
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Hallvard Molin Morstøl
Sverre Rynning-Tønnesen

AutoTrust: Automatic software
package assessment using trust
criteria

A study into software supply chain security for
the pre-install phase

Master’s thesis in Computer Science
Supervisor: Daniela Soares Cruzes
June 2023

Hallvard Molin Morstøl
Sverre Rynning-Tønnesen

AutoTrust: Automatic software
package assessment using trust
criteria

A study into software supply chain security for the
pre-install phase

Master’s thesis in Computer Science
Supervisor: Daniela Soares Cruzes
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Motivation: This thesis is a study into software supply chain security for the pre-
install phase. The work was motivated by the recent increase in software supply
chain attacks through the use of malicious software packages.

Objective: The stated goal is to develop and evaluate AutoTrust, a CLI tool
to improve the pre-install assessment of third-party software packages. We also
wanted to consider what information is useful for evaluating packages, the ad-
vantages, and disadvantages of such tools, and find out how their risk assessment
compares to other ways of assessing software packages.

Methods: The research method used is design science research. We used ex-
periments, document studies, questionnaires, and interviews to gather the data
for defining requirements, designing, demonstrating, and evaluating AutoTrust.

Results: We suggested and evaluated several trust criteria and found that the
most useful were about deprecation or deprecated dependencies, known vulnera-
bilities, popularity, widespread use, license, and contributors. The main advantage
of pre-install tools was the early detection of risky packages and the disadvantage
was that it was hard for the developers to fully understand all the criteria used
for the evaluation. From comparing AutoTrust to other tools we found it to be a
valuable tool, distinct from existing alternatives, which highlights its usefulness.
We also found that security tools should be combined with a manual inspection
of packages, and not replace this assessment.

Contribution: The main contribution of this work is AutoTrust. The contribu-
tion also includes exploring if users find pre-install tools valuable. The last major
contribution is the presentation, use, and evaluation of new trust criteria that can
be used in the assessment of software packages.

Limitations: The main limitations of this work are linked to only directly com-
paring AutoTrust to OpenSSF Scorecard, and only four developers testing Au-
toTrust and attending an interview.

Conclusion: This work highlights the significance of conducting pre-installation
evaluations of software packages with AutoTrust, which proved to be useful for
developers. We also found it preferred to combine the use of security tools with
manual assessment for optimal results. Additionally, we have identified numerous
valuable trust criteria and evaluated their usability and importance.

Keywords: AutoTrust, software, supply chain, security, third-party, packages,
dependency, pre-install assessment, OpenSSF Scorecard, NuGet

i

Sammendrag

Motivasjon: Denne masteroppgaven er en studie i forsyningskjedesikkerhet for
programvare. Arbeidet var motivert av økningen i programvareangrep på forsyn-
ingskjeden ved bruk av ondsinnede programvarepakker.

Mål: Målet er å utvikle og evaluere AutoTrust, et terminalverktøy for å forbedre
vurderingen av tredjeparts programvarepakker før man installerer dem. Vi øns-
ket også å vurdere hvilken informasjon som er nyttig for pakkeevaluering, forde-
lene og ulempene med slike terminalverktøy, samt finne ut hvordan AutoTrust sin
risikovurderingen er sammenlignet med andre måter å vurdere programvarepakker.

Metode: Forskningsmetoden som ble brukt er "design science research". Vi
brukte eksperimenter, dokumentstudier, spørreskjemaer og intervjuer til å samle
inn data for å definere krav, designe, demonstrere og evaluere AutoTrust.

Resultater: Vi forelso og evaluerte flere tillitskriterier og fant ut at de mest
nyttige handlet om foreldete pakker og avhengigheter, kjente sårbarheter, popu-
laritet, utbredt bruk, lisens og kodebidragsytere. Den største fordelen med verktøy
som AutoTrust var tidlig oppdagelse av risikable pakker, og hovedulempen var at
det var vanskelig for utviklerne å forstå alle kriteriene som ble brukt i AutoTrust
sin evaluering. Vi sammenlignet AutoTrust med andre verktøy, og fant ut at det
var et verdifullt verktøy som var forskjellig fra eksisterende alternativer. Vi fant
også at sikkerhetsverktøy bør kombineres med en manuell vurdering av pakker.

Bidrag: Hovedbidraget vårt er selve verktøyet, AutoTrust. I tillegg har vi sett
på om utviklere finner slike sikkerhetsverktøy nyttige. Et tredje bidrag er funnet av,
eksempler på bruk og evaluering av tillittskriterier som kan brukes til å evaluere
programvarepakker.

Begrensninger: Hovedbegrensningene i denne oppgaven var at vi kun sam-
menligner AutoTrust direkte med OpenSSF Scorecard og at vi bare fikk testet det
på fire utviklere.

Konklusjon: Denne oppgaven viser hvordan AutoTrust kan brukes til å eval-
uere programvarepakker før de blir lagt til i et prosjekt og hvor nyttig utviklerne
mener verktøyet er. I tillegg fant vi at man bør kombinere sikkerhetsverktøy med
manuell evaluering av pakker og har kommet opp med mange tillitskriterier for
programvare samt testet dens brukbarhet og viktighet.

Nøkkelord: AutoTrust, programvare, distribusjonskjede, sikkerhet, OpenSSF
Scorecard, pre-installasjonsevaluering, tredjeparts programvarepakker, tredjepart-
skomponenter, NuGet

ii

Acknowledgement

This thesis was conducted at the Department of Computer Science, NTNU, from
January 2023 to June 2023, as part of the course TDT4900 - Computer Science,
Master’s Thesis.

First of all, we would like to express our sincere gratitude and appreciation to
Professor Daniela Soares Cruzes for her guidance, support, and expertise through-
out the duration of this research project.

This thesis has been made in collaboration with Visma. We would like to thank
all the employees that helped answer questions, test the tool, and provide feed-
back. We would like to send a special thanks to the Head of Security Development
at Visma, Dr. Monica Iovan, for giving valuable insight into the requirements for
the tool. We would like to extend our heartfelt appreciation to Nicolai Mikkel
Brogaard and Joona Hoikkala for their guidance and support during the develop-
ment of AutoTrust. Their advice and willingness to provide valuable feedback in
the early stages of the project have greatly contributed to its success.

We are deeply grateful to our fellow master’s students for their positive de-
meanor and sense of humor which have created a supportive and enjoyable work
environment.

Finally, we extend our heartfelt gratitude to our friends and families for their
invaluable support.

iii

Contents

Abstract . i
Sammendrag . ii
Acknowledgement . iii
Contents . iv
Figures . vii
Tables . viii
Acronyms . ix
1 Introduction . 1

1.1 Motivation . 1
1.2 Contribution . 2
1.3 Goal and Research Questions . 3
1.4 Thesis Structure . 4

2 Background and Related Work . 5
2.1 Software Supply Chain Security . 5
2.2 Dependency Security . 6

2.2.1 Forms of Dependency Attacks 8
2.3 Trust Criteria . 10
2.4 Code Hosting Platforms . 15
2.5 Package Managers and Package Registries 16

2.5.1 npm . 18
2.5.2 PyPI . 18
2.5.3 Maven Central . 19
2.5.4 NuGet . 19

2.6 Security Tools and other Solutions . 20
2.6.1 Security Databases . 20
2.6.2 CVE, CWE, CVSS, and CAPEC 20
2.6.3 Pre-install and Pre-update Tools 21
2.6.4 ChatGPT-driven Software Supply Chain Security Tools 26

2.7 Related Work . 26
2.7.1 Gap in Research and Practice 28

3 Research Methodology . 30
3.1 Research Methodology . 30

3.1.1 Design Science . 30
3.1.2 The Method Framework Used for the Design Science Research 31

iv

Contents v

3.2 Research Strategies . 34
3.2.1 Technical Action Research . 34
3.2.2 Experiments . 35

3.3 Data Collection Methods . 37
3.3.1 Document Studies . 37
3.3.2 Questionnaires . 38
3.3.3 Interviews . 38

3.4 Data Analysis . 39
3.4.1 Quantitative . 39
3.4.2 Qualitative . 39

3.5 Ethics . 42
4 AutoTrust . 44

4.1 Explicate Problem . 44
4.1.1 Position the Problem . 44
4.1.2 Formulating the Problem . 45
4.1.3 Justify the Problem . 45
4.1.4 Ensure General and Solvable Problem 47
4.1.5 Sources of the Problem . 47
4.1.6 Research Novelty . 47

4.2 Define Requirements . 47
4.2.1 Outline Artifact . 48
4.2.2 Elicit Requirements . 49

4.3 Design and Develop Artifact . 51
4.3.1 Architecutre . 51
4.3.2 Deciding on Trust Criteria . 53
4.3.3 Validators . 54
4.3.4 Trust criteria not added . 57
4.3.5 Security Risk Score . 59
4.3.6 Finished Artifact . 61
4.3.7 Optional Flags . 61
4.3.8 Justify and Reflect . 64

4.4 Demonstrate Artifact . 68
4.4.1 100-Packages Demonstration 68
4.4.2 Time Demonstration . 70

4.5 Evaluate Artifact . 71
4.5.1 Student Experiment . 72
4.5.2 Testing OpenSSF Scorecard . 77
4.5.3 Interviews with Visma . 86
4.5.4 Goals of the Evaluation . 90

5 Discussion . 95
5.1 Research Question 1 - Useful Information 95

5.1.1 Evaluating Trust Criteria and Validators 95
5.1.2 The Most Prominent Trust Criteria and Validators 97
5.1.3 Summary of Answer to RQ-1 99

Contents vi

5.2 Research Question 2 - Advantages and Disadvantages 99
5.2.1 Advantages . 99
5.2.2 Disadvantages . 100
5.2.3 Summary of Answer to RQ-2 101

5.3 Research Question 3 - Comparing Assessments 101
5.3.1 OpenSSF Scorecard . 102
5.3.2 OSSGadget . 103
5.3.3 npq . 103
5.3.4 .NET Commands . 104
5.3.5 Manual assessment . 104
5.3.6 Summary of Answer to RQ-3 105

5.4 Implications for Research . 107
5.5 Implications for Practice . 108
5.6 Limitations and Threats to Validity . 109
5.7 General Reflections . 110

5.7.1 Improving the Tool . 111
6 Conclusion . 115

6.1 Other Contributions . 116
6.2 Future Work . 117

Bibliography . 118
A Sikt Information . 126

A.1 Sikt Notification Form . 126
A.2 Sikt’s Assessment of Processing of Personal Data 130
A.3 Data Management Plan . 133

B Data Gathering . 137
B.1 Information Letter About Consent . 137
B.2 Questionnaire to Visma Employees . 140
B.3 Replies to the Questionnaire from Visma Employees 147
B.4 Questionnaire to Computer Science Students 155
B.5 Interview Questions . 159
B.6 100 NuGet Packages Test . 163
B.7 Time Test . 165
B.8 100 Packages Test OpenSSF Scorecard 167
B.9 One-pager . 169

C Project Thesis . 176

Figures

2.1 Illustration of the similarities between the movement in a software
supply chain and traditional supply chain from [1], page 284. . . . 6

2.2 Dependency graph showing the direct and transitive dependencies
of the main application. 7

3.1 The method framework for design science research with research
strategies and knowledge base from [7], page 82. 31

3.2 Experiment planning from [58], page 77. 36

4.1 Ishikawa diagram representing problem causes. 46
4.2 The process flow of AutoTrust. 52
4.3 Data from NuGet, GitHub, and OSV. 53
4.4 Output from AutoTrust for the Newtonsoft.Json package. 61
4.5 Output from AutoTrust when executed with a help flag. 62
4.6 Output from AutoTrust for the Newtonsoft.Json package when ex-

ecuted with a verbosity detailed level. 63
4.7 Output from AutoTrust for the Newtonsoft.Json package when ex-

ecuted with a verbosity diagnostic level. 63
4.8 Overall rating of the 100 packages. The green area: top 50 pack-

ages, yellow area: 40 random packages, red area: 10 problematic
packages. 69

4.9 The ratio of execution times for AutoTrust divided by Dotnet using
three different operating systems. 71

4.10 The students’ ranking of the NuGet packages. 73
4.11 Number of students that considered the various TC in their risk

evaluation of packages. 74
4.12 OSSF Scorecards rating of the 100 packages. The green area: top

50 packages, yellow area: 40 random packages, red area: 10 prob-
lematic packages. 78

4.13 Comparison of the AutoTrust and OpenSSF Scorecard rating of the
100 packages. The green area: top 50 packages, yellow area: 40
random packages, red area: 10 problematic packages. 80

vii

Tables

2.1 Forms of dependency attacks. 9
2.2 Trust criteria to assess software packages. The evaluate column pro-

poses some ways to analyze data for the trust criteria. 11
2.3 Evaluation of package information in selected package registries. . 16
2.4 The OSSF Scorecard checks [50]. 24

4.1 Risk-influencing score of each analyzer. 60
4.2 Comparison of AutoTrust, npq, OSSGadget, and OpenSSF Scorecard. 66
4.3 Median and mode of the package ranking for the different package

categories made by AutoTrust. 70
4.4 Average execution time of AutoTrust and .NET install package com-

mand. 70
4.5 Median and mode of the package ranking for the different package

categories made by OpenSSF Scorecard. 78
4.6 Combining the package rating from AutoTrust and OpenSSF Score-

card. 79
4.7 Contingency table showing the resulting ranking from AutoTrust

and OpenSSF Scorecard. 81
4.8 Contingency table showing the expected distribution of AutoTrust

and OpenSSF Scorecard using percentage. 81
4.9 Contingency table showing the expected results of AutoTrust and

OpenSSF Scorecard. 82
4.10 Result of performing the chi-square test of independence for the

three package categories. 83
4.11 Table displaying how the rescaling of OpenSSF Scorecard affected

the package categories. 86

5.1 The ranking given to the TC in the SLR and the questionnaire. . . . 98
5.2 The ranking given to the validators in the student experiment and

interview. 99
5.3 Summary of the findings for RQ-3. 106

viii

Acronyms

AI Artificial intelligence. 26, 110, 111

API Application programming interface. 17, 19, 25, 52, 63, 65, 68, 96, 103, 107,
109, 113, 114

CAPEC Common Attack Pattern Enumeration and Classification. 20, 21

CD Continuous deployment. 20, 27, 65, 102, 110, 112

CI Continuous integration. 20, 27, 65, 102, 110, 112

CLI Command-line interface. 2–4, 21, 48, 49, 51, 64, 77, 91, 99, 112, 115

CVE Common Vulnerabilities and Exposures. 20, 21, 113

CVSS Common Vulnerability Scoring System. 20, 21, 113

CWE Common Weakness Enumeration. 20, 21

FR Functional requirement. 49, 50, 64, 65, 91, 92

IDE Integrated development environment. 51, 64, 101, 110

LLM Large language model. 26, 111

NTNU Norwegian University of Science and Technology. iii, 38, 42, 43

OpenSSF Open Source Security Foundation. vii, 3, 24–26, 34–37, 40, 41, 47,
66–68, 72, 77–86, 93, 101–103, 105, 106, 108, 109, 111–114, 116, 117

OSV Open Source Vulnerability Database. vii, 20, 51–53, 56, 64, 68, 104, 113

QA Quality attribute. 49–51, 65, 68, 70, 92, 93, 109, 114

RQ Research question. 4, 77, 93, 95, 99, 101, 105, 110, 115, 116

ix

Tables x

SLR Systematic literature review. 1, 3, 10, 16, 20, 26, 28, 32, 35, 37, 47–50, 98,
99, 176

TC Trust criteria. vii, 1, 10, 14, 54, 58, 74, 75, 95–99, 107, 108, 110, 116, 147

URL Uniform Resource Locator. 22, 23, 56, 59, 68, 78, 104, 106

WSL Windows Subsystem for Linux. 70, 109

Chapter 1

Introduction

Software development is an integral pillar of our modern society, enabling us to
automate processes, analyze data, and communicate with each other on a global
scale. However, as software becomes increasingly complex and interconnected
it becomes more exposed to attacks from threat actors. Threat actors can target
multiple attack vectors like deployed systems, application repositories, networks,
build systems, and dependencies, which all are part of what we call a software
supply chain [1]. The term software supply chain security refers to the process of
securing the entire software development lifecycle. This includes not only the code
itself but also the various third-party components that are often used in software
development. Third-party security is a critical aspect of software supply chain se-
curity, as third-party software is hard to evaluate, and adding this to your projects
introduces new security risks. However, in modern software development, it is al-
most unavoidable to not depend on any third-party software. Consequently, it is
critical to assess this software’s security before using it.

1.1 Motivation

Software security remains a pressing issue for academia and the industry, and sig-
nificant ongoing work is focused on securing software. In preparation for the work
on this thesis, we conducted a systematic literature review (SLR) that can be found
in Appendix C. In the SLR we evaluated 68 research papers about software supply
chain security. It presents real-world attacks, attack methods, countermeasures,
frameworks, trust criteria (TC), package managers, and security tools discussed
in the research papers focusing on the software supply chain. It highlights the
complexity of the software supply chain, the multiple attack vectors, and some
actual attacks that have successfully targeted the supply chain.

The most prominent supply chain attack in recent times is the SolarWinds
Hack that occurred back in 2020 [2–4]. The attackers inserted malicious code
into the SolarWinds Orion Platform, and through this, they created a backdoor
that the hackers used to access the accounts of the victim organizations. By inject-
ing malicious code into an update or patch distributed by SolarWinds, the hackers

1

Chapter 1: Introduction 2

were able to compromise the security of numerous organizations in a single stroke.
SolarWinds’ position as a trusted software provider made it an ideal target for this
type of attack, allowing the hackers to bypass traditional security measures and
gain access to sensitive information. What made this attack so harmful and con-
cerning is that by attacking the software supply chain they were able to infiltrate
approximately 18 000 customer networks [3].

A rising problem for supply chain security is the rising amount of malicious
packages being uploaded to various package registries. Uploading malicious pack-
ages to package registries like npm, PyPI, Maven, and NuGet makes these pack-
ages accessible for all programmers using the registries. The attackers can then
trick developers into using their malicious packages as a third-party dependency
and infiltrate the program through this new dependency. From a developer’s per-
spective, it can be hard to evaluate the security of packages and there are multiple
examples of attacks exploiting this weakness. One example from npm was the po-
litically motivated modification of the package node-ipc [5]. The maintainer of
node-ipc added another package, peacenotwar, as a dependency to node-ipc. By
doing this all users of node-ipc, that were located in either Russia or Belarus,
would get a file placed in their desktop directory with contents relating to the
current war-time situation of Russia and Ukraine [5]. This example was not doing
anything destructive but could easily have been modified to do something more
malicious.

The problem of malicious third-party dependencies is also present for NuGet
packages. According to a recent article published by JFrog, they discovered ma-
licious packages that might have been downloaded more than 150,000 times in
the month preceding their removal [6]. The packages would execute a PowerShell
script that triggered the download of a 2nd stage payload that could be remotely
executed.

These recent attacks are just a few examples highlighting the persistent issue
of software supply chain attacks, which does not seem to disappear anytime soon.
The SolarWinds Hack showed the consequences of breaching one system or pack-
age, and how it can lead to the infiltration of numerous other systems. Mitigating
these threats necessitates the collective creation of various security solutions, and
we are compelled to participate in this endeavor.

1.2 Contribution

In this thesis, we have followed design science principles for information systems
and information technology (IT). The objective of design science in these fields is
to produce innovative artifacts such as models, methods, and systems that assist
individuals in the creation, utilization, and upkeep of IT solutions [7].

To help limit the problem of supply chain attacks we have created an artifact to
help developers analyze NuGet packages before adding them to their projects. The
artifact is a command-line interface (CLI) tool that runs as part of the installation
process of packages, which we have named AutoTrust. This tool analyzes the risk

Chapter 1: Introduction 3

of NuGet packages based on different trust criteria. Trust criteria are a set of stan-
dards or measures used to evaluate the reliability, security, and overall quality of
software. The tool can be found at https://github.com/HallvardMM/AutoTrust.

Our contribution encompasses more than just creating the AutoTrust tool. It
involves an academically conducted user evaluation of AutoTrust which is a soft-
ware supply chain tool for the pre-install phase. This evaluation serves to assess
the advantages and disadvantages of AutoTrust. We also compare it to alternative
methods of evaluating NuGet packages, such as other tools and manual reviews.
Additionally, this thesis researches which trust criteria that are valuable when
evaluating the risk associated with NuGet packages.

During this thesis work, we created and distributed a questionnaire to Visma
employees to assess the trust criteria. Furthermore, we conducted extensive test-
ing of the tool on 100 NuGet packages and assessed its performance on Windows,
macOS, and Linux, thereby comparing its efficiency with the standard "dotnet add
package" command. Moreover, we performed an experiment involving students
to compare the tool against manual assessment. In addition, we compared the
tool with other tools similar to AutoTrust such as npq, OSSGadget, and OpenSSF
Scorecard. We also involved Visma employees by having them test the tool and
conducted interviews with them to gather their opinion on the tool.

The work on this thesis has been in collaboration with Visma, a Norwegian
software company. The decision to create a tool specifically for the NuGet pack-
age registry is partly based on NuGet being widely used by Visma employees. In
addition, from the work with the SLR, we discovered that almost no literature fo-
cused on NuGet, compared to other package registries. There were also no tools
like AutoTrust developed for NuGet that we found.

1.3 Goal and Research Questions

The objective of this thesis is to come up with a solution to help minimize devel-
opers’ chance of adding malicious third-party software.

Goal
Develop and evaluate a CLI tool to improve the pre-install
assessment of third-party software packages.

The specific goal is to develop a tool that can be proven to help developers with
assessing the risk of NuGet packages. Choosing to focus on a single programming
language ecosystem will help scope the goal so it will be feasible to finish during
the given time frame and makes it possible to leverage NuGet-specific informa-
tion. We also believe creating a tool for NuGet will contribute to insight other
developers can use to create similar tools for other programming languages.

https://github.com/HallvardMM/AutoTrust

Chapter 1: Introduction 4

RQ-1
What information is useful for the assessment of security in
third-party software packages prior to their installation?

The first research question (RQ) deals with finding and evaluating potential trust
criteria. Here we wanted to follow an academic approach to find the most valuable
trust criteria so that they can be part of the tools assessment.

RQ-2
What are the advantages and disadvantages of the CLI
pre-install tool for developers in the process of
evaluating third-party software packages?

With the second research question we wanted to analyze the tool based on use-
fulness and ease of use. We also wanted to find out what the tool succeeds with,
and what should be further improved when it comes to the package evaluation.

RQ-3
How does the tool’s assessment of third-party software packages’
security risk compare to other ways of assessing these packages?

For the third research question we wanted to find out how the assessment given
by the tool compares to the assessment given by developers themselves or other
similar tools.

1.4 Thesis Structure

The structure of this thesis draws on the methodology of design science research
while using the common structure used in masters’ theses [8]. This thesis consists
of six chapters, of which this is the first. The next chapter, chapter 2, presents the
relevant background knowledge used when attempting to solve the problem. It
also presents related academic research and other software supply chain security
tools. Following that, chapter 3 explains the design science research methodol-
ogy used to structure and guide this research. Subsequently, chapter 4 provides a
comprehensive overview of the design process for AutoTrust, including its devel-
opment, demonstration, testing, and the results from this. Afterward, in chapter 5,
the research addresses the RQs, discusses the results, limitations, and implications
for practice and research. The final chapter, chapter 6, concludes this thesis, men-
tions some other contributions made during this thesis, and proposes some future
work.

Chapter 2

Background and Related Work

This chapter explains the concepts that are most relevant to this thesis. Firstly,
a quick introduction to software supply chain security is provided. Then follows
information about how to secure software dependencies. After that, follows an ex-
planation of the criteria used to decide if a dependency can be trusted. Afterward,
a brief analysis is provided of some of the most popular package managers, high-
lighting the metadata they offer to users. The chapter ends with an assessment
of some tools designed for increasing software security and introducing related
work.

2.1 Software Supply Chain Security

A supply chain refers to the businesses, organizations, people, activities, informa-
tion, and resources involved in the production and delivery of a product or service.
A physical supply chain encompasses the entire process from procurement of raw
materials, production, packaging, distribution, and delivery to the final customer.
A software supply chain is a bit different as there is no physical product to deliver,
but both types of supply chains rely on multiple parties, as seen in Figure 2.1.
There are many definitions of the software supply chain [9], but a good defini-
tion is from Du et al. that the "software supply chain is the whole development,
release, deployment, and maintenance processes of software from source code to
the final software delivering to users" [9].

Software security encompasses the techniques and measures taken to protect
software systems and applications so they function correctly despite being at risk
from malicious attacks such as unauthorized access, theft, damage, and disrup-
tion. This is to ensure the confidentiality, integrity, and availability of sensitive
data processed and stored by the software systems. It involves protecting soft-
ware from various threats such as malware, hacking, denial of service, and other
types of cyber attacks. Techniques and practices such as authentication, encryp-
tion, firewalls, intrusion detection, and intrusion prevention are currently used by
software security practitioners to minimize these threats [10]. The goal of soft-
ware security is to ensure the safe and reliable operation of software systems and

5

Chapter 2: Background and Related Work 6

Figure 2.1: Illustration of the similarities between the movement in a software
supply chain and traditional supply chain from [1], page 284.

to protect the sensitive information processed and stored by these systems from
unauthorized access and malicious attacks.

Software supply chain security is focused on the intersection between software
supply chain and software security. It encompasses the software security tech-
niques used to secure the development, release, deployment, and maintenance
processes. The focus of software supply chain security is to prevent software sup-
ply chain attacks. These attacks "aim at injecting malicious code into software
components to compromise downstream users" [11]. Protecting against these at-
tacks is an intricate challenge as multiple fields of study such as supply chain
and operations management, security, cryptography, computer science, informa-
tion systems, telecommunications, e-commerce, insurance, and risk analysis are
needed to provide the necessary security [12]. The requirement for knowledge in
all these fields arises because attackers only need to find a single weakness, while
defenders are responsible for securing the entire attack surface, which in this case
extends throughout the entire software supply chain [11].

It can be argued that many of the problems with securing the supply chain of
modern-day software are linked to the fact that modern-day software normally
is dependent on multiple third-party solutions, known as dependencies. These
dependencies can be used as attack vectors to target the primary software, as
they are generally created by people outside the project or organization, and it
is hard to evaluate the code. One of the focus areas of software supply chain
security is therefore how to protect the main application from security risks in the
dependencies used.

2.2 Dependency Security

When creating software you are often dependent on software packages written by
others. These packages are called dependencies after they are added to the project
and an application is normally built on top of multiple other dependencies, as seen
in the dependency graph in Figure 2.2. In Figure 2.2, the packages are illustrated

Chapter 2: Background and Related Work 7

as the vertices, and the relationships between the dependencies are illustrated
as directed edges. Dependencies 1-3 are examples of direct dependencies, while
dependencies 4-6 are examples of transitive dependencies. The main application
relies upon both the direct and transitive dependencies to function as expected.

Figure 2.2: Dependency graph showing the direct and transitive dependencies of
the main application.

All the different dependencies below the main application can introduce se-
curity vulnerabilities and a certain risk. If the security risks are introduced inten-
tionally the package can be categorized as "malware". Another issue is when the
security risk is introduced unintentionally due to negligent security practices by
the developers of the package. This is sometimes known as "weakware" [13]. The
security risk related to a dependency is also affected by the access provided to the
source code. If the package maintainers decide to display the source code publicly
it is known as "open-source software", and the opposite is known as "closed-source
software". It could be argued that when the source code is hidden it is almost im-
possible for the users to find security risks in the dependency [14].

It is also challenging to find security weaknesses in open-source projects, due
to the size and complexity of modern software. This lack of transparency and the
challenge of assessing the security of dependencies is the crux of the problem with
dependency security. Even if it was possible to do a perfect security assessment
of direct dependencies, these dependencies might have multiple dependencies of
their own, which again can introduce security weaknesses, as seen with depen-
dencies 4-6 in Figure 2.2. These elongated software supply chains make the task

Chapter 2: Background and Related Work 8

of doing a perfect security assessment practically impossible, as each link in the
supply chain introduces additional vulnerabilities and risks that are difficult to
identify and mitigate.

The dependency tree is not static as all of the packages and their relations
might change due to added functionality or fixes. To keep track of the changes to
the packages it is recommended and common to use versioning [10]. Packages ver-
sions usually follow semantic versioning using the format X.Y.Z where number X
is a major change, number Y is a minor change, and number Z is a patch [15]. Ma-
jor versions indicate significant changes that might not be backward-compatible,
minor versions indicate new features added in a backward-compatible manner,
and patch versions indicate bug fixes. X.Y.Z are non-negative integers, and each
element increases numerically [15]. In a project, it is therefore also important
to keep track of the dependencies’ versions. When using a package one usually
wants to keep that package version in use up to date in case they have improved
the package or fixed security issues. However, new versions might introduce se-
curity risks or malicious code [16]. Package users therefore often would like not
to be the first nor last to update a dependency. Ideally, they want enough other
people to update and test the new version before themselves [17].

It is crucial to understand the risk involved with adding packages and the
different forms of dependency attacks. These attacks can range from exploiting
known vulnerabilities in the dependencies to more complex supply chain attacks,
where malicious actors target upstream dependencies to compromise the entire
software supply chain. Software supply chain attacks can be utilized by malicious
actors for various purposes, such as data exfiltration, droppers, denial of service,
or financial gain [11].

2.2.1 Forms of Dependency Attacks

Ladisa et al. identify three high-level types of attacks that can be used to compro-
mise open source software supply chains. These include developing and adver-
tising a distinct malicious package from scratch, creating name confusion with a
legitimate package, and subverting a legitimate package [11]. To mitigate the risks
of these attacks, the aforementioned dependencies should be vetted and assessed
before including them in the main application.

There are three central phases during the development process where mali-
cious third-party dependencies can compromise the main application and its de-
velopers. It is during the installation of the package, when updating the package,
and during build time. These phases are shown in Table 2.1 together with specific
attack types and variations of those attacks, which are explained below.

Chapter 2: Background and Related Work 9

Table 2.1: Forms of dependency attacks.

Phase Attack type Attack Variations

Installation Bait attacks

Advertise a malicious package
Name confusion with a legitimate
package (typosquatting)
Name confusion with a previously
legitimate package (brandjack package)
Authors have introduced malicious code

Update
Subvert a
legitimate package

Direct attack
Influencer attack

Build Dependency confusion

During the installation of a package, the developer might be tricked into down-
loading a malicious package. Bad actors can advertise a malicious package they
have created. The advertisement can either be as part of a blog post, as a seemingly
helpful comment on a developer forum, or by creating a package that solves a gen-
eral problem. Another way the developer could be fooled is if the attackers create
name confusion with a legitimate package. One example of name confusion is by
employing typosquatting techniques, where the attackers create a similarly named
package as what the user intended to download with a common misspelling [18].
Another attack similar to typosquatting is when users download a package that
has the correct name but is actually a brandjacked package. This occurs when the
original package has been removed by its author from the package registry, and
an attacker reuses the package’s identifier to introduce malicious code under the
same name [11, 16]. The user can also download the intended package but the
main authors might have introduced malicious code themselves. This can be done
for monetary gain or as hacktivism [5]. These forms of attacks are known as bait
attacks [19] since they trick the user into installing the malicious package directly.

The attackers can compromise the users by having them update to a new ma-
licious package version. They can subvert a legitimate package and target a pack-
age that already has users, contributors, and maintainers by gaining access and
making malicious changes before publishing a new version [16]. To distribute
a malicious version the attackers can either do a direct attack or an influencer
attack. The direct attack is where they compromise the main package either by
gaining unauthorized access to the target package or by having malicious code
contributions approved by the maintainers [19]. The attackers might also do an
influencer attack where they target and tamper with one of the dependencies of
the main victim package. They can manipulate existing dependencies, or add new
dependencies into the victim package [19].

Attackers could also obtain information about non-public packages a company
uses and hosts internally. The attackers can use this information to create pub-

Chapter 2: Background and Related Work 10

lic packages with the same name and trick developers and misconfigured build
pipelines to fetch the malicious publicly hosted package instead of the internally
hosted benign package. This attack, known as dependency confusion [20], differs
from the others as it does not necessarily target the initial installation or the up-
date but happens when the attackers publish the package and the build process
starts to fetch the public package instead of the private ones. Compared to the
other types of attack it does not necessarily need manual input from the victim
[21].

2.3 Trust Criteria

Despite the risk associated with third-party software dependencies, they are use-
ful for development. It is, therefore, necessary to identify methods for evaluating
which dependencies can be safely utilized and which should be avoided. Using
open-source software reduces development time which makes programming more
cost-effective by utilizing pre-existing code. It can be used to save costs as fewer
hours are spent on re-implementing existing functionalities which again can re-
duce the time-to-market [22]. Developers need to assess which packages to trust
based on available data and time. It is usually not feasible to inspect all packages
thoroughly so the developers need to look for indicators of packages with good
security. We have decided to name those indicators of trustworthy packages "trust
criteria" (TC).

When relying on a large number of dependencies, it becomes impractical for a
consumer to conduct a thorough review of each one, and they are usually forced to
rely on metadata to evaluate which packages to trust [11]. There are multiple data
points developers can use to evaluate packages based on these trust criteria. There
has been some prior research on this topic by authors who have used different
names for these criteria. Mills and Butakov used the term "evaluation criteria"
and focused on criteria that can be used to find secure projects [23]. Zahan et. al
focused on indicators of bad or weak packages and called these indicators "weak
links" [24]. Both these papers were found while working on last year’s SLR, and
they proved to be influential in our pursuit of identifying trust criteria.

The trust criteria in Table 2.2 are a combination of the result from last year’s
SLR, a review of additional research papers, and criteria found during the develop-
ment of AutoTrust. The additional research papers were found by snowballing the
most relevant papers from the SLR, and from searching for papers released after
the SLR was conducted on Scopus1, Web of Science2, and Google Scholar3. Trust
criterion 30 was added after the development phase, as described in section 4.3.
It has been included to ensure that all TC involved in the design of AutoTrust are
represented.

1https://www.scopus.com/
2https://www.webofscience.com/wos/woscc/basic-search
3https://scholar.google.com/

https://www.scopus.com/
https://www.webofscience.com/wos/woscc/basic-search
https://scholar.google.com/

Chapter 2: Background and Related Work 11

Table 2.2: Trust criteria to assess software packages. The evaluate column pro-
poses some ways to analyze data for the trust criteria.

No. Trust criteria Data Type Evaluate Source

Time and human relations

1 The component has been in
widespread use for a consider-
able amount of time.

Numerical Stable version (1.0.0 or
higher). "Considerable
time" will be defined by
risk appetite.

[10, 14, 23, 25, 26]

2 The component is widely used
and popular.

Numerical The number of down-
loads. The number of
stars, forks, and watch-
ers. The number of other
projects depends on the
repository.

[10, 23, 27]

3 There is a reasonable time since
the latest update was published.

Numerical Old updates and newly
updated packages are
associated with risk.

[17]

4 The company you are working
for is already using the package
in another project.

Categorical/
Numerical

Check if another project
in the company is using
the package. The num-
ber of other projects that
are using the package at
the company.

[28]

Licensing and documentation

5 The component has a software
certification from a certified
provider.

Categorical Type of certification. [10, 14, 26]

6 The component provides a hash
and signature that can be used to
make sure that the software has
not been tampered with.

Categorical The presence of hash
or signature, and it
matches the stated
values.

[10, 27]

7 The component provides a stan-
dard or well-written license.

Categorical Type of license. [10, 26]

8 The component has detailed
documentation.

Categorical/
Numerical

Presence of detailed
documentation. Length
of documentation.

[10, 23]

Continued on next page

Chapter 2: Background and Related Work 12

Table 2.2 – continued from previous page

No. Trust criteria Data Type Evaluate Source

Maintainers

9 The component has an adequate
number of maintainers and con-
tributors.

Numerical Make sure there are
more than one main-
tainer and the total
number should match
the complexity of the
repository.

[10, 23, 24, 29]

10 The component is being devel-
oped by an active maintainer do-
main.

Numerical Number of maintainers
and the frequency of
their commits.

[10, 17, 23–25]

11 The maintainers of the compo-
nent are not overloaded.

Numerical Make sure the maintain-
ers do not work on too
many projects.

[10, 24]

12 The maintainers of the compo-
nent are using a programming
language that they are familiar
with.

Categorical The maintainers have
other projects using the
same programming lan-
guage. The team is using
good practices and stan-
dards for that language.

[10, 25]

13 There are no maintainer ac-
counts associated with an ex-
pired email domain.

Categorical If one of the maintain-
ers uses an email with
an expired domain.

[17]

14 The package has not changed
ownership recently.

Categorical/
Numerical

If the package has
changed owner. If yes
evaluate if the change
has happened recently.

[19]

15 The maintainers, owners, and
suppliers of the component are
trustworthy.

Categorical Information about the
identity of the main-
tainers and owners can
be used (they use their
real identity, profile pic-
ture, email, linked social
media and organization,
and have a history of co-
authoring with other de-
velopers). They are us-
ing two-factor authenti-
cation.

[10, 17, 24, 27]

Continued on next page

Chapter 2: Background and Related Work 13

Table 2.2 – continued from previous page

No. Trust criteria Data Type Evaluate Source

Maintenance lifecycle

16 The component’s maintenance
lifecycle is up to date.

Categorical/
Numerical

Uses tools for Auto-
mated dependency
updates. The number of
open issues and pending
pull requests.

[10, 23, 25, 27]

17 There are a small number of
open issues, and they are not
very old.

Numerical Number of open issues.
The age of open issues.

[10, 23]

18 The developers of the compo-
nent are using automated code
analysis to review the code.

Categorical If automated code anal-
ysis of tools is being
used. The popularity
and quality of the tools.

[10, 17, 23]

19 The code reviews in the project
are of high quality.

Categorical/
Numerical

The presence of indica-
tors that indicate a good
review process of new
contributions. All pull
requests are reviewed
and have comments on
them.

[30, 31]

Reported problems and deprecation

20 The project does not have re-
ported security vulnerabilities.

Categorical No open security issues.
No publicly disclosed
vulnerabilities on vul-
nerability databases.

[32, 33]

21 There is no history of prior harm-
ful effects associated with the
component.

Numerical Number of old incidents
disclosed in vulnerabil-
ity databases.

[32, 33]

22 The component is not depre-
cated.

Categorical Repository is not depre-
cated.

[10, 17, 23, 24]

23 The component does not depend
on deprecated packages.

Categorical Has one or more di-
rect or transitive de-
pendency to deprecated
packages.

[10, 17, 23, 24]

Other

24 The size of the repository. Numerical The size of the project in
bytes or files.

[30, 34]

Continued on next page

Chapter 2: Background and Related Work 14

Table 2.2 – continued from previous page

No. Trust criteria Data Type Evaluate Source

25 The project has few direct and
transitive dependencies.

Numerical The number of direct
and transitive depen-
dencies.

[34, 35]

26 The component does not contain
installation scripts.

Categorical Presence of installation
scripts.

[10, 24]

27 The component has a name that
does not resemble that of a pop-
ular package.

Numerical There is no typo in the
package name. The
package does not use
typical typosquatting
naming techniques.

[18, 19, 36]

28 There is no difference between
the source code and the package.

Categorical There is no difference
between the available
source code and the
packaged code.

[37]

29 The source code is possible to ac-
cess.

Categorical No restrictions on access
to the source code.

[14, 24]

30 The package has some verifica-
tion from the package provider
that makes it less deceptive in its
identifying properties.

Categorical The registry maintain-
ers allow package own-
ers to provide some ex-
tra identification to ver-
ify

[38]

The trust criteria in Table 2.2 is divided into two groups: using numerical data
and using categorical data. Numerical data is countable data such as the afore-
mentioned number of downloads or the number of GitHub stars, while categorical
data can only be divided into predefined or fixed values. If a project contains a
license, the license used is an example of a categorical trust criterion as there is
a predefined number of different licenses. When considering TC using numerical
data, such as the number of downloads, developers need to assess what they con-
sider to be appropriate thresholds. If a package has two downloads during the last
week, it might not contribute to increased trust, but if the package has hundreds
of thousands of weekly downloads this might be used as an argument to trust the
package. Low numbers in numerical data might actually be used to flag potential
issues, an example would be that it is likely that a malicious package using ty-
posquatting has way fewer downloads than its benign counterpart package. Some
criteria could also be either categorical or numerical. If one uses the existence of
good documentation as a trust criterion then the presence of a README.md file
could be a categorical indicator of documentation, but the number of code lines
in the README.md file could be used as a numerical indicator.

Chapter 2: Background and Related Work 15

Some of the trust criteria can be easier to evaluate due to the availability of
the metadata such as the number of downloads or GitHub stars. Both the number
of downloads and the number of GitHub stars are popularity indicators that show
if other developers trust the same package. Other criteria such as discrepancies
between the source code and package might be harder to evaluate since the whole
code base needs to be evaluated. Looking at the differences between source code
and packages might be an indicator that someone has tampered with the code
during the build process [37]. However, the easiness of evaluation in itself cannot
be used as an indicator for security, and this is therefore not used as a factor when
finding the trust criteria.

There are multiple data sources to evaluate when assessing the quality of third-
party dependencies and if one should trust them. Some of the criteria in Table 2.2
are easier to evaluate than others and none of these criteria can perfectly differ-
entiate weakware and malicious packages from the rest. Which trust criteria we
ended up implementing in AutoTrust are presented in section 4.3.

2.4 Code Hosting Platforms

To be able to do an evaluation of third-party dependencies, the information needed
has to be open and accessible for the users intending to use the package. Some of
this information about dependencies is provided by code hosting platforms, such
as popularity metrics and commit history. A code hosting platform is like a web-
hosted file archive for the software code, documentation, and web pages that can
be accessed either publicly or privately.

Three of the largest code hosting platforms in 2023 are GitHub, GitLab, and
Bitbucket. They are all used to host Git projects [39]. In 2017 Alamer and Alyahya
did a large assessment of multiple open-source code hosting platforms, and they
found few differences between the three mentioned platforms regarding function-
ality [40]. Out of 59 features they assessed, there were 8 features where GitHub,
GitLab, and Bitbucket scored differently from each other. The differences that are
still relevant as of February 2023 are that GitLab does not support "Show trending
developers (popular developers)", and Bitbucket does not support "Starring pro-
jects/repositories" [41], and "Graph summarizing contributions and activities". If
a developer is on the list of trending developers it could contribute to increased
trust in that developer and the projects they maintain. As mentioned the number
of stars can be used as a popularity metric. A developer with lots of contribu-
tions and activities would have increased trust as it shows that they are dedicated
to their work. Overall, the differences are minor between the platforms, and de-
velopers should still be able to use the information provided by the code hosting
platforms to assess the third-party dependencies hosted on them, no matter which
one is used.

Chapter 2: Background and Related Work 16

2.5 Package Managers and Package Registries

To bring third-party software into a project it is common to use package managers
and package registries. Both the package managers and registries can be sources of
package metadata, used to evaluate trust criteria. Package managers are software
tools used to aid in the installation and maintenance of software packages for
operating systems or programming languages [19, 42]. The package managers
ensure that the necessary dependencies are installed from package registries and
that compatibility issues between packages are resolved.

The packages provided by the package managers are hosted on package reg-
istries. The package registries also include information about the package meta-
data and the configuration needed to install them [24]. Many modern program-
ming languages have a central package registry that hosts most of the packages
for that programming language ecosystem, such as npm, PyPI, Maven, NuGet, etc.

Based on our previous SLR the package registries that got the most attention
in research papers about software supply chain security were npm, Maven Cen-
tral, and PyPI [10]. We also evaluate NuGet as this package registry is what we are
focusing on in this thesis. To get a better understanding of what kind of informa-
tion is accessible to developers wanting to download packages, an assessment of
npm4, PyPI5, Maven Central6, and NuGet7 was performed. The results are shown
in Table 2.3.

Table 2.3: Evaluation of package information in selected package registries.

Information npm PyPI Maven NuGet

Package Info

Package Name • • • •
Package Version • • • •

License Type • • • •
Install Command • • • •

README Information • • • •
Link to Repository • • • •

Link to Project Page • • • •
Package Size • • •

Total Files •
Package Maintainers • • • •

Continued on next page

4https://www.npmjs.com/
5https://pypi.org/
6https://central.sonatype.com/
7https://www.nuget.org/

https://www.npmjs.com/
https://pypi.org/
https://central.sonatype.com/
https://www.nuget.org/

Chapter 2: Background and Related Work 17

Table 2.3 – continued from previous page

Information npm PyPI Maven NuGet

Version Information

Age of Latest Release • • • •
Age of Version • • • •
List of Versions • • • •

Popularity Metrics

Number of Downloads • •
Number of GitHub Stars •

Package Maintenance

Number of Open Issues • •
Number of Open Pull Requests • •

Package Classifiers

Keywords/Categories • • •
Environment • •
Framework •

Intended Audience •
Supported Programming

Language Versions • • • •

Operating System •
Topic •

Package Inspection

Test Platform • •
Code •

API Diff Explorer •
Dependencies

Direct Dependencies • • •
Direct Dependents • • •

Deprecation

Deprecated Package Information • • •
Deprecated Version Information • • •

Security Information

Security Holding Package • •
Warning If Not on Latest Release • •

Security Evaluation •
Continued on next page

Chapter 2: Background and Related Work 18

Table 2.3 – continued from previous page

Information npm PyPI Maven NuGet

Reserved Prefix Information •

From the results in Table 2.3 it is clear that all the package registries showed
what might be considered essential information like name, version information,
and license. All the package registries also allowed the package maintainers to
include general information, often in the form of a README, which is a text file
containing information about the repository. It is helpful for users that package
maintainers can include information they consider relevant, however, some of
the information should be standard. Three of the package registries showed di-
rect dependencies, but none of the registries showed transitive dependencies. Not
showcasing the chain of dependencies might increase the difficulty in locating
vulnerabilities or malicious dependencies [35].

2.5.1 npm

npm is a registry used by JavaScript programmers and it provides most of the
same information as the other registries. One benefit of npm is that it shows the
code on the project page, so developers can inspect it before installing. Another
benefit of npm is that it fetches some information from GitHub such as open issues
and pull requests. However, it does not provide information about the number of
GitHub stars as a popularity metric. In addition, npm should show a warning if
the user is not browsing the latest release like PyPI and NuGet do.

One of the differences between npm and other registries is how they handle
malicious packages. If an npm package is found to be malicious, the npm team
creates a placeholder in the package registry called a "Security holding package"
with some information about the incident. The information on npm is, however,
less descriptive if only some versions are malicious8. One example of such a secu-
rity incident is with the UA-parser-js npm package9, where three harmful versions
(0.7.29, 0.8.0, and 1.0.0) were removed due to them containing malicious code.
The incident occurred because the attackers hijacked the author’s npm account.
Completely removing the versions from the registry, instead of unlisting them and
blocking downloads, can make it harder to understand why versions are skipped
and hide the history of the package.

2.5.2 PyPI

PyPI is the central package registry for Python. It has more information about
package classifiers such as environment, framework, intended audience, and op-

8https://github.com/npm/documentation/issues/438
9https://github.com/faisalman/ua-parser-js/issues/536

https://github.com/npm/documentation/issues/438
https://github.com/faisalman/ua-parser-js/issues/536

Chapter 2: Background and Related Work 19

erating system which the other registries do not. This makes it easier to search for
packages and filter out the ones that are not relevant.

PyPi does not provide the number of downloads but uses GitHub stars as a
popularity metric. It might be more challenging for users to evaluate the popu-
larity of a package based on the number of GitHub stars instead of the number
of downloads. When doing the comparison of the registries PyPI displayed the
information about open issues and open pull requests combined, which made it
harder to assess those metrics (this is now changed, see section 6.1). As of Febru-
ary 2023, there is no ability to deprecate a package in PyPI10, but one can set
the development status as "Inactive environment" to indicate that a package was
deprecated.

2.5.3 Maven Central

Maven Central is the package registry for Java projects. It is the registry that in-
cludes the least package metadata, but it was the only registry that directly pro-
vides a security evaluation of the packages, by using Sonatype Safety Rating, BOM
Doctor Report, and OSS Index. The Maven Central registry did not provide any
popularity metrics, but other websites did this11.

Some things could be improved with the Maven Central registry. For instance,
the package maven-compiler-plugin@3.9.0 was published by two different authors.
One of these versions was benign12 and the other was reported malicious13 [43].
This malicious version is still displayed without any warnings on the Maven Cen-
tral registry, even though it is not possible to download it. All the contributors
of the original package are displayed on the malicious package which boosts the
credibility of the package, which also is an issue.

2.5.4 NuGet

NuGet is primarily used for programming languages that run on the Microsoft
.NET platform, including C#, Visual Basic, and F#. It is one of the package reg-
istries that provided the most information. The main thing that stood out from
the rest is that NuGet links to a website where users can evaluate the application
programming interface (API) differences between versions14. Both npm and PyPI
include information from GitHub, but NuGet does not provide any of this Github
information, such as the "Number of GitHub stars", "Number of open issues", or
"Number of open pull requests". The fact that NuGet does not have integration

10https://github.com/pypi/warehouse/issues/345
11https://mvnrepository.com/
12https://search.maven.org/artifact/org.apache.maven.plugins/

maven-compiler-plugin/3.9.0/maven-plugin
13https://search.maven.org/artifact/com.github.codingandcoding/

maven-compiler-plugin/3.9.0/jar
14https://www.fuget.org/

https://github.com/pypi/warehouse/issues/345
https://mvnrepository.com/
https://search.maven.org/artifact/org.apache.maven.plugins/maven-compiler-plugin/3.9.0/maven-plugin
https://search.maven.org/artifact/org.apache.maven.plugins/maven-compiler-plugin/3.9.0/maven-plugin
https://search.maven.org/artifact/com.github.codingandcoding/maven-compiler-plugin/3.9.0/jar
https://search.maven.org/artifact/com.github.codingandcoding/maven-compiler-plugin/3.9.0/jar
https://www.fuget.org/

Chapter 2: Background and Related Work 20

with GitHub is peculiar since Microsoft is the founder of .NET Foundation, which
are the developers for NuGet, and is the parent company to GitHub [44, 45].

2.6 Security Tools and other Solutions

There are other sources than the code hosting platforms and package managers
where users can get information about software packages. Several tools and databases
exist that aim to give users a security evaluation of software packages. The tools
might target different parts of the supply chain and many of the security tools are
used as part of the continuous integration/continuous development (CI/CD) or
are regularly scanning the project’s dependencies. In the SLR we found 24 dif-
ferent security tools mentioned in academic papers such as tools made by the
companies Snyk, SonaType, Mend, OpenSSF, Veracode, and Black Duck [10].

2.6.1 Security Databases

Many of these companies provide databases with security assessment of open
source packages such as Snyk vulnerability DB15, Sonatype OSS Index16, Mend
Vulnerability Database17, OpenSSF Security Metrics Project18, Veracode Vulner-
ability Database19. Some other vulnerability databases that were not mentioned
in the SLR are Open Source Vulnerability Database (OSV)20 and GitHub Advisory
Database21. These databases inform about both packages with known security vul-
nerabilities and identified malicious packages. Even though these databases are
valuable, one downside is that they cannot display information before the vulnera-
bility is discovered. Some tools, therefore, regularly scan a project’s dependencies
and query security databases to see if some of the dependencies have any newly
reported issues. If the tool finds an issue it warns the developer with a notification.
A tool that uses this technique is Dependabot by GitHub22. The reactive nature of
such tools is a downside of these solutions as too many notifications might lead
the developers to notification fatigue and make the developers slow to update the
dependencies [33].

2.6.2 CVE, CWE, CVSS, and CAPEC

The four identifications, CVE, CWE, CVSS, and CAPEC, are used to help distin-
guish and compare different cybersecurity events in the security databases. Com-

15https://security.snyk.io/
16https://ossindex.sonatype.org/
17https://www.mend.io/vulnerability-database/
18https://metrics.openssf.org/
19https://sca.analysiscenter.veracode.com/vulnerability-database
20https://osv.dev/
21https://github.com/advisories
22https://github.com/dependabot

https://security.snyk.io/
https://ossindex.sonatype.org/
https://www.mend.io/vulnerability-database/
https://metrics.openssf.org/
https://sca.analysiscenter.veracode.com/vulnerability-database
https://osv.dev/
https://github.com/advisories
https://github.com/dependabot

Chapter 2: Background and Related Work 21

mon Vulnerabilities and Exposures (CVE)23 is used to identify, define, and catalog
publicly disclosed cybersecurity vulnerabilities. The CVE record contains a consis-
tent description of the vulnerability, CVE ID, and references.

Common Weakness Enumeration (CWE)24 is a standard for classifying and
describing the types of software and hardware weakness types that can lead to
vulnerabilities. Whereas CVE describes, identifies, and names specific vulnerabil-
ities, CWE describes the underlying weaknesses that can lead to vulnerabilities.

Common Vulnerability Scoring System (CVSS)25 enables the creation of a nu-
merical score that reflects the severity of a vulnerability’s main features. This score
can then be translated into a qualitative representation such as low, medium, high,
and critical or as a number. To create the score different factors are evaluated such
as the attack vector, the attack complexity, what privileges are required, if a user
other than the attacker needs to participate for a successful compromise to oc-
cur, the scope of the affected components, and if the attack affects confidentiality,
integrity, or availability.

Common Attack Pattern Enumeration and Classification (CAPEC)26 contains
known patterns of attacks employed by adversaries to exploit weaknesses in the
cyber domain. These attack patterns are design patterns used for destructive rather
than constructive intentions and are generated from analysis of real-world events.

The identification provided by CVE, CWE, CVSS, and CAPEC makes it possi-
ble to distinguish and discuss cybersecurity events. The cyber security databases
might reference the same event and these standards and identifications help to
confirm that the databases mention the same issues.

2.6.3 Pre-install and Pre-update Tools

There are some existing security tools that aim to make it easier for users to assess
a package before installing or updating it. These tools try to fetch relevant infor-
mation before installation, download, or updates to help developers determine if
they want to include a third-party package in their system. They might fetch data
from code hosting platforms, package registries, or security databases to give the
users insight into the package they want to use in their project.

npq

One such tool made for the JavaScript environment is npq27. It aids developers in
auditing npm packages before installation. It fetches and displays some package
information in the CLI and then prompts the user if they still would like to install
the package [46]. It checks a set of evaluation criteria called "marshalls". The
marshalls that npq checks are:

23https://cve.org/
24https://cwe.mitre.org/
25https://www.first.org/cvss/
26https://capec.mitre.org/
27https://github.com/lirantal/npq

https://cve.org/
https://cwe.mitre.org/
https://www.first.org/cvss/
https://capec.mitre.org/
https://github.com/lirantal/npq

Chapter 2: Background and Related Work 22

• Age: Checks npm registry if the package age is less than 22 days.
• Author: Checks npm registry if the latest version of the package does not

have an author field.
• Downloads: Checks npm registry if the packages download count in the

last month is less than 20.
• README: Checks npm registry if the package does not have a README file,

or the README is a security placeholder package by the npm staff.
• Repository: Checks npm registry if the latest package version has been

found without a correct and working repository URL.
• Scripts: Checks npm registry if the package has a pre/post-install script.
• License: Checks the latest version if it has a license.
• Expired domains: Checks npm registry for maintainers’ email addresses

and looks up the email domain to verify that it is not expired.
• Snyk: Checks Snyk’s database if the package has reported vulnerabilities.

If the user uses the alias command it is also possible to make sure that the npq
checks are run every time the user wishes to install or update npm packages.

OSSGadgets

Microsoft is working on a collection of tools to download and evaluate open-
source packages called OSSGadgets28. As of February 2023, OSSGadgets are still
in public preview and are not ready for production use. The tools are written
in C#, but support auditing packages from multiple sources such as Cargo, Co-
coapods, Composer, CPAN, CRAN, Go, Hackage, Maven, npm, NuGet, RubyGems,
PyPI, Ubuntu, and Visual Studio Marketplace. OSSGadgets differs from npq and
AutoTrust as it is more intended to do low-level tasks like basic analysis of de-
pendencies and estimating its health, instead of being part of a developer’s daily
work. OSSGadgets consists of 12 tools [47]:

• OSS-characteristics uses Microsoft’s ApplicationInspector29 to report pat-
terns to help assess what the package does. It then reports the package’s
characteristics and features based on what it found using ApplicationIn-
spector’s over 400 rule patterns [48].
• OSS-defog examines the contents of a software package for an obfuscated

text that is either Base-64- or Hex-encoded. It searches through the files and
reports matches of Base-64- or Hex-encoded text longer than 8 characters.
• OSS-detect-backdoor attempts to identify potential backdoors and mali-

cious code in a package’s code. The tool reports the patterns it finds suspi-
cious with filename, severity, and ordered by the confidence that it found a
backdoor or malicious code. However, the authors report that it has a high
false-positive rate.
• OSS-detect-cryptography identifies cryptographic implementations within

28https://github.com/microsoft/OSSGadget
29https://github.com/Microsoft/ApplicationInspector

https://github.com/microsoft/OSSGadget
https://github.com/Microsoft/ApplicationInspector

Chapter 2: Background and Related Work 23

a package. It does this by using an embedded set of rules30 or a custom rule
set from the user.
• OSS-diff compares two packages and presents the differences between them.

It uses the DiffPlex package31. It provides insights into the changes made
to a project over time, enabling users to understand the impact of those
changes and make informed decisions about their use of the software.
• OSS-download is used for downloading and optionally extracting open-

source packages from various sources, such as code hosting repositories and
package registries without needing specific ecosystem-specific tools [49].
• OSS-find-source attempts to locate the source code from GitHub of a given

package. It searches the package metadata for GitHub URLs and outputs
that list of URLs.
• OSS-find-squats tries to find typosquatting for a given package. It looks

for bitflips; homoglyph attacks; adding, removing, doubling, or swapping
letters; prefixes or suffixes added; and common typos on the keyboard. The
algorithm is currently focused on the package name, but they are working on
improvements to find typo squats such as using information about changes
in metadata, the lack of metadata, low usage, and diff32. It is also available
as a separate NuGet package33.
• OSS-find-domain-squats is similar to OSS-find-squats, but it tries to iden-

tify potential typosquatting for a given domain name such as "microsoft.com".
• OSS-health calculates the likelihood that a package will continue to meet

stakeholder expectations in the future using data from GitHub. It attempts
to evaluate if the project will continue to address bugs, release new features,
if the community is active, if the information flow between maintainers is
adequate, and if security issues are addressed promptly. It is using informa-
tion such as size, issues, pull requests, contributors, subscribers, forks, stars,
releases, and issues using security keywords. Based on this information it
uses an algorithm to calculate a health score. The authors believe that the
algorithm can be improved.
• OSS-metadata retrieves metadata from native package registries, deps.dev,

or libraries.io for a given package and normalizes the metadata about the
package into a common schema.
• OSS-risk-calculator uses OSS-Health and OSS-Characteristics to calculate a

risk level in a range from 0 (no risk) to 1 (very high risk) for the risk of using
a package. The user can decide to not use the health data by setting the –no-
health command line option. The algorithm checks if the package has any
characteristics matching "cryptography", "authentication", "authorization",
or "data deserialization". Of the health data, the algorithm puts the most
emphasis on how the project handles security issues and the least on recent

30https://tinyurl.com/OSSGadget-CryptographyRules
31https://github.com/mmanela/diffplex
32https://github.com/microsoft/OSSGadget/issues/226
33https://www.nuget.org/packages/Microsoft.CST.OSSGadget.FindSquats

https://tinyurl.com/OSSGadget-CryptographyRules
https://github.com/mmanela/diffplex
https://github.com/microsoft/OSSGadget/issues/226
https://www.nuget.org/packages/Microsoft.CST.OSSGadget.FindSquats

Chapter 2: Background and Related Work 24

activity. The maintainers believe that the algorithm can be improved.

Out of these 12 tools, the OSS-risk-calculator is the tool that shares the most
in common with the other pre-install and pre-update tools. However, the way
that the OSS-risk-calculator operates is different as it is not integrated with the
installation process and does not give clear information to the user about what it
evaluated and why it gave the security score.

OpenSSF Scorecard

Open Source Security Foundation (OpenSSF) has made a tool named OpenSSF
Scorecard34 "to help open source maintainers improve their security best practices
and to help open source consumers judge whether their dependencies are safe"
[50].

It works by running 18 checks on GitHub repositories to assess the security
risk of the project. OpenSSF are also working on adding support for GitLab and
have implemented 13 of the 18 checks for GitLab repositories. The 18 checks used
in the OpenSSF Scorecard as well as the description from the project’s README
file can be seen in Table 2.4 [50]. They have also added the option to use the tool
with the package managers npm, PyPi, and RubyGems.

Table 2.4: The OSSF Scorecard checks [50].

Name Description Risk Level

Binary-Artifacts Is the project free of checked-in binaries? High

Branch-Protection Does the project use Branch Protection? High

CI-Tests Does the project run tests in CI, e.g.
GitHub Actions, Prow?

Low

CII-Best-Practices Has the project earned an OpenSSF (for-
merly CII) Best Practices Badge at the
passing, silver, or gold level?

Low

Code-Review Does the project practice code review be-
fore code is merged?

High

Contributors Does the project have contributors from
at least two different organizations?

Low

Dangerous-Workflow Does the project avoid dangerous coding
patterns in GitHub Action workflows?

Critical

Dependency-Update-Tool Does the project use tools to help update
its dependencies?

High

Continued on next page

34https://github.com/ossf/scorecard

https://github.com/ossf/scorecard

Chapter 2: Background and Related Work 25

Table 2.4 – continued from previous page

Name Description Risk Level

Fuzzing Does the project use fuzzing tools, e.g.
OSS-Fuzz?

Medium

License Does the project declare a license? Low

Maintained Is the project at least 90 days old, and
maintained?

High

Pinned-Dependencies Does the project declare and pin depen-
dencies?

Medium

Packaging Does the project build and publish offi-
cial packages from CI/CD, e.g. GitHub
Publishing?

Medium

SAST Does the project use static code analysis
tools, e.g. CodeQL, LGTM (deprecated),
SonarCloud?

Medium

Security-Policy Does the project contain a security pol-
icy?

Medium

Signed-Releases Does the project cryptographically sign
releases?

High

Token-Permissions Does the project declare GitHub work-
flow tokens as read only?

High

Vulnerabilities Does the project have unfixed vulnerabil-
ities? Uses the OSV service.

High

OpenSSF Scorecard calculates a score between 0 and 10, where 10 represents
the best possible score for each of the checks in Table 2.4. Similar to the OSS-risk-
calculator it gives a score for the whole project. The aggregated score produced by
OpenSSF Scorecard is calculated as a weighted average of the individual checks,
taking into account their respective risk level. The risk levels presented in Table 2.4
are assigned weights as follows: "Critical" with a weight of 10, "High" with a weight
of 7.5, "Medium" with a weight of 5, and "Low" with a weight of 2.5.

OpenSSF Scorecard and npq differ in that OpenSSF Scorecard is mainly us-
ing data from the code hosting platforms while npq is mainly using data from
the npm package registry. The process of npq is that it extends the "npm install"-
command while OpenSSF Scorecard is made as a separate tool. OpenSSF Score-
card is most similar to the OSS-risk-calculator as they both use GitHub metrics to
assess the security score of the project, but the checks of OpenSSF Scorecard are
more thorough. However, OSS-risk-calculator considers the characteristics of the
package which OpenSSF Scorecard does not. Another difference is that OpenSSF
Scorecard has an API where one can query pre-calculated scores of open source

Chapter 2: Background and Related Work 26

projects. A more in-depth comparison of npq, OSSGadget, OpenSSF Scorecard,
and AutoTrust will be presented in section 4.3.8.

2.6.4 ChatGPT-driven Software Supply Chain Security Tools

During the last year, it has been a massive interest in large language models
(LLMs) driven by the popularity of the artificial intelligence (AI) chatbot Chat-
GPT35. This chatbot has proven useful for solving multiple different tasks, and
some of these tasks were not even intended by the developers. As a result, many
people try to find new ways of leveraging this new technology. As of April 2023,
we have found two examples of software supply chain security tools made for
evaluating third-party packages that use ChatGPT: Socket AI36 and DroidGPT37.

Socket AI works a bit differently compared to npq, OSSGadgets, and OpenSSF
Scorecard as it provides security feedback on pull requests, which would help
prevent unwanted packages to be part of the source code repository but does not
prevent the developer from installing something malicious [51]. It can evaluate
npm and PyPI packages by analyzing the package’s source code using ChatGPT to
find vulnerabilities. The creators say that Socket AI is still struggling with highly
obfuscated code, cross-file analysis, and prompt injection specifically targeting AI
systems [51].

DroidGPT is still in private beta. It allows users to research open-source soft-
ware packages in a conversational manner for Cargo, Go, Maven, npm, and PyPI
[52]. It combines ChatGPT with Endor Labs’ proprietary risk data. DroidGPT uses
ChatGPT to create an improved search experience where users can ask for rec-
ommendations or more open-ended questions than what a traditional search bar
on a package registry would allow. This differs from how Socket AI uses ChatGPT
since they use ChatGPT to scan open-source code for vulnerabilities.

2.7 Related Work

There has been conducted some related research that focuses on software sup-
ply chain security. We analyzed research publications during our SLR that can be
found in Appendix C. The papers we found to be most influential to our thesis are
presented here.

Mills and Butakov presented in their paper a list of nine evaluation criteria and
thresholds that can be used to evaluate open-source libraries [23]. They looked at
"Age of the project", "Code releases", "Project freshness", "Contributor strength",
"Documentation", "Popularity", "Open issues", "Repository state", and "Automated
code analysis". Mills and Butakov then used the evaluation criteria to test 14 pack-
ages for iOS local authentication. None of the tested packages passed all the eval-
uation criteria. One of their criteria was to evaluate if automated testing in GitHub

35https://openai.com/blog/chatgpt
36https://socket.dev/blog/introducing-socket-ai-chatgpt-powered-threat-analysis
37https://www.endorlabs.com/droidgpt

Chapter 2: Background and Related Work 27

was used by the project, but none of the select projects used a programming lan-
guage supported by GitHub’s automated tests. The work shows the difficulty of
finding correct trust criteria and thresholds, especially if they are to be used to
approve or reject a package. The evaluation criteria they presented have inspired
some of the trust criteria in Table 2.2.

Ferreira et al. proposed a solution where developers could restrict the access
packages had in an application for npm [33]. Instead of trusting a package fully,
they had a set of permissions that could be approved to restrict the access the
packages got to the network, filesystem, and operating-system processes. This idea
would work similarly to how mobile phones allow users to restrict the permissions
applications get.

Zahan et al. presented six signs that a package exposes to a higher risk of
a supply chain attack, named weak links [24]. The weak links they proposed
were "Expired maintainer domain", "Installation script", "Unmaintained package",
"Too many maintainers", "Too many contributors", and "Overloaded maintainer".
They then analyzed 1,494,105 npm packages to assess how many packages had
weak links. They also surveyed 41 of the top 10% of npm package maintainers
if they agreed with the weak links. The maintainers agreed that the weak links
"Expired maintainer domain", "Installation script", and "Unmaintained package"
were relevant but did not support the remaining three. Through the survey, they
also received seven new trust criteria which they present but did not evaluate fur-
ther. The suggested trust criteria were: "Ownership transfer or adding new main-
tainers", "Maintainer identity", "Maintainer two-factor authentication", "No source
code repository", "npm package vs source code repository", "CI/CD pipeline", and
"Open pull request". The weak links were used to create some of the trust criteria
in Table 2.2.

Ohm et al. analyzed 174 malicious packages from npm, PyPI, and RubyGems
[16]. They reviewed those packages and found that: on average a malicious pack-
age is available for 209 days; most malicious packages start the attack on instal-
lation; 41% of the packages check for a condition before triggering further execu-
tion, such as checking for application state, the dependency tree, or operating sys-
tem; most malicious packages mimic existing packages’ names via typosquatting;
most packages aim at data exfiltration; most packages do not rely on OS-specific
functions; and nearly half of the packages use obfuscation techniques [16].

Vaidya et al. presented a systematic study of security issues that affect language-
based ecosystems and focused on npm and PyPI [19]. In the study, the authors as-
sessed the structure of these ecosystems by evaluating information about down-
loads and dependencies. In addition, they also did a further exploration of the
supply chain attack method typosquatting in npm and import-squatting in PyPI.
They also proposed a set of guidelines to contain future supply chain attacks and
found that it is hard to disambiguate benign and malicious packages. The authors
argued that providing developers decision support tools could prove effective in
stopping supply chain attacks, and emphasized the importance of tools and met-
rics designed to help developers assess the risk associated with incorporating ex-

Chapter 2: Background and Related Work 28

ternal dependencies [19].
In their work, Ladisa et al. proposed a general taxonomy for attacks on open

source supply chains, independent of specific programming languages and ecosys-
tems [11]. The taxonomy encompasses all stages of the supply chain, from code
contributions to package distribution. Their research resulted in the identifica-
tion of 107 distinct attack vectors on open source software supply chains, which
were linked to 94 real-world incidents and mapped to 33 mitigating safeguards.
Additionally, the authors surveyed 17 domain experts and 134 software develop-
ers to gather feedback on the taxonomy and evaluate the utility and costs of the
identified safeguards against software supply chain attacks.

2.7.1 Gap in Research and Practice

Based on the evaluation of the papers there seem to be many different evaluation
criteria proposed. Some of them are focused on positive traits such as the popular-
ity and presence of automated code analysis while others are focused on negative
traits such as the presence of installation scripts and maintainers using expired
email domains. To the best of our knowledge, there appears to be a limited num-
ber of studies that have conducted a comprehensive meta-analysis of various trust
criteria proposed in the literature. Are the criteria possible to assess based on the
given data? Are the criteria insightful for developers? Do they help distinguish
malicious packages from benign packages? In the SLR we saw that four pack-
age registries got the most focus: npm, Maven, RubyGems, and PyPI [10]. Would
the evaluation criteria and their thresholds differ if other package registries were
evaluated such as Crates for Rust or NuGet for C#?

Many of the criteria are also reliant on thresholds such as the number of down-
loads. It might not be possible to find thresholds that will work the same for all
package registries, but proposing and testing thresholds on a larger scale for dif-
ferent trust criteria is also lacking in the research literature. Most of the work
proposes some set threshold and tests the criteria based on this threshold, and
without having done a proper check of the threshold you might have criteria that
are valuable but not fully utilized because of suboptimal thresholds. However,
set thresholds might not be optimal since attackers might inflate metrics such
as downloads, GitHub stars, pull requests, and maintainer numbers to make the
package pass the set threshold [6, 19].

Most of the papers evaluate trust criteria by testing a set number of packages
to see if they pass or fail the evaluation metrics of the trust criteria [16, 23, 24],
or by interviewing experts and see if they agree with the assessments [24]. There
seems to be a gap in the research literature to see if developers can use the trust
criteria and make evaluations of software packages. Are developers able to use
the information to distinguish high- and low-risk packages? Will automated tests
showcasing trust criteria and thresholds lead to notification fatigue? Will such
tools make the developers lazy, and lead to more harm than good, such as was
the case with password policies [53, 54]? Is the cost measured in time and labor

Chapter 2: Background and Related Work 29

worth more than the extra security provided by the evaluation criteria [55]?
The gap in practice is often linked to the problem that there is no clear meta-

data and information that the developers can use to assess if the package can
be trusted. A recommendation from the literature is that third-party software
providers should include a software bill of materials [17, 27, 56]. A software bill
of materials is a list of all dependencies used to create the software, but many soft-
ware authors, unfortunately, do not provide this. The code hosting platforms and
package registries provide different information which makes it hard for develop-
ers to agree upon one common standard for what should be included as part of
due diligence before adding third-party software. Many developers are also prob-
ably not aware of the risks associated with third-party software or do not have
enough time or resources to do a proper evaluation of the software packages.

We believe that the popularity of tools such as Github’s Dependabot shows
that developers are interested in finding solutions that can assist with evaluating
third-party software packages without taking up to much of the developers’ time.
As discussed in subsection 2.6.3, there are not many tools that help during the
pre-install and pre-update phase, and such tools might be accepted by developers
if they do not significantly disrupt the developers’ workflow.

Chapter 3

Research Methodology

3.1 Research Methodology

This chapter describes the methodology used for this research project. Design sci-
ence is the research paradigm we used to ensure that a scientific approach is fol-
lowed during the development and validation of the artifact. Interviews, question-
naires, experiments, and document analysis were used to generate qualitative and
quantitative data.

3.1.1 Design Science

Design science is a research paradigm focusing on the development and validation
of an artifact. A design science project consists of an object of study and its two
major activities. The study’s object is the artifact, and its two main tasks are to de-
sign and investigate this artifact in context [7, 57]. The artifacts are developed and
used by people with the goal of solving practical problems in their correct envi-
ronment [7]. There are four main types of artifacts: constructs, models, methods,
and instantiations [7]:

• Constructs are concepts, definitions, terms, and notations, used to describe
and formulate problems and their solutions.
• Models are used to represent potential solutions to practical problems, and

can therefore be used during the development of other artifacts.
• Methods are either formalized or informal prescriptive knowledge which

defines processes or are guidelines for how to achieve goals or solve prob-
lems. These methods can be detailed and explicitly defined such as algo-
rithms or be more vaguely described like best practices or rules of thumb.
• Instantiations are working systems that can be used in practice. They can

be an instance of another artifact, where the other artifact works as an idea
for the working system.

Constructs are too small to create working systems, and even though it could
be argued that methods could be used in some cases to create instantiations it

30

Chapter 3: Research Methodology 31

is usually models that are used for this [7]. This thesis used the design science
methodology during the research, to ensure that a scientific approach was fol-
lowed during the creation and evaluation of the artifact. One of the main contri-
butions of this thesis is AutoTrust, which is an instantiation artifact.

3.1.2 The Method Framework Used for the Design Science Research

This thesis follows the method framework presented by Johannesson and Per-
jons [7]. The activities that are part of the framework are structured into five
phases: "Explicate problem", "Define requirements", "Design and develop artifact",
"Demonstrate artifact", and "Evaluate artifact" [7]. The activities proposed in the
framework may look highly sequential, but a design science project is carried out
in an iterative way moving between working on the different activities.

Figure 3.1: The method framework for design science research with research
strategies and knowledge base from [7], page 82.

The arrows in Figure 3.1 indicate the input and output from each action. These
arrows should not be interpreted as temporal orderings but as input–output rela-
tionships meaning that in principle, every activity can receive input and produce
output for any other activity [7].

Research strategies, research methods, and creative methods, which are allo-
cated on the top of Figure 3.1, describe what knowledge is used for governing
an activity, and are used to aid the development process. A research strategy is
an overall plan for conducting the research study, such as experiments, surveys,
and case studies. Research methods tell the researcher how to collect and analyze

Chapter 3: Research Methodology 32

data, which can be done through interviews, questionnaires, or other methods.
Creative methods are more relevant during the design and development phase
and can be activities such as brainstorming, participative modeling, empathetic
thinking, and lateral thinking [7].

The design process will also be affected by the knowledge that the develop-
ers and other stakeholders possess. This accumulated knowledge is known as the
knowledge base.

Most research projects tend to focus on only some of the phases in the method
framework as it might be too comprehensive to perform all the phases in detail
[7]. Based on the focus of the design science project there are at least five typi-
cal cases of design science research: "Problem-focused design science research",
"Requirements-focused design science research", "Requirements- and development-
focused design science research", "Development- and evaluation-focused design
science research", and "Evaluation-focused design science research" [7].

In this thesis project, we conducted "Development- and evaluation-focused
design science research", as we were developing an artifact, testing, and evalu-
ating it. To ensure that the development is done in a proper way the five phases
of the method framework by Johannesson and Perjons were used [7]. The next
sections explain the theory behind each phase while chapter 4 describes what we
did during each phase in this project.

Explicate Problem

The task of the explicate problem activity involves exploring and examining a
practical issue. It is important to accurately define and justify the significance of
the problem by demonstrating its relevance to a particular practice. The problem
should have a broader appeal, not only affecting a local practice, such as at a
single company but also impacting a global practice, such as a research field [7].
Additionally, during the explicate problem phase, an investigation into the root
causes of the problem was done, to identify and analyze the events that lead to the
problem. The SLR was used to help scope the problem which the artifact should
solve.

Define Requirements

During the second phase, the researchers attempt to define a solution to the ex-
plicated problem. In design science, this solution will be an artifact with a set of
requirements. These requirements are a collection of demands on the proposed
artifact that are needed for the artifact to serve its purpose. The requirements will
not only help for the defining the needed functionality but will also help to define
the structure and the artifacts environment [7]. Defining the requirements used
to create an artifact was based on the results from the SLR, a review of additional
research papers, and discussions with a research security engineer from Visma.

Chapter 3: Research Methodology 33

Design and Develop Artifact

The design and develop artifact phase is where the artifact is constructed. The
artifact should address the explicated problem and fulfill the requirements defined
in the define requirements phase. This phase contains four activities: Imagine and
Brainstorm, Assess and Select, Sketch and Build, and Justify and Reflect [7]. It is
important to justify and reflect on the selections made regarding functionality as
well as its structure as it will improve the verifiability of the project [7]. In order
to gather further input on the design and development of the artifact, we had a
conversation with two security engineers from Visma. Additionally, we distributed
a questionnaire among Visma security experts in order to identify which trust
criteria they considered the most essential to implement. We developed AutoTrust
using the acquired information from the conversations and the questionnaire. As
this phase entailed both the design and the development it was the most extensive
phase.

Demonstrate Artifact

The demonstrate artifact phase is where the developed artifact is tested. First, the
researchers need to choose and justify a case where the artifact can be tested. The
case needs to be representative of the problem and provide enough of a challenge
to work as an adequate test bed. The researchers also need to justify which parts
of the artifact will be tested. Different cases might help demonstrate different
components of the artifact. The demonstration can be considered a weak form
of evaluation [7]. The artifact and its functionality and correctness were tested
by analyzing 100 NuGet packages and by comparing the execution time of the
artifact with the .NET command for adding packages.

Evaluate Artifact

The fifth and last phase is the evaluate artifact phase. The main objective of this
phase is to determine how well the artifact solves the explicated problem with
the constraints defined by the requirements. This determination can be done by
the use of evaluation strategies that can be divided into different categories: an
ex-ante evaluation, an ex-post evaluation, a naturalistic evaluation, and an artifi-
cial evaluation [7]. The ex-ante evaluation is done when the artifact is evaluated
without being used or even being fully developed, while the ex-post evaluation
means that the artifact is evaluated after it has been employed [7]. A naturalistic
evaluation means that the artifact is evaluated in the real world, while an artificial
evaluation implies that the artifact is evaluated in an artificial setting such as a
laboratory [7].

According to Johannesson and Perjons, there are six different evaluation goals
that can be the purpose of the evaluation phase [7]:

• Evaluate if the artifact is effectively solving the problem.

Chapter 3: Research Methodology 34

• Evaluate the functional and non-functional requirements proposed used on
the artifact.
• Compare the artifact to other similar artifacts that intend to solve the same

or a similar problem.
• Investigate the side-effects such as unintended or harmful effects of the ar-

tifact.
• Investigate formalized knowledge about a designed artifact by confirming,

disproving, or enhancing the design theory.
• Evaluate the artifact formatively in order to identify opportunities for im-

provement in further design.

For evaluating the artifact we used the first 4 of these goals. We did three dif-
ferent tests for evaluating the artifact, based on these goals. The first test involved
comparing the artifact’s evaluation of three NuGet packages with the manual eval-
uation of those same packages carried out by computer science students. In the
second test, we conducted another experiment where we assessed 100 packages
using OpenSSF Scorecard, and then compared the results with the evaluation per-
formed by the artifact on the same 100 packages. For the third test, we engaged
Visma employees in testing the artifact and conducted interviews to gather their
feedback on its performance and usefulness.

3.2 Research Strategies

The research strategy is the overall plan for the research study, and it is used as
a guide for planning, executing, and monitoring the study [7]. Common research
strategies are experiments, surveys, case studies, ethnography, grounded theory,
action research, phenomenology, simulation, mathematical and logical proof [7].
In Roel J. Wieringa’s book about design science, he presents five research strate-
gies highly relevant to information systems and software engineering, where one
of them is technical action research [57]. We have chosen to use both experiments
and technical action research to help us find the answer to the research questions.

3.2.1 Technical Action Research

Technical action research involves employing a newly created artifact to assist a
client in order to test it out in the real world [57]. Technical action research is an
example of validation research, where one can observe how the artifact interacts
in its real-world environment [57]. It is important to note that during technical
action research, the artifact is not used by the stakeholders outside of the research
context [57]. When designing these kinds of research strategies it is important to
consider the artifact, the test subjects, the environment, and how to collect data
about the artifact’s performance. These factors need to be aligned so they can
support the planned inferences from the data collection.

There are three roles the researcher needs to have during technical action
research [57]:

Chapter 3: Research Methodology 35

1. Technical researcher, who designs the artifact to solve the general problem.
2. Empirical researcher, who answers some validation knowledge questions

about the artifact.
3. Helper, who creates the client-specific version of the artifact to help the

client with their needs.

The researcher has to fulfill all these roles and keep them separate while the
artifact is tested as part of the client’s engineering cycle [57].

We have taken the role of the technical researcher both during the work on
the SLR and during the "Explicate problem", "Define requirements", and the de-
sign section of the "Design and develop artifact" phases. The role of a helper was
mainly taken during the "Define requirements" and the "Design and develop ar-
tifact" phases as these are the phases where the focus is placed on the client’s
needs and system. After the artifact was created we took the role of an empiri-
cal researcher and evaluated how well the artifact solved the problem during the
"Demonstrate artifact" and "Evaluate artifact" phases. During this thesis project,
the client was Visma, and some of their developers tested the artifact during their
everyday work.

3.2.2 Experiments

An experiment is a type of empirical investigation that explores the cause-and-
effect relationships between variables and follows the steps shown in Figure 3.2.
The main objective of conducting an experiment is to either confirm or reject a
presumed causal relationship between a specific factor and an observable outcome
[58]. This casual relationship is formulated in the form of a hypothesis, which the
experimenter wants to test. As part of evaluating the artifact, we conducted two
experiments and formulate three different hypotheses. The hypotheses are ex-
pressed through dependent and independent variables. The dependent variables
correspond to the outcome of the experiment, while the independent variables
are the variables that we controlled and changed in the experiment.

After having formulated the hypothesis, the next step of experiment plan-
ning involves selecting subjects. During the first experiment, the subjects were
the computer science students and in the second they were the NuGet packages
we wanted to use in the evaluation. This selection can be either a probability
or non-probability sampling. Then one has to plan the experiment design, which
must be planned carefully as the conclusion one can draw from the experiment
depends on the chosen design. The last steps are instrumentation, consisting of
objects, guidelines, and measurement instruments, and validity evaluation where
one evaluates the validity of the result.

We have conducted both an experiment on computer science master’s stu-
dents in their final year and an experiment evaluating 100 packages with OpenSSF
Scorecard. For the student experiment, we wanted to find out how the risk eval-
uation given by computer science students differs from the evaluation done by
AutoTrust. To answer this we created two hypotheses that we wanted to reject:

Chapter 3: Research Methodology 36

Figure 3.2: Experiment planning from [58], page 77.

• Hypothesis 1: The students will provide a risk review of NuGet packages
that is equal to the AutoTrust review.
• Hypothesis 2: The students will consider the same amount of trust criteria

or more than AutoTrust when evaluating NuGet package risk.

For the OpenSSF Scorecard experiment we wanted to find out how the rank-
ing of packages done by OpenSSF Scorecard compares to the ranking done by
AutoTrust. To answer this we created one null hypothesis and one alternative hy-
pothesis. When conducting experiments, the experimenter aims to reject the null
hypothesis with the highest degree of significance possible. The alternative hy-
pothesis is the hypothesis that is supported when the null hypothesis is rejected.
The null hypothesis and the alternative hypothesis we wanted to test were:

• H0: The ranking of packages and the tool used to give those rankings are not
related given the 100 packages. The proportions of rankings are the same
for the two tools.
• Ha: The ranking of packages and the tool used to give those rankings are

related given the 100 packages. The proportions of rankings are not the
same for the two tools.

To refute the hypotheses, we employed two distinct methods for conducting
the experiments. For the student experiment the hypothesis testing was conducted
visually through diagrams accompanied by explanatory texts [59] to support the
findings. In the OpenSSF Scorecard experiment, we utilized the chi-square statistic
for hypothesis testing, explained in subsection 3.4.2. The reason for not using the
chi-square statistic for the student experiment was due to a small sample size of
only 12 students.

In the OpenSSF Scorecard experiment, we utilized the Chi-square statistic for
hypothesis testing, explained in subsection 3.4.2. However, due to the small sam-
ple size in the student experiment, the Chi-square statistic is not applicable. In-

Chapter 3: Research Methodology 37

stead, the hypothesis testing for the student experiment was conducted visually
through diagrams accompanied by explanatory texts [59] to support the findings.

The independent variables for the student experiment are the packages that
the students reviewed and the order of these packages. The dependent variables
are the overall security risk score and the trust criteria consideration score, both
given by the students. A total of 12 students participated in the testing of 3 dif-
ferent packages. Since there are 6 possible orders in which the packages can be
tested, each order was assigned to 2 students. To find computer science students
we used convenience sampling, choosing students working in our office area at
the university.

In the OpenSSF Scorecard experiment the independent variable was the 100
packages to be reviewed. The dependent variable was the calculated risk scores.
As there were tools and not humans doing the evaluation of this experiment, the
order of packages was not considered.

We opted for a one-factor design with two treatments that we wanted to com-
pare against each other for all hypotheses in our design selection process. For
the student experiment, the two treatments are manual risk evaluation, done by
computer science students, and automatic risk evaluation, done by us using the
AutoTrust tool. For the OpenSSF Scorecard experiment the two treatments are the
risk evaluation given by AutoTrust and the evaluation given by OpenSSF Score-
card. The last two steps of experiment planning are instrumentation and validity
evaluation, and they will be explained in subsection 4.5.1 and subsection 4.5.2.

3.3 Data Collection Methods

To aid the different phases of the method framework there is a need to collect
useful data to make correct decisions and create quality output for the next phase.
There are multiple data collection methods and Johannesson and Perjons point out
that the five most used data collection methods are: questionnaires, interviews,
focus groups, observation studies, and document studies [7]. They also describe
how some data collection methods are closely associated with specific research
strategies, such as surveys which typically use questionnaires.

3.3.1 Document Studies

Document studies are an investigation into already published information about
the topic to discover what is known and unknown about a topic. As part of the
preparation for this thesis, a SLR was conducted to gather information from doc-
ument types such as academic publications, government publications, and news
[10]. The SLR has been used to increase the knowledge base and will contribute
to the "Explicate problem" and "Define requirements" phases. The details on how
the SLR was conducted can be found in Appendix C.

Chapter 3: Research Methodology 38

3.3.2 Questionnaires

Questionnaires are usually used to obtain answers to questions that are brief and
unambiguous from a set of respondents [7]. Questionnaires are great since they
are inexpensive, but they can result in skewed data. For example, if the first ques-
tion affects how the respondents answer the later questions or if the population
asked is not representative to generalize the answers. For design science, ques-
tionnaires can help to obtain greater insight into the stakeholders, help to define
requirements, or evaluate the general response from a large group about an arti-
fact.

We used questionnaires in this thesis to have Visma developers evaluate the
proposed trust criteria and to have computer science students manually assess the
risk of NuGet packages.

Visma has multiple development teams and the different teams can have dif-
ferent guidelines and workflows. To gain insight into this, a questionnaire was
sent out to security experts at Visma through a Google form. The questions used
in the questionnaire can be found in section B.2. We chose to ask security experts at
Visma as we believed they would have the most knowledge about software supply
chain security. We used a Google form as Visma has a data processing agreement
with Google. The results from the questionnaires can be found in section 4.3.2.

During the student experiment, we also used questionnaires to collect data
from the computer science students’ assessment of NuGet packages. In order to
maintain anonymity and privacy, we opted for Google Forms as personal informa-
tion was not collected. Additionally, we aimed to mitigate the influence of question
order on responses, a common issue with questionnaires, by altering the sequence
in which the packages were presented for assessment. The form can be found in
section B.4.

3.3.3 Interviews

An interview is a two-way communication session where the respondent should do
most of the speaking. The respondent provides information while the researcher
controls the agenda by asking questions. Interviews are effective for gathering
more complex data as researchers can ask follow-up questions if things are unclear
or the respondent is providing interesting information. Interviews are however
time-consuming as the appointment for the interview needs to be planned and
the researcher needs to analyze and categorize the answers from the interviews,
which can be video, audio, and field notes. Interviews can be used to help explicate
problems, define requirements, obtain information about designs, and evaluate if
the test subjects approve of the artifact.

We used interviews to evaluate how well the tool worked as part of a devel-
oper’s workflow. The interviewees were software engineers at Visma who tested
out the artifact as an integral part of their programming tasks in their daily work.
The interviews were conducted online using Microsoft Teams which is the stan-
dard NTNU software used for video meetings.

Chapter 3: Research Methodology 39

Prior to conducting the interviews, we ensured that participants had consented
to record their answers. Once this was verified, we asked the questions that can
be found in section B.5. The responses were recorded with video and the dicta-
phone extension on Teams. After the interviews were conducted the replies were
analyzed. The results can be found in section 4.5.

3.4 Data Analysis

After the data is collected using the data collection methods mentioned above it
needs to be analyzed. The raw data collected needs to be prepared, interpreted,
analyzed, and presented before it can be used to draw conclusions [7]. There are
two main forms of data analysis: quantitative and qualitative.

3.4.1 Quantitative

Quantitative data analysis is a research methodology that involves the use of nu-
merical data to analyze and draw conclusions about a given phenomenon or re-
search question [60]. This type of analysis typically involves collecting numerical
data through various methods such as surveys, experiments, or observations, and
using statistical tools and techniques to analyze and interpret the data. The nu-
merical data used in quantitative data analysis is either continuous or discrete.

Continuous data refers to data that can take on any value within a certain
range, such as height, weight, or temperature. These data points can be measured
to arbitrary precision, and the values are typically represented on a continuous
number line. Continuous data is often analyzed using descriptive statistics such
as mean, median, and standard deviation.

Discrete data, on the other hand, refers to data that can only take on finite
possible values, such as the number of siblings a person has or the number of stu-
dents in a class. These data points are whole numbers and cannot be measured in
decimal points. Discrete data is typically visualized using frequency distributions,
histograms, and measures of central tendency such as mode or median.

We collected and analyzed quantitative data during the runtime demonstra-
tion of AutoTrust and the .NET command installing the 10 most downloaded
NuGet packages (subsection 4.4.2). Specifically, we examined the execution times
of the installation methods, both of which are continuous data measured in time.

3.4.2 Qualitative

Qualitative data analysis is the process of examining non-numerical data to iden-
tify patterns, themes, and insights [60]. It involves analyzing data such as inter-
views, field notes, and recordings to gain an understanding of the experiences,
perspectives, and meanings of the participants. Qualitative data analysis typically
involves coding the data into categories, which are then analyzed to identify pat-

Chapter 3: Research Methodology 40

terns and themes. How the qualitative data are interpreted may be affected by the
researchers’ background, values, and experiences [7].

The qualitative data variables are differentiated between ordinal and nominal
data:

• Nominal data is a type of categorical data where the values represent dis-
crete and separate categories or groups that cannot be logically ordered
or ranked. Examples of nominal data include gender, race, nationality, re-
ligious affiliation, and political party affiliation. Nominal data can be ana-
lyzed using frequency counts and percentages, and statistical measures such
as mode can be used to compare groups. However, nominal data cannot be
analyzed using measures of central tendency, such as mean or median, as
there is no inherent ordering to the categories.
• Ordinal data are used on categories when there is an order or ranking, but

there is no consistent meaning to the difference. An example can be when
measuring economic status, the income ranking could be wealthy, middle
income, or poor.

We used multiple different methods to gather qualitative data throughout this
study. The qualitative data are gathered through the Visma questionnaire, pre-
sented in subsection 3.3.2; the 100-packages demonstration, presented in subsec-
tion 4.4.1; the student experiment, presented in subsection 4.5.1; the testing of
OpenSSF Scorecard, presented in subsection 4.5.2; and the interviews with Visma
software engineers, presented in subsection 4.5.3.

From the Visma questionnaire, we collected nominal data about how the teams
handle dependencies and what the respondents have experience with. We also
collected ordinal data about the trust criteria since we asked the interviewees to
rank trust criteria based on their perceived usefulness:

1. Does not matter
2. Not necessary
3. Not necessary but insightful
4. Valuable
5. Crucial

In the 100-packages demonstration, we gathered the overall ranking made
by the AutoTrust tool. As this ranking is a discrete star rating from 1-5, it will
be ordinal data. From the student experiment, we gathered ordinal data by hav-
ing the students rank various NuGet packages based on the perceived usefulness
explained above. In addition, we gathered nominal data by having the students
explain their reasoning and thoughts around the trust criteria presented. When
testing the 100 packages with OpenSSF Scorecard we gathered ordinal data, as
OpenSSF Scorecard gives a discrete ranking from 0-10 to each of the packages. Fi-
nally, the interview with the software engineers at Visma provided us with nominal
data, as they provided their thoughts and feedback after having used AutoTrust.
To assess the data and reject the hypotheses, we employed both a general analysis
and a mathematical approach utilizing chi-squared statistics.

Chapter 3: Research Methodology 41

General Analysis

To analyze qualitative data there are three different approaches [7]:

1. Content analysis: is used to classify elements of the qualitative data and
then calculate the frequencies of the elements in categories.

2. Grounded theory: is similar to content analysis, but the categories emerge
gradually during the researcher’s work.

3. Discourse analysis: is used to find the hidden meaning of a text, and the
researcher tries to use concepts and theories to interpret the text.

To analyze and extract data from the Visma questionnaire, the student exper-
iment, and the Visma interviews we utilized the method of content analysis. By
employing content analysis, we were able to gain a deeper understanding of the
responses provided by the participants, as well as to draw broader conclusions
based on the data collected.

In addition, we used graphs and visual comparisons for understanding the
results of the 100-packages demonstration and the testing of OpenSSF Scorecard.
For the hypothesis testing of the student experiment and evaluating it against the
100-packages demonstration we combined graphs with the result of the content
analysis performed on the student experiment.

Chi-Squared Statistics

To accept or reject the null hypothesis of the OpenSSF Scorecard experiment we
performed the chi-squared test of independence. The chi-squared test is a statis-
tical test used to determine whether there is a significant difference between two
categorical variables. By comparing the observed data with the expected data un-
der the assumption of the null hypothesis, it becomes possible to determine if there
is a significant deviation, thereby leading to the rejection of the null hypothesis
[61].

A chi-squared test is performed in multiple steps:

1. Formulate a null hypothesis and alternative hypothesis
2. Create a contingency table that cross-tabulates the observed frequencies of

the categories for each variable
3. Use the null hypothesis, stating that there is no association between the vari-

ables, to calculate the expected frequencies for each cell in the contingency
table.

4. Compute the chi-squared test statistic by summing up the squared differ-
ences between the observed and expected frequencies, using the following
formula, where Oi j represents the observed frequency in cell (i, j) of the
contingency table, and Ei j represents the expected frequency in cell (i, j) of
the contingency table:

�2 =
X (Oi j � Ei j)2

Ei j
(3.1)

Chapter 3: Research Methodology 42

5. Determine the degrees of freedom. It is equal to (r � 1)⇥ (c � 1), where r
is the number of rows and c is the number of columns in the contingency
table.

6. Determine the critical value corresponding to a chosen significance level
and the degrees of freedom.

7. Compare the chi-squared test statistic with the critical value.

• If the chi-squared test statistic is greater than the critical value we can
reject the null hypothesis. This indicates that there is evidence of an
association between the variables.
• If the chi-squared is less than the critical value we cannot reject the null

hypothesis. This indicates that there is no evidence of an association
between the variables.

3.5 Ethics

According to Oates, it is crucial to consider ethical concerns during a research
project [62]. This includes treating participants fairly, ensuring their rights are
followed, and minimizing potential negative consequences. To gather data from
participants we have used questionnaires and interviews. It is important to ensure
the participants’ privacy, therefore, the data is anonymized and made confidential.
All participants have been informed about the study’s purpose, methodology, and
benefits, and have voluntarily signed a consent form to participate. They have
also had the opportunity to withdraw their participation at any point without an
explanation.

This thesis follows the ethical guidelines from the Norwegian University of
Science and Technology (NTNU) [63]. To ensure that all data is handled properly
we have created a notification form and a data management plan following the
recommendations from Sikt1. The notification form and data management plan
are used to ensure that we follow the requirements of the Personal data act [64],
which includes the General Data Protection Regulation (GDPR) requirements. In
addition, they make sure that the data collection and management follow the
standards of the Research Council of Norway and the European Union. The noti-
fication form in section A.1 was approved on the 28. of January 2023 by Sikt and
a copy of the approval can be found in section A.2.

We decided not to collect any personal information using the questionnaire as
it was not needed for the project. We still provided information about the project
and how the data would be processed. The respondents were still asked to consent
to the information provided, even though no personal data was collected. For
the interviews, the participants gave their specific, informed, unambiguous, and
voluntary consent, in line with the Personal Data Act [64]. As the consent should
not be given just orally we also sent out a consent form to all participants and
had them sign it at the start of the interview. The information provided to the

1https://sikt.no/

https://sikt.no/

Chapter 3: Research Methodology 43

participants to obtain consent was both read out loud and included in the consent
form and was based on the recommendations from Sikt. The information letter
about consent can be found in section B.1. After the interviews, a transcript of the
interview was sent to the participants so they could correct any errors.

The data from the questionnaire was collected using Google Forms because
Visma has a data processing agreement with Google. The Google form was also
created and distributed by a Visma employee as Visma wanted someone with a
Visma email account to be the owner of the form. The data storage followed the
data management plan and was stored securely on the NTNU’s Office 365 Share-
point, as NTNU has a data processing agreement with Microsoft. For improved
security, the data was anonymized continuously. The data was deleted at the end
of the project and is not archived. The data management plan can be found in
section A.3.

We do not have any affiliation with Visma, but our supervisor works at both
NTNU and Visma. However, we believe that this employment has not affected
the integrity of the project or the recorded data. Another argument that reduces
the likelihood that we or Visma would intentionally alter the results, is that the
tool will be released as open source and not proprietary so there is no monetary
interest for us or Visma.

The artifact’s design is based on the researchers’ work and there is often a
tendency to have increased enthusiasm for personal craftsmanship, which can
lead to improper evaluation of the artifact. However, both negative and positive
results regarding the artifact contribute to new knowledge, and we believe that
we have not intentionally skewed data to only accentuate the artifact’s strengths.
Overall, we hold the belief that we have conducted good measures to ensure that
the research project follows ethical standards.

Chapter 4

AutoTrust

This chapter explains what we did during the different steps of the design science
research when developing AutoTrust. First, we explicate the problem, meaning
we formulate the problem, justify its importance, and investigate its underlying
problems. Then we define the requirements for an artifact that can be used to
solve the problem. The next step is to design and develop the artifact, which
includes designing both the functionality and structure of the artifact. Then we
demonstrate how the artifact can be used, proving its feasibility. The last step is
evaluating the artifact, where we show the results and evaluate how good the ar-
tifact is at solving the explicated problem. The artifact, AutoTrust, can be found
at https://github.com/HallvardMM/AutoTrust.

4.1 Explicate Problem

This phase is the first in the design science methodology. It lays the foundation for
further design, development, and testing. The goal is to scope the problem and
give an exact definition of the problem. After the problem is justified we argue
why it is of general interest, solvable, and leads to novel research.

4.1.1 Position the Problem

In software development, the use of tools and code developed by other program-
mers is essential. This can encompass a variety of elements, including the pro-
gramming language, operating system, and dependencies imported directly into
projects. Code incorporated into a project is commonly known as third-party de-
pendencies. Software developers often rely on these dependencies due to time
constraints or other limitations. However, a concern is that vulnerabilities in these
dependencies can potentially also lead to vulnerabilities in the programs that de-
pend on them.

When a threat actor inserts malicious code into a package that is used within
a project it is referred to as a supply-chain attack. There is an increasing num-
ber of these attacks and the problem is affecting all developers no matter if they

44

https://github.com/HallvardMM/AutoTrust

Chapter 4: AutoTrust 45

are working for academia, in corporations, or privately [10]. One example of soft-
ware supply-chain attacks is when a malicious software package is introduced as a
dependency, which infects the software project. Consequently, ensuring software
development and software maintenance security becomes essential for develop-
ers.

4.1.2 Formulating the Problem

Third-party dependencies can lead to exploits either through injected malware
or weakware. The difference between these is that the damage characteristics of
malware are intentional and planned, and often require some technical expertise
to implement and insert. Weakware on the other hand refers to weaknesses in
the software that are mostly unintentional or accidental [13]. A compromise of
a package will compromise the rest of the project as well, so for large projects,
the consequences can be huge. To avoid getting compromised it is crucial to do a
proper evaluation of the third-party software to minimize the chances of down-
loading or updating a dependency with something malicious. This evaluation can
be done by evaluating the provided metadata for the third-party dependencies.
The overall problem with third-party software boils down to:

Threat actors can use dependencies as an attack vector to infiltrate soft-
ware projects and there is no simple way of evaluating the security of
these dependencies prior to installing them.

4.1.3 Justify the Problem

The importance of software security and stopping supply-chain attacks is increas-
ing and the 2020 SolarWinds hack, mentioned in section 1.1, is a recent reminder
of the consequences that can occur from a breach [4]. A compromise of a com-
pany can lead to a long-lasting loss of reputation and trustworthiness, and the
cost of both time and money can be massive. A compromise of this nature can
have severe repercussions not only for companies but also for individual software
users. This highlights the significance of software and dependency security for all
stakeholders involved, including developers, owners, and users.

Third-party dependencies or packages are stored in a package registry and it
is through them the dependencies are distributed. These registries can therefore
be used by malicious actors to distribute their malicious packages. There are mul-
tiple examples of malicious packages that have been found, and back in 2022,
over 140 000 phishing packages were published to NuGet, npm, and PyPI by the
same threat actors [65]. Also, according to Sonatype, a company specializing in
software supply chain security tools, there has been an average 700% jump in
repository attacks from 2020-2022 [66].

To address the issue of malicious packages, a root cause analysis can reveal
various underlying factors contributing to the problem. The causes found are rep-
resented in Figure 4.1, which is an Ishikawa diagram. The Ishikawa diagram con-

Chapter 4: AutoTrust 46

sists of a main horizontal line that represents the problem, and associated slanting
lines that represent direct problem causes. These slanting lines are again related to
shorter horizontal lines which represent indirect problem causes. Then the small-
est slanting lines are representing different aspects of the indirect problem causes
[7]. The purpose of this diagram is to visualize all the potential factors that can
lead to using vulnerable third-party software. This diagram helps identify all the
potential factors causing an overall effect on the problem and a possible solution.
By addressing these different root causes a better result can be achieved than just
addressing the symptoms of the problem.

Figure 4.1: Ishikawa diagram representing problem causes.

As one can see from Figure 4.1, the problem with risky third-party software is
complicated. This diagram illustrates that there are multiple underlying causes of
the problem, all of which require attention and resolution.

Chapter 4: AutoTrust 47

4.1.4 Ensure General and Solvable Problem

Solving the problem with vulnerable third-party dependencies and packages through
automated detection of all vulnerable packages is probably unfeasible. However,
according to Ruturaj et al., tools and metrics that help assess the risk of external
dependencies would go a long way toward preventing attacks [19].

To ensure the problem is solvable and manageable we have decided to focus on
software packages and not other types of dependencies. Since no malicious code
from a package can impact the user before the package is added, our emphasis lies
in detecting and preventing the installation of malicious packages. As there are
multiple package registries built for different programming language ecosystems
and the information they provide is different we chose to focus on one specific
registry.

4.1.5 Sources of the Problem

The general problem of supply chain security and ways to eradicate or minimize
the problems have been addressed in both academia and industry. As seen in the
SLR there are multiple academic papers written about this problem, in addition,
there are multiple online articles describing both the issue and possible solutions
[10]. Some of the current solutions that attempt to deal with the problem are npq,
OSSGadget, and OpenSSF Scorecard, referenced in subsection 2.6.3.

4.1.6 Research Novelty

While both npq and OSSGadget offer valuable features, neither of them has un-
dergone scientific development with a specific focus on research and testing, as
we do in this thesis. Considering OpenSSF Scorecard, it is worth noting that Za-
han et al. conducted an evaluation of the tool [67], and they compared it with the
npm and PyPI ecosystem. Our work delves into the NuGet ecosystem, emphasiz-
ing its significance while shifting the focus away from npm and PyPI, as they have
been the most discussed in the literature [10]. Another novelty of this research is
the presentation, use, and evaluation of new trust criteria. Not all of these trust
criteria presented in Table 2.2 are incorporated in npq, OSSGadget, or OpenSSF
Scorecard. This raises the question of whether these new trust criteria are valu-
able and feasible to assess, and we have therefore evaluated them. Which trust
criteria are included in AutoTrust, npq, OSSGadget, and OpenSSF Scorecard is
presented in section 4.3.8. Another novelty of this research is exploring if users
find these pre-install tools valuable and what their current process is when adding
new software packages.

4.2 Define Requirements

For solving the explicated problem with dependencies being used as attack vec-
tors the next step of the design science process is to define requirements. This

Chapter 4: AutoTrust 48

process of defining the requirements was based on the literature from the SLR,
a questionnaire, and discussions with a research security engineer from Visma.
The questionnaire, mentioned in subsection 3.3.2 with the questions that can be
found in section B.2, was used when asking the security expert participants how
they were dealing with and downloading dependencies. The discussion with the
research security engineer was valuable to make sure that the artifact and its re-
quirements would fit with Visma’s current development practices.

4.2.1 Outline Artifact

The artifact we made is an instantiation artifact as it is a working system that can
be used in practice. The artifact provides a risk assessment of NuGet packages
prior to the developers adding the packages to their projects. This assessment is
done by fetching metadata that is used for evaluating the trust criteria’s thresholds
and informing the developer if the package passed or failed the set thresholds.

Then after the risk assessment is provided, the user is prompted if they would
like to add the package. If the user wants to install it, the installation is done by the
artifact calling the standard .NET command for adding packages. This command
can also be run separately in the CLI:

dotnet add package NameOfPackage

One example where the tool would prove useful is when a developer is trying
to download a deprecated package without knowing it is deprecated. When they
run the script, it gives a warning in the CLI saying that the package is deprecated
including other potential failed trust criteria. The user is then asked if they still
want to download the deprecated package and can take an informed decision
based on their new knowledge.

Justify Importance

In the work by Ladisa et al., mentioned in section 2.7, one of the safeguards against
software supply chain attacks proposed was "Establish vetting process for open-
source components hosted in internal/public repositories". The domain experts
gave it a high ranking on both utility and cost with 4.1/5 on utility and 4.3/5 on
cost. The software developers ranked it 3.8/5 on cost [11]. This strengthens the
credibility as the domain experts consider such a vetting as useful, but costly to
do. Creating an artifact for automated assessment would cut the cost and make
such vetting more useful.

An article published in late March 2023 by the JFrog Security Research team
also shows why this artifact can be useful. They reported that there had been "a so-
phisticated and highly-malicious attack targeting .NET developers via the NuGet
repository" [6]. It was one of the first reports about malicious NuGet packages
that targeted developers directly [6]. The malicious packages used typosquatting
techniques to bait the users into downloading them. The packages contained a

Chapter 4: AutoTrust 49

payload with a "download and execute"-attack using the init.ps1-file that is exe-
cuted on installation. The malicious packages had a combined download count of
over 150 000, however, this might have been inflated with bots by the attackers
to boost the credibility of the package [6]. If the developers used the artifact they
could get a warning that the package contained an init.ps1-file and they could
inspect the file before downloading it and getting compromised.

4.2.2 Elicit Requirements

One way to classify requirements for an artifact can be as functional requirements
(FRs) and quality attributes (QAs) [68]. Functional requirements specify the de-
mands that are imposed on the artifact based on the problem to be addressed and
the criteria from the stakeholders [7]. Quality attributes are qualifications of the
functional requirements or the general artifact [68]. They describe how well the
artifact fulfills its overall functionality.

Functional Requirements

There are multiple functional requirements for the artifact. The list below contains
the FRs for the artifact and a sub-level for each requirement with a justification
for them.

• FR-1: The artifact should evaluate packages before they are installed.

� During the SLR we found that some attacks target the developer when
they install packages [24]. The packages should therefore be evaluated
before they are installed.

• FR-2: The artifact should be possible to run from the CLI.

� In the conversation with the research security engineer, we agreed to
extend the "dotnet add package"-command and the artifact should run
in combination with this command.

• FR-3: The artifact should run in the .NET ecosystem and work for all NuGet
packages from the central repository.

� In the conversation with the research security engineer, we agreed to
scope the artifact to focus on the .NET ecosystem and the central NuGet
repository. NuGet and .NET were chosen since Visma employees work
in this environment.

• FR-4: The artifact should display information to the user if the package
passed, or failed the thresholds of the trust criteria. In unclear circumstances,
the user should get a warning.

� The requirement arose during the talk with the research security en-
gineer. The artifact should inform the user, but in the end, the user
should have the final say if the package gets added.

Chapter 4: AutoTrust 50

• FR-5: The artifact should fetch package metadata in real-time.

� This criteria came from the SLR as it was found that the data sources
might update frequently and the user should get the newest assess-
ment of the package.

• FR-6: The artifact should provide an option for getting a more detailed ex-
planation of the evaluation process.

� This requirement arose during the talk with the research security en-
gineer. The users should be able to get a more in-depth explanation
to learn what is evaluated and understand why a package fails some
thresholds.

Quality Attributes

The quality attributes of the artifact help in the process of improving it as they
provide guidelines on what to focus on during the design and development. The
bullet points below describe the five main QA categories we considered during the
development of the artifact and a sub-level describing the actual criteria to fulfill
the attributes.

• QA-1: Usability

� The package should be easy to use by supporting a verbosity flag, and
help flag, and have a similar syntax to other .NET tools
� The artifact should be possible to install and start using within 15 min-

utes of opening the GitHub repository with the help of a README.

The artifact should be easy to use and install. It should give clear information so
users understand why a package failed a given threshold and why this is associated
with increased risk.

• QA-2: Portability

� The system should work with newer versions of Windows, macOS, and
Linux.

Developers at Visma are using different operating systems and the artifact should
work for all the developers as we believe it is more useful when every team mem-
ber can run an automatic package assessment.

• QA-3: Security

� The tool should not use any third-party dependencies except packages
provided directly in .NET, also known as system packages.
� The tools should not download packages without the user’s confirma-

tion.

As mentioned in section 2.6, software tools might be used by threat actors as an
attack vector. It is important that this artifact does not lead to an increased security
risk for the developers using it as this contradicts the main intention of the artifact.

Chapter 4: AutoTrust 51

Also, the reason for allowing system packages is that these are directly included
in .NET and are not added from NuGet or other external sources.

• QA-4: Performance

� The installation time for a package using the tool should not exceed
three times the standard runtime of the "dotnet add package" com-
mand.

Today the process of adding new packages is quick. Since we are adding an extra
step to the installation process it is important that the artifact does not impose a
long time-penalty as developers might choose not to use it.

• QA-5: Modifiability

� It should be possible to implement new trust criteria without altering
existing ones.

In the cybersecurity field it is a cat-and-mouse game between attackers and de-
fenders with constantly changing terms. The artifact needs to easily support new
trust criteria and thresholds to help identify indicators of new and more advanced
attack forms.

4.3 Design and Develop Artifact

After the requirements were defined the development and design phase was ini-
tiated. After some discussions, it was decided that the tool would work as an CLI
tool that would extend the functionality of the "dotnet add package"-command.
This would work as a shift-left approach where the evaluation of the package’s
security risk would be performed earlier in the lifecycle. The .NET packages can
be installed in two primary ways: via the CLI, or directly from the Visual Stu-
dio integrated development environment (IDE) through either the NuGet Pack-
age Manager or the Package Manager Console. We decided to only extend the CLI
option.

4.3.1 Architecutre

After the initial idea was assessed and selected, we started sketching and building
the artifact. AutoTrust needs input data about the package name, package version,
and other optional arguments like project folder path and flags. This information
is used to fetch data from NuGet, Github, and OSV. After the data is fetched,
AutoTrust assesses the package based on the data and thresholds for the trust
criteria. This information leads to a security risk score in the form of a discrete
star rating between 1 and 5. The assessment of each trust criteria and the security
risk score is then displayed to the user with a prompt if they want to install the
package. If the user answers affirmatively the package is installed by running a
"dotnet add package" process. This flow can be seen in Figure 4.2.

Chapter 4: AutoTrust 52

Figure 4.2: The process flow of AutoTrust.

In Figure 4.2 the DataHandler step fetches data from NuGet, GitHub, and OSV.
NuGet contains a lot of package-specific information that is used by the AutoTrust
tool during the evaluation. Almost all of the NuGet packages we found that had
their source code open, hosted it on GitHub. We decided to fetch relevant data
from GitHub that could be used when evaluating the packages, but if the source
code is not open it still evaluates metadata from NuGet. GitHub also has some
restrictions on the number of calls a user can do to their API. If a GitHub token
is sent with the API calls to GitHub these restrictions are less strict, and the user
can run the tool 83 times instead of 5 per hour without being denied by GitHub.
The user is, therefore, asked to create a fine-grained personal access token on
GitHub. This token is intended for personal API use and must be stored on the
local machine so AutoTrust can use it.

As discussed in subsection 2.6.1 there are multiple databases available con-
taining information about vulnerabilities. NuGet provides some information about
registered vulnerabilities, but we decided to also use OSV to increase the chances
of finding reported vulnerabilities. An overview of all the data fetched, and used
in the package assessment, from NuGet, GitHub, and OSV is displayed in Fig-
ure 4.3. In the figure, some points like README are mentioned multiple times
because AutoTrust prioritizes data from NuGet before using the data from GitHub

Chapter 4: AutoTrust 53

and OSV.

Figure 4.3: Data from NuGet, GitHub, and OSV

The data fetched from NuGet, GitHub, and OSV is then used to decide if Au-
toTrust shall pass, warn or fail the criteria for the different package. The criteria
pass if everything seems fine, warn if some things could be better, and fail if the
criteria are outside the given thresholds. The details about how and which crite-
ria are validated are presented in subsection 4.3.2. Based on which trust criteria
pass, warns, or fails a security risk score is calculated. More information about
how the security risk score algorithm works is presented in subsection 4.3.5. Af-
ter completing the trust evaluation process, the information is presented to the
user. The results are denoted by the use of distinct visual cues: a checkmark and
green text signify passed criteria, an exclamation point and yellow text indicate
warning criteria, and an X and red text are used for failing criteria. Furthermore,
a discrete security score, ranging from one to five, is displayed in the form of stars.
The user is then prompted if they would like to install the package. An example
of the output of AutoTrust can be seen in Figure 4.4.

4.3.2 Deciding on Trust Criteria

The process of selecting the appropriate trust criteria for AutoTrust was carried
out systematically in three main activities. The three main activities were a ques-
tionnaire to Visma developers, a one-pager on Visma’s intranet for getting atten-
tion and feedback on the topic, and discussions with two security engineers from
Visma.

Chapter 4: AutoTrust 54

Replies to Visma Questionnaire

One of the first parts of designing the AutoTrust tool was to decide which trust
criteria in Table 2.2 should be included. This was partly done by sending out a
questionnaire to Visma security experts. Of the 15 respondents, all of them had
more than 5 years of experience, and everyone except one had experience with
NuGet. The security experts were asked to rank each trust criterion based on how
valuable it would be to assess when deciding whether to use a third-party package.
The ranking of the criteria was using the values "Does not matter", "Not necessary",
"Not necessary but insightful", "Valuable", and "Crucial". The result from the rank-
ing of the 15 responses is displayed in section B.3. Since the data collected from
the Visma Questionnaire was ordinal categorical data, a conventional arithmetic
mean was deemed suboptimal and median and mode were used instead. The
trust criteria were organized based on the median and mode assigned to each
trust criterion. In addition to calculating the median and mode, we analyzed the
corresponding distribution depicted in the graphs displayed in section B.3. All of
the considered TC, displayed in table Table 2.2, had a median and mode from "Not
necessary but insightful" and above, indicating that the respondents considered
the TC useful.

One-pager and Conversation with Security Engineers

We shared a one-pager, as shown in section B.9, through an internal Visma fo-
rum. From the one-pager, we received feedback on the threat of analyzers that
can be used in .NET to run malicious scripts. Based on this, an additional check
for analyzers was suggested added to the AutoTrust tool. After reviewing the feed-
back, we had conversations with two security engineers from Visma. During the
conversations, the trust criteria were deliberated to elicit further feedback on the
implementation. This led to a decision on which criteria to be implemented, how
they should be implemented, and which thresholds should be used.

In addition to the original trust criteria and analyzers check, we decided to
also check if the NuGet packages have a verified prefix. This came up as part of
creating the tool when we found out that NuGet supported this feature.

4.3.3 Validators

After having decided on which TC to include, we created multiple validators that
together implement the chosen TC to the extent possible. In this context, a val-
idator in AutoTrust refers to an implementation of a trust criterion specifically tai-
lored to the available data in the NuGet ecosystem. These validators are depicted
in the "Trust criteria validators" step in Figure 4.2. The reason for converting the
TC into validators is that the practical implementation was affected by outside fac-
tors such as available package metadata. When running the script it is possible to
specify which version to use in the assessment, and if no version is specified then
the latest stable released package will be checked. In addition, when we check

Chapter 4: AutoTrust 55

dependencies, we currently check all dependencies down to a depth of 2, where
the depth of the package being checked is 0. Below we describe the trust criteria
checked for each validator together with a description of how they work.

Age

• Trust Criterion 3: Satisfactory time since the latest update was published.

To analyze the age of the package, AutoTrust checks if the package version is
newer than 3 weeks or older than 1 year.

Analyzers

• Trust Criterion 26: The component does not contain installation scripts.

In .NET packages the analyzers are stored in a folder named "analyzers". We check
if this folder is present and if there are any files in it for the package being analyzed
and the dependencies.

Contributors

• Trust Criterion 9: The component has an adequate number of maintainers
and/or contributors.
• Trust Criterion 10: The component is being developed by an active main-

tainer domain.

For analyzing contributors we check if the GitHub repository for the package has at
least 2 contributors and that there is 1 active maintainer. A maintainer is defined
as active if it has at least 3 commits during the last year or out of the 100 last
commits if there are more than 100 commits during the last year.

Deprecated Package

• Trust Criterion 22: The component is not deprecated.

To see if a package is deprecated we check if it is marked as deprecated by NuGet.

Deprecated Dependencies

• Trust Criterion 23: The component does not depend on deprecated pack-
ages.

For deprecated dependencies we check all dependencies of the package being
checked down to the specified depth to see if any are deprecated.

Direct and Transitive Dependencies

• Trust Criterion 25: The project has few direct and transitive dependencies.

Chapter 4: AutoTrust 56

For the dependencies we check if there are more than 20 direct dependencies and
50 transitive dependencies.

Documentation

• Trust Criterion 8: The component has good documentation.

For the documentation we see if it is possible to find a README on either GitHub
or NuGet. If none of those are present it checks for a project URL on NuGet, or a
wiki or homepage on GitHub. Ideally, we should also have analyzed the quality
of the documentation but this would be too complex to do. However, if it finds
a README it checks if the size of the file is more than 300 bytes to exclude the
really short ones.

Initialization Script

• Trust Criterion 26: The component does not contain installation scripts.

We check if the package or any of the dependencies contains an initialization
script by searching through the repository. The files we look for are "init.ps1",
"install.ps1", and "uninstall.ps1".

Known Vulnerabilities

• Trust Criterion 20: The project does not have reported security vulnerabil-
ities.
• Trust Criterion 21: There is no history of prior harmful effects associated

with the component.

To look for known vulnerabilities we check if we can find the package version
being checked or any prior version in the OSV database or NuGet database. These
databases contain a list of vulnerable NuGet packages.

License

• Trust Criterion 7: The component provides a standard or well-written li-
cense.

We check both NuGet and GitHub to see if the packet has a known license. The list
of known licenses is taken from Software Package Data Exchange (SPDX) [69].
In addition to checking for licenses, we also warn if any package uses a license
considered high or medium risk. This ranking of the different licenses is based on
a risk evaluation provided by Synopsys [70].

Open Issues

• Trust Criterion 16: The component’s maintenance lifecycle is up to date.

Chapter 4: AutoTrust 57

• Trust Criterion 17: There are a small number of open issues, and they are
not very old.

For open issues we check to make sure that the project has at least 1 open issue.
In addition, we warn if the number of open pull requests is more than 60% of
the total number, or if less than 30% of the open pull requests have been updated
over the last year. We also warn the user if the package has less than 30 issues in
total.

Open Pull Requests

• Trust Criterion 16: The component’s maintenance lifecycle is up to date.

The thresholds and check of open pull requests are almost identical to the test of
open issues except that it warns if there are less than 10 pull requests in total. We
decided the limit to 10 instead of 30, as the number of pull requests usually are
lower than the number of issues.

Popularity

• Trust Criterion 2: The component is widely used/popular.

We use several different features to evaluate the popularity. On NuGet, we check
if the project has less than 10 000 downloads, and we warn if less than 10 NuGet
packages or GitHub repositories are using the package. On GitHub, we check if
the package has less than 2 GitHub stars, or if it has no forks or watchers.

Verified Prefix

• Trust Criterion 30: The package has some verification from the package
provider that makes it less deceptive in its identifying properties.

Checks NuGet to see if the package owner has reserved the package name prefix.

Widespread Use

• Trust Criterion 1: The component has been in widespread use for a consid-
erable amount of time.

To check for widespread use we look at both the versions of the package and the
number of downloads. We check that the package’s oldest version is at least older
than 1 year. Also, we check that the total download count on NuGet for the 10
latest versions is more than 100 000. If the package has less than 10 prior versions
the user is warned.

4.3.4 Trust criteria not added

Due to time constraints, lack of available data, or not being prioritized, we were
not able to add all the trust criteria found in Table 2.2 to the AutoTrust tool. The

Chapter 4: AutoTrust 58

list of the trust criteria not added is presented here with a short description of
why:

• Trust Criterion 4: The company you are working for is already using the
package in another project.

� This could be done by scanning through the company’s source code,
but we were not allowed to access all of Visma’s source code.

• Trust Criterion 5: The component has a software certification from a certi-
fied provider.

� There is no standard way that NuGet supports third-party package cer-
tifications, that we found.

• Trust Criterion 6: The component provides a hash and signature that can
be used to make sure that the software has not been tampered with.

� NuGet supports signatures with verification as default and blocks the
installation if a package has been tampered with by someone [71].

• Trust Criterion 11: The maintainers of the component are not overloaded.

� NuGet has information about how many packages a maintainer owns
which could indicate if they are overloaded. However, we did not find
this data to be extensive enough to answer the TC. It was also ranked
low in the replies to the Visma Questionnaire seen in section B.3, as it
had a median and mode of 3 indicating that the respondents only con-
sidered it "Not necessary, but insightful" and none of the respondents
considered it "Crucial".

• Trust Criterion 12: The maintainers of the component are using a program-
ming language that they are familiar with.

� This is hard to evaluate as one would have to evaluate all the earlier
projects of the maintainer. It was hard to automatically evaluate if the
maintainers were using good practices and standards for the program-
ming languages C#, F#, or Visual Basic.

• Trust Criterion 13: No maintainer accounts are associated with an expired
email domain.

� As the email of users is not displayed in NuGet this was not possible
to check. The email registered on GitHub could have been used to
evaluate this, but there is no way to verify that the email address is
the same.

• Trust Criterion 14: The package has not changed ownership recently.

� We found no way of checking who the previous owner of a package
was or if the owner had changed at all.

• Trust Criterion 15: The maintainers, owners, and suppliers of the compo-
nent are trustworthy.

Chapter 4: AutoTrust 59

� The data from NuGet and GitHub was not extensive enough for us to
be able to consider this.

• Trust Criterion 18: The developers of the component are using automated
code analysis to review the code.

� There is no information stating if automated code analysis has been
used, so we would have had to check for indicators in the README or
codebase to see if they might have used it. We believe this approach
would lead to many false positives.

• Trust Criterion 19: The code reviews in the project are of high quality.

� Checking this would include checking and evaluating the pull requests
on GitHub. We anticipate that evaluating pull requests would be too
time-consuming, and therefore not feasible.

• Trust Criterion 24: The size of the repository.

� It was ranked low in the replies to the Visma Questionnaire seen in
section B.3, as it had a median and mode of 3. This indicates that the
respondents only considered it "Not necessary, but insightful" and none
of the respondents considered it "Crucial".

• Trust Criterion 27: The component has a name that does not resemble that
of a popular package.

� We believe a typosquatting check would potentially slow down the per-
formance quite extensively. For instance, we tried the OSSGadget’s tool
OSS-Find-squats mentioned in subsection 2.6.3, and it took 4 minutes
and 25 seconds to run for the Newtonsoft.json package.

• Trust Criterion 28: There is no difference between the source code and the
package.

� NuGet distributes packages that contain .dll-files which are binary files.
NuGet does not support reproducible builds by default1, so we deemed
this too challenging to evaluate.

• Trust Criterion 29: The source code is possible to access.

� NuGet allows the package owners to link to the source code. However,
there is no commonly used way of verifying that the provided URL is
linked to the correct source code. Purposely including the wrong URL
was done in the attack previously referenced in section 4.2.1.

4.3.5 Security Risk Score

All the implemented trust criteria validators are important for assessing the risk
of the package. However, there is a difference in how influencing each validator

1https://github.com/dotnet/sdk/issues/2679

https://github.com/dotnet/sdk/issues/2679

Chapter 4: AutoTrust 60

should be for the overall risk assessment of the package. We, therefore, decided
to assign each validator an individual risk-influencing score. The risk influencing
score given to the different analyzers is based on the initial questionnaire sent out
to Visma, described in section 4.3.2, and the conversations with the two security
engineers from Visma. The different scores given to the validators are shown in
Table 4.1, where 1 is the lowest risk and 10 is the highest. We used the range 1 to
10 as it is sufficient to allow for nuance between the validators.

Table 4.1: Risk-influencing score of each analyzer.

Trust Criteria Validators Risk-influencing Score (1-10)

Age 6
Analyzers 3
Contributors 3
Deprecated Package 10
Deprecated Dependencies 10
Direct and Transitive Dependencies 5
Documentation 5
Initialization Script 8
Known Vulnerabilities 10
License 7
Open Issues 3
Open Pull Requests 3
Popularity 7
Verified Prefix 7
Widespread Use 6

The package being analyzed is ranked based on a discrete score system from
1 to 5 stars, with 1 indicating high risk and 5 indicating low risk. The results
of this ranking provide a quick overview of the package’s overall risk level. We
chose to use stars because they are easily comprehensible. Using stars helps users
understand that a package with a rating of 5 stars is not necessarily completely
risk-free, as stars often are used to convey an impression and not be a guarantee.

The star rating for a package is determined by the combined risk-influencing
score of the validators, which is adjusted based on whether the validators receive
a pass, warning, or failure. Validators that pass contribute the full risk-influencing
score, whereas those with warnings have their score halved before being included
in the total. The validators that fail are not contributing to the total. The total
validator score is then divided by the maximum achievable score to obtain a per-
centage. This percentage is subsequently mapped to a star rating based on the
following thresholds:

Chapter 4: AutoTrust 61

• 90-100%: 5 stars
• 80-89%: 4 stars
• 60-79%: 3 stars
• 40-59%: 2 stars
• 0-39%: 1 star

4.3.6 Finished Artifact

The output presented to the user when analyzing the "Newtonsoft.json" package
is shown in Figure 4.4. The validators are sorted based on their pass, warning, or
fail status, as well as their risk-influencing score. The failed validators are placed
at the bottom, followed by the warning validators in the middle, and the passed
validators at the top. Within the grouping of passed, warning, and failed valida-
tors, those with the highest risk-influencing score are positioned at the bottom.
The risk-influencing score order and the criteria grouping were chosen such that
the high-risk failed validators will not scroll outside the terminal window. At the
bottom of the output, the overall security score with the number of stars is dis-
played.

Figure 4.4: Output from AutoTrust for the Newtonsoft.Json package.

4.3.7 Optional Flags

The output displayed in Figure 4.4 shows AutoTrust’s normal behavior, however,
we have added some optional flags that are used to give the user more details. The
two flags we included were a "--help" flag and a "--verbosity" flag. The verbosity

Chapter 4: AutoTrust 62

flag has three levels with the options "normal", "detailed" and "diagnostic". We
tried to follow the standard syntax for .NET commands.

As seen in Figure 4.5, the "--help" flag displays information to the user about
what the tool does and how they can use it. It also includes the information that
is normally sent from .NET when using the "--help" flag. For improved user expe-
rience, abbreviated forms are also supported through "-?" and "-h".

Figure 4.5: Output from AutoTrust when executed with a help flag.

The other flag we added was a "--verbosity" flag used to provide more informa-
tion to the user. The output from running AutoTrust with the flag is shown in
Figure 4.6. It takes three different inputs "normal", "detailed", and "diagnostic"
that changes how much additional detail is provided by AutoTrust. Running the
tool with the "--verbosity normal" level is the same as running without specifying
a verbosity flag, as can be seen in Figure 4.4. The "--verbosity detailed" level in-
cludes information about what is used to decide if each separate validator passed,
warned, or failed.

Chapter 4: AutoTrust 63

Figure 4.6: Output from AutoTrust for the Newtonsoft.Json package when exe-
cuted with a verbosity detailed level.

The "--verbosity diagnostic" level includes the same information as the "detailed"
level, but also information about if the different API calls return success or an
error message. The information about the API calls will be written first, and then
the information from the "--verbosity detailed" level will follow below. An example
of some API calls can be seen in Figure 4.7.

Figure 4.7: Output from AutoTrust for the Newtonsoft.Json package when exe-
cuted with a verbosity diagnostic level.

The "--verbosity" flag also supports abbreviated forms like "-ve" with input "n", "d",

Chapter 4: AutoTrust 64

or "diag". The normal abbreviation following .NET syntax would be "-v", but as
this was already used to specify the package version we opted to use "-ve".

4.3.8 Justify and Reflect

We believe that it made sense to only extend the "dotnet add package"-command
in the CLI and not the options of adding packages directly from the Visual Studio
IDE. This helped to narrow the scope of the project. It also makes for a solution
that is more similar across platforms as the option for adding packages from Visual
Studio IDE is different for different operating systems [72]. In addition, making
a more general artifact can inspire similar solutions for other programming lan-
guages and their package managers. The issue with this decision is that some users
might prefer using the Visual Studio IDE, and adding packages using this method
leaves them unprotected.

There are multiple code hosting platforms that developers can use to host
their open-source code used for NuGet packages. While manually assessing what
information was available on NuGet, we saw that most of the NuGet packages that
were open source, used GitHub. GitHub is also the largest code hosting platform
for Git so we thought it made sense to focus on GitHub first. In the future, it
would be beneficial to check other code hosting platforms such as GitLab in case
the NuGet package code is hosted there.

To find more reported vulnerabilities, we made the decision to incorporate
OSV as an additional vulnerability database alongside NuGet. We chose to use OSV
as it is trustworthy, has data about NuGet vulnerabilities, and does not need the
user to create tokens. There are many vulnerability databases and in the future,
it might make sense to extend the options or have the user choose if they would
use the vulnerability database of their choice.

Finding good validators and thresholds is challenging. Finding validators that
help to distinguish benign, poorly written, and malicious packages that work for
popular and less popular packages is not an easy task. Good thresholds for the
validators might also be affected by how willing the user is to take risks. An option
to support user configuration for enabling and disabling validators and changing
thresholds was discussed. However, keeping the validators and their thresholds
predefined made it easier to do an equal evaluation during this research process.
It would also probably be hard for teams to find proper thresholds that fit their
risk appetite. This might lead to much time spent on discussing thresholds that
could be saved if AutoTrust is kept predefined.

Targeting Requirements

During the design and development phase, we made some decisions to try to meet
the functional requirements presented in section 4.2. FR 1-4 were met by creating
a CLI tool that runs prior to the "dotnet add package"-command using data from
NuGet. To target FR-5 there is no caching done, as this might introduce the pos-
sibility that a cache becomes stale and does not have new data that might be less

Chapter 4: AutoTrust 65

favorable for the package ranking. To target FR-6 an option to add a "--verbosity"
flag for extra information to the user was added, as shown in subsection 4.3.7.

To target QA-1, regarding usability, we have taken multiple actions. We added
a README to help with the installation and description of the artifact and the
checks. The syntax for adding packages and using flags was made to be as similar
as possible to the original "dotnet add package"-command. We support a help
flag to allow users to get extra information about the package, and as mentioned
above, a verbosity flag to allow users to get more information about each check.
We have used multiple visual cues using both color and symbols to make it easier
to assess the packages quickly. The security score was added to allow users to
assess which of the checks are more crucial. Users can also use the alias command
in the terminal to change the regular "dotnet add package"-command to run the
"autotrust add package" functionality. By doing this they do not have to change
their habit and can run "dotnet add package" to use AutoTrust.

To enhance QA-2 about portability between different operating systems we
have used .NET’s console app template. This allows the creation of a command-
line application for Windows, Linux, and Mac. We also made sure to test the ap-
plication for the different operating systems as discussed in subsection 4.4.1. We
tried to minimize the use of solutions that might not work on different operating
systems and terminals such as using more complex symbols during loading or for
the output. There are some minor differences when storing the GitHub token, but
that is mostly linked to how Windows, Mac, and Linux store their environment
variables differently.

To improve QA-3, dealing with security, we have only used packages provided
directly in .NET, and made the tool such that the package is not downloaded with-
out an affirmative response from the user. We were considering using the GitHub
API Client Library for .NET2, but decided not to so that we would stay true to the
stated quality attribute. Using the library could have allowed users to get GitHub
tokens by logging in instead of having the token as an environment variable. The
project could also have its security improved by using more automated security
tools. Examples of this could be to regularly run automatic code scanning and
analysis or include them in a CI/CD pipeline to catch security issues.

To optimize QA-4 which concerns performance we decided to run the fetching
of the data and the trust criteria validating in parallel. Using Tasks.Whenall() for
parallel execution significantly improves the data fetching and the validating of
the package’s data.

To better the QA-5 dealing with AutoTrust’s modifiability we tried to separate
the logic for the different trust criteria validators, the sorting of the trust criteria,
and fetching of relevant data for the trust criteria. We have created a common
interface for all the trust criteria and running the task in parallel allows adding
more checks without a large time penalty.

2https://github.com/octokit/octokit.net

https://github.com/octokit/octokit.net

Chapter 4: AutoTrust 66

Comparing with npq, OSSGadget, and OpenSSF Scorecard

As introduced in subsection 2.6.3, there are three tools, npq, OSSGadget, and
OpenSSF Scorecard that are somewhat similar to AutoTrust in that they can be
used to analyze packages before they are installed. In Table 4.2 we have summa-
rized the equalities and differences between the tools. The validators column in
this table refers to the different checks being performed by the tools.

Table 4.2: Comparison of AutoTrust, npq, OSSGadget, and OpenSSF Scorecard.

Validators AutoTrust npq OSSGadget OpenSSF Scorecard

Age • • •
Author •

Analyzers •
Binary-Artifacts •

Branch-Protection •
Characteristic •

CI-Tests •
CII-Best-Practices •

Code-Review •
Contributors • • •

Cryptographic Implementations •
Dangerous-Workflow •

Dependency-Update-Tool •
Deprecated Package •

Deprecated Dependencies •
Direct and Transitive Dependencies •

Documentation • •
Expired Email Domain •

Fuzzing •
Initialization Script • •

Known Vulnerabilities • • •
License • • •

Malicious Code Scanning •
Obfuscated Text Scanning •

Open Issues • •
Continued on next page

Chapter 4: AutoTrust 67

Table 4.2 – continued from previous page

Validators AutoTrust npq OSSGadget OpenSSF Scorecard

Open Pull Requests • •
Packaging •

Pinned-Dependencies •
Popularity • • •

Repository URL •* • •
Static Code Analysis Tools •

Security Issues •
Signed-Releases •

Size of Repository •
Token-Permissions •

Typosquatting •
Verified Prefix •

Widespread Use •

Based on the information in Table 4.2, the number of overlapping validators
between the different tools in decreasing order is as follows:

• AutoTrust and npq have 6 out of the 34 validators in common.
• AutoTrust and OpenSSF Scorecard have 4 validators in common.
• AutoTrust and OSSGadget have 4 validators in common.
• OpenSSF Scorecard and npq have 3 validators in common.
• OSSGadget and npq have 2 validators in common.
• OSSGadget and OpenSSF Scorecard have 1 validator in common.

This shows that the overlap between the tools is quite small. AutoTrust and
npq are the most similar, which is logical considering their shared purpose of
pre-installation evaluation. Moreover, they employ a similar approach by utilizing
validators and running them in parallel. AutoTrust does not have as much in com-
mon with OpenSSF Scorecard and OSSGadget which makes sense as these tools
are not primarily built for pre-installation assessment.

Another difference between the tools is that AutoTrust and npq only use the
package metadata while OSSGadget also inspects the source code. OpenSSF Score-
card does check the source code but only for binaries and if the dependencies are
pinned. It is through the source code inspection that OSSGadget checks for ma-
licious code, obfuscated text, characteristics, and cryptographic implementation.
The source code inspection provides some extra insight but it also takes more time.
In addition, AutoTrust, OpenSSF Scorecard, and OSSGadget calculate a security
risk score of the package, which is not provided by npq.

Chapter 4: AutoTrust 68

OSSGadget has multiple validators that operate differently than the checks
performed by AutoTrust, npq, and OpenSSF Scorecard as they perform a more di-
rect analysis of the project code. For the "Characteristics" validator, OSS-characteristic
identifies characteristics that are coding features of the package. Through this as-
sessment, it identifies coding features to tell what the software is and what it does.
Using OSS-health, OSSGadget looks for "Security issues" by searching through
open and closed issues for security keywords to give the developer an understand-
ing of the presence of security-related issues. For "Malicious code scanning" and
"Obfuscated text scanning", OSSGadget uses OSS-detect-backdoor and OSS-defog
to scan the source code looking for malicious code or obfuscated text.

Unlike the other tools, OpenSSF Scorecard performs all its checks on GitHub
or GitLab repositories. As a consequence, by looking more in-depth at the best
security practices on these platforms OpenSSF Scorecard has many validators that
do not overlap with the other tools. Also, as OpenSSF Scorecard has an open
API the other tools could potentially query this API and benefit from OpenSSF
Scorecard’s in-depth checks for the code hosting platforms.

Both AutoTrust and OpenSSF Scorecard fetches data about known vulnerabil-
ities from OSV, while npq looks for known vulnerabilities from Snyk’s database.
Another difference between the tools is how npq, OSSGadget, and AutoTrust con-
sider the "Repository URL". The OSSGadget tool OSS-find-source helps to locate
the GitHub source code for a package. The npq tool displays a warning if the npm
package does not have a valid and working repository URL. AutoTrust does not
have a separate validator to check if a link to the repository URL is provided. It
displays a warning if it does not find a link to a GitHub repository, and it fails
the checks in the validators that are dependent on GitHub data. That is why we
marked "Repository URL" for AutoTrust with a "*" in Table 4.2.

4.4 Demonstrate Artifact

After AutoTrust was designed and developed we wanted to demonstrate that it
can in fact solve some part of the explicated problem in section 4.1 before do-
ing further evaluations. We decided that testing the tool on 100 NuGet packages
would give an indicator of whether AutoTrust is a feasible solution to the problem
of automatically assessing packages prior to installing them. We also wanted to
verify that QA-2 and QA-4 regarding portability and performance were met. This
was done by testing the tool on different operating systems and measuring the
execution time for 10 NuGet packages.

4.4.1 100-Packages Demonstration

We chose to test the 50 most downloaded packages on NuGet, 40 random pack-
ages, and 10 problematic packages we found manually that had one or multiple
issues. The random packages were chosen by generating 40 random three-letter
sequences and inserting them in the search bar on NuGet. The result was sorted

Chapter 4: AutoTrust 69

by relevance, and we picked the first result that was shown. The 10 problematic
packages that were specifically selected were chosen because they were either
deprecated, used deprecated dependencies, had known vulnerabilities, had ini-
tialization scripts, used a high-risk license, had known vulnerabilities for previous
versions, missed a license, or used a high-risk license. We chose 2 deprecated
packages and 2 packages with known vulnerabilities as they had the highest risk-
influencing score possible. All the packages with name, version, how they ranked
for the different criteria, and their security risk score is shown in section B.6. The
overall ranking of the different packages can be seen in Figure 4.8, where the
green section shows the top 50 most downloaded packages, the yellow shows the
40 random packages, and the red section shows the 10 problematic packages that
were selected because of issues.

Figure 4.8: Overall rating of the 100 packages. The green area: top 50 packages,
yellow area: 40 random packages, red area: 10 problematic packages.

The security risk score is ranked between 1-5 stars and is qualitative ordinal
data. The median ranking for all the packages was 3 and the mode was 5. The
median and mode security risk score for the top downloaded packages was 5, for
the random packages it was 2, and for the problematic packages, it was 3. These
results are presented in Table 4.3.

Chapter 4: AutoTrust 70

Table 4.3: Median and mode of the package ranking for the different package
categories made by AutoTrust.

Package category Median Mode

Total packages 3 5

Top 50 packages 5 5

Random packages 2 2

Problematic packages 3 3

We see that the top 50 packages scores higher than the random and problem-
atic packages. For the problematic packages, the tool was able to find and report
all the issues we had manually found. AutoTrust gave a higher security risk score
to the problematic packages than the random packages. This might be due to the
fact that two of the problematic packages were Microsoft packages and more of
the problematic packages had their source code available on GitHub. Another fac-
tor is that none of the random packages were ranked above 4 while one of the
random packages PTJK.GenericRepoSpecPattern received a score of 1 star.

4.4.2 Time Demonstration

We also wanted to test whether AutoTrust has fulfilled the goals of QA-2 and QA-
4, regarding portability and performance. When testing AutoTrust we used two
different laptops where one was running Windows 11 and Windows Subsystem
for Linux (WSL) and the other macOS. The specifications of the laptops can be
found in section B.7.

We tested the 10 most downloaded packages on NuGet by running "autotrust
add package" and "dotnet add package" using the "Measure-Command" for Win-
dows and the "time" command for macOS and Linux. The arithmetic mean of the
10 execution times from running each command is displayed in Table 4.4. The
full results in seconds can be found in section B.7.

Table 4.4: Average execution time of AutoTrust and .NET install package com-
mand.

Operating System Average Time AutoTrust Average time .NET

Windows 5.43 s 2.08 s

MacOS 5.66 s 3.38 s

Linux 4.89 s 2.87 s

In addition to the arithmetic mean, we calculated the ratio between the .NET
and AutoTrust commands for the three operating systems. The ratio can be seen
in Figure 4.9.

Chapter 4: AutoTrust 71

Figure 4.9: The ratio of execution times for AutoTrust divided by Dotnet using
three different operating systems.

From this demonstration, we see that we were able to use AutoTrust with
Windows, macOS, and Linux and that the tool did not use more than three times
as much time running "autotrust add package" as "dotnet add package", which was
one of the performance goals. Figure 4.9 also shows that the ratio difference was
largest when using the Windows operating system. A reason for this might be that
.NET is developed by Microsoft and is therefore better optimized for Windows.

We also tried running the scripts using different shells on the various operating
systems to see if they gave different results. We tried the terminals cmd.exe and
Powershell for Windows, along with Bash and Zsh for macOS and Linux. However,
no significant differences were observed among the different shells.

4.5 Evaluate Artifact

The "Evaluate artifact" phase is the last in the design science methodology. Evalu-
ating the artifact is part of the stated goal of this thesis. After creating an artifact it
is needed to evaluate if it is useful in solving the problem it aims to solve. To eval-
uate AutoTrust we have decided to focus on 4 of the 6 evaluation goals presented
in section 3.1.2 as they are the ones focusing on the artifact itself:

• Evaluation Goal 1: Evaluate if the artifact is effectively solving the problem.
• Evaluation Goal 2: Evaluate the functional and non-functional require-

ments proposed used on the artifact.

Chapter 4: AutoTrust 72

• Evaluation Goal 3: Compare the artifact to other similar artifacts that in-
tend to solve the same or a similar problem.
• Evaluation Goal 4: Investigate the side-effects such as unintended or harm-

ful effects of the artifact.

During the earlier phases of the project, we have already seen indicators that
AutoTrust has either completely or partially fulfilled these evaluation goals. How-
ever, we still needed further insight to evaluate AutoTrust properly. In order to ob-
tain this knowledge we have performed user tests, interviews, and experiments.
We decided to divide this evaluation phase into three separate studies to more
accurately answer these evaluation goals.

The first evaluation we did was an experiment with computer science students,
the second was an experiment comparing AutoTrust with OpenSSF Scorecard, and
the third was general user testing and interviews with Visma employees. All of the
evaluations are ex-post evaluations as they were done after AutoTrust was created.
The result of these evaluations will be described below, followed by an analysis of
the five artifact evaluation goals.

4.5.1 Student Experiment

We wanted to use the student experiment to evaluate if the artifact has fulfilled
evaluation goals 1 and 3, by comparing the manual assessment made by soft-
ware developers to the automatic assessment made by AutoTrust. Since AutoTrust
is a tool that can be used by developers with varying knowledge about soft-
ware supply chain security, we believe that it is a fair evaluation to compare
the AutoTrust package evaluation to the evaluation done by computer science
master’s students in their final year. The evaluation consisted of having the stu-
dents manually assess three packages: Serilog (2.12.0), Analytics (3.8.1), and
PTJK.GenericRepoSpecPattern (1.0.1). These packages were chosen since we wanted
packages with evenly distributed AutoTrust ratings across the entire scale. Serilog
got 5 stars, Analytics got 3 stars, and PTJK.GenericRepoSpecPattern only 1 star.
The packages were chosen from the 100-packages demonstration mentioned in
subsection 4.4.1. In order to reduce the likelihood of the order influencing the
score, the packages were presented to the students in varying orders.

As described in subsection 3.2.2, the second to last step of experiment plan-
ning is evaluating the instruments used. The main instruments used were the
students’ own laptops with internet access, the online questionnaire, the NuGet
website, and potentially other websites the students felt were valuable. The ques-
tionnaire worked as a guideline to help the students through the experiment. With
the questionnaire, we attempted to direct the students on what to do, but not how
to do it. The questionnaire worked as the only instrument used for data collection.
The NuGet website was the primary source the students used to find information
about the packages, but they also used other websites to search for additional
information, in the same way a regular developer would.

During the experiment, we maintained close proximity to the students to pro-

Chapter 4: AutoTrust 73

vide immediate assistance and clarification in case they encountered any uncer-
tainties. Also, this was an artificial evaluation since it took place in a contrived
and artificial setting, and none of the students were actually intending to use the
proposed packages in a project.

The experiment was divided into two parts to more precisely evaluate the two
hypotheses. In the first part of the experiment, the students were asked to do a
critical risk evaluation of the aforementioned NuGet packages. In the second part,
the students filled out what criteria they used for evaluating the NuGet packages.
When designing the questionnaire, we took this into consideration and divided it
into two parts which can be seen in section B.4.

In the first part of the experiment, we wanted to see how the students would
rank the packages on a scale from 1-5, where 1 is high risk and 5 is low risk. The
ranking made by the students can be seen in Figure 4.10.

Figure 4.10: The students’ ranking of the NuGet packages.

Compared to the ranking given by AutoTrust, there is a difference in the rank-
ing for both Analytics and PTJK.GenericRepoSpecPattern as both were ranked
higher by the students. From Figure 4.10 we also see that Analytics has a mode of
4 and PTJK.GenericRepoSpecPattern has a mode of 2, both of which are 1 higher
than the ranking of AutoTrust. For the Serilog package, the rating given by the
students was quite close to the rating from AutoTrust, with a mode of 5. Out of
the total 36 ratings given, 15 of the package ratings were the same by the stu-
dents and AutoTrust. Looking at the difference, the students rated 3 packages 1
below AutoTrust, 13 packages 1 above, and 5 packages 2 ratings above. In to-
tal, there were 21 ratings different from the AutoTrust rating, where 18 of them
were higher. Based on these comparisons, in our view, the students considered the

Chapter 4: AutoTrust 74

packages more trustworthy compared to AutoTrust.
To get more insight into the students’ reasoning when ranking the packages,

we asked the students to justify why they gave the specific ratings. The take-
aways were that popularity was the most commonly used metric. Many of the
students used search engines to search for articles and web pages to gain an over-
all impression of the package. The students also did consider the characteristics of
the package. If the packages were made for what they considered more high-risk
components, such as databases, it would affect their perceived risk. Examining
the package’s characteristics is a similar approach to what OSSGadgets does with
their OSS-Characteristics and OSS-risk-calculator tools. Some of the students ex-
pressed that they lacked familiarity with using NuGet and were uncertain about
which criteria to evaluate. One of the students even wrote that they thought the
Analytics package might have a deprecated dependency, which it has, due to the
fact that the package had not been updated in a long time, however, they were
not able to find and report it.

In the second part of the questionnaire, we listed all the validators used by
AutoTrust and asked if they had considered the same criteria. The number of
students evaluating the same criteria as each validator can be seen in Figure 4.11.
We can see that the criteria the students considered the most were popularity,
widespread use, age of the package, and documentation. These metrics are clearly
displayed on the NuGet website and are easy to understand, but it might be hard
to evaluate how their values affect the risk.

Figure 4.11: Number of students that considered the various TC in their risk
evaluation of packages.

As the final question, we asked if they had considered some other criteria not

Chapter 4: AutoTrust 75

on the list. The core finding from this question was that the students had manually
assessed the owner information by taking into account factors such as the num-
ber of other packages published by the owner, the number of downloads those
packages had, and whether the owner was an individual or a company. Looking
at the individual responses, the participant who considered the most TC reviewed
11 out of the total 15 criteria and did not consider any additional criteria. The
two participants considering the least only considered 2 of the TC. However, they
also took into account the package owner, similar to trust criterion 15, resulting
in a total of 3 criteria that were assessed.

Looking at the results from the student experiment we can see that the two
hypotheses can be rejected. Hypothesis 1 stated that the students would provide
a risk review that is equal to the AutoTrust review, which we can see from Fig-
ure 4.10 is not true. The students generally ranked the package higher than Au-
toTrust, which is evident in the evaluation of Analytics and PTJK.GenericRepoSpec-
Pattern. Hypothesis 2 stated that the students would consider the same amount of
trust criteria or more than AutoTrust when evaluating package risk. As we can see
from Figure 4.11 this hypothesis was also rejected. Only 6 of the 15 criteria were
considered by at least half of the 12 students. This also means that 9 of the 15
criteria were considered by less than half of the students. Furthermore, none of
the participants examined and suggested more than two additional trust criteria.

Based on the experiment it seems that the students are less strict in their rat-
ing and they consider fewer criteria when evaluating packages. Since there is no
ground truth regarding the correct security risk score, it is difficult to know if the
score given by the students is more accurate than the AutoTrust ranking. However,
the students considered fewer criteria which means they could miss indicators of
risk that would influence the security risk of the dependency.

Validity of the Student Experiment

In any experiment, it is important to consider factors that may impact its valid-
ity. The four common factors to consider are conclusion-, internal-, external-, and
construct validity [58]. Conclusion validity is concerned with the relationship be-
tween the treatment and the outcome. This means ensuring that a statistical re-
lationship exists with a given significance. Threats to internal validity refer to the
potential influences that may impact the causal relationship between the inde-
pendent variable and the outcome, without the researcher’s awareness. External
validity pertains to the generalization of the results. For instance, if a causal rela-
tionship exists between the cause and effect of a construct, the question stands if
the results can be applied to other contexts. Construct validity refers to whether
an experiment is created in a way that allows the results to be applicable and
representative of the underlying concept or theory being investigated. There are
various threats to construct validity, including those related to the experimental
design and social factors.

Conclusion validity might have been affected by the choice of packages. The

Chapter 4: AutoTrust 76

packages chosen could have influenced the result of the study, as there was a
significant variation in their security risk score. This might have led to the partic-
ipants being able to distinguish the packages easier than if they had been more
similar. The number of students who participated in the experiment was limited
to only 12, and more participants could have strengthened the statistical power
of the experiment. Also, the students were from a relatively heterogeneous group
since they all were computer science master’s students in their final year. The het-
erogeneity of the group may have impacted the results, as a more diverse group
could have provided a wider range of answers.

The internal validity could have been affected negatively by the issue of matu-
ration. The participants might have been more thorough in their evaluation of the
first package than when they evaluated the last package because they get bored
during testing.

For external validity, the limited knowledge of NuGet by the students could
affect the generalization of the experiment. The students might know less about
NuGet and what is possible to consider than developers regularly using the .NET
ecosystem, which can have affected how well the assessment fits the real world.

In regards to construct validity, there might have been an issue with how the
participants performed in a test environment compared to their normal behavior.
We wanted to compare the process of doing manual assessment and automatic
assessment before adding a new package to a project, but this experiment primes
the participant to be more vigilant than if they would add the package normally.
The fact that the candidates knew their actions were being observed and evaluated
can have created a Hawthorne effect, leading to a potential modification of their
normal behavior during the experiment.

We acknowledge the aforementioned issues and have implemented certain
measures to enhance the validity of our study. To increase the construct validity,
we changed the package order to allow all the different combinations to occur.
This minimizes the risk of participants rating the same last packages based on im-
pressions from rating the first package, as the order is rotating. Another factor this
rotation solves is that the experiment is less affected by the participants becoming
tired after the two first packages and doing a mediocre assessment for the last.
We also made sure that the same information was given to all the participants by
having the questionnaire guide them and not explaining the experiment in person.

In order to strengthen the conclusion validity of the study, we aimed to im-
prove the reliability of the measures by remaining physically present near the stu-
dents. This would allow them to seek clarification in case of confusion and ensure
that their responses were based on accurate premises.

The final action we took to improve the external validity was having all the stu-
dents use the same testing environment. Using the same environment minimizes
the likelihood of participants being influenced differently by external factors in
their environment.

Chapter 4: AutoTrust 77

4.5.2 Testing OpenSSF Scorecard

The second experiment, which involved testing OpenSSF Scorecard, was per-
formed in order to help answer RQ-3. We wanted to compare AutoTrust to mul-
tiple similar tools for assessing software packages. However, OSSGadget had an
issue with the OSS-risk-calculator3 and npq is only made for the npm ecosystem.
This left OpenSSF Scorecard as the best tool to compare AutoTrust with.

As described in subsection 2.6.3, OpenSSF Scorecard checks open source repos-
itories to assess if the project is following security best practices. It has 18 checks
for GitHub and working on supporting checks for GitLab with 13 already being
implemented. Based on the checks and weights of these checks it ranks the secu-
rity of an open source project as a decimal number between 0 and 10, where 10
is the best.

We decided to test the same 100 NuGet packages as described in section B.6.
Most of the packages had their source code on GitHub, one package had it on
BitBucket, and the rest did not have it linked on the NuGet website. Since none
of the packages had their source code hosted on GitLab, the assessment was only
done comparing OpenSSF Scorecard’s GitHub ranking with AutoTrust’s ranking of
the NuGet package. The test was conducted by running the latest stable version of
OpenSSF Scorecard which was v4.10.5-155-g1dff427. This evaluation was, as the
student experiment, an artificial evaluation as it also takes place in an artificial
setting. The ranking of all the packages using OpenSSF Scorecard can be found
in section B.8.

For the instrumentation step of this experiment, the main instruments used
were the OpenSSF Scorecard tool itself, and the documentation for how to install
and use the tool. To ensure consistency and eliminate variations, we conducted
the testing of all packages on the same day. This approach ensured that each
package was evaluated using the same version of the tool, without any updates
or modifications introduced between the checks. For guidelines on installing and
using the tool, we used the README provided on the OpenSSF Scorecard project’s
GitHub page4. The tool has to be run through the CLI and there are two options
for doing this. One option is to install OpenSSF Scorecard as a standalone, and the
other option is to use it through a Docker container5, which we ended up doing.

The resulting package ranking of all 100 packages by using OpenSSF Score-
card is presented in Figure 4.12.

3https://github.com/microsoft/OSSGadget/issues/150
4https://github.com/ossf/scorecard
5https://www.docker.com/resources/what-container/

https://github.com/microsoft/OSSGadget/issues/150
https://github.com/ossf/scorecard
https://www.docker.com/resources/what-container/

Chapter 4: AutoTrust 78

Figure 4.12: OSSF Scorecards rating of the 100 packages. The green area: top 50
packages, yellow area: 40 random packages, red area: 10 problematic packages.

There were 24 packages that could not be ranked by OpenSSF Scorecard since
their source code was not on GitHub or GitLab. In Figure 4.12, we gave these
packages a ranking of -1, as we still wanted to present them in the graph. The
total median and mode score of the 76 remaining ranked packages is shown in
Table 4.5, together with the individual rankings of the three categories. As not all
packages had provided a GitHub URL to the repository, we could only rank 19 of
the 40 random packages and 7 of the 10 packages with issues. Since the sample
size for the problematic packages was only 7, none of the packages was rated the
same, which led to the mode being the same as the median.

Table 4.5: Median and mode of the package ranking for the different package
categories made by OpenSSF Scorecard.

Package Category Median Mode

76 Total packages 4.6 5.3

Top 50 packages 4.8 5.3

19 Random packages 3.1 3.1

7 Problematic packages 4.9 4.9

Chapter 4: AutoTrust 79

In Figure 4.13 we combined the ranking made by AutoTrust in subsection 4.4.1
and the ranking given by OpenSSF Scorecard. Note that due to the utilization of
two distinct ranking scales for packages, with AutoTrust ranging with discrete val-
ues from 1 to 5 and the OpenSSF Scorecard ranging from 0 to 10, we have per-
formed a rescaling of the OpenSSF Scorecard rankings to align with AutoTrust.
This conversion makes it possible to use the chi-square test of independence and
compare the package ratings of the two tools. The conversion is displayed in Ta-
ble 4.6.

Table 4.6: Combining the package rating from AutoTrust and OpenSSF Score-
card.

Ranking AutoTrust OpenSSF Scorecard

5 5 8.1 - 10

4 4 6.1 - 8

3 3 4.1 - 6

2 2 2.1 - 4

1 1 0 - 2

Dotted vertical lines have been used in Figure 4.13 to visually connect the
results from both tests pertaining to the same package. Also, the NuGet packages
that were not possible to rank with OpenSSF Scorecard are displayed in the graph
with a score of 0. Examining Figure 4.13, the orange triangles showing AutoTrust’s
rating are predominantly distributed between 5 and 4 for the top 50 packages
within the green area, while it is mainly distributed between 3 and 2 for the rest. In
contrast, for the OpenSSF Scorecard package ratings most of them are distributed
between 3 and 2 for all the package ratings, including the top 50. We see that
there is a more distinct difference between AutoTrust’s ranking of the top 50 most
downloaded packages and the other package categories, compared to the ranking
made by OpenSSF Scorecard.

Chapter 4: AutoTrust 80

Figure 4.13: Comparison of the AutoTrust and OpenSSF Scorecard rating of the
100 packages. The green area: top 50 packages, yellow area: 40 random pack-
ages, red area: 10 problematic packages.

Similar to AutoTrust, the ranking given by OpenSSF Scorecard was highest for
the top 50 most downloaded packages, and higher for the 10 problematic pack-
ages with issues than the 40 random packages. Out of the 10 problematic packages
with issues, the highest-scoring one was Microsoft.EntityFrameworkCore.Tools
which was the same one receiving the highest score of the problematic package
by AutoTrust.

Chi-square Test of Independence

To decide if the result of the two tools’ ranking methods is enough to reject the null
hypothesis, and confirm that there is a statistically valid difference in the ratings,
we can use the chi-squared test of independence, as described in section 3.4.2.
The first step is to define the null hypothesis and alternative hypothesis which we
did in subsection 3.2.2:

• H0: The ranking of packages and the tool used to give those rankings are not
related given the 100 packages. The proportions of rankings are the same
for the two tools.

Chapter 4: AutoTrust 81

• Ha: The ranking of packages and the tool used to give those rankings are
related given the 100 packages. The proportions of rankings are not the
same for the two tools.

The two categorical variables tested in these hypotheses are the ranking of
packages, and the two tools used. The next step is to create the contingency table,
which is shown in Table 4.7.

Table 4.7: Contingency table showing the resulting ranking from AutoTrust and
OpenSSF Scorecard.

Ranking AutoTrust Count OpenSSF Scorecard Count Total

5 28 0 28

4 20 10 30

3 27 38 65

2 24 28 52

1 1 0 1

Sum 100 76 176

From the table we can see that OpenSSF Scorecard was only able to rank
76 of the 100 packages. From this table, we were able to calculate the expected
distribution by assuming that the null hypothesis is true. This means that there
should be no difference between the two results from the tools.

Table 4.8: Contingency table showing the expected distribution of AutoTrust and
OpenSSF Scorecard using percentage.

Ranking AutoTrust OpenSSF Scorecard Total

5 15.91% 15.91% 15.91%

4 17.05% 17.05% 17.05%

3 36.93% 36.93% 36.93%

2 29.55% 29.55% 29.55%

1 0.57% 0.57% 0.57%

Sum 100% 100% 100%

The percentage distribution in Table 4.8 is calculated by looking at the total
for each ranking category and dividing it by the 176 total number of results. We

Chapter 4: AutoTrust 82

are then able to calculate the expected frequency for all the ranking levels for
both tools by multiplying the percentage for each cell with the total number of
respondents of the corresponding tool. This completes the third step and is shown
in Table 4.9.

Table 4.9: Contingency table showing the expected results of AutoTrust and
OpenSSF Scorecard.

Ranking AutoTrust Count OpenSSF Scorecard Count Total

5 15.91 12.09 28

4 17.05 12.95 30

3 36.93 28.07 65

2 29.55 22.45 52

1 0.57 0.43 1

Sum 100 76 176

Using the expected frequencies, we are now able to calculate the chi-squared
test statistic using Equation 3.1. The calculated chi-squared test statistic is:

�2 = 31.822

The chi-square test statistic measures the extent to which the observed fre-
quencies differ from the expected frequencies if there is no relationship between
the two categorical variables. If the test statistic is large enough we can conclude
that the variables are related and that we can reject the null hypothesis. To decide
what is large enough we need to compare the test statistic to a critical value for
a chi-square distribution. To find this critical chi-square value we need to decide
on the degrees of freedom and the significance level.

The degrees of freedom can be calculated directly from counting the columns
and rows of the table, excluding the "Total" column, and "Sum" row. The degrees
of freedom is (2�1)⇥(5�1) = 1⇥4= 4. The significance level is set to 0.05 (5%),
which is a common threshold for the chi-square test of independence [61]. This
significance level represents a threshold for determining whether the observed
relationship between variables is statistically significant. By setting a significance
level of 0.05, we are essentially stating that we are willing to accept a 5% chance
of making a Type I error, which is to reject the null hypothesis when it is actually
true [61].

The critical value based on a degree of freedom of 4 and a significance level
of 0.05, found in a chi-square critical value table6, is 9.49.

6https://www.scribbr.com/statistics/chi-square-distribution-table/

https://www.scribbr.com/statistics/chi-square-distribution-table/

Chapter 4: AutoTrust 83

The final step is to compare the critical value to the chi-squared test statistic.
We have a chi-squared test statistic of 31.822 which is larger than the critical value
of 9.49. This means that we can reject the null hypothesis. The large difference
between the values also shows that there is a significant difference between the
results from AutoTrust and the results from OpenSSF Scorecard.

Testing the Package Categories

Further, we also decided to analyze the different categories of packages to see if
the null hypothesis would be rejected for the individual categories. We wanted
to see if the difference between the tools holds true when comparing the top 50
packages, the 40 random packages, and the 10 packages with issues individually.
Following the same procedure as described above, with the same significance level
of 0.05, we got the following results:

Table 4.10: Result of performing the chi-square test of independence for the three
package categories.

Package Category Degrees of Freedom Critical Value Chi-Square Test Statistic (�2) Rejected?

Top 50 packages 3 7.82 77.16 Yes

Random packages 3 7.82 9.41 Yes

Problematic packages 2 5.99 1.31 No

As we can see from Table 4.10 we would be able to reject the null hypothesis
by comparing the top 50 packages and the 40 random packages. Despite being
able to reject the hypothesis for both categories, the difference between the crit-
ical value and the chi-square statistic was much greater for the top 50 packages.
For the 10 packages with issues, we could not reject the null hypothesis. However,
this result is highly affected by the fact that there were only 7 packages rated by
OpenSSF Scorecard and 10 packages by AutoTrust. Having such a low number of
packages will affect the statistical power, increasing the risk of making the pre-
viously described type I error or type II error, which is a nonrejection of the null
hypothesis when it is false [61].

Validity of the OpenSSF Scorecard Experiment

The validity of the experiment may have been influenced by various factors, which
can encompass conclusion, internal, construct, or external validity. The conclu-
sion validity of this experiment might have been affected by the fact that NuGet
packages without open source code are not tested by OpenSSF Scorecard. This is
in contrast to AutoTrust which can still evaluate packages even though a link to

Chapter 4: AutoTrust 84

GitHub is not provided. Since OpenSSF scorecard is limited to projects with open
source code, this may introduce bias into the data. Packages without open source
code could potentially have lower average rankings compared to packages with
open source code. Of the 24 packages OpenSSF Scorecard was not able to rank,
AutoTrust gave 5 of them three stars, 18 of them two stars, and 1 of them a single
star. Since these packages had a tendency to perform poorer on the ranking, this
might have affected the observation that AutoTrust had a more distinct ranking
between the top 50 most downloaded packages and the random packages than
OpenSSF Scorecard.

Another factor that can have affected the reliability of treatment implementa-
tion is that AutoTrust evaluates the latest stable package version, while OpenSSF
Scorecard evaluates the project and its latest stable commit on the main branch.
This could lead to a difference in what is being evaluated by the two tools. An
example could be if the license is available on NuGet, while it has been removed
on GitHub, which will lead to AutoTrust giving a high score for the license and
OpenSSF Scorecard failing that check.

The internal validity of the experiment might also have been affected. We
conducted the 100-packages demonstration of AutoTrust on the 21st of Apr 2023,
while we did the testing of OpenSSF Scorecard on the 18th of May 2023. Consid-
ering the nearly month-long gap between the two experiments, it is possible that
changes were made to the packages and source code during that time. This can
have led to a disparity between what was evaluated by the two tools leading to
differences in the results.

Another factor that might have affected the internal validity was how we col-
lected the data. For OpenSSF Scorecard we did not assess the individual score
it gave for all the different checks it performed. As only four of OpenSSF Score-
card’s checks are similar to AutoTrust’s validators we decided that the data would
be hard to compare. However, it is possible that this data would have unveiled
some trends that could have strengthened or weakened the conclusions.

The instrumentation of the experiment also affected the internal validity since
the OpenSSF Scorecard tool needs a maintainer personal access token to do a
proper evaluation of the branch-protection check. This has affected the score of the
branch-protection check, however, we think the result is still valid since developers
evaluating a potential NuGet package also will not have a maintainer personal
access token. Also, since there are 18 checks in total, we believe lacking this token
that only affects one check, will not have a big impact on the overall result.

The selection of the 100 packages we decided to test, was based on finding
packages that would help demonstrate that the AutoTrust tool worked for pack-
ages in the NuGet ecosystem. Since these packages were selected to prove that
AutoTrust works for NuGet packages, it might have been better for the experi-
ment to select 100 random packages. Choosing packages with distinct features,
such as the top 50 most downloaded packages and the problematic packages with
issues, might have affected the internal validity of the experiment, as it is likely
that these packages are different than regular packages on NuGet.

Chapter 4: AutoTrust 85

The construct validity might have been influenced by the fact that we have
used the same 100 packages as in the 100-packages demonstration. This led to
a low sample size for the problematic packages and random packages. The low
sample size can have decreased the statistical power of this experiment.

Another issue that might have affected the construct validity is the inadequate
preoperational explication of constructs, which refers to the insufficiency of defin-
ing constructs before they are converted into measures or treatments [58]. As
there is no clear definition of what makes a tool better or worse regarding as-
sessing security risk, it is hard to give a comparative analysis based on equivalent
criteria. For instance, is the AutoTrust rating better than the OpenSSF Scorecard
rating since it considers more criteria, or is OpenSSF Scorecard better since it goes
more in-depth into the source code? Questions like these do not have a clear an-
swer, which is related to the problem of having no ground truth as to what makes
a package risky.

As OpenSSF Scorecard and AutoTrust used different scales, we decided to
rescale the OpenSSF Scorecard ranking to be able to conduct the experiment by
converting its scale as described in Table 4.6. This modification of the scales in-
volves changing the measured data, consequently impacting the construct validity
of our study. Since this could potentially influence the result of the chi-squared
test of independence we calculated and analyzed how the rescaling affected the
OpenSSF Scorecard package ranking.

To calculate the increase and decrease in package values, using Equation 4.1,
we compared the original OpenSSF Scorecard rankings (Ro) with the values 1, 3,
5, 7, and 9 (Vc). All rankings within 1 above or below each value were converted
to that specific value. The total information loss (T) was determined as the ag-
gregated difference (D) between the original ranking and the converted value.
The decrease or increase (I) indicated whether the ranking was rounded down or
up, respectively. After having converted the numbers to either 1, 3, 5, 7, or 9, we
further transformed these values to a scale of 1, 2, 3, 4, and 5.

Assuming that Ro, Vc , D, and I are all single values, the formula can be written
as:

Vc = {1,3, 5,7, 9},
D = |Ro � Vc |,

I =

8
><
>:

Increase if Ro < Vc ,
Decrease if Ro > Vc ,
None if Ro = Vc

(4.1)

In Table 4.11 we have displayed the information loss occurring by rescaling
the 0-10 scale to the 1-5 scale, within the context of the original 0-10 scale.

Chapter 4: AutoTrust 86

Table 4.11: Table displaying how the rescaling of OpenSSF Scorecard affected
the package categories.

Package Category Increase Decrease Total (T) Total per package

All packages 13.9 15.6 -1.7 -0.0224

Top 50 packages 8.6 12.6 -4.0 -0.08

Random packages 3.8 2.0 1.8 0.0947

Problematic packages 1.5 1.0 0.5 0.0714

As we can see from Table 4.11, the total change added to the packages score
was only -1.7, and by having 76 packages, this on average changed the package
scores by -0.0224. As the chi-squared test statistic, 31.822, was much larger than
the critical value, 9.49, this minor difference in package score would not have had
an impact on whether we could reject the null hypothesis or not. Also, by looking
at the individual package categories we believe the total per-package differences
are not large enough to affect the final outcome.

We have also made some conscious choices to improve the validity of this
experiment. We did not only assess the overall difference between the package
ranking made by OpenSSF Scorecard and AutoTrust, but we also examined how
they ranked the different package categories. Since we could reject the null hy-
pothesis for the top 50 packages and the 40 random it strengthens the conclusion
that the evaluation of the packages was in fact different between the two tools.
Another positive aspect to consider for the validity is that since both AutoTrust and
OpenSSF Scorecard are computer tools they consistently yield the same outcomes,
which improve the reliability and reproducibility of the findings. An additional
valuable aspect to highlight is that we evaluated the package ranking distribu-
tions both visually and using statistics, which increased the chances of spotting
unforeseen patterns in the data.

4.5.3 Interviews with Visma

The interviews with Visma were the final method we used for gathering data, and
the questions asked can be found in section B.5. The motivation behind doing
interviews was to have software developers test out the tool and get their feed-
back. Unlike the artificial evaluation conducted during the student experiment
and OpenSSF Scorecard experiment, the testing carried out by the Visma devel-
opers was a naturalistic evaluation [7]. The reason for this is that the developers
tested out the tool as part of their daily work, and on real use cases. They tested
out packages already used in their projects, more popular packages, and packages
they knew had vulnerabilities. To find interview participants we combined multi-
ple approaches. To increase interest in the topic, we posted the earlier mentioned

Chapter 4: AutoTrust 87

one-pager (section B.9) on Visma’s intranet, where we describe the issue of ma-
licious packages and how to prevent downloading them. Through the one-pager,
we asked if people interested would take the time to test out the tool. We and our
supervisor also sent out multiple emails to Visma employees asking them directly
if they could test out the tool and join us for an interview. In addition, we asked
the participants if they could ask if their colleagues had time available to test the
tool.

Despite the effort put in to get participants, we ended up with only 4 partic-
ipants, which is considerably less than our goal of 12, which was recommended
for interviews [73]. However, their responses were quite extensive and we still got
a lot of valuable feedback. The participants exhibited varying levels of experience
with NuGet, ranging from 1 year of usage to 10 years. The frequency of how often
the participants were adding NuGet packages was varying as it was primarily done
at the beginning of new projects. However, most participants reported adding new
packages on a monthly basis. When questioned about their practices for adding
packages, only two respondents indicated that they conducted any form of eval-
uation. Their evaluation methods were limited to inspecting packages on NuGet
or checking for problems on Stack Overflow7, which is similar to what the stu-
dents did in their assessment. Additionally, it is worth noting that none of the
participants had prior experience using security tools for this type of assessment,
and their lack of awareness about such tools aligns with their limited previous
evaluation efforts.

All of the participants used less than 15 minutes to set up and start using the
tool. During the setup of the tool, only one participant encountered any issues,
and that was to wrap the "dotnet add package" command with the AutoTrust func-
tionality, which is a feature not necessary to test and run AutoTrust. During the
participants’ usage of AutoTrust for package inspection, only one issue was men-
tioned. When attempting to install a non-existent package, the tool executed all
the checks without providing a warning indicating the package’s non-existence.
One participant also mentioned that they would have liked to get some feedback
on whether a package was actually installed or not when deciding to install an
evaluated package. To get additional information about the tool, two of the par-
ticipants used the verbosity flag, and they were both satisfied with the implemen-
tation, and it worked as they would expect.

During the assessment of the validators, most participants expressed apprecia-
tion for the information in the README, detailing how the validators functioned.
They found this to be valuable, and they felt they could trust the result more when
they knew how it was obtained. Two participants mentioned that there was one
of the validators they did not understand. One mentioned the analyzers, and one
mentioned the open pull requests. To understand analyzers, one would need a
deeper knowledge of how NuGet and .NET function so it makes sense that this
is harder to grasp. The interviewee that questioned the open pull request valida-
tor said he did not understand why we had decided on the chosen thresholds.

7https://stackoverflow.com/

https://stackoverflow.com/

Chapter 4: AutoTrust 88

This coincides with a statement from one of the security engineers that said that
multiple factors can affect how pull requests are being handled in a project.

There were also mentionings of the initialization script validator being "a bit
weird", contributors feeling a bit unnecessary, and the low thresholds for the age
validator. Similar to analyzers, the initialization script validator requires an under-
standing of how it can be exploited for malicious purposes in order to comprehend
the necessity of evaluating it. The contributors validator can be hard to grasp and
evaluate as it can be affected by multiple factors such as if the contributor is not
a single person, but a whole company. The low threshold for the age was set to
three weeks, which might be a bit strict if the project is often updated with new
small patches. However, despite these individual observations, the overall consen-
sus was that none of the validators should be removed.

All participants expressed confidence in the overall assessment provided by
AutoTrust. They thought the rating was a good summary of how the package had
been evaluated for all the validators. While all participants found the rating to be
representative of the package’s trustworthiness, one participant also expressed a
preference for viewing all the metrics used in the calculation instead of a summary.
It is worth noting that this individual did not utilize the diagnostic flag or read
about the validators in the README. The remaining participants found the star
rating to be useful and appreciated the convenience of receiving a summary.

In regard to the approach of analyzing packages, the participants expressed
positive feedback. They considered it a good idea to perform pre-analysis checks,
noting that it is something they typically do not do themselves. Also, they found
the implementation to be non-intrusive in their workflow, which was appreciated.
The participants emphasized that AutoTrust is helpful, particularly since develop-
ers often have limited time available for thorough assessments. All the participants
said that they would continue to use the tool, which is an indicator that they found
it useful and valuable.

Validity of the Interviews

Several factors can have influenced the validity of the interviews, including but not
limited to the conclusion, internal, external, or construct validity. The conclusion
validity was affected negatively since the number of respondents was only four.
This was a small sample size and a larger sample size could have provided a better
representative and diverse range of perspectives.

The internal validity might have been affected by the interviewees not testing
the tool for a long period of time and not putting too much effort into under-
standing it. We wanted to test the tool in a naturalistic setting, so we allowed
the interviewees to read about the tool and try it out as they wanted. This allows
for the tool to be tested more similarly to how it would be used in a real-world
setting, but it can have led to some of the interviewees not having enough prior
knowledge before participating in the interviews. We got this suspicion confirmed
when one of the interviewees said they had not read about how the validators

Chapter 4: AutoTrust 89

worked in AutoTrust’s README.
In some of the questions, we asked the respondents to give specific numeric

answers, such as asking how long time they used on installing AutoTrust. These
kinds of questions have issues with recall bias, as they might have difficulty ac-
curately recalling specific details such as the time they used to install AutoTrust.
They can also be affected by social desirability bias. An example that might have
happend is that the interviewees felt like they used too much time installing Au-
toTrust, which led them to report lower time spent than what they actually did.
Recall bias and social desirability bias are general problems when conducting re-
search with self-reports and affect the internal validity.

The external validity was affected negatively by how we recruited the intervie-
wees. These interviews are affected by volunteer bias as we only selected people
that were willing to try and test AutoTrust. It is very likely that the people that
were initially positive about the idea also were the same people that were willing
to test AutoTrust and participate in the interviews. Since some of the respondents
read the one-pager, described in subsection 4.5.3, they might have had a deeper
understanding of the issues concerning malicious packages than developers not
reading the article. Some of the interviewees even referenced the article in their
replies. The results may also have been influenced by the fact that Visma, being
a security-focused company, has employees who are likely to be more positive to-
wards security tools compared to employees in other organizations. All of these
factors can have introduced a bias in favor of a tool like AutoTrust and affected
the generalizability of the interviews.

Construct validity was influenced by the fact that we designed the interview
guide ourselves, it might have been affected by confirmation bias as the questions
can have been created to confirm our beliefs. However, we attempted to ask the
interviewees to state both positive and negative experiences they had with the
tool to get a more nuanced response. The construct validity may also have been
affected by courtesy bias. Since we conducted the interviews ourselves the respon-
dents may have not fully stated their unhappiness in an attempt to be polite.

We also took some measures to improve the validity of the interviews. We had
respondents from different countries and teams which increased heterogeneity.
This decreased the likelihood of cultural differences affecting the results.

To improve the generalizability and how effectively we could measure what we
intended to research, we used Davis’s technology acceptance model as the basis
for the questions regarding usefulness and ease of use [74]. The model is one of
the most used models to measure users’ acceptance and was helpful in creating
questions to accurately measure usefulness and ease of use.

To minimize the potential of collecting inaccurate interview responses, we
recorded the interview to be able to correctly write down the replies. We also
both participated in the interview to increase inter-rater reliability as we were
two people interpreting the replies. After the interview was finished we sent the
transcript back to the interviewees to allow them to fix any errors and confirm
that we had understood them correctly.

Chapter 4: AutoTrust 90

As the sample size was relatively small we took multiple measures to increase
it. One measure was to create traction through the one-pager. It got positive re-
sponses from multiple employees, however, only one of the interviews came di-
rectly from this tactic. We also conducted the interviews on Teams so it would
be easier for people to participate. All of our respondents were from abroad and
would not have been able to participate without having it online. After finishing
the interviews we asked if the interviewees knew any other colleagues that could
be interested in trying AutoTrust to increase the sample size, some of the intervie-
wees asked multiple colleagues but it did not lead to more respondents. We also
did not want to use developers from other companies as Johannesson and Per-
jons state that the artifact should not be used by subjects outside of the research
context during technical action research [57].

4.5.4 Goals of the Evaluation

To do an overall assessment of the artifact we considered the four evaluation
goals presented in the introduction of section 4.5. In this assessment of the eval-
uation goals, we have taken all the parts of this research project into account.
This includes the Visma Questionnaire, the discussion with the two security en-
gineers, the 100-packages demonstration, the time demonstration, the student
experiment, and the interviews with Visma employees.

Evaluation Goal 1

Evaluate if the artifact is effectively solving the problem.

The primary objective of the artifact evaluation is to assess the effectiveness of a
given artifact in addressing the problem it was designed to solve. AutoTrust needs
to solve the problem stated in subsection 4.1.2: "Threat actors can use depen-
dencies as an attack vector to infiltrate software projects and there is no simple
way of evaluating the security of these dependencies prior to installing them".
Specifically, how can AutoTrust evaluate NuGet packages and prevent users from
installing malicious packages that could lead to compromises?

To determine the utility, the first action we did was the 100-packages demon-
stration to see if the tool worked as intended and to look for bugs or unwanted
behavior. The conducted test did not reveal any instances of undesired behavior,
and the observed ranking of the different packages was consistent with anticipated
outcomes.

Then with the student experiment, we saw that manually assessing packages
is a cumbersome process, and the quality of this assessment is varying based on
the time available and the experience of the developer. From the interviews, all the
participants found the package assessment provided by AutoTrust to be credible
and by having a summary and executing quickly, the participants thought it was
valuable and not causing any extra work. Another important aspect was that the
tool provided an extensive check of packages that had not been performed earlier

Chapter 4: AutoTrust 91

and one participant said it started a conversation between his colleagues about the
issue of malicious packages. These aspects show that AutoTrust definitely helps
with increasing security and decreases the chance of developers downloading ma-
licious packages.

Evaluation Goal 2

Evaluate the functional and non-functional requirements proposed used
on the artifact.

The second objective is to assess both the functional requirements and non-functional
requirements, which we are referring to as quality attributes. Each requirement
is presented below together with a justification of how it has been fulfilled, using
the results from the demonstration and the evaluation phases.

• FR-1: The artifact should evaluate packages before they are installed.

� The fulfillment of this requirement was taken into consideration from
the start of the design process and subsequently verified upon comple-
tion of the 100-packages demonstration.

• FR-2: The artifact should be possible to run from the CLI.

� The fulfillment of this requirement was also taken into consideration
from the start of the design process and subsequently verified upon
completion of the 100-packages demonstration.

• FR-3: The artifact should run in the .NET ecosystem and work for all NuGet
packages from the central repository.

� This requirement was tested both through the 100-packages demon-
stration and by the Visma employees we interviewed. From the 100-
packages demonstration, we found no problems with any of the pack-
ages. To ensure optimal compatibility within the .NET ecosystem, we
developed AutoTrust using the dedicated console app template pro-
vided by .NET. From the interviews, we had one participant that tested
out the tool on a privately hosted package, but as the tool is not made
to work for packages hosted that way, the tool did not work.

• FR-4: The artifact should display information to the user if the package
passed or failed the thresholds of the trust criteria. In unclear circumstances,
the user should get a warning.

� This was verified by the Visma employees being interviewed. They
found the console information about which validators failed, warned,
and passed to be clear and liked the red, yellow, and green coloring
used.

• FR-5: The artifact should fetch package metadata in real-time.

� To meet this requirement, we ensured that every time the script ran,

Chapter 4: AutoTrust 92

we fetched all the data and avoided caching it.

• FR-6: The artifact should provide an option for getting a more detailed ex-
planation of the evaluation process.

� The incorporation of an additional information feature was done by
adding the option of a verbosity flag, as described in subsection 4.3.7.
This was validated through the 100-packages demonstration as well
as the Visma interviews. The feedback from the Visma employees in-
dicated that the additional information was valuable for better under-
standing what the specific validators did. There were two of the par-
ticipants that tested out the verbosity flag and they both liked the way
it was implemented and the information it provided.

• QA-1: Usability

� The confirmation of the first part, regarding the implementation of
flags, was taken into consideration during the design process. Using
the .NET standard syntax for flags will contribute to conformance to
a standard that the developers are used to, which will make the tool
easier to use.
� The second part of this attribute was verified through the Visma inter-

views, as all of the interviewees used less than 15 minutes to install
and start using the tool. The interviewees expressed that the tool was
user-friendly and easy to comprehend, particularly after using it on
multiple packages and gaining familiarity with the ranking system. The
interviewees found both the README with instructions and an image
displaying the output from running the tool useful, and it helped with
getting the tool up and running quickly. The participants noted that
AutoTrust offered a seamless user experience while also introducing a
new practice they believed should be incorporated into their workflow.

• QA-2: Portability

� The compatibility of AutoTrust with the operating systems Linux, ma-
cOS, and Windows, was confirmed through the time test. Further-
more, the compatibility of AutoTrust was thoroughly tested during
both the 100-packages demonstration and the Visma testing. In the
100-packages demonstration, we utilized all three mentioned operat-
ing systems (Windows, macOS, and Linux) to ensure cross-platform
functionality. During the interviews, the software was exclusively used
on Windows. We did not encounter any issues or complications dur-
ing the 100-packages demonstration, and there were only a few non-
critical problems reported in the interviews.

• QA-3: Security

� Throughout the entire development process, special attention was given
to ensure that the tool did not rely on any third-party dependencies.

Chapter 4: AutoTrust 93

No external libraries or dependencies were used in its implementation,
mitigating the risk associated with incorporating potentially malicious
third-party code into the tool.
� Additionally, AutoTrust incorporates a prompt that asks the user to de-

cide whether they want to download the package or not, following the
evaluation of the package. Through the 100-packages demonstration,
we ensured this was working as expected.

• QA-4: Performance

� The validation of the performance attribute was done through the time
test, where we found that the installation time did not exceed three
times that of the "dotnet add package" command. We did not receive
any feedback on lacking performance from the interviews, which indi-
cates that it is performing well enough.

• QA-5: Modifiability

� During the implementation process, adjustments to the design were
made to ensure the possibility of adding new validators. Although spe-
cific testing of this capability was not conducted after the artifact’s
completion, it was thoroughly verified during development. All val-
idators were successfully incorporated without any adverse effects on
each other, thereby confirming the successful implementation of this
attribute.

Evaluation Goal 3

Compare the artifact to other similar artifacts that intend to solve the
same or a similar problem.

The third evaluation goal is not only to assess the artifact in isolation but also to
compare it with other artifacts that aim to address the same or a similar problem.
In this regard, the new artifact must demonstrate advantages over existing arti-
facts. This evaluation goal was assessed by comparing AutoTrust to the manual
assessment of packages tested through the student experiment, and to compare
it to OpenSSF Scorecard. We also intended to compare the tool with OSSGad-
get, however, evaluating risk with OSSGadget through OSS-risk-calculator was
not functioning as described by the authors.

This evaluation goal will be discussed further when answering the RQ-3 in
section 5.3.

Evaluation Goal 4

Investigate the side-effects such as unintended or harmful effects of the
artifact.

Chapter 4: AutoTrust 94

A fourth objective of artifact evaluation is to examine the potential side-effects
associated with the use of the artifact. Specifically, this involves assessing whether
any unintended or adverse consequences may arise from using the artifact.

The relatively short testing period was not optimal for uncovering potential
side-effects, as they are often revealed during extended usage and observation.
However, through the interviews, we got feedback on both the positive and nega-
tive side-effects of AutoTrust. A positive side-effect was that the tool started con-
versations around supply chain security and malicious third-party dependencies
among Visma coworkers. In addition, it introduced a new practice of dealing with
security issues, that the participants would want to follow in the future. One po-
tentially negative aspect of using AutoTrust and blindly trusting its results is that
it could replace manual assessments, potentially leading to a lack of critical evalu-
ation. However, considering the interviews conducted, it is worth noting that half
of the respondents admitted to currently performing no assessment at all when
downloading packages. Therefore, while there is a concern about overreliance on
AutoTrust, it may not be a significant problem in practice.

Chapter 5

Discussion

This chapter starts by providing answers to the research questions presented in
section 1.3, followed by a discussion on the implications of this research, both
for the research and the practice. Thereafter, reflections on the limitations of this
research and threats to the validity of the project are presented. This chapter con-
cludes with general reflections on the research project, including potential im-
provements of AutoTrust.

5.1 Research Question 1 - Useful Information

RQ-1
What information is useful for the assessment of security in
third-party software packages prior to their installation?

The trust criteria presented in Table 2.2 is a collection of information that can
be valuable in the assessment of third-party software packages’ security, without
focusing on one specific programming language ecosystem. The validators pre-
sented in subsection 4.3.3 were the physical implementation of the TC used in
AutoTrust.

5.1.1 Evaluating Trust Criteria and Validators

Not all the TC are testable for all programming languages, such as trust criterion
26, "The component does not contain installation scripts", which will only be rel-
evant if the programming language ecosystem supports installation scripts. The
relevance of the various TC will also be based on the available information. As
we saw in section 2.5, the package registries provide different information, which
will affect how one is able to evaluate the package.

From the Visma Questionnaire, presented in section 4.3.2, we saw that many
of the proposed TC were considered valuable. The most valuable TC based on
the feedback received include checking if the package or its dependencies are

95

Chapter 5: Discussion 96

deprecated, identifying security vulnerabilities, ensuring access to the source code
and that there are no differences between the source code and package, examining
the component’s license, assessing any prior harmful effects associated with the
component, and evaluating the component’s widespread use over time. AutoTrust
evaluates all of these except it does not check if there are any differences between
the source code and the package. We could have checked the "Author signature"
to see if the package was modified since the author signed the package. However,
this can be checked with the "dotnet nuget verify"-command, and if the package
content has been modified since it was signed, the installation is blocked with
error NU3008, so it would not be possible to add the package [71, 75].

The TC considered the least important by the Visma employees were if the
package has changed ownership recently, if the maintainers of the component are
overloaded, and the size of the repository. If the package has changed ownership
recently it might indicate a hostile takeover of the package. However, we agree
with the respondents and we do not see this as very important. We believe this
would just create false positives since most ownership changes are benign. Eval-
uating if the maintainers of the component are overloaded is hard as there are
many factors outside of the NuGet ecosystem that might affect this. An indicator
of being overloaded could be that the package maintainer is responsible for mul-
tiple packages, but maintaining multiple packages could also be an indicator that
the maintainer has experience in the programming language ecosystem. Including
information about the size of the repository would have been easy to add since it
is available from the NuGet API. Projects with larger sizes have more code, which
means they have a greater attack surface [30]. However, we did decide not to
implement this since it was the trust criterion that scored the lowest by the Visma
employees and we believe it is hard to set a proper threshold for when the size of
a project is considered too large.

From the student experiment in subsection 4.5.1, we saw that many of the
participants considered the following validators: popularity, widespread use, age
of the package, documentation, and package license. As they conducted a manual
assessment, they relied more on metadata that was easily accessible. This might
indicate that code hosting platforms should prioritize making more data easily
available, and stimulate package maintainers to provide more information.

The students also considered information that AutoTrust does not. They ana-
lyzed the characteristics of the package and they used search engines to consider
public attention, exposure, and reported problems. This information would be
valuable, however, in our perspective, assessing characteristics and public atten-
tion automatically poses challenges. Creating a program that accurately emulates
a human’s ability to form an overall impression of a package, by considering mul-
tiple varying factors, is a challenging task. Automatically analyzing such aspects
requires a more in-depth assessment, possibly employing natural language pro-
cessing techniques, rather than simply determining pass or fail based on prede-
fined numerical thresholds. It is worth mentioning that NuGet does offer package
owners the ability to add descriptive tags to their packages, which could have

Chapter 5: Discussion 97

been used to analyze the characteristics of the package. However, these tags can
often be inadequate if the owner has not included enough relevant keywords and
this will not give an equally good overall impression as a manual evaluation.

In the interviews with the Visma employees, we asked them about their opin-
ion on the validators we had implemented in AutoTrust. The validators they found
the most useful were information about deprecated packages, known vulnerabili-
ties, popularity, and widespread use. The information about deprecated packages
and known vulnerabilities was also ranked high by the Visma employees in the
questionnaire. This further strengthens the confidence that these two validators
are considered useful. High scores in popularity and widespread use can indicate
that software packages are trusted by others. Such information is easily under-
standable and accessible, and this might also be a reason why they were ranked
highly by the Visma employees. One of the interviewees said that they found
the information about open issues, open pull requests, and maintainers valuable.
These three validators can be used as indicators of how well the project is being
maintained. None of the interviewees said they would remove any validators, but
one did not understand the analyzers validator and another did not understand
the open pull request validator. To make the information provided valuable for
the user it is important that they comprehend what is being assessed and under-
stand why it is being evaluated. This finding aligns with the feedback from the
interviewees, who expressed a higher level of trust in the results when they had
a clear understanding of the process.

It is also worth mentioning that it is hard to reach a consensus on what are
good indicators for evaluating if a software package can be trusted, and the thresh-
olds to evaluate these indicators. In the work by McDonald and Goggins, they
found that one of the most common measures of an open source project’s success
was the number of contributors and the contributor growth [76]. In contrast, Za-
han et al. proposed too many maintainers and contributors as potential indicators
of a package being exposed to a higher risk of a supply chain attack [24]. Zahan
et al. also asked 470 npm package developers about their proposed indicators and
more than 40% of them disagreed that too many maintainers and too many con-
tributors were indicators of increased risk of a supply chain attack. This shows
that there are disagreements between what are actual indicators of heightened
risk. Some of the other criteria can also be interpreted as both good and bad in
regard to increased risk. Trust criterion 20, "The project does not have reported
security vulnerabilities", can be good if the package actually has no vulnerabili-
ties, or it can be bad if the reason is that no one has put effort into detecting and
disclosing vulnerabilities in the package.

5.1.2 The Most Prominent Trust Criteria and Validators

Table 5.1 and Table 5.2 display the TC and validators that were highest rated or
got the most traction during the different phases of this research. All the trust
criteria and validators were found to be valuable but these were added to better

Chapter 5: Discussion 98

visualize which can be considered the most useful to assess in the pre-installation
phase for security tools. Table 5.1 presents the TC that got the most attention in the
academic papers from the SLR and was considered the most useful in the Visma
Questionnaire. There were 2 TC that were mentioned in 5 papers and 5 TC that
were mentioned in 4 papers. The ranking of the TC from the Visma Questionnaire
is ordered by how valuable the employees considered the TC.

Table 5.1: The ranking given to the TC in the SLR and the Visma Questionnaire.

SLR (TC) Visma Questionnaire (TC)

1 • The component has been in widespread use
for a considerable amount of time.
• The component is being developed by
an active maintainer domain.

The component is not deprecated.

2 The component does not depend on dep-
recated packages.

3 • The component has an adequate number of
maintainers and contributors.
• The maintainers, owners, and suppliers of
the component are trustworthy.
• The component’s maintenance lifecycle
is up to date.
• The component is not deprecated.
• The component does not depend
on deprecated packages.

The project does not have reported secu-
rity vulnerabilities

4 Access to the source code is provided.
5 The component provides a standard or

well-written license.
6 There is no history of prior harmful ef-

fects associated with the component.
7 The component has been in widespread

use for a considerable amount of time.

Table 5.2 contains the ranking of the validators made by the students and the
interviewees. The order of the validators for the students is based on how many
students said they used each validator as a criterion when manually evaluating
packages. The four last validators were considered by the same amount of stu-
dents, so they are all included. Given that we conducted interviews with only four
employees, we have listed all the validators they identified as useful. However, due
to the small sample size, these validators have not been arranged in any particular
order.

Chapter 5: Discussion 99

Table 5.2: The ranking given to the validators in the student experiment and
interview.

Student Experiment (Validators) Interviews (Validators)

1 Popularity • Deprecated package
• Known vulnerabilities
• Popularity
• Widespread use
• Open issues
• Open pull requests
• Contributors

2 Widespread use
3 Age of package
4 Documentation

5 • Number of contributors
• Deprecated package
• Known Vulnerabilities
• License

6
7

5.1.3 Summary of Answer to RQ-1

Based on the feedback received from the two security engineers, the SLR, and
the ranking by the Visma employees in the questionnaire and interview, it is clear
that several of the proposed TC can be useful when assessing the security risks
associated with third-party packages. The TC that were found the most useful in
the different evaluation methods were information about deprecation or depre-
cated dependencies, known vulnerabilities, popularity, widespread use, license,
and contributors. However, factors such as the time it takes to evaluate them,
the availability of data, the ease of automatic evaluation, programming language-
specific differences, and the comprehensibility of the trust criterion might be more
influential factors when it comes to how useful the information is both for manual
and automatic assessment of software packages.

5.2 Research Question 2 - Advantages and Disadvantages

RQ-2
What are the advantages and disadvantages of the CLI
pre-install tool for developers in the process of
evaluating third-party software packages?

During the development of AutoTrust, we found some potential advantages
and disadvantages of tools with a design similar to AutoTrust.

5.2.1 Advantages

One of the primary advantages is that CLI security tools made for the pre-install
phase can help detect potential malicious packages before the user installs them
and gets compromised. As pointed out in section 1.1 a real-world example of such

Chapter 5: Discussion 100

malicious packages was reported by JFrog. Since these packages used initializa-
tion scripts [6], they would have been detected and reported by AutoTrust. During
the interviews, the respondents showed appreciation for this feature that checks
for initialization scripts. AutoTrust is not only made to prevent installing malicious
software packages but also to detect benign packages that might have vulnerabili-
ties. Malicious packages might infect developers’ laptops and vulnerable packages
might lead to vulnerabilities in the main application. Both these problems would
potentially lead to more work in the future, compared to the proactive evaluation
of packages.

During the interviews, one of the main advantages mentioned by all of the
respondents was that AutoTrust helped them do an assessment they should be
doing, without much extra effort. Using tools like AutoTrust that are extending the
functionality of already used commands instead of being a separate tool, prevents
the developers from having to take a conscious choice to run the tool. This saves
time and reduces the cognitive load.

When asking the Visma employees if they had any guidelines for how they
should include new dependencies, many reported that they had no such guide-
lines. Even if the team members follow guidelines it is easy to miss a step, and
as we saw during the student experiment people do not rank packages the same.
Tools like AutoTrust can help create a standard for what the team should check
before including a software package, and help make sure that all the criteria are
evaluated correctly and none of them are forgotten.

As mentioned in the interview, tools like AutoTrust can also be used as part
of pull requests. If the person creating the pull request includes an image of the
AutoTrust output it can make it easier for people to assess the package. Another
option is that the person looking to review and approve the changes proposed
in the pull request can scan the packages themselves. This can start a discussion
regarding what kinds of dependencies to include, and the need for adding the
dependency in the first place. A downside of this is that it can potentially lead to
a long discussion about which dependencies to include, especially if developers
do not agree if the package failing one specific criterion means they should add it
or not. If we had more time to test AutoTrust, it would be interesting to see if the
tool would lead to unwanted discussions.

5.2.2 Disadvantages

A general disadvantage of security tools is that they can lead to notification fa-
tigue. Having multiple notifications pop up in their workflow can feel intrusive.
If we had tested AutoTrust for a longer time period with more developers, prefer-
ably people who were not too fond of the idea, it would be interesting to see if
they still would consider the warnings from AutoTrust or just ignore them.

There are also some issues with how the developers decide to interact with
the tool. As one of the interviewees stated, these kinds of tools are most efficient
when combined with manual assessment. As mentioned, an issue is that devel-

Chapter 5: Discussion 101

opers might become lazy and trust the tool completely without adding their own
critical reflection. The tool is based on best effort and cannot catch all issues, this
can therefore create a false sense of trustworthiness. Another disadvantage linked
to how the developers use the tool is if they understand all the validators and why
they are added. As reported in the interview one did not understand the analyz-
ers validator and another did not understand the open pull requests validator. The
developers not understanding the criteria might lead them to add packages they
should not, or decide to not add packages that they could.

Another issue with security tools is that developers need to know that they
exist. AutoTrust might be hard to find for developers and it is likely that many do
not know the security risk of adding new packages. The functionality provided by
AutoTrust and similar tools should preferably be included as part of the package
managers to reach a larger number of developers.

The last disadvantage, that came up during the interviews, is that some of the
developers normally use the Visual Studio IDE and its integrated package manager
for adding NuGet packages. When there are multiple ways of adding packages it
can lead to an imbalance where some packages get assessed and others do not.
This can lead the developers to believe all the packages have been evaluated even
though some of them have not.

5.2.3 Summary of Answer to RQ-2

Overall, the main advantages are that tools like AutoTrust can lead to early de-
tection of package issues and can be incorporated in a non-intrusive way into the
developers’ workflow. The main disadvantages of the tool are that developers can
misinterpret the results and how they should respond to the results. To prevent
this, they need to put effort into understanding what the tool assesses and why
the tool does it.

5.3 Research Question 3 - Comparing Assessments

RQ-3
How does the tool’s assessment of third-party software packages’
security risk compare to other ways of assessing these packages?

Our objective was to evaluate AutoTrust alongside various other methods of as-
sessing third-party software packages. We conducted tests comparing AutoTrust
with OpenSSF Scorecard and a manual evaluation performed by students. Ad-
ditionally, we intended to evaluate AutoTrust with OSSGadget but encountered
difficulties in doing so. Furthermore, we conducted a limited comparison with
npq, although the scope was limited to how the tools are checking the packages
rather than directly comparing them, as npq is specifically designed for npm. We
also compared the functionality of AutoTrust to the .NET commands that are most
similar to it.

Chapter 5: Discussion 102

5.3.1 OpenSSF Scorecard

OpenSSF Scorecard was the only tool we were able to compare directly with Au-
toTrust. The main difference between the two tools is that OpenSSF Scorecard is
made to scan open source projects on code hosting platforms, while AutoTrust is
made for packages in the NuGet package registry. From the comparison between
AutoTrust and OpenSSF Scorecard in Figure 4.13 we saw that it was a difference
in the distribution of the top 50 packages. Most of the OpenSSF Scorecard re-
sults were distributed between 3 and 2, and the AutoTrust results were mostly
distributed between 4 and 5. This strengthens the credibility of AutoTrust’s abil-
ity to distinguish high-risk packages from low-risk packages as it is reasonable to
assume that the top 50 most downloaded packages are lower risk.

From the comparison of the two tools, we also found that there is a less distinct
difference between the top downloaded packages and the random packages using
OpenSSF Scorecard. This small difference between the top downloaded packages
and the random packages might be due to the NuGet package owners not follow-
ing the best practices recommended by OpenSSF. This coincides with the findings
from Zahan et al. that there is a lack of adoption of the security practices proposed
by OpenSSF by the npm and PyPI ecosystems [67]. Another possible explanation
for the difference in how AutoTrust and the OpenSSF Scorecard differentiates the
top 50 packages from the random packages could be that AutoTrust considers
popularity as one of its criteria.

If we look closer at the Newtonsoft.Json package, OpenSSF Scorecard only
gave it a rating of 3.5/10, which is very poor considering it is the most downloaded
NuGet package. In comparison OpenSSF Scorecard gave the AutoTrust project a
score of 5.6/10. We believe it will be hard for developers to trust the ranking
when commonly used packages receive a very low score. Developers may find
it challenging to make confident decisions regarding the inclusion of a package
when considering the relatively smaller difference between the rankings of the
top 50 most downloaded packages and random packages by OpenSSF Scorecard,
as opposed to AutoTrust.

OpenSSF Scorecard is also not as easily integrated into the developers’ work-
flow as AutoTrust is. AutoTrust can be used to extend commands developers al-
ready use while OpenSSF Scorecard is developed to be a distinct scan of projects.
We also tested the time it took to run OpenSSF Scorecard on the Newtonsoft.json
package on Windows. It used 26.5s compared to 5.127s using AutoTrust. We be-
lieve that since OpenSSF Scorecard takes a longer time to run it will be harder for
developers to adopt it into their everyday workflow. However, the standalone na-
ture of OpenSSF Scorecard might make it easier to integrate into CI/CD pipelines,
which was reported as a possible improvement to AutoTrust in the Visma inter-
views.

The OpenSSF Scorecard tool checks if the project is implementing many secu-
rity best practices such as if the project has a license, security file, and dependency
update tools such as Github’s Dependabot. As this tool is focused on using the in-

Chapter 5: Discussion 103

formation from GitHub and GitLab, the checks of these code hosting platforms
are more thorough than the ones performed by AutoTrust. To improve AutoTrust
it could be possible to query the OpenSSF Scorecard API to incorporate OpenSSF
Scorecard’s ranking into AutoTrust.

5.3.2 OSSGadget

We wanted to compare AutoTrust with the OSSGadget’s tool OSS-risk-calculator.
This tool tries to calculate the risk of using different open source software pack-
ages, similar to AutoTrust. It can be used to evaluate many different kinds of open
source software packages including NuGet packages. It calculates the risk by using
metrics from GitHub and an assessment of the package’s characteristics to output
a security risk score. However, when trying to evaluate the risk of the 18 most
popular packages on NuGet, all of them scored 1/1, where 0 indicates no risk
and 1 indicates very high risk, so we understood that something was incorrect.
We reported the issue1, and the maintainers confirmed that there was something
wrong. Therefore, we were not able to compare OSS-risk-calculator’s risk score
with AutoTrust’s security risk score.

Nevertheless, we can still compare how the authors of OSSgadget have de-
signed the tool and what they have prioritized to implement. The OSS-risk-calculator
is separated into two parts, one finding characteristics for the package and one
checking the health of the GitHub repository. Including such information about
characteristics would be a potential improvement to AutoTrust. This would have
been helpful to better understand how the packages operate and was something
the students did during the manual assessment. OSS-risk-calculator also considers
health information such as project size, issues, pull requests, contributors, sub-
scribers, forks, stars, number of releases, and issues that contains specific security
keyword. This part is more similar to some of the checks considered by AutoTrust.

5.3.3 npq

The tool that is most similar to AutoTrust in its workflow is the npq tool, however,
as it is only made for the npm ecosystem it is not possible to do a direct compari-
son of the same packages using AutoTrust and npq. Nonetheless, it is possible to
do an evaluation of what is being evaluated with the tool. As discussed in sec-
tion 4.3.8, there are three checks npq does that AutoTrust does not. Two of these
checks that npq does are associated with the author, which verifies if the pack-
age has an author and if the associated email domain is still active. In the NuGet
API the information about the author was just an input field that users could set
themselves, and is not necessarily linked to the NuGet username of the package
owner. We, therefore, deemed it unhelpful to check this, as it is not linked to if the
package actually has an owner. The fact that AutoTrust does not check if the as-
sociated email domain is still active is linked to NuGet not providing information

1https://github.com/microsoft/OSSGadget/issues/150

https://github.com/microsoft/OSSGadget/issues/150

Chapter 5: Discussion 104

about the author’s email. The third different check that npq does that AutoTrust
does not is checking if the project has a repository URL. AutoTrust warns if it does
not find a link to a Github page, but we do not have a specific validator checking
it.

The extensiveness of the checks is not discussed in section 4.3.8, as a complete
comparison of how all the checks work in detail is out of scope for this thesis. How-
ever, based on the description given in the README file in the npq project it seems
that we do more in-depth analysis for the different validators with AutoTrust. One
example is that npq will display a warning if a package does not have a license,
while AutoTrust also does an evaluation of whether the license is considered high,
medium, or low risk.

5.3.4 .NET Commands

In addition to the prior tools, we also looked into the functionality supported di-
rectly by the .NET package manager. The package manager provides the option
of checking packages already added to a project and its dependencies for known
vulnerabilities and deprecated dependencies. One drawback is that it is not pos-
sible to check for vulnerable dependencies and deprecated dependencies at the
same time [77]. The checks have to be done separately through the following
commands:

dotnet list package --vulnerable --include-transitive

dotnet list package --deprecated --include-transitive

These checks are similar to the validators deprecated package, deprecated de-
pendencies, and known vulnerabilities used in AutoTrust. However, these valida-
tors are not as extensive in their evaluation. The deprecated package is the same,
but for the deprecated dependencies, the .NET package manager checks all the
dependencies and does not stop at a depth of two which AutoTrust does. For the
known vulnerabilities, AutoTrust only fetches vulnerability data for the main pack-
age and not for the dependencies as the .NET package manager does. In addition,
both AutoTrust and the .NET package manager use the same data from NuGet,
but AutoTrust also uses the OSV database to find vulnerabilities.

One reason for not directly comparing AutoTrust against these .NET com-
mands is that they cannot be executed before the packages are added to a project.
This means that it has one of the problems we are trying to solve, which is includ-
ing the package before assessing it. Also, as these scripts are only similar to the
three validators explained above, the direct comparison would not apply to the
whole of AutoTrust.

5.3.5 Manual assessment

In the student experiment, discussed in subsection 4.5.1, we did a comparison of
how computer science master’s students do a manual assessment with AutoTrust’s

Chapter 5: Discussion 105

automatic assessment. From the evaluation, we saw that the students had a ten-
dency to rank the packages higher, meaning less risky, than the AutoTrust tool and
use fewer criteria in their evaluation.

Some issues with this experiment were that we only used computer science
master’s students, the experiment was artificial, and few of the students had much
experience with the NuGet ecosystem. It would be interesting to see if security ex-
perts or senior developers would consider more criteria but based on the responses
to the questionnaire and in the interviews it does not seem to be too common to
have proper guidelines on what to assess in a manual assessment. In the inter-
views, the respondents that did assessments of packages prior to installing them
reported that they usually used the NuGet website and Stack Overflow similar to
what the students did during their manual assessment.

Overall, we saw that using tools gave a more thorough and faster evaluation
of available package data attributes, but we still believe that manual assessment
is valuable as it is easier to manually process language which can give an overall
impression. A manual evaluation is also more flexible. An example is that Au-
toTrust can only evaluate GitHub repositories, while a manual assessment can
examine multiple code hosting platforms like GitLab, BitBucket, etc. However, we
do not believe that automatic assessments should completely replace manual as-
sessments. As stated in one of the interviews the optimal approach lies in combin-
ing different tools for automatic assessment with human judgment and common
sense.

5.3.6 Summary of Answer to RQ-3

In Table 5.3 we have summarized the findings from RQ-3 together with a state-
ment saying if we could do a direct comparison between the tool being described
and AutoTrust. We searched for multiple existing tools and methods for evaluat-
ing third-party software but were only able to directly compare AutoTrust against
OpenSSF Scorecard and a manual student evaluation of packages. The OpenSSF
Scorecard tool is similar to AutoTrust in the way it operates, but it is made for
GitHub and GitLab, and not NuGet projects. However, OpenSSF Scorecard still
considers some of the same criteria as AutoTrust including the package age, con-
tributors, known vulnerabilities, and license. There was a difference in the rank-
ings provided by OpenSSF Scorecard compared to AutoTrust of the top 50 pack-
ages, but the ranking of the 40 random packages and the 10 problematic pack-
ages were quite similar. Also, OpenSSF Scorecard takes more time to run, making
integration into developers’ workflows more challenging. From the student eval-
uation, we found that AutoTrust considered a lot more criteria and performed a
more thorough analysis than the students. Further, AutoTrust was not able to do
the same evaluation of the overall impression as the students were, indicating that
tools like AutoTrust should be used in combination with manual assessments.

Chapter 5: Discussion 106

Table 5.3: Summary of the findings for RQ-3.

Tool Comparison

OpenSSF Scorecard

We did a direct comparison between this tool and AutoTrust, through the
OpenSSF Scorecard experiment.
• Had a less distinct difference between the package ratings
during the experiment.
• Commonly used packages receive a low score,
which might make it harder for developers to use.
• Provides a more thorough evaluation of data from code hosting platforms.
• More of a standalone tool and not as easily integrated into the
developers’ workflow.

OSSGadget

We did not do a direct comparison between this tool and AutoTrust,
as there was an issue with it.
• Not a distinct tool, but a set of 12 tools for open source projects.
• Uses package characteristics and GitHub repository health to
evaluate packages.
• The authors consider deprecating the OSS-risk-calculator,
which is the OSSGadget tool most similar to AutoTrust.

npq

We did not do a direct comparison between this tool and AutoTrust,
as it is made for the npm ecosystem.
• The tool is the most similar to AutoTrust.
• Provides a more thorough evaluation of authors than AutoTrust.
• Has an individual check to evaluate if the repository URL is included,
which AutoTrust does not.

.NET Commands

We did not do a direct comparison between these commands and AutoTrust,
as they only check packages already added to a project.
• Integrated into the .NET tool.
• Checks dependencies if they are deprecated and vulnerable.
• Also checks the transitive dependencies if they are deprecated
and vulnerable.

Manual assessment

We did a direct comparison between this tool and AutoTrust,
through the student experiment.
• The students ranked packages less risky compared to AutoTrust.
• Varying how thorough people are in their evaluation.
• People check different data attributes and they are inconsistent in what
they consider.
• A manual assessment might be better to get an overall impression.
• Manual assessment can be more flexible than an automatic assessment.
• Manual assessment can be used together with other security tools.

Chapter 5: Discussion 107

5.4 Implications for Research

Throughout our work on this thesis, we have identified certain areas that would
benefit from further research and improvements by the research community. There
is an issue when one wants to do a proper evaluation of security tools for package
managers due to the significant difference in the number of benign packages com-
pared to malicious packages. A collection of malicious packages found on NuGet
similar to the npm, PyPI, and RubyGems packages found by Ohm et al. could
contribute to better evaluation of tools and help find indicators of risks that tools
should alert about [16].

Further assessment of trust criteria in Table 2.2 and their thresholds is needed
as it is hard to find a good balance between when to warn and when to pass the
criteria. Performing additional testing on a broader range of packages for a longer
time would most likely help detect which criteria are useful, which are less use-
ful, and which need their thresholds adjusted. While developing AutoTrust, our
primary emphasis was on academic sources for identifying trust criteria. How-
ever, exploring security tools during the evaluation process could potentially help
discover additional trust criteria. This could be done as further research into TC.

AutoTrust is an example of a shift-left solution that gives the developers more
responsibility and understanding of the dependencies they add to a project. Re-
searchers can further develop security tools with a shift-left approach, such as ar-
tifacts specifically designed to educate developers about the risks associated with
software supply chain attacks.

More research into the measures taken by different companies to secure their
software supply chain can also contribute to a better understanding of what is
needed to improve the software supply chain security. As discussed in section 2.6,
there are multiple tools that can be used, and finding out what is being used and
how it is being used can contribute to better guidelines and recommendations for
companies. In addition, researching company practices might lead to discoveries
of internal tools or practices used that are not publicly known.

In section 2.5, we compared different package managers and what information
they provided on their websites. A more thorough analysis of what data is avail-
able through the websites and API could be useful. It could contribute to making
it easier to create tools that use this data and give the registries information about
things they can improve.

More research on this artifact could also be done. The testing period for this
tool was quite short and we believe it would be valuable to see the effects of
using this tool over time. It could potentially lead to positive side effects such
as new policies in the teams regarding what to do when including new software
dependencies, or negative side effects such as notification fatigue. Testing it over
a longer time period would also most likely contribute to a better assessment of
the thresholds used in this tool.

The TC that were not implemented were presented in subsection 4.3.3, more
research into how these TC can be implemented would be valuable. There are

Chapter 5: Discussion 108

also other aspects of the tool that could be changed which will be discussed in
subsection 5.7.1.

5.5 Implications for Practice

During the course of our research for this thesis, we have recognized specific ar-
eas that have the potential to enhance the software industry and its practices.
Throughout the interview process with the Visma employees, a significant num-
ber of respondents emphasized the time constraints faced by developers and ex-
pressed appreciation for any tools that can effectively alleviate their workload.
They also said that they think AutoTrust could make their assessment of NuGet
packages more efficient compared to doing manual assessments.

Visma is a security-focused firm, yet a considerable number of respondents
from the questionnaire and interviews expressed a lack of specific plans or guide-
lines for evaluating the security of new dependencies. We think that companies
should do some reflections on the potential consequences of adding software de-
pendencies without a planned approach and they should have some guidelines
or tools for this process. If the company is working in the NuGet ecosystem they
can use AutoTrust as it is not too intrusive in the developers’ workflow as it only
affects the download of packages process. If they are working in a different pro-
gramming language ecosystem they can use other tools such as npq or OpenSSF
Scorecard or they can use the TC proposed in Table 2.2 for a manual assessment.

The TC presented in Table 2.2 can be used as the basis for new security tools, or
be used to improve existing tools. As discussed in section 4.3.8, there are some dif-
ferences between AutoTrust, npq, OSSGadget, and OpenSSF Scorecard. Owners of
existing security tools or creators of new tools can examine how AutoTrust, npq,
OSSGadget, and OpenSSF Scorecard operate and use this knowledge to create
new functionality. AutoTrust incorporates several validators that are not present
in other tools, including checking if the package or its dependencies are depre-
cated, the number of direct and transitive dependencies, if the namespace is pro-
tected with a verified prefix, and popularity over time. Some of these differences
between the tools might be due to the information not being available in the other
programming language ecosystems, which also could be improved.

As mentioned in section 2.5, the package registries, linked to these program-
ming language ecosystems, vary in the information they provide. We believe it
would be advantageous for all package registries to include additional informa-
tion such as popularity metrics, tools for package inspection, and a security eval-
uation. The availability of consistent information across registries would facilitate
the development of tools and best practices that can cater to multiple program-
ming language ecosystems.

In addition, we suggest that integrating the functionality offered by AutoTrust
directly into either the "dotnet add package" command as a new flag or a new ded-
icated .NET command would yield notable advantages. This integration would in-
crease the likelihood of developers utilizing the tool, thereby enhancing its overall

Chapter 5: Discussion 109

effectiveness and impact within the software development process.

5.6 Limitations and Threats to Validity

In section 4.5 we presented the threats to the validity of the different evaluations
we conducted. There were also some limitations that might have affected the
validity of this whole research.

As we did the research in collaboration with Visma, a limitation is that we
did not get insight from developers working at other companies. We could have
sent out a questionnaire to other companies, included them in the interviews, or
had some developers test the tool and collected their opinions. Visma is a large
security-focused firm and respondents from both smaller companies and compa-
nies with other specializations could have provided a broader range of perspec-
tives. There were also a relatively small number of respondents for the question-
naire and the interviews and including employees from other companies could
have increased those numbers and strengthened the credibility of the results.

Even though we collaborated with Visma we did not stay physically in their
offices. If we had stayed in their offices we believe it could have given us better
insight into the developer’s daily work by observing them. By observing them we
could have seen how they add dependencies instead of relying on them telling us
through the questionnaire. We think this also would have led to more respondents
and less of a volunteer bias, as we believe it would have been easier to recruit
participants that were more skeptical of the tool if they saw it first.

Another limitation of this research is that we were not able to do a direct com-
parison with a tool made for the NuGet ecosystem. It would have been beneficial
to compare the tool we had made to other tools targeting the NuGet ecosystem
instead of OpenSSF Scorecard that uses GitHub and GitLab data to assess projects.

The time demonstration of the artifact could have been improved by running a
full Linux operating system and not just a WSL instance as this perhaps could have
affected the results. AutoTrust relies on conducting multiple API queries, making
it more susceptible to performance issues caused by a poor internet connection
compared to the .NET command. Consequently, a slow or unreliable internet con-
nection may introduce delays that can adversely impact the overall user experi-
ence. A limitation is that we did not consider how QA-4, performance, would be
affected by increasing the number of validators or adding more extensive tests
to the existing ones. This could have strongly affected the general perception the
interviewees had regarding AutoTrust.

During the 100-packages demonstration, the selection of random packages
might have been affected by the fact that we sorted based on relevance. The rele-
vance ranking used in the NuGet search might have affected the 40 random pack-
ages from being appropriately randomized. In the 100-packages demonstration,
we chose to include the top 50 most downloaded packages, 40 random packages,
and 10 problematic packages. As we are using the popularity and widespread use
as validators, it might be that the large difference in the ranking between the top

Chapter 5: Discussion 110

packages and the random packages is attributed to the fact that the top 50 most
downloaded packages are more popular. Another limitation of the 100-packages
demonstration was that the 10 problematic packages were chosen based on issues
we found. We probably ended up finding more commonly used packages that were
better maintained than other poorly maintained packages, which we found in the
random packages. This might be why one of the random packages got a low rank-
ing of one star, while one of the problematic packages got a high ranking of four
stars.

There are some limitations with AutoTrust as well. As mentioned, AutoTrust
does not execute when developers add NuGet packages through the user interface
within the Visual Studio IDE. Developers can then get affected by malicious NuGet
packages if they add them using the Visual Studio package manager. Another cri-
tique of AutoTrust and this way of doing pre-install assessments of packages is
that it is affected by the available data related to NuGet packages to do good
assessments.

5.7 General Reflections

This section deals with general reflections that we discovered during the work on
the thesis, that were not used to answer the RQs or does not necessarily fit under
the standardized implications sections. This includes reflections around specific
TC and how we found these, other use cases of AutoTrust, implementing AI, our
thoughts about reducing attacks, and improvements to AutoTrust.

Not all of the TC are easy to implement. Some of them, such as trust criterion 8,
"The component has detailed documentation", are hard to automate since they can
be interpreted in multiple ways. With this example, what is considered detailed is
hard to predefine. The fact that it is hard to predefine evaluations and that not all
data was easily available through NuGet and GitHub led to a difference between
the proposed TC and the implemented validators. We do believe it is valuable
to have a list of TC that are programming language agnostic, but it has made it
harder to evaluate their usefulness.

The TC presented in Table 2.2 were primarily found using academic sources.
We could perhaps have found extra criteria if we had contacted more people work-
ing in the software industry. We asked people working at Visma if they had some
more potential criteria both during the questionnaire and the interview, however,
many of the respondents had not previously contemplated this aspect and conse-
quently provided limited responses. As this is a more general question we could
also have asked more developers either using a questionnaire or asking questions
on internet forums for programmers to increase the possibility of finding new cri-
teria.

Some of the Visma employees mentioned during the interviews other ways
they thought AutoTrust could be useful. They mentioned that it could be incorpo-
rated into the CI/CD pipeline and that it could be used to analyze pull requests.
Another way of using the tool is that the code contributor can include an image

Chapter 5: Discussion 111

of the ranking in a pull request. If we had time to let the Visma employees use
AutoTrust for a longer duration we would probably have discovered more ways it
could have been useful.

As discussed in subsection 2.6.4 new AI tools such as ChatGPT can be incor-
porated into more software supply chain security tools. It will be interesting to
see how this might affect the security landscape. AI is a double-edged sword as
it can be used by both good and bad actors. It will make it easier for threat ac-
tors to create new attacks, but it can also be used to strengthen security. AI tools
can also be used to assess source code like Socket AI does, or allow developers
to query packages in a conversational manner like DroidGPT. LLMs like ChatGPT
can be used to get a more in-depth and nuanced analysis of the checks used in
the validators, and by doing this enhance the validators. We believe these kinds
of tools have the potential to improve the assessment of licenses and documenta-
tion, if the developers are using good coding standards, if the code reviews of the
project are of high quality, and be used for the assessment of installation scripts
and source code.

AI is a double-edged sword as it can be used by both good and bad actors. It
will make it easier for threat actors to create new attacks, but it can also be used
to strengthen security.

Security tools play a crucial role in mitigating the success of attacks by making
it more challenging for attackers to achieve their objectives. As a result, attackers
experience a diminished return on investment, rendering their malicious activi-
ties less lucrative. This observation is evident in reports indicating that automated
identification and removal of malicious packages using typosquatting techniques
by package registries have compelled attackers to shift away from using typosquat-
ting as an attack vector [32]. We strongly believe that widespread adoption of se-
curity tools like AutoTrust, OpenSSF Scorecard, npq, and OSSGadget within the
development community would significantly reduce the profitability of software
supply chain attacks, consequently leading to a decline in their occurrence. It is
also worth noting that if the functionality these tools provide were directly incor-
porated into the package managers, a greater number of individuals would be-
come aware of its significance and usefulness. This, in turn, would further dimin-
ish the attackers’ return on investment and contribute to a decreased prevalence
of such attacks.

5.7.1 Improving the Tool

Based on the interviews, the responses to the questionnaire, and personal reflec-
tions we have discovered some potential improvements for the AutoTrust tool.
One of them is the option to have user-defined configurations of the thresholds.
As the risk appetite might be different for different users it could have been valu-
able to allow users to define which validators they want to use, what thresholds
they see fit, and which weight they considered the best for the validators. An op-
tion to add more customizable trust criteria could also be useful, such as trust

Chapter 5: Discussion 112

criterion 4, "The company you are working for is already using the package in
another project". We believe a general ranking of such a criterion might be hard
to make, but if users are allowed to add their own it could be incorporated.

Another potential improvement for AutoTrust is to support multiple program-
ming languages, as OSSGadget does. Putting effort into supporting multiple pro-
gramming languages would most likely lead to greater interest in the tool. Sup-
porting multiple programming languages in AutoTrust would address the diverse
needs and preferences of developers working with various language ecosystems.
It would allow developers to apply AutoTrust’s functionality and security assess-
ments to a wider range of projects, regardless of the programming language used.
However, supporting multiple programming languages faces the challenge of in-
consistent information from package registries, and relying solely on code hosting
platforms like OSSGadget would limit data availability and lead to a less compre-
hensive package assessment.

During the interview some of the developers tried to use AutoTrust in new
ways we did not expect. They saw the potential of including it into CI/CD pipelines
or when reviewing pull requests. Another suggestion from the interviews was to
add a dry-run flag that made AutoTrust only return the score and evaluation of the
criteria, without prompting the user if they would like to add the package. Adding
a dry-run flag could have made AutoTrust more flexible and such a solution would
be more similar to OpenSSF Scorecard as it is made more as a standalone solution.
Even though AutoTrust was intended to be used as an extension of the "dotnet add
package" command it is interesting to see new potential use cases.

Three of the interviewees commented that AutoTrust runs as normal when
they mistyped the package name and no package with that name existed. Au-
toTrust should just return an error if it does not find the package name on NuGet,
as this would make the user experience better. It is, however, interesting to see
how common mistyping is, which again is an advantage of using a tool such as
AutoTrust as it will prevent the user from being exposed to a typosquatting attack
when they mistype.

User behavior might also be a risk factor, not only the packages. When looking
at third-party security and the process of adding new dependencies using the CLI
there are some bad practices users might do that can increase the security risk.
Users should not run package manager commands as superuser (sudo) as it grants
unnecessary access to the filesystem [22]. When adding new dependencies the
user might download an older version, and this older version might lack impor-
tant security patches. Users might also be downgrading packages unintentionally
during updates. AutoTrust could potentially warn about all of these undesirable
user behaviors. However, it should be noted that explicitly specifying the version
flag is required when downloading a version other than the latest stable release
or when downgrading to an older version. We think that downgrading is often an
unintentional action and should, at the very least, trigger a warning to alert the
user.

The current solution of AutoTrust fails the known vulnerability validator if it

Chapter 5: Discussion 113

finds a known vulnerability for the package version it checks. If it finds a vulner-
ability in a previous version that has been fixed it informs the developer about
it. We do believe that if vulnerabilities are disclosed and fixed it can indicate a
higher trust than having no recorded vulnerabilities. This would indicate that the
developers are prioritizing their security. The existing version of AutoTrust lacks
support for assigning positive scores. However, introducing the capability for pos-
itive scores could be a valuable enhancement, as it would enable a more nuanced
ranking system. Based on the source code of the OSS-risk-calculator we saw that it
gave a slightly worse score to packages that had no disclosed security vulnerabili-
ties than packages that had disclosed and fixed them. However, we think it would
be better to increase the security risk score for reported and fixed vulnerabilities
since this would not punish packages that have not had any incidents.

OpenSSF Scorecard ranks its criteria on a scale from 0-10 and multiplies it by
the weight. The fact that OpenSSF Scorecard ranks their criteria instead of just
passing, warning, or failing means that the value given can be more nuanced.
AutoTrust does not differentiate the security risk score based on how severely a
criterion fails. For instance, AutoTrust does not assign a lower score to a NuGet
package with five deprecated dependencies compared to a package with only a
single deprecated dependency, even though the former may be considered worse.
This difference in approach highlights the varying levels of nuance and granularity
employed by the different systems in evaluating security risks and is something
that could be improved with AutoTrust.

AutoTrust is relying on the NuGet API and OSV for data about vulnerabilities.
An option to improve AutoTrust would be to allow more vulnerability databases
or have the users choose the one they typically rely on to potentially detect more
reported vulnerabilities. If AutoTrust supported more vulnerability databases, an
aspect to consider would be that the same vulnerability could be reported multiple
times. As discussed in subsection 2.6.2, a CVE id can be used to compare if the
reported vulnerabilities from different vulnerability databases are in fact the same.
To calculate the associated risk of the vulnerability, the CVSS string returned from
the OSV database could have been used. AutoTrust could then differentiate the
response based on the severity of the vulnerability.

Another improvement is to include the OpenSSF Scorecard ranking provided
in their API. They allow users to query pre-calculated OpenSSF Scorecard rankings
of large open-source projects on Github and Gitlab. This information could be
used to give a more detailed assessment of the project they provide pre-calculated
scores for. Not all projects are provided by the API, but it could still be valuable
information for the NuGet packages when the information is available.

As discussed in subsection 5.3.4, the .NET package manager supports scan-
ning all dependencies for vulnerabilities. An enhancement to AutoTrust would
involve extending the known vulnerabilities validator to also scan all dependen-
cies. OSV supports fetching vulnerability data for multiple packages, through its
"/v1/querybatch" API endpoint. Using this endpoint would enable AutoTrust to
scan the dependencies of the main package with just a single additional API call.

Chapter 5: Discussion 114

One additional API call would probably not affect the performance significantly.
Although the installation process received positive feedback from all individ-

uals, there is room for further improvement to make it even more convenient. A
possible improvement is to add AutoTrust as a NuGet package to make the instal-
lation process easier. By doing so, users would no longer need to manually clone
and pack the project themselves.

One of the stated QAs for AutoTrust is security. We ran the OpenSSF Scorecard
tool on the AutoTrust repository and got a ranking of 5.6/10. We should improve
AutoTrust by making the changes recommended by the OpenSSF Scorecard tool.
This is important as a tool for enhancing security should follow the best security
practices and not be a security risk.

Chapter 6

Conclusion

This chapter concludes this thesis by summarizing the main contributions and
findings from this work. It also presents some other relevant contributions, not
directly related to AutoTrust, and our future work. The goal and the RQs used to
guide the work on this thesis are:

Goal
Develop and evaluate a CLI tool to improve the pre-install
assessment of third-party software packages.

RQ-1
What information is useful for the assessment of security in
third-party software packages prior to their installation?

RQ-2
What are the advantages and disadvantages of the CLI
pre-install tool for developers in the process of
evaluating third-party software packages?

RQ-3
How does the tool’s assessment of third-party software packages’
security risk compare to other ways of assessing these packages?

In this thesis, we presented the CLI security tool AutoTrust. The goal of this
thesis was to develop and evaluate a CLI tool to improve the pre-install assessment
of third-party software packages. AutoTurst is such a tool, made for the NuGet
ecosystem. We designed it and tested it in collaboration with Visma.

The novelty of this research was the scientific development of a security tool
for the pre-install phase with a specific focus on research and testing. We also
focused more on the NuGet ecosystem than other scientific papers which have
mainly focused on npm and PyPI [10]. Another novelty of this research is the
presentation, use, and evaluation of new trust criteria, to help answer RQ-1. We
demonstrated the feasibility of AutoTrust on 100 NuGet packages and measured
the time using three common operating systems. After the demonstration, we eval-
uated AutoTrust by comparing it to manual assessment from computer science

115

Chapter 6: Conclusion 116

master’s students and OpenSSF Scorecard, to answer RQ-3. The final part of the
evaluation was having four employees at Visma try the tool and interview them,
this was done to acquire their feedback on AutoTrust and to find advantages and
disadvantages which helped answer RQ-2.

For RQ-1, we found that several of the TC and validators proposed in this the-
sis were well received and people working with software security believed them
to be useful when assessing the security risks associated with third-party compo-
nents. The information that got the most attention was to evaluate if the package
was deprecated or used deprecated dependencies, had known vulnerabilities, was
popular, had widespread use, had a license, or had multiple contributors.

When answering RQ-2, the primary advantages found were that tools like
AutoTrust can lead to early detection of problematic packages and can be incor-
porated in a non-intrusive way into the developers’ workflow. The main disadvan-
tages are linked to the potential for developers to misinterpret the results of such
tools and know how to respond to them. To mitigate this, developers must invest
effort in comprehending the tool’s assessment criteria and rationale.

To answer RQ-3, we did a direct comparison between AutoTrust and OpenSSF
Scorecard by evaluating 100 NuGet packages. We found that AutoTrust had a more
distinct ranking of the NuGet packages which helped better differentiate them.
We also directly compared AutoTrust with the manual evaluation done by com-
puter science students in their final year, where we found that AutoTrust considers
more criteria and performs a more thorough analysis than the student did. How-
ever, tools like AutoTrust should be used in combination with manual assessment,
which we and the study participants believed to be the optimal approach.

This work highlights the significance of conducting pre-installation evalua-
tions of software packages with AutoTrust, which have proven to be useful for
developers. We also found it preferred to combine the use of security tools with
manual assessment for optimal results. Additionally, we have identified numer-
ous valuable trust criteria and evaluated their usability and importance. There
are still opportunities for further research to explore these trust criteria, as well as
to investigate the long-time effectiveness of security tools for the pre-install phase.

6.1 Other Contributions

During our work on this thesis, we made some contributions other than creating
and testing AutoTrust. As discussed in subsection 2.5.2, the PyPI package reg-
istry used to have the count of open pull requests and open issues aggregated
into a single number since GitHub provided the information in that manner. We
reported that we think it would be more insightful for developers to have this
count split into two numbers1. The maintainers agreed and asked us to make the
code changes. We created a pull request that got approved2 and the information

1https://github.com/pypi/warehouse/issues/12971
2https://github.com/pypi/warehouse/pull/12985

https://github.com/pypi/warehouse/issues/12971
https://github.com/pypi/warehouse/pull/12985

Chapter 6: Conclusion 117

regarding open issues and open pull requests is now split on the PyPI website.
As mentioned in subsection 4.5.2, we experienced issues when trying the OS-

SGadget tool. We tested the 18 most popular NuGet packages and all received a
score of 1 indicating very high risk. The tool’s inability to differentiate the pack-
ages renders it useless. We analyzed the code and reported where we believe the
issue originated3. The maintainers of OSSGadget agreed that they believed the
issue was originating from where we reported it, however, the last comments on
the issue indicate that they might consider deprecating the tool altogether in favor
of OpenSSF Scorecard.

When exploring previous incidents of malicious packages in the Maven pack-
age registry, discussed in subsection 2.5.3, we noticed that some packages, that
should have been removed, were still possible to find. We reported this to the
maintainers of Maven4. After investigating the issue they reported that only the
option to download the packages was blocked, not searching for them in the reg-
istry. Upon our recommendation, they conveyed the suggestion to their develop-
ment team to include an explicit warning for malicious packages, similar to the
practice followed by npm.

6.2 Future Work

In section 5.4 we discussed areas that would benefit from further research and
improvements by the research community. Then in subsection 5.7.1 we discussed
further improvements to AutoTrust. In this section, we will present what work we
will be doing with the tool and this thesis in the near future.

To generate interest in the tool we will write a Medium5 article about the
problem around third-party dependencies. We will explain the discoveries in this
thesis about important trust criteria and validators, and finish by presenting how
AutoTrust works. We will also file issues on AutoTrust’s GitHub page for the sug-
gested improvements mentioned in subsection 5.7.1, to make it possible for other
developers to help us out. Finally, we will continue using the tool in our daily
development practices to disclose further improvements and actively encourage
other developers to use it as well.

3https://github.com/microsoft/OSSGadget/issues/150
4https://issues.sonatype.org/browse/MVNCENTRAL-7836
5https://medium.com/

https://github.com/microsoft/OSSGadget/issues/150
https://issues.sonatype.org/browse/MVNCENTRAL-7836
https://medium.com/

Bibliography

[1] M. J. Hossain Faruk, M. Tasnim, H. Shahriar, M. Valero, A. Rahman, and
F. Wu, “Investigating novel approaches to defend software supply chain at-
tacks,” in 2022 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), 2022, pp. 283–288. DOI: 10.1109/ISSREW55968.
2022.00081.

[2] S. Raponi, M. Caprolu, and R. Di Pietro, “Beyond solarwinds: The sys-
temic risks of critical infrastructures, state of play, and future directions,”
in ITASEC ’21: Italian Conference on Cyber Security, 2021. [Online]. Avail-
able: http://star.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-2940/paper33.pdf.

[3] L. Sterle and S. Bhunia, “On solarwinds orion platform security breach,”
in 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Internet of Peo-
ple and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI),
2021, pp. 636–641. DOI: 10.1109/SWC50871.2021.00094.

[4] J. Yang, Y. Lee, and A. McDonald, “Solarwinds software supply chain se-
curity: Better protection with enforced policies and technologies,” in Jan.
2022, pp. 43–58, ISBN: 978-3-030-92316-7. DOI: 10.1007/978-3-030-
92317-4_4.

[5] L. Tal, Alert: peacenotwar module sabotages npm developers in the node-ipc
package to protest the invasion of, Accessed on 2023-03-22., Apr. 2022. [On-
line]. Available: https://snyk.io/blog/peacenotwar-malicious-npm-
node-ipc-package-vulnerability/.

[6] N. Nehorai and B. Moussalli, Attackers are starting to target .NET devel-
opers with malicious-code NuGet packages, Accessed on 2023-03-22., Mar.
2023. [Online]. Available: https://jfrog.com/blog/attackers-are-
starting-to-target-net-developers-with-malicious-code-nuget-
packages/.

[7] P. Johannesson and E. Perjons, An Introduction to Design Science. Springer,
Sep. 2014, vol. 1, pp. 1–197, ISBN: 978-3-319-10631-1. DOI: 10.1007/978-
3-319-10632-8. [Online]. Available: https://link.springer.com/book/
10.1007/978-3-319-10632-8.

118

https://doi.org/10.1109/ISSREW55968.2022.00081
https://doi.org/10.1109/ISSREW55968.2022.00081
http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-2940/paper33.pdf
http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-2940/paper33.pdf
https://doi.org/10.1109/SWC50871.2021.00094
https://doi.org/10.1007/978-3-030-92317-4_4
https://doi.org/10.1007/978-3-030-92317-4_4
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://jfrog.com/blog/attackers-are-starting-to-target-net-developers-with-malicious-code-nuget-packages/
https://jfrog.com/blog/attackers-are-starting-to-target-net-developers-with-malicious-code-nuget-packages/
https://jfrog.com/blog/attackers-are-starting-to-target-net-developers-with-malicious-code-nuget-packages/
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1007/978-3-319-10632-8
https://link.springer.com/book/10.1007/978-3-319-10632-8
https://link.springer.com/book/10.1007/978-3-319-10632-8

Bibliography 119

[8] NTNU, Structure in a empirical thesis, Accessed on 2023-06-03., 2023. [On-
line]. Available: https://i.ntnu.no/academic-writing/strukture-in-
a-empirical-thesis.

[9] S. Du, T. Lu, L. Zhao, B. Xu, X. Guo, and H. Yang, “Towards an analysis
of software supply chain risk management,” in Proceedings of the World
Congress on Engineering and Computer Science, vol. 1, 2013.

[10] H. M. Morstøl and S. Rynning-Tønnesen, “Software supply chain security a
systematic literature review,” Appendix A, p. 78, 2022.

[11] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy of attacks
on open-source software supply chains,” in 2023 IEEE Symposium on Secu-
rity and Privacy (SP), Los Alamitos, CA, USA: IEEE Computer Society, May
2023, pp. 167–184. DOI: 10.1109/SP46215.2023.00010. [Online]. Avail-
able: https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.
00010.

[12] J. D. Linton, S. Boyson, and J. Aje, “The challenge of cyber supply chain
security to research and practice – an introduction,” Technovation, vol. 34,
no. 7, pp. 339–341, 2014, ISSN: 0166-4972. DOI: https://doi.org/10.
1016/j.technovation.2014.05.001. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0166497214000522.

[13] W. Axelrod, “Malware, "weakware," and the security of software supply
chains,” CrossTalk, The Journal of Defense Software Engineering, vol. 27,
pp. 20–24, Mar. 2014.

[14] A. S. Markov and I. A. Sheremet, “Enhancement of confidence in software
in the context of international security,” in CEUR Workshop Proceedings,
vol. 2603, 2019, pp. 88–92.

[15] T. Preston-Werner, Semantic Versioning 2.0.0, Accessed on 2023-02-03. [On-
line]. Available: https://semver.org/.

[16] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife col-
lection: A review of open source software supply chain attacks,” CoRR,
vol. abs/2005.09535, 2020. [Online]. Available: https://arxiv.org/
abs/2005.09535.

[17] W. Enck and L. Williams, “Top five challenges in software supply chain secu-
rity: Observations from 30 industry and government organizations,” IEEE
Security & Privacy, vol. 20, no. 2, pp. 96–100, 2022. DOI: 10.1109/MSEC.
2022.3142338.

[18] N. P. Tschacher, “Typosquatting in programming language package man-
agers,” M.S. thesis, Universität Hamburg, Fachbereich Informatik, Vogt-
Kölln-Straße 30, 22527 Hamburg, Germany, Jun. 2016. [Online]. Avail-
able: https://incolumitas.com/2016/06/08/typosquatting-package-
managers/.

https://i.ntnu.no/academic-writing/strukture-in-a-empirical-thesis
https://i.ntnu.no/academic-writing/strukture-in-a-empirical-thesis
https://doi.org/10.1109/SP46215.2023.00010
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.org/https://doi.org/10.1016/j.technovation.2014.05.001
https://doi.org/https://doi.org/10.1016/j.technovation.2014.05.001
https://www.sciencedirect.com/science/article/pii/S0166497214000522
https://www.sciencedirect.com/science/article/pii/S0166497214000522
https://semver.org/
https://arxiv.org/abs/2005.09535
https://arxiv.org/abs/2005.09535
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://incolumitas.com/2016/06/08/typosquatting-package-managers/
https://incolumitas.com/2016/06/08/typosquatting-package-managers/

Bibliography 120

[19] R. K. Vaidya, L. D. Carli, D. Davidson, and V. Rastogi, “Security issues in
language-based sofware ecosystems,” CoRR, vol. abs/1903.02613, 2019.
[Online]. Available: http://arxiv.org/abs/1903.02613.

[20] B. A., Dependency Confusion: How I Hacked Into Apple, Microsoft and Dozens
of Other Companies, Accessed on 2023-03-22., Dec. 2021. [Online]. Avail-
able: https://medium.com/@alex.birsan/dependency- confusion-
4a5d60fec610.

[21] A. Sharma, Researcher hacks over 35 tech firms in novel supply chain attack,
Accessed on 2023-03-22., Feb. 2021. [Online]. Available: https://www.
bleepingcomputer.com/news/security/researcher-hacks-over-35-
tech-firms-in-novel-supply-chain-attack/.

[22] R. Kestilä, “Acknowledging the risks of open source dependencies to soft-
ware supply chain security,” M.S. thesis, Tampereen yliopisto, Faculty of In-
formation Technology and Communication Sciences, Kalevantie 4, 33100
Tampere, Finland, Jun. 2022. [Online]. Available: https://trepo.tuni.
fi/handle/10024/141165.

[23] V. Mills and S. Butakov, “Security evaluation criteria of open-source libraries,”
in Computational Science and Its Applications – ICCSA 2022 Workshops,
Malaga, Spain: Springer-Verlag, 2022, pp. 422–435, ISBN: 978-3-031-10547-
0. DOI: 10.1007/978-3-031-10548-7_31. [Online]. Available: https:
//doi.org/10.1007/978-3-031-10548-7_31.

[24] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L.
Williams, “What are weak links in the npm supply chain?” In 2022 IEEE/ACM
44th International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2022, pp. 331–340. DOI: 10.1145/3510457.
3513044.

[25] S. Dashevskyi, A. D. Brucker, and F. Massacci, “On the security cost of using
a free and open source component in a proprietary product,” in Engineer-
ing Secure Software and Systems, J. Caballero, E. Bodden, and E. Athana-
sopoulos, Eds., Cham: Springer International Publishing, 2016, pp. 190–
206, ISBN: 978-3-319-30806-7.

[26] M. Naedele and T. E. Koch, “Trust and tamper-proof software delivery,”
ser. SESS ’06, Shanghai, China: Association for Computing Machinery, 2006,
pp. 51–58, ISBN: 1595934111. DOI: 10.1145/1137627.1137636. [Online].
Available: https://doi.org/10.1145/1137627.1137636.

[27] R. A. Martin, “Visibility & control: Addressing supply chain challenges to
trustworthy software-enabled things,” in 2020 IEEE Systems Security Sym-
posium (SSS), 2020, pp. 1–4. DOI: 10.1109/SSS47320.2020.9174365.

[28] S. Lawrence Pfleeger, M. Libicki, and M. Webber, “I’ll buy that! cyberse-
curity in the internet marketplace,” IEEE Security & Privacy, vol. 5, no. 3,
pp. 25–31, 2007. DOI: 10.1109/MSP.2007.64.

http://arxiv.org/abs/1903.02613
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/
https://trepo.tuni.fi/handle/10024/141165
https://trepo.tuni.fi/handle/10024/141165
https://doi.org/10.1007/978-3-031-10548-7_31
https://doi.org/10.1007/978-3-031-10548-7_31
https://doi.org/10.1007/978-3-031-10548-7_31
https://doi.org/10.1145/3510457.3513044
https://doi.org/10.1145/3510457.3513044
https://doi.org/10.1145/1137627.1137636
https://doi.org/10.1145/1137627.1137636
https://doi.org/10.1109/SSS47320.2020.9174365
https://doi.org/10.1109/MSP.2007.64

Bibliography 121

[29] D. Yan, Y. Niu, K. Liu, Z. Liu, Z. Liu, and T. F. Bissyandé, “Estimating the
attack surface from residual vulnerabilities in open source software supply
chain,” in 2021 IEEE 21st International Conference on Software Quality, Re-
liability and Security (QRS), 2021, pp. 493–502. DOI: 10.1109/QRS54544.
2021.00060.

[30] C. Thompson and D. Wagner, “A large-scale study of modern code review
and security in open source projects,” in Proceedings of the 13th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engi-
neering, ser. PROMISE, Toronto, Canada: Association for Computing Ma-
chinery, 2017, pp. 83–92, ISBN: 9781450353052. DOI: 10.1145/3127005.
3127014. [Online]. Available: https : / / doi . org / 10 . 1145 / 3127005 .
3127014.

[31] N. Imtiaz and L. Williams, Are your dependencies code reviewed?: Measuring
code review coverage in dependency updates, Accessed on 2023-03-22., 2022.
[Online]. Available: https://arxiv.org/abs/2206.09422.

[32] L. Williams, “Trusting trust: Humans in the software supply chain loop,”
IEEE Security & Privacy, vol. 20, no. 5, pp. 7–10, 2022. DOI: 10.1109/
MSEC.2022.3173123.

[33] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner, “Containing malicious pack-
age updates in npm with a lightweight permission system,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), 2021, pp. 1334–
1346. DOI: 10.1109/ICSE43902.2021.00121.

[34] A. Gkortzis, D. Feitosa, and D. Spinellis, “Software reuse cuts both ways:
An empirical analysis of its relationship with security vulnerabilities,” Jour-
nal of Systems and Software, vol. 172, p. 110 653, 2021, ISSN: 0164-1212.
DOI: https://doi.org/10.1016/j.jss.2020.110653. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220301199.

[35] V. Jarukitpipat, K. Chhun, W. Wanprasert, C. Ragkhitwetsagul, M. Choetkier-
tikul, T. Sunetnanta, R. G. Kula, B. Chinthanet, T. Ishio, and K. Matsumoto,
“V-achilles: An interactive visualization of transitive security vulnerabili-
ties,” in Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, ser. ASE ’22, Rochester, MI, USA: Associ-
ation for Computing Machinery, 2023, ISBN: 9781450394758. DOI: 10.
1145/3551349.3559526. [Online]. Available: https://doi.org/10.1145/
3551349.3559526.

[36] M. Ohm, A. Sykosch, and M. Meier, “Towards detection of software sup-
ply chain attacks by forensic artifacts,” in Proceedings of the 15th Inter-
national Conference on Availability, Reliability and Security, ser. ARES ’20,
Virtual Event, Ireland: Association for Computing Machinery, 2020, ISBN:
9781450388337. DOI: 10.1145/3407023.3409183. [Online]. Available:
https://doi.org/10.1145/3407023.3409183.

https://doi.org/10.1109/QRS54544.2021.00060
https://doi.org/10.1109/QRS54544.2021.00060
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1145/3127005.3127014
https://arxiv.org/abs/2206.09422
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1109/ICSE43902.2021.00121
https://doi.org/https://doi.org/10.1016/j.jss.2020.110653
https://www.sciencedirect.com/science/article/pii/S0164121220301199
https://doi.org/10.1145/3551349.3559526
https://doi.org/10.1145/3551349.3559526
https://doi.org/10.1145/3551349.3559526
https://doi.org/10.1145/3551349.3559526
https://doi.org/10.1145/3407023.3409183
https://doi.org/10.1145/3407023.3409183

Bibliography 122

[37] D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta, “Lastpymile:
Identifying the discrepancy between sources and packages,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ser. ES-
EC/FSE 2021, Athens, Greece: Association for Computing Machinery, 2021,
pp. 780–792, ISBN: 9781450385626. DOI: 10.1145/3468264.3468592.
[Online]. Available: https://doi.org/10.1145/3468264.3468592.

[38] D. Jacobson, NuGet Package Identity and Trust, Accessed on 2023-04-18.,
Apr. 2017. [Online]. Available: https://devblogs.microsoft.com/nuget/
package-identity-and-trust/.

[39] D. Chan, Sunsetting Mercurial support in Bitbucket, Accessed on 2023-03-
22., Aug. 2020. [Online]. Available: https : / / bitbucket . org / blog /
sunsetting-mercurial-support-in-bitbucket.

[40] G. Alamer and S. Alyahya, “Open source software hosting platforms: A col-
laborative perspective’s review,” Journal of Software, vol. 12, pp. 274–291,
Apr. 2017. DOI: 10.17706/jsw.12.4.274-291.

[41] B. Cloud, [BCLOUD-18541] Provide ability to favorite repositories and projects,
Accessed on 2023-03-22., Sep. 2019. [Online]. Available: https://jira.
atlassian.com/browse/BCLOUD-18541.

[42] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and W. Lee,
“Towards measuring supply chain attacks on package managers for inter-
preted languages,” 2020.

[43] S. S. Team, Sonatype Stops Software Supply Chain Attack Aimed at the Java
Developer Community, Accessed on 2023-03-22., Jan. 2021. [Online]. Avail-
able: https://blog.sonatype.com/malware- removed- from- maven-
central.

[44] Microsoft, Microsoft acquires GitHub - Stories, Accessed on 2023-04-18.,
Jun. 2018. [Online]. Available: https://news.microsoft.com/announcement/
microsoft-acquires-github/.

[45] Microsoft, What is NuGet and what does it do? Accessed on 2023-04-18.,
Dec. 2022. [Online]. Available: https://learn.microsoft.com/en-us/
nuget/what-is-nuget.

[46] Lirantal, GitHub - lirantal/npq: safely install packages with npm or yarn by
auditing them as part of your install process, Accessed on 2023-03-22., Dec.
2017. [Online]. Available: https://github.com/lirantal/npq.

[47] Microsoft, GitHub - microsoft/OSSGadget: Collection of tools for analyzing
open source packages. Accessed on 2023-03-22., Mar. 2020. [Online]. Avail-
able: https://github.com/microsoft/OSSGadget.

https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3468264.3468592
https://devblogs.microsoft.com/nuget/package-identity-and-trust/
https://devblogs.microsoft.com/nuget/package-identity-and-trust/
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket
https://doi.org/10.17706/jsw.12.4.274-291
https://jira.atlassian.com/browse/BCLOUD-18541
https://jira.atlassian.com/browse/BCLOUD-18541
https://blog.sonatype.com/malware-removed-from-maven-central
https://blog.sonatype.com/malware-removed-from-maven-central
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://learn.microsoft.com/en-us/nuget/what-is-nuget
https://learn.microsoft.com/en-us/nuget/what-is-nuget
https://github.com/lirantal/npq
https://github.com/microsoft/OSSGadget

Bibliography 123

[48] Microsoft, GitHub - microsoft/ApplicationInspector: A source code analyzer
built for surfacing features of interest and other characteristics to answer the
question ’What’s in the code?’ Accessed on 2023-03-22., Jan. 2020. [Online].
Available: https://github.com/Microsoft/ApplicationInspector.

[49] M. Scovetta, OSS Gadget: Using oss-download, Accessed on 2023-03-22.,
Dec. 2022. [Online]. Available: https://dev.to/scovetta/oss-gadget-
using-oss-download-1gi8.

[50] O. S. S. Foundation, GitHub - ossf/scorecard: OpenSSF Scorecard - Security
health metrics for Open Source, Accessed on 2023-05-16., Oct. 2020. [On-
line]. Available: https://github.com/ossf/scorecard.

[51] M. Lysenko, Introducing Socket AI – ChatGPT-Powered Threat Analysis - Socket,
Accessed on 2023-04-18., Mar. 2023. [Online]. Available: https://socket.
dev/blog/introducing-socket-ai-chatgpt-powered-threat-analysis.

[52] E. Labs, DroidGPT - AI-Assisted open source software selection, Accessed on
2023-04-19., 2023. [Online]. Available: https://www.endorlabs.com/
droidgpt.

[53] P. Inglesant and A. Sasse, “The true cost of unusable password policies,”
vol. 1, Apr. 2010, pp. 383–392. DOI: 10.1145/1753326.1753384.

[54] L. Zhang-Kennedy, S. Chiasson, and P. van Oorschot, “Revisiting password
rules: Facilitating human management of passwords,” in 2016 APWG Sym-
posium on Electronic Crime Research (eCrime), 2016, pp. 1–10. DOI: 10.
1109/ECRIME.2016.7487945.

[55] C. Herley, “So long, and no thanks for the externalities: The rational rejec-
tion of security advice by users,” in Proceedings of the 2009 Workshop on
New Security Paradigms Workshop, ser. NSPW ’09, Oxford, United Kingdom:
Association for Computing Machinery, 2009, pp. 133–144, ISBN: 9781605588452.
DOI: 10.1145/1719030.1719050. [Online]. Available: https://doi.org/
10.1145/1719030.1719050.

[56] T. M. S. do Amaral and J. J. C. Gondim, “Integrating zero trust in the cyber
supply chain security,” in 2021 Workshop on Communication Networks and
Power Systems (WCNPS), 2021, pp. 1–6. DOI: 10.1109/WCNPS53648.2021.
9626299.

[57] R. J. Wieringa, Design science methodology for information systems and soft-
ware engineering. Springer, May 2014, pp. 1–332, ISBN: 978-3-662-43838-
1. DOI: 10.1007/978-3-662-43839-8. [Online]. Available: https://link.
springer.com/book/10.1007/978-3-662-43839-8.

[58] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in software engineering. Springer Science & Business Me-
dia, 2012.

https://github.com/Microsoft/ApplicationInspector
https://dev.to/scovetta/oss-gadget-using-oss-download-1gi8
https://dev.to/scovetta/oss-gadget-using-oss-download-1gi8
https://github.com/ossf/scorecard
https://socket.dev/blog/introducing-socket-ai-chatgpt-powered-threat-analysis
https://socket.dev/blog/introducing-socket-ai-chatgpt-powered-threat-analysis
https://www.endorlabs.com/droidgpt
https://www.endorlabs.com/droidgpt
https://doi.org/10.1145/1753326.1753384
https://doi.org/10.1109/ECRIME.2016.7487945
https://doi.org/10.1109/ECRIME.2016.7487945
https://doi.org/10.1145/1719030.1719050
https://doi.org/10.1145/1719030.1719050
https://doi.org/10.1145/1719030.1719050
https://doi.org/10.1109/WCNPS53648.2021.9626299
https://doi.org/10.1109/WCNPS53648.2021.9626299
https://doi.org/10.1007/978-3-662-43839-8
https://link.springer.com/book/10.1007/978-3-662-43839-8
https://link.springer.com/book/10.1007/978-3-662-43839-8

Bibliography 124

[59] U. E. Chigbu, “Visually hypothesising in scientific paper writing: Confirming
and refuting qualitative research hypotheses using diagrams,” Publications,
vol. 7, no. 1, 2019. [Online]. Available: https://www.mdpi.com/2304-
6775/7/1/22.

[60] O. Gelo, D. Braakmann, and G. Benetka, “Quantitative and qualitative re-
search: Beyond the debate,” Integrative psychological and behavioral science,
vol. 42, pp. 266–290, 2008.

[61] R. Walpole, R. Myers, S. Myers, and K. Ye, Probability and Statistics for Engi-
neers and Scientists, 9th ed. Pearson Education, 2011, ISBN: 9780321629111.

[62] B. J. Oates, M. Griffiths, and R. McLean, Researching information systems
and computing. Sage, 2022.

[63] N. U. of Science and Technology, Collection of personal data for research
projects - Kunnskapsbasen - NTNU, Accessed on 2023-03-06. [Online]. Avail-
able: https://i.ntnu.no/wiki/- /wiki/English/Collection+of+
personal+data+for+research+projects.

[64] Lov om behandling av personopplysninger (personopplysningsloven), Accessed
on 2023-03-06., 2018. [Online]. Available: https://lovdata.no/dokument/
NL/lov/2018-06-15-38.

[65] J. Harush, How 140k NuGet, NPM, and PyPi Packages Were Used to Spread
Phishing Links, Accessed on 2023-03-22., Dec. 2022. [Online]. Available:
https : / / checkmarx . com / blog / how - 140k - nuget - npm - and - pypi -
packages-were-used-to-spread-phishing-links/.

[66] Sonatype, Sonatype Finds 700% Average Increase in Open Source Supply
Chain Attacks, Accessed on 2023-03-22., Sep. 2022. [Online]. Available:
https://www.sonatype.com/press-releases/sonatype-finds-700-
average-increase-in-open-source-supply-chain-attacks.

[67] N. Zahan, P. Kanakiya, B. Hambleton, S. Shohan, and L. Williams, “Openssf
scorecard: On the path toward ecosystem-wide automated security met-
rics,” Jan. 2023.

[68] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.
Addison-Wesley, Sep. 2012, vol. 5. [Online]. Available: https://dl.acm.
org/doi/book/10.5555/2392670.

[69] SPDX, SPDX License List, Accessed on 2023-04-27., Feb. 2023. [Online].
Available: https://spdx.org/licenses/.

[70] S. E. Team, Top open source licenses and legal risk for developers, Accessed
on 2023-04-27., Jul. 2022. [Online]. Available: https://www.synopsys.
com/blogs/software-security/top-open-source-licenses/.

[71] Microsoft, NuGet.org starts repo-signing packages, Accessed on 2023-04-
26., Aug. 2018. [Online]. Available: https://devblogs.microsoft.com/
nuget/introducing-repository-signatures/.

https://www.mdpi.com/2304-6775/7/1/22
https://www.mdpi.com/2304-6775/7/1/22
https://i.ntnu.no/wiki/-/wiki/English/Collection+of+personal+data+for+research+projects
https://i.ntnu.no/wiki/-/wiki/English/Collection+of+personal+data+for+research+projects
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://checkmarx.com/blog/how-140k-nuget-npm-and-pypi-packages-were-used-to-spread-phishing-links/
https://checkmarx.com/blog/how-140k-nuget-npm-and-pypi-packages-were-used-to-spread-phishing-links/
https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://dl.acm.org/doi/book/10.5555/2392670
https://dl.acm.org/doi/book/10.5555/2392670
https://spdx.org/licenses/
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://devblogs.microsoft.com/nuget/introducing-repository-signatures/
https://devblogs.microsoft.com/nuget/introducing-repository-signatures/

Bibliography 125

[72] Microsoft, Install and use a NuGet package in Visual Studio (Windows only),
Accessed on 2023-06-05., Feb. 2023. [Online]. Available: https://learn.
microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-
in-visual-studio.

[73] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough?
an experiment with data saturation and variability,” Field methods, vol. 18,
no. 1, pp. 59–82, 2006.

[74] F. D. Davis, “Perceived usefulness, perceived ease of use, and user accep-
tance of information technology,” MIS Quarterly, vol. 13, no. 3, pp. 319–
340, 1989, ISSN: 02767783. [Online]. Available: http://www.jstor.org/
stable/249008.

[75] Microsoft, Manage package trust boundaries, Accessed on 2023-05-16., Jan.
2021. [Online]. Available: https://learn.microsoft.com/en-us/nuget/
consume-packages/installing-signed-packages.

[76] N. McDonald and S. Goggins, “Performance and participation in open source
software on github,” in CHI ’13 Extended Abstracts on Human Factors in
Computing Systems, ser. CHI EA ’13, Paris, France: Association for Com-
puting Machinery, 2013, pp. 139–144, ISBN: 9781450319522. DOI: 10.
1145/2468356.2468382. [Online]. Available: https://doi.org/10.1145/
2468356.2468382.

[77] Microsoft, dotnet list package, Accessed on 2023-06-03., Feb. 2023. [On-
line]. Available: https://learn.microsoft.com/en-us/dotnet/core/
tools/dotnet-list-package.

https://learn.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://learn.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://learn.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
http://www.jstor.org/stable/249008
http://www.jstor.org/stable/249008
https://learn.microsoft.com/en-us/nuget/consume-packages/installing-signed-packages
https://learn.microsoft.com/en-us/nuget/consume-packages/installing-signed-packages
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1145/2468356.2468382
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-list-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-list-package

Appendix A

Sikt Information

Sikt Notification Form, Sikt’s assessment of processing of personal data, and In-
formation letter about consent.

A.1 Sikt Notification Form

This section contains the notification form that was sent to Sikt for approval. The
notification form contains information about the project and information about
what data the project is intended to collect.

126

06.03.2023, 14:19 Meldeskjema for behandling av personopplysninger

https://meldeskjema.sikt.no/63ce41b3-7453-409e-b8e9-b49310159577/eksport/83 1/3

Notification form / Automatic software dependency auditing using trust criteria / Export

Notification Form
Reference number
622074

Which personal data will be processed?

Email address, IP address or other online identifier
Photographs or video recordings of people
Sound recordings of people

Project information

Project title

Automatic software dependency auditing using trust criteria

Project description

Vi skal som en del av masteroppgaven vår på NTNU utvikle en løsning for å bedre sjekke sikkerheten på forsyningskjeden til software.
Etter at denne er utviklet skal vi så teste ut løsningen på ulike teams hos bedriften Visma og intervjue dem angående deres inntrykk av
vår løsning. Vi vil først vise frem løsningen til de ulike teamene og vil deretter la dem selv teste ut verktøyet. Etter at dette er
gjennomført vil vi avholde intervjuer, trolig digitalt, hvor vi innhenter informasjon om deres inntrykk av løsningen.

Explain why it is necessary to process personal data in the project

Personopplysningene vil bli brukt for å samle inn informasjonen om hvordan intervjuobjektene brukte verktøyet og deres inntrykk av
det. Dataen vil samles og anonymiseres i masteroppgaven. Informasjonen vil kun lagres for å kunne ettergå informasjonen fra
intervjuene.

External funding
Ikke utfyllt
Type of project
Student project, Master’s thesis

Contact information, student
Hallvard Molin Morstøl, hallvarm@stud.ntnu.no, tlf: +4794155709

Data controller

Data controller (institution responsible for the project)
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) / Institutt for datateknologi og
informatikk

Project leader (academic employee/supervisor or PhD candidate)
Daniela Soares Cruzes, daniela.s.cruzes@ntnu.no, tlf: +4794249891

Will the responsibility of the data controller be shared with other institutions (joint data controllers)?
No

Sample 1

Describe the sample

Utvalget vil bestå av ansatte som jobber med programmering hos Visma AS

Describe how you will recruit or select the sample

06.03.2023, 14:19 Meldeskjema for behandling av personopplysninger

https://meldeskjema.sikt.no/63ce41b3-7453-409e-b8e9-b49310159577/eksport/83 2/3

Visma AS vil internt velge de teamene som de anser som best egnet til å teste verktøyet.

Age
21 - 70

Personal data relating to sample 1
Email address, IP address or other online identifier
Photographs or video recordings of people
Sound recordings of people

How will you collect data relating to sample 1?
Personal interview
Attachment

Personlig Intervju.docx

Legal basis for processing general categories of personal data
Consent (General Data Protection Regulation art. 6 nr. 1 a)

Online survey
Attachment

Elektronisk spørreskjema.docx

Legal basis for processing general categories of personal data
Consent (General Data Protection Regulation art. 6 nr. 1 a)

Information for sample 1
Will you inform the sample about the processing of their personal data?
Yes

How?
Written information (on paper or electronically)

Information letter

information_letter_about_consent.docx

Third Persons

Will you be processing data relating to third persons?
No

Documentation

How will consent be documented?
Electronically (email, e-form, digital signature)

How can consent be withdrawn?

Ved å sende epost eller ved å kontakte studentene eller veileder på telefon.

How can data subjects get access to their personal data or have their personal data corrected or deleted?

Ved å sende epost eller ved å kontakte studentene eller veileder på telefon.

Total number of data subjects in the project
1-99

Approvals

06.03.2023, 14:19 Meldeskjema for behandling av personopplysninger

https://meldeskjema.sikt.no/63ce41b3-7453-409e-b8e9-b49310159577/eksport/83 3/3

Will you obtain any of the following approvals or permits for the project?
Ikke utfyllt

Processing

Where will the personal data be processed?
Computer belonging to the data controller

Who will be processing/have access to the collected personal data?
Project leader
Student (student project)

Will the collected personal data be transferred/made available to a third country or international organisation outside the
EU/EEA?
No

Information Security

Will directly identifiable data be stored separately from the rest of the collected data (e.g. in a scrambling key)?
Yes

Which technical and practical measures will be used to secure the personal data?
Record of changes
Multi-factor authentication
Restricted access
Personal data will be stored in encrypted form

Duration of processing

Project period
01.01.2023 - 31.08.2023

What happens to the data at the end of the project?
Personal data will be anonymised (deleting or rewriting identifiable data)

Which anonymization measures will be taken?
The identification key will be deleted
Personally identifiable information will be removed, re-written or categorized
Any sound or video recordings will be deleted

Will the data subjects be identifiable (directly or indirectly) in the thesis/publications from the project?
No

Additional information

Chapter A: Sikt Information 130

A.2 Sikt’s Assessment of Processing of Personal Data

The assessment of the research project provided by Sikt.

06.03.2023, 14:57 Meldeskjema for behandling av personopplysninger

https://meldeskjema.sikt.no/63ce41b3-7453-409e-b8e9-b49310159577/vurdering 1/2

Notification form / Automatic software dependency auditing using trust criteria / Assessment

Reference number
622074

Assessment type
Automatic

Date
28.01.2023

Project title
Automatic software dependency auditing using trust criteria

Data controller (institution responsible for the project)
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) / Institutt for datateknologi og
informatikk

Project leader
Daniela Soares Cruzes

Student
Hallvard Molin Morstøl

Project period
01.01.2023 - 31.08.2023

Categories of personal data
General

Legal basis
Consent (General Data Protection Regulation art. 6 nr. 1 a)

The processing of personal data is lawful, so long as it is carried out as stated in the notification form. The legal basis is valid until
31.08.2023.

Notification Form

Basis for automatic assessment
The notification form has received an automatic assessment. This means that the assessment has been automatically generated based
on the information registered in the notification form. Only processing of personal data with low risk for data subjects receive an
automatic assessment. Key criteria are:

Data subjects are over the age of 15
Processing does not include special categories of personal data;

Racial or ethnic origin
Political, religious or philosophical beliefs
Trade union membership
Genetic data
Biometric data to uniquely identify an individual
Health data
Sex life or sexual orientation

Processing does not include personal data about criminal convictions and offences
Personal data shall not be processed outside the EU/EEA, and no one located outside the EU/EEA shall have access to the personal
data
Data subjects will receive information in advance about the processing of their personal data.

Information provided to data subjects (samples) must include

The identity and contact details of the data controller
Contact details of the data protection officer (if relevant)
The purpose for processing personal data
The scientific purpose of the project
The legal basis for processing personal data
What type of personal data will be processed and how it will be collected, or from where it will be obtained
Who will have access to the personal data (categories of recipients)

Assessment of processing of personal data

06.03.2023, 14:57 Meldeskjema for behandling av personopplysninger

https://meldeskjema.sikt.no/63ce41b3-7453-409e-b8e9-b49310159577/vurdering 2/2

How long the personal data will be processed
The right to withdraw consent and other rights

We recommend using our template for the information letter.

Information security
You must process the personal data in accordance with the storage guide and information security guidelines of the data controller. The
institution is responsible for ensuring that the conditions of Article 5(1)(d) accuracy and 5(1)(f) integrity and confidentiality, as well as
Article 32 security, are met.

Chapter A: Sikt Information 133

A.3 Data Management Plan

The data management plan (in Norwegian) is used as a guide to control that the
data collected during the research is handled in a correct manner.

06.03.2023, 15:20 Datahåndteringsplan

https://dmp.sikt.no/plan/7f000001-847f-1ea2-8185-ddbd9e772308/export 1/3

DATAHÅNDTERINGSPLAN

Automatic software dependency auditing using trust
criteria
Vi skal som en del av masteroppgaven vår på NTNU utvikle en løsning for å bedre sjekke sikkerheten på forsyningskjeden til software.
Etter at denne er utviklet skal vi så teste ut løsningen på ulike teams hos bedriften Visma og intervjue dem angående deres inntrykk av
vår løsning. Vi vil først vise frem løsningen til de ulike teamene og vil deretter la dem selv teste ut verktøyet. Etter at dette er
gjennomført vil vi avholde intervjuer, trolig digitalt, hvor vi innhenter informasjon om deres inntrykk av løsningen.

Fagfelt
Teknologi

Forskningsansvarlig institusjon
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) / Institutt for datateknologi og
informatikk

Prosjektvarighet
01.01.2023 — 31.08.2023

Formål
Ettersom vi har utvikling en løsning for å sikre forsyningskjeden til software ønsker vi å evaluere nyttigheten av denne.

Nytteverdi
Programvareutviklere og andre som jobber med datasikkerhet.

Etiske retningslinjer
Generelle forskningsetiske retningslinjer

Naturvitenskap og teknologi

Personlig intervju
Beskrivelse
Svar på intervju der deltakere har brukt løsningen som ble utviklet som en del av prosjektet.

Datatype
Video, Lyd

Språk
Norsk, Engelsk

Nøkkelord
Sikkerhet, Datateknologi, Tredjepartskode, Security , Software security, Dependencies

Data om personer
Ja

Er det noen andre grunner til at dataene dine trenger ekstra beskyttelse?
Nei

Kategorier av personopplysninger
Alminnelige

Utvalgets størrelse
30

Konfidensialitetsklassifisering
Intern

Innsamlingsperiode
01.02.2023 — 31.05.2023

Innsamlingsenheter
1. NTNU Zoom

06.03.2023, 15:20 Datahåndteringsplan

https://dmp.sikt.no/plan/7f000001-847f-1ea2-8185-ddbd9e772308/export 2/3

2. NTNU Microsoft Teams

Datakvalitet
Bruker løsningenes opptaksfunksjonalitet med god internettdekning.

Metode
Intervju

Størrelse
10000 MB

Kommentar
Cirka 30 videointervjuer på 30 minutter.

Format
mp4

Lagring
02. NTNU Personlig hjemmeområde (M:-disk)
05. NTNU Office 365 (SharePoint, Teams, Onedrive)

Overføring
1. NTNU e-post med AIP
2. Office 365 (SharePoint, Teams, Onedrive)
3. Unit FileSender

Arkivering
Nei

Elektronisk spørreskjema
Beskrivelse
Svar på elektronisk spørreskjema der deltakere har brukt løsningen som ble utviklet som en del av prosjektet.

Datatype
Tekst

Språk
Norsk, Engelsk

Nøkkelord
Sikkerhet, Software secuirty, Security, Tredjepartskode, Third party dependencies

Data om personer
Ja

Er det noen andre grunner til at dataene dine trenger ekstra beskyttelse?
Nei

Kategorier av personopplysninger
Alminnelige

Utvalgets størrelse
30

Konfidensialitetsklassifisering
Intern

Innsamlingsperiode
01.01.2023 — 31.05.2023

Innsamlingsenheter
6. Annen innsamlingsmåte

Datakvalitet
Nettskjema ved NTNU

Metode
Selvadministrerende spørreskjema

Beskrivelse

06.03.2023, 15:20 Datahåndteringsplan

https://dmp.sikt.no/plan/7f000001-847f-1ea2-8185-ddbd9e772308/export 3/3

Nettskjema med spørsmål for å svare på.
Størrelse
100 MB

Kommentar
30 pdfer

Format
pdf

Lagring
02. NTNU Personlig hjemmeområde (M:-disk)
05. NTNU Office 365 (SharePoint, Teams, Onedrive)

Overføring
1. NTNU e-post med AIP
2. Office 365 (SharePoint, Teams, Onedrive)

Arkivering
Nei

Appendix B

Data Gathering

This section contains the forms used for data gathering, some of the results, and
a one-pager we wrote to increase the number of participants in the interviews.

B.1 Information Letter About Consent

This letter contains information given to the research participants about the data
collection and the participants’ rights. It is used for the participants to give consent
before the interview.

137

Interview consent form

Purpose of the project
You are invited to participate in a research project where the main purpose is to evaluate a security
tool to assess third-party software.

The project is a master’s thesis made by two students at NTNU to evaluate trust criteria used to
evaluate third-party software dependencies. You will be using a Command Line Interface tool we have
made in your daily work, and we would like to ask some questions about your experience using this
tool.

Which institution is responsible for the research project?
The Norwegian University of Science and Technology is responsible for the project (the data
controller) and it is done in collaboration with Visma AS.

Why are you being asked to participate?
You are working at Visma and are using the relevant programming language and package manager in
your daily work.

We have obtained your contact information from our contact at Visma that is helping us with the
project.

What does participation involve for you?

You will participate in an interview. The information that will be collected is your answers. We will use
a live transcription tool and record the sound and video. The transcription from the tool and the
recording will be used to create a more complete transcription of the interview. The video and sound
recording will be deleted and the complete transcription will be sent to the participants for validation.

The interview will take approximately 30 minutes.

Participation is voluntary
Participation in the project is voluntary. If you chose to participate, you can withdraw your consent at
any time without giving a reason. There will be no negative consequences for you if you chose not to
participate or later decide to withdraw.

Your personal privacy – how we will store and use your personal data
We will only use your personal data for the purpose(s) specified here and we will process your
personal data in accordance with data protection legislation (the GDPR).

Only the institute responsible will have access to the data.
The data will be stored on NTNU’s encrypted servers.
The participants will not be recognizable in publications and the data will be anonymized.

What will happen to your personal data at the end of the research project?
The planned end date of the project is 31.08.2023. The personal data, including any digital recordings,
will be deleted before the end of the project.

Your rights
So long as you can be identified in the collected data, you have the right to:

- access the personal data that is being processed about you
- request that your personal data is deleted
- request that incorrect personal data about you is corrected/rectified
- receive a copy of your personal data (data portability), and
- send a complaint to the Norwegian Data Protection Authority regarding the processing of your

personal data

What gives us the right to process your personal data?
We will process your personal data based on your consent.

Based on an agreement with the Norwegian University of Science and Technology, The Data
Protection Services of Sikt – Norwegian Agency for Shared Services in Education and Research has
assessed that the processing of personal data in this project meets requirements in data protection
legislation.

Where can I find out more?
If you have questions about the project, or want to exercise your rights, contact:

● NTNU IDI via Professor Daniela Soares Cruzes (daniela.s.cruzes@ntnu.no)
● Our Data Protection Officer: Thomas Helgesen (thomas.helgesen@ntnu.no)

If you have questions about how data protection has been assessed in this project by Sikt, contact:
● email: (personverntjenester@sikt.no) or by telephone: +47 73 98 40 40.

Yours sincerely,

Project Leader Students
Daniela Soares Cruzes Sverre Rynning-Tønnesen & Hallvard Molin Morstøl

Consent form
I have received and understood information about the project Automatic software dependency
auditing using trust criteria and have been given the opportunity to ask questions. I give consent to
participate in the interview.
I give consent for my personal data to be processed until the end of the project.

--
(Signed by participant, date)

Chapter B: Data Gathering 140

B.2 Questionnaire to Visma Employees

This section contains the questions that were asked in the questionnaire to the
security experts at Visma.

Trust Criteria Evaluation

You are invited to participate in a research project where the main purpose is to evaluate a security tool

to assess third party software.

The project is a master’s thesis made by two students at NTNU to evaluate trust criteria used to evaluate

third-party software dependencies.

The students:

- Hallvard Molin Morstøl (hallvarm@stud.ntnu.no)

- Sverre Rynning-Tønnesen (sverrery@stud.ntnu.no)

Supervisors:

- Daniela Soares Cruzes (daniela.soares.cruzes@visma.com)

- Monica Iovan (monica.iovan@visma.com)

The estimated time for filling out this form is 10 minutes.

Information about consent
Which institution is responsible for the research project?

Norwegian University of Science and Technology is responsible for the project (data controller), and is

done collaborating with Visma AS.

Why are you being asked to participate?

You are working at Visma and have programming experience.

We have obtained your contact information from our contacts at Visma that is helping us with the

project.

What does participation involve for you?

You will participate in an online-survey. The information that will be collected are your answers to the

questions.

Participation is voluntary

Participation in the project is voluntary. All information about you will be made anonymous. There will

be no negative consequences for you if you choose not to participate.

The planned end date of the project is 31.08.2023.

What gives us the right to process your data?

We will process your data based on your consent.

Based on an agreement with the Norwegian University of Science and Technology, The Data Protection

Services of Sikt – Norwegian Agency for Shared Services in Education and Research has assessed that the

processing of data in this project meets requirements in data protection legislation.

Where can I find out more?

If you have questions about the project, contact:

· NTNU IDI via Professor Daniela Soares Cruzes (daniela.soares.cruzes@visma.com)

· Our Data Protection Officer: Thomas Helgesen (thomas.helgesen@ntnu.no)

If you have questions about how data protection has been assessed in this project by Sikt, contact:

· Email: (personverntjenester@sikt.no) or by telephone: +47 73 98 40 40.

I have received and understood information about the project Automatic software dependency

auditing using trust criteria and consent to participate:

Consent []

Do not consent []

Programming Experience

Which package managers and related programming language(s) do you have experience with using?

NuGet, working in .NET with C# or F# []

npm, working with node.js writing either JS or TS []

pip, installing packages from PyPI and writing in python []

Maven, Gradle, or Ivy for Java []

RubyGems, writing in Ruby []

Other: __ []

What part of the software stack do you mainly work on?

Frontend []

Backend []

Frontend & Backend []

Other: __ []

For have many years have you been programming as part of work?

0-4 years []

5-9 years []

10-14 years []

15+ years []

Other: __ []

Do you host specific versions of dependencies yourself/internally at Visma or do you use the central

package registry (like npmjs, NuGet, maven, PyPI, etc...)?

Yourself/internally []

Central package manager []

Both []

How are you and your team currently dealing with finding dependencies to trust and adding them to

the project? (Please check all the boxes that apply)

Add dependencies when they are needed without doing too much research []

Adding dependencies after doing an assessment on your own without guidelines []

Adding dependencies after doing an assessment on your own but following given guidelines []

Discuss the security of the package with one or multiple team members and getting consensus []

Proposing a package and have an security expert evaluate it before using it []

I have never added a new dependency []

There are no guidelines for how to add dependencies []

Other: __ []

Trust Criteria evaluation
Below we have listed 29 trust criteria used to decide whether to trust a package or not. Please rank how

valuable you think they are in determining if you should include a third-party dependency in your project

(1-5) based on your first impression?

The ranking system describes how important you think the trust criteria is for evaluating the security of a

dependency:

1 - Does not matter

2 - Not necessary

3 - Not necessary but insightful

4 – Valuable

5 - Crucial

NOTE: The complexity of the different trust criteria are quite varying but do not take this into account

when evaluating them.

Time and Human Relations

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

1. The component has been
in widespread use for a
considerable amount of time
2. The component is widely
used/popular
3. Satisfactory time since the
latest update was published
4. The company you are
working for is already using
the package in another
project

Licensing and documentation

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

5. The component has a
software certification from a
certified provider
6. The component provides a
hash or signature that can be
used to make sure that the
software has not been
tampered with
7. The component provides a
standard or well-written
license

8. The component has good
documentation

Maintainers

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

9. The component has an
adequate number of
maintainers and/or
contributors
10. The component is being
developed by an active
maintainer domain
11. The maintainers of the
component are not
overloaded
12. The maintainers of the
component are using a
programming language that
they are familiar with
13. No maintainer accounts
are associated with an
expired email domain
14. The package has not
changed ownership recently
15. The maintainers and
suppliers of the component
are trustworthy (maintainers
use their real identity, email,
country, former projects,
etc.)

Maintenance lifecycle

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

16. The component's
maintenance lifecycle is up
to date (uses tools for
automated dependency
updates, the number of open
issues and pull requests are
relatively low, etc.)

17. There are a small number
of open issues, and they are
not very old
18. The developers of the
component are using
automated code analysis to
review the code
19. The code reviews in the
project are of high quality

Reported problem & deprecation

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

20. The project does not
have reported security
vulnerabilities
21. There is no history of
prior harmful effects
associated with the
component
22. The component is not
deprecated
23. The component does not
depend on deprecated
packages

Other

1-Does not
matter

2-Not
necessary

3-Not necessary
but insightful

4 -Valuable 5-Crucial

24. The size of the repository
(files or bytes)
25. The project has few
direct and transitive
dependencies
26. The component does not
contain installation scripts

27. The component has a
name that does not
resemble that of a popular
package
28. No difference between
the source code and the
package
29. Access to the source
code is provided

Final Questions

Are there any trust criteria that you use or think are valuable, that were not mentioned?

Answer: __

Any other thoughts (about the proposed trust criteria, this questionnaire, etc.)?

Answer: __

Chapter B: Data Gathering 147

B.3 Replies to the Questionnaire from Visma Employees

These are the result of the 15 replies we got from the questionnaire sent to the
Visma employees. For the TC it shows the distribution, the median, and the mode.

Chapter B: Data Gathering 148

Intro Questions

(a) Question 1 (b) Question 2

(c) Question 3 (d) Question 4

(e) Question 5

Chapter B: Data Gathering 149

Time and Human Relations

(a) Trust Criterion 1 - Median: 4, Mode: 4 (b) Trust Criterion 2 - Median: 4, Mode: 4

(c) Trust Criterion 3 - Median: 4, Mode: 3 (d) Trust Criterion 4 - Median: 3, Mode: 3

Chapter B: Data Gathering 150

Licensing and Documentation

(a) Trust Criterion 5 - Median: 4, Mode: 4 (b) Trust Criterion 6 - Median: 4, Mode: 4

(c) Trust Criterion 7 - Median: 5, Mode: 5 (d) Trust Criterion 8 - Median: 4, Mode: 4

Chapter B: Data Gathering 151

Maintainers

(a) Trust Criterion 9 - Median: 4, Mode: 4 (b) Trust Criterion 10 - Median: 4, Mode: 4

(c) Trust Criterion 11 - Median: 3, Mode: 3 (d) Trust Criterion 12 - Median: 4, Mode: 4

(e) Trust Criterion 13 - Median: 3, Mode: 3 (f) Trust Criterion 14 - Median: 3, Mode: 3

(g) Trust Criterion 15 - Median: 4, Mode: 4

Chapter B: Data Gathering 152

Maintenance Lifecycle

(a) Trust Criterion 16 - Median: 4, Mode: 4 (b) Trust Criterion 17 - Median: 4, Mode: 4

(c) Trust Criterion 18 - Median: 4, Mode: 4 (d) Trust Criterion 19 - Median: 4, Mode: 4

Chapter B: Data Gathering 153

Reported Problems & Deprecation

(a) Trust Criterion 20 - Median: 4, Mode: 5 (b) Trust Criterion 21 - Median: 4, Mode: 4

(c) Trust Criterion 22 - Median: 5, Mode: 5 (d) Trust Criterion 23 - Median: 5, Mode: 5

Chapter B: Data Gathering 154

Other

(a) Trust Criterion 24 - Median: 3, Mode: 3 (b) Trust Criterion 25 - Median: 3, Mode: 3

(c) Trust Criterion 26 - Median: 4, Mode: 4 (d) Trust Criterion 27 - Median: 3, Mode: 3

(e) Trust Criterion 28 - Median: 4, Mode: 5 (f) Trust Criterion 29 - Median: 4, Mode: 5

Final Questions

Are there any trust criteria that you use or think are valuable, that were not
mentioned?

Answer 1: Previous experience of the dependency use in other products, inside our
product group, inside Visma. Package costs. Existing licenses from Visma.
Corporate decisions to go with specific vendor solution.

Any other thoughts (about the proposed trust criteria, this questionnaire,
etc.)?

Chapter B: Data Gathering 155

Answer 1: Most of those criteria doesn’t work with closed source dependencies
Answer 2: Criteria 28 "No difference between the source code and the package" is

rather silly criteria to have as in most cases the content of the package is the
compiled version of the source code. The few cases where it makes sense to
do so are for languages where one doesn’t usually do any optimization, like
Python.

Answer 3: As with everything it depends, some of the answers could fluctuate by 1
depending on the dependency in question. I.E. for security vulnerabilities
that are not applicable to your situation (unused features for example). In
that case it wouldn’t hurt to still install it if it has an otherwise proven track
record and actively maintained.

Answer 4: If the package is matured, it is not developed with new functionality or has
old bugs that can be handled. It does the work - it is OK. Often it is not
feasible to switch to something newer. If in the package used functionality
area does not have Security vulnerabilities it is OK. It can have security
vulnerabilities in the functionality area that are not used

B.4 Questionnaire to Computer Science Students

This section contains the questions that were asked in the questionnaire to the
computer science students. The order of the questions about the Serilog, Analyt-
ics, and PTJK.GenericRepoSpecPattern packages were changed to all the different
combinations.

NuGet Package Evaluation
You are invited to participate in a research project where the main purpose is to evaluate three NuGet
packages manually.

This questionnaire is part of a master’s thesis made by two students at NTNU to create a tool that will
use a set of criteria to evaluate third-party software dependencies automatically.

The students:
- Hallvard Molin Morstøl (hallvarm@stud.ntnu.no)
- Sverre Rynning-Tønnesen (sverrery@stud.ntnu.no)

Supervisors:
- Daniela Soares Cruzes (daniela.soares.cruzes@visma.com)

The estimated time for filling out this form is 15 minutes.

Part 1 - Package evaluation
In this part we ask you to do a critical risk evaluation of NuGet packages.

Scenario:
- You are working on a software project and you have found three software packages you think could be
useful in the project.
- Spend as much time evaluating the packages as you normally would when analysing packages. If you
normally don't evaluate packages, then spend as much time as you think is reasonable.
- You have been asked to rank the packages associated risk on a scale from 1-5 (1-high risk and 5-low
risk) and also include some information about how you reached this conclusion.
- You can use any website or tool you like to help you with doing the assessment.

What would you rank Serilog?

 1 2 3 4 5
High risk Low risk

Why did you give Serilog that score?

Answer: __

What would you rank Analytics?

 1 2 3 4 5
High risk Low risk

Why did you give Analytics that score?

Answer: __

What would you rank PTJK.GenericRepoSpecPattern?

 1 2 3 4 5
High risk Low risk

Why did you give PTJK.GenericRepoSpecPattern that score?

Answer: __

Part 2 - Trust criteria used
In this part we want to find out what criteria you used for evaluating the NuGet packages. Please do NOT
go back to Part 1 and change your answers.

Please answer "Yes" for all the criteria you considered, and "Yes, but unable to evaluate" if you thought
of the trust criteria but could not use the information for evaluating the risk of the package being
problematic.

Trust criteria:
- Age of package: How old is the package
- Package having analyzers: Does the package file contain analyzers (analyzers can execute code
automatically)
- Number of Contributors: The number of contributors to the package
- Deprecated package: If the package is deprecated
- Deprecated dependencies: If the package uses any deprecated dependencies
- Direct and transitive dependencies: The amount of direct and transitive dependencies
- Documentation: How is the documentation?
- Package has Initialization script(s): Does the package file contain initalization scripts (initalization scripts
can execute code automatically)
- Known vulnerabilities: Is there any known vulnerabilities associated with the package
- License: Do the package have a license, and if yes, what license
- Number of Open issues: The amount of open issues
- Number of Open pull requests: The amount of open pull requests
- Popularity (downloads): How popular is the package
- Package has a Verified prefix: The package name has been verified by NuGet, and therefore have a
verified prefix
- Widespread use (popularity over time): Have the package been popular over a period of time

Did you consider these criteria when evaluating the packages in the previous section?

 No Yes Yes, but unable to
evaluate

Unsure

1. Age of package
2. Package having
analyzers

3. Number of
Contributors

4. Deprecated
package

5. Deprecated
dependencies

6. Direct and
transitive
dependencies

7. Documentation
8. Package has
Initialization
script(s)

9. Known
vulnerabilities

10. License
11. Number of
Open issues

12. Number of
Open pull
requests

13. Popularity
(downloads)

14. Package has a
Verified prefix

15. Widespread
use (popularity
over time)

Did you consider some other criteria not listed in the previous list? If yes, please elaborate.

Answer: __

Chapter B: Data Gathering 159

B.5 Interview Questions

This section contains the questions that were asked during the interviews with
Visma employees after they had tested the artifact.

Questions to Visma Employees 1

Questions to Visma Employees

Background / Prior habits
For how long have you used the .NET ecosystem?

How often do you normally download packages from NuGet?

Which operating system did you use when testing the tool?

How did you assess the risk/security of NuGet packages before?

Have you used any tools in this assessment?

Do you know about any tools that could be used in such an assessment?

Installing / Using
How was your experience with installing and using the tool?

How much time would you say you used to download it, and have it run on your
machine?

What kind of packages did you test?

Did you experience any issues when testing packages?

Did you use the option flags to get more information?

Usefulness
Do you find AutoTrust useful in your job?

Does using AutoTrust make your job easier?

How do you think using AutoTrust affects your efficiency and performance?

Ease of use
Would you say it was easy to use AutoTrust?

Was your interaction with AutoTrust clear and understandable?

Questions to Visma Employees 2

Was it easier to use AutoTrust over time?

Trust Criteria
Did you look into how each trust criteria operates and what it checks?

Do you have any feedback on the particular trust criteria and their thresholds?
(https://github.com/HallvardMM/AutoTrust)

1. Age

2. Analyzers

3. Contributors

4. Deprecated Package

5. Deprecated Dependencies

6. Direct and Transitive Dependencies

7. Documentation

8. Initialization Script

9. Known Vulnerabilities

10. License

11. Open Issues

12. Open Pull Requests

13. Popularity

14. Verified Prefix

15. Widespread Use

Were there any trust criteria you did not understand?

Were there any trust criteria you found more useful than others?

Were there any criteria you thought were unnecessary?

Were there any trust criteria you felt were lacking?

Questions to Visma Employees 3

Or anything else that could have been interesting to consider when evaluating
the risk?

Rating
Did you find the assessment credible?

Did you feel like the overall star rating represented the result of the various trust
criteria?

Overall idea
What do you think about this way of evaluating the risk of packages?

Is this something you would continue using? If not, why?

Advantages and disadvantages
What did you like?

What did you, not like?

Is there something you would change?

Finishing Question
What do you think should be the next steps in improving this tool?

Anything else you want to add?

Chapter B: Data Gathering 163

B.6 100 NuGet Packages Test

The results after testing 100 NuGet packages. We used the top 50 most down-
loaded packages, 40 random packages, and 10 problematic packages due to them
having some issues. 0 indicates fail, 1 indicates a warning, and 2 means pass. The
results can also be found here: https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/
tree/main/100-package-test

https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/100-package-test
https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/100-package-test

Pa
ck

ag
e

N
am

e
Ve

rs
io

n
C

at
eg

or
y

Ab
le

 to
 fe

tc
h

G
ith

ub
 d

at
a

O
ve

ra
ll

ra
tin

g
Ag

e
An

al
yz

er
s

C
on

tri
bu

to
rs

D
ep

re
ca

te
d

Pa
ck

ag
e

D
ep

re
ca

te
d

D
ep

en
de

nc
ie

s
D

ire
ct

 a
nd

 T
ra

ns
iti

ve
 D

ep
en

de
nc

ie
s

D
oc

um
en

ta
tio

n
In

iti
al

iz
at

io
n

Sc
rip

t
K

no
w

n
Vu

ln
er

ab
ili

tie
s

Li
ce

ns
e

O
pe

n
Is

su
es

O
pe

n
Pu

ll
R

eq
ue

st
s

Po
pu

la
rit

y
Ve

rif
ie

d
Pr

ef
ix

W
id

es
pr

ea
d

U
se

N
ot

e
1

ne
w

to
ns

of
t.j

so
n

13
.0

.3
To

p
50

Y
5

2
2

1
2

2
2

2
2

2
2

0
2

2
2

2
2

se
ril

og
2.

12
.0

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
aw

ss
dk

.c
or

e
3.

7.
10

6.
23

To
p

50
Y

4
0

2
2

2
2

2
2

2
2

1
2

2
2

2
2

4
ca

st
le

.c
or

e
5.

1.
1

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

0
2

2
2

5
ne

w
to

ns
of

t.j
so

n.
bs

on
1.

0.
2

To
p

50
Y

4
0

2
1

2
2

2
2

2
2

2
1

2
2

2
1

6
sw

as
hb

uc
kl

e.
as

pn
et

co
re

.s
w

ag
ge

r
6.

5.
0

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
2

1
2

7
sw

as
hb

uc
kl

e.
as

pn
et

co
re

.s
w

ag
ge

rg
en

6.
5.

0
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
8

po
lly

7.
2.

3
To

p
50

Y
5

0
2

2
2

2
2

2
2

2
2

2
2

2
2

2
9

au
to

m
ap

pe
r

12
.0

.1
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

0
2

2
2

2
10

sw
as

hb
uc

kl
e.

as
pn

et
co

re
.s

w
ag

ge
ru

i
6.

5.
0

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
2

1
2

11
se

ril
og

.s
in

ks
.fi

le
5.

0.
0

To
p

50
Y

5
0

2
1

2
2

2
2

2
2

2
2

2
2

2
2

12
m

oq
4.

18
.4

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

1
2

2
2

2
2

13
sw

as
hb

uc
kl

e.
as

pn
et

co
re

6.
5.

0
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
14

se
ril

og
.s

in
ks

.c
on

so
le

4.
1.

0
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1
15

hu
m

an
iz

er
.c

or
e

2.
14

.1
To

p
50

Y
4

0
2

0
2

2
2

2
2

2
2

0
2

2
2

2
16

xu
ni

t.e
xt

en
si

bi
lit

y.
co

re
2.

4.
2

To
p

50
Y

5
2

2
1

2
2

2
2

2
2

2
0

2
2

2
1

17
se

ril
og

.e
xt

en
si

on
s.

lo
gg

in
g

3.
1.

0
To

p
50

Y
3

0
2

2
2

0
2

2
2

2
2

0
2

2
2

2
18

flu
en

tv
al

id
at

io
n

11
.5

.2
To

p
50

Y
4

0
2

2
2

2
2

2
2

2
2

0
0

2
2

2
19

xu
ni

t.a
bs

tra
ct

io
ns

2.
0.

3
To

p
50

Y
4

0
2

1
2

2
2

2
2

2
1

0
2

2
2

1
20

go
og

le
.p

ro
to

bu
f

3.
22

.3
To

p
50

Y
5

0
2

2
2

2
2

2
2

2
2

2
2

2
2

2
21

xu
ni

t.e
xt

en
si

bi
lit

y.
ex

ec
ut

io
n

2.
4.

2
To

p
50

Y
5

2
2

1
2

2
2

2
2

2
2

2
2

2
2

1
22

co
ve

rle
t.c

ol
le

ct
or

3.
2.

0
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
23

se
ril

og
.s

et
tin

gs
.c

on
fig

ur
at

io
n

3.
4.

0
To

p
50

Y
4

2
2

2
2

0
2

2
0

2
2

2
2

2
2

2
24

st
ac

ke
xc

ha
ng

e.
re

di
s

2.
6.

10
4

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

25
se

ril
og

.fo
rm

at
tin

g.
co

m
pa

ct
1.

1.
0

To
p

50
Y

4
0

2
0

2
2

2
2

2
2

2
0

0
2

2
1

26
xu

ni
t.c

or
e

2.
4.

2
To

p
50

Y
5

2
2

1
2

2
2

2
2

2
2

0
2

2
2

1
27

xu
ni

t.a
ss

er
t

2.
4.

2
To

p
50

Y
5

2
2

1
2

2
2

2
2

2
2

0
2

2
2

1
28

xu
ni

t.r
un

ne
r.v

is
ua

ls
tu

di
o

2.
4.

5
To

p
50

Y
5

2
2

2
2

2
2

2
2

2
2

0
2

2
2

2
29

pi
pe

lin
es

.s
oc

ke
ts

.u
no

ffi
ci

al
2.

2.
2

To
p

50
Y

4
0

2
0

2
2

2
2

2
2

2
0

2
2

1
2

30
xu

ni
t

2.
4.

2
To

p
50

Y
4

2
0

1
2

2
2

2
0

2
2

0
2

2
2

2
31

gr
pc

.c
or

e.
ap

i
2.

52
.0

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

32
xu

ni
t.a

na
ly

ze
rs

1.
1.

0
To

p
50

Y
3

2
0

1
2

2
2

2
0

2
2

0
0

2
2

0
33

se
ril

og
.e

xt
en

si
on

s.
ho

st
in

g
5.

0.
1

To
p

50
Y

4
2

2
2

0
2

2
2

2
2

2
2

0
2

2
1

34
np

gs
ql

7.
0.

2
To

p
50

Y
5

2
0

2
2

2
2

2
2

2
1

2
2

2
2

2
35

po
rta

bl
e.

bo
un

cy
ca

st
le

1.
9.

0
To

p
50

Y
4

0
2

2
2

2
2

2
2

2
1

1
2

2
2

2
36

se
ril

og
.a

sp
ne

tc
or

e
6.

1.
0

To
p

50
Y

4
2

2
1

2
0

2
2

2
2

2
2

2
2

2
2

37
flu

en
ta

ss
er

tio
ns

6.
11

.0
To

p
50

Y
5

0
2

2
2

2
2

2
2

2
2

2
2

2
2

2
38

se
ril

og
.s

in
ks

.d
eb

ug
2.

0.
0

To
p

50
Y

4
0

2
0

2
2

2
2

2
2

2
0

0
2

2
1

39
id

en
tit

ym
od

el
6.

0.
0

To
p

50
Y

4
0

0
2

2
2

2
0

2
2

2
2

2
2

2
2

40
da

pp
er

2.
0.

12
3

To
p

50
Y

4
0

2
0

2
2

2
2

2
2

2
0

2
2

1
2

41
re

st
sh

ar
p

11
0.

2.
0

To
p

50
Y

5
0

0
2

2
2

2
2

2
2

2
2

2
2

2
2

42
nu

ni
t

3.
13

.3
To

p
50

Y
4

0
2

2
2

2
2

2
2

2
1

0
2

2
2

2
43

je
tb

ra
in

s.
an

no
ta

tio
ns

20
22

.3
.1

To
p

50
Y

5
2

2
1

2
2

2
2

2
2

2
1

0
2

2
2

44
nl

og
5.

1.
3

To
p

50
Y

5
2

2
2

2
2

1
2

2
2

2
2

2
2

2
2

45
au

to
m

ap
pe

r.e
xt

en
si

on
s.

m
ic

ro
so

ft.
de

pe
nd

en
cy

in
je

ct
io

n
12

.0
.1

To
p

50
Y

4
0

2
1

2
2

2
2

2
2

2
0

0
2

2
2

46
gr

pc
.n

et
.c

om
m

on
2.

52
.0

To
p

50
Y

5
2

2
2

2
2

2
2

2
2

2
2

2
1

2
2

47
au

to
fa

c
7.

0.
1

To
p

50
Y

4
0

2
2

2
2

2
2

2
2

2
2

0
2

1
2

48
se

ril
og

.s
in

ks
.p

er
io

di
cb

at
ch

in
g

3.
1.

0
To

p
50

Y
5

2
2

1
2

2
2

2
2

2
2

1
0

2
2

1
49

aw
ss

dk
.s

3
3.

7.
10

4.
1

To
p

50
Y

3
0

0
2

2
2

2
2

0
2

1
2

2
2

2
0

50
m

on
go

db
.b

so
n

2.
19

.1
To

p
50

Y
4

2
2

2
2

2
2

2
2

2
1

0
0

2
2

2
M

ed
ia

n
5

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
M

od
e

5
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

51
Yo

ko
.T

oo
l

2.
5.

3
R

an
do

m
N

3
2

2
0

2
2

2
2

2
2

0
0

0
0

1
0

52
ba

r
1.

0.
0

R
an

do
m

N
2

0
2

0
2

2
2

1
2

2
1

0
0

0
1

0
53

Ar
da

lis
.G

ua
rd

C
la

us
es

4.
0.

1
R

an
do

m
Y

3
0

2
2

2
2

2
2

2
2

0
2

2
0

1
2

54
Ko

la
bs

.R
ep

os
ito

ry
.D

ap
pe

r
1.

2.
0

R
an

do
m

N
2

0
2

0
2

2
2

0
2

2
0

0
0

0
1

0
55

Fe
ig

n
1.

4.
1

R
an

do
m

Y
3

2
2

2
2

2
2

2
2

2
1

0
0

1
1

0
56

M
vm

N
et

.A
ct

ive
D

ire
ct

or
y

2.
2.

3
R

an
do

m
N

3
2

2
0

2
2

2
0

2
2

2
0

0
0

1
0

57
M

cs

5.
8.

0
R

an
do

m
Y

3
0

2
2

2
2

2
2

2
2

1
0

2
0

2
0

58
xE

di
.E

di
En

gi
ne

1.
6.

0
R

an
do

m
Y

3
0

2
0

2
2

2
2

2
2

2
1

2
1

1
0

59
H

iN
et

C
lo

ud
.M

ic
ro

so
ft.

Sa
m

pl
es

.D
eb

ug
gi

ng
.M

db
gE

ng
in

e
23

.4
.2

0.
10

R
an

do
m

N
3

0
2

0
2

2
2

1
2

2
2

0
0

0
1

0
60

O
de

To
C

od
e.

Ad
dF

ea
tu

re
Fo

ld
er

s
2.

0.
3

R
an

do
m

Y
3

0
2

0
2

0
2

2
2

2
1

1
2

1
1

0
61

M
em

Bu
s

4.
0.

1
R

an
do

m
Y

2
0

2
0

2
2

2
0

2
2

1
0

0
0

1
0

62
Iro

nS
ou

rc
eH

yp
rM

XS
D

K
5.

1.
2

R
an

do
m

N
2

0
2

1
2

2
2

1
2

2
1

0
0

0
1

0
63

Sq
Ex

pr
es

s
0.

4.
1

R
an

do
m

Y
3

2
2

1
2

2
2

2
0

2
2

0
0

0
1

0
64

H
dr

H
is

to
gr

am

2.
5.

0
R

an
do

m
Y

3
0

2
0

2
2

2
2

2
2

1
0

0
1

1
1

65
Va

ul
tS

ha
rp

1.

13
.0

.1
R

an
do

m
Y

3
0

0
2

2
2

2
2

2
2

2
2

0
1

1
2

66
H

co
.B

as
e.

D
at

aA
cc

es
s.

Ef

0.
6.

5.
5

R
an

do
m

N
2

0
2

0
2

0
2

0
2

2
0

0
0

0
1

0
67

Ye
bo

.N
et

.U
til

ity

1.
0.

0
R

an
do

m
N

2
2

2
0

0
2

2
0

2
2

0
0

0
0

1
0

68
M

od
el

2F
or

m

1.
0.

0
R

an
do

m
N

2
0

2
0

2
2

2
1

2
2

0
0

0
0

1
0

69
M

R
.G

es
tu

re
s

3.
0.

0
R

an
do

m
N

3
2

2
0

2
2

2
1

2
2

0
0

0
0

1
2

70
Irw

an
U

ni
tT

es
tF

ra
m

ew
or

k
1.

0.
0

R
an

do
m

N
2

0
2

0
2

2
2

0
2

2
0

0
0

0
1

0
71

M
tn

.L
ib

ra
ry

4.

0.
0.

83
R

an
do

m
N

2
0

2
0

2
2

2
1

0
2

1
0

0
0

1
0

72
St

oc
kS

ha
rp

.IE
X

5.

0.
13

9
R

an
do

m
Y

3
0

2
2

2
2

2
2

2
2

1
0

2
1

2
0

73
H

M
EF

ra
m

ew
or

k
2.

1.
33

.3
8

R
an

do
m

N
2

0
2

0
2

2
2

0
0

2
0

0
0

0
1

0
74

M
ai

lB
ee

.N
ET

12

.3
.1

R
an

do
m

N
3

2
2

0
2

2
1

1
2

2
1

0
0

0
1

2
75

aq
w

00
1.

Q
Ap

pL
og

ge
r

1.
0.

1
R

an
do

m
N

2
0

2
0

2
2

2
0

2
2

0
0

0
0

1
0

76
R

eg
ex

Pa
tte

rn
s

1.
1.

0
R

an
do

m
Y

2
0

2
1

2
2

2
1

2
2

0
0

0
0

1
0

77
jie

ba
.N

ET

0.
42

.2
R

an
do

m
Y

3
0

2
0

2
2

2
2

2
2

1
0

0
1

1
0

78
Ae

ol
in

.A
w

oB
ot

1.

5.
3

R
an

do
m

N
2

2
0

0
2

0
2

0
2

2
0

0
0

0
1

0
79

Ab
by

y.
C

lo
ud

Sd
k.

V2
.C

lie
nt

1.

0.
6

R
an

do
m

Y
2

0
2

0
2

0
2

2
0

2
1

0
0

1
1

1
80

PT
JK

.G
en

er
ic

R
ep

oS
pe

cP
at

te
rn

1.

0.
1

R
an

do
m

N
1

0
0

0
2

0
2

0
2

2
0

0
0

0
1

0
81

N
SK

ey
ed

U
na

rc
hi

ve
r

1.
1.

3
R

an
do

m
Y

2
0

2
0

2
2

2
0

2
2

1
0

0
0

1
0

82
N

La
ng

ua
ge

Ta
g

3.
2.

0
R

an
do

m
Y

3
0

2
0

2
2

2
2

2
2

2
0

0
1

1
0

83
Bv

e5
_P

ar
si

ng

1.
0.

1
R

an
do

m
Y

2
0

2
0

2
0

2
2

2
2

2
0

2
0

1
0

84
ie

tw
s

0.
2.

12
R

an
do

m
N

2
2

2
0

2
2

2
0

0
2

0
0

0
0

1
0

85
U

ni
ve

rs
al

.B
ur

ea
uO

fM
et

eo
ro

lo
gy

1.

1.
0

R
an

do
m

N
2

0
2

0
2

2
2

0
2

2
1

0
0

0
1

0
86

fm
de

v.
xlf

to
ol

0.

1.
5

R
an

do
m

Y
3

0
2

0
2

2
2

2
2

2
1

1
1

1
1

0
87

R
JG

F.
Ea

sy
Ab

p.
A

bp
.T

re
es

.E
nt

ity
Fr

am
ew

or
kC

or
e

1.
0.

3
R

an
do

m
N

2
0

2
0

2
2

2
0

2
2

0
0

0
0

1
0

88
N

PO
I.H

W
PF

2.

3.
0

R
an

do
m

Y
3

0
2

0
2

2
2

2
2

2
1

0
0

1
1

0
89

N
H

ib
er

na
te

Pr
of

ile
r.A

pp
en

de
r

6.
0.

60
40

R
an

do
m

N
2

2
0

0
2

0
1

1
0

2
1

0
0

0
2

2
90

Au
io

s.
Q

ua
dT

re
e

1.
1.

1
R

an
do

m
Y

3
0

2
0

2
2

2
2

2
2

1
0

0
0

1
0

M
ed

ia
n

2
0

2
0

2
2

2
1

2
2

1
0

0
0

1
0

M
od

e
2

0
2

0
2

2
2

2
2

2
1

0
0

0
1

0

91
As

yn
cB

rid
ge

.N
et

35
0.

3.
1

Is
su

e
Y

2
0

2
0

0
2

2
0

2
2

1
0

0
0

1
0

D
ep

re
ca

te
d

92
M

ic
ro

so
ft.

C
ha

kr
aC

or
e

1.
11

.2
4

Is
su

e
Y

3
0

2
0

2
2

2
0

2
0

1
0

0
0

2
0

Kn
ow

n
Vu

ln
er

ab
ili

ty
93

M
ic

ro
so

ft.
En

tit
yF

ra
m

ew
or

kC
or

e.
To

ol
s

7.
0.

5
Is

su
e

Y
4

0
2

2
2

2
2

2
0

2
2

2
2

2
2

2
H

as
 in

it.
ps

1
an

d
in

st
al

l.p
s1

94
En

tit
yF

ra
m

ew
or

k.
M

ap
pi

ng
AP

I
 6

.2
.1

Is
su

e
N

2
0

2
0

0
2

2
1

0
2

1
0

0
0

1
0

D
ep

re
ca

te
d

95
M

Pl
ay

er
C

on
tro

l
1.

6.
0

Is
su

e
Y

3
0

2
2

2
2

2
2

2
2

0
1

2
1

1
0

H
ig

h-
ris

k
lic

en
se

96
jq

ue
ry

.c
oo

ki
e

1.
4.

1
Is

su
e

N
2

0
2

0
2

2
2

1
2

0
1

0
0

0
1

1
Kn

ow
n

Vu
ln

er
ab

ili
ty

97
M

as
ui

t.T
oo

ls
.C

or
e

2.
6.

0.
2

Is
su

e
Y

2
0

0
2

2
0

2
2

2
2

1
0

0
1

1
0

H
ad

 a
 k

no
w

n
vu

ln
er

ab
ili

ty
98

An
al

yt
ic

s
 3

.8
.1

Is
su

e
Y

3
2

2
2

2
0

1
2

2
2

2
0

0
1

1
0

D
ep

re
ca

te
d

de
pe

nd
en

cy
99

el
Fi

nd
er

.N
et

C
or

e
1.

3.
6

Is
su

e
Y

3
0

2
0

2
2

2
2

2
2

0
0

0
1

1
0

M
is

si
ng

 li
ce

ns
e

10
0

SS
C

M
S

7.
2.

0
Is

su
e

Y
3

2
2

1
2

0
2

2
2

2
0

0
2

1
1

0
H

ig
h-

ris
k

lic
en

se
M

ed
ia

n
3

0
2

0.
5

2
2

2
2

2
2

1
0

0
1

1
0

M
od

e
3

0
2

0
2

2
2

2
2

2
1

0
0

1
1

0
To

ta
l M

ed
ia

n
3

0
2

1
2

2
2

2
2

2
2

0
0

1.
5

1
1

To
ta

l M
od

e
5

0
2

0
2

2
2

2
2

2
2

0
0

2
1

2

Chapter B: Data Gathering 165

B.7 Time Test

The results after testing 10 Nuget packages and comparing the time with running
the "dotnet add package" command on Windows, Mac, and Linux. The results can
also be found here: https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/
tree/main/Time-test
Specifications:

• Windows

� Operating system: Windows 11 Pro 22H2 22621.1555
� System: LENOVO_MT_20NX_BU_Think_FM_ThinkPad T490s
� Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz
� RAM: 16 GB
� .NET version: 7.0.3

• MacOS

� Operating system: MacOS Ventura, Version 13.1
� System: MacBook Pro, 13-inch, 2020, Four Thunderbolt 3 ports
� Processor: 2 GHz Quad-Core Intel Core i5
� RAM: 16 GB
� .NET version: 7.0.200

• Linux

� Operating system: Ubuntu 20.04.6 LTS with kernel 5.15.90.1-microsoft-
standard-WSL2
� System: LENOVO_MT_20NX_BU_Think_FM_ThinkPad T490s
� Processor: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz
� RAM: 16 GB
� .NET version: 7.0.203

https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/Time-test
https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/Time-test

Pa
ck

ag
e

N
am

e
Ve

rs
io

n
Au

to
tr

us
t t

im
e

(W
in

do
w

s)
.N

ET
 ti

m
e

(W
in

do
w

s)
Ra

tio
 W

in
do

w
s

Au
to

tr
us

t t
im

e
(M

ac
)

.N
ET

 ti
m

e
(M

ac
)

Ra
tio

 M
ac

Au
to

tr
us

t t
im

e
(L

in
ux

/W
SL

2)
.N

ET
 ti

m
e

(L
in

ux
/W

SL
2)

Ra
tio

 L
in

ux
/W

SL
2

ne
w

to
ns

of
t.j

so
n

13
.0

.3
5.

13
1.

96
4

2.
61

04
88

8
5.

65
6

2.
46

2
2.

29
7

4.
62

6
2.

37
1.

95
2

se
ril

og
2.

12
.0

5.
59

2.
03

2
2.

74
85

23
62

5.
07

3
4.

02
1

1.
26

2
4.

55
1

3.
72

2
1.

22
3

aw
ss

dk
.c

or
e

3.
7.

10
6.

22
5.

61
2.

18
1

2.
57

40
48

6
6.

29
5.

15
4

1.
22

5.
08

9
4.

66
5

1.
09

1
ca

st
le

.c
or

e
5.

1.
1

4.
75

2.
08

8
2.

27
63

41
5.

78
4

3.
50

2
1.

65
2

5.
15

7
2.

45
6

2.
1

ne
w

to
ns

of
t.j

so
n.

bs
on

1.
0.

2
5.

72
1.

96
9

2.
90

24
88

57
6.

21
6

2.
83

4
2.

19
3

4.
83

8
2.

38
4

2.
02

9
sw

as
hb

uc
kl

e.
as

pn
et

co
re

.s
w

a
gg

er
6.

5.
0

5.
48

2.
04

2
2.

68
31

53
77

5.
13

3
2.

91
1

1.
76

3
4.

93
7

2.
44

7
2.

01
8

sw
as

hb
uc

kl
e.

as
pn

et
co

re
.s

w
a

gg
er

ge
n

6.
5.

0
5.

91
2.

08
4

2.
83

63
72

36
5.

85
4

3.
50

2
1.

67
2

5.
44

2.
42

2
2.

24
6

po
lly

7.
2.

3
5.

41
2.

08
8

2.
59

09
96

17
5.

89
1

3.
13

4
1.

88
4.

20
6

2.
37

7
1.

76
9

au
to

m
ap

pe
r

12
.0

.1
5.

31
2.

04
4

2.
59

63
79

65
5.

45
9

3.
49

2
1.

56
3

5.
33

2
3.

13
1.

70
4

sw
as

hb
uc

kl
e.

as
pn

et
co

re
.s

w
a

gg
er

ui
6.

5.
0

5.
44

2.
31

3
2.

34
97

62
21

5.
25

1
2.

83
3

1.
85

4
4.

72
3

2.
72

4
1.

73
4

Av
er

ag
e

5.
43

36
2.

08
05

2.
61

68
55

47
5

5.
66

07
3.

38
45

1.
73

56
4.

88
99

2.
86

97
1.

78
66

N
ot

e:
 T

he
 ti

m
e

is
in

 se
co

nd
s

Chapter B: Data Gathering 167

B.8 100 Packages Test OpenSSF Scorecard

The results after testing 100 NuGet packages with the OpenSSF Scorecard tool. We
believe that the package marked with red is most likely not the correct source code
even though it is linked on the Nuget webpage for the project. The results can also
be found here: https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/
tree/main/100-package-test

https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/100-package-test
https://github.com/HallvardMM/Master-s-Thesis-AutoTrust/tree/main/100-package-test

Package Name Category Able to fetch Github data Aggregate score (/10)
newtonsoft.json Top 50 Y 3.5
serilog Top 50 Y 4.8
awssdk.core Top 50 Y 6.9
castle.core Top 50 Y 4.9
newtonsoft.json.bson Top 50 Y 3.1
swashbuckle.aspnetcore.swagger Top 50 Y 3.4
swashbuckle.aspnetcore.swaggergen Top 50 Y 3.4
polly Top 50 Y 7.9
automapper Top 50 Y 6.3
swashbuckle.aspnetcore.swaggerui Top 50 Y 3.4
serilog.sinks.file Top 50 Y 4.6
moq Top 50 Y 5.2
swashbuckle.aspnetcore Top 50 Y 3.4
serilog.sinks.console Top 50 Y 3.4
humanizer.core Top 50 Y 4.8
xunit.extensibility.core Top 50 Y 5.3
serilog.extensions.logging Top 50 Y 4.2
fluentvalidation Top 50 Y 4.9
xunit.abstractions Top 50 Y 5.3
google.protobuf Top 50 Y 6
xunit.extensibility.execution Top 50 Y 5.3
coverlet.collector Top 50 Y 4.6
serilog.settings.configuration Top 50 Y 4.2
stackexchange.redis Top 50 Y 4.4
serilog.formatting.compact Top 50 Y 3.4
xunit.core Top 50 Y 5.3
xunit.assert Top 50 Y 5.3
xunit.runner.visualstudio Top 50 Y 5.5
pipelines.sockets.unofficial Top 50 Y 4
xunit Top 50 Y 5.3
grpc.core.api Top 50 Y 5.3
xunit.analyzers Top 50 Y 4.3
serilog.extensions.hosting Top 50 Y 4.2
npgsql Top 50 Y 5.6
portable.bouncycastle Top 50 Y 4.8
serilog.aspnetcore Top 50 Y 4.8
fluentassertions Top 50 Y 5.4
serilog.sinks.debug Top 50 Y 3.1
identitymodel Top 50 Y 6.3
dapper Top 50 Y 4.3
restsharp Top 50 Y 6.8
nunit Top 50 Y 5.2
jetbrains.annotations Top 50 Y 3.9
nlog Top 50 Y 6.6
automapper.extensions.microsoft.dependencyinjection Top 50 Y 3.8
grpc.net.common Top 50 Y 5.3
autofac Top 50 Y 4.8
serilog.sinks.periodicbatching Top 50 Y 3.4
awssdk.s3 Top 50 Y 6.9
mongodb.bson Top 50 Y 5.2
Median 4.8
Mode 5.3

Yoko.Tool Random N
bar Random N
Ardalis.GuardClauses Random Y 6.1
Kolabs.Repository.Dapper Random N
Feign Random Y 4.4
MvmNet.ActiveDirectory Random N
Mcs Random Y 6.3
xEdi.EdiEngine Random Y 3.3
HiNetCloud.Microsoft.Samples.Debugging.MdbgEngine Random N
OdeToCode.AddFeatureFolders Random Y 3.1
MemBus Random Y 2.8
IronSourceHyprMXSDK Random N
SqExpress Random Y 3.1
HdrHistogram Random Y 2.9
VaultSharp Random Y 4.8
Hco.Base.DataAccess.Ef Random N
Yebo.Net.Utility Random N
Model2Form Random N
MR.Gestures Random N
IrwanUnitTestFramework Random N
Mtn.Library Random N
StockSharp.IEX Random Y 4.3
HMEFramework Random N
MailBee.NET Random N
aqw001.QAppLogger Random N
RegexPatterns Random Y 2.8
jieba.NET Random Y 3
Aeolin.AwoBot Random N
Abbyy.CloudSdk.V2.Client Random Y 3
PTJK.GenericRepoSpecPattern Random N
NSKeyedUnarchiver Random Y 3.1
NLanguageTag Random Y 3.1
Bve5_Parsing Random Y 3.7
ietws Random N
Universal.BureauOfMeteorology Random N
fmdev.xlftool Random Y 3.6
RJGF.EasyAbp.Abp.Trees.EntityFrameworkCore Random N
NPOI.HWPF Random Y 2.8
NHibernateProfiler.Appender Random N
Auios.QuadTree Random Y 3
Median 3.1
Mode 3.1

AsyncBridge.Net35 Issue N
Microsoft.ChakraCore Issue Y 4.7
Microsoft.EntityFrameworkCore.Tools Issue Y 7.5
EntityFramework.MappingAPI Issue N
MPlayerControl Issue Y 5.4
jquery.cookie Issue N
Masuit.Tools.Core Issue Y 5.1
Analytics Issue Y 4.9
elFinder.NetCore Issue Y 2.8
SSCMS Issue Y 4.1
Median 4.9
Mode 4.9
Total Median 4.6
Total Mode 5.3

Chapter B: Data Gathering 169

B.9 One-pager

This short text was published internally at Visma to spark some interest in the
topic and to get feedback from some of the developers. The text was based on the
news article from JFrog about malicious NuGet packages [6].

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 1/6

Nicoleta Botosan 3 minutes ago

8 min read

Caught in the NET : The Rising Threat of
Malicious NuGet Packages Targeting .NET
Developers

 Hallvard Molin Morstøl and Sverre Rynning-Tønnesen
- two Master's students from the Norwegian University
of Science and Technology (NTNU) want to present you
some things about a recent attack targeting .NET
developers through NuGet. Want to know how this
affects you and maybe also how to prevent this attack?
Then I recommend you check out this post which is
entirely written by them!

One week ago, the JFrog Security Research team released a blog post
describing a recent attack targeting .NET developers through NuGet. The
attack was performed by spreading malicious NuGet packages that were
downloaded more than 150K times. This speci�c attack used typosquatting
techniques, but this is just one out of multiple possible attack vectors. Quite
interesting! So let's dive in!

VISMA SECURITY PROGRAM - RESEARCH AND DEVELOPMENT

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 2/6

 What does the current threat landscape look like?
Package registries like npm, PyPI, Maven Central, and NuGet can all be used for
spreading malicious packages, and one should not blindly trust and download
packages. The number of attackers using package registries to spread malicious
packages is on the rise and while countermeasures are being worked on this
problem will probably be around for a long time.

These kinds of attacks are also closely related to another form of supply chain
attack where attackers are targeting weaknesses in third-party code. Here
attackers can target dependencies (packages) that are used by other
dependencies. In�ltrating one package, that is used by another package, which
is then used by you, would compromise your program as well as all other
programs having the vulnerable package in their dependency tree. As you see
this means that one malicious package could make a lot of harm. To see a recent
example of a big supply chain attack, just search for the 2020 SolarWinds
hack.

 Which packages should we look out for?
One large security vulnerability with .NET packages is that it facilitates executing
code immediately upon package installation using “init.ps1”-�les. Visual Studio
will automatically run these “init” �les without giving any warning to the user.
This means that we need to make sure the malicious packages are never
downloaded in the �rst place.

There are all kinds of tricks used to make malicious packages look legit.
JFrog lists some indicators for malicious indicators in their post, but these are
just a few of the many possibilities.

Some common indicators are:

 Typosquatting

Typosquatting is a technique where you use a package name that is similar to a
legitimate, and often popular, package. One example of such a package is
"Coinbase.Core" which mimics the package "Coinbase".

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 3/6

 Using package owner names that increase trust or are similar to known users

Another approach used is to use pro�le names that make the package seem
more legitimate. For example "NuGetDev" or "Of�cialDevelopmentTeam". One
can also use names that are similar to the names of known users. Joel Verhagen
is a Microsoft developer working on NuGet with the username "joelverhagen". A
fake pro�le that tries to pretend to be Verhagen is "joeIverhagen", where the
lowercase "L" is swapped with an uppercase "i".

 Inserting misleading metadata

The package metadata in the ".nuspec" contains various information about the
package. Here the author �eld does not go through a veri�cation process and
the attacker could make it look like a package was released by "Microsoft" or
another trusted source. This could be followed up by a well-written description
(which is not the case in this example) to make it look trustworthy.

 Bumping the total number of downloads

As already mentioned the malicious "Coinbase.Core" package found by JFrog
was downloaded 150K times. This is more than the actual "Coinbase" package
which is downloaded 118K times. The attackers have most likely arti�cially
bumped the download count using bots to boost the package’s trustworthiness.

 Using malicious dependencies

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 4/6

Another thing to look out for are the dependencies included. As mentioned, the
packages can be used in a supply chain attack where the code in the package
you download is �ne but the dependency used can be malicious.

 Sooo, how should we protect ourselves?
All developers should do an assessment of packages before adding them to
their projects. If it is possible, it is good to have a second pair of eyes to help
during the evaluation of the package. Since many programming languages allow
the packages to execute code on installation, such as NuGet and npm, the
developer should make sure they trust the code before downloading it. To
prevent being a target of a typosquatting attack you should copy the download
command from the of�cial package registry site.

When adding a dependency you should make it clear in the pull request why you
have added the dependency. It can also be valuable to have guidelines in the

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 5/6

group regarding what information should be included in a pull request when
adding new dependencies. After dependencies are added to a project you
should use some tool to scan the project regularly for vulnerabilities using
dependency scanners such as Github Dependabot, Snyk, etc.

If you want to take some extra steps for increasing security, it is possible to scan
the packages before adding them using OSS-gadgets. OSS-Gadgets is a set of
Microsoft-developed tools that can help �nd obfuscated strings, identify
potential backdoors, calculate a metric for the risk of using a package, etc. They
claim it is still in public preview and that it is not ready for production use, so
one should still be critical when adding packages. After the packages are
assessed you can choose to self-host the package with a set version in a private
package registry. Then you can have a policy to only use packages from the
private package registry. When updating packages to newer versions it is then
important to rescan the package before adding it to the private package registry.
But note that these tools are no guarantee for making sure packages are safe to
use.

 Luckily we’re working on fixing it! But we need your
help!!!
We are currently writing a master’s thesis about software supply chain security,
where we focus on NuGet. We plan to create a tool, to wrap the "dotnet add
package"-command which �rst fetches relevant information about the package
and then automatically assesses the package using a set of trust criteria and
thresholds. The information will be displayed to the developers and they are
prompted if they would still like to add the package.

We are currently working on �guring out which trust criteria are valuable and the
thresholds that make sense to use. Finding good trust criteria that differentiate
benign and malicious packages using the available data from NuGet and other
sites is hard. But by combining different trust criteria it will be harder for
attackers to make the malicious packages seem trustworthy.

If you would like to help with assessing trust criteria, we would appreciate it if
you answered this survey regarding trust criteria
https://forms.gle/WnTEJxSqze2gReot7.

Soon we will also reach out to some of you to run user tests on this tool we are
really appreciating all your help! So thank you!

28/03/2023, 13:21 Visma Security Program - Research and Development | Visma

https://space.visma.com/channels/215285760/VismaSecurityProgramResearchAndDevelopment/article/77949336 6/6

About us:
The students:
- Hallvard Molin Morstøl (hallvarm@stud.ntnu.no) LinkedIn pro�le

- Sverre Rynning-Tønnesen (sverrery@stud.ntnu.no) LinkedIn pro�le

Supervisors:
- Daniela Soares Cruzes (daniela.soares.cruzes@visma.com)
- Monica Iovan (monica.iovan@visma.com)

We really hope that you found this interesting. Curious to �nd more about what
they are planning to do? Then don't hesitate to invite @Daniela Cruzes and/or
@Monica Iovan to a virtual - and they will give you more details if you want
to onboard and give a helping hand to this promising master thesis!

 Happy Spring!

#nuget #security #securityawareness #securityresearch

Appendix C

Project Thesis

The project thesis was done as preparatory research during the last semester. It
was a SLR about software supply chain security.

176

Software Supply Chain Security

A Systematic Literature Review

Hallvard Molin Morstøl
Sverre Rynning-Tønnesen

Autumn 2022

Supervisor: Daniela Soares Cruzes

Contents

Contents . i
Figures . iii
Tables . iv
Acronyms . v
1 Introduction . 1
2 Background and Related Work . 3

2.1 Software security . 3
2.1.1 Software supply chain security 4

2.2 Open-source and closed-source software 4
2.3 Real world attacks . 5
2.4 Countermeasures . 6

2.4.1 Countermeasures and agile development 7
2.5 Related work . 7

3 Research Methodology . 8
3.1 Research Questions . 8
3.2 Data Sources and Search Strategy . 10
3.3 Inclusion and Exclusion Criteria . 11
3.4 Quality Criteria . 12
3.5 Study Selection Steps . 12
3.6 Data Extraction and Data Synthesis . 13
3.7 Analysing online resources . 13

4 Results . 15
4.1 General results . 15
4.2 RQ1 - Attacks . 21
4.3 RQ2 - Countermeasures . 25
4.4 RQ3 - Closed- vs. Open-Source . 32
4.5 RQ4 - Third party . 35
4.6 RQ5 - Detection Tools . 38

5 Discussion . 43
5.1 RQ1 - Attacks . 43
5.2 RQ2 - Countermeasures . 45
5.3 RQ3 - Closed- vs. Open-Source . 52
5.4 RQ4 - Third party . 53
5.5 RQ5 - Detection Tools . 55

i

Contents ii

5.6 Implications for Research . 56
5.7 Implications for Practice . 57
5.8 Threats to Validity . 57

6 Conclusion . 59
6.0.1 Future Work . 59

Bibliography . 61

Figures

3.1 The process of filtering papers. 13

4.1 The number of papers per year . 16
4.2 Attack methods from the papers. 23
4.3 The countermeasures from the papers. 26
4.4 The number of papers mentioning different frameworks. 27
4.5 The number of papers mentioning open-source, closed-source, and

the differences between them . 33
4.6 The number of papers mentioning different package managers. . . . 37

iii

Tables

3.1 Search Strings . 11
3.2 Inclusion and exclusion criteria . 11
3.3 Data extraction form . 14

4.1 Overview of the selected papers (1/5) 17
4.2 Overview of the selected papers (2/5) 18
4.3 Overview of the selected papers (3/5) 19
4.4 Overview of the selected papers (4/5) 20
4.5 Overview of the selected papers (5/5) 21
4.6 Mentions of real world attacks . 22
4.7 Attack methods discussed in papers . 23
4.8 Types of trojans discussed in papers . 25
4.9 Types of viruses discussed in papers . 25
4.10 Types of worms discussed in papers . 25
4.11 Frameworks in the papers . 28
4.12 Design and architecture techniques . 29
4.13 Technical countermeasures . 30
4.14 Analysis tools . 31
4.15 People focused / Manual techniques 31
4.16 Other countermeasure techniques . 32
4.17 Mentions of open- and closed-source software 33
4.18 The trust criteria found in the papers 35
4.19 Package managers . 37
4.20 Specific tools mentioned in papers . 38

iv

Acronyms

2FA Two-factor authentication. 31, 51

BSIMM Building Security In Maturity Model. 45, 48, 51

CAPEC Common Attack Pattern Enumeration and Classification. 6, 17, 27, 45, 47

CC Common Criteria. 14, 34, 48, 49

CD Continuous Deployment. 39, 40, 42, 49, 55

CI Continuous Integration. 39–42, 49, 55

COTS Commercial off-the-shelf. 33, 34, 53

CSPN La Certification de Sécurité de Premier Niveau. 14, 49, 58

CVE Common Vulnerabilities and Exposures. 6, 17, 27, 45, 47

CVSS Common Vulnerability Scoring System. 4

CWE Common Weakness Enumeration. 6, 17, 27, 44, 45, 47, 50

FOSS Free and Open-Source Software. 34

GDPR General Data Protection Regulation. 4

GOTS Government off-the-shelf. 33

IaaS Infrastructure as a service. 6

IDS Intrusion Detection System. 20, 30

IEC International Electrotechnical Commission. 47–49

IEEE Institute of Electrical and Electronics Engineers. 47, 48

IoT Internet of Things. 7, 21

IPS Intrusion Prevention System. 30

v

Tables vi

ISO International Organization for Standardization. 6, 27, 45, 47–49

NIST National Institute of Standards and Technology. 6, 27, 45–47, 52

OWASP Open Web Application Security Project. 6, 27, 45, 48

RQ Research Question. i, 8–10, 12, 14, 15, 21, 24, 25, 32, 35, 38, 42, 43, 45, 52,
53, 55

SBOM Software bill of materials. 21, 27, 32, 39, 51, 53, 57

SLR Systematic Literature Review. 2, 3, 7, 8, 15, 16, 42, 43, 56, 58–60

Chapter 1

Introduction

The modern world is getting more dependent on technology each year. Modern
technology creates many opportunities and helps us solve multiple challenges.
Technology and software have become an integrated part of our daily lives and
are used in almost every job sector.

To adapt to the increased dependency and need for technology and software,
there has been a shift from the waterfall methodology to the agile methodology.
Agile development practices are based on continuous and iterative changes to the
product, with frequent releases of new products to satisfy the customers [1]. In
this strive to deliver new and improved software at a great pace, it has become
common practice to use third-party solutions. The software field has become more
modular, where companies, groups, and institutions focus on their products and
allow other companies to use them. Almost all software used today have third-
party dependencies to help speed up the development process.

Using third-party dependencies is generally considered favorable, but it intro-
duces some security risks. Potential security vulnerabilities in the dependencies
might affect all components using the dependency. In a large software project,
there might be many dependencies, and it is very demanding to ensure that the
dependencies are safe. These vulnerabilities introduced intentionally or uninten-
tionally from third parties can lead to supply chain attacks. Cyber or software
supply chain attacks are cyber-attacks that try to damage an organization by tar-
geting less secure software dependencies.

Software supply chain security is focused on different countermeasures and
techniques used to prevent and minimize consequences from software supply
chain attacks. Since the software supply chain is large and complex there are
multiple attack vectors that need to be defended. Code dependencies, container
images, third-party services, network devices, and people are all examples of soft-
ware supply chain parts that can be used in an attack.

Scientific literature about software supply chain attacks is mostly focused on
open-source software. Open-source software is computer software that is released
with code that is accessible. Depending on the licensing, users can use, modify,
examine, and distribute the code. Closed-source software (also known as pro-

1

Chapter 1: Introduction 2

prietary software or non-free software) is software where the source code is not
openly available. When the code is not available it is more challenging to evaluate
if it can be trusted. Even though more scientific literature has chosen to focus on
open-source software, it does not mean that closed-source software cannot intro-
duce security vulnerabilities to a project. There is a need to further investigate
how software supply chains can be protected from security risks introduced by
closed-source software as well as open-source software.

There are countermeasures developers can use to secure their software supply
chain. Some examples of techniques and tools introduced to handle the risk in-
troduced by third-party software are: tools to scan open-source dependencies [2–
4], frameworks to aid the development process [5–8], and other countermeasures
such as intrusion detection systems [9, 10], version control [11, 12], and authen-
tication [5, 13, 14]. To combat the problem there is a need for multiple different
solutions that consider the development methodology used by the developers,
their experience level, and the size of the company applying them.

This is the first Systematic Literature Review (SLR) on the software supply
chain as a whole, that we are aware of. This paper’s main contributions are:

• A collection of supply chain attacks discussed in scientific literature.
• A presentation of current countermeasures used to prevent supply chain

attacks.
• An evaluation of the main differences when trusting closed-source instead

of open-source software in regards to supply chain security.
• An assessment of trust criteria used when deciding which third-party solu-

tions are to be trusted in the supply chain.
• A collection of tools used to detect vulnerabilities related to supply chain

attacks.

In chapter 2 software supply chain security and its relevant concepts will be
introduced. After that, chapter 3 will present how we conducted the SLR to find
our results. The next section, chapter 4, will show the results from the SLR. The
second to last chapter, chapter 5, is where the results will be discussed. The last
chapter 6 will conclude the paper.

Chapter 2

Background and Related Work

In this section, the different concepts that are relevant for this SLR are explained.
First, a short introduction to software security is given, then a description of open-
and closed-source and their differences are given. After that examples of real-
world attacks and countermeasure techniques are presented. Finally, additional
SLRs related to the area of software supply chain security will be presented.

2.1 Software security

A definition of software security is "software security is a specific concept within
the overall domain of information security that deals with securing the founda-
tional programmatic logic of the underlying software" [15]. Secure software helps
both business and information security. Not using secure software, e.g. outdated
and deprecated software, leaves both organizations and individuals exposed to
threats like malicious hackers, viruses, malware, and worms. If malicious soft-
ware is inserted into your computer or program the consequences can potentially
be devastating. IBM releases a yearly report showing the cost of data breaches for
the given year, and in 2022 the report stated that 83% of the organizations studied
had a data breach and the average cost for a data breach was $4.45 million [16].

Security is a non-functional requirement since it serves as a constraint on the
system design. A non-functional requirement is a specification that outlines stand-
ards that may be used to evaluate the system’s quality as opposed to particular
behaviors. Security is one of these measures of quality. Other examples are modi-
fiability, maintainability, and scalability. Since these requirements are concerned
with the system’s quality and not actions or behaviors like functional require-
ments are, it is harder to measure and observe that they are implemented just by
using the software. Because security is a non-functional requirement it is easy to
downplay its importance and rather prioritize new functionality instead of secur-
ity during software development.

Neglecting the importance of good software security could have dire con-
sequences for the company developing the software. If a company gets comprom-
ised it would hurt its reputation and perceived trustworthiness. The General Data

3

Chapter 2: Background and Related Work 4

Protection Regulation (GDPR) introduced by the European Union has introduced
liability to the software publishers and the need to compensate victims if their
personal data gets stolen by attackers [17].

2.1.1 Software supply chain security

Modern software is usually relying on multiple dependencies to function as ex-
pected. However, these dependencies might introduce security risks to a project.
As mentioned it can be challenging to evaluate the security of software just by
using it without extra information from the provider. This issue of properly eval-
uating security is what leads to the challenges of defending the software supply
chain. The security risk might be introduced intentionally as malware, but it could
also be introduced unintentionally as a consequence of careless security practices
of the third party. Software that unintentionally introduces security risks is also
known as "weakware" [18]. Both are dangerous since the software, in general, is
only as strong as its weakest link [9].

There are multiple parts of the software supply chain that can be attacked
and need to be secured. Software supply chain security is a complex topic as it
is affected by multiple disciplines such as supply chain and operations manage-
ment, security, cryptography, telecommunications, computer science, information
systems, e-commerce, insurance, and risk analysis [19]. The third-party depend-
encies that are used also have their own software supply chain that can be com-
promised. These elongated software supply chains that lack transparency are part
of what makes securing the supply chain such a complicated issue.

A relatively recent example of vulnerabilities introduced by third-party de-
pendencies is the Log4Shell zero-day vulnerability in the Java logging framework
Log4j, which was reported on December 9, 2021. Log4Shell allows a remote at-
tacker to take over an internet-connected device if the target is running a par-
ticular version of Log4j [20]. Many companies were using Log4j directly or us-
ing third-party software that used Log4j. The Apache Software Foundation gave
Log4Shell the highest severity rating on the Common Vulnerability Scoring Sys-
tem (CVSS) [21]. The Log4Shell vulnerability is an example of how a vulnerability
in one software solution can lead to security risks in many projects using it.

2.2 Open-source and closed-source software

When writing new software or starting new projects it is uncommon to build
everything from scratch. Therefore programmers often use third-party software.
Third-party software can be either open-source or closed-source. With open-source
software, you not only have access to use the code or program, but you have free
access to view, edit and share the source code as well [22]. The open-source philo-
sophy is also a way of thinking and collaborating based on intellectual freedom
and core principles like transparency, inclusion, and community. With open-source

Chapter 2: Background and Related Work 5

software, it is common to rely on collaboration and feedback from other program-
mers who are part of the online community.

Looking at the security aspect, having multiple contributors to a project can be
both positive and negative. Having more people look over the code can increase
the chance of finding vulnerabilities, but at the same time having multiple people
writing code increases the chance of someone adding vulnerable code either in-
tentionally or unintentionally. The source code from open-source projects is often
shared on code hosting platforms such as GitHub, GitLab, and SourceForge. The
code can be distributed with package managers such as npm, PyPi, and apt or it
can be downloaded directly from distribution websites.

Looking at closed-source software, also known as proprietary software, the
difference from open-source is that closed-source comes with restrictions. The
biggest restriction is that you do not have access to the source code and as a
consequence, you have no way of checking out the code for yourself [22]. This
can make it harder to evaluate the security level and see which, if any, counter-
measures have been used. However, as you have full control over the code it is
common for companies to write in-house software that is only accessible to other
programmers in the same company.

The scientific literature is more focused on open-source software than closed-
source. This is a natural consequence of open-source software being open, as there
is more to write about and discuss. However, they are both important to look
at especially from a security standpoint, and closed-source software has recently
been in the searchlight as a potential attack vector [23].

2.3 Real world attacks

Supply chain attacks are not just a theoretical issue, there are multiple examples
of real-world attacks. The recent SolarWinds hack in 2020 is probably the most
known attack. The attack was used to upload the Solarigate malware, also known
as Sunburst or UNC2452, to SolarWinds’ customers’ servers [10, 23, 24]. Solar-
Winds Orion Platform is a network management system created to aid customers
to manage their IT resources. SolarWinds had around 33000 customers at the time
of the hack, which might have downloaded the compromised version of the Orion
platform that contained backdoor malware that allowed the hackers to operate
in the customers’ network without any restrictions [10]. Big tech companies such
as Microsoft, Nvidia, Intel, Cisco, Belkin, and VMware were affected, and their
compromise might lead to new hacks in the future since the hackers might have
obtained confidential information that can be used in new attacks [10, 23].

Another example is the Target breach that happened in December 2013. In
this attack, hackers got access to 40 million credit and debit card accounts by
stealing credentials of Target’s heating, ventilation, and air conditioning vendor
[25]. The hackers then used the credentials to access Target’s vendor-dedicated
web services [26]. This breach cost Target 202 million dollars [27] and it shows
how intricate these attacks can be, but also that the potential gains for malicious

Chapter 2: Background and Related Work 6

actors can be huge.
It is easy to believe that software supply chain attacks are only a recent concern

due to the increased reliance on third-party software. This is, however, not the case
as already back in 1984 Ken Thompson demonstrated how a software supply chain
attack could be carried out with a C compiler modified to be a Trojan [27–30].
The attack is known as a “Trusting Trust attack”, and the is done by modifying the
compiler so that when it is compiling its own binary, it keeps the Trojan and when
it compiles some other code it adds a backdoor.

One example showing the relevance of supply chain attacks is the recent spread
of the SocGholish malware, also known as FakeUpdates, through multiple media
websites. A compromised media company, serving content to multiple large news
organizations, has been used by hackers to serve malicious JavaScript code. More
than 250 American newspaper websites, relying on the compromised company,
have been affected [31, 32].

2.4 Countermeasures

Even though securing the software supply chain is a complex task there are mul-
tiple measures developers can take at each step of the supply chain to strengthen
it. There are many parts of the software supply chain that needs to be considered
for protection such as third-party dependencies, container images, assessments of
the Infrastructure as a Service (IaaS) provider, etc. When using third-party de-
pendencies developers can perform different kinds of analysis on them and evalu-
ate their trustworthiness [33]. Some tools are linked to specific package managers
such as npm audit for npm packages and Eclipse Steady for Java dependencies.
Other tools are for general open-source such as Snyk and Github Dependabot.

To help secure the software supply chain there are also multiple frameworks
that can provide knowledge to developers about software security and software
supply chain risk. Some organizations that publish such frameworks are the Na-
tional Institute of Standards and Technology (NIST), the Open Web Application
Security Project (OWASP), and the International Organization for Standardiza-
tion (ISO). Developers can also use lists of vulnerabilities and weaknesses such as
Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration
(CWE), and Common Attack Pattern Enumeration and Classification (CAPEC) to
help prioritize what to secure.

Tools, lists, and frameworks are not the only aids developers can use, as good
coding practices will help as well. Code reviews, testing, and version control will
help protect against attacks and can also help with reducing the damage if an
attack happens. In addition, there are security practices that are not only relevant
for software supply chains. For example, one should not only consider the happy
path, and introducing fail-safes should help to hinder cascading failures. Design
principles such as encapsulation of less trustworthy services and loose coupling
with such services might also help defend the supply chain.

Chapter 2: Background and Related Work 7

2.4.1 Countermeasures and agile development

The countermeasures need to fit with the software-building methodology used by
the company. Agile development is increasing, and currently, 71% of US compan-
ies are using agile development methodology [34], making it the most popular
software-building methodology in the US. Therefore the countermeasures should
be in compliance with the agile working practices and not break the agility as-
pect. Automatic, quick, and flexible solutions are to be preferred to fit with the
changing requirements associated with agile development. Overall, the counter-
measures proposed need to be usable and provide enough value for the work the
developers put into using them.

2.5 Related work

There have been multiple literature reviews written on various topics relevant to
software security and supply chain, but not software supply chain security. Latif
et al. studied 41 articles back in 2019 where they focused primarily on network
security, information security, web application security, and the internet of things
(IoT) [35]. They found out that the highest publishing value came from the Scopus
database and that further research into cyber security in supply chain manage-
ment was needed.

In 2020 Zhao et al. did another literature review where they reviewed 56
papers from 1999 to 2020 [36]. Their focus area was on open-source software
and what evaluation criteria should be used to evaluate and compare open-source
projects. More specifically they looked at 5 indicators designed for open-source
software and performed a correlation analysis on the indicators. The indicators
are code, license, popularity, developer, and sponsorship. Security was one of the
issues they looked into but they did not exclusively look into this. They found
many correlations among the indicators with the most relevant being that project
status, age, activity, copyleft, and developer interest will promote its popularity.
Also, having a license will reduce the popularity.

A third SLR comparing papers between 1990 and 2017 was performed by
Ghadge et al. They wanted to answer the research question "How can organiza-
tions manage cyber risk in the supply chain?" and chose to look at five themes:
cyber risk types, cyber risk propagation, cyber risk points of penetration, cyber se-
curity challenges, and mitigation measures [37]. Their findings point at the human
or behavioral elements and these are found to be critical. In addition, their find-
ings show that there is a need for raising risk awareness, standardizing policies,
collaborating on strategies, and creating common empirical models to increase
cyber-resilience.

Chapter 3

Research Methodology

In this chapter, the research methodology used is described. The guidelines by
Kitchenham and Charters on how to do a SLR were used [38]. In the guidelines,
they describe three phases that are part of an SLR. These phases are planning,
conducting, and reporting the review. In this chapter, the focus is on the planning
and conducting phase. The planning phase includes a description of the research
questions and review protocol which contains both the search strategy and the
inclusion and exclusion criteria. The conducting phase contains study selection
steps, data extraction in Excel and MaxQDA, and finally the data synthesizing
strategy.

3.1 Research Questions

The reason for doing this literature review is to gain more insight into how the
research field and companies deal with software supply chain attacks. We want
to find out what issues they face, what measures they are currently taking to pre-
vent these attacks, and if there are differences between open- and closed-source
projects. The research questions (RQ) this SLR wants to answer are:

• RQ1 Attacks: What types of supply chain attacks are prominent and dis-
cussed in academic literature?
• RQ2 Countermeasures: What are the current countermeasures used to pre-

vent supply chain attacks?
• RQ3 Closed- vs. Open-Source: What are the main differences when trust-

ing closed-source instead of open-source in regard to software supply chain
attacks?
• RQ4 Third party: What are the criteria used when deciding which third-

party solutions are to be trusted in the supply chain?
• RQ5 Detection Tools: What are the tools used to detect vulnerabilities re-

lated to supply chain attacks?

8

Chapter 3: Research Methodology 9

RQ1 Attacks: What types of supply chain attacks are prominent and discussed
in academic literature?

By asking this question the intention is to find out what attacks are most discussed
today. This is important both for getting an overview of the different attacks known
and to see what the literature finds the most interesting to look more into. Know-
ing this could give a guideline as to what part of the supply chain is the most
vulnerable and potentially where it is suitable to put in defense mechanisms.

RQ2 Countermeasures: What are the current countermeasures used to pre-
vent supply chain attacks?

To be better suited for protecting the software supply chain knowledge about what
current countermeasures are being used to stop attacks is valuable. Answering this
question could give some insight into which countermeasures could be further
improved or which ones should be switched out with new and better approaches.
It can potentially also give insight into how many different countermeasures are
being used and what parts of the software supply chain are being prioritized.

RQ3 Closed- vs. Open-Source: What are the main differences when trusting
closed-source instead of open-source in regard to software supply chain at-
tacks?

The difference between closed- and open-source software is that with open-source
software everyone, including attackers, is able to see the source code which de-
scribes how the program operates. On the other hand with closed-source solutions,
it is not possible for anyone to see the source code, which could potentially make
it safer, but at the same time, you will not get help from the public for finding and
patching vulnerabilities [39].

By asking this question the objective is to see if there are differences in trust
when using source code that is open for everyone compared to code that is closed-
source. This question could potentially also give an insight into differences in how
the public operates in contrary to private companies that might use a lot of private
in-house code.

RQ4 Third party: What are the criteria used when deciding which third-party
solutions are to be trusted in the supply chain?

Third-party software solutions are reusable software or components that are avail-
able and owned by someone else and most often distributed by a company [40].
The goal with this RQ is to see if there are any common procedures for deciding
what third-party components that are safe to use. This could give insight into what
steps are currently taken for addressing safe code and what one could do to make
sure the data sent and retrieved from third-party services are secure.

Chapter 3: Research Methodology 10

RQ5 Detection Tools: What are the tools used to detect vulnerabilities related
to supply chain attacks?

When it comes to writing secure software there is always a chance of human er-
rors and mistakes being made. It is therefore important to develop good tools
and methods for detecting potential vulnerabilities so that one could fix the is-
sue before it is exploited by an attacker. This is a constant job as most software
projects are constantly under development. This RQ focuses on the method used
to detect attacks and vulnerabilities in the software supply chain. Knowing which
parts of the software supply chain that have detection tools made for it and not
give a better starting point for future work on discovering and improving current
methods.

3.2 Data Sources and Search Strategy

Paper Databases

When deciding on where to gather the papers from, we wanted to use large lib-
raries that we were familiar with. The decision, therefore, fell on Scopus and Web
of Science. Other libraries were considered but after having done some different
searches in the two libraries we found out that we got a high enough number of
articles from those two to make sure the papers were representative.

As part of the preliminary search, we tried out multiple combinations of strings
in both Scopus and Web of Science and compared the number of articles and
their relevance. When trying out different search strings we first checked that the
number of articles found was high enough to get some valuable data but still low
enough that we could cover all of it. We then did some random sampling and read
the first sentences of multiple abstracts to see if the searches gave the resulting
types of papers we were looking for.

Search Strings

The search strings we ended up using are in Table 3.1. Both Scopus [41] and Web
of Science [42] supports a Boolean syntax, which made it possible to express the
same search in both libraries even though the syntax is a bit different.

Chapter 3: Research Methodology 11

Table 3.1: Search Strings

Source Search String

Web of Science ALL = ((Supply AND Chain) AND (Security) AND (Soft-
ware OR Microservice OR Agile))

Scopus TITLE-ABS-KEY("supply") AND TITLE-ABS-KEY("chain")
AND TITLE-ABS-KEY("security") AND (TITLE-ABS-
KEY("software") OR TITLE-ABS-KEY("microservice") OR
TITLE-ABS-KEY("agile"))

3.3 Inclusion and Exclusion Criteria

To make the filtering process of the papers more efficient and to make sure the
inclusion and exclusion of papers were done as similarly as possible by both re-
searchers we started by defining some inclusion and exclusion criteria. These were
made after having done the initial search. Then after reading through 20 abstracts
together we added some more criteria. During the remaining filtering, some small
changes were made in the criteria when we found new trends either relevant or
not relevant that did not break with the criteria for the papers already filtered. We
found out that the most common topic of papers we excluded was about physical
supply chains using radio frequency identification and not related to software.
Table 3.2 lists the final inclusion and exclusion criteria.

Table 3.2: Inclusion and exclusion criteria

Inclusion criteria

IC1 Papers that describe techniques of preventing software
supply chain attacks or vulnerabilities in the software
supply chain.

IC2 Papers that mention trust in open-source or closed-source
software.

IC3 Papers that mention third-party solutions in the software
supply chain context.

IC4 Papers describing companies’ approach to software sup-
ply chain security.

Exclusion criteria

EC1 Papers that do not have software as the main focus.
EC2 Papers about blockchain.
EC3 Papers focusing on AI or Machine Learning.
EC4 Papers focusing on hardware.
EC5 Papers focusing on agriculture.

Chapter 3: Research Methodology 12

Note that even though we decided to exclude papers discussing blockchain,
we decided to include one paper Blockchain Technology for Secure Supply Chain
Management: A Comprehensive Review (P13). This paper was included since we
wanted to explore if blockchain technologies could have any relevance to the soft-
ware supply chain and since P13 was a comprehensive review, we thought it could
be a good summary of use cases of blockchain for the supply chain.

3.4 Quality Criteria

When evaluating the papers it is considered critical to assess their quality [38].
Quality criteria are used in combination with the inclusion and exclusion criteria.
There is not one clear definition of "quality" but a common interpretation is that
the quality is related to what extent a study minimizes bias and maximizes in-
ternal and external validity [38]. In this project, quality criteria were initially not
explicitly stated as an early search resulted in few papers. Because of the small
number of papers we did not filter on quality criteria, since we did not want to
exclude more papers than was strictly necessary. However, when going through
the papers we found some criteria such as how well the research was described
and if the results seemed plausible based on the research method. These criteria
were used in combination with how well the papers answered the RQs to decide
and rate the relevance of the papers.

3.5 Study Selection Steps

The filtering of papers from Scopus and Web of Science was done in multiple steps
and is illustrated in Figure 3.1. Before we could start the filtering we had to find the
relevant papers, and this was done as described in section 3.2. The searches were
executed in September 2022 using the search strings from Table 3.1. The search
resulted in 609 papers from Scopus and 317 papers from Web of Science. The
information from Scopus was exported to RIS format and then into Endnote. The
information from Web of Science was exported directly into Endnote. Endnote
is a reference management tool [43], and we first used it to identify duplicate
references. There were 164 duplicates, which we filtered out, and after the initial
filtering, we had 762 papers.

In the second filtering step, we read through the abstract of the 762 papers
and filtered based on the inclusion and exclusion criteria. Firstly, we both filtered
a set of 20 papers together to see that our interpretation of the inclusion and ex-
clusion aligned. We had a 92% agreement on which articles should be included
and excluded, and after a quick discussion, we agreed that the last 8% was small
enough to not really affect the end result. Based on the high percentage of agree-
ment, we decided to split the papers into two parts to evaluate them separately. We

Chapter 3: Research Methodology 13

Figure 3.1: The process of filtering papers.

deiced to filter the papers into the three folders "include", "exclude", and "uncer-
tain". After the separate filtering 61 papers were considered included, and 54 we
were uncertain about. After examining the 54 papers together we decided to keep
15 of them, which led to 76 relevant papers based on the inclusion and exclusion
criteria, and 686 were filtered out.

The last filtering happened naturally while reading through the papers. There
were some papers that were not possible to obtain and some were written in
another language than English, even though, the abstract and title were in English.
The excluded papers from this step were P05, P16, P38, P42, P52, P56, P61, and
P75. These papers were also removed from Table 4.1.

3.6 Data Extraction and Data Synthesis

After collecting the 68 papers we evaluate them based on a data extraction form
made in Excel. The data extraction fields are presented in Table 3.3, where we
use "#" to note that there could be multiple of this field. Most of the fields were
used to extract qualitative data and needed some interpretation from us to extract
the important parts. The extraction process was probably affected by researcher
reflexivity as our assumptions and beliefs affected what we consider noteworthy.

We used the data we extracted during data extraction to do data synthesis.
The information from the data synthesis is included in chapter 4.

3.7 Analysing online resources

As part of the data extraction, we also looked into two discussion forums to see
if there were some aspects of securing the supply chain we had missed. We were
curious to see if software developers and other computer security practitioners
discussed topics not explored in scientific literature.

Chapter 3: Research Methodology 14

Table 3.3: Relevant information extracted from the papers.

Type Data Extraction Fields

Metadata Status, Extraction date, Title, Author,
Year, Source

Publication feature Type of paper, Goal of the paper, Re-
search questions/hypotheses, Study type

General Results, Findings, Implications, Threat to
validity

Other Comments
RQ1: Attacks General vulnerabilities, Attack method

#, Procedure #, Risk #, Severity #
RQ2: Countermeasures Countermeasure #, Name/Description

#, Technique #, Tool #, Recommenda-
tion #, Feasibility #

RQ3: Closed-source vs. open-source Discusses closed-source, Discusses open-
source, Differences between sources

RQ4: Third-party solutions criteria Discusses using third-party solutions,
Specific mentioning of third-party solu-
tions, Deciding trust criteria

RQ5: Tools to detect vulnerabilities Tool #, Type of vulnerability #, Which
part of the supply chain is affected #,
How it works #

We searched on Stack Overflow with the search string “Supply chain” attacks
and “Supply chain” security, which gave 24 and 36 results, respectively. We also
searched Security Stack Exchange with the search string “Supply chain”. This gave
153 results. These searches were done in September 2022.

These searches did not provide much information of value, since they were
very general about the supply chain or how to implement specific tools. The main
takeaways were that the French government introduced a “first-level security cer-
tification” La Certification de Sécurité de Premier Niveau (CSPN), similar to Com-
mon Criteria (CC) in 2008, to help establish trust in products [44], and a security
principle that one should use a four-eyes principle when including new depend-
encies [45]. Overall, there were few results, which can be an indication that the
problem is not widely known or more likely that there are no good solutions to
tackle the issue.

Chapter 4

Results

The results from the SLR are presented in this section. The results are divided into
subsections to help answer the RQs presented in section 3.1. Tables and graphs
are used to give further insight into the information collected from the 68 papers
used in this SLR.

4.1 General results

The papers used as part of this SLR were published between 2002 and 2022.
Figure 4.1 shows the graph of the number of papers published per year. The two
spikes coincide with the Target breach in 2013 and the SolarWinds Hack in 2020.
Overall, there is an upward trend in the number of articles released on this topic,
and the decrease in 2022 is likely due to the delay between when papers are
written and when they are published.

The 68 papers were also given a classification based on how related they were
to software supply chain attacks and if they could be used to answer any of the
RQs. The different categories were "Relevant", "Somewhat relevant", "A few in-
teresting points", "Not very relevant", and "Not relevant". The distribution was as
follows; "Relevant": 19 papers, "Somewhat relevant": 9 papers, "A few interesting
points": 11 papers, "Not very relevant": 20 papers, "Not relevant": 9 papers.

15

Chapter 4: Results 16

Figure 4.1: The number of papers per year.

A complete list of all the papers with titles, authors, descriptions, and code
used to reference them is displayed in Table 4.1, Table 4.2, Table 4.3, Table 4.4,
and Table 4.5. The authors with the most articles in this SLR are C. W. Axelrod
(P10, P35, P54), R. A. Martin (P09, P73), M. Ohm (P11, P68), and D. L. Vu (P34,
P44).

Chapter 4: Results 17

Table 4.1: Overview of the selected papers (1/5)

Code Title Authors Description

P01 Automatic Security Inspection Frame-
work for Trustworthy Supply Chain

Nakano et al. [46] Implemented a framework for supply
chain and evaluate the performance.

P02 Information Security in Value Chains: A
Governance Perspective

Patnayakuni & Patnayakuni [25] Presents a framework for information se-
curity governance.

P03 A comparative study of vulnerability re-
porting by software composition analysis
tools

Imtiaz et al. [47] Studies the difference in vulnerability re-
porting by various software composition
analysis tools.

P04 A Socio-technical Framework for threat
Modeling a Software Supply Chain

Sabbagh & Kowalski [5] Studies software supply chain security
problems from a systemic viewpoint. It
addresses three main issues: modeling
the target system, identifying threats,
and analyzing countermeasures.

P06 Advancing software assurance with
public-private collaboration

Mead & Jarzombek [3] Inform about the DHS SwA Program
which seeks to improve people, pro-
cesses, and technology in the develop-
ment and acquisition of software.

P07 An Efficient Web Authentication Mech-
anism Preventing Man-In-The-Middle At-
tacks in Industry 4.0 Supply Chain

Esfahani et al. [13] They propose a TLS-based authentic-
ation mechanism, which is resistant
against Man-In-The-Middle Attacks in
web applications.

P08 Assessing the Security Risks of Mul-
ticloud SaaS Applications: A Real-World
Case Study

Akinrolabu et al. [14] Presents the Cloud Supply Chain Cyber
Risk Assessment model.

P09 Assurance for CyberPhysical Systems:
Addressing Supply Chain Challenges to
Trustworthy Software-Enabled Things

R. A. Martin [48] Addresses issues with insecure software
based on CVE, CWE, and CAPEC.

P10 Assuring software and hardware secur-
ity and integrity throughout the supply
chain

C. W. Axelrod [49] The paper presents a model to ensure
supply chain integrity and protect cus-
tomer assets.

P11 Backstabber’s Knife Collection: A Review
of Open Source Software Supply Chain
Attacks

Ohm et al. [11] Analyses 174 open-source malicious soft-
ware packages.

P12 Beyond SolarWinds: The systemic risks of
critical infrastructures, state of play, and
future directions

Raponi et al. [10] Focuses on the SolarWinds attack and
how to secure critical infrastructure.

P13 Blockchain Technology for Secure Sup-
ply Chain Management: A Comprehens-
ive Review

Agarwal et al. [50] The paper explores options to use block-
chain in the supply chain.

P14 Building a Secure Software Supply Chain
with GNU Guix

L. Courtès [28] The paper proposes a model and a tool
to authenticate new Git revisions.

P15 CloudChain: A novel distribution model
for digital products based on supply
chain principles

Vazquez-Martineza et al. [51] Presents a distribution model called
CloudChain.

P17 Containing Malicious Package Updates in
npm with a Lightweight Permission Sys-
tem

Ferreira et al. [12] A permission system where they encap-
sulate npm packages.

P18 Critical success factors of web-based
supply-chain management systems: An
exploratory study

Ngai et al. [52] Reports the results of a survey on the crit-
ical success factors of web-based supply
chain management systems.

P19 Cyber security in supply chain manage-
ment: a systematic review

Latif et al. [35] A literature review of 41 articles related
to cyber security in supply chain manage-
ment.

Chapter 4: Results 18

Table 4.2: Overview of the selected papers (2/5)

Code Title Authors Description

P20 Cyber supply chain risk management: Re-
volutionizing the strategic control of crit-
ical IT systems

S. Boyson [6] Presents a survey of practices aimed at
achieving structural integration and risk
management across the IT supply chain.

P21 Cyber supply chain security practices DNA
- Filling in the puzzle using a diverse set of
disciplines

N. Bartol [53] Describes how the cyber supply chain
community has evolved towards creating
standards and best practices.

P22 Data security services, solutions and stand-
ards for outsourcing

Hamlen & Thuraisingham [54] Presents security challenges that result
from outsourcing data management and
software development activities.

P23 Digital Enterprise and Cyber Security Evol-
ution

Raicu & Raicu [55] Address the evolutionary cyber threats in
the last decade using public resources.

P24 Each person and organization in the supply
chain path "touches," or has influence on,
the security and resilience of software used
to control products, systems, and services

R. Stempfley [56] Presents how people and organizations
influence and affect the software supply
chain.

P25 Enhancement of confidence in software in
the context of international security

Markov & Sheremet [57] Presents an overview of international as-
pects of software security enhancement.

P26 Ensuring software assurance process ma-
turity

Wotring & Migues [58] Describe a software assurance checklist
that companies can use to understand
their supply chain and its vulnerabilities.

P27 Ensuring your development processes
meet today’s cyber challenges

Chrissis et al. [59] Provides a brief survey of process cap-
ability frameworks, secure lifecycle prac-
tices, and implementation approaches.

P28 Estimating the Attack Surface from Resid-
ual Vulnerabilities in Open Source Soft-
ware Supply Chain

Yan et al. [60] This paper discusses the number of pa-
pers that contain vulnerabilities and per-
centages that are patched.

P29 Evaluation indicators for open-source soft-
ware: a review

Zhao et al. [36] Summarize, collate and identify correl-
ations to guide the evaluation of open-
source projects.

P30 How international standard efforts help
address challenges in today’s global ICT
marketplace

Shankles et al. [61] Inform and argue why companies should
strengthen their software supply chain.

P31 Identity is the new perimeter in the fight
against supply chain attacks

B. Hensley [62] A case study of the SolarWinds attack
and explains what to consider regarding
software supply chain attacks.

P32 I’ll buy that! Cybersecurity in the internet
marketplace

Pfleeger et al. [63] Focus on what determines the level and
effort software vendors invest in assuring
that their products are free from security
vulnerabilities.

P33 Integrating Zero Trust in the cyber supply
chain security

Amaral et al. [64] Proposes to integrate a Zero Trust archi-
tecture in cyber supply chains.

P34 LASTPYMILE: Identifying the Discrepancy
between Sources and Packages

Vu et al. [2] Presents LastPyMile which reduces the
number of alerts produced by a malware
checking tool to a number that a human
can check.

P35 Malware, "weakware," and the security of
software supply chains

W. Axelrod [18] Presents contexts in which software sup-
ply chain risks are experienced.

P36 Objectives for managing cyber supply
chain risk

M. Windelberg [65] Recommends a set of objectives for cyber
supply chain risk management and ex-
amines the connotations of each object-
ive with the intent to improve risk cover-
age.

Chapter 4: Results 19

Table 4.3: Overview of the selected papers (3/5)

Code Title Authors Description

P37 On SolarWinds Orion Platform Security Breach Sterle & Bhunia [24] Analyze the security incident regarding
SolarWinds’ Orion Platform.

P39 On the Feasibility of Detecting Software Sup-
ply Chain Attacks

X. Wang [27] Presents the technical challenges when
defending against software supply chain
attacks.

P40 On the security cost of using a free and open
source component in a proprietary product

Dashevskyi et al. [66] Presents publicly available factors to
identify which has an impact on the se-
curity effort of using open-source soft-
ware.

P41 Open industry standards for mitigating risks to
global supply chains

Szakal & Pearsall [67] The paper defines the global tech sup-
ply chain landscape in which global tech
vendors are operating.

P43 Poisoning the Software Supply Chain E. Levy [29] Investigates how software’s distribution,
both open-source and proprietary, can in-
vite attacks.

P44 Towards Using Source Code Repositories to
Identify Software Supply Chain Attacks

Vu et al. [68] Propose an approach to detect code in-
jected into software packages by com-
paring their distributed artifacts with the
source code repository.

P45 Research on Software Development Process
Assurance Models in ICT Supply Chain Risk
Management

Xie et al. [69] Propose a software security assurance
model for software development.

P46 Risk assessment method for IoT software sup-
ply chain vulnerabilities

Zhu et al. [7] Designs and proposes an objective risk
assessment method for IoT software
chain vulnerabilities, and verifies the
feasibility and effectiveness of the
method through experiments.

P47 Safety engineering with COTS components O’Halloran et al. [70] Explore the application of an integrated
approach to safety engineering in which
assurance drives the engineering pro-
cess.

P48 Secure Software by Design S. Rothschild [8] Presents the requirements to reduce at-
tack and mitigate damage when attacked
by malware and reduce the financial loss
when a malware attack is successful.

P49 Securing high-tech goods across the supply
chain

C. Gottlieb [71] Discusses how manufacturers can be-
gin to target their investments in supply
chain security appropriately by segment-
ing their products according to two char-
acteristics: complexity and criticality.

P50 Securing Software Ecosystem Architectures
Challenges and Opportunities

Scacchi and Alspaugh [72] Discuss how vulnerabilities in software
supply chain processes and ecosys-
tems can be mitigated, and how local
enterprise- or platform-specific cyberse-
curity can be improved.

P51 Security Evaluation Criteria of Open-Source
Libraries

Mills & Butakov [73] Provides the basis for a simple-to-use
checklist that can be used to quickly ana-
lyze open-source libraries.

P53 Security in the cyber supply chain: A Chinese
perspective

Rongping & Yonggang [74] The paper presents the Chinese practices
when it comes to securing the cyber sup-
ply chain.

Chapter 4: Results 20

Table 4.4: Overview of the selected papers (4/5)

Code Title Authors Description

P54 Software security assurance SOUP to NUTS C. W. Axelrod [75] Use an expanded version of the Cynefin
Framework to come up with preferred
approaches to categorizing software sup-
ply chains.

P55 SolarWinds Software Supply Chain Security: Bet-
ter Protection with Enforced Policies and Techno-
logies

Yang et al. [23] Investigates what caused the SolarWinds
attack and what solutions we might have
to prevent similar attacks in the future.

P57 Supply Chain Risk Management - Understanding
Vulnerabilities in Code You Buy, Build, or Integ-
rate

P. R. Croll [76] Describes the scope of the problem re-
garding software vulnerabilities and the
current state of the practice in static code
analysis for software assurance.

P58 Supply Chain Trust Kshetri & Voas [26] The main goal is to enlighten the pub-
lic about the security problems with soft-
ware supply chains.

P59 Supply-Chain Risk Management: Incorporating
Security into Software Development

Ellison & Woody [77] Describes practices that address software
defects and mechanisms for introducing
these practices into the acquisition life
cycle.

P60 Supply-Chain Security for Cyberinfrastructure
[Guest editors’ introduction]

Forte et al. [78] Discusses the integrity of hardware and
software components across their life
cycle of design, manufacturing, distribu-
tion, integration, and updating.

P62 Talking about the Software Supply Chain A. Wirth [79] Discusses the importance of the composi-
tion of your products and diligently man-
aging the security of your software sup-
ply chain.

P63 The challenge of cyber supply chain security to
research and practice - An introduction

Linton et al. [19] Argues that the academic literature, the
research, and publications in the area of
cyber challenges are rather sparse and
the text intendeds to act as a resource
and as a call to research.

P64 The Diversification and Enhancement of an IDS
Scheme for the Cybersecurity Needs of Modern
Supply Chains

Deyannis et al. [80] This work presents the implementation
of a low-cost reconfigurable intrusion de-
tection system (IDS) that can be easily
integrated into supply chain networks.

P65 Threat analysis in the software development life-
cycle

Whitmore et al. [81] This project investigated aspects of se-
curity in software development, includ-
ing practical methods for threat analysis.
The project also examined existing meth-
ods and tools, assessing their efficacy for
software development within an open-
source software supply chain.

P66 Top Five Challenges in Software Supply Chain Se-
curity: Observations From 30 Industry and Gov-
ernment Organizations

W. Enck & Williams [82] Presents the top five challenges in soft-
ware supply chain security that they
identified through running three sum-
mits with a diverse set of organizations.

Chapter 4: Results 21

Table 4.5: Overview of the selected papers (5/5)

Code Title Authors Description

P67 Towards An Analysis of Software Supply Chain
Risk Management

Du et al. [30] Presents the risks which software sup-
ply chain is facing, some risk manage-
ment practices, and some concrete meas-
ures to improve software supply chain
risk management.

P68 Towards detection of software supply chain at-
tacks by forensic artifacts

Ohm et al. [83] Presents a first analysis of observable ar-
tifacts of malicious packages and a pos-
sible mitigation strategy that might lead
to more insight in long term.

P69 Towards Measuring Supply Chain Attacks on
Package Managers for Interpreted Languages

Duan et al. [84] Proposes a comparative framework to
qualitatively assess the functional and se-
curity features of package managers for
interpreted languages.

P70 Trust and tamper-proof software delivery Naedele & Koch [85] Examines different trust models in the
software supply chain.

P71 Trust Engineering - Rejecting the Tyranny of the
Weakest Link

S. D. Alexander [9] Seeks to expand practitioners conversant
with concepts of trust engineering.

P72 Universal and secure object ownership transfer
protocol for the Internet of Things

Ray et al. [86] Proposes a novel ownership transfer
mechanism that securely transfers an
RFID tagged objects in Internet of Things
(IoT).

P73 Visibility & Control: Addressing Supply Chain
Challenges to Trustworthy Software-Enabled
Things

R. A. Martin [4] Ideas on if Software Bill of Materials
(SBOM) can be used in tool-to-tool ex-
changes.

P74 We cannot blindly reap the benefits of a global-
ized ICT supply chain!

Davidson & Shankles [87] Addresses the Supply Chain Risk Man-
agement challenges, but not software re-
lated, faced by the US.

P76 What are Weak Links in the npm Supply Chain? Zahan et al. [33] Describes and discusses weak link signals
in the npm supply chain.

4.2 RQ1 - Attacks

RQ: What types of supply chain attacks are prominent and discussed in academic
literature?

After reading through the different papers we found that the most discussed
attack was the recent 2020 SolarWinds hack. From Table 4.6 it is also clear that
most of the attacks are only mentioned in one of the papers, with P13 and P43
containing the most. In addition, the SolarWinds hack was the only attack that
had papers specifically focusing on it (P12, P37, P55).

Chapter 4: Results 22

Table 4.6: Mentions of real world attacks.

Name Year Mentioned in papers

SolarWinds (Solarigate,
Sunburst, and UNC2452)

2020 P12, P13, P28, P30, P31, P33,
P37, P39, P55, P66, P76

Ken Thompson’s Trojaned C
compiler

1984 P14, P39, P43, P67

Target Breach 2013 P2, P39, P58

Kaseya 2021 P13, P39

Apple Xcode 2021 P13, P69

Equifax 2017 P50, P58

Mimecast 2021 P13

SITA 2021 P13

ClickStudios 2021 P13

BigNox 2021 P13

Verkada 2020 P13

Able 2020 P13

Ledger 2020 P13

Ticketmaster 2018 P58

British Airways 2018 P58

Irssi 2002 P43

Fragroute/Fragrouter/Dsniff 2002 P43

BitchX 2002 P43

OpenSSH 2002 P43

Sendmail 2002 P43

Fragroute 2002 P43

Libpcap/Tcpdump 2002 P43

AIDE 2001 P43

Microsoft distributing Concept 1995 P43

As seen in the Figure 4.2 about attack methods in the papers, "Denial-of-
service" and "Insider threat" are mentioned the most. The rest of the attack meth-
ods are quite divided and we have both people-focused and software-related at-
tacks. Attack methods are mentioned more than 100 times in the papers.

Chapter 4: Results 23

Figure 4.2: Attack methods from the papers.

Table 4.7: Attack methods discussed in papers.

Name Mentioned in papers

(Distributed-) denial-of-service P3, P4, P8, P11, P23, P28, P40, P48,
P59, P62, P65, P67, P69, P72

Insider threat P8, P20, P22, P23, P30, P33, P35,
P43, P54, P60, P65, P69

Trojan P11, P12, P28, P29, P37, P39, P55,
P57, P60, P66, P74

Hijacking P11, P34, P39, P44, P50, P62, P67,
P68, P69, P76

Ransomware P11, P12, P28, P31, P33, P39, P62,
P64, P69

Sabotage P7, P8, P23, P35, P49, P54, P62, P69,
P74

Continued on next page

Chapter 4: Results 24

Table 4.7 – continued from previous page

Name Mentioned in papers

Privilege escalation P8, P12, P17, P27, P37, P55, P57,
P59, P69

Code injection P7, P22, P28, P34, P40, P44, P48, P69

Social engineering P11, P17, P23, P35, P54, P68, P69,
P76

Typosquatting P11, P17, P34, P44, P66, P68, P69

Spoofing P4, P48, P59, P65, P67, P70

Reverse-engineering P4, P37, P45, P48, P57, P60

Trusting trust P14, P39, P43, P66, P70

Logic bombs P6, P36, P69, P74

Abusing authorisation P8, P11, P31, P65

Downgrade/roll-back/replay attacks P14, P17, P72

Cross Site Scripting (XSS) P3, P37, P65

Man-in-the-middle P7, P72

Teleport attack P14

Mix-and-match attacks P14

Indefinite freeze attacks P14

Fast-forward attacks P14

Cryptojacking P69

Malvertising P69

Key loggers P6

Use after free P11

Brute force P70

Table 4.7 displays which papers mentioned the different attacks. It shows that P11
and P69 mentioned the most attack methods. It also displays the attacks that were
only mentioned in one paper.

To get some further insight into the RQ we looked at the mentions of trojans,
viruses, and worms. In Table 4.8 the trojan Sunburst used in the SolarWinds hack
is mentioned the most which makes sense since multiple papers were discussing
this attack in detail. We can also see that there are a lot of general mentions of
trojans. There are a few mentions of viruses but no virus is mentioned in more
than 1 paper, as we can see in Table 4.9. From Table 4.10 one can see that worms
were not discussed much in comparison to trojans and viruses.

Chapter 4: Results 25

Table 4.8: Types of trojans discussed in papers.

Type of trojan Mentioned in papers

Cobalt strike P55

Sunburst P12, P33, P37, P39, P55

General mentions P11, P28, P29, P39, P55, P57, P60, P66, P74

Table 4.9: Types of viruses discussed in papers.

Type of virus Mentioned in papers

Concept P43

McAfee P11

Wannacry P12

Mirai P62

Petya P62

General mentions P28, P43, P45, P69

Table 4.10: Types of worms discussed in papers.

Type of worm Mentioned in papers

Stuxnet P54, P60

SQL Slammer P35

General mentions P35

Overall, the papers did not mention many examples of trojans, viruses, and
worms. Trojans were mentioned the most and viruses had the most examples. No
paper discussed all three kinds of malicious programs.

4.3 RQ2 - Countermeasures

RQ: What are the current countermeasures used to prevent supply chain attacks?
To answer the second RQ, we looked at technical countermeasure techniques,

relevant frameworks, types of tools, people-focused techniques, and other coun-
termeasure techniques mentioned in the papers. We divided the countermeasure
into separate groupings to reflect the different types of countermeasures. Many
papers mentioned frameworks that contain many best practices instead of listing
the countermeasures themselves.

Chapter 4: Results 26

Figure 4.3: The countermeasures from the papers.

Chapter 4: Results 27

Figure 4.3 is a treemap where larger areas are used to visualize a higher num-
ber of mentions. The coloring is related to different categories that are displayed
as bullet points on top of the graph and in the top left corner of each of the color
groups. The number at the bottom of each box represents the number of times the
topic related to the box was mentioned in the papers.

From the treemap in Figure 4.3, we see that most papers mention using a
framework to support the protection of the software supply chain. Different frame-
works were mentioned on 120 occasions in the papers. However, the papers also
mention many specific techniques with authentication and encryption being the
most common. The different technical countermeasures were mentioned 97 times.
Other countermeasures the papers discuss are the importance of good design and
architecture, mentioned 40 times, different analysis tools, mentioned 32 times,
and people-focused countermeasures, mentioned 26 times. Some papers discuss
that there could be laws and regulations to help solve the problem of unsecured
software supply chains. This was mentioned 24 times in the papers. Threat model-
ing and assessment of risk were mentioned in 21 papers. Software bill of materials
(SBOM), which we have grouped as a separate countermeasure since it is provided
by the software providers, was mentioned 4 times.

Figure 4.4: The number of papers mentioning different frameworks.

From Figure 4.4 we see the frameworks and organizations mentioned in the
papers. NIST, CVE/CWE/CAPEC, ISO, and OWASP seem to be most discussed but
there is a great variety of frameworks in the papers. NIST, ISO, and OWASP are
not in themselves a single framework, but organizations that provide multiple
frameworks, lists, and standards. They are however united in Figure 4.4 to indic-
ate what the trusted authorities are when it comes to knowledge about securing
the software supply chain.

Chapter 4: Results 28

Table 4.11: Frameworks in the papers.

Name Abbreviation Mentioned in papers

National Institute of Standards
and Technology

NIST P1, P3, P4, P6, P8, P10, P20,
P21, P23, P24, P27, P33, P34,
P36, P40, P45, P48, P51, P54,
P57, P59, P74

Common Vulnerabilities and
Exposures/ Common

Weakness Enumeration/
Common Attack Pattern

Enumeration and
Classification

CVE/ CWE/
CAPEC

P1, P3, P11, P25, P28, P29,
P33, P40, P54, P57, P59, P65,
P67, P69

International Organization for
Standardization

ISO P2, P4, P6, P8, P12, P21, P25,
P27, P30, P45, P57, P70, P74

Open Web Application
Security Project

OWASP P3, P6, P8, P11, P20, P26, P27,
P35, P46, P48, P65, P66

Framework presented in paper - P4, P20, P33, P46, P48, P51,
P59, P70

Software Engineering Institute SEI P2, P6, P27, P35, P36, P59,
P65, P67

Computer Emergency
Readiness Team

CERT P6, P26, P27, P30, P36, P45,
P65

Building Security In Maturity
Model

BSIMM P6, P26, P27, P59, P65, P66

Common Criteria CC P10, P21, P32, P57, P70, P74

Capability Maturity Model
Integration

CMMI P6, P10, P26, P27, P45

Common Vulnerability Scoring
System

CVSS P1, P3, P11, P29, P46

Supply-Chain Risk
Management paper

- P6, P29, P59, P67

Spoofing, Tampering,
Repudiation, Information

disclosure, Denial of service,
Elevation of privilege

STRIDE P48, P59, P65

Control Objective for
Information and Related

Technology

COBIT P2, P25

Continued on next page

Chapter 4: Results 29

Table 4.11 – continued from previous page

Name Abbreviation Mentioned in papers

Damage, Reproducibility,
Exploitability, Affected users,

Discoverability

DREAD P46, P48

CORAS Method - P65

Operationally Critical Threat,
Asset, and Vulnerability

Evaluation

OCTAVE P65

Cynefin - P54

In Table 4.11 we see which papers have mentioned the different frameworks
and organizations. There are multiple papers mentioning more than one frame-
work. We can also see from "Framework presented in paper" that there were 8
papers presenting and discussing their own framework: P4, P20, P33, P46, P48,
P51, P59, and P70. The Supply-Chain Risk Management paper, P59, was the only
of the 8 papers presenting their own frameworks that were also referenced in
other papers (P6, P29, P67).

Table 4.12: Design and architecture techniques

Name Mentioned in papers

Encapsulation (Sandbox/isolation/
virtualization)

P8, P11, P14, P17, P34, P36, P43,
P48, P50, P59, P66, P68, P69, P70,
P71

Continuous integration/deployment P11, P28, P34, P66, P68, P69, P76

Security by design P2, P32, P48, P65, P71

Software as a service P8, P12, P22, P39, P45

Least-privilege design P17, P31, P45

Defense-in-breadth P20, P21

Problem Oriented Engineering P47

Zero-Trust Architecture P33

Loose-coupling P22

In Table 4.12 the countermeasures related to software or system design and
architecture are listed. Keeping less secure components encapsulated to hinder

Chapter 4: Results 30

their errors to propagate is the most referenced design and architecture technique.
In many ways, it is similar to least-privilege design, zero-trust architecture, and
loose-coupling as they all are related to separating components and not giving
more access than necessary.

Table 4.13: Technical countermeasures.

Name Mentioned in papers

Authentication P4, P7, P8, P11, P13, P14, P15, P17,
P22, P23, P31, P33, P39, P43, P51,
P55, P59, P60, P63, P65, P69, P70,
P72, P76

Encryption P2, P4, P6, P7, P8, P11, P13, P15,
P20, P21, P22, P31, P33, P36, P39,
P45, P48, P50, P55, P64, P65, P71,
P72

Firewall P2, P8, P10, P13, P19, P21, P23, P39,
P45, P55, P59, P62, P64, P66, P69

Intrusion Detection System P7, P12, P19, P23, P37, P39, P48,
P59, P64, P69

Versioning/Version control P11, P14, P17, P20, P29, P34, P45,
P68, P76

Reproducible builds P14, P34, P44, P66

Digital signature P4, P11, P13, P70

Virtual Private Network P4, P37

Intrusion Prevention System P55, P64

Avoiding automatic updates P17, P66

Honeypot P48

Single sign-on P31

Table 4.13 contains the technical countermeasures that can be used to strengthen
the software supply chain. Many of these recommendations are general security
recommendations that one should apply not only when considering the software
supply chain, such as authentication, encryption, and firewall. The more software
supply chain-specific countermeasures are Intrusion Detection System (IDS), In-
trusion Prevention System (IPS), versioning, and reproducible builds.

Chapter 4: Results 31

Table 4.14: Analysis tools.

Name Mentioned in papers

Static analysis P3, P9, P11, P12, P17, P29, P34, P40,
P45, P55, P57, P69

Dynamic analysis P3, P11, P12, P17, P29, P34, P44,
P45, P68, P69

Fuzz testing P9, P45, P59, P65, P69

Binary analysis P45, P57, P67

Fault injection P45

Table 4.14 shows the tools used for analyzing code presented in the papers.
Static analysis is used for evaluating code without running it while dynamic ana-
lysis is when the code is analyzed while running. Fault injection measures the
coverage and robustness of tests by inputting errors. Fuzz testing tests the stabil-
ity of the software product by inserting random data. Binary analysis is an analysis
used to evaluate the binary code and can be done as static and dynamic analysis.

Table 4.15: People focused / Manual techniques.

Name Mentioned in papers

Code review P9, P11, P32, P34, P35, P51, P54,
P57, P69, P70

Increase knowledge P6, P9, P11, P21, P32, P48, P65

Personal security (2FA, passwords) P11, P55, P69

Clear ownership and accountability P2, P24, P72

Software escrow P4, P70

Clean room P25

In Table 4.15 we see what techniques can be used by individual programmers
or developing teams to help secure their software. Techniques like code reviews
and methods for increasing knowledge are often implemented by managers while
using two-factor authentication and secure passwords often rely on individual
programmers. A software escrow is a three-party agreement between a software
developer, an end user, and a source code escrow company. The agreement is to
provide insurance to the end user so that if the software provider is unwilling or
unable to support the software, the code can still be released to them because of

Chapter 4: Results 32

the software escrow company. The clean room technique was presented in P25,
where the authors argued that the customer’s security team should be allowed
into a "clean room" to manually inspect third-party closed-source code.

Table 4.16: Other countermeasure techniques.

Name Mentioned in papers

Laws, regulations and legislations P1, P4, P8, P10, P12, P13, P20, P25,
P27, P29, P30, P36, P37, P41 P48,
P53, P54, P55, P58, P62, P66, P67,
P69, P71

Threat modeling P2, P3, P4, P8, P14, P20, P32, P33,
P46, P48, P51, P54, P57, P58, P59,
P61, P62, P65, P67, P69, P76

Software bill of material P33, P62, P66, P73

Table 4.16 contains the countermeasures that did not fit well into any of the other
categories. 24 papers discussed some forms of laws, regulations, or legislation.
21 papers mentioned some form of threat modeling or risk assessment. 4 papers
considered SBOM a potential countermeasures. SBOMs are different from many
of the other countermeasures as they rely on the third-party software provider to
do the work and supply and keep the SBOM updated.

To summarise we see that frameworks are the most mentioned countermeas-
ure category and there are many different frameworks discussed. In addition, the
papers refer to many different countermeasure techniques that can be utilized by
both individual programmers and teams.

4.4 RQ3 - Closed- vs. Open-Source

RQ: What are the main differences when trusting closed-source instead of open-source
in regard to software supply chain attacks?

To answer this RQ we looked at all the papers that directly or indirectly discuss
either open- or closed-source software. We have also looked at the specific papers
that discuss the differences between the two types.

Figure 4.5 show the number of times trust in open-source, trust in closed-
source, and the differences in trusting them are mentioned. What we see is that
open-source is clearly the most discussed, but the total number of times it is men-
tioned is quite low considering the number of papers analyzed. The papers in-
cluded in "Differences" are also included in both open- and closed-source so there
are 2 papers that only discuss closed-source and 9 papers that only discuss closed-
source.

Chapter 4: Results 33

Figure 4.5: The number of papers mentioning open-source, closed-source, and
the differences between them.

Table 4.17: Mentions of open- and closed-source software.

In paper Argument

P25 Concludes that it is only possible to have confidence in the soft-
ware if access to the source code is provided. If the source code
is not provided it is not possible to have confidence in the soft-
ware, even if thorough testing is done.

P28 Open source software projects often have multiple contributors
which can lead to a higher possibility of resolving vulnerabilit-
ies involved in the program. However, more contributors could
also increase the risk of injecting malicious code into the pro-
jects because of unintentional or bad-intentional operations.
They also mention that version inheritance is a significant cause
of supply chain attacks for open-source software.

P35 With open-source software you can use security features like
code reviews and static testing. However, open-source software
can still have as many and as severe security issues as Com-
mercial off-the-shelf/Government off-the-shelf (COTS/GOTS)
software.

Continued on next page

Chapter 4: Results 34

Table 4.17 – continued from previous page

In paper Argument

P40 First they argue that free and open source software (FOSS)
should security-wise be treated as one’s own code. Later they
argue that there is no point in discussing if FOSS is more or less
secure because first, there may be just no alternative to use
FOSS components in a software supply chain because FOSS
components are the de-facto standard (e. g., Hadoop for big
data). Second, FOSS may offer functionalities that are very ex-
pensive to re-implement and, thus, using FOSS is the most eco-
nomical choice.

P43 Many open-source projects do not provide the information re-
quired to verify software’s integrity. Projects should provide
cryptographic hashes of their software packages and make sure
it is not stored in the same distribution channel as the software.
When storing hashes in the same place as the software it will
be easy to replace the hashes for attackers.
Another point mentioned is that open-source software can be
more difficult to secure than closed-source because it lives in a
more complex environment.

P51 Gives a checklist to evaluate when looking at open-source:
1) Age of the Project
2) Code Releases
3) Project Freshness
4) Contributor Strength
5) Documentation
6) Popularity
7) Open Issues
8) Repository State
9) Automated Code Analysis

P57 Product managers should request COTS vendors provide Assur-
ance Cases for their COTS products detailing both the vendor’s
secure coding practices and the results of internal static code
analysis or third-party assessment (e.g. CC certification). In
cases where such information is unavailable, and there is still
a desire to use the COTS component, the product managers
should consider analyzing the executable using binary code
analysis.

Table 4.17 shows short summaries of how the different papers mention open-
and closed-source. These include the different aspects of what information open-

Chapter 4: Results 35

source projects should provide to make it possible to evaluate. One of the more
interesting findings in the table is P51’s checklist of specific evaluation criteria for
assessing if third-party software is secure.

4.5 RQ4 - Third party

RQ: What are the criteria used when deciding which third-party solutions are to be
trusted in the supply chain?

When considering RQ4 and the decisions currently being used to evaluate
third-party solutions we decided to look at the specific trust criteria used. We also
looked at the mostly discussed package managers that are used to distribute third-
party software.

Table 4.18: The trust criteria found in the papers

No. Trust criteria P25 P28 P40 P51 P66 P70 P73 P76

1 Make sure the supplier will be li-
able for any damages caused by
its artifacts.

•

2 Trust components that have
been in widespread use for a
considerable time and no harm-
ful effects have been observed
so far.

• • • •

3 If the project has a software cer-
tification from a certified pro-
vider it will strengthen the trust.

• •

4 Make sure there is an active
maintainer domain.

• • • •

5 Be aware of installation scripts. •
6 Make sure that the repository

is not deprecated and that it
does not depend on unmain-
tained packages.

• • •

7 Make sure that there is an ad-
equate number of maintainers
and/or contributors.

• • •

8 If there are few maintainers
make sure that they are not over-
loaded.

•

Continued on next page

Chapter 4: Results 36

Table 4.18 – continued from previous page

No. Trust criteria P25 P28 P40 P51 P66 P70 P73 P76

9 Make sure the team is using
a programming language that
they are familiar with.

•

10 How is the maintenance lifecycle
of the component, is it being
kept up to date?

• • •

11 Make sure there is a trusted au-
thor and/or supplier.

•

12 Is there a hash or signature
that can be used to make sure
that the software has not been
tampered with?

•

13 Having good documentation. It
does not have to be written
pages but can also be code ex-
amples.

•

14 Popularity is not something that
should be used by itself, but the
more popular a library is, the less
likely it is to have glaring errors.

• •

15 The number of open issues re-
gistered on the project can be an
indicator of the state of the pro-
ject. A project can have open is-
sues but the age of the open is-
sues and the responsiveness of
the developer on those issues
should be evaluated.

•

16 See if the developers have used
automated code analysis to look
over the code. This will help with
finding known code issues.

• •

In Table 4.18 we see that the two most frequently mentioned trust criteria
are to "trust components that have been in widespread use over time" and to
"make sure there is an active maintainer domain". Other important trust criteria
mentioned by multiple papers are to avoid deprecated repositories, make sure
there are an adequate number of maintainers, and make sure the component is

Chapter 4: Results 37

properly maintained. Out of the papers, we see that P51 mentions the most trust
criteria but P40, P73, and P76 also mention quite a few.

Figure 4.6: The number of papers mentioning different package managers.

When evaluating trust criteria we wanted to explore which package managers
were discussed in the papers. This information could be used to gain some insight
into what can be evaluated as trust criteria since different package managers dis-
play different metadata to the public. In Figure 4.6 we see the package managers
most frequently discussed in the papers like npm, Maven, RubyGems, and PyPI.

Table 4.19: Package managers

Name Mentioned in papers

npm P3, P11, P17, P28, P34, P44, P68,
P69, P76

Maven P3, P11, P28, P34, P40, P73

RubyGems P11, P34, P44, P68, P69

PyPI P11, P34, P44, P68, P69

apt P11, P14, P28

Docker P14, P17, P69

Homebrew P11, P14

CONDA P14

RPM P43

Chapter 4: Results 38

In Table 4.19 we see that P11 mentions all the package managers except three. We
can also observe that there is an exact match of the papers mentioning RubyGems
and PyPI. We also see a tendency where papers either mention npm, RubyGems,
and PyPI or the papers mention Maven. The package managers for specific pro-
gramming languages are mentioned more than package managers for operating
systems such as apt and Homebrew.

4.6 RQ5 - Detection Tools

RQ: What are the tools used to detect vulnerabilities related to supply chain attacks?
For the last RQ we looked at all the different tools that are mentioned and

pointed out their focus areas.

Table 4.20: Specific tools mentioned in papers.

Name Description Focus on Deprecated In papers

Snyk Security tool for vulner-
abilities in open-source,
code, containers, Terra-
form, and Kubernetes
code.

Analyses open-source de-
pendencies, code, con-
tainers, Terraform and
Kubernetes code.

No P3,
P11,
P17,
P69,
P73,
P76

GitHub
dependabot

Handles the logic for
updating dependencies
on GitHub, GitLab, and
Azure DevOps.

Third-party dependen-
cies.

No P3,
P11,
P28,
P55,
P66,
P73

SonaType Open-source security
monitoring across the
software supply chain.

Checks open-source de-
pendencies.

No P3,
P34,
P66,
P67,
P76

Continued on next page

Chapter 4: Results 39

Table 4.20 – continued from previous page

Name Description Focus on Deprecated In papers

Jenkins/
JenkinsX

A platform for creating
Continuous Integration/
Continuous Deployment
(CI/CD) environments.
JenkinsX is the opinion-
ated version and uses
best practices for cloud-
focused development.

CI/CD pipelines. No P11,
P15,
P34,
P66,
P68

In-toto A framework to protect
the integrity of the soft-
ware supply chain.

Artifacts created by a
step cannot be altered
before the next step.

No P14,
P55,
P66,
P69,
P73

WhiteSource Scans open-source
repositories, and cross-
references this data with
open-source components
in your build.

Checks open-source de-
pendencies.

Changed
name to
Mend.

P3,
P17,
P73

Travis CI CI platform used to build
and test software pro-
jects hosted on GitHub
and Bitbucket.

CI No P34,
P66,
P68

GitHub
Actions

A CI/CD platform to
automate build, test, and
deployment pipelines.

CI/CD pipelines. No P34,
P66

Tekton Cloud-native solution for
building CI/CD systems.

CI/CD pipelines. No P66,
P73

Sigstore Tool for securely signing
software artifacts such
as release files, con-
tainer images, binaries,
SBOMs.

Verification for software
providers.

No P14,
P66

OpenSSF Different tools for open-
source projects

Open-source projects. No P66,
P76

Continued on next page

Chapter 4: Results 40

Table 4.20 – continued from previous page

Name Description Focus on Deprecated In papers

Grafeas A knowledge-base of the
critical metadata organ-
izations need to enforce
policies across software
development teams and
pipelines.

Contains metadata for
CI/CD pipelines and con-
tainers.

No P73

SourceClear
(SRC:CLR)

Identifies vulnerabilit-
ies that are not in the
National Vulnerability
Database by scanning
all open-source repos-
itories’ code, metadata,
commit logs, bug fixes,
patch notes, and other
developer comments.

Checks open-source de-
pendencies.

Changed
name to
Veracode.

P73

CAST
Software

To main types: CAST
Highlight which provides
end-to-end transac-
tion flows, data-call
graphs, and architecture
blueprints, and CAST
Imaging which is for
application portfolio
analysis.

Gives an overview of the
architecture of the ap-
plication.

No P73

JFrog DevOps platform to con-
trol and secure the soft-
ware supply chain.

Provides end-to-end
automation and man-
agement of binaries
and artifacts through
the application delivery
process.

No P73

Black Duck Software composition
analysis for open-source
and third-party code in
applications and con-
tainers.

Third-party depend-
encies in code and
containers.

No P73

Spinnaker Open-source CD plat-
form for releasing
software changes.

CD No P73

Continued on next page

Chapter 4: Results 41

Table 4.20 – continued from previous page

Name Description Focus on Deprecated In papers

Eclipse
steady

Analyses Java and Py-
thon applications for
open-source depend-
encies with known
vulnerabilities, collects
evidence regarding the
execution of vulnerable
code in a given applic-
ation context (through
the combination of static
and dynamic analysis
techniques), and sup-
ports the mitigation of
such dependencies.

Third-party Java de-
pendencies in code.

No P3

npm audit This is a native tool of
npm package manager
for scanning npm pro-
jects.

Third-party npm de-
pendencies in code.

No P3

OWASP
Dependency

check

Software Composition
Analysis tool that at-
tempts to detect publicly
disclosed vulnerabilities
contained within a pro-
ject’s dependencies.

Third-party dependen-
cies.

No P3

SootDiff Compare the Java Byte-
Code create by different
Java compilers.

Third-party Java de-
pendencies.

Yes P55

CHIRP Indicator of Compromise
tool after the SolarWinds
Software Supply Chain
attack for the Windows
operating system.

Look for signs of com-
promise after the Solar-
Winds attack such as the
presence of TEARDROP
and RAINDROP viruses.

Yes P55

AppVeyor Cloud service to auto-
matically build and test
your project in a Win-
dows environment in the
cloud GitHub, GitLab,
and Bitbucket.

CI No P34

Continued on next page

Chapter 4: Results 42

Table 4.20 – continued from previous page

Name Description Focus on Deprecated In papers

greenkeeper Real-time monitoring for
npm dependencies.

Third-party npm de-
pendencies in code.

Yes (part of
Snyk)

P17

Table 4.14 lists 24 different tools used to secure the software supply chain.
The papers mentioning most tools and their matching count are P73, 10; P66, 9;
P3, 7; and P34, 5. We see that the popular tools Snyk and Github Dependabot
are the most discussed. Of the 24 tools, 17 of them are mentioned in just one
or two papers. Most of the tools focus on open-source software or Continuous
Integration/Continuous Deployment (CI/CD). Some of the tools are only working
on specific coding collaboration and code-sharing platforms like GitHub, GitLab,
and Azure DevOps. There are also two deprecated tools and one tool that has been
merged into Snyk.

We have presented the results from the 68 papers used in this SLR. The data was
displayed in the different tables and figures with the goal of answering the RQs.
We found both expected and unexpected results that will be further discussed and
analyzed in chapter 5.

Chapter 5

Discussion

This chapter will be used to discuss the results presented in chapter 4. The discus-
sion is intended to provide insight and our interpretation of the data presented in
chapter 4 to answer the RQs found in section 3.1.

From the data gathering and filtration from section 3.2 and section 3.5 we
ended up with 68 papers, where 29 of these were considered to be either "Not
very relevant" or "Not relevant". We found fewer relevant papers than we expected
to find before starting on the SLR. The low number of relevant papers can be an
indication that this research field needs further research. We could also have been
more strict with quality criteria and the exclusion criteria, however, we wanted to
do a "catch-all" approach to make sure we did not miss any relevant categories.
From Figure 4.1 the trend is that the number of papers is increasing so it seems
like software supply chain security is getting more attention.

The increasing number of published papers observed in Figure 4.1 coincides
with reports about an increasing number of software supply chain attacks in recent
years [88–90]. We can also see a lot of recent attacks mentioned in the papers in
Table 4.6. The recent attack mentioned in section 2.3 is an example showing that
this is still happening and it is another indicator that software supply chain attacks
are a problem that needs more attention.

Large technology companies such as Google and Microsoft have put efforts
into this problem and Google has launched GUAC open-source project to help
secure the software supply chain [91, 92]. The increased focus on securing the
software supply chain from academia and large technology companies is what we
need going forward.

5.1 RQ1 - Attacks

RQ: What types of supply chain attacks are prominent and discussed in academic
literature?

From the scientific literature, it was hard to grasp the actual number of soft-
ware supply chain attacks. Many papers mentioned some attacks they thought

43

Chapter 5: Discussion 44

were relevant, but only briefly. The only event that was discussed in detail was
the 2020 SolarWinds Hack, which was presented in P12, P37, and P55. It makes
sense that this attack was the one mentioned the most since it was such a signific-
ant attack and it could be argued that it rekindled the interest in software supply
chain security. The SolarWinds hack is also interesting due to the potential of new
attacks that might happen because of this attack since it is likely that hackers have
gotten away with critical security information from multiple technology firms.

Many of the attacks in Table 4.6 are old due to one old paper listing many
attacks (P43). There are no attacks mentioned between 2002 and 2013, and only
one between 2002 and 2017. We found it strange that there were so few mentions
of real-world attacks between 2002 and 2017 since 31 of the 68 papers were
published between 2017 and 2002. We think it is essential to showcase real-world
attacks in scientific papers to emphasize the relevance of the research and the fact
that we find such a high number of mentions of real-world attacks in the newer
papers shows that it is an ongoing problem.

In Table 4.7 we would have imagined that code injection, typosquatting, and
downgrade/roll-back/replay attacks would be more mentioned and higher on the
list. These attacks are what we consider more software supply chain specific. There
were also no mentions of dependency confusion, which we thought should have
been mentioned as this is an attack highly relevant for the software supply chain
as it is an attack that tricks a package manager to use a public malicious package
instead of a private secure package [93].

Another observation we found to be strange was that the "use after free" attack
was only mentioned in one paper (P11). We thought it would be mentioned more
since the attack is directly linked to an exploit relevant to the software supply
chain. The low number of "use after free" mentions, might be due to a name am-
biguity. P11 defines "use after free" as when "An attacker uses the opportunity to
reuse the identifier of an existing project, package, or user account withdrawn by
its original and legitimate maintainer" [11]. However, CWE defines "use after free"
as "Referencing memory after it has been freed can cause a program to crash, use
unexpected values, or execute code." [94]. There seems that two different phe-
nomena have gotten the same name, and based on online results for "use after
free" it would be less confusing if the definition in P11 had a different name, like
"abandoned name exploit". We also would have thought cryptojacking to be more
mentioned since it is an attack that has been increasing in the last years [95].

Cross-Site Scripting (XSS) was ranked 17th out of the 27 attack methods in
Table 4.7 which was unexpected since it is the second highest security threat from
CWE’s list of Top 25 Most Dangerous Software Weaknesses [96]. Code injection
was ranked 8th in Table 4.7, but it is ranked 25th in CWE’s list [96].

Another interesting observation from Table 4.7 is that Insider threat, Sabot-
age, and Social engineering are ranked high, which says something about the
importance of the human aspect in software supply chain security. It is often said
that humans are the weakest link in cyber security [97], and the high number of
mentioned threats can indicate that humans also play an important role in attacks

Chapter 5: Discussion 45

that target the software supply chain.
We also observed that ransomware was discussed in 9 of the papers (P11,

P12, P28, P31, P33, P39, P62, P64, P69). However, as we focused on how systems
are infiltrated and malware spread instead of focusing on how they damage the
system, we did not include these findings in the result. There was also one paper
that mentioned spyware (P57), but we did not look more into it as there was only
one paper focusing on it.

We think it was unexpected how seldom trojans, viruses, and worms were
mentioned in the papers, as we can see in Table 4.8, Table 4.9 and Table 4.10. Re-
searching what kind of malware is used in software supply chain attacks could give
more information into how software supply chain attacks have been conducted,
and help strengthen the software supply chain. However, the current information
does not provide any significant results, since the malware types were mentioned
so few times.

Most of the supply chain attacks prominent and discussed in the academic lit-
erature are directly related to the events in the 2020 SolarWinds attack, or they
are similar to general security attacks. We would have expected to see more focus
on what we consider "software supply chain"-specific attacks such as code injec-
tion, typosquatting, downgrade/roll-back/replay, use after free/abandoned name
exploit, and dependency confusion in the papers.

5.2 RQ2 - Countermeasures

RQ: What are the current countermeasures used to prevent supply chain attacks?
In Figure 4.3 we see that there is most focus on frameworks, which is expected

since they provide more general information than listing particular countermeas-
ures. Looking at Figure 4.4, it was surprising that there were so many different
frameworks mentioned without one or two that really stood out, as we initially
thought there would be one industry standard. There are some frameworks that
were more referenced such as NIST, CVE, CWE, CAPEC, ISO, and OWASP, but no
defining framework that the majority of the papers referenced.

One thing that was expected when looking at Figure 4.3 is that there are mul-
tiple countermeasures and techniques to secure the software supply chain. It is a
complex problem to solve and many different aspects targeting different parts of
the supply chain are needed, as the software supply chain is large and complex.

We can also see that all the countermeasures mentioned in Figure 4.3 cover
all the bullet points in the list Build Trust in Your Software Supply Chain made by
Synopsys, which also has made the Building Security In Maturity Model (BSIMM)
[98]. The fact that the countermeasures found in the papers match frameworks
strengthens the trustworthiness of the countermeasures.

Chapter 5: Discussion 46

Frameworks

There were a lot of frameworks mentioned in the papers that can help developers
strengthen the software supply chain. This variety in frameworks shows that cre-
ating one framework that addresses all the challenges facing supply chain security
is a complex and demanding problem. There are multiple sources of recommend-
ations, and developers currently have to examine various frameworks to get the
best practices. This result was expected as numerous security organizations are
concerned with improving the software supply chain.

P65 had an important statement concerning frameworks: "Frameworks should
be adaptable to waterfall development and agile development. It should not be
"attacker"-centric, but "actor"-centric as this lets developers think about non-malicious
abuses that lead to security weaknesses." [81]. This is similar to what P35 writes
about not only being concerned about malware but also weakware. The security
risks from unintentional bugs might be as critical as malicious actions from bad
actors. The observation that frameworks need to be adaptable to waterfall de-
velopment and agile development is also notable as companies are working with
different development strategies, and frameworks should not hinder the devel-
opment process. The number of different frameworks could be a consequence of
earlier frameworks being made for waterfall development that did not fit the agile
workflow.

Looking more into detail on the frameworks in Figure 4.4, we see that NIST is
the most popular organization that publishes frameworks. The frameworks that
were mentioned in the papers are presented below with the year for the newest
version:

• NIST SP 500-287

� The Second Static Analysis Tool Exposition (2009)

• NIST IR 7622

� Notional Supply Chain Risk Management Practices for Federal Inform-
ation Systems (2012)

• NIST 800-30v1

� Guide for Conducting Risk Assessments (2012)

• NIST SP 800-53

� Security and Privacy Controls for Information Systems and Organiza-
tions (2020)

• NIST SP 800-55

� Performance Measurement Guide for Information Security (2008)

• NIST SP 800-161

� Cybersecurity Supply Chain Risk Management Practices for Systems
and Organizations (2022)

Chapter 5: Discussion 47

• NIST SP 800-171

� Protecting Controlled Unclassified Information in Nonfederal Systems
and Organizations (2020)

• NIST SP 800-218

� Secure Software Development Framework (SSDF) Version 1.1: Recom-
mendations for Mitigating the Risk of Software Vulnerabilities (2022)

Based on an initial assessment of the NIST sources, NIST SP 800-161 might be
very relevant for people working on software supply chain security. It is, however,
over 300 pages long, and the information provided in the framework in NIST SP
800-218 could be as valuable for developers since it is much more concise. Overall,
the NIST resources combined provide a lot of information and developers can find
different frameworks to help their needs, but all this information might make it
hard to navigate and lead one to suffer from information overload.

CVE/CWE/CAPEC were also frequently cited. CVE is used to "Identify, define,
and catalog publicly disclosed cybersecurity vulnerabilities." and can be used by
developers to look at newly found vulnerabilities and search for specific vulner-
abilities among its list of over 180000 vulnerabilities [99]. CWE "is a community-
developed list of software and hardware weakness types." [100]. They provide a
top 25 list each year of the most dangerous weaknesses and let developers search
among their list of over 900 weaknesses. CAPEC provides "a comprehensive dic-
tionary of known patterns of attack employed by adversaries to exploit known
weaknesses in cyber-enabled capabilities." and lets developers search for attack
patterns in their list of 550 attack patterns [101]. CAPEC also allows developers
to view attack patterns by supply chain risks, which helps developers to con-
sider attacks that are specific to Design, Development and Production, Distribu-
tion, Acquisition and Deployment, Sustainment, and Disposal. CVE/CWE/CAPEC
provides much information when searching in them, but it might be hard for de-
velopers to know what to search for and what to prioritize.

The ISO standards were referenced often in the papers. Some of the standards
that were mentioned in specific were:

• ISO/IEC/IEEE 12207

� Systems and software engineering — Software life cycle processes (2017)

• ISO/IEC/IEEE 15288

� Systems and software engineering — System life cycle processes (2015)

• ISO/IEC 15408

� Information security, cybersecurity and privacy protection — Evalu-
ation criteria for IT security (2022)

• ISO/IEC/IEEE 15939

� Systems and software engineering — Measurement process (2017)

Chapter 5: Discussion 48

• ISO/IEC/IEEE 24765

� Systems and software engineering — Vocabulary (2017)

• ISO/IEC 27001

� Information security, cybersecurity and privacy protection — Inform-
ation security management systems — Requirements (2022)

• ISO/IEC 27002

� Information security, cybersecurity and privacy protection — Inform-
ation security controls (2022)

• ISO/IEC 27004

� Information technology — Security techniques — Information secur-
ity management — Monitoring, measurement, analysis and evaluation
(2016)

• ISO/IEC 27005

� Information security, cybersecurity and privacy protection — Guidance
on managing information security risks (2022)

• ISO/IEC 27034

� Information technology — Security techniques — Application security
(2011)

• ISO/IEC 27036

� Cybersecurity — Supplier relationships (2021)

• ISO 31000

� Risk management — Guidelines (2018)

The ISO/IEC 27000 series were referenced the most with ISO/IEC 27001 be-
ing the most referenced out of them. One interesting observation was that the
ISO/IEC 27003 standard, about Guidance for Information security management
systems was not referenced in any of the papers. The ISO standards are a credible
source of good security practices and being ISO 27001 certified is a requirement
from some contractors. The standards are, however, behind a paywall which might
make them less used and relied upon by smaller companies.

OWASP was the 4th most mentioned framework in the papers. There were
some parts of OWASP that were mentioned in specific such as the Software Assur-
ance Maturity Model and their top 10 list of web application security risks. It was
not mentioned in any of the papers, but OWASP also provides a Security Know-
ledge Framework, Web Security Testing Guide, and Juice Shop which is a detailed
demo of an insecure web application. OWASP also provides a tool for dependence
tracking which was mentioned in Table 4.20.

Other relevant frameworks not mentioned as often in the papers were the
BSIMM and CC. BSIMM publishes a framework that focuses on the domains: Gov-

Chapter 5: Discussion 49

ernance, Intelligence, Software Security Development Lifecycle Touchpoints, and
Deployment, and they publish a yearly report with trends and insights informing
about the current security trends [102].

CC is used as an international agreement on how information technology can
be evaluated on security by licensed laboratories. They publish a set of documents
to support the evaluation process and to help define the requirements. It is the
same as the ISO/IEC 15408 standard. CC has a list of certified products that can be
used as a resource when developers look for trustworthy information technology.

The CSPN framework introduced by the French government was not men-
tioned in any of the papers but was mentioned when we searched online resources
as discussed in section 3.7. The fact that we only looked at papers written in
English might have led to missing some interesting frameworks from non-English
speaking countries.

The frameworks are one of the tools that can be used by developers to gain
knowledge on how to prevent supply chain attacks. There are multiple frame-
works with positive and negative attributes, however, all of them help developers,
designers, product owners, etc. to narrow down what to focus on when securing
the software supply chain.

Design and architecture

There were multiple architectural and design techniques proposed in the papers.
From Table 4.12 we see that encapsulation is mentioned the most. This was as
expected since encapsulation would help contain potential errors or security risks.
Least-privilege design is also similar to encapsulation since it is about restricting
unnecessary access.

It was also expected that CI/CD and Software as a Service was frequently
mentioned since these techniques are linked to the cloud. There were multiple
forms of service mentioned such as software as a service, database as a service,
and security as a service. While companies shift towards using the cloud, this shift
will increase the number of attack vectors and increase the complexity of securing
the software supply chain. This is because during this phase old on-premise threats
and new cloud threats will both be relevant [62].

The design and architecture techniques give good pointers to developers on
what to consider while creating applications. However, they might not be concrete
enough during the development process to provide enough guidance.

Technical

The technical countermeasures were the second most discussed in the papers. As
expected, authentication, encryption, and firewalls were the most discussed which
makes sense as they are very general countermeasures. However, they are perhaps
not that supply-chain-specific. Intrusion detection and prevention, versioning, and
reproducible builds are more supply-chain-specific as they are linked to dealing
with intrusion and practices for the build process.

Chapter 5: Discussion 50

One countermeasure that is heavily debated is how to deal with updates. P17
and P66 recommended avoiding automatic updates. This recommendation would
help prevent getting compromised if a third-party package gets infected, as it is
usually the newest versions that get targeted, but the newest software does have
the latest security patches. It is hard to give a best practices recommendation when
it comes to automatic updates, but being aware that it has a positive and negative
impact is probably what is the most important to consider.

The fact that authentication is the most discussed technical countermeasure
in the papers matches CWE’s list of most critical software weaknesses as Improper
Authentication and Missing Authorization are the 14th and 16th most critical soft-
ware weaknesses of 2022 in their top 25 list [96].

Overall, the technical countermeasures were as expected in that there were
many specific methods mentioned but they were not described in too much detail.
Except for avoiding automatic updates, the technical countermeasures were not
very controversial.

Analysis tools

The types of analysis tools recommended were static analysis, dynamic analysis,
fuzz testing, binary analysis, and fault injection. Static analysis was the most re-
commended and it can give warnings about common errors, however, many errors
might occur when the code is running. Dynamic analysis solves this and was also
frequently mentioned in the papers. The dynamic analysis takes some more effort
to set up as it needs some running environment to test in.

Binary analysis is important when no access to the source code is available.
Binary analysis is harder to perform as the 1’s and 0’s of binary code give less
information than the source code, but it could find some known vulnerable pat-
terns. When a software supplier has closed source code, binary analysis will be
the analysis tool that can be used by customers to provide some confidence in the
code. The binary analysis will also help if the program gets tampered with during
distribution.

Fuzz testing will help reveal unexpected bugs as it is more of a brute-force way
of testing with random input to see if the testing can trigger unexpected errors. In
2006 Microsoft reported that between 20 to 25 percent of their security bugs were
found via fuzz testing [77]. This has been used for some time and has proven to
find errors that developers do not necessarily consider.

Fault injection was the least mentioned and it helps detect errors that occur
when a fault happens. It helps detect what happens when the "Happy path" is not
taken and gives insight into the robustness of the software.

Tools are important as it is difficult for developers to do a manual assessment
of large code bases. Analysis tools help find known patterns. It was expected that
analysis tools would be mentioned as a countermeasure as frequently as they were
since they provide an extra layer of defense that is relatively easy to implement
and use.

Chapter 5: Discussion 51

People focused / manual techniques

It could be argued that people are the hardest factor to control since threats can
come intentionally or unintentionally from insiders and outsiders. Large compan-
ies will often change employees regularly which demands huge resources in se-
curity education. Therefore, it was expected that there would be recommenda-
tions for people-focused countermeasures and that increasing knowledge would
be mentioned as one of them.

Code reviews, increasing knowledge, and clear ownership and accountability
are all people-focused techniques that will help in the development process. The
four-eyes principle, where more than one person should evaluate new depend-
encies when including them was not mentioned in any of the papers but in the
online forums discussed in section 3.7. We would have expected it to have been
mentioned in at least one of the papers, however, code reviews are very similar to
this principle.

Personal security is relevant to the software supply chain and is linked to the
supply chain only being as secure as its weakest link. It is speculated that the Sol-
arWinds hack was made possible by a weak password [23]. The focus on personal
security has also led to npm requiring high-impact npm package maintainers to
use two-factor authentication (2FA) [103].

Code review, increase knowledge about security, and clear ownership are all
relevant to a secure development process. Personal security such as 2FA and pass-
words are relevant for all employees.

Other countermeasure techniques

The other countermeasures that were different were using SBOM, enforcing laws
and regulations, and conducting threat modeling.

SBOM is a list of dependencies a software provider can release to improve
transparency in elongated supply chains. It takes some effort to create and main-
tain, but it would give customers more information if they are affected by a large
security vulnerability when it is detected, such as Log4Shell. In BSIMM’s yearly re-
port about the current security trends, they recommended that all software firms
should "Create a comprehensive SBOM as soon as possible" [102]. The issue with
SBOMs is that the providers have to release and update it to increase the custom-
ers’ security. This could perhaps be recommended by laws or regulations.

Laws and regulations were mentioned in many of the papers. Having strict
laws could help shift the focus toward securing the software supply chain. One
step in this direction is the Securing Open Source Software Act of 2022 which
proposes to create a framework for guiding the US federal government in its use of
open-source software. As the number of attacks and focus on supply chain security
increases, we will likely see more laws and regulations targeting software supply
chain security.

Threat modeling and risk assessments are mentioned in many of the papers
and in the frameworks. It was expected to be mentioned as a countermeasure. It

Chapter 5: Discussion 52

could be argued that risk assessment is a crucial requirement for implementing
security as one needs to evaluate what the security risks are before one can secure
them. It can, however, be hard for developers to assess what the most relevant
security risks are since there is a vast amount of different risks and vulnerabilities.
This challenge of assessing the most important risks can be aided by frameworks
built for risk assessment.

From the papers, we found many countermeasures linked to frameworks,
design, architecture, technical, people-focused, manual techniques, and some more
special ones. From our evaluation, many of the countermeasures mentioned in the
papers are also mentioned in the frameworks. This similarity in recommendations
helps to strengthen the credibility of the papers.

5.3 RQ3 - Closed- vs. Open-Source

RQ: What are the main differences when trusting closed-source instead of open-source
in regard to software supply chain attacks?

There were only 15 papers discussing either open- or closed-source and we
initially thought that this would be more discussed as we think these are import-
ant factors to consider when evaluating software supply chain. Even though the
number of papers was quite small, there were still many interesting perspectives
that were discussed.

We see from Figure 4.5 that open-source is mentioned twice as often as closed-
source. The reason for this is probably that open-source provides a lot more data,
just by being open-source. This data makes it possible to better analyze and discuss
the code and gives scientists more information to use when writing papers. It
could also be argued that open-source is less secure than closed-source because
by having the code open for everyone it is easier for bad actors to find potential
weaknesses. This potential danger of open-source code might be why researchers
think it is more vulnerable than closed-source code and why they decide to focus
on it. This is, however, not necessarily true as "security through obscurity", which
is to rely on secrecy to minimize the chance that weaknesses may be detected
and targeted, is not recommended for information technology according to NIST.
NIST recommends that "System security should not depend on the secrecy of the
implementation or its components" [104].

If we look closer at the different arguments from Table 4.17 we see that they
cover many different aspects and that some are related:

P25 & P40 Both these papers discuss the trust one can have to open-source soft-
ware. P25 argues that open-source software is the only one possible to trust
and that trusting closed-source is not possible. P40 on the other hand says
that there is no point in discussing the trust of open source as we are so de-
pendent on open-source software and that there are no decent alternatives
to using open-source code.

Chapter 5: Discussion 53

P28 This paper points out that there are both positives and negatives related to
having multiple contributions. Both arguments are quite strong, and it might
indicate that it is important to differentiate the security measures taken by
a team based on the number of people contributing.

P35 Here they describe that open-source makes it possible to use analysis tools
on the code, which makes it possible to test third-party code before using it
in projects. However, one should be careful with the level of trust given to
analysis tools as they cannot find all issues.

P43 The argument from P43 is that open-source is hard to distribute in a safe way.
They suggest storing a hash of the distributed software at another distribu-
tion channel than where the software is stored. This is a classic example of
using multiple-layer security.

P51 This paper provides the most evaluating criteria. One interesting observation
is that it does not mention anything about the distribution aspect discussed
in P43. However, it also mentions contributor strength as P28 does, but it
only argues that multiple contributors are a good thing since it would reduce
the chance of the project getting abandoned.

P57 The main argument from P57 is that COTS vendors should provide assur-
ance cases for their products. The argument about assurance cases is about
transparency and is in some sense similar to SBOMs that is discussed in sec-
tion 5.2. They also mention, in contrast to what is stated in P25, that since it
is still possible to execute binary analysis on closed-source code it is possible
to build some trust into closed-source third-party software. We agree with
this paper and think the reasoning from P25 is a bit too pessimistic.

Overall we see that most arguments provided in the literature are specific
to open-source. This makes sense since it is easier to evaluate as there is more
information to use. The only arguments specifically mentioned for closed-source
are providing assurance cases and that it is still possible to do some analysis by
just having access to the binary code. However, we were surprised that the use of
software vendor evaluation was not discussed in more detail as vendor assessment
would be an important factor when assessing closed-source software.

5.4 RQ4 - Third party

RQ: What are the criteria used when deciding which third-party solutions are to be
trusted in the supply chain?

Based on the trust criteria in Table 4.18 the two most frequently mentioned
criteria in the papers are to "trust components that have been in widespread use
over time" and to "make sure there is an active maintainer domain". Both of these
criteria make sense to evaluate as a widely used component is more likely to have

Chapter 5: Discussion 54

uncovered security issues. It is probably also more companies and developers that
are willing to help if there are issues with a component that is in widespread use.
Having an active maintainer domain is also important since more maintainers can
help solve more issues and it is less likely that the software will be abandoned and
deprecated.

Further analyzing the trust criteria in Table 4.18 we can see that criteria 1
and 13 are somewhat linked to metadata and documentation as liability should
be clarified in a license and licensing can be seen as part of the documentation.

Both criteria 2 and 14 are linked to the positive aspects of popularity. The fact
that more users can uncover security issues and other glaring errors is a positive
consequence of popularity. What was not discussed in the papers is that popular
software usually is more valuable to attack as there are more potential victims.

Criteria 3, 11, and 12 are linked to trusted authors and suppliers. Both criteria
3 and 12 are linked to criteria 11 which recommends looking for trusted authors
and suppliers. Trust criteria 3 advocates using certification to strengthen the trust
in the software. Criteria 12 promotes using hash and signatures to show if the
software has been tampered with after or during distribution. Both criteria 3 and
12 are measures to strengthen criteria 11.

Maintainer evaluation is also relevant to many of the trust criteria in Table 4.18.
Criteria 4, 7, 8, and 9 are linked to there being enough maintainers that are active,
not overloaded, and familiar with the programming language they use. These are
all important to consider, however, we believe that it is hard for users to evaluate
the quality of the maintainers. The only exception might be if the project is public
on a code-sharing platform such as GitHub where the maintainers and their code
commits are displayed.

Trust criteria 6, 10, 15, and 16 are all linked to the health of the repository.
Trust criteria 6 advocates avoiding deprecated repositories, 10 cares about the
maintenance lifecycle of the component, and 15 urges users to evaluate the num-
ber of open issues and for how long they have stayed open. Using components
that are being kept up to date and not deprecated should be an indicator that the
repository is able to fix potential new security issues. Trust criteria 16 is a bit dif-
ferent than the others since it evaluates if automated code analysis is being used
and is more concerned with the quality of the code repository.

Many of the criteria are hard to evaluate if there is no access to the source code
or the development process. The fact that most of the criteria from the papers are
linked to open-source makes sense as this is what most of the papers focused on.

We also looked at the package managers mentioned in the papers as they might
give some insight into what kinds of metadata are provided and possible to use as
evaluation criteria. Different package managers provide different metadata that
can be used as trust criteria. We think the differences between package managers
should be further researched to see what kind of data they should provide and
what can be used in the evaluation of the software. We believe that it is important
to look at the different package managers as it is through them that much code
gets distributed. By making the package managers safe, more software will be

Chapter 5: Discussion 55

secure. It is also important to remember that the information provided by the
package managers is the only information many developers use to asses if they
trust a software package.

In Table 4.19 we see that there is more focus on programming language pack-
age managers, which was expected since the risk from their packages is more
tangible since they are related to code. The top four mentioned package man-
agers in the papers are used for JavaScript, Python, Ruby, and Java projects. They
were most likely discussed in the papers due to their popularity.

There were many trust criteria suggested in the papers. The focus is primar-
ily on open-source. We believe all of the criteria in Table 4.18 can help assess
third-party software. However, we do think that there are many more criteria, not
mentioned in the papers, that could be interesting to evaluate.

Many of the criteria we found were linked to open-source software and we
agree with P51 that there should be more criteria to assess commercial software
source code. We also believe that researching package managers could be an un-
tapped source of knowledge when it comes to trust criteria. They provide different
metadata and we believe package managers to be the only place developers look
to assess third-party packages.

5.5 RQ5 - Detection Tools

RQ: What are the tools used to detect vulnerabilities related to supply chain attacks?
There are a lot of different tools mentioned in the papers and only three of

them are deprecated. Having all these resources available for developers can give
a lot of valuable defense mechanisms and insight but it also makes it hard for
developers to decide on which tools to use. The number of detection tools is also
an indication of the complexity of protecting against software attacks and how
hard the problem is to solve. It is also a good thing that there are many tools
made since it shows that a lot of effort is being put into solving the problem.

12 of the 24 frameworks discussed are focusing on third-party dependencies
and security tools for checking software written by others. Out of these tools, many
are package manager specific or written for a certain programming language. In
addition, many of them are built specifically for open-source projects. The fact that
many of the tools are specifically made for certain programming languages could
indicate that it is hard to make a general tool for all programming languages. This
might be due to the differences in metadata provided by the package managers
as discussed in section 5.4.

The second big grouping of tools are the ones focusing on CI/CD. 4 of the
tools focus on both CI and CD, while 2 only focus on CI and 1 only focus on CD.
Many of these tools are made for the DevOps process, and if they are configured
with an added focus on security, they can contribute to a DevSecOps process and
a strengthened software supply chain.

The last 5 tools mentioned, that are not related directly to third-party depend-
encies or CI/CD are In-toto, Sigstore, CAST software, JFrog, and CHIRP:

Chapter 5: Discussion 56

In-toto is a tool for securing the integrity of the software supply chain, by making
it transparent for the user what steps were performed, by whom, and in what
order.

Sigstore is a tool that helps with signing and verifying your software, making
sure your software does not get tampered with.

CAST software has multiple products and one of them, CAST Imaging, can be
used to provide blueprints of the software’s inner workings, and automatic-
ally detect structural flaws.

JFrog provides multiple platforms that can be used to secure DevOps platforms.

CHIRP is a Python-based tool released by the American Cybersecurity and In-
frastructure Security Agency. It can detect post-compromise threat activity
after the SolarWinds hack. It was the only tool that can find irregularities
after an attack has been executed.

None of the detection tools mentioned focus on closed-source software. It
would be useful to have an automatic tool to help with the security evaluation
of closed-source projects. This is, however, very challenging, if not impossible to
create a perfect tool for this, as the lack of source code and related information
will make the assessment no more than a best-effort attempt. Not having access to
source code will cause such a tool to only be based on available metadata about
the project which does not necessarily reflect the actual code and its quality.

As we can see there are a lot of detection tools available. Many of these tools
run automatically which makes them less time-consuming to implement and use.
We believe using tools is an important part of securing the software supply chain
as it works as an extra layer of security without creating more to do for the de-
velopers. The main downside is that the number of tools makes it hard to know
which tools to use, but the comparative study of software composition analysis
tools in P3 is a contribution to help find the best tool.

5.6 Implications for Research

This section will summarise the discoveries from this SLR that can be implications
for research in general and potential future research.

In General

• There is no specific definition of what should be considered part of software
supply chain security as the software supply chain itself is not explicitly
defined.
• There is a lack of science on closed-source compared to the focus on open-

source.

Chapter 5: Discussion 57

• There are some disagreements about what is best of having few or many
maintainers in regard to security.
• There are some disagreements about what is the best practices concerning

automatic updates.
• Many of the articles concerning package managers are focusing on only

npm, PyPI, Maven, and RubyGems. There are many more programming lan-
guage package managers that should be evaluated.

Possible Directions For Future Research

• A list of evaluation criteria to assess closed-source.
• A tool to help prevent typosquatting could provide some value for developers.
• A tool that gives a warning if the author of the third-party dependency

changes to prevent the "Use after free" or "abandoned name exploit" could
contribute to securing the supply chain.
• More research into how package managers’ metadata can be used for eval-

uation criteria.
• Dependency Confusion attacks were not mentioned in any of the papers.

Dependency confusion should be researched more.
• Create a tool that will provide a security score to help developers assess if a

package is trustworthy before downloading it.

5.7 Implications for Practice

This section will encapsulate the discoveries that have implications for the prac-
tices concerning protecting the software supply chain.

• The evaluation criteria from P51 seems promising for evaluating open-source
projects.
• There are many competing tools and frameworks that make it hard for de-

velopers to evaluate which are best suited for their project, but the work in
P3 can give some guidance.
• Software providers should always supply a SBOM with their software as a

standard to increase transparency and make it easier to assess dependencies
for the consumer.

5.8 Threats to Validity

There are some threats to the validity of the research. We only used two data-
bases of articles: Web of Science and Scopus. They do, however, provide many
articles from other databases. We did a manual extraction of much of the inform-
ation which has some risk of missing some data during the extraction process. The
whole process and the extraction process in particular have also been affected by

Chapter 5: Discussion 58

research reflexivity, as our thoughts, knowledge, and behavior will affect the res-
ult somewhat. This is probably more likely to occur when the papers assessed did
not provide straightforward research questions and results.

A general threat to security research is that it is hard to evaluate what security
measures are relevant and actually work. Security recommendations are often
believed to work unless they fail which is not always easy to evaluate. We have
focused on including recommendations provided by the papers in this SLR rather
than assessing all their positive and negative aspects.

We did include some grey literature that was extracted from Web of Science
and Scopus, and some other sources that were used to substantiate arguments in
chapter 5. Only relying on pair-reviewed published articles would be challenging
due to the small number of papers in this research field. We did also look into
some online resources as discussed in section 3.7 to see if the community was
concerned with the same as researchers, but this did not provide much additional
information.

We only did assess English sources. Most of the research used came from west-
ern countries and it is not unlikely that other cultures have other thoughts about
trust which might be relevant for software supply chain security, or have different
frameworks such as CSPN.

Chapter 6

Conclusion

Securing the software supply chain is a complex topic and there are a lot of things
to consider for suppliers, customers, and researchers. The goal of this SLR was to
summarize information published in the selected literature to answer the research
questions. We found that the 2020 SolarWinds hack has affected much of the re-
cent research on software supply chain security. Many papers referenced frame-
works instead of specific countermeasures when they discussed countermeasures
against software supply chain attacks. We experience that there is more focus
on open-source than closed-source in scientific literature. If this is because open-
source has more information to assess and write about, or if it is because open-
source is more important to consider when securing the software supply chain was
not clear from the research, but we expect the first to be the main reason. There
were multiple evaluation criteria that can be used to assess third-party software.
They were, however, also mostly focused on open-source. We have provided a list
of the tools that were mentioned and recommended in the papers to help secure
the software supply chain. Overall, we agree with many of the papers that the
topic is complex and that there is no silver bullet to stop software supply chain
attacks. Dealing with software supply chain security is a problem that needs to be
handled by incorporating many different countermeasures. These countermeas-
ures will constantly change, and some of the current measures discussed in the
literature are presented in this SLR.

6.0.1 Future Work

After this SLR we have decided to conduct further research into how developers
can assess third-party dependencies when they include them in projects. The first
step of this process will be to find good trust criteria that can be used to evaluate
the security of different third-party dependencies. Here we can use the trust cri-
teria found in P51, the criteria listed in Table 4.18, and we need to look further
into what is available on sites such as GitHub, GitLab, and package-specific web-
sites. An example of one such trust criterion that was not explicitly mentioned in
the papers is trusting what is already trusted by other developers internally in the

59

Chapter 6: Conclusion 60

company. It is similar to criteria No.2 and No. 14 in Table 4.18 as they are linked to
trusting what others have trusted. The trusting internal developer trust criterion
is one example of a trust criterion that will be assessed in our future work, but we
will look further into more trust criteria.

After identifying the trust criteria we will evaluate and compare existing secur-
ity evaluation tools. This involves looking at their focus areas, find out what they
are lacking, and how they are different. These tools can be found by searching
online and from Table 4.20.

The next potential step can be to create a tool that can be used for evaluating
different third-party software. This tool will provide a security score that is calcu-
lated by using relevant trust criteria and available metadata from different code
hosting sites. In addition, we want to query databases like the OSV database and
Black Duck to find currently known vulnerabilities in the third-party software.

We have already discussed with a Norwegian software company, Visma, to cre-
ate the tool in collaboration with them. This can also be combined with making an
analyzing tool specific to Visma, that will analyze internal Visma projects and the
third-party software already in use to find internal data that can be used as trust
criteria such as the trusting internal developer trust criterion. Since Visma is us-
ing JavaScript and C# in many of their projects we will look into npm and NuGet.
Focusing on npm is similar to what many papers have done as seen in Table 4.19,
but focusing on NuGet will be different than the papers in this SLR. This process
will then be documented so that it can be reproduced by other companies.

A final step would then be to conduct experiments to assess the tool. Firstly
we would do some assessment based on known secure and insecure packages
ourselves to see if the tools work as expected. Secondly, we would have some
teams test out this tool and do an analysis to assess if the tool is convenient and
valuable for developers.

Bibliography

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland and D. Thomas, Mani-
festo for agile software development, 2001. [Online]. Available: http://
www.agilemanifesto.org/.

[2] D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate and A. Sabetta, ‘Lastpymile:
Identifying the discrepancy between sources and packages,’ in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ser. ES-
EC/FSE 2021, Athens, Greece: Association for Computing Machinery, 2021,
pp. 780–792, ISBN: 9781450385626. DOI: 10.1145/3468264.3468592.
[Online]. Available: https://doi.org/10.1145/3468264.3468592.

[3] N. Imtiaz, S. Thorn and L. Williams, ‘A comparative study of vulnerabil-
ity reporting by software composition analysis tools,’ in Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engin-
eering and Measurement (ESEM), ser. ESEM ’21, Bari, Italy: Association
for Computing Machinery, 2021, ISBN: 9781450386654. DOI: 10.1145/
3475716.3475769. [Online]. Available: https://doi.org/10.1145/
3475716.3475769.

[4] R. A. Martin, ‘Visibility & control: Addressing supply chain challenges to
trustworthy software-enabled things,’ in 2020 IEEE Systems Security Sym-
posium (SSS), 2020, pp. 1–4. DOI: 10.1109/SSS47320.2020.9174365.

[5] B. A. Sabbagh and S. Kowalski, ‘A socio-technical framework for threat
modeling a software supply chain,’ IEEE Security & Privacy, vol. 13, no. 4,
pp. 30–39, 2015. DOI: 10.1109/MSP.2015.72.

[6] S. Boyson, ‘Cyber supply chain risk management: Revolutionizing the stra-
tegic control of critical it systems,’ Technovation, vol. 34, no. 7, pp. 342–
353, 2014, Special Issue on Security in the Cyber Supply Chain, ISSN:
0166-4972. DOI: https://doi.org/10.1016/j.technovation.2014.02.
001. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166497214000194.

61

Bibliography 62

[7] Z. Zhu, K. Lan, Z. Rao and Y. Zhang, ‘Risk assessment method for iot soft-
ware supply chain vulnerabilities,’ Journal of Physics: Conference Series,
vol. 1732, no. 1, p. 012 051, Jan. 2021. DOI: 10.1088/1742-6596/1732/
1/012051. [Online]. Available: https://dx.doi.org/10.1088/1742-
6596/1732/1/012051.

[8] S. Rothschild, ‘Secure software by design,’ in 2018 IEEE International Sym-
posium on Technologies for Homeland Security (HST), 2018, pp. 1–6. DOI:
10.1109/THS.2018.8574188.

[9] S. D. Alexander, ‘Trust engineering: Rejecting the tyranny of the weak-
est link,’ in Proceedings of the 28th Annual Computer Security Applications
Conference, 2012, pp. 145–148.

[10] S. Raponi, M. Caprolu and R. Di Pietro, ‘Beyond solarwinds: The systemic
risks of critical infrastructures, state of play, and future directions,’ in
ITASEC ’21: Italian Conference on Cyber Security, 2021. [Online]. Avail-
able: http://star.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-2940/paper33.pdf.

[11] M. Ohm, H. Plate, A. Sykosch and M. Meier, ‘Backstabber’s knife col-
lection: A review of open source software supply chain attacks,’ CoRR,
vol. abs/2005.09535, 2020. arXiv: 2005.09535. [Online]. Available: https:
//arxiv.org/abs/2005.09535.

[12] G. Ferreira, L. Jia, J. Sunshine and C. Kästner, ‘Containing malicious pack-
age updates in npm with a lightweight permission system,’ in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), 2021, pp. 1334–
1346. DOI: 10.1109/ICSE43902.2021.00121.

[13] A. Esfahani, G. Mantas, J. Ribeiro, J. Bastos, S. Mumtaz, M. A. Violas,
A. M. De Oliveira Duarte and J. Rodriguez, ‘An efficient web authentic-
ation mechanism preventing man-in-the-middle attacks in industry 4.0
supply chain,’ IEEE Access, vol. 7, pp. 58 981–58 989, 2019. DOI: 10.1109/
ACCESS.2019.2914454.

[14] O. Akinrolabu, S. New and A. Martin, ‘Assessing the security risks of mul-
ticloud saas applications: A real-world case study,’ in 2019 6th IEEE Inter-
national Conference on Cyber Security and Cloud Computing (CSCloud)/
2019 5th IEEE International Conference on Edge Computing and Scalable
Cloud (EdgeCom), 2019, pp. 81–88. DOI: 10.1109/CSCloud/EdgeCom.
2019.00-14.

[15] Snyk, Software security in 2021 | Definition, Issues & Types, Sep. 2022.
[Online]. Available: https://snyk.io/learn/software-security/.

[16] ‘Cost of a Data Breach Report 2022.’ (2022), [Online]. Available: https:
//www.ibm.com/reports/data-breach (visited on 15/11/2022).

[17] European Commission, Art. 82 GDPR – Right to compensation and liability,
Mar. 2018. [Online]. Available: https://gdpr-info.eu/art-82-gdpr/.

Bibliography 63

[18] W. Axelrod, ‘Malware, "weakware," and the security of software supply
chains,’ CrossTalk, The Journal of Defense Software Engineering, vol. 27,
pp. 20–24, Mar. 2014.

[19] J. D. Linton, S. Boyson and J. Aje, ‘The challenge of cyber supply chain
security to research and practice – an introduction,’ Technovation, vol. 34,
no. 7, pp. 339–341, 2014, Special Issue on Security in the Cyber Supply
Chain, ISSN: 0166-4972. DOI: https://doi.org/10.1016/j.technovation.
2014.05.001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0166497214000522.

[20] Berger, What is Log4Shell? The Log4j vulnerability explained (and what to
do about it), Dec. 2017. [Online]. Available: https://www.dynatrace.
com/news/blog/what-is-log4shell/.

[21] The Apache Software Foundation, Log4j – Apache Log4j Security Vulner-
abilities, Sep. 2022. [Online]. Available: https://logging.apache.org/
log4j/2.x/security.html.

[22] ‘Open source vs closed source software.’ (2022), [Online]. Available: https:
//www.ibm.com/topics/open-source (visited on 16/11/2022).

[23] J. Yang, Y. Lee and A. McDonald, ‘Solarwinds software supply chain se-
curity: Better protection with enforced policies and technologies,’ in Jan.
2022, pp. 43–58, ISBN: 978-3-030-92316-7. DOI: 10.1007/978-3-030-
92317-4_4.

[24] L. Sterle and S. Bhunia, ‘On solarwinds orion platform security breach,’
in 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications, Internet of
People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI),
2021, pp. 636–641. DOI: 10.1109/SWC50871.2021.00094.

[25] R. Patnayakuni and N. Patnayakuni, ‘Information security in value chains:
A governance perspective,’ in AMCIS, 2014.

[26] N. Kshetri and J. Voas, ‘Supply chain trust,’ IT Professional, vol. 21, no. 2,
pp. 6–10, 2019. DOI: 10.1109/MITP.2019.2895423.

[27] X. Wang, ‘On the feasibility of detecting software supply chain attacks,’
in MILCOM 2021 - 2021 IEEE Military Communications Conference (MIL-
COM), 2021, pp. 458–463. DOI: 10.1109/MILCOM52596.2021.9652901.

[28] L. Courtès, ‘Building a secure software supply chain with GNU guix,’ The
Art, Science, and Engineering of Programming, vol. 7, no. 1, Jun. 2022. DOI:
10.22152/programming-journal.org/2023/7/1. [Online]. Available:
https://doi.org/10.22152%5C%2Fprogramming- journal.org%5C%
2F2023%5C%2F7%5C%2F1.

[29] E. Levy, ‘Poisoning the software supply chain,’ IEEE Security & Privacy,
vol. 1, no. 3, pp. 70–73, 2003. DOI: 10.1109/MSECP.2003.1203227.

Bibliography 64

[30] S. Du, T. Lu, L. Zhao, B. Xu, X. Guo and H. Yang, ‘Towards an analysis
of software supply chain risk management,’ in Proceedings of the World
Congress on Engineering and Computer Science, vol. 1, 2013.

[31] Montalbano, Supply Chain Attack Pushes Out Malware to More than 250
Media Websites, Nov. 2022. [Online]. Available: https://www.darkreading.
com / application - security / supply - chain - attack - pushes - out -
malware-to-more-than-250-media-websites.

[32] Paganini, 250+ U.S. news sites spotted spreading FakeUpdates malware in a
supply-chain attack, Nov. 2022. [Online]. Available: https://securityaffairs.
co/wordpress/138052/cyber-crime/supply-chain-attack-fakeupdates.
html.

[33] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila and L.
Williams, ‘What are weak links in the npm supply chain?’ In 2022 IEEE/ACM
44th International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2022, pp. 331–340. DOI: 10.1145/3510457.
3513044.

[34] Flynn, 16 Agile Statistics [2022]: What You Need To Know About Agile Pro-
ject Management – Zippia, May 2022. [Online]. Available: https://www.
zippia.com/advice/agile-statistics/.

[35] M. N. Abd Latif, N. A. Abd Aziz, N. S. Nik Hussin and Z. Abdul Aziz, ‘Cyber
security in supply chain management: A systematic review,’ Logforum,
vol. 17, pp. 49–57, Mar. 2021. DOI: 10.17270/J.LOG.2021555.

[36] Y. Zhao, R. Liang, X. Chen and J. Zou, ‘Evaluation indicators for open-
source software: A review,’ Cybersecurity, vol. 4, no. 1, p. 20, Jun. 2021,
ISSN: 2523-3246. DOI: 10.1186/s42400-021-00084-8. [Online]. Avail-
able: https://doi.org/10.1186/s42400-021-00084-8.

[37] A. Ghadge, M. Weiss, N. D. Caldwell and R. Wilding, ‘Managing cyber risk
in supply chains: A review and research agenda,’ Supply Chain Manage-
ment: An International Journal, 2019.

[38] B. Kitchenham and S. Charters, ‘Guidelines for performing systematic lit-
erature reviews in software engineering,’ vol. 2, Jan. 2007.

[39] Satyabrata Jena. ‘Difference between Open Source Software and Closed
Source Software.’ (2022), [Online]. Available: https://www.geeksforgeeks.
org/difference-between-open-source-software-and-closed-source-
software/ (visited on 31/10/2022).

[40] ‘Third Party Software Components definition.’ (2022), [Online]. Avail-
able: https://www.lawinsider.com/dictionary/third-party-software-
components (visited on 31/10/2022).

[41] ‘Scopus Search Guide.’ (2022), [Online]. Available: http : / / schema .
elsevier.com/dtds/document/bkapi/search/SCOPUSSearchTips.htm
(visited on 31/10/2022).

Bibliography 65

[42] ‘Web of Science Core Collection Help.’ (2020), [Online]. Available: https:
//images.webofknowledge.com/images/help/WOS/hs_search_operators.
html (visited on 31/10/2022).

[43] EndNote, EndNote | The best reference management tool, Aug. 2022. [On-
line]. Available: https://endnote.com/.

[44] Gilles ’SO- stop being evil’, Security evaluation: what is there apart from
common criteria? Accessed on 2022-11-14., Dec. 2011. [Online]. Avail-
able: https://security.stackexchange.com/questions/9512/security-
evaluation-what-is-there-apart-from-common-criteria/9542.

[45] user3240316, Basically only 2 ways of npm supply chain attacks? Accessed
on 2022-11-14., Sep. 2022. [Online]. Available: https : / / security .
stackexchange.com/questions/264722/basically-only-2-ways-of-
npm-supply-chain-attacks.

[46] Y. Nakano, T. Nakamura, Y. Kobayashi, T. Ozu, M. Ishizaka, M. Hashimoto,
H. Yokoyama, Y. Miyake and S. Kiyomoto, ‘Automatic security inspection
framework for trustworthy supply chain,’ in 2021 IEEE/ACIS 19th Inter-
national Conference on Software Engineering Research, Management and
Applications (SERA), 2021, pp. 45–50. DOI: 10.1109/SERA51205.2021.
9509040.

[47] N. Imtiaz, S. Thorn and L. Williams, ‘A comparative study of vulnerabil-
ity reporting by software composition analysis tools,’ in Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engin-
eering and Measurement (ESEM), ser. ESEM ’21, Bari, Italy: Association
for Computing Machinery, 2021, ISBN: 9781450386654. DOI: 10.1145/
3475716.3475769. [Online]. Available: https://doi.org/10.1145/
3475716.3475769.

[48] R. A. Martin, ‘Assurance for cyberphysical systems: Addressing supply
chain challenges to trustworthy software-enabled things,’ in 2020 IEEE
Systems Security Symposium (SSS), 2020, pp. 1–5. DOI: 10.1109/SSS47320.
2020.9174201.

[49] C. W. Axelrod, ‘Assuring software and hardware security and integrity
throughout the supply chain,’ in 2011 IEEE International Conference on
Technologies for Homeland Security (HST), 2011, pp. 62–68. DOI: 10.1109/
THS.2011.6107848.

[50] U. Agarwal, V. Rishiwal, S. Tanwar, R. Chaudhary, G. Sharma, P. N. Bokoro
and R. Sharma, ‘Blockchain technology for secure supply chain manage-
ment: A comprehensive review,’ IEEE Access, vol. 10, pp. 85 493–85 517,
2022. DOI: 10.1109/ACCESS.2022.3194319.

Bibliography 66

[51] G. A. Vazquez-Martinez, J. Gonzalez-Compean, V. J. Sosa-Sosa, M. Morales-
Sandoval and J. C. Perez, ‘Cloudchain: A novel distribution model for di-
gital products based on supply chain principles,’ International Journal of
Information Management, vol. 39, pp. 90–103, 2018, ISSN: 0268-4012.
DOI: https://doi.org/10.1016/j.ijinfomgt.2017.12.006. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0268401217306357.

[52] E.W.T.Ngai, T.C.E.Cheng and S.S.M.Ho, ‘Critical success factors of web-
based supply-chain management systems: An exploratory study,’ Produc-
tion Planning & Control, vol. 15, no. 6, pp. 622–630, 2004. DOI: 10.1080/
09537280412331283928. eprint: https://doi.org/10.1080/09537280412331283928.
[Online]. Available: https://doi.org/10.1080/09537280412331283928.

[53] N. Bartol, ‘Cyber supply chain security practices dna – filling in the puzzle
using a diverse set of disciplines,’ Technovation, vol. 34, no. 7, pp. 354–
361, 2014, Special Issue on Security in the Cyber Supply Chain, ISSN:
0166-4972. DOI: https://doi.org/10.1016/j.technovation.2014.01.
005. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166497214000066.

[54] K. W. Hamlen and B. Thuraisingham, ‘Data security services, solutions
and standards for outsourcing,’ Computer Standards & Interfaces, vol. 35,
no. 1, pp. 1–5, 2013, ISSN: 0920-5489. DOI: https://doi.org/10.1016/
j.csi.2012.02.001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0920548912000414.

[55] A. Raicu and G. Raicu, ‘Digital enterprise and cyber security evolution,’
Macromolecular Symposia, vol. 396, no. 1, p. 2 000 326, 2021. DOI: https:
//doi.org/10.1002/masy.202000326. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/masy.202000326. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.202000326.

[56] R. Stempfley, ‘Each person and organization in the supply chain path
“touches,” or has influence on, the security and resilience of software
used to control products, systems, and services,’ CrossTalk, The Journal
of Defense Software Engineering, vol. 26, no. 2, 2013. eprint: https://
apps.dtic.mil/sti/pdfs/ADA576064.pdf. [Online]. Available: https:
//apps.dtic.mil/sti/pdfs/ADA576064.pdf.

[57] A. S. Markov and I. A. Sheremet, ‘Enhancement of confidence in software
in the context of international security,’ in CEUR Workshop Proceedings,
vol. 2603, 2019, pp. 88–92.

[58] E. Wotring and S. Migues, ‘Ensuring software assurance process matur-
ity,’ CrossTalk, The Journal of Defense Software Engineering, vol. 24, no. 2,
2011. eprint: https://apps.dtic.mil/sti/pdfs/ADA538093.pdf. [On-
line]. Available: https://apps.dtic.mil/sti/pdfs/ADA538093.pdf.

Bibliography 67

[59] M. B. Chrissis, M. Konrad and M. Moss, ‘Ensuring your development pro-
cesses meet today’s cyber challenges,’ CrossTalk, The Journal of Defense
Software Engineering, vol. 29, 2013.

[60] D. Yan, Y. Niu, K. Liu, Z. Liu, Z. Liu and T. F. Bissyandé, ‘Estimating the at-
tack surface from residual vulnerabilities in open source software supply
chain,’ in 2021 IEEE 21st International Conference on Software Quality, Re-
liability and Security (QRS), 2021, pp. 493–502. DOI: 10.1109/QRS54544.
2021.00060.

[61] S. Shankles, M. Moss, J. Pickel and N. Bartol, ‘How international standard
efforts help address challenges in today’s global ict marketplace,’ vol. 26,
pp. 10–15, Mar. 2013.

[62] B. Hensley, ‘Identity is the new perimeter in the fight against supply chain
attacks,’ Network Security, vol. 2021, no. 7, pp. 7–9, 2021, ISSN: 1353-
4858. DOI: https://doi.org/10.1016/S1353-4858(21)00074-X. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/S135348582100074X.

[63] S. Lawrence Pfleeger, M. Libicki and M. Webber, ‘I’ll buy that! cyberse-
curity in the internet marketplace,’ IEEE Security & Privacy, vol. 5, no. 3,
pp. 25–31, 2007. DOI: 10.1109/MSP.2007.64.

[64] T. M. S. do Amaral and J. J. C. Gondim, ‘Integrating zero trust in the cyber
supply chain security,’ in 2021 Workshop on Communication Networks and
Power Systems (WCNPS), 2021, pp. 1–6. DOI: 10.1109/WCNPS53648.2021.
9626299.

[65] M. Windelberg, ‘Objectives for managing cyber supply chain risk,’ Interna-
tional Journal of Critical Infrastructure Protection, vol. 12, pp. 4–11, 2016,
ISSN: 1874-5482. DOI: https://doi.org/10.1016/j.ijcip.2015.11.
003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1874548215000785.

[66] S. Dashevskyi, A. D. Brucker and F. Massacci, ‘On the security cost of
using a free and open source component in a proprietary product,’ in
Engineering Secure Software and Systems, J. Caballero, E. Bodden and
E. Athanasopoulos, Eds., Cham: Springer International Publishing, 2016,
pp. 190–206, ISBN: 978-3-319-30806-7.

[67] A. Szakal and K. Pearsall, ‘Open industry standards for mitigating risks to
global supply chains,’ IBM Journal of Research and Development, vol. 58,
pp. 11–113, Jan. 2014. DOI: 10.1147/JRD.2013.2285605.

[68] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate and A. Sabetta, ‘Poster: To-
wards using source code repositories to identify software supply chain
attacks,’ Nov. 2020. DOI: 10.1145/3372297.3420015.

Bibliography 68

[69] F. Xie, T. Lu, B. Xu, D. Chen and Y. Peng, ‘Research on software develop-
ment process assurance models in ict supply chain risk management,’ in
2012 IEEE Asia-Pacific Services Computing Conference, 2012, pp. 43–49.
DOI: 10.1109/APSCC.2012.41.

[70] M. O’Halloran, J. G. Hall and L. Rapanotti, ‘Safety engineering with cots
components,’ Reliability Engineering & System Safety, vol. 160, pp. 54–
66, 2017, ISSN: 0951-8320. DOI: https://doi.org/10.1016/j.ress.
2016.11.016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0951832016308298.

[71] C. Gottlieb, ‘Securing high-tech goods across the supply chain,’ EDN, Sep.
2010.

[72] W. Scacchi and T. A. Alspaugh, ‘Securing software ecosystem architec-
tures: Challenges and opportunities,’ IEEE Software, vol. 36, no. 3, pp. 33–
38, 2019. DOI: 10.1109/MS.2018.2874574.

[73] V. Mills and S. Butakov, ‘Security evaluation criteria of open-source lib-
raries,’ in Computational Science and Its Applications – ICCSA 2022 Work-
shops: Malaga, Spain, July 4–7, 2022, Proceedings, Part V, Malaga, Spain:
Springer-Verlag, 2022, pp. 422–435, ISBN: 978-3-031-10547-0. DOI: 10.
1007/978-3-031-10548-7_31. [Online]. Available: https://doi.org/
10.1007/978-3-031-10548-7_31.

[74] R. Mu and F. Yonggang, ‘Security in the cyber supply chain: A chinese per-
spective,’ Technovation, vol. 34, Jul. 2014. DOI: 10.1016/j.technovation.
2014.02.004.

[75] W. Axelrod, ‘Software security assurance soup to nuts,’ CrossTalk, The
Journal of Defense Software Engineering, vol. 28, pp. 37–43, Jan. 2015.

[76] P. R. Croll, ‘Supply chain risk management - understanding vulnerabilities
in code you buy, build, or integrate,’ in 2011 IEEE International Systems
Conference, 2011, pp. 194–200. DOI: 10.1109/SYSCON.2011.5929123.

[77] R. J. Ellison and C. Woody, ‘Supply-chain risk management: Incorporating
security into software development,’ in 2010 43rd Hawaii International
Conference on System Sciences, 2010, pp. 1–10. DOI: 10.1109/HICSS.
2010.355.

[78] D. Forte, R. Perez, Y. Kim and S. Bhunia, ‘Supply-chain security for cyber-
infrastructure [guest editors’ introduction],’ Computer, vol. 49, pp. 12–16,
Aug. 2016. DOI: 10.1109/MC.2016.260.

[79] A. Wirth, ‘Cyberinsights: Talking about the Software Supply Chain,’ Bio-
medical Instrumentation & Technology, vol. 54, no. 5, pp. 364–367, Oct.
2020, ISSN: 0899-8205. DOI: 10.2345/0899- 8205- 54.5.364. eprint:
https://meridian.allenpress.com/bit/article- pdf/54/5/364/
2622296/i0899-8205-54-5-364.pdf. [Online]. Available: https://doi.
org/10.2345/0899-8205-54.5.364.

Bibliography 69

[80] D. Deyannis, E. Papadogiannaki, G. Chrysos, K. Georgopoulos and S. Ioan-
nidis, ‘The diversification and enhancement of an ids scheme for the cy-
bersecurity needs of modern supply chains,’ Electronics, vol. 11, no. 13,
2022, ISSN: 2079-9292. DOI: 10.3390/electronics11131944. [Online].
Available: https://www.mdpi.com/2079-9292/11/13/1944.

[81] J. Whitmore, S. Türpe, S. Triller, A. Poller and C. Carlson, ‘Threat analysis
in the software development lifecycle,’ IBM Journal of Research and Devel-
opment, vol. 58, no. 1, 6:1–6:13, 2014. DOI: 10.1147/JRD.2013.2288060.

[82] W. Enck and L. Williams, ‘Top five challenges in software supply chain
security: Observations from 30 industry and government organizations,’
IEEE Security & Privacy, vol. 20, no. 2, pp. 96–100, 2022. DOI: 10.1109/
MSEC.2022.3142338.

[83] M. Ohm, A. Sykosch and M. Meier, ‘Towards detection of software sup-
ply chain attacks by forensic artifacts,’ in Proceedings of the 15th Interna-
tional Conference on Availability, Reliability and Security, ser. ARES ’20,
Virtual Event, Ireland: Association for Computing Machinery, 2020, ISBN:
9781450388337. DOI: 10.1145/3407023.3409183. [Online]. Available:
https://doi.org/10.1145/3407023.3409183.

[84] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio and W. Lee,
‘Towards measuring supply chain attacks on package managers for inter-
preted languages,’ arXiv preprint arXiv:2002.01139, 2020.

[85] M. Naedele and T. E. Koch, ‘Trust and tamper-proof software delivery,’
ser. SESS ’06, Shanghai, China: Association for Computing Machinery,
2006, pp. 51–58, ISBN: 1595934111. DOI: 10.1145/1137627.1137636.
[Online]. Available: https://doi.org/10.1145/1137627.1137636.

[86] B. R. Ray, J. Abawajy, M. Chowdhury and A. Alelaiwi, ‘Universal and se-
cure object ownership transfer protocol for the internet of things,’ Future
Generation Computer Systems, vol. 78, pp. 838–849, 2018, ISSN: 0167-
739X. DOI: https://doi.org/10.1016/j.future.2017.02.020. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/S0167739X17302182.

[87] S. Shankles, ‘We cannot blindly reap the benefits of a globalized ict supply
chain!’ CrossTalk, p. 5, 2013.

[88] National Institute of Standards and Technology, Software Supply Chain At-
tacks, 2018. [Online]. Available: https://csrc.nist.gov/CSRC/media/
Projects/Supply- Chain- Risk- Management/documents/ssca/2017-
winter/NCSC_Placemat.pdf.

[89] O. E., Software Supply Chain Attacks: 2021 in Review, Jun. 2022. [On-
line]. Available: https://blog.aquasec.com/software-supply-chain-
attacks-2021.

Bibliography 70

[90] D. V., Software supply chain attacks tripled in 2021 says Argon, Jan. 2022.
[Online]. Available: https://cybermagazine.com/cyber- security/
software-supply-chain-attacks-tripled-2021-says-argon.

[91] L. R., Google Launches GUAC Open Source Project to Secure Software Supply
Chain, Oct. 2022. [Online]. Available: https://thehackernews.com/
2022/10/google-launches-guac-open-source.html.

[92] Microsoft, Supply chain attacks, Nov. 2022. [Online]. Available: https://
learn.microsoft.com/en-us/microsoft-365/security/intelligence/
supply-chain-malware?view=o365-worldwide.

[93] B. A., Dependency Confusion: How I Hacked Into Apple, Microsoft and Dozens
of Other Companies, Dec. 2021. [Online]. Available: https://medium.
com/@alex.birsan/dependency-confusion-4a5d60fec610.

[94] Common Weakness Enumeration, CWE - CWE-416: Use After Free (4.9),
Oct. 2022. [Online]. Available: https://cwe.mitre.org/data/definitions/
416.html.

[95] Kondratyev and Ivanov, The state of cryptojacking in the first three quar-
ters of 2022, Nov. 2022. [Online]. Available: https://securelist.com/
cryptojacking-report-2022/107898/.

[96] Common Weakness Enumeration, CWE - 2022 CWE Top 25 Most Danger-
ous Software Weaknesses, 2022. [Online]. Available: https://cwe.mitre.
org/top25/archive/2022/2022_cwe_top25.html.

[97] J. Jalkanen, ‘Is human the weakest link in information security?: System-
atic literature review,’ 2019. [Online]. Available: https://jyx.jyu.fi/
handle/123456789/64186.

[98] Synopsys, What Is Software Supply Chain Security and How Does It Work?
| Synopsys, 2022. [Online]. Available: https://www.synopsys.com/
glossary/what-is-software-supply-chain-security.html.

[99] Common Vulnerabilities and Exposures, CVE - CVE, Jul. 2022. [Online].
Available: https://cve.mitre.org/.

[100] Common Weakness Enumeration, CWE - CWE, Oct. 2022. [Online]. Avail-
able: https://cwe.mitre.org/data/index.html.

[101] Common Attack Pattern Enumeration and Classification, CAPEC - Com-
mon Attack Pattern Enumeration and Classification (CAPEC™), Sep. 2022.
[Online]. Available: https://capec.mitre.org/index.html.

[102] BSIMM, BSIMM 13 TRENDS & INSIGHTS REPORT 2022, Sep. 2022. [On-
line]. Available: https://www.bsimm.com/content/dam/bsimm/reports/
bsimm13.pdf.

[103] GitHub, High-impact package maintainers now require 2FA | GitHub Changelog,
Nov. 2022. [Online]. Available: https://github.blog/changelog/2022-
11-01-high-impact-package-maintainers-now-require-2fa/.

Bibliography 71

[104] Scarfone, Jansen and Tracy, Guide to General Server Security, Jul. 2008.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-123.pdf.

	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Contribution
	Goal and Research Questions
	Thesis Structure

	Background and Related Work
	Software Supply Chain Security
	Dependency Security
	Forms of Dependency Attacks

	Trust Criteria
	Code Hosting Platforms
	Package Managers and Package Registries
	npm
	PyPI
	Maven Central
	NuGet

	Security Tools and other Solutions
	Security Databases
	CVE, CWE, CVSS, and CAPEC
	Pre-install and Pre-update Tools
	ChatGPT-driven Software Supply Chain Security Tools

	Related Work
	Gap in Research and Practice

	Research Methodology
	Research Methodology
	Design Science
	The Method Framework Used for the Design Science Research

	Research Strategies
	Technical Action Research
	Experiments

	Data Collection Methods
	Document Studies
	Questionnaires
	Interviews

	Data Analysis
	Quantitative
	Qualitative

	Ethics

	AutoTrust
	Explicate Problem
	Position the Problem
	Formulating the Problem
	Justify the Problem
	Ensure General and Solvable Problem
	Sources of the Problem
	Research Novelty

	Define Requirements
	Outline Artifact
	Elicit Requirements

	Design and Develop Artifact
	Architecutre
	Deciding on Trust Criteria
	Validators
	Trust criteria not added
	Security Risk Score
	Finished Artifact
	Optional Flags
	Justify and Reflect

	Demonstrate Artifact
	100-Packages Demonstration
	Time Demonstration

	Evaluate Artifact
	Student Experiment
	Testing OpenSSF Scorecard
	Interviews with Visma
	Goals of the Evaluation

	Discussion
	Research Question 1 - Useful Information
	Evaluating Trust Criteria and Validators
	The Most Prominent Trust Criteria and Validators
	Summary of Answer to RQ-1

	Research Question 2 - Advantages and Disadvantages
	Advantages
	Disadvantages
	Summary of Answer to RQ-2

	Research Question 3 - Comparing Assessments
	OpenSSF Scorecard
	OSSGadget
	npq
	.NET Commands
	Manual assessment
	Summary of Answer to RQ-3

	Implications for Research
	Implications for Practice
	Limitations and Threats to Validity
	General Reflections
	Improving the Tool

	Conclusion
	Other Contributions
	Future Work

	Bibliography
	Sikt Information
	Sikt Notification Form
	Sikt's Assessment of Processing of Personal Data
	Data Management Plan

	Data Gathering
	Information Letter About Consent
	Questionnaire to Visma Employees
	Replies to the Questionnaire from Visma Employees
	Questionnaire to Computer Science Students
	Interview Questions
	100 NuGet Packages Test
	Time Test
	100 Packages Test OpenSSF Scorecard
	One-pager

	Project Thesis

