity. Furthermore, the experiment
showed that using ultraviolet light in combination with visible light could be bene-
ficial compared to using only visible light when recording footage for velocimetry
purposes in sewers.

The results from the "in-field" implementation of the OV camera sensor were
hindered by camera problems. The limited amount of data collected from this
implementation is inadequate to definitively prove that the sensor strategy, im-
plementing hydraulic simulation in sensor placement, verification of results, and
source detection, works. Nevertheless, the field implementation demonstrated
how the camera sensor can be placed, and the data showed, despite the lower
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quality footage obtained in the field study, that all three algorithms are able to
distinguish between the presence of low or no flow and periods with higher flow
when averaging frame velocities over a 30-second sequence. Therefore, it would
be possible to detect illicit inflows as deviations occurring during periods when
the system runs dry. The biggest limitation to the success of the method is the
video quality. PTV also suffers from insufficient image quality, but it also showed,
in the field implementation, the ability to accurately represent the widest range
of velocities, even from poor-quality footage.
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Chapter 1

Introduction

Sewer systems are essential components of modern urban infrastructure as they
provide a safe and efficient means of collecting and disposing of wastewater gener-
ated by residential, commercial, and industrial activities. Butler and Davies (2000,
p. 18) categorizes conventional sewer systems into two types: Combined Sewer
Systems (CSS) and Sanitary Sewer Systems (SSS). CSS collects both wastewa-
ter and stormwater in a single pipe network, while SSS collects only wastewa-
ter from residential, commercial, and industrial sources. Improper connections
to SSS, such as illegal discharges from industrial facilities or direct connections
with storm drains, can compromise the effectiveness and sustainability of these
systems. These illicit connections can lead to increased pollutant loads in natural
water bodies, exceed system capacity, increase water treatment costs (more en-
ergy and chemicals), and potentially decrease treatment effectiveness.

Identification of illicit connections in sewer systems is a complex and challen-
ging task due to several factors. Sewer networks are often extensive and intricate,
and the identification of an illicit connection within them can be time-consuming,
requiring a detailed understanding of the system’s layout and operation. Further-
more, the detection of illicit connections can be costly, necessitating specialized
equipment and techniques for accurate identification. In some countries, it may
only be legal to enter private property with permission, making detection tech-
niques rely on indirect methods. The process can also be hazardous, posing health
risks to workers involved in the investigation. The methods currently used to
identify illicit connections are time-consuming and may not always provide reli-
able results in sewers compared to stormwater systems. Further research is needed
to develop cost-effective and efficient methods for identifying and locating illicit
connections, to ensure that existing infrastructure can cope with the increasing
pressure on drainage systems caused by population growth and more extreme
weather events.

A comprehensive overview of various Sewer Inspection Methods (SIMs) em-
ployed in practice is presented by Sadeghikhah et al. (2022), categorizing them
into three distinct tiers. These methods range from assessing the general structural
health of the system, involving spatial mapping and modelling, to more specific
methods for investigating the temporal behaviour of the system and pinpointing
problem locations. Beheshti, Sægrov and Ugarelli (2015) distinguishes between
quantitative methods for assessing magnitude, volume, and discharge, and qual-
itative methods for source detection of Infiltration/Inflow (I/I) in drainage sys-
tems. The qualitative methods discussed include smoke testing, dye testing, Dis-
tributed Temperature Sensing (DTS), and Closed Circuit Television (CCTV). The
article also reports on the limitations of these different methods. DTS and CCTV
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both require expensive equipment and rely on the occurrence of inflow, which
can make them time-consuming in order to avoid false negatives. Dye testing, on
the other hand, is only possible under certain flow conditions, is labour-intensive,
and requires access to private property. While smoke testing is less accurate and is
deemed ineffective by Beheshti and Sægrov (2019) in finding all types of infiltra-
tion/inflow sources in sewer networks on its own, suggesting it is more effective
when combined with other methods.

By strategically employing high-resolution cameras within the sewer network,
flow patterns can be observed, enabling the identification of anomalous flow pat-
terns after precipitation events. The rationale behind this approach is that storm-
water entering through illicit connections leads to rapid changes in discharge
volume and an almost proportional increase in velocity. Analyzing captured im-
agery for variations in flow velocity can, as a result, reveal the presence of illicit
connections. By incorporating this into a smart sensor strategy that utilizes hy-
draulic simulation for sensor placement, validation of results, and source location,
a non-invasive and efficient means of detecting illicit connections in urban sewer
systems is established.

The goal of the work presented here is to investigate the ability of optical
velocimetry techniques to measure flow velocity in sewer networks and identify
illicit inflow of stormwater by capturing sequences of videos at specific intervals
and durations. Patterns in the observed velocity variation are then correlated with
the occurrence of storm events to provide a strong indication of the presence of il-
licit connections. Several optical velocimetry algorithms were tested to determine
their effectiveness under different settings, conditions, and physical setups. The
detection level of the method is assessed by analysing the uncertainty of the meas-
urements, conducting hydraulic simulations, and applying the method in a field
study. A sensor strategy is also proposed to identify suitable locations for camera
placement and to verify the results based on hydraulic simulations of the modeled
system.



Chapter 2

Background

Using digital image analysis to produce real-world measurements has emerged
as a promising method for monitoring water for a range of different purposes.
Moreno-Rodenas et al. (2021) employed it for monitoring the accumulation of
fat, oil, and grease in the sumps of wastewater pumping stations, while Legleiter
and Kinzel (2021) estimated surface flow velocities from satellite video, and Kim
et al. (2014) estimated flood runoff from CCTV footage. Zeng et al. (2021) also
showed that a low-cost digital camera colorimetry setup can be used to invest-
igate quantitative relationships between watercolour and concentrations of dis-
solved and particulate materials. Especially, the advantages of low power and low
energy consumption were found by Ufuoma et al. (2021) to make camera sensors
viable and recommended as an alternative technology for flood monitoring when
assessing the accuracy of camera vision (CV) for immediate water level monitor-
ing.

In the context of sewers, Meier et al. (2022) demonstrated how footage from
cheap, consumer-grade cameras can be used in a real-time flow sensor without re-
lying on trackable particles by training a Convolutional Neural Network (CNN) to
extract surface velocity and water level, which are then used to approximate the
flow in real-time. Jeanbourquin et al. (2011) concluded their investigation into
using automatic flow velocity algorithms in combined sewer overflow monitoring
by stating it as a feasible means to measure and better understand sewer flows
and hydraulics. The capability of Optical Velocimetry (OV) was proven by Naves
et al. (2021) by showing that both techniques with and without the addition of
seeding particles provided satisfactory velocity distributions in cases of unidirec-
tional flows when assessing different imaging velocimetry techniques to measure
shallow runoff velocities during rain events.

The possibilities that lie within digital image sensors also interest vander-
valk+degroot (V+G), a sewer inspection and renovation company located in the
Netherlands and Belgium. The company brands itself by "innovating wherever it
is possible" and has already been involved in projects using optical measurements
for sewer purposes and wants to investigate the possibility of using cameras in
illicit inflow detection. V+G has been appointed to search for illicit connections
in drainage and sewer systems in suspected areas throughout the Municipality
of Tilburg, Netherlands. In the project outline, they proposed the possibility of
using cameras placed in manholes over a certain period to measure an increase
in inflow in relation to rain events with 5-10 mm/hr intensity. Sewer Robotics, a
manufacturer and innovator of trenchless technology based in the Netherlands,
already manufactures cameras suited for mounting on jetting hoses for recording
while cleaning the network, combining cleaning and inspection. These cameras

3
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are waterproof, robust, and have a built-in light source that could make them
suitable for use also in stationary surveying within the sewer. This is a win-win
situation for both companies as multipurpose equipment defends the investment,
and Sewer Robotics can further develop an existing product. A three-month-long
internship was conducted by the thesis author at V+G to research the proposed
method and to help further develop the product.



Chapter 3

Method

3.1 Camera Vision To Detect Illicit Inflow

Increased inflow in open channel conduits leads to both an increase in flow velo-
city and water depth. The exact relationship between inflow, velocity, and depth
is not unambiguous as it depends on various factors such as channel geometry,
roughness, and fluid viscosity. To determine the exact discharge, the channel geo-
metry, depth, and velocity must be known. However, when the open channel is
long enough and the flow rate remains constant for an extended period of time,
the flow in the channel will approach uniform conditions. This means that the
depth, known as the normal depth under such conditions, is the same at all points
along the channel. The normal depth can then be used as an approximation of
the actual depth of flow within a channel segment, according to Brunner (1997,
p. 6-16), and this depth is proportionate to the discharge. This implies that the
velocity also increases proportionally. However, the assumption of normal depth
is not always true under transient conditions, but the velocity can still be used
as a measurement proxy for the discharge by assuming that depth and velocity
increase in a somewhat proportionate manner.

If the discharge of sewer is measured at a high enough frequency, certain
regularities are likely to emerge. A pattern showing daily fluctuations, differing
between working weekdays and weekends, is to be expected when the flow rate
becomes the average of enough people’s daily routines, and contributions from
industrial processes occur at regular intervals. When patterns are observable, de-
tecting illicit inflow becomes a matter of measuring deviations from this pattern.
However, when the number of contributors upstream is low, each upstream con-
nection’s contribution becomes relatively larger. This could result in more rapid
fluctuations of discharge and the absence of a typical observable diurnal pattern.
In such cases, it is still possible to distinguish values that deviate by being greater
in magnitude from the normally observed velocity values. However, it is not pos-
sible to detect anomalies based on deviations from a pattern as the "noise" is
greater than the "signal" of deviation. Fortunately, there is one pattern that (al-
most) always is present in wastewater flow, which is the pattern of a small dis-
charge (infiltrating groundwater) or no flow during the night. If flow is measured
during time windows of the day when the system normally runs dry and the in-
crease corresponds somewhat in time and duration with a rain event, this is a
strong indication that an illicit storm drain or roof drainage is connected some-
where upstream from the measuring location.

5
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Figure 3.1: Evaluation of pairs of consecutive frames from a video is producing
frame velocities that are averaged over all frames to produce a velocity represent-
ative for the time the video was captured. A velocity time series is produced from
videos captured at intervals throughout the day that can be correlated with rain
data to observe if there is a significant deviation in velocities produced during
and after storm events to detect illicit inflow.

Establishing a time series of the flow is done by capturing sequences of videos
at certain intervals throughout the day. The sequences are then processed by Op-
tical Velocimetry (OV) algorithms to produce a representative velocity value for
that time interval by averaging the velocities estimated from measuring displace-
ment between frames in the video. The averaged value is less influenced by ran-
dom errors caused by the algorithms and takes into account the possible variation
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in flow-related features tracked within the video sequence. Averaging velocities
over time only makes sense if the velocities are steady during the duration of the
captured sequence. This is based on the assumption that the timescale of change
is high due to the system’s believed ability to absorb peaks. This ability arises
from the fact that conduits are designed to accommodate higher flow volumes
while maintaining stable flow velocities, that there is some storage capacity in the
system enabling the storage of excess flow, and that the interaction of different
sources of flow smooths out short-term fluctuations.

The velocity estimated from each video sequence contributes to a time series.
When several time series are created, which are known to not be influenced by
rain-induced inflow, the ’normal’ pattern can be established. Values produced after
the onset of storm events can then be compared to the "normal" pattern using
statistical tests to determine if they deviate significantly enough to indicate that
they are caused by the inflow of rainwater. This is illustrated in Fig. 3.1.

3.1.1 Velocity Measurement Using Optical Velocimetry

Optical Velocimetry (OV) can be used to visualize and estimate velocity in fluids by
tracking distinguishable features interpreted from differences in pixel intensities
between frames, which result from the movement of objects within the water
body or on the water surface. This is achieved by tracking particle clusters for
Particle Image Velocimetry (PIV), distinct particle features for Particle Tracking
Velocimetry (PTV), and by tracking pixel intensity gradients over time for Optical
Flow (OF). A very brief and simplified explanation of the three algorithms will be
given in the following sections. The formulas and mathematics involved in PIV and
OF are thoroughly explained in the book "Particle Image Velocimetry" by Adrian
and Westerweel (2011) and the article "Determining Optical Flow" by Horn and
Schunck (1981).

For the computer vision algorithms to track and analyse the motion of particles
and structures accurately, the flow must exhibit a sufficient level of contrast and
distinguishable features. The objects’ velocities are used as an estimate of the wa-
ter flow velocity and rely on the implicit assumption that the objects move with
the same velocity as the water. The truth of this assumption depends on the objects
present and general flow characteristics and will not always hold. The particles’
slip velocity, as defined by Deshpande and Tallapragada (2018), is the relative
velocity of the particle with respect to the undisturbed fluid velocity, and differ-
ent particles will have different slip velocities. Thus, particles can have different
velocities when passing the camera at the same flow rate. This could be taken
into account by estimating the slip velocity and adding it to the estimated particle
velocity or by extracting only the highest velocities assuming that they are repres-
entative of the particles that travel with velocities closest to the flow velocity.

The analysis with the OV algorithms is limited to representing two-
dimensional flow when using a one-camera setup. This neglects the possibility
of any out of plane component to the motion of the objects and does not take into
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consideration the varying velocity profile in the vertical cross-section. The varying
velocity profile has the potential to produce greater variation in the measurements
if the particles present are not uniformly distributed in the profile. Particles on the
surface will give higher velocity estimates than particles travelling along the bot-
tom. The contribution from this is though believed to be small relative to other
error sources. Any out-of-plane motion will also introduce error as the actual dis-
placement of the particle is longer than what is seen in the images. The effect
depends on the direction and magnitude of the out-of-plane component relative
to the in-plane motion of the objects, but it is assumed to be small within the short
time window in which the particles are observed.

Figure 3.2: A field of vectors is produced for each frame representing the dis-
placement found when evaluating pairs of frames in the video.

The algorithms provide a vector field of different resolutions representing ve-
locities for each pair of consecutive frames from the video (Fig. 3.2). The vectors
represent what the algorithms interpret as displacement between frames. Some of
these vectors can be used to estimate flow velocity, while others are spurious and
caused by image noise, falling dust, or insects. A filtering process is consequently
applied to the vectors to remove those that deviate from the predominant direc-
tion and those with magnitudes higher and lower than certain percentile values,
depending on the assumed initial accuracy of the algorithms. The remaining velo-
cities are then used in the estimation of a frame velocity representing each frame
of the video. The method of estimating the velocity for each sequence may differ
between implementations. This is particularly related to the amount of particles
present in the videos. Ideally, there is a continuous stream of particles to track in
the videos, but that is likely not the case most of the time. Therefore, the com-
putation of the velocity for each sequence should somehow reflect the frames in
which the algorithm has particles to track, while also being the value that is most
consistently represented in all the video sequences to ensure that a difference
between measurements represents an actual change in flow and not just a result
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of there being fewer moving objects to track. The process of filtering velocities
and retrieving velocity from the video sequence is visualized in Fig. 3.3.

(a) Velocities found from each pair of frames evaluated
in the video sequence are filtered based on predominant
direction and magnitude.

(b) A vector field is produced for each pair of evaluated frames from which a
frame velocity is extracted and then averaged to produce the video sequence
velocity.

Figure 3.3: The process of retrieving velocities from videos.

3.1.2 Optical Velocimetry Algorithms

The general workflow for the OV algorithms is to read a series of images/frames,
possibly from a video, and compare the present frame to a reference frame, which
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is the previously read frame. The frames are first reduced to 2D matrices of pixel
intensity values by converting the frame to black and white. Different methods
are then applied to compare the frames and estimate the movement of pixel in-
tensities, ultimately computing the velocity based on the time difference between
frames. In the search for a suitable algorithm for interpreting velocity from sur-
face flow in sewers, three algorithms that use different techniques for estimating
movement are attempted.

Particle Image Velocimetry

Particle Image Velocimetry (PIV) uses an interrogation scheme by dividing frames
into smaller windows and estimates the displacement by finding the content from
the interrogation windows in the present frame in the search windows in the ref-
erence frame. Several approaches exist, but one way of doing this is by computing
cross correlation between the windows in each frame. This can be done through
direct cross correlation between pixel intensities in the spatial domain, the cross
correlation between the image signal transformed by discrete Fourier transform-
ation, as described by Raffel et al. (2007), or by first decomposing the image into
its abstract features.

Cross correlation between pixel intensities is used to determine the similarity
between the images at different displacement values, with the peak in the cross
correlation function representing the displacement that produces the highest sim-
ilarity as shown in Fig. 3.4.

(a) Normalized cross correlation 3D plot
between images.

(b) Cross correlation 2D intensity plot
showing displacement.

Figure 3.4: Cross correlation between pixel intensities is used to determine the
similarity between the images at different displacement values, with the peak
in the cross correlation function representing the displacement that produces the
highest similarity in intensity. Here it is computed between an image and the same
image shifted (to the right and down). The cross correlation shows the highest
similarity when the second image is shifted back (up and to the left) by the same
distance as indicated by the green arrow.

By Fourier transforming the image "signal" into the frequency domain, the vari-
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ation between frames can be interpreted based on the changes in pixel intensity
along a distance in the image. As described in "Particle image velocimetry: a prac-
tical guide" by Raffel et al. (2007, p. 121), this takes advantage of the correlation
theorem, which states that the cross correlation of two functions is equivalent to a
complex conjugate multiplication of their Fourier transforms. Correlation analysis
can then be done more efficiently in the frequency domain by simply multiplying
the Fourier transforms of the signals and then transforming the result back to
the time domain when needed using the inverse Fourier transform. This Fourier
transformed image can be described as the spatial frequency of the intensity. If
pixel intensities are slowly varying, such as in smooth areas, the frequency is low.
Higher spatial frequencies correspond to fast-changing pixel intensities, such as
the edges of particles. By interpreting the image as spatial frequency, the image
content can be represented by the magnitude and phases of the complex Fourier
coefficients, which describe the contribution of each frequency component in the
image. Displacement can then be deduced from the phase shifts of different fre-
quencies in the image as intensities move from frame to frame. Treating the image
in the frequency domain also makes it easier to avoid noise by discarding what is
assumed to be frequencies related to noise in determining displacement.

"Multipass" and "window deformation" implementations of PIV can further en-
hance the quality by shifting the search window towards the cross correlation peak
in several iterations while also deforming it to recompute a new cross correlation
in attempts to test to see if a better fit can be found for another slightly different
displacement and shape of the interrogation window. As described by Boutelier
et al. (2019) citing Scarano (2001) the initial vector grid is interpolated onto the
new smaller grid in the next iteration and the search window is shifted and de-
formed before the next cross correlation computation to correct the vectors found
in the first pass. This also allows to capture translation and rotation of particle
clusters to better grasp the "real" movement of the particles.

The PIV algorithm implemented for processing videos in the project makes use
of the "simple_multipass" function from the Python library OpenPIV (Liberzon et
al., 2020). It applies multiple passes with iteratively smaller windows and over-
laps between windows to investigate cross correlation between the Fourier trans-
formed images. It also incorporates the deformation of the search window and
utilizes subpixel interpolation by interpolating between correlation peaks found
within the windows. This approach enables subpixel accuracy in determining dis-
placement, as opposed to pixel accuracy obtained by considering only the largest
cross correlation peak.

Optical flow

Optical Flow (OF), as described and presented in the paper on "Determining Op-
tical Flow" by Horn and Schunck (1981), represents the distribution of movement
within the image by tracking brightness patterns between consecutive frames in
the image sequence. The main assumption in OF algorithms is that the brightness
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of pixels related to objects remains constant over time, which is used to justify
the computation of motion from pixel displacement between frames. Errors are
introduced if the brightness consistency assumption is invalid for the processed
footage. Such a case is illustrated in Fig. 3.5.

Optical flow algorithms make use of different iterative mathematical schemes
to solve sets of equations that describe the motion in the image, as further elab-
orated in the article by Horn and Schunck (1981). These algorithms can either
estimate the motion for all pixels in dense optical flow or a subset of pixels in
sparse optical flow. The estimation is based on the requirement of smoothness in
velocity flow, meaning that neighbouring pixels have similar motion, and image
brightness consistency between corresponding pixels in two consecutive frames,
as the motion and change in intensity are assumed to be small.

Figure 3.5: The assumption that OF relies on, of constant pixel brightness, only
holds true for the displacement to the left. Estimating displacement for a moving
object to the right using OF introduces errors in the velocity measurement.

The OF algorithm used to process the videos was provided by Prof. Fran-
cois Clemens. It incorporates the Farneback optical flow algorithm to compute
dense optical flow between consecutive frames of a video. The Farneback al-
gorithm, implemented using the "cv.calcOpticalFlowFarneback" function from
OpenCV (OpenCV manual, 2022e), calculates dense optical flow by dividing the
frames into smaller regions and searching for corresponding regions in the second
frame through the analysis of pixel intensity patterns. By using polynomial expan-
sion, the algorithm models the motion between frames by approximating pixel
intensities in terms of a polynomial function. By solving a system of equations, it
determines the polynomial coefficients, which enable it to calculate motion vec-
tors for each region. These motion vectors represent the displacement of each
pixel from the first frame to the second frame, resulting in a dense optical flow
field. The previously computed flow field is also used as an initial guess for the
new flow field of the next frame, introducing a temporal aspect to the algorithm
by guiding it in the direction of flow coherency between frames.
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Particle tracking velocimetry

Particle Tracking Velocimetry (PTV) involves tracking the motion of individual
particles between successive images and computing the displacement between
their positions. PTV can potentially provide a more detailed and accurate repres-
entation of the velocity field compared to other OV algorithms by tracking the
same particles over multiple frames. Various methods, as described in the book
"Particle Tracking Velocimetry" by Dabiri and Pecora (2019, ch. 5), can be used
to achieve this. One common method is the multi-frame approach, which util-
izes multiple image pairs to estimate the velocity field. The main challenge in
this approach is to ensure that the displacement vectors from each image pair are
consistent and can be combined to estimate the velocity field over the entire time
interval. Another technique for particle matching in two-frame PTV analysis is the
cross correlation method, which exploits the principle that fluid particles and their
closest neighbouring particles typically undergo quasi rigid-body motion, mean-
ing they move as a whole in translation and rotation. This knowledge is used to
determine the probability of a candidate particle in the first frame being a match
with a candidate particle in the second frame.

Figure 3.6: Screenshot from the particle identification procedure in the PTV al-
gorithm in footage in ultraviolet/visible light. Data on the particles are displayed
with the particle outline. Current frame particles are compared with particles de-
tected in previous frames to obtain track their trajectory.

The success of the PTV algorithm depends on its ability to detect particles that
accurately represent flow velocity and to distinguish between different particles to
avoid producing erroneous displacement vectors. This involves two steps, as also
described in the book by Dabiri and Pecora (2019, ch. 3). Firstly, the algorithm
must determine which pixels constitute an image of a particle, and secondly, it
needs to accurately locate the particle image in the present frame. The book
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also discusses various particle masking techniques and particle identification al-
gorithms. Viable options include neural network segmentation approaches, fea-
ture extraction from optical flow, and methods to enhance particle visibility, such
as image binarization.

The PTV algorithm used for processing videos in this project, provided by
Ph.D. Antonio Moreno Rodenas, follows a specific workflow. First, each frame of
the video is processed to identify moving particles using background subtraction
and contour-finding algorithms from OpenCV (OpenCV manual, 2022d; OpenCV
manual, 2022g). This is depicted in Fig. 3.6. For each detected particle, prop-
erties such as centroid, size, and eccentricity are computed and stored. To link
particles across frames and ensure the uniqueness of particle IDs, the code utilizes
a combination of spatial and property distances. The spatial distance measures the
physical distance between the centroids of particles, while the property distance
compares the similarity of particle properties. By comparing the current particle
with the particles detected in previous frames within a specified memory range,
potential matches are identified based on both distances. If a match is found, the
code assigns the ID of the matched particle to the current particle.

To refine the results, the code filters out particles that are tracked spuriously by
removing tracks with fewer consecutive detections than a specified threshold. This
filtering process helps eliminate unreliable or noise-induced particle trajectories.
Finally, the velocities are calculated by measuring the displacement of particles
over time. The code determines the change in position between the first and last
positions of a particle track and divides it by the time difference to obtain the
velocity.

3.1.3 Image and Video Processing

When projecting the 3D world onto the 2D image plane of a camera, a transform-
ation from a three-dimensional coordinate system to a two-dimensional coordin-
ate system occurs. It is important to consider this transformation when performing
physical measurements in the images, as it can introduce systematic measurement
errors. Since the camera captures only two dimensions, it is necessary to align the
camera’s image plane coordinate system with the plane in which the physical dis-
placement occurs. Failure to do so will result in an out-of-plane component in the
displacement that is not accounted for in the measurements.

Ideally, the camera would be positioned perpendicular to the water surface.
However, in practice, this may not always be possible due to factors such as light
reflections or the restrictive geometry of the manhole. Fig 3.7 illustrates the effect
of having the camera at an angle towards the water surface.

The camera lens may introduce errors due to radial and tangential lens distor-
tions, which cause non-linear displacements of image points. These distortions can
affect the measured velocities, particularly near the image edges. To compensate
for these lens induced deformations, undistortion techniques such as radial and
tangential distortion correction can be applied to rectify the captured frames. To
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(a) (b)

Figure 3.7: When the leftmost camera is at an angle towards the flow, the flow
motion occurs in a plane that the camera is unable to accurately represent. As a
result, displacement further from the camera is interpreted as larger, and parallel
lines in the real world, such as the conduit embankment edge, appear to converge
to a point at infinity in the image.

address the issues related to perspective imaging and ensure more accurate spa-
tial measurements, perspective transformation can be applied to rectify the video
frames captured at an angle. This transformation aligns the coordinate systems,
allowing for a better interpretation/quantification of displacement in the images.

The transformation that occurs when the 3D world is captured in the 2D image
plane can be mathematically described by a camera matrix, as explained in "Mul-
tiple view geometry in computer vision" by Hartley and Zisserman (2004, ch. 2).
The camera matrix is a 3x4 matrix that relates the 3D world coordinates to the
2D image coordinates and contains information about the camera’s intrinsic and
extrinsic parameters. The intrinsic parameters characterize the internal properties
of the camera, such as the focal length, principal point, and distortion coefficients.
These parameters influence how the camera lens captures and projects the light
rays onto the image sensor, thus affecting the projection of the 3D world onto the
2D image. The extrinsic parameters determine the position and orientation of the
camera in the world coordinate system, affecting the viewpoint and perspective
from which the scene is captured.

A calibration procedure has to be performed to estimate the camera’s intrinsic
parameters. This involves mapping an object with a known geometry (such as
a checkerboard pattern or matrix of dots) to corresponding points in the image
plane while minimizing the reprojection error, as described in the OpenCV manual
(2022b). By using the found parameters to transpose the image the effects of lens
distortion are minimised. The impact of lens distortion correction can be observed
in Fig. 3.8a and 3.8b, where the edge of the wooden plate straightens and aligns
with the red straight line after distortion correction.

When capturing images under perspective imaging, the shape of objects be-
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comes distorted. However, this distortion can be corrected by computing an in-
verse transformation and applying it to the image. As also explained by Hartley
and Zisserman (2004, p. 34), by mapping a real-world quadrilateral with known
dimensions, which appears distorted in the image, to four corresponding points
in the image plane, the transformation matrix can be estimated. This matrix can
then be used to undistort the object and restore its correct geometric shape in the
image. Fig. 3.8c shows an example of a calibration board used for the purpose
and the transformed frame.

When performing perspective transformation and undistortion, new pixels are
introduced and interpolated to fill gaps as part of the image is stretched or distor-
ted. This has the potential to increase the measurement error as this interpolation
process introduces an element of approximation. The accuracy of the measure-
ments relies on the assumption that the interpolated pixels accurately represent
the true values that would have been captured by the camera.

(a) Original frame (b) Undistorted frame

(c) Transformed frame

Figure 3.8: The procedure of obtaining a top-down view from the original footage
by first correcting for lens distortion and next correcting for perspective distortion.
In the latter step parts of the image are lost. This can be counteracted but at the
cost of a loss of resolution.

Depending on the characteristics and visibility of particles within the camera’s
field of view, as well as the presence of any disturbing elements that affect velocity
estimation, such as reflections, it may be necessary to pre-process the videos using
various techniques to modify pixel intensities. Fig. 3.9 and 3.10 illustrate different
pre-processing techniques used.
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Figure 3.9: Thresholding involves assigning pixel intensities as black or white
based on a predefined threshold value. Motion binarization sets pixel intensities
as black or white depending on the difference between frames, emphasizing areas
of movement. Gaussian blurring reduces the noise and sharpness of edges.

Figure 3.10: Low-pass background filtering uses a filter on all image frames to
reduce high-frequency noise. Subtracting the filtered image from the original isol-
ates high-frequency components not part of the background in the overall se-
quence.

The pre-processing of images and other video-related tasks are performed us-
ing the OpenCV library for Python, which is an open-source computer vision and
machine learning software library. OpenCV provides a wide range of algorithms
and functions for various image and video processing tasks, including check-
erboard calibration, undistortion, estimation of projective matrices, perspective
transformation, image thresholding, low-pass filter subtraction, Gaussian filter-
ing, and the ability to read and write frames to and from videos. These function-
alities are described in the online OpenCV-Python tutorial/manual documented
in OpenCV manual (2022a), OpenCV manual (2022c), OpenCV manual (2022f),
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OpenCV manual (2022h), OpenCV manual (2022i) and OpenCV manual (2022j).
A general introduction to the library and its capabilities is given in the book "Learn-
ing OpenCV: Computer Vision with the OpenCV Library" by Bradski (2008).

3.2 Optical Velocimetry Experiments

Experiments were conducted to test two hypotheses. The first hypothesis aimed
to determine if one algorithm would be superior to the other algorithms in terms
of lower variability and detection limit. The second hypothesis explored whether
capturing videos in a combination of visible and ultraviolet light is more beneficial
for Optical Velocimetry (OV) purposes compared to using visible light only. It is
mainly based on the potential of there being organic compounds present in the
water that are fluorescent, meaning that they are able to absorb the radiated en-
ergy from UV, and emit visible light, making them potentially more distinguishable
in the footage. The fluorescence characteristics could be present due to numerous
types of fluorescent substances, including humic and fulvic acids, lignin-derived
substances, as well as varying amounts of steroids, phenols, nonvolatile acids, oils,
and trace quantities of surface-active agents according to Baker et al. (2014, p.
102).

The experiments were conducted by positioning a camera in a section of the
sewer system where there otherwise was minimal flow present to capture video
while the flow of water passing the camera was controlled by pouring water into
an upstream manhole from a tank. The experimental setup considered different
combinations of algorithms, lighting conditions (including ultraviolet and visible
light - UV/VIS or visible light only - VIS), and various flow scenarios (both with
water flowing and without flow). The experimental matrix is presented in Table
3.1.

VIS UV/VIS PTV OF PIV FLOW NO FLOW

Run 1 x x x x x
Run 2 x x x x x
Run 3 x x x x x
Run 4 x x x x x

Table 3.1: Experimental matrix

The focus of analysis in the "no flow" condition was to evaluate the algorithms’
performance in the absence of any actual flow. This assessment aimed to determ-
ine the level of measurement noise present and establish the algorithms’ threshold
for detecting movement. If the algorithms exhibit a tendency to produce non-zero
velocities in the absence of flow, it becomes impossible to differentiate actual flow
velocities below this threshold from the measurement noise.

With flow present in the footage, the algorithms were evaluated by examin-
ing the standard uncertainty associated with the velocities they produced. This
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assessment was performed by calculating the standard deviation of the velocities
produced for each frame after filtering those that deviated significantly in direc-
tion or magnitude. Additionally, the algorithms’ performance was visually evalu-
ated by plotting the displacement vectors and comparing them with the observed
flow motion in the videos. The processing time of the algorithms was also noted,
as computational effort is an important parameter in practical applications. The
algorithms were given the best chance at performing well, with beneficial pre-
processing of the videos and adjusting algorithm parameters to suit the wastewa-
ter characteristics in the footage. While some standard deviation is expected due
to local variations in flow velocities captured by the camera, comparing the stand-
ard deviations among the algorithms helps to identify the algorithms that yield the
widest range of velocities for the same footage. Higher standard deviations may
indicate over- or underestimation of velocities by certain algorithms.

3.2.1 Real Accuracy Of The Measurements

The primary focus of the method of using OV to detect illicit inflow is to observe
the relative change in velocity rather than providing an absolute measurement of
the real flow velocity. However, having an estimate of the real flow velocity can be
useful for adjusting algorithm parameters and optimizing the filtering process to
obtain velocity values that best represent the actual flow velocity at each frame.

To obtain an estimate of the real flow velocity, the same videos processed in the
experiment can be analysed using video tracking software such as the open-source
Tracker software. This software enables tracking and motion analysis of objects in
videos, providing an estimation of velocity. It is important to note that the velo-
city estimate obtained from video tracking software, similar to the optical vision
algorithms, is subject to uncertainties associated with performing real-world phys-
ical measurements from digital images. Nevertheless, this estimation can serve as
a reference for calibrating and refining the optical velocimetry algorithms to en-
hance their accuracy and reliability.

3.3 Reducing Uncertainty

Bigger variability in the estimated velocities makes it more difficult to detect de-
viations to reveal illicit inflow, as it becomes challenging to discern whether a
particular estimated velocity represents a genuine deviation or simply reflects the
inherent variability in the measurements. This variability influences the detection
sensitivity, which refers to how well the algorithms are able to distinguish between
different flow velocities. The variability in frame velocities could stem from actual
differences in velocities within the image frame, as well as from the variability
in the algorithm’s ability to estimate these velocities and definite wrong inter-
pretation by the algorithm resulting in spurious vectors. In the implementation
of the optical velocimetry method of detecting illicit inflow, the frame velocity is
averaged to produce measurement points (video sequence velocity) in the time
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series which reduces the impact of uncertainty in the frame velocity towards the
sequence velocity, but it is nevertheless important to reduce it.

The measured velocity is determined by the estimated displacement, the time
interval between frames, and the uncertainties associated with these quantities.
The uncertainty arises from the uncertainties in the measured positions (initial
and final positions, x1 and x2) and the uncertainties in the measured times (initial
and final times, t1 and t2) used to calculate the velocity. According to the law of
propagation of uncertainty, as described by Ku (1966), the overall uncertainty
of the velocity calculation can be obtained by combining the uncertainties of the
involved variables. If we disregard the possibility of covariance between variables,
eq. (3.1) represents the resulting uncertainty.
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Since the standard uncertainty is the same for both the initial and final times,
the time variables contribute to the combined uncertainty as 2 ∆x

∆t2σt . This reveals
that evaluating velocity at larger time intervals (∆t) reduces the uncertainty in
the measurements, as the denominator increases. This can be achieved by skipping
frames in the video. As described in the article by Feng et al. (2011), the uncer-
tainty in particle position is due to random image noise and the finite number
of pixels used to represent a particle. This uncertainty remains constant at each
evaluation and has a larger relative contribution when evaluated more frequently.
Similarly, uncertainties related to the time variable, such as variable frame rates,
shutter speed, and image processing are expected to be reduced when evaluated
less frequently, as the outcomes of repeated processes are averaged. However, it’s
important to note that reducing the uncertainty by using longer time intervals may
be counteracted by increased uncertainty in the actual displacement, as more time
between frames allows for changes in particle trajectory and acceleration to occur.
The overall effect can be assessed by examining how the standard uncertainty of
velocities retrieved from each frame changes when more frames are skipped.

An attempt to estimate the theoretical uncertainty in the measurements can be
made by calculating the standard uncertainty based on certain assumptions with
the law of propagation of uncertainty. By comparing the calculated uncertainty
with the measured uncertainty, we can assess whether our experimental uncer-
tainties are consistent with the theoretical predictions and evaluate the perform-
ance of the algorithms. If the measured uncertainty is larger than the calculated
uncertainty, it could indicate the presence of error sources in our experimental
setup that are not accounted for, or that the assumptions made in our calculations
are not valid. Conversely, if the measured uncertainty is smaller than the calcu-
lated uncertainty, it could indicate that we have overestimated the uncertainty
in our measurements or that our experimental techniques are more precise than
initially thought. However, it’s important to note that the result will only be an ap-
proximate estimate, and the accuracy will depend on the quality of the estimates
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of the uncertainties in the variables. When the covariance terms are unknown, we
may assume the variables to be uncorrelated or very small compared to the other
terms. However, this assumption may not be valid and can lead to an underestim-
ation or overestimation of the uncertainty in the calculated values compared to
the measured values.

3.4 Inflow Detection Using Significance Testing

Ideally, a large number of measurements would be conducted during dry weather
to establish a baseline of flow values for each discrete moment throughout the day
(hydraulic fingerprint). Measurements outside this range could indicate the pres-
ence of illicit inflow, but here it is also important to consider that unlikely events
can occur even during dry weather conditions. However, if a series of outliers is
measured consistently over time, it could indicate 1) the presence of illicit inflow,
2) faulty measurements, or 3) changes in the system’s geometry due to mainten-
ance activities, or 4) an unknown facility has started discharging intermittently,
this may e.g. be the result of some illegal activity. Each possibility can be evalu-
ated by cross correlation with other information sources, such as getting reports
from the system operators, regular checks of the sensor status and generally being
aware and documenting any nuisance. Further discussion is limited to the former
possibility. The possibility of there being faulty measurements needs to be verified
under all conditions.

In situations where the number of measurements is considerably smaller, such
as when the camera is deployed for a few days to a couple of weeks, it becomes
more challenging to draw definitive conclusions about the parent population to
get the hydraulic fingerprint as the samples may not be fully representative. Stat-
istical significance testing will then state with some level of confidence based on
the number of samples whether the measured difference in flow is statistically
significant and represents a real difference in flow, or if it could be due to meas-
urement uncertainty or chance occurrences.

A common approach, as outlined by Løvås (1999), is to use a t-test to com-
pare quantitative data between two groups. In this case, a paired t-test can be
employed to assess whether the mean difference between paired measurements
taken before and after an intervention (in this case, storm events) is significantly
different from zero. The paired t-test assumes that the differences between the
pairs are normally distributed and that the observation pairs are stochastically in-
dependent. By evaluating the test statistics obtained from the paired t-tests for all
possible combinations of "dry" and "wet" data, it is possible to determine if they
significantly differ from each other.

The paired t-test as described by Løvås (1999) is performed by first defining
a null and alternative hypothesis with the null hypothesis being that there is no
significant difference between the means of the two paired samples, while the
alternative hypothesis assumes that there is a significant difference. The data is
collected in pairs, in this case, related by being conducted at the same time during
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the day measured in both "dry" and "wet" weather. The first condition’s measure-
ments are denoted as X1, X2, . . . , Xn, and the second condition’s measurements
as Y1, Y2, . . . , Yn, where n is the number of paired observations. The differences
between the paired observations are found by subtracting the first condition’s
measurement from the second condition’s measurement for each pair: Di = Yi−X i ,
where Di is the i-th difference. The sample mean of the differences denoted as D̄,
is then calculated using eq. (3.2), and the standard deviation of the differences
from eq. (3.3). The test statistics, denoted as t, using the formula in eq. (3.4).
To evaluate the test results, the test statistic is compared to the critical value de-
termined based on the chosen significance level. If the absolute value of the test
statistic is greater than the critical value, the null hypothesis is rejected, indicating
a significant difference between the means of the paired samples.
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3.5 Sensor strategy

The sensor strategy comprises three primary components: identifying suitable
sensor locations, verifying the results through rain-inflow event simulations, and
attempting to recreate measured inflow scenarios to locate the source. All hy-
draulic simulations for this purpose were performed using the SWMM software,
with the assistance of Python packages PySWMM (McDonnell et al., 2020) and
swmmio (Erispaha, 2020) for simulation, manipulation, and result retrieval.

Currently, the best practice for locating illicit connections involves prelimin-
ary investigations followed by the use of Distributed Temperature Sensing (DTS)
if the preliminary investigations do not yield definitive results or if there are in-
dications of inflow. The preliminary investigations may include system cleaning
and CCTV inspections to identify suspicious debris or signs, or the placement of a
sieving mechanism at the outflow to observe any accumulation of debris caused
by illicit connections. Based on the evidence gathered during the preliminary in-
vestigations, a decision is made to either deem the investigated area healthy or
to proceed with further inspections. However, conducting effective preliminary
investigations in sewer systems, particularly for detecting stormwater connec-
tions, remains a challenge as there are few specific visual indicators distinguishing
stormwater from sewer water.

Although one part of the sensor strategy promises to locate the source of inflow
(further discussed in subsection 3.5.3), limitations in accurately modeling the sys-
tem and uncertainties related to runoff generating processes may pose challenges
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to this approach. The method of using camera sensors viability as a preliminary
investigation technique remains, even if it cannot precisely pinpoint the exact loc-
ation.

DTS must be applied throughout the system to ensure reliability because the
temperature change observed by the fiber optic cable diminishes with increasing
distance from the source of illicit inflow, as the inflow becomes diluted with the
existing water. To achieve reliable results, the cable must remain in place for a
duration sufficient to capture any potential illicit connections. In the case of illicit
connections to sewer systems, this involves waiting for rain events and relying on
the inflow temperature being distinguishable, considering the influence of air and
surface temperatures. A waiting period (about two weeks) is typically required
until it can be confidently stated that any illicit inflow should have already been
observed. A more sophisticated method, although complex in the case of DTS,
would involve simulating the possible inflows starting from the first rain event
after sensor placement to determine if the event would have been detectable as a
temperature increases in the case of illicit connections. This approach could poten-
tially reduce the measurement campaign duration from weeks to days. Similarly,
the optical velocimetry method could adopt a similar approach, which would be
less complex to model, to both shorten the measurement campaign and provide
more reliable and concrete results in terms of reliability. Several camera sensors
can be mounted at different locations throughout the system to quickly assess the
presence of illicit inflows.

The decision on camera sensor locations needs to take into account the hy-
draulic considerations related to observing inflow with the camera and also prac-
tical considerations related to using the sensors in conjunction with DTS. For that
purpose, it is proposed to use a genetic algorithm (GA) to solve what becomes a
multi-objective optimization problem.

3.5.1 Sensor Placement

By first assessing the sensitivity of different sensor locations towards detecting
illicit inflow through hydraulic simulation of various inflow scenarios, the most
suitable locations for sensor placement are revealed. Simulating the full range
of possible inflow scenarios also provides an impression of how well the camera
sensor strategy can cover the system since the simulations could reveal inflow
scenarios that may never be detected by any sensor placement.

The hydraulic model of the sewer system consists of model nodes (manholes)
and links between the nodes (conduits). In the illicit inflow scenario simulation,
additional inflow is introduced in each node one at a time on top of a baseline flow
scenario with the same low inflow in all nodes of the system. The added inflow
resembles what could be seen as a realistic case of a rain event combined with a
wrongly connected roof drain with a catchment (roof area) based on the housing
demographics in the area. Each potential sensor location is then investigated by
examining the increase in simulated velocity in the conduits for the different scen-
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arios. Depending on the uncertainty in the estimation of the velocity by OV there
must be a certain increase in velocity for it to reliably detect as a difference and
not just random fluctuations in measurements. A detection limit of 10% is here
used as the minimum increase in velocity for the inflow scenario to be considered
detected, which was the maximum error found in PTV algorithms (from a ref-
erence velocity) by Jeanbourquin et al. (2011) when comparing PTV algorithms
accuracy. The results from one inflow scenario from an arbitrarily selected node
("VV550") are presented as a time series showing the temporary increase in velo-
city for some selected conduits ("LEI" = conduit), along with a drawing of node
"VV550" and parts of the system close to it in Fig. 3.11. The conduits in the main
axis observe an increase in velocity, while the velocity in smaller connecting pipes
is being slowed down.

(a) Increase in velocity in conduits ("LEI") in the
system with illicit inflow at node "VV550".

(b) Node "VV550" and nearest con-
duits.

Figure 3.11: Time series of velocities observed in different conduits for one of
the simulated inflow scenarios. After simulating all possible inflow scenarios each
conduit has an associated list of nodes (parts of the system) from which it is able
to detect inflow from.

When all scenarios have been simulated, each conduit will have an associ-
ated list of nodes from which it is able to detect inflow. By creating the system
as a directed network using the Python package NetworkX (NetworkX document-
ation, 2023), which allows for manipulation and analysis of complex networks,
data such as lists of upstream conduits and manholes, and lengths of the upstream
system can be easily retrieved. It also enables solving network optimization prob-
lems such as Shortest Path Problems (SPP). By comparing the list of upstream
manholes with the list of scenario detections made by the conduit, a detection
likelihood can be computed, serving as a measure of their ability to detect all ex-
pected scenarios. A detection likelihood score of one indicates that the conduit
detects all upstream inflow scenarios. Having a likelihood lower than one should
not necessarily exclude the manhole from being a potential sensor location. How-
ever, placements at these locations will require additional investigations of areas
where the camera is unable to detect inflow.



Chapter 3: Method 25

When each conduit has its list of nodes from which it can detect inflow, it be-
comes interesting to determine which combinations of sensor locations will cover
most of the network. However, this cannot be assessed on its own as DTS might
need to be implemented after the camera sensor placement to further narrow
down the location. DTS cables are fixed in lengths and need to be laid in loops to
cover dead-ends in the system. They also require connection to a processing com-
puter on one end, necessitating appropriate infrastructure placement. The fixed
and limited cable length necessitates optimization to utilize most of the cable in
each campaign, efficiently covering the entire system and avoiding leaving small
portions uninvestigated. Therefore, employing a GA approach to explore numer-
ous solutions and converge towards the best one can be beneficial.

Figure 3.12: The genetic algorithm converges towards the best solution taking
into account the practical considerations regarding placement of the DTS cable,
network analysis and the results from hydraulic simulations.

Genetic algorithm

The concept of genetic algorithms (GA) and the non-dominated sorting genetic
algorithm (NSGA), as described in the specialization project by Løfald (2022), is
reproduced here to justify its use for sensor location optimization. The GA simu-
lates the process of genetic evolution, where the possible solutions to an optimiz-
ation problem are represented as chromosomes (candidate solutions) composed
of genes (nodes) representing the variables. Selection is made among the chro-
mosomes for mating and recombination to produce a new generation of chromo-
somes, as described by Mishra et al. (2022, p. 11).

The non-dominated sorting genetic algorithm (NSGA), described by Deb et
al. (2002), has been used as a method for optimization in sensor strategy-related
problems, particularly in the context of the Battle of the Water Sensors Network
(BWSN) reviewed by Ostfeld et al. (2008). In NSGA, solutions are compared to de-
termine dominance. The domination count for each solution, represents the num-
ber of solutions that dominate it, and the set of solutions it dominates. Solutions
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with a domination count of zero form the first front and the solutions they dom-
inate have their domination counts reduced. This process continues to identify all
fronts as new solutions have their domination count reduced to zero.

NSGA maintains solution diversity by estimating the density using the
crowding distance. The crowding distance is the average distance between neigh-
bouring points along all objective functions. It is calculated by normalizing the
differences in function values using eq. (3.5) and summing the distances for each
objective. Smaller distances indicate crowding by similar solutions. Solutions with
lower non-domination ranks and less crowding are preferred when selecting and
recombining for the next generation. Elitism is introduced in the algorithm by
comparing previously found best solutions to the current population and retain-
ing the best ones as described by Deb et al. (2002).

id =
dist(i + 1)− dist(i − 1)
ob j(max)− ob j(min)

(3.5)

Figure 3.13: Crowding-distance calculation illustrated Deb et al. (2002).

Various criteria can be used to evaluate the "fitness" of the subset of sensor
locations in the GA. Firstly, value should be given to the effectiveness of placement
in terms of its ability to cover a significant portion of the network. This is achieved
by optimizing for the length of the upstream network covered by the sensors while
considering the limitation of the fixed length of the DTS cable. If the upstream area
exceeds the coverage capacity of the DTS cable, a "penalty" could be applied. This
evaluation utilizes features from NetworkX, along with additional code to handle
issues typically not encountered in directed network problems, such as having a
directed graph (flow-direction) that can be traversed in any direction in the case
of DTS implementation.

The second criterion focuses on the detection capability of the camera sensors
as the previously mentioned detection likelihood is used to score each manhole
in the fitness function. The two first criteria could make the GA select subsets that
have a high detection likelihood but make few detections or subsets that have a
long upstream network without many nodes where illicit inflow could occur. The
third criterion fulfils the purpose of the other two criteria by assigning value to
the manhole based on its ability to detect inflow from a high number of upstream
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nodes. This is illustrated in Fig. 3.14. A better measure of the possible "activity" in
the upstream network, as nodes/manholes not necessarily are synonymous with
connections with inflow, would be to have mapped the actual number and loca-
tions of connections to the system in order to use this in the simulation. A subject-
ive evaluation of different placements could also be implemented by assigning a
"quality" score to each manhole that considers the suitability of the locations.

Figure 3.14: Evaluating the solutions based on the number of upstream nodes
avoids making the GA select subsets that have a high detection likelihood but
make few detections or subsets that have a long upstream network without many
nodes where illicit inflow could occur.

3.5.2 Result Verification

Once the camera sensors and optical velocimetry have produced several velocity
time series, a flow pattern can be established. This flow pattern can be used to
model node inflow in the same node in the hydraulic model as where the cam-
era was placed. By setting the measured dry weather flow as a baseline inflow in
the model, different rain scenarios can be simulated to observe which rain events
are necessary to see a change in velocity higher than the detection limit. The rain
data collected throughout the measurement campaign can also be used in scen-
ario simulations to determine if a storm event observed should have produced a
significant increase if there was illicit inflow upstream from the camera placement
during the campaign. How the measured velocity and rain data can be used in the
verification of the results is shown in Fig. 3.15.

3.5.3 Illicit Inflow Source Detection

When a time series retrieved from the camera sensors and optical velocimetry have
measured an illicit inflow as a significant deviation in velocity from the baseline
this series becomes the illicit inflows fingerprint. The baseline flow pattern can
then be used in conjunction with the observed rain event that caused the inflow
to simulate scenarios of inflow at different nodes to achieve a similar fingerprint
in the model as in the real measurement series. The nodes that produce the most
similar fingerprints can then reveal information about the location of the source.
However, there are limitations to this approach due to the difficulty in obtaining
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an accurate model of the system and uncertainties and unknowns related to the
rain-runoff process, such as the amount of rainfall that becomes runoff, the runoff
storage capacity of roofs, and the travel time from rainfall in the most distant
parts of the roof until it enters the system. Despite these uncertainties, there is a
possibility of excluding areas in distant parts or in close proximity just simply from
the time lag between the onset of rain and the measured increase in inflow. How
the measured velocity and rain data can be used in source localization is shown
in Fig. 3.15.

Figure 3.15: The measured velocities in dry weather is used to generate inflow
in the hydraulic model to recreate the observed velocity series in the model. By
using rain data and simulating inflow events it can be determined if the rain event
would have produced a big enough velocity change from the simulated in case of
an illicit inflow to be detected. There is also the possibility of locating the illicit
inflow source if a simulated scenario produces a similar series as a real measured
series that is known to be influenced by rain/inflow.

3.6 Field Study

Vandervalk+degroot, an inspection and renovation company in the Netherlands,
has been assigned by the Tilburg Municipality to locate illicit connections in their
stormwater and sewer systems. This task is primarily addressed through various
strategies of preliminary investigation followed by Distributed Temperature Sens-
ing (DTS). One of the areas suspected of having illicit connections is "Tradepark
Noord", a highly industrialized area with a significant proportion of shops, logist-
ics companies, and industries, all accompanied by extensive impervious surfaces.
The project description agreed upon by V+G and Tilburg outlines a process that
involves using cameras for a preliminary investigation to create a flow fingerprint
of the sewer system. Rain data from a weather station is then correlated with
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the flow patterns that deviate from the fingerprint, indicating areas that require
further investigation with DTS.

3.6.1 Sewer System Model

The sewer model was created using data provided in the SUF-HYD format, which
is a Dutch format for storing data on sewer models. The process of reading the
format was automated in Python to generate an input file suitable for SWMM mod-
eling. Some of the information in the file was found to be incorrect, and minor
adjustments were made to ensure that the water flows in the intended direction
toward the system outlets. The system under consideration is a sewer only net-
work that transports wastewater from an industrialized area, primarily consisting
of shops and warehouses, to a pumping station. The entire system ("Tradepark
Noord") is drawn out in Fig. 3.16.

Figure 3.16: The sewer system ("Tradepark Noord") as NetworkX graph.

3.6.2 Camera

The cameras used in the field implementation were two modified versions of the
C70 Sewer Jetting Video Nozzles provided by Sewer Robotics. These cameras al-
low for automated, well-lit, self levelling recording and storage until the footage
is retrieved in a sewage-proof casing. Both cameras were similar in build, with the
only physical difference being the light rings surrounding the lens. One camera
had visible light Light Emitting Diodes (LED) only, while the other had a combin-
ation of visible and ultraviolet LED. There were also some differences in the soft-
ware, as one camera allowed for automatic switching of the light while recording
and went into a low-power state between recordings to save battery. These were
modifications made to the camera for the purpose of stationary recording, and
the cameras were considered prototypes under development. Due to a limitation
in battery capacity, both cameras had to be used alternately. The unused camera
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was charged and synchronized to retrieve the videos while the other camera was
capturing footage.

The camera was mounted in the manhole by sliding it into a metal holster rest-
ing on two expandable horizontal bars spanning between the manhole walls, as
depicted in Fig. 3.17. This setup allowed for hoisting the camera in and out of the
same position when necessary for recharging or downloading videos. It reduced
the time spent in sewers and ensured a standardized and consistent installation so
that the perspective transformation only needed to take into account rotational
differences (as the self levelling did not work perfectly) between measurement
sequences when the camera was replaced. During the initial measurement cam-
paign, a sheet with known distances between corner points was placed in front
of the camera and then removed. This allowed for marking four points in a plane
aligned with the water surface, which was used in the perspective transformation.
It also serves the purpose of a calibration object for the conversion between dis-
tance in pixels in the image to real world distance to derive velocities in meters
instead of pixels.

Figure 3.17: The camera was mounted in the manhole by sliding it into a metal
holster resting on two expandable horizontal bars spanning between the manhole
walls.

The video sequences captured by the camera were processed using all three
algorithms. The PIV and PTV algorithms were applied to the original footage,
while the footage for OF was prepared by performing motion binarization. To re-
duce uncertainty, frame skipping was used in the PIV and OF algorithms, with two
frames skipped between each evaluation of the displacement with an initial frame
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rate of 20 frames per second. No frame skipping was done for PTV, as processing
all frames gives the algorithm a better chance of tracking particles over enough
consecutive frames.

3.6.3 Weather Data

The Weather Observations Website (https://wow.metoffice.gov.uk/), a service
provided by the UK Met Office that allows anyone to report and share weather
observations, was used to retrieve rain data for evaluating results and hydraulic
modeling purposes. Three different weather reporting sites were located within
a 4 km radius of the camera placements, providing the opportunity to verify the
quality of rainfall data by comparing data from neighbouring stations.

https://wow.metoffice.gov.uk/
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Results

4.1 Optical Velocimetry Experiment

The optical velocimetry (OV) algorithms produce velocity vectors for each pair
of evaluated frames in the experiment videos. These vectors can be visually in-
spected to investigate whether the algorithms accurately represent the flow in the
footage. Representative frames from the processed videos from the experiment
with flow present are presented in Fig. 4.6 and 4.8. Additionally, frames repres-
enting the typical noise in the videos from the "no flow" experiment are shown
in Fig. 4.2 and 4.4. The pre-processing procedures used were Gaussian blurring
(gb) and lowpass background filtering (lpbf) for PIV, thresholding (th) and motion
binarization (mb) for OF, and no preprocessing for PTV.

Figure 4.1: Average frame velocities produced by OV algorithms for ultravi-
olet/visible light when skipping two frames. The strange behaviour in the OF
series is caused by its incapability of representing the velocity of a big passing
particle. The following plots on the next pages are extracted from smaller parts
of this full velocity series produces in the experiments.

Part of the velocity series from the experiments, when there was flow present,
is presented in Fig. 4.7 and 4.9. It is extracted from the part of the full average
frame velocity series presented in Fig. 4.1 after the slightly visible stabilization of
the velocity, as the wave of water that was poured upstream reached the camera.
Similar plots are presented in Fig. 4.3 and 4.5 for the "no flow" experiment. The
three subplots show how the standard deviation of the produced velocities and the
average frame velocity compare for the different algorithms when skipping zero,
one, and two frames. The standard deviation of the frame velocity (for "flow") and
average frame velocity ("for no flow") is computed from the remaining velocity
vectors after filtering out velocities lower than 25% of the largest magnitude and
vectors that deviate more than 0.5 standard deviations in any direction from the
average direction.

33
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Visible light - NO FLOW

OF (th)

PIV (gb, lpbf)

PTV

Figure 4.2: Typical noise during "no flow" experiment in visible light. Pre-
processing technique in parenthesis.
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Figure 4.3: Results from "no flow" experiment in visible light.
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Ultraviolet/visible light - NO FLOW

OF (th)

PIV (gb, lpbf)

PTV

Figure 4.4: Typical noise during "no flow" experiment in visible/ultraviolet light.
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Figure 4.5: Results from "no flow" experiment in ultraviolet/visible light.
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Ultraviolet/visible light - FLOW

OF (th)

PIV - (gb, lpbf)

PTV

Figure 4.6: Velocity vectors produced for the same with flow present in ultravi-
olet/visible light.
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Figure 4.7: Results from flow experiment in ultraviolet/visible light.
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Visible light - FLOW

OF (mb)

PIV (gb, lpbf)

PTV

Figure 4.8: Velocity vectors produced for the same frame with flow present in
visible light.
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Figure 4.9: Result from flow experiment in visible light.
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The average standard deviation of the frame velocity for the experiments con-
ducted with flow present is presented in the bar chart in Fig. 4.10. Fig. 4.11 shows
the average frame velocity of the velocities produced for the experiments con-
ducted with no flow present. It should be noted that velocity estimates were not
produced for all frame evaluations in the "no flow" experiment. The average num-
ber of frames for which velocity estimates were obtained from each algorithm is
presented in Table 4.2. Additionally, the average frame processing time for each
algorithm is provided in Table 4.1.

Figure 4.10: Std.dev of frame velocities during "flow" condition

Figure 4.11: Average velocities produced in "no flow" condition
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AVR. COMPUTATION
ALGORITHM TIME [sec/frame]

PIV 4.0
PTV 2.9
OF 0.89

Table 4.1: Average computation time per frame.

AVR. FRAMES PRODUCING
ALGORITHM VELOCITY IN NO FLOW

PIV 192/200
PTV 6/200
OF 169/200

Table 4.2: Fraction of frames producing velocities in the "no flow" experiment
(skipping zero frames).

4.2 Calculated Effect of Skipping Frames on Uncertainty

An attempt was made to calculate the uncertainty and expected reduction in un-
certainty by skipping frames. The uncertainty in pixel location was estimated by
visually investigating a frame and subjectively determining the range that could be
considered as the "edge" or "limits" of the particle in the digital image. This uncer-
tainty will vary with different velocities, making the predicted uncertainty specific
to the velocity being evaluated. For the time uncertainty, it was assumed that the
shutter speed is the main contributor, and estimated to be 3% of the shutter time
based on the findings of Simon et al. (2022) in their assessment of different meth-
ods to measure exposure time. By using eq. (4.1) with a ± 3 % deviation in the
time stamp and a ± 1 pixel uncertainty in location at an approximate 5 pixels per
frame displacement, the standard uncertainty of the velocity was calculated to be
59.06 pix/s for ∆t = 0.05s, 29.52 pix/s for ∆t = 0.1s, and 19.68 pix/s for ∆t =
0.15s.
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uv : Standard uncertainty of velocity
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4.3 Camera Placement and Sensor Location Optimiza-
tion

The decision on where to place the camera in the field implementation made use
of hydraulic simulations in SWMM to assess various inflow scenarios. The ob-
jective was to identify sensor locations highly sensitive to inflow by identifying
conduits that detect velocity changes (10% increase/decrease), even for lower
inflow intensities, ensuring robust results by having larger velocity increases for
the same storm events. The selection of camera placement involved a trade-off
between achieving a sufficiently low inflow intensity detection limit and maxim-
izing the length of the upstream network to enhance the chances of observing
illicit inflow. Among the sensor locations that detect all possible inflows (detec-
tion likelihood of one) for the same inflow intensity, the location was subjectively
chosen on the basis of what seemed the best. How the different sensor locations
compare is illustrated in Fig. 4.12.

Considering that the camera would remain in place long enough to capture a
rainfall intensity capable of causing 1.3 lps inflow in the case of illicit connections,
the chosen placement was conduit "LEI387". Another viable option, "LEI390,"
offered even greater robustness in detecting smaller inflow scenarios. However,
it was not selected due to its location in a t-junction with potentially ambiguous
hydraulic conditions that could impact the quality of footage retrieved for optical
velocimetry algorithms. The upstream network from the placed camera is shown
in Fig. 4.13 as a directed graph showing flow direction.
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Figure 4.12: Conduits ("LEI"= conduit) are placed in the diagram based on their
upstream network length and the lowest inflow rate where they still are able to
detect all inflow scenarios.

Figure 4.13: The upstream system of the camera as a directed graph with arrows
indicating the direction of flow.

If the method of using camera sensors and optical velocimetry is to be imple-
mented at a later stage, it is likely that the camera will be used as a preliminary
investigation where multiple cameras are placed to quickly assess which parts of
the system require further investigation using other methods. To demonstrate a
possible approach for tackling such a sensor location problem with multiple cam-
eras, an artificial example was created to make use of the genetic algorithm. The
goal of the genetic algorithm was to find the most effective implementation of
the cameras in combination with another more thorough investigation method,
assumed here to be DTS.

The non-dominated sorting genetic algorithm (NSGA) was employed in the
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optimization problem to identify the best combination of camera placements in
the system, considering three available cameras. The optimization process aimed
to maximize the upstream length/area of each location, the detection likelihood
of the location, and select locations with upstream areas suitable for investigation
using DTS. After 10 generations of mutation, selection, and recombination, the
resulting solutions in the latest generation were plotted in Fig. 4.14, showing how
the subsets in different fronts (by colour) compare to each other with respect to
the objectives.

Figure 4.14: All solution in the first front (blue) dominate solution in all other
fronts (other colours) as it is better in at least one objective and not worse in any
other objective

In this particular simulation, a very low inflow scenario was used, which means
that almost no locations will be able to detect all inflow scenarios and have a
detection likelihood of one. The detection likelihood then becomes a sensitivity
measure, where locations that detect more scenarios at low inflow are assigned
higher values. The alternative, running the simulation at a higher inflow scenario
would have resulted in all subsets having a detection likelihood of one, making it
impossible to distinguish based on sensitivity.

Solutions within the first front are better in at least one objective and not
worse in any other objective, but selecting the best solution among those in the
first front requires a trade-off and subjective decision to prioritize one objective
over the other. The selected solution is shown in Fig. 4.15. The genetic algorithm
took 8.5 minutes to iterate over 10 generations with a starting population of 1000
solution subsets.

The subsequent DTS implementation, following the detection of illicit inflow
at the selected camera locations, involves solving a shortest path problem to tra-
verse all the nodes in the upstream network. The best solution to this problem is
presented in Fig. 4.16, focusing on one of the nodes in the best subset identified
by the genetic algorithm. The red node represents the placement of the DTS com-
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puter and infrastructure, while the double arrows indicate that the cable is looped
to cover dead ends in the system.

Figure 4.15: The subset of sensor location selected from the first front found
by the genetic algorithm (GA) when optimizing for implementing three cameras.
The sensor locations are marked in red and their upstream nodes in green.

Figure 4.16: The DTS implementation, following the detection of illicit inflow,
involves solving a shortest path optimization problem to traverse all the nodes in
the upstream network with the cable. The best solution to this problem for node
"VV580" is presented with the red node as the placement of the DTS computer
and infrastructure, while the double arrows indicate that the cable is looped to
cover dead ends in the system.
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4.4 In-Field Placement of the Camera Sensor

Figure 4.17: Velocity time series produced by processing videos from field im-
plementation in Tilburg. The bandwidth of each series represents the standard
deviation of the extracted frame velocities for each sequence (one for each pair
of frames), depicting the range of velocities that the algorithms "observed" to pro-
duce the measurement points.

The time series obtained from analysing the footage captured during the field
placement of the cameras are presented in Fig. 4.17. The mean frame velocity is
first found from all pairs of frames for OF, while the maximum frame velocities
are extracted for PTV and PIV. The extracted frame velocities are then averaged
to produce each measurement point in the series.

Two out of the four series were captured during rain events. Although the rain
intensity was below the threshold considered reasonable for the method to detect
illicit inflow, the strategy of modelling the rain event scenario in the hydraulic
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model can still be applied. An estimation of the roof/catchment areas that may be
wrongly connected upstream was mapped to create relevant scenarios (Fig. 4.18).

Figure 4.18: Data on roof catchment/area were mapped and linked to the nearest
manhole to create relevant illicit inflow scenarios in the model.

The measurement series that were known to not be influenced by rain were
used to compute an average time series, which is considered the baseline flow of
the system during dry weather. However, it should be noted that this average is
based on only two series and is not sufficient to establish a reliable pattern. Non-
etheless, the average series was used to model an inflow series for the hydraulic
model, serving as the baseline when simulating different illicit inflow scenarios.

Figure 4.19: Rain data from a measuring station in close proximity to the placed
camera was used when generating inflow scenarios in the hydraulic mode.

Modelling the observed velocity was implemented in the SWMM model by
first using the measured velocity series to iteratively solve Manning’s equation to
determine the flow rate series required to generate the observed velocities in the
model, with slope, Manning roughness coefficient, and diameter obtained from
system data. The estimated flow series was incorporated as an inflow series at the
upstream node closest to the camera sensor location in the model. Additionally, a
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low baseline inflow was added to all other upstream nodes to ensure the presence
of flowing water throughout the system. The calculated estimated flow series then
had to be scaled down by a factor until the best R2-value was achieved, which
is computed as the squared differences between the estimated flow series and
the real-world measurements divided by the total sum of squared differences,
serving as a measure of how well the model captures the variability in real-world
measurements.

Figure 4.20: The values measured during dry weather were used to calculate an
average series that was used to generate inflow in the model to reproduce the
velocity series in the model. The plot shows how the avr. simulated compared
with the average dry weather series that was measured.

The comparison between the modelled series and the average "dry" weather
series is shown in Fig. 4.20. Two weather stations located near the camera place-
ment location were used to verify the precipitation event used in the inflow scen-
ario simulation. Modeled inflow scenarios are compared with the actual measured
velocity series in Fig. 4.21.
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Figure 4.21: Rain/inflow scenarios were simulated in the model on top of the
simulated average inflow series to see the system response in terms of increase in
velocity for different scenarios. This is to see if the rain event would have caused
a velocity increase big enough in case of an illicit connection upstream from the
location where the camera was placed. Two velocity series for two caused by two
inflow scenarios are shown in the plot.

Figure 4.22: Velocity series from the same time window as rain was present in
one of the series is extracted to label them as "wet" and "dry" according to if they
were captured in some time after the onset of rain and potentially could have
been influenced by it. The values are then used to compute the t-test by pairing
all "wet" values with all the "dry" values from the same time step.

Analyzing the "wet" and "dry" values (Fig. 4.22) gathered during the short
measurement campaign to identify deviations is of arbitrary nature due to the lim-
ited amount of data available to establish a true baseline. Nonetheless, attempts
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were made to determine if the measured velocities after the rain were signific-
antly different from the dry weather series. The "wet" weather (WW) values were
extracted and paired with the "dry" weather (DW) values to compute the statist-
ical significance of the observed difference using the t-test. The test statistics from
the t-test were lower than the critical value (set for a 95 % confidence level), in-
dicating that the probability of obtaining the observed data by chance alone was
greater than 5 %. As a result, we cannot confidently conclude the presence of an
illicit inflow without a (low enough) risk of it being a false positive.
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Discussion

5.1 Optical Velocimetry Experiment

Ideally, the optical velocimetry experiment should have involved testing several
different mounts, frame rates, light sources, angles, elevations, and image resol-
utions to determine the conditions under which the algorithms perform best and
the range of conditions in which they can be applied. However, conducting such
experiments within the environment of a manhole and with the intended camera
proved challenging. Prior to the conducted experiment, there was a preliminary
phase of attempting various combinations of angles, light sources, light reflection
reduction measures, and different camera heights above the surface in an iterative
process to improve the quality of the footage captured by the cameras.

(a) Wooden cover/mount
giving a birds-eye-view of

the manhole.

(b) Steel cover/mount
with penetrating rods

allowing different length
and angles

Figure 5.1: Mounts and equipment used during preliminary experiments

Different mounts and equipment, as depicted in Fig. 5.1 and 5.2, were as-
sembled for this purpose only, using very basic tools and techniques. However, in-
consistencies in their functionality, made it difficult to reproduce experiments and
control the variables effectively. The preliminary tests highlighted that achieving
good light conditions (especially the absence of reflections on the wet surfaces)
would be the most significant challenge. Regardless of the setup used, there were
always issues such as reflections, insufficient or uneven lighting, and light phe-
nomena such as dark spots or glare appearing in the frames, resulting in incon-
sistent results even with similar setups. It was therefore focused on the setup that

53
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consistently provided reliable results with the available camera, equipment and
light sources.

(a) Wooden mount with
the camera at an angle to

the surface.

(b) 3D printed cone used
for reducing light
reflections.

Figure 5.2: Mounts and equipment used during preliminary experiments

Although the experiment was conducted using similar setups under two light
conditions (UV/VIS and VIS), with the same amount of water poured into the
upstream manhole, it is important to note that the amount and characteristics of
particles present in the sewer may vary significantly, and this can have a signific-
ant impact on the performance of the algorithms. In the experiment, the UV/VIS
condition was tested before the VIS condition, which resulted in more particles
being visible in the UV/VIS footage due to the initial flush.

Quantitatively comparing the effort put into tweaking the parameters for the
different algorithms or the overall quality of the algorithms is challenging, espe-
cially since they were developed by different individuals with varying program-
ming abilities. Additionally, the experiment’s findings cannot be generalized to
all possible variations in wastewater characteristics and video quality. Therefore,
it would be inappropriate to conclude which method or setup is the best over-
all based solely on these results. However, the experiments are valuable as ex-
ploratory research to better understand the possibilities and limitations of each
algorithm. Interpreting and analysing the results can provide insights and poten-
tially uncover new knowledge about the algorithms’ capabilities and limitations
in different conditions.

5.1.1 Experimental Results

When there is no flow present in the monitored conduit, the algorithm also needs
to produce a "zero flow" velocity. This is particularly important when detecting
the presence of flow during times of the day when the system usually runs dry. If
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the algorithms are unable to produce "zero flow" and instead generate velocities
even when there is no flow, there is a detection limit for the algorithm. This limit
represents the lowest velocity that can be distinguished from the measurement
noise.

In the experiment, the detection limit is investigated by examining the amount
of displacement produced when there is no flow in the processed video. In this
regard, the Optical Flow (OF) algorithm performs better than both Particle Image
Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) as OF "finds" the least
amount of displacement in the "no flow" video sequence, resulting in the low-
est average frame velocities. Particularly noteworthy is the fact that PIV produces
vectors in the "no flow" condition that could easily be mistaken for flow vectors
because they are of similar magnitude and are present throughout, making them
potentially harder to filter out as noise. This is likely because a very low signal-
to-noise (S2N) ratio was achieved. S2N is in the context of PIV a measure that
indicates the likelihood of the discovered displacement being caused by a mov-
ing object and not just image noise. By setting an S2N threshold, vectors can be
filtered out based on this criterion. However, when all displacements have a low
S2N, it becomes unfeasible to apply this filtering process. While PIV can estimate
displacement more or less accurately from stronger signals (S2N) during flow, the
algorithm still produces displacement when the signal-to-noise is slightly worse
during no flow since no filtering is applied. The inherent measurement noise for
PIV in the absence of flow essentially means that any values below the measured
displacement found in the "no flow" condition in the experiment must be con-
sidered as zero velocity measurements if implemented in a similar camera setup
with similar image quality.

The PTV algorithm also produces velocities in the "no flow" condition but less
frequently than PIV, as only 6 out of 200 frames produce velocity. PTV only gener-
ates velocities from particles recognized in consecutive frames, making it highly
unlikely to produce displacement from image noise. However, PTV is very capable
of detecting motion from other passing objects in the image unrelated to flow and
could potentially produce displacement from bugs or other objects flying by the
image, resulting in velocities. Since these would appear as significant increases for
only a few consecutive frames, they are easier to distinguish and filter out com-
pared to the case of PIV. Both PTV and OF benefit from having a temporal aspect
in their methods of finding displacement, as OF uses previously calculated flow
fields to compute the next, and PTV averages over several frames.

Producing no velocities at all can also pose a problem as it makes it impossible
to actually state that the sensor was operational and functioning properly through-
out the measurement campaign and that there are no malfunctions or problems
with the camera. This lack of velocity measurements can introduce uncertainty
regarding the sensor’s reliability and performance. That PTV in the "no flow" ex-
periment produces no measurements has to do with the stringent criteria set for
PTV as a particle is required to be tracked over several frames to be measured.
This could be a reason to relax the criteria to possibly always have some presence
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of "noise" as is the case of OF as shown in Fig. 5.3.
The strict criteria is also the reason that PTV seem less capable of representing

the flow when visually inspecting the vectors for each frame as it produces way
fewer vectors. Reducing the number of consecutive frames required for the PTV to
successfully track a particle to only two consecutive frames will possibly generate
a greater number of vectors for each frame, but will not improve the velocity
estimation.

Figure 5.3: The optical flow consistently produces small velocities during "no
flow" making it possible to know that the sensor actually was operational and
measuring.

From the time series produced with flow present by each algorithm, it seems
that all are capable of representing the flow in terms of providing somewhat con-
sistent average velocity measurements within the short time frame of the exper-
iment, falling within the range of what is found when manually measuring dis-
placement with video tracking software. Two implementations of PIV were tested
to see if increasing the window size improved the results. When increasing the
maximum window size to 128 by 128 pixels, a higher average velocity is achieved.
This could be due to the smaller windows’ inability to accurately describe the real
displacement if the displacement is larger than the windows, or it could be that
the larger windows, with a more "global flow focus," capture fewer variations and
therefore produce larger velocities, resulting in a higher average. However, in-
creasing the window size also comes with a cost as it becomes more susceptible to
producing larger spurious vectors. Three iterations with window sizes of 128, 64,
and 32 were used in processing the experimental video, but trying out different
window sizes showed that the results from the algorithms might be highly depend-
ent on the algorithm settings. This is not necessarily a problem if measurements
are consistently made with the same settings.

PTV and PIV with small interrogation windows produce the lowest average ve-
locities, lower than OF and PIV with larger windows. From visually inspecting the
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quiver plots produced for frames by all algorithms, it seems that OF has a tendency
to produce exaggerated vectors when big particles are present in the frame. An ex-
ample of this is visible in Fig. 5.4. As OF looks for movement of intensity gradient
within the image, this effect may be caused by the applied pre-processing pro-
cedure (thresholding), where varying amounts of the particles are visible in two
consecutive frames, causing the apparent edge of the particle to appear to move
more than the actual particle displacement. The fact that PIV and PTV produce
lower velocities, and smaller window PIV produces lower averages than larger
window PIV, could be due to their ability to represent more of the flow velocity
variation in the frame, thereby capturing the full range of velocities present to
compute the average. OF and PTV produce very similar average standard uncer-
tainties, which likely relate to both having temporal aspects to their displacement
estimation.

(a) Frame 82 (b) Frame 83

Figure 5.4: OF has a tendency to produce exaggerated vectors when big particles
are present in the frame.

(a) VIS-footage thresholded (b) UV/VIS-footage thresholded

Figure 5.5: It was more difficult to separate particles from the background in the
VIS-footage. The same threshold limit is applied to both VIS and UV/VIS footage,
resulting in more alternating intensity throughout the frame for the VIS footage,
causing particles to still be difficult to distinguish.
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Higher standard deviation is experienced in both flow conditions in the foot-
age captured in visible (VIS) light only. The higher frame velocity could simply be
due to the fact that there were fewer particles present during the VIS experiment,
making them more difficult to track. However, it could also be attributed to differ-
ences in light, focus, and image quality. When using only visible light, it seemed
more challenging to distinguish between particles and the background conduit
surface in the image, also when attempting to enhance visibility. An example of
this can be seen in Fig. 5.5, where the same threshold limit is applied to both
VIS and UV/VIS footage, resulting in more alternating intensity throughout the
frame for the VIS footage. One possible explanation for this could be that lower
wavelengths (for UV) are being absorbed more by the water, causing greater in-
tensity differences between floating particles and the conduit surface as the back-
ground. Another reason could be that the effects are simply caused by the amount
of light present in the VIS, as the number of LEDs emitting visible light is reduced
from 8 to 2 when used in conjunction with UV. The cameras were mounted at a
similar angle, but the reflections of the diodes are only visible in the VIS footage.
Although these reflections were masked out in the image before processing the
footage, the light reflected back onto the lens during image capturing could cer-
tainly degrade the image quality. Even when positioning the camera to avoid direct
reflection from the water surface, there will always be other surfaces within the
camera’s view that have the potential to cause reflections, either due to being wet
or having a reflective biofilm. A third reason, and possibly verifying the hypothes-
ised reason for attempting UV as an alternative to visible light in the first place,
could be the presence of fluorescent organic compounds causing distinguishable
particles that are easier to track.

(a) Visible light (b) Visible and ultraviolet.

Figure 5.6: Comparison of footage from the experiments.

It may appear that the footage captured in UV/VIS is blurrier compared to
VIS-only. The two are compared in Fig. 5.6. This could be attributed to lower
wavelengths and higher frequencies causing the rays to scatter more and hit the
lens from various angles, resulting in a loss of image sharpness for UV/VIS. This
blurriness could potentially make it more challenging to achieve good results with
PTV, as it becomes harder to distinguish particle shapes. However, it might benefit
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PIV, as the grainy nature of the image can be interpreted by the algorithm as
moving patterns.

Different pre-processing steps were applied to the same videos before pro-
cessing them with different OV algorithms. The choices of appropriate pre-
processing were based on subjective observations and trial and error, consider-
ing the understanding of the algorithms. Similar pre-processing was performed
for the four different videos being processed by the same algorithm. For PIV, ap-
plying lowpass background subtraction after Gaussian blurring worked better for
the UV/VIS footage compared to VIS. Lowpass background subtraction not only
removes background noise but also results in a grainier image that resembles the
clusters of moving particles that PIV requires. The effectiveness of this proced-
ure for the UV/VIS footage may be due to a more optimal blurring achieved with
the combination of pre-processing and original image quality. In the case of PTV,
no pre-processing was applied. Thresholding was attempted for PTV but did not
show significant benefits. Algorithms that smooth edges or make particles more
uniform in size would make it more challenging for PTV to distinguish particles
from each other. For OF, on the other hand, binarization techniques were necessary
to enhance particle visibility and obtain meaningful results. Motion binarization
was applied to the footage captured in visible light instead of thresholding, as it
provided similar benefits but was easier to apply without having to meticulously
adjust the threshold to distinguish particles from the background.

There is a significant difference in the time consumption to process frames in
the different algorithms, which is influenced by algorithm parameters related to
numerical precision and result resolution. In the experiment, accuracy was prior-
itized over efficiency. Both PIV and OF process the images multiple times to refine
velocity estimates, including calculations at different image pyramid levels and
resolutions for displacement calculation in all interrogated windows. This process
is more complex for PIV as it involves computing the shifting and deforming of the
interrogation windows. PTV is in the experiment implementation slowed down by
the high number of particles it detects and calculates displacement for. PTV is usu-
ally the fastest with not as many particles, as it only calculates displacement for
particles that are present in several previous frames, and it discards/skips frames
with no or too many particles (related to noise), contributing to efficiency.

The PTV algorithm requires more finesse as the selection and tracking of
particles can be made highly complex. PIV and PTV are relatively easier to im-
plement using "standard" algorithms from computer vision libraries, while still
achieving good results. It is also possible to use simpler versions and implement-
ations of algorithms from PTV libraries, but these may yield lower-quality results,
as they are usually prepared for other types of footage with potentially more dis-
tinct differences between particles and the background, as well as more uniform
particles.
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5.1.2 Calculated Uncertainty

The calculated uncertainty was similar to that found in the measurements for
OF. There was also a similar benefit observed for increasing the time between
evaluations in the theoretical calculations as in the experiment, where skipping
one frame reduced the uncertainty by 20 pix/s, and skipping two frames further
reduced it by another 10 for OF in visible light. The calculated uncertainty was
also close to the standard deviation observed in PTV in UV/VIS conditions. This
suggests that the assumed uncertainties in the variables used in the computation
are valid and that it is reasonable to assume negligible covariance terms. However,
the fact that only some combinations of algorithm and light condition approach
the calculated uncertainty could be because these combinations achieve results
that are closer to the optimal performance of the algorithms. Since the calculated
uncertainty, in general, is lower than what is observed in the data, it is possible
that the uncertainties involved are underestimated or conservative, or there may
be covariance terms impacting the uncertainty that has not been accounted for.

5.2 Sensor Strategy

Drawing conclusions and making decisions based on the hydraulic model regard-
ing the effectiveness of sensor locations in detecting illicit inflows and simulating
inflow events is a process influenced by a significant amount of uncertainty. The
data on the system contains some errors that could be investigated and corrected,
but the model will never be able to account for all hydraulic conditions affecting
how water enters the system and travels within it. Extensive flow measurements
at various locations throughout the system and calibration would be necessary
to produce highly accurate results. Whether or not the uncertainty impedes the
effectiveness of the sensor strategy could not be fully tested as the collected data
has not yet allowed for the verification of its success or failure in detecting illi-
cit inflows. This could potentially be done by testing the strategy in systems with
known illicit inflows or by assessing the general success of the strategy in detecting
inflows when implemented over a certain period of time.

5.2.1 Finding Sensor Locations

In the proposed method for sensor placement strategy, the accuracy of the hy-
draulic modelling results is of less importance. Instead, the focus is on assuming
that the accuracy could be equally incorrect for all locations and then applying a
high enough rain/inflow to distinguish between sensors that detect inflows and
those that do not, regardless of the inherent uncertainty. Having such a model and
conducting scenario analyses would be particularly valuable in systems with less
obvious hydraulic conditions, such as in the Netherlands where the lowest point
in the system is not always the system outlet, as is often the case in Norway. If
all steps of model configuration and inflow scenarios are automated, there is no
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reason to refrain from investigating the sensitivity of different locations despite
the uncertainty. Having some information to base the decision of sensor placement
on is better than having no information at all. But whether or not the methods
find the best locations can not be fully evaluated as testing all locations to check
if any is better is unfeasible in practice.

5.2.2 Genetic Algorithm

The results from the Genetic Algorithm (GA) are, of course, no better than the
input, but they are likely to provide a solution that is very close to being optimal
for the problem at hand, and better than what any human could achieve in the
same time. Using a non-dominated sorting genetic algorithm does not guarantee
the optimal solution, but it provides (possibly) all solutions (in the first front) that
are better in at least one objective and not worse in any other objective, allow-
ing for further investigation of these solutions. Setting up the network for SWMM
implementation and solving system optimization problems using NetworkX in Py-
thon offers the opportunity to consider both hydraulic and system-related aspects
simultaneously, exploring the entire solution space in a more efficient manner
compared to considering the two aspects separately. But the same goes for evalu-
ating the performance of the GA, as for finding the best sensor locations, as it is
impossible to test all other solutions to state that it is in fact the best overall.

5.2.3 Camera Sensor

The ideal camera placement would involve positioning it perpendicular to the wa-
ter surface, with a wide enough field of view to capture the entire flow, even in
cases where the channel capacity is exceeded. Although attempts were made in
the preliminary experiments to achieve such a view, it was not feasible with the
available cameras and mounts. Fig. 5.7 showcases footage captured with a GoPro
in 4K, which closely resembles the "ideal" view in terms of quality and perspective.
Placing the camera at a higher position is also advantageous to reduce the risk of
submerging the camera or water splashing onto the lens. Additionally, mounting
the camera vertically would minimize accuracy loss caused by perspective trans-
formation.

To ensure accuracy, the camera should be securely held in place to minim-
ize any image noise resulting from movement, such as passing cars, which could
impact the measurement precision. Moreover, the installation process should be
as straightforward as possible and enable operation from above ground. However,
these criteria are limited by the challenging geometry, restricted access, and harsh
lighting conditions typically present in manholes.

Having the camera and light source combined in one unit, such as the C70,
simplifies the mounting process since there is no need to install an external light
source. However, this integration also leads to reflections on the lens, as the light
is directed at the same angle as the camera. These reflections create blind spots
in the image and distort colours and details, adding difficulties to the analysis
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process. Even when the camera is angled, reflections can still occur depending
on the lens’ angle of view and the positioning of the light source relative to the
lens. It is in consequence not always possible to mount the camera in a way that
eliminates reflections due to the restrictions posed by the manhole geometry.

Using indirect light sources, such as shielding them from hitting the lens or
dispersing the light through filters or walls, may help alleviate the reflection is-
sue. However, this approach requires ensuring that the entire scene is still well and
evenly lit, which can be challenging. The equipment used to mount the camera
should also be easily implementable and offer flexibility to accommodate different
sizes and shapes of manholes. During experimentation with different placements,
it was discovered that achieving a complete overview from just underneath the
manhole cover was unrealistic without fine-tuning the light conditions and po-
tentially using another camera.

In the field implementation, two expandable bars spanning between the man-
hole walls were used to hang the camera at an angle. This approach worked well,
but it was not as straightforward to place as desired since it required descend-
ing into the sewer. A camera setup that closely resembles the ideal configuration,
surpassing what was achieved in the field implementation, exists. However, this
would likely necessitate a more flexible mount, a better camera, and a way to
refine and optimize the lighting conditions that can be applied in any manhole.
Two potential options for mounting the camera are presented in Fig. 5.8. One
option utilizes adjustable bars with external light sources, while the other incor-
porates the camera and external light sources into a metal sheet that fits within
the manhole opening.

Demonstrating the effectiveness of optical velocimetry with a camera and
mount specifically designed for the purpose would likely be easier than proving
the capabilities of a specific camera like the C70. While the C70 has many great
qualities, such as its sturdiness, it lacked the necessary flexibility at this stage of
development. Ideally, the camera or mount should have the flexibility to handle
various conditions for the camera to work effectively under any circumstances.
This flexibility includes the ability to adapt to different manhole placements and
capture videos of sufficient quality regardless of the mounting method.

Incorporating features like self-adjusting optics, such as auto-focus to ensure
the surface is always in focus, image stabilization to compensate for motion caused
by passing vehicles, image noise reduction for low-light situations, and automatic
exposure control to prevent overexposure (a common issue with reflective sur-
faces like biofilm) would benefit image quality. The C70’s ability to establish a
local connection, which can be accessed using a smartphone, tablet, or other
WiFi-enabled devices, is advantageous for monitoring the camera’s placement and
functionality after installation. Having a high-quality connection with the camera
from just outside the manhole to check its status and retrieve footage, especially
for long-duration placements, is beneficial for continuous monitoring and pro-
cessing of the footage. The camera sensor should be designed with minimal room
for error when handling it, allowing anyone to mount and retrieve it with min-
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imal instruction, possibly limiting the operation to a couple of buttons, allowing
for mishaps to happen and not necessarily follow a certain sequence of operation
for it to still be working as intended.

Figure 5.7: This camera view is optimal for the purpose of optical velocimetry
implementation in sewers as it can capture the entire flow field. Captured with a
GoPro (4K resolution).

(a) Adjustable bars span between the
manhole walls with light and camera at-
tached.

(b) Thin metal sheet with light and cam-
era attached underneath. The manhole
cover goes on top.

Figure 5.8: Two possible ways of mounting the camera with separate light
sources.
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5.2.4 Weather Station

Due to practical considerations, the plan to mount a weather station near the
field study area was not implemented. Instead, rain data was collected from three
measuring stations, with two of them providing consistent enough data to be used
in the simulations. However, as all three stations were located within a relatively
small area (two within a square kilometre) and still exhibited some deviations,
the data cannot be completely trusted. Hydraulic simulations are inherently un-
certain, and the accuracy of recreating inflow in the model is further hindered by
unreliable rain data. Having a local rain gauge near the camera, collecting pre-
cipitation data representative of the camera’s proximity would be beneficial. This
would enable the assessment of data validity and ensure that data collection is
ongoing by allowing regular checks of the gauge’s status.

5.2.5 In Field Placement Of The Camera - Significance, verification
and backpropagation

The intention when placing the camera was to gather sufficient measurements to
determine the presence of upstream illicit connections. However, this goal could
not be achieved due to technical issues with the cameras. The original plan was to
perform paired tests for all possible combinations and determine if a significant
difference was observed, thus confirming the presence of inflow. Unfortunately,
with only two comparisons possible from the collected data, and with contradict-
ory results, it is not possible to draw any conclusions based on it. It is more likely
that the observed results stem from slight natural variations in the daily inflow
series, with some measurements being slightly lower than the previous ones and
slightly higher than the subsequent ones, rather than indicating illicit inflow.

Figure 5.9: PTV showed capable of tracking particles in trickling water in an
otherwise dry conduit.

The algorithms process the footage without any means of controlling the qual-
ity of the output values or verifying the data, except for visually observing how
the series plots out with the standard deviation of the frame velocity. Lower devi-
ation, indicating greater agreement among evaluated frames regarding the velo-
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city, would suggest higher confidence in the measurement. Some consistency ob-
served between the algorithms and a hint of an emerging pattern with the lower
flow in the morning and evening, which aligns with the expectation of reduced
activity as people leave offices and stores, suggests that the algorithms produce
flow-related velocities and not just velocities at random. However, some peculiar
patterns also emerge in the data series. Isolated instances of sudden very high
flows or very low flows are unlikely to occur, and if they are measured by only
one of the algorithms, it may indicate a weakness of that particular algorithm in
dealing with certain flow characteristics or phenomena.

The quality of the data series was evaluated by reviewing the footage and
identifying periods of least and most flow to assess whether the algorithms were
able to accurately represent both conditions. Three distinct periods in the data
stood out (as low flow), occurring during the early morning and late evening,
which corresponded to the expected observable pattern. During these periods, the
lowest flows were observed, but the conduits never completely dried up. Optical
Flow (OF) and Particle Image Velocimetry (PIV) both interpreted the footage as
very close to zero flow velocity, while Particle Tracking Velocimetry (PTV) meas-
ured velocities as low as 0.04 m/s and captured particles even when the flow was
only trickling and barely visible in the footage as in Fig. 5.9. Thus, PTV may be
closer to capturing the true velocity. The ability of OF and PTV to produce "no
flow" velocities during low flow conditions may not necessarily be problematic, as
it may be unrealistic to expect the methods to distinguish velocity changes accur-
ately at such low flow rates anyway. The period of highest flows was only evident
as prominent peaks in the PTV series, while PIV and OF seemed to produce sim-
ilar values for all "larger" flow events, possibly lacking the ability to differentiate
between big and slightly larger flows.

All algorithms exhibited little consistency from one value to another in the
time series. As there are few sources of inflow upstream from the camera place-
ment, it is likely that inflow from each source is visible as a pulse, causing tempor-
ary increases over shorter durations that may coincide with the captured footage.
Consequently, the fluctuations in the series may be representative of the actual
flow pattern. Throughout the series, there is a correlation between data series
from different algorithms during certain parts in terms of showing the same ve-
locity patterns, but there are also sections where they do not co-vary. This can be
attributed to the fact that an optimal setup for the camera was not obtained and
that the video quality, therefore, did not give the processing algorithms the chance
to perform towards their potential. The captured footage from the cameras exhib-
ited significantly poorer quality compared to the experiment and what could be
expected, leading to greater variation in the results.

The poor quality footage is believed to make the influence of variation in
particle and water flow characteristics greater. Due to the low-quality image, there
may be particles that become unrecognizable as particles as in Fig. 5.10, result-
ing in a lower chance of accurately estimating velocities for the sequence. The
blurriness of the image also makes it more challenging to perform pre-processing
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and establish algorithm parameters that work consistently every time. Certain
algorithms may excel in this low-quality image when there is much continuous
matter, while other times, as when the water is clear with fewer particles, it may
fail completely. This inconsistency can lead to covariance between series in some
parts and no covariance in other parts, as observed among the algorithms. One
possible solution to address this issue is to implement the three algorithms in an
interconnected manner, always utilizing the one that produces the most consistent
results. Alternatively, attempting to find the algorithm that consistently performs
best in all conditions could be explored. However, improving the image quality
should be a priority before investigating further, as the quality of the results is
highly dependent on the analysed footage. Among the algorithms, PTV demon-
strated the most promising results by showing its ability to represent the full range
of velocities. However, it is limited by the low-quality image, as it often struggles
to recognize smeared particles or fails to detect particles due to insufficient resol-
ution of the flow.

Figure 5.10: Poor video quality in the footage cause smearing of particles making
them indistinguishable from flow.
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Conclusions

The implementation of camera vision and Optical Velocimetry (OV) in sewers
was tested under favourable conditions during the experiment, where all three al-
gorithms - Particle Tracking Velocimetry (PTV), Particle Image Velocimetry (PIV),
and Optical Flow (OF) - successfully represented the flow by producing vectors
in the direction of flow and within the expected range of velocities obtained from
manual tracking. The experiment demonstrated variations in the algorithms’ abil-
ity to not produce displacement in footage with no motion, indicating their de-
tection sensitivity specific to the image quality in the experiment. Furthermore,
the experiment showed that the average displacement and standard deviation of
velocities were generally higher in visible light (VIS) conditions compared to us-
ing a combination of ultraviolet light and visible light (UV/VIS), suggesting the
potential benefits of using ultraviolet light for OV purposes. It is important to note
that these results are specific to the exact footage captured in the experiment, and
conclusions about the superiority of a specific algorithm cannot be made consid-
ering the factors influencing the result which vary based on camera placement
and lighting conditions.

In the field implementation, the captured footage exhibited lower image qual-
ity with fewer distinct particles but a higher presence of floating matter. Despite
these challenges, all three algorithms were still able to produce meaningful meas-
urements. PTV demonstrated the best capability to represent the range of flows
accurately when manually reviewing the footage to verify if the periods of highest
and lowest flow were correctly reflected in the time series produced by OV. OF and
PIV appeared to be more reliant on the continuous presence of floating matter to
generate reasonable velocity estimates, and they struggled to distinguish between
very low flow and no flow. On the other hand, PTV showed capable of producing
velocity estimates even from individual particles, also performing satisfactorily
for bigger continuous matter with fewer distinct features as long as consistent
portions of the floating matter were visible over time. All three algorithms are
believed to have been restricted by the image quality produced in the field exper-
iment but are still able to produce measurements that could detect illicit inflow
in periods where the system is running dry as they are all able to distinguish out
higher flow from no flow, by producing low or no velocity.

Both the experimental findings and field implementations of the algorithms
have shown that OF and PTV are better candidates for further research. Based
on a prior understanding of how PIV works, more specifically in its need to have
clusters of particles track, it was anticipated that PIV would not perform well in
several aspects, and this expectation was indeed confirmed. Specifically, PIV has
been found to produce more spurious vectors overall, as the footage’s quality is

67
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not sufficient to obtain the required signal-to-noise (S2N) ratio for validating the
displacements. Increasing the S2N ratio while preserving the necessary particle
clusters is not easily achievable through pre-processing alone. However, in terms
of beneficial pre-processing, more can be done for PTV and OF. Additionally, OF
and PTV require much lower computational time compared to PIV. Overall, it
seems that PIV is unable to offer anything that the other two methods do not
already provide. It should be further investigated to optimize the camera settings
and the camera setup in order to obtain better image quality. This may potentially
reduce the need for pre-processing in OF, which could be causing a significant
overestimation for larger particles. Furthermore, it is important to address the is-
sue of having no possibility of verifying the state of the camera sensor when the
PTV produce complete zero measurements.

The ability to detect illicit inflow using significance tests on data collected by
the camera sensor, as well as the sensor strategy involving placement, verification,
and source location, have not been fully tested yet. It requires the presence of
illicit inflow in the data, which can be generated in a controlled experiment by
introducing water upstream or occurring naturally. The effectiveness of the sensor
placement strategy also needs to be assessed by evaluating its ability to detect
illicit inflows and minimize false negatives. Long-term verification of the strategy’s
success or failure will rely on assessing its results over time in terms of detecting
a sufficient number of illicit inflows where it is implemented.

The measurement campaign will be resumed and the camera will continue
to be deployed in the field implementation to complete the ongoing measure-
ment campaign and acquire additional data. Additionally, an experiment involving
pouring water into the system upstream from the camera will be conducted once
the cameras are operational again to verify the method’s ability to detect the ad-
ditional inflow.
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