
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Erling Feet Nesset

Improving the first-level cache
bandwidth in the
Berkeley Out-of-Order Machine

Master’s thesis in Computer Science
Supervisor: Magnus Jahre
Co-supervisor: Björn Gottschall
June 2023

Erling Feet Nesset

Improving the first-level cache
bandwidth in the
Berkeley Out-of-Order Machine

Master’s thesis in Computer Science
Supervisor: Magnus Jahre
Co-supervisor: Björn Gottschall
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description

FireSim is the state-of-the-art FPGA-accelerated cycle-exact simulator and typic-
ally uses the Berkeley-Out-of-Order Machine (BOOM) when configured to eval-
uate high-performance computer architectures. Unfortunately, BOOM’s memory
system provides sub-optimal bandwidth for some applications. More specifically,
the L1 cache can provide sub-optimal bandwidth for eviction-heavy applications
because the time the cache spends handling evictions grows linearly with the
number of Miss Status Holding Registers (MSHRs). This limits the amount of
Memory Level Parallelism (MLP) that the BOOM can exploit — thereby yielding
sub-optimal performance for memory-sensitive applications. The objective of this
master thesis is to investigate approaches for addressing BOOM’s L1 cache band-
width problem. The student should use the analysis performed during the autumn
project to identify optimization opportunities and then implement and evaluate
key optimizations in FireSim. The evaluation should focus on the streaming mi-
crobenchmark used during the autumn project. If time permits, the student should
evaluate key optimizations on complete benchmarks (e.g., SPEC CPU2017).

iii

Abstract

As processors have hit the memory wall, they have used memory-level-parallelism
(MLP) to hide memory latency. To exploit MLP, processors need sufficient memory
bandwidth and as such bandwidth has become integral to processor performance.
I thoroughly analyze the bandwidth the Berkeley Out-of-Order Machine (BOOM)
can achieve to different levels of its memory hierarchy. By comparing this band-
width to what should be theoretically possible, I identify a bottleneck in the L1
cache’s writeback handling. This bottleneck significantly reduces bandwidth for
eviction-heavy applications. I optimise the writeback handling by pipelining the
writeback unit, enabling it to read dirty cache lines from the cache while writing
back another cache line. This improves write bandwidth by 30% to the L2 and
20% to the main memory. This increase in bandwidth reduces the execution time
of the LBM benchmark with software prefetching by 3,7% for under a 0.2% in-
crease in resource consumption. In addition, I discovered a deadlock in the BOOM
caused by the L2 not acknowledging a writeback when multiple new cache lines
are requested while dirty cache lines are written back. The deadlock is avoided by
not requesting new cache lines when dirty cache lines are being written back.

v

Sammendrag

Ettersom moderne prosessorer de siste tiårene har truffet minnegapet, har de
brukt minne-nivå-parallelisme(MLP) for skjule forskjellen i ytelse mellom prosessoren
og minnet. For å utnytte MLP trenger prosessorer nok båndbredde og båndbredde
har derfor blitt viktig for ytelsen til prosessorer. I denne oppgaven analyserer
jeg minnebåndbredden Berkeley Out-of-Order Machine(BOOM)-kjernen klarer å
oppnå til forskjellige deler av minnehierarkiet. Ved å sammenligne denne bånd-
bredden med hva BOOM-en teoretisk sett bør kunne oppnå identifiserer jeg en
flaskehals i nivå 1 hurtigbufferens tilbakeskriving av skitne hurtigbufferlinjer. Denne
flaskehalsen reduserer minnebåndbredden til programmer med mye tilbakeskriv-
ing betraktelig. Jeg optimaliserer tilbakeskrivingen ved å pipeline enheten som
håndterer tilbakeskriving, slik at den kan lese ut en skitten linje fra cachen sam-
tidig som den skriver tilbake en annen linje. Dette øker båndbredden til nivå 2
hurtigbufferen med 30% og båndbredden til hovedminnet med 20%. Denne op-
timaliseringen øker ytelsen til LBM med prefetching i programvare med 3,7% for
under 0.2% økning i ressursbruk. I tillegg oppdager jeg en vranglås i BOOMen
forårsaket av at L2 hurtigbufferen ikke bekrefeter en tilbakeskrevet skitten hurtig-
bufferlinje når flere hurtigbufferlinjer blir forespurt mens den skitne linjen blir
skrevet tilbake. Vranglåsen unngås ved å ikke forespørre nye hurtigbufferlinjer
mens en linje blir skrevet tilbake.

vii

Preface

This master thesis is written as part of TDT4900 and focuses on improving the
cache bandwidth of the BOOM’s L1 cache. The master thesis builds on my previous
work done during the project thesis [1] performed in the autumn of 2022. In my
project thesis, I investigated the memory bandwidth of the BOOM when exploiting
various amounts of MLP. As the project thesis described caches and the BOOM’s
memory system in detail there is some overlap between my autumn project in
sections 2 and 3. In addition, I build on the insights from my project thesis for the
initial analysis in section 6 as suggested by the problem description.

I would like to thank my supervisor Magnus Jahre and my Co-Supervisor Björn
Gottschall for their continued support throughout the semester. They have both
been of tremendous assistance during the entire semester and have kept me mo-
tivated even when I endured difficulties and had to overcome challenges.

ix

Contents

Problem Description . iii
Abstract . v
Sammendrag . vii
Preface . ix
Contents . xi
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Interpretation of Problem Description 3
1.3 Contributions and Outline . 3
1.4 Outline . 4

2 Background . 7
2.1 Out-of-order processing units . 7

2.1.1 Out-of-order execution . 7
2.1.2 Components of an Out-of-order execution processor 8
2.1.3 Balance in out-of-order cores 10
2.1.4 Memory level parallelism . 10

2.2 Caches . 11
2.2.1 Introduction to caches . 11
2.2.2 Cache organisation . 12
2.2.3 Write handling . 14
2.2.4 Non blocking caches . 15
2.2.5 Other cache optimisations . 17

3 Berkeley out-of-order Machine . 19
3.1 Overview . 19
3.2 Load store unit . 19
3.3 BOOM L1 Data Cache . 21
3.4 Hit handling . 23
3.5 Miss handling . 23
3.6 Writeback handling . 25
3.7 L2 Cache and DRAM . 26

4 Tilelink . 27
4.1 Tilelink Cached . 27

xi

xii Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

4.2 Messages . 28
4.3 Message components . 31
4.4 Transaction ordering . 31
4.5 Tilelink deadlock in the BOOM . 32

5 Experimental setup . 35
6 Bandwidth analysis . 37

6.1 Measuring Memory Bandwidth . 37
6.2 Identifying bandwidth bottleneck . 40

7 Optimisations and evaluation . 43
7.1 Writeback arbitration . 43
7.2 Reducing the writeback bottleneck . 44

7.2.1 Pipelined writeback unit . 45
7.2.2 Effect on latency . 46
7.2.3 Bandwidth analysis of writeback pipelining 47

7.3 Increasing Tilelink width . 48
7.4 Resource consumption . 51
7.5 LBM performance . 52
7.6 Other optimisations . 54

8 Conclusion and Further work . 57
8.1 Conclusion . 57
8.2 Future work . 58

8.2.1 Data cache and Miss Handling Architecture 58
8.2.2 Write bandwidth . 58

Bibliography . 59
9 Appendix . 63

9.1 Memory benchmarks . 63

Figures

1.1 Processor-memory performance gap 2
1.2 Illustration of the BOOM’s memory system. 4

2.1 Assembly code illustrating the benefits of Out-of-Order execution . 8
2.2 Overview of an Out-of-Order processor 8
2.3 Illustration of memory-level-parallelism 11
2.4 Overview of a typical cache organisation 12
2.5 Overview of a Miss Handling Architecture 16

3.1 Overview of the BOOM core . 20
3.2 Diagram of handling a hit in the BOOM’s L1 data cache 22
3.3 The steps in handling a miss in the BOOM’s L1 data cache 24
3.4 Overview of the BOOM’s writeback unit 26

4.1 Overview of Tilelink channels . 28
4.2 Sequence diagrams of different Tilelink messages 30
4.3 Sequence diagram of observed Tilelink deadlock 32

6.1 Streaming microbenchmark bandwidth for different memory sizes . 38
6.2 Strided microbenchmark bandwidth for different memory sizes . . . 39
6.3 Average MSHR latency broken down by cycles spent on different

stages . 41
6.4 Average MSHR latency per MSHR with Standard Arbiter 42

7.1 Average MSHR latency per MSHR with Round Robin Arbiter 44
7.2 Overview of the pipelined writeback unit 45
7.3 Average MSHR latency per miss for the pipelined and non-pipelined

writeback unit . 46
7.4 Strided microbenchmark Bandwidth for different memory sizes for

pipelined and non-pipelined writeback unit 48
7.5 Breakdown of the activity of the writeback unit with different Tilelink

width . 49
7.6 Average latency per miss for different Tilelink width 50
7.7 Strided microbenchmark store bandwidth with the different optim-

isations . 51

xiii

xiv Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

7.8 LBM execution times normalised to baseline with no optimisation . 52
7.9 Cycle stacks from LBM benchmarks . 53

Tables

4.1 Tilelink Messages . 29

5.1 Boom configuration . 36

7.1 Resource usage . 51

xv

Chapter 1

Introduction

1.1 Motivation

Computer architecture simulators are the main approach for evaluating new ar-
chitectural changes [2–5]. They are useful as they offer a low-cost and simple way
to test new changes without physically implementing architectural changes. How-
ever, as computer architectures have grown more complex, the software used to
evaluate performance has grown increasingly demanding [6]. This poses a prob-
lem for software simulators, as the time needed to execute cycle-accurate simula-
tions benchmarks such as SPEC2017 increases drastically [5, 6].

FireSim [7] is the state-of-the-art FPGA-accelerated cycle-exact simulator. It
can drastically reduce the simulation time of workloads compared to software
simulators [5, 7] while still being cycle accurate. This is done using FPGAs to
achieve magnitude higher performance than simulating the same architecture in
software [7]. For simulators to be useful, the architectures they simulate must be
designed so as to not have sub-optimal implementations that can cause bottle-
necks. This is because new architectural changes tested on simulators may have
their results skewed by said bottlenecks, preventing proper evaluation.

When configured to simulate an out-of-order it uses a configuration of the
Berkeley Out-Order-Machine (BOOM) [8] generator. As a BOOM core can be gen-
erated with different parameters such as issue width, cache size and entries in the
ROB, performance varies depending on which configuration is being used with
FireSim. As with other modern high-performance processors, the BOOM achieves
high performance by executing multiple instructions in parallel, thereby achieving
i high degree of Instruction-Level-Parallelism(ILP). This ILP is achieved by execut-
ing instructions out of program order in order to extract the most available ILP
from a program.

Figure 1.1 shows that the latency of memory instructions has diverged from
DRAM latency in the last decades. This has given rise to the memory wall [10]. To
overcome this challenge processors have been forced to utilise the increased band-
width offered by memory systems [11] to hide the latency of memory accesses
by exploiting Memory-Level-Parallelism(MLP) [12]. MLP is informally how many

1

2 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Figure 1.1: Latency of processor memory instructions compared with DRAM
latency since 1980. Taken from Computer Architecture and Design 6th Edition
[9].

memory instructions that can be kept in flight at a time. As the latency of memory
instructions has increased relative to processor speed, achieving a high MLP has
become instrumental in effectively hiding the latency of memory instructions. Be-
cause data from memory is needed for almost all other instructions, effectively
hiding memory latency has become imperative for achieving high performance
in modern processors. Therefore, memory bandwidth is highly dependent on ex-
ploiting MLP and is important for achieving ILP in general.

To facilitate a high degree of memory level parallelism and to reduce the men-
tioned increased latency in memory systems, several levels of caches have been
introduced. Caches exploit temporal and spatial locality by offering fast hardware-
controlled buffer storage for data that will likely be reused in the future, thereby
reducing average access latency. In addition, they have also been designed to sup-
port MLP by being able to handle several misses and requests at a time. Therefore,
how caches support MLP is integral to how much of it can be exploited by the pro-
cessor. If a low-level cache is not able to support a large amount of MLP, it will
become the bottleneck of the entire system, as the latency will increase and the
processor is unable to properly hide the latency of memory instructions by exploit-
ing MLP.

As exploiting MLP and for that delivering sufficient bandwidth between the
CPU and the memory system is necessary to achieve high performance, it is im-
portant that a simulator does not have any bottlenecks in the memory hierarchy
caused by sub-optimal implementation. This could lead to changes implemented
in a simulated architecture having a different impact on real-world systems with
a better memory hierarchy. An example would be a change implementing the us-
age of functional units, which could have a lower impact on the performance of
a system with insufficient memory bandwidth and exploitation of MLP.

Chapter 1: Introduction 3

1.2 Interpretation of Problem Description

The project description states that the goal of this thesis is to address the band-
width problem the BOOM experiences with eviction-heavy applications discovered
during my autumn project [1]. More specifically, applications with many cache
misses that result in the writeback of dirty data suffer from sup-optimal bandwidth
when the BOOM has many Miss Status Holding Registers. Using the analysis in
the autumn project, I was to investigate approaches to alleviate this bottleneck.
Subsequent optimisations should then be evaluated by utilising FireSim to sim-
ulate the streaming microbenchmark and, if time permits, complete benchmarks
such as SPEC CPU2017.

As the streaming microbenchmarks measure the bandwidth achieved at dif-
ferent levels of the memory hierarchy, the bandwidth must be measured without
any optimisations before any optimisations can be evaluated, since any optimisa-
tions must be compared with the previously measured bandwidth for evaluation.
In addition, the theoretical limit of the bandwidth, i. e. the maximal amount of
data which can be transferred to and from memory each second must be calcu-
lated and compared with the measured bandwidth to see if further improvement
is possible. While the theoretical limit, i.e. the maximal amount of data that can
be transferred over the connection between the core and the memory hierarchy is
not achievable, it is possible to get close. Therefore, it is useful to evaluate where
it is possible to improve bandwidth. Based on this, I define the following tasks
from the problem description:

1. Measure bandwidth and calculate the theoretical limit
2. Identify and improve bottlenecks
3. Measure bandwidth with optimisations
4. Evaluate optimisation on complete benchmarks

1.3 Contributions and Outline

In this thesis, I first use several microbenchmarks to measure the bandwidth both
to and from the BOOM core itself and to and from the L1 cache. By doing this, I ad-
dress task 1 and replicate my findings from my autumn thesis on a larger BOOM-
config, showing that the BOOM delivers insufficient bandwidth for writeback-
heavy applications. More specifically, the BOOM encounters a problem where
the writeback of dirty cache lines becomes the main bottleneck when handling a
large number of concurrent misses for writeback-heavy applications, limiting the
amount of MLP the BOOM can exploit and thereby the bandwidth it can achieve
to memory.

Figure 1.2 shows the memory hierarchy of a high-performance configuration
of the BOOM, as well as how the miss handling of the L1 cache interacts with
the L2 cache. As the BOOM is configurable, the number of MSHRs and therefore
the number of misses that can be handled concurrently varies between different

4 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

L1 Cache

2 - 16
MSHRs

1 writebackWrite-
back
unit

2 - 16 misses

L2 cacheCache
Data

Boom Core

Load/Store
Unit

DRAM

Figure 1.2: An overview of the BOOM’s memory system.

configurations of the BOOM. Regardless of BOOM configuration, all memory re-
quests must first pass through the L1 cache. Any misses will then be sent to the
L2 and thereafter DRAM. As all misses must pass through the L1, it may become
a bottleneck if it cannot deliver as high bandwidth as the L2. It delivers increased
bandwidth by increasing the number of in-flight misses. However, any miss that
results in the eviction of a dirty cache line must first write that line back to the
L2 cache. This is handled by the writeback unit, yet regardless of the number of
misses being handled concurrently, the writeback unit can only handle one write-
back at a time. As the number of misses being handled concurrently rises, the
writeback unit becomes a bigger and bigger bottleneck, until most of the time
spent resolving an L1 miss is spent waiting for the writeback unit to become avail-
able.

To address task 2, I contribute a pipelined writeback unit that is able to reduce
the time spent waiting on a writeback significantly. The pipelined writeback unit
increases the write bandwidth by 20% for main memory and 30% for the l2 cache,
addressing task 3. Furthermore, I demonstrate the usefulness of increased band-
width by showing the execution time of LBM with software prefetching is reduced
by up to 4%, while the pipelined writeback unit increases resource consumption
by under 0,2%, and by this address task 4. While evaluating the pipelined write-
back unit I encounter a deadlock in the BOOM’s implementation of the Tilelink
protocol. This deadlock prevented Linux from booting and was necessary to avoid
in order to evaluate the performance of my optimisations. The deadlock is caused
by the L2 cache not acknowledging a writeback when multiple cache lines are
requested while the writeback is in progress. The deadlock is avoided by not re-
questing new cache lines while a cache line is being written back to the L2 cache.

1.4 Outline

• In Chapter 2 I explain the theoretical background relevant to the BOOM and
its memory system addressing.
• In Chapter 3 I describe the data cache and miss handling of the BOOM, a

part of the BOOM that is currently not documented anywhere.

Chapter 1: Introduction 5

• Chapter 4 contains a brief explanation of the Tilelink protocol, as well as
documenting how I discovered and avoided a deadlock within the BOOM’s
Tilelink implementation.
• In Chapter 5 I present the experimental setup, explain why the benchmarks

used were chosen and how they were used. In addition, I present the con-
figuration of the BOOM-core used.
• In Chapter 6 I measure the bandwidth and compare it to what is theor-

etically possible, as well as identify bottlenecks explaining the difference
between the two.
• In Chapter 7, I present optimisations to alleviate the bottlenecks and eval-

uate their effect on bandwidth, resource usage and impact on the perform-
ance of LBM with and without software prefetching.

Chapter 2

Background

2.1 Out-of-order processing units

2.1.1 Out-of-order execution

The goal of high-performance processors has been to execute as many instruc-
tions as possible per second, thereby executing programs as fast as possible. To
increase the number of instructions executed, either the number of instructions
executed per cycle (IPC) or the clock cycle speed must be increased. As most high-
performance processors will have more than one functional unit, such as an ALU
or FPU, one way of increasing IPC is to use multiple functional units at the same
time. This is referred to as Super scalar multiprocessors [13] which are capable of
achieving an IPC > 1.

However, to be able to use multiple units, program instructions must be able
to be executed in parallel. If there are dependencies between instructions, such as
where the next instruction needs the result of the previous one not yet executed,
the next instruction must wait for the first one to be executed. For example, con-
sider the following instructions shown in figure 2.1. As there are dependencies
between instructions 1, 2 and 3, they cannot have overlapped execution. On the
other hand, there are no dependencies between instructions 4, 5 and the rest.
Therefore if instructions can be executed out of program order, the executions
of instructions 1, 4, and 5 can be overlapped achieving given enough functional
units. As multiplication may take more than one cycle, overlapping the execution
of instructions 1, 4 and 5 may successfully hide the latency of the multiplication.

Out-of-order processors emerged as a way of making use of multiple functional
units [15]. This is achieved by exploiting instruction-level-parallelism (ILP), or in-
structions that are able to be executed in parallel. Out-of-order execution is able
to exploit more ILP than traditional in-order execution by executing instructions
without dependencies regardless of whether they are behind other instructions
with dependencies in program order. As more instructions can be considered for
parallel execution, it is easier to execute as many instructions as possible in par-
allel.

7

8 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Instruction In-order Out-of-order
(1) add r2, r0, r1
(2) add r1, r3, r2
(3) add r2, r1, r2
(4) add r3, r3, r4
(5) mul r4, r4, r4

Figure 2.1: Assembly code illustrating the benefits of Out-of-Order execution,
marking which instructions can have overlapped executions in an in-order and
out-of-order core. Inspired by Carlson et. al. [14].

Additional ILP can be achieved by speculatively executing instructions before
we know if a preceding branch is taken or not. This allows a processor to continue
executing instructions and keep IPC high even when having to wait for branches
to be evaluated. However, this comes with the challenge of having to guess which
instructions will be executed after a branch without knowing if the branch will be
taken or not. In addition, if the guess was wrong the processor has to undo the
instructions it guessed would be executed.

As the resources available to computer architects increased, out-of-order be-
come more widespread [16]. Today, most modern high-performance processors
use some form of Out-of-order execution, meaning that it is not only relevant for
large computer clusters but also desktops, laptops and even mobile devices.

2.1.2 Components of an Out-of-order execution processor

There are many ways of implementing out-of-order execution, yet there are many
common elements [17]. An example of a detailed implementation is the [16],
which has been used as an inspiration for more modern open-source Out-of-order
processors such as the BOOM [8]. While there are several approaches to solving
some problems in Out-of-order processors, such as either explicit vs explicit re-
gister renaming, they both solve the same problem and the pipeline steps remain
broadly the same.

Fetch Decode Rename Dispatch Issue Execute Commit

Frontend Backend

Figure 2.2: An overview of the stages in Out-of-order Execution, inspired by
Palacharla et. al. [17].

Chapter 2: Background 9

A brief overview of the components in an out-of-order processor is shown in
figure 2.2. The first four stages related to fetching and decoding the instructions
are called the Frontend and are generally done in program order. The Backend or
Execution section is what is done out-of-order. A brief explanation of each stage is
given below:

• Fetch: Get instructions from Instruction cache
• Decode: Determine the type of instructions as well as operands.
• Rename: Rename registers to avoid hazards
• Dispatch: Instructions are dispatched into the Re-Order Buffer(ROB) and

issue queues
• Issue: Determine when an instruction can be sent to an execution unit, and

send it when ready
• Execute: The execution units of the instructions. Includes the use of ALUs,

floating point units, address-generating units and the interfaces to the data
cache among others. What is done varies greatly between instructions, from
simply moving data between registers to executing complex floating point
divisions and fetching data from memory.
• Commit: Once the previous instructions have been committed and an in-

struction has been executed, the instruction is removed from the ROB and
the logical register state is updated.

To provide an example of how the different components of an out-of-order
processor interacts, consider an example of an instructions journey through the
pipeline, from fetch and decode to eventual commit. For simplicity, we consider
an instruction which adds two registers together and stores the result in a third.

The instruction begins its journey in the fetch stage by being fetched from
the Instruction cache. Some, but not all, processors fetch multiple instructions
per cycle. Once the instruction has been fetched it is decoded in the aptly named
decode stage. Here it is determined which registers are the sources and destination
of our instruction, as well as that it is an add instruction. Resources needed by an
instruction in later phases, such as a space in the ROB and in the issue queues are
also typically allocated in the decode stage. If either the ROB or the relevant issue
queue is full, the Frontend will stall until resources become available. The next
stage is rename, where any write-after-write or write-after-read hazards between
our instruction and others are resolved using register renaming. In the subsequent
dispatch stage, the instruction information is put into the correct issue queue and
the ROB buffer.

Once the instruction has left the Frontend, it reaches the issue stage and its
journey will vary depending on the other instructions in the pipeline. If its oper-
ands are ready and an execution unit is free, the instruction will be executed at
once. However, if its operands are not ready it will stay in the issue queue until it
is ready to be executed. Once it is issued, i. e. sent to the execution unit, it reaches
the execute stage. As our instruction is a simple add, it usually spends only a single
cycle in this stage. However, for more complex operations such as floating point

10 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

multiplication, this may not be the case. Once the instruction is executed, its result
will be stored temporarily until it reaches the head of the ROB, meaning all pre-
ceding instructions in the program have been committed. Once that is the case,
the instruction will reach the commit stage. Now the destination register will be
updated with the result, and the instruction will leave the ROB as it is no longer
possible for the instruction to be squashed in case of exceptions or a failed branch
prediction.

2.1.3 Balance in out-of-order cores

The goal of an out-of-order core is to extract ILP. This entails that it should try to
dispatch as many instructions per cycle as possible, and the different stages should
be designed to support this. More formally Eyerman et. al. [18] defines a balanced
Out-of-Order core as a core that can sustain a performance of D instructions per
cycle in the absence of misses, where D is the maximum number of instructions
dispatched each cycle. Furthermore, Eyerman’s definition entails that none of the
pipeline resources can be reduced without the performance being reduced. As
such, a balanced core is a minimal core able to sustain an effective throughput of
D instructions per cycle.

To achieve a throughput equal to the dispatch width while still having a min-
imal core, the resources used by the different stages of an Out-of-order core must
be scaled appropriately [18]. There is a linear relationship between issue width,
commit width and the number of functional units. On the other hand, the ROB
size scales quadratically with the issue width, while the number of registers, is-
sue buffer size, and load/store queues scale linearly with the ROB. Moreover, the
rest of the memory system must be scaled linearly with the size of the load/store
queues to support MLP, as explained in the next section.

2.1.4 Memory level parallelism

When out-of-order processors were first developed, the goal was as mentioned to
use as many functional units at a time as possible. However, since then processor
speed has outpaced memory speed, placing an increased emphasis on getting data
from memory for keeping up ILP [10]. This is especially true for memory-intensive
applications which contain many memory instructions that result in cache misses.

One way of mitigating the memory wall is exploiting Memory-level-parallelism
or MLP. MLP is defined as the number of memory requests in flight at a current
moment [12]. By overlapping memory requests, their individual latency is hidden,
resulting in reduced total latency. Figure 2.3 illustrates the benefits of MLP with
two examples. In subfigure 2.3a the loops are independent and can their execution
can therefore be overlapped, whereas the loads in subfigure 2.3b cannot. If each
load results in a cache miss with a fixed latency of 20 cycles, the loop in subfigure
2.3a can be executed in only 22 cycles given an issue width of 1 and 1-cycle
additions. The loop in subfigure 2.3b has to wait for both instructions 1 and 2 to

Chapter 2: Background 11

mlp-loop:
(1) ld r2, 0(r0)
(2) add r2, 2, r2
(3) ld r3, 8(r0)
(4) add r3, 2, r3
(5) add r0, 8, r0
(6) bne r4, r0, mlp-loop

(a) Loop with MLP.

non-mlp-loop:
ld r2, 0(r0)
add r2, 2, r2
ld r3, 8(r2)
add r3, 2, r3
add r0, 8, r0
bne r4, r0, non-mlp-loop

(b) Loop without MLP.

load

Time

MLP loop

add

non-MLP
loop

load add

load

load

add

add

Figure 2.3: Two loops, one with MLP and one without and the execution time
broken down by instruction. Execution time for instructions 5 and 6 are omitted
for brevity. Inspired by Chou et. al. [12].

finish before firing the second load. This results in an execution time of 42 cycles,
or roughly twice as long because the loads could not be overlapped.

As shown in figure 2.3, the processor needs to identify memory instructions
that can execute in parallel. In fact, by exploiting just MLP and not ILP in general,
processors achieve a lot of the speedup given by full Out-of-order execution [14].
To exploit MLP a computer architecture must support several concurrent memory
instructions, either through traditional out-of-order execution or by just MLP sup-
port as described by Carlson et. al. [14]. In addition, caches must be expanded to
handle the increased number of in-flight misses [19].

2.2 Caches

2.2.1 Introduction to caches

Processor speed has for a long time exceeded the access speed of DRAM main
memories [10]. This has necessitated the development of smaller cache memories
that have a far shorter access speed than DRAM [20]. As some caches are able to
fit onto the same chip as the processor itself, their speed is able to keep up with the
speed of the processor [10]. Caches reduce the latency of both instruction- and
data fetching to the CPU [20], and they are instrumental in keeping up the IPC of
modern processors as the gap between processor and DRAM speed has increased
[10].

12 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Tag Word 1 Word 2 Word n

Cache line

Cache lines per set

Set 1
Set 2

Set m

Tag Index Offset

= =

To
CPU

Way

Request Address

Tag Word 1 Word 2 Word n

Figure 2.4: The internal organisation of a typical cache, taken from my Project
thesis [1].

Cache memories work by temporarily storing a limited number of memory
addresses that have either been used in the past or are believed to be used in the
future. Whenever the processor wants to read from an address in memory, the
cache will check if it currently stores that address. If the address is present in the
cache, it will send the requested data to the processor [20]. In the other case,
when the address is not present in the cache, the cache will request the data at
that address from memory. This highlights two important terms when discussing
caches:

• Cache hit: When the requested data is present in the cache
• Cache miss: When the requested data is not present in the cache

The ratio of these two cases for memory requests is very important for the perform-
ance of a program, as the memory latency varies greatly between them [10]. Cache
memories rely on the tendency of spatial and temporal locality within memory
accesses to increase the number of cache hits for programs, and by extension the
average memory latency.

2.2.2 Cache organisation

Figure 2.4 shows the internal organisation of a cache and how it uses the address
in a memory request to determine where in the cache the data may be located. In
addition, figure 2.4 shows the process of checking whether the requested address
is actually present within the cache, i. e. whether the request is a cache miss or a
cache hit.

To identify individual data words within blocks and check if an address is

Chapter 2: Background 13

present in the cache, the address is split into a tag, an index and a block offset.
The offset is used to identify which word within a cache line the requested address
refers to. The index is used to define the position in the cache a cache line may
occupy. Lastly, the tag of every cache line is stored alongside the cache line within
the cache, and is compared to the tag part of the request address to check if the
requested address is present within the cache, as shown in figure 2.4.

The simplest caches are organised in a way there each memory location can
only be stored in one place in the cache. This results in a simple cache implement-
ation, as only a single tag comparison is needed to check whether an address is
present. However, this organisation does not always interact favourably with pro-
gram behaviour. If a program frequently accesses two addresses mapped to the
same place in the cache in an interleaved fashion, many accesses will be misses.
Therefore, most caches use some form of set-associative mapping [20].

The cache organisation shown in figure 2.4 shows a set-associative cache.
Here, each cache line is mapped to one of many sets. The number of cache lines
per set is defined as the number of ways in a set associative cache. Therefore, the
number of ways in a cache dictates how many places a certain address may be
placed within the cache. The cache shown in figure 2.4 is a 2-way set associative
cache, meaning it has two ways.

Whenever a cache is not direct-mapped and a cache line is being fetched, a
replacement policy is needed to decide which of the cache blocks present must be
evicted. There are several schemes which aim to evict the cache line that will result
in the lowest amount of cache misses. However, as more complex replacement
policies require more complex logic, they must be weighed against other schemes
to reduce misses.

As the goal of cache organisation is to primarily reduce the number of misses
[20], it is important to categorise misses and how each category can be dealt with.
Misses are usually organised into the following categories:

• Capacity misses: Misses where the memory location accessed was previ-
ously accessed, but was later removed from the cache due to the cache being
full.
• Conflict misses: Similar to capacity misses, yet the line was evicted due to

just the set being full and not the entire cache
• Cold misses: The first access to a location in memory made by a program.

These misses will occur even with a cache with infinite capacity and where
the entire cache is one set.

Capacity misses can be mitigated by increasing the capacity of the cache, while
conflict misses can be mitigated by increasing the capacity of the sets, i. e. in-
creasing associativity. However, both associativity and cache size impact the ac-
cess latency of the cache itself [21]. As both cache size and associativity generally
increase latency, there are limits to how large and associative caches can be while
still having the desired access latency.

14 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

2.2.3 Write handling

There are in general two types of ways to interact with memory, namely read or
write requests. These correspond to the various types of load and store instructions
found in RISC architectures. Caches need to process both, and both need to be
handled differently. Both types of requests can either be hits or misses. This gives
four situations that caches need to handle:

• Read hit: Read address present in cache
• Read miss: Read address not present in cache
• Write hit: Write to address present in cache
• Write miss: Write to address not present in cache

Read hits and misses are the simplest, and they are handled either by returning
the requested data to the CPU or by first fetching the data from memory and
storing it in the cache. Write hits and misses are on the other hand more difficult to
handle, as they change the data instead of copying it. In addition, the goal of write
handling differs from that of read handling, as the goal is to reduce bandwidth
usage and not latency.

As write hits change data instead of just copying it, this requires the cache to
also update the next level in the memory hierarchy with the write at some point
on hit. There are two main policies [22]. One is to immediately update the level in
the memory hierarchy in addition to the cache itself which is called write through,
as the write propagates through the rest of the hierarchy immediately. The other
policy is write back and works by only updating the cache when processing the
write hit. The next level of memory hierarchy will only be updated once the cache
line written to is evicted either for capacity, conflict or coherency reasons. A line
written to is known as a dirt cache line, and the cache needs to track which lines
have been written to. If there are several writes to the same word Write back
reduces the updates sent to the next level compared with Write through. As such
write- back caches reduce bandwidth for associative caches, which must always
check if an address is present in a cache before updating [22].

There are also several ways of handling write misses [22]. A cache may be
either write allocate or no write allocate. A write allocate cache will allocate a place
in the cache for the line written to, while a no write allocate cache will simply
forward the write to the next level in the memory hierarchy. In the case of write
allocate caches, they must also choose between being fetch-on-write or not. A fetch-
on-write cache will fetch the cache line being written to, update the cache and then
perform the write operation on the cache line. In the other case, a line will be
allocated but the data for that line will not be fetched. The write operation will be
performed and the words in the cache line not written to will be marked as invalid.
The different policies for write handling affect the miss rates of caches as well as
bandwidth usage because subsequent read accesses to a line in a write-allocate
and fetch-on-write cache will be hits, yet this requires additional bandwidth usage
and may evict other useful data. If the program will not read cache lines written
to, write-allocate and fetch-on-write will not provide benefits and will instead

Chapter 2: Background 15

remove potentially useful cache lines.
The BOOM is write-back, which complicates miss handling as dirty cache lines

must first be written back. However, as the BOOM is not direct-mapped, write-
back results in lower bandwidth usage than write-through. For write misses, the
BOOM uses a combination of write-allocate and fetch-on-write, meaning that the
only difference between read and write misses is that the data must be updated
after a write miss. Otherwise, they are handled the same way.

As the latency of caches changes with capacity [21], multiple levels of caches
are often used to offer both low latency access for a small amount of data and
higher latency access to a larger amount of data. Different caches in the memory
hierarchy may use different policies for write handling and have different degrees
of associativity.

2.2.4 Non blocking caches

As memory-level parallelism has become more important, caches have to be ad-
apted to handle multiple requests at once. This requires a cache to be able to
receive requests from the core while it is handling a miss, i. e. that a miss does not
lock up or block the cache [23]. This is achieved with a Miss Handling Architec-
ture(MHA), which contains logic for storing the missing cache line once it arrives
from the next level in the memory hierarchy, as well as updating the cache. The
simplest form of non-blocking cache is able to process hits while resolving a single
miss and is as known as a hit under miss cache. Non-blocking caches are able to
make use of the dual inputs of the cache by being able to send data to the CPU
while receiving data from memory.

However, an MHA can be capable of resolving a number of misses without
locking up. The structure in the MHA storing the information for a single miss is
called a Miss Status Handling Register(MSHR). The number of misses a cache is
able to handle without locking up is determined by both the number of MSHRs
and their organisation. When discussing MSHR structure, the trade-off is often
between the number for primary misses and secondary misses that can be suppor-
ted. Primary misses are the first miss to a cache line, while secondary misses are
subsequent misses to a cache line being fetched. Farkas [24] described a number
of different ways to implement MSHRs, with both the explicit and implicit ad-
dressing of targets. Implicitly addressed MSHR hold a field for each word in the
cache line being fetched, meaning that it can support one miss to each word in a
cost-effective manner, thereby efficiently supporting as many secondary misses as
there are words in a line. Explicitly addressed MSHRs are able to hold the inform-
ation for a configurable number for misses to the cache line. This enables them to
support multiple misses to the same word and thereby as many secondary misses
as is desirable, albeit at the cost of storing more data about each miss.

An example of a Miss Handling Architecture with MSHRs is shown in figure
2.5. Upon a miss, all the MSHRs are checked to see if they are already handling
a miss to that cache line. If this is the case the MSHR in question will record the

16 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Tag Array

Data arrays

ReadRead Write

To MemoryTo CPU

Miss Handling Architecture

MSHR 1
Targets

Address

Write
On Miss

Request

MSHR n
Targets

Address
Data Buffer

From Memory

Store data
queue

Figure 2.5: Overview of the different components of a miss handling architecture,
and how they are connected. Figure taken from my Project Thesis [1].

Chapter 2: Background 17

information about the miss in its list of targets, provided there is space in its list of
targets. A target typically contains information needed to forward the data to the
CPU once the miss is resolved. In case no miss for that cache line is being handled,
an idle MSHR is selected. If no MSHR is available the cache will lock up until a
miss is resolved. Once a miss is resolved the data will be stored in a data buffer,
the cache will be updated and the MSHR will forward the data to all its targets.

For write allocate caches, the Miss Handling Architecture must be extended to
store the written data [19]. This data must be stored in a buffer, and read and write
misses must be stored in order within the MSHRs, as reads issued before a write
to the same word must not receive the data written, while reads received after
must. Therefore the targets must be stored in the order they are received, at least
for memory operations on the same words. The BOOM uses explicitly addressed
targets and each MSHR supports a configurable number of secondary misses. The
targets are stored in a queue in the order they arrived in, and write misses also
store the entry in the store data buffer for the data to write. Each target stores
cache metadata such as way and address, as well as its micro-operation containing
data such as the corresponding entry in the LSU.

As MLP has become more important, scaling the number for MSHRs in the
MHA has become ever more important [19], because the Miss Handling Archi-
tecture must be able to handle the increased number of in-flight memory instruc-
tions within the processor. The advent of multicore systems has also changed the
requirements of an MHA [25]. This all makes a properly designed Miss Hand-
ling Architecture an important part of designing high-performance caches within
modern systems.

2.2.5 Other cache optimisations

As the clock frequency of multiprocessors has increased, pipelined caches have
been introduced to increase cache bandwidth without shrinking caches [26]. This
means that caches can be accessed every cycle, even though they take multiple
cycles to return the data requested. While this increases the bandwidth of the
cache, the increased latency can still be mitigated. One way is using way-prediction
[27]. Way-prediction seeks to use this stored data about the last way accessed, so
that a cache may predict which way in a set is the next time. Using this, the cache
can return the data before the tag comparison has been completed. If the way
used was wrong, the data returned is invalidated and the request will be handled
as usual.

Superscalar processors issue multiple instructions per cycle. By adapting caches
to have multiple read and write ports, they are able to receive and respond to mul-
tiple requests per cycle. This way bandwidth can be improved and the processor
can issue multiple memory instructions per cycle [28], increasing ILP. There are
several ways of supporting multiple reads and writes. The most straightforward
is to have multiple copies of the cache with each copy containing the same data.
However, this approach has a high resource consumption and only supports a

18 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

single write per cycle, as all copies must be written to. Another approach for sup-
porting multiple cache accesses is to multi-bank the cache, where the cache is
divided into several smaller banks. Each cache line is located in a single bank,
and each bank has a single read-and-write port. This approach supports multiple
writes as well as reads, but only for memory accesses which go to different banks.
A multi-banked non-blocking cache can support multiple memory accesses from
the CPU each cycle as long as there are no banking conflicts and there are avail-
able MSHRs in the Miss Handling Architecture. The MSHRs may be entirely shared
between cache banks, or each bank can have its own MSHRs [19, 28].

As mentioned, cache misses can be divided into conflict- , capacity- and cold
misses. Conflict- and capacity misses can be mitigated as described earlier. Cold
misses, i. e. misses due to a location being accessed for the first time cannot be
avoided even in a cache with infinite capacity. One scheme to avoid cold misses is
to fetch the data before it is accessed. This type of prefetching can be done either
in software using specific instructions or in hardware with algorithms that predict
the next accessed address [29].

Chapter 3

Berkeley out-of-order Machine

3.1 Overview

The Berkeley Out-of-Order Machine(BOOM) is a superscalar out-of-order core
generator, that has been progressively developed and improved over the last years
[8, 30, 31]. As an out-of-order core generator, the BOOM is able to generate out-
of-order cores with different capabilities based on a set of parameters, such as
issue- and decode width, entries in the ROB and cache size. Therefore, BOOM
cores with different parameters will have highly varying performance. Figure 3.1
shows an overview of the BOOM with indications on what parts can be configured
with parameters.

As the BOOM is inspired by the Alpha 21264 [16] [8], the components are
quite similar. Instructions are first fetched buffered then decoded by the Fron-
tend. Micro-operations are then renamed and dispatched to the issue queues. The
BOOM has a separate issue queue for memory, floating and integer instructions.
Memory instructions proceed from the load and store queues into the L1 cache.
In the case of a miss, they will then proceed to the L2 cache and in the case of
another miss, they will proceed to either the L3 cache if it is configured to have
one, or to the main memory. However, all memory requests must pass through the
L1 cache.

3.2 Load store unit

The Load/Store unit of the BOOM is the interface to the Data Cache and is respons-
ible for completing memory instructions after the addresses and data have been
calculated. Entries in the load and store queue are allocated when the instructions
are decoded. However, the addresses and data for stores are only added once it
has been calculated by the store data and address generation units, as shown in
figure 3.1.

Whenever the load address is ready, load instructions are sent to the data
cache. At the same time, the load will compare its address with the preceding

19

20 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Figure 3.1: Overview of the components of the BOOM. Parameterisable parts are
indicated with *. Taken from the SonicBoom technical report [8].

Chapter 3: Berkeley out-of-order Machine 21

store instructions. If there is a match, the memory request will be killed and the
store data will be forwarded if present in the store queue. As the data cache is
pipelined, a request that is killed after one cycle will never generate nor forward
data to the LSU. Store instructions are sent to the data cache only once the store
itself has been committed, as data should only be written to memory once the
instruction can no longer be squashed. Sending load instructions to the data cache
as soon as it is ready is very important for performance, as it allows the processor
to effectively hide the latency of cache misses, which is the reason the BOOM fires
load requests before the address has been compared with store instructions.

Store instructions leave the store queue when they have been marked as suc-
ceeded, which is indicated by the data cache acknowledging that it has the re-
sources needed to handle it. This is done either with an MSHR in the case of a
miss or by updating the cache in case of a hit. If there are no MSHRs available,
the store will immediately be resent to the data cache, and the cache pipeline will
be flushed. Load instructions only leave the load queue when their data has been
received. This means that loads will stay in the load queue until a miss has been
resolved, while store instructions will not.

The LSU is able to send as many load instructions to the data cache as the
issue width of the memory system, while only one store instruction can be sent per
cycle. The L1 data cache can be configured to either offer multiple ports through
having several copies of the cache, or through multi-banking. Nevertheless, the
LSU only supports sending one store instruction even in the case of a multi-banked
cache, contrary to how multi-banked caches are presented in [28]. The reason for
prioritising loads over stores is that performance benefits significantly from having
loads fired early, as previously mentioned. This is because loads often have long
latencies, and other instructions depend on them. Stores on the other hand do not
have other instructions depending on them, and as they are sent to the LSU only
after they commit, they will only cause performance issues if the store queue fills
up, causing the Frontend to stall upon decoding a store.

3.3 BOOM L1 Data Cache

The L1 data cache is the first stop for all memory requests coming from the
Load/Store-unit(LSU) of the BOOM. As with the rest of the BOOM, it is highly con-
figurable. The cache is non-blocking, as defined by[23], meaning that the cache
can still handle requests from the LSU while handling a limited number of misses.
The cache is write-back and fetch-on-write, as defined in [22]. This means that
dirty cache lines are written back when they are evicted from the cache, and that
the cache block being written to is fetched upon a write-miss. This results in data
being written to the L2 only during evictions. However, both read and write re-
quests missing will result in a cache line being fetched and a possible writeback.
For applications that write data to a part of memory that it does not read from, this
setup will result in the L1 cache filling up with cache lines it does not read from,
and writes using needed read bandwidth due to fetch-on-write. In such a case,

22 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

a policy with no-fetch-on-write would be better, yet this depends on the memory
access patterns of applications.

Figure 3.2 displays the cache pipeline of the L1 cache. In the figure, the cache
is displayed as having 4-ways, although the number of ways is configurable and
can vary with different versions of the BOOM. As seen in figure 3.2 it is a two-
stage pipelined cache, where the metadata and data are stored separately. Both
the data and metadata arrays are read out in a single cycle, with tag comparison
being done in the same cycle as the tag is read from the data arrays, as seen by step
2 in figure 3.2. Way selection is performed in the second pipeline stage, along
with load formatting. The cache bandwidth is defined by the memory issue width
of the BOOM, with the cache being able to handle as many requests from the LSU
simultaneously as the BOOM can issue memory instructions. However, only one
writeback or replay may use the cache at the same time, regardless of how wide
the cache is. This means that even with multiple banks, writebacks, evictions or
write requests cannot access the cache at the same time. This simplifies the cache
logic but may reduce performance.

4-way metadata Array

Data arrays

WriteRead Read

= = = =

Request

Request

Tag

RequestTag hit Data words

Index + offset

To LSU

From LSU

Write

From MSHR

1

2 3

4

6

Index

5

Miss handling

MSHRs

7

Figure 3.2: The different steps in handling a hit to the L1 data cache of the BOOM.
The figure is taken from Project Thesis [1].

Chapter 3: Berkeley out-of-order Machine 23

3.4 Hit handling

As seen in figure 3.2 a request from the LSU arrives at the cache and is used to
access the cache arrays in a single cycle 1 . The data from both the metadata
array and the data arrays are available in the next cycle. The tag from the request
address is compared with all the tags from all ways of the metadata array, and
these comparisons are forwarded to the next pipeline stage 2 . The data words
read out from the data arrays are forwarded directly to the next pipeline stage 3 .
In this stage the result of the tag comparisons is checked to decide if the request
is a hit or a miss, as well as which way is the correct one for hits 4 . In the case
of a read hit, the correct data word is selected, formatted according to the read
request and sent to the LSU 5 . In the case of a write hit, the data will be written
to the data arrays in the next cycle 6 . This can be done in parallel with handling a
request, as the data arrays support simultaneous reads and writes. If the request is
either a write- or read miss it will be handled by the Miss Handling 7 as long as a
MSHR is available. If no MSHR is available, the cache pipeline will be flushed and
the LSU will be notified, yet the cache does not lock up. However, if the request
is a write miss the entire cache pipeline will be flushed.

3.5 Miss handling

The Miss Handling architecture of the BOOM’s L1 cache consists of a configurable
number of MSHRs, a data buffer and a store data queue. Each MSHR is respons-
ible for handling all requests to a single cache line, with each target referring to
one request from the LSU. A data buffer is used for storing the cache lines tempor-
arily between them being fetched from the L2 and stored in the data arrays. The
store data queue is used for the data in store requests, i. e. the data to be written
to the data arrays once the cache line has been fetched. When the cache pipeline
described in the previous section detects a miss, the address of all MSHRs is com-
pared with the address of the miss. If an MSHR is handling the same cache line
and has space in its queue of targets, it will handle that miss as well. Otherwise,
a free MSHR will handle the miss. While the BOOM’s data cache can handle a
configurable number of read requests each cycle, the MHA is only able to process
one miss each cycle. This means that if a write request and a read request are
processed in the same cycle both generate a miss only one of the requests will
have an MSHR allocated. This does simplify the logic of the MHA, yet as noted
by Tuck et. al. MHAs with low bandwidth may be a problem for extracting MLP
in very aggressive Out-of-Order cores [19]. In addition, the BOOM’s MHA has the
restriction that it cannot have to misses with the same index at the same time.

The process of an MSHR resolving a miss is shown in figure 3.3. First, the cache
line in question will be fetched from the next level in the memory hierarchy, in
this case, the L2 cache 1 and stored in the Line Buffer. The MSHR will then go
through its list of targets, called the replay queue, and until the queue is either
empty or it hits a store, it will send the requested data to the LSU so the data can

24 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

To LSU

4-way metadata Array

To L2

Data arrays

ReadWrite Read

MSHR

Replay Queue

From L2
Line Buffer

Store data queue

To L2
Address

Request

1

2

3 4

4

4 Write 5

2

Replay

Request

6

7

Figure 3.3: A step-by-step overview of how misses are handled in the BOOM’s L1
data cache. Figure referenced from Project Thesis [1].

Chapter 3: Berkeley out-of-order Machine 25

be used by the core 2 . This reduces the observed latency of loads significantly, as
writeback may take many cycles if there is congestion at the writeback unit. The
MSHR will then read out the metadata of the cache line, to check if it is clean or
dirty 3 . If the cache line to be replaced is dirty, the MSHR will clear the metadata
of the cache line, and get the writeback unit to write the cache line back to the
L2 4 . After the writeback is done, the MSHR will write the new cache line to
the data arrays 5 . If the cache line is clean the MSHR will skip step 4 entirely
and immediately proceed to step 5 . After the data arrays have been updated, all
requests still left in the replay queue, i.e. those not handled in step 2 , will be
replayed as if they were sent by the LSU 6 . Once that is done the MSHR will
update the metadata of the cache line just fetched 7 . The MSHR is then ready to
handle another miss.

Only forwarding the data for the loads that are in front of a store in the replay
queue is not strictly necessary, as a load after a store to a different word could have
its data forwarded, but it is simpler. However, a load being stuck until writeback
is finished could add significant latency in edge cases, possibly causing a stall if
the load reaches the head of the ROB. The line buffer is used to temporarily store
the data before it is written to the cache so that the cache arrays can be used for
writeback or other operations while data is being received from the L2 cache. The
replay queue has a configurable length, meaning that the MSHRs of the BOOM can
be tweaked to support a variable number for secondary misses. The default length
is 16, which is twice as many misses as there are words in a default cache line. Yet
as the data cache also supports storing write misses in the replay queue, having
more misses than there are words in a line is not implausible. Both Kroft [23]
and Tuck et. al [19] made use of forwarding within MSHRs, meaning that a read
miss could be forwarded to LSU immediately if an MSHR was already handling a
write miss to that address. The BOOM instead performs this optimisation within
the LSU. Forwarding in the LSU has the benefit of the data being available earlier.

3.6 Writeback handling

As the BOOM’s L1 cache is a write-back cache, dirty cache blocks may have to
be written back to the next level of the memory hierarchy. In the BOOM this is
handled by the writeback unit. Its operation is shown in figure 3.4. First, a request
for a writeback comes either from an MSHR or from the Prober 1 . If a MSHR
causes a writeback this is because of a capacity conflict, while the Prober will
cause a writeback when cache coherency requires it. The next step 2 is to read
out the cache line and put it into the data buffer. This is accomplished using the
regular pipeline shown in figure 3.2. Once the cache line is in the data buffer,
the writeback unit will notify the LSU of the writeback operation, so loads to the
cache line being written back can be marked as dangerous 3 . Once the LSU has
been notified, the writeback unit can write the cache line stored in the data buffer
back to the next level in the cache hierarchy 4 . Depending on whether an MSHR
or the Prober initiated the writeback, the data is sent as part of a Release or a

26 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Prober MSHRs

To LSU
Request

From cache

To L2 cache via tilelink channel C

Data buffer

Response from L2 via tilelink B

1

2
3

45

Figure 3.4: Overview of the BOOM’s writeback unit, showing the different steps
in writing a dirty cache line to the next level in the memory hierarchy.

ProbeAckData transfer operation. If the operation was a ProbeAckData this was
the last step. However, in the case of a Release, the writeback unit must wait for
a ReleaseAck response 5 as per the Tilelink Protocol.

3.7 L2 Cache and DRAM

The BOOM uses the Sifive inclusive cache as the L2 cache. This cache can be
generated with very different configurations in the same way as the BOOM. It
handles cache coherence and is connected to other caches over Tilelink [32]. It
is a highly pipelined cache that supports multi-banking with separate MSHRs per
bank. It is an inclusive cache, meaning that all data contained in the L1 caches
are also contained within the L2.

To complete the memory system, the Firesim simulator uses FASED to simulate
the main memory [33]. FASED is a way of simulating DRAM memory in detail
on an FPGA and can be configured to use different Memory Access Scheduling
policies, such as First-Come-First-Served and First-Ready-First-Come-First-Served.
As the memory controllers in FASED are designed in RTL they can be simulated on
an FPGA the same way as FireSim, and thus offers both performance and accuracy.

Chapter 4

Tilelink

Tilelink [32] is the standard for the chip interconnect used to connect the different
components in the Rocket Chip ecosystem, and therefore by extension the BOOM.
Tilelink is flexible, supporting several different conformance levels, depending
on what features the connected devices need. The three conformance levels in
increasing complexity are:

1. TileLink Uncached Lightweight (TL-UL)
2. TileLink Uncached Heavyweight (TL-UH)
3. TileLink Cached (TL-C)

TL-UL only supports simple read and write accesses. TL-UH supports some addi-
tional features, such as atomic accesses, but still does not support caching of data.
TL-C is the full version of Tilelink, with all its features, and it is used to connect
the BOOM core to the next level in the memory hierarchy. It will therefore be the
focus of this section.

4.1 Tilelink Cached

As mentioned, Tilelink Cached is the full protocol, and so supports all features
used in the other two conformance levels [32]. It supports simple read-and-write
operations, multi-cycle messages and cache block operations. The cache block op-
erations will, unsurprisingly, be the most used operations between the L1 and the
L2 caches of the BOOM. The cache block operations consist of three operations:

1. Acquire: Create a local copy or expand permissions of a cache line
2. Probe: Involuntary removes copy or permissions on a cache line.
3. Release: Voluntary removes copy or permissions on a cache line.

Both Probe and Release can result in the writeback of dirty data, but in the
case of a release the writeback is voluntary, often due to capacity constraints,
while in the case of a Probe the writeback is caused by another unit, often a
higher level cache. The operations map to different actions taken by a cache, with
Acquire being used to fetch a new line from memory or a higher level cache, Probe

27

28 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Lower level cache
(Master)

Higher level cache
(Slave)

A

C

E

D

B

Figure 4.1: Overview of Tilelink channels along with their direction.

being used by a cache coherency scheme [34] to invalidate a local cache line and
Release to remove a cache line due to a capacity conflict. As the only operation
to voluntarily write data is Release, Tilelink Cached seems tailored towards write-
back caches. However, TL-C also contains operations from TL-UL and TL-UH such
as PutFullData and PutFullData, which simply write data to a memory address.
These operations can be used by write-through caches, yet as they are not used in
the BOOM they will not be discussed further.

Tilelink cached has 5 channels used in the operations mentioned above. They
are channels A, B, C, D and E. Each is shown, along with its direction, in figure 4.1.
Each module implementing a Tilelink interface is called an agent, and in a single
Tilelink connection, one module is a slave and another a master. As displayed in
figure 4.1, the direction of each of the channels depends on whether or not the
module is a slave or a master. When it comes to caches, the master is the module
that initiates Acquire operations, and when connecting two caches, the lower level
cache will be the master and the higher level cache the slave, as shown by figure
4.1. Having multiple channels makes it possible to send several messages at once,
meaning that a line can be written back on channel C while another is received
on channel B.

4.2 Messages

Each of the operations listed above consists of a number of messages, and each
message is sent over a specific channel. The messages, their response messages
and their channels are shown in table 4.1. Several of the messages have separate
messages for whether the message seeks to move a copy of data, or just change
permissions on data already in place. All messages have acknowledgement mes-
sages that are sent once the operation is finished. To show how these messages
are used, a few examples are shown below. The inclusion of acknowledgement

Chapter 4: Tilelink 29

Table 4.1: Tilelink Messages, reproduced from the Tilelink specification [32].

Message Operation Channel Response

AcquireBlock Acquire A Grant, Grantdata
AcquirePerm Acquire A Grant

Grant Acquire D GrantAck
GrantData Acquire D GrantAck
GrantAck Acquire E -

ProbeBlock Probe B ProbeAckData
ProbePerm Probe B ProbeAck
ProbeAck Probe C -

ProbeAckData Probe C -
Release Release C ReleaseAck

ReleaseData Release C ReleaseAck
ReleaseAck Release D -

messages as the final message in each transaction is useful for avoiding deadlocks
and handling faults with corrupt data, the additional messages use bandwidth and
increase the duration of a transaction significantly. For example, writing back to
two dirty cache lines with two releases takes longer, as an acknowledgement for
the first must be received before the second writeback can begin if the node does
not support concurrent Release-operations.

Subfigure 4.2a shows the message flow of an acquire. First, the Lower level
cache (the master) will send an AcquireBlock message to request a copy of a block
to be cached. This is typically in response to a cache miss or prefetch request to the
lower-level cache. The higher-level cache (the slave) will eventually respond with
a copy of the requested block. Finally, the master will respond with a GrantAck
acknowledging that the transaction is finished. Subfigure 4.2b is a sequence dia-
gram showing the flow of a probe. The slave will first send a ProbeBlock to the
master requesting the removal of a specific block. This is typically done for cache
coherency reasons, i. e. if another cache has written to its copy of the same block,
meaning that the copy held by the lower-level cache is no longer valid. The master
will then answer with a ProbeAck or a ProbeAckData depending on whether or
not the block in question was dirty.

To show how a release operation works and how different operations interact
concurrently a more complex example is shown in subfigure 4.2c. First 1 , the
master will issue an acquire as shown in subfigure 4.2a. However, before the slave
can respond the master will issue another acquire 2 . The slave will then respond
to one of the acquires depending on which block it was able to read out first 3 .
After the first acquire operation is completed the master will realise that it does
not have space for the cache block it just received. Therefore it needs to evict a
block to make space due to the conflict. To complicate matters more the block to

30 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Lower level cache Higher level cache

AcquireBlock

GrantData

GrantAck

(a) Sequence of a acquire operation.

Lower level cache Higher level cache

ProbeBlock

ProbeAck

(b) Sequence of a probe operation.

Lower level cache Higher level cache

Acquire

GrantData

GrantAck

ReleaseData

1

2

Acquire

GrantData

ReleaseAck

GrantAck

4

5

3

(c) Sequence diagram of two acquires and a release operation.

Figure 4.2: Sequence diagram of Tilelink messages. The diagram on the left dis-
plays an acquire operation, the right displays a probe and the bottom displays a
more complex example with multiple operations.

Chapter 4: Tilelink 31

be evicted is dirty so it has to be written back. Because of this, the master issues
a release 4 . The slave then responds to both the release and the acquire it has
not yet responded to 5 . As both ReleaseAck and GrantData use channel D, they
must be multiplexed. Lastly, the master responds with a GrantAck to finish the
transaction.

4.3 Message components

A Tilelink message is comprised of a number of fields, each being sent in paral-
lel over a channel. While the fields vary between each channel, they are mostly
consistent for channels A, B, C and D. The fields are opcode, param, size, source,
address, mask, corrupt and data. Opcode is used to identify which message is be-
ing transferred over channels. Param is used when transferring permissions with
messages such as AcquirePerm. Size indicates the size of the data in the data field.
Source is used to identify which part of the master should receive the data, i. e. the
MSHR number. Address is simply the address of the cache block used by the trans-
action. Mask is used to mark which parts of the data field should be used. Corrupt
indicates that the data is corrupt. The data field contains the data transmitted in
messages such as GrantData.

The data field of a Tilelink channel is implementation specific, and the width
of the data sent over may not match the width of the channel. The size of the data
sent is specified by the size field. This allows high bandwidth implementation to be
able to utilise large data fields, which is unnecessary for other implementations.
This means that the number of beats or cycles needed to transmit a single cache
line will vary depending on the width of the data channel. For example, with a
data width of 8 bytes a cache line of 64 bytes will be sent in 8 beats of a burst
message. However, increasing the data width to 16 bytes will reduce the number
of beats to 4.

4.4 Transaction ordering

As demonstrated by the example shown in figure 4.2c, multiple Tilelink transac-
tions may be in-flight at the same time. However, there are some restrictions on
which transactions may be started while others are in flight. The Tilelink specific-
ation says the following: "All request messages generate response messages, and
response messages are guaranteed to eventually make forward progress. However,
under certain conditions, recursive request messages targeting the same block
should not be issued until an outstanding response message is received." [32] page
68. This states that there are restrictions on request messages targeting a single
block. The specification then breaks down the restriction by each operation. For
Acquires and Grants, the restrictions are explicitly specified for each block. For
Releases on the other hand, the protocol states: "Once the Release is issued, the
master should not issue ProbeAcks, Acquires, or further Releases until it receives

32 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

L1 cache L2 cache

Release

Acquire

Acquire

Acquire

GrantData

GrantData

GrantData

GrantAck

GrantAck

GrantAck

1

2

3

4

5

Figure 4.3: Sequence diagram describing the transaction that caused a Tilelink
deadlock between the L1 and L2 caches.

a ReleaseAck from the slave acknowledging completion of the writeback." [32]
page 69. While the fact that the restrictions are for operations on the same block
is implied, it is not explicitly stated as it is with Probes and Acquires. The Tilelink
protocol is therefore slightly ambiguous on transaction ordering for Releases,

4.5 Tilelink deadlock in the BOOM

After pipelining the BOOM’s writeback unit, I encountered a Tilelink deadlock,
more specifically between the L1 and L2 caches. The events that lead up to the
deadlock are shown in figure 4.3. First, the L1 cache would send a ReleaseData
message as it was writing back a dirty cache line 1 . After the ReleaseData was
started, the L1 cache would issue several Acquires due to primary misses 2 . All
Acquires would eventually be responded to with GrantData messages 3 , and the

Chapter 4: Tilelink 33

data cache would respond with GrantAcks 4 . However, in this case, the L2 cache
would never respond with a ReleaseAck 5 , making the writeback unit wait until
the entire core stalled. Furthermore, none of the Acquire messages targeted the
same block as the Release. The deadlock would only occur after the writeback
unit was pipelined and on a BOOM with 16 MSHRs. This indicates that the L2
cache would drop a Release transaction when enough Acquires were issued while
it was in progress. This hints that the L2 cache interprets the Tilelink protocol to
mean that no new Acquires should be issued while a Release is in progress, as one
could interpret the restrictions described in the previous section. The deadlock
was avoided by restricting the L1 cache to sending Acquire messages only when
a Release is not in flight.

Chapter 5

Experimental setup

I use Firesim [7] in order to simulate the BOOM. Firesim is able to make cycle-
accurate simulations of the BOOM and can be FPGA-accelerated in order to ex-
ecute large programs in a reasonable time. However, in order to easily obtain
detailed logs for the simulation of smaller program fragments, I also ran simu-
lations of the FireSim RTL using Verilator. I used Verilator simulation to log the
state of each MSHR and the writeback unit for each cycle of the simulation, which
made it possible to construct the latency breakdowns shown in figure 6.3. The con-
figuration of the BOOM core used in the simulations is shown in table 5.1. The
configuration was originally developed and presented in the TEA paper [35]. The
TEA configuration has a memory system that is able to exploit more MLP than the
SonicBoom [8]. The rest of the core has also been upscaled to take advantage of
the increased memory bandwidth.

As this thesis focuses on memory bandwidth, a way of measuring the memory
bandwidth was needed. To this end, I used and configured several microbench-
marks developed by Björn Gottschall, which consisted of a main loop executing
a load or store instructions to a region of memory. Examples of these loops are
shown in listing 1 to 5 in section 9.1. The microbenchmarks can be configured to
read or write from areas of memory with different sizes in order to stress a differ-
ent level of the memory hierarchy. By running one loop which primes the memory
hierarchy with the memory region the microbenchmarks use and then measuring
the time it takes to either write or read an amount of data to that memory region,
the memory bandwidth can be measured. Running the memory benchmarks with
the same data for larger and larger memory regions allows the calculation of the
memory bandwidth for the different levels of the memory hierarchy. In order to
accurately measure the bandwidth, I disabled hardware prefetching when obtain-
ing the bandwidth.

Furthermore, by configuring the microbenchmarks to only read or write to a
single word per cache line, as shown in listing 2 and 4, the benchmarks stress
the memory hierarchy by causing one miss per memory access. These memory
benchmarks are referred to as strided benchmarks, as there is a stride between
each memory access, in opposition to the streaming microbenchmarks where the

35

36 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

addresses are adjacent in memory. The memory benchmarks can be run with load
instructions, store instructions and a mix to measure the bandwidth for different
circumstances. The mixed, or loadstore microbenchmark, operates on two regions
of memory of equal size, reading values from the first and storing the value in the
second region of memory. The load microbenchmark adds the data loaded from
memory together, to avoid the loads being optimised away. The latency distribu-
tions as shown in figure 6.3 and others were obtained by logging the state of each
MSHR during the microbenchmarks.

To evaluate whether the changes in bandwidth shown by the memory bench-
marks could improve the performance of regular programs, I used benchmarks
from the SPEC17 suite. Björn Gottschall had implemented and analysed LBM with
and without software prefetching and determined that LBM experienced stalls
from memory instructions in both cases. The fact that no amount of prefetch-
ing could remove stalls from memory instructions, in addition to the fact that
LBM experienced stalls due to the store queue filling up [35], suggested that LBM
suffered due to insufficient bandwidth. Therefore it was an excellent benchmark
to evaluate changes in bandwidth.

Table 5.1: Boom configuration

Part Configuration

Core OoO BOOOM; RV64IMAFDCSUX @ 3.2 GHz
Frontend 8-wide fetch; 48-entry fetch buffer, 4-wide decode, 28KiB

TAGE branch predictor, 60-entry fetch target queue, max
30 outstanding branches

Execute 192-entry ROB, 192 int registers, 192 float registers, 48-
entry dual issue MEM queue, 80-entry quad issue INT
queue, 48-entry dual issue FP queue

LSU 64-entry load/store queue
L1 32KiB 8-way I-cache, 32KiB 8-way D-cache 16 MSHRs

with next line prefetcher
L2 Double banked 2 MiB 16-way L2 w/ 12 MSHRs per bank
Memory 16 GiB DDR3 FR-FCFS quad-rank, (8 GB/s maximum

bandwidth, 14-14-14(CAS-RCD-RP) latencies @ 1GHz, 8
queue depth, 32 max reads/writes

OS Buildroot, Linux 5.7.0

Chapter 6

Bandwidth analysis

6.1 Measuring Memory Bandwidth

As described in the section on caches, the latency of the memory hierarchy in-
creases as it gets further from the CPU. Therefore bandwidth will vary depending
on the memory usage of an application. By running the streaming microbench-
marks it is possible to measure the maximum bandwidth achievable read and
write bandwidth to different parts of the memory hierarchy. The bandwidth is ob-
tained by measuring the time needed to read or write 1 GiB of data to a section
of memory, and then calculating the bandwidth from that by dividing GiB by the
time measured. The bandwidth in GB/s is shown in figure 6.1.

To evaluate the bandwidth shown in figure 6.1, it must be compared to what
the BOOM is theoretically able to achieve for different levels of the memory hier-
archy. As shown in table 5.1 the BOOM used is able to issue 2 memory instructions
per cycle. As the cache is pipelined, when the memory requests hit in the cache,
the cache can supply two data words of 8 bytes each cycle. As the BOOM is simu-
lated to be running on 3.2GHz, this gives a theoretical read bandwidth to the L1
data cache of 2 ∗ 8 ∗ 3.2 ∗ 109/10003 = 51.1GB/s. However, the BOOM is only
able to send one write request to the data cache per cycle, even with a multi-bank
configuration. As such the maximum write bandwidth to the L1 data cache is half
the read bandwidth or 25.6GB/s.

For the L2 bandwidth and beyond, the largest bottleneck must be found. All
memory requests must go through the L1 data cache, and bandwidth is therefore
limited to that of the L1 data cache. The L2 and L1 caches are connected via
Tilelink, so the bandwidth is limited by what can be sent over Tilelink. This is
configurable, yet the BOOM configuration used in this thesis has a Tilelink data
width of 16 bytes. As the L2 also runs at 3.2 GHz, the L2 has the same theoretical
read bandwidth as the L1 of 51.2GB/s. However, as the L2 is larger it has a higher
latency. The write bandwidth is limited by the write bandwidth to the L1, and the
theoretical write bandwidth is therefore also 25.6GB/s. The DRAM runs at 1 GHz
and has the capacity to transfer 16 bytes per cycle. Therefore both the theoretical
read and write bandwidth of the main memory is 16 ∗ 109/10003 = 16GB/s. To

37

38 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

1K
iB

2K
iB

4K
iB

8K
iB

16K
iB

32K
iB

64K
iB

128K
iB

256K
iB

512K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16M
iB

32M
iB

64M
iB

10GB/s

20GB/s

30GB/s

40GB/s

50GB/s
Load Store Loadstore

Working set

B
an

dw
id

th

L1 L2 Main memory

Theoretical Read

Theoretical Write

Figure 6.1: Memory bandwidth when running the streaming microbenchmark
for different sizes of working sets.

summarize, the theoretical bandwidth is calculated to be the following:

• L1: 51.2 GB/s for reads and 25.6 GB/s for writes
• L2: 51.2 GB/s for reads and 25.6 GB/s for writes
• DRAM: 16 GB/s for reads and writes

Figure 6.1 shows that bandwidth varies significantly between the levels of the
memory hierarchy. As the L1 cache has a capacity of 32KiB, as shown in table
5.1, this explains the drop in bandwidth between 32 and 64KiB. As the L2 has a
capacity of 2MiB, this explains the additional drop in memory bandwidth between
2 and 4 MiB. When hitting in the L1 cache, the bandwidth for the load benchmark
is around 45 GB/s and drops by 50% once it hits in the L2 instead of the L1. It
further decreases to about 10 GB/s once it has to go to the main memory. For the
store and loadstore benchmarks, the memory bandwidth decreases significantly
when missing in the L1 and does not vary between the L2 and main memory.

To the L1 cache, both the read and write bandwidth measured is close to what
is theoretically achievable, with both being measured over 90% of the theoretical
bandwidth. However, the L2 bandwidth, and to a lesser degree the DRAM band-
width, is measured to be far lower than what can be achieved in theory, with the
load benchmark only achieving about 50% of what Tilelink is capable of transfer-
ring from the L2 cache. To explain this it is important to keep in mind that while
the L2 is able to achieve high bandwidth, the latency is far larger than the L1,
with the L1 having a latency of 2 cycles, while the L2 has a latency of about 14
cycles. Therefore it needs sufficient MLP to achieve high bandwidth. The number
of requests it can receive is limited by the memory level parallelism supported by
both the BOOM core and its data cache.

All loads stay in the load queue until the data is returned, and misses in the L1
are handled by an MSHR until resolved. Each MSHR can handle up to 16 misses

Chapter 6: Bandwidth analysis 39

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

10GB/s

20GB/s

30GB/s

40GB/s

50GB/s

Load Store Loadstore

Working set

B
an

dw
id

th

L2 Main memory

Theoretical Read

Theoretical Write

Figure 6.2: Memory bandwidth when running the strided microbenchmark for
different working sets in memory.

to a single cache line while the load queue only has a capacity of 64 entries.
This means that the streaming microbenchmark is only able to use 8 MSHRs at a
time, as there are 8 loads to each cache line. As a result, there cannot be enough
outstanding misses in the L1 to fully utilise the bandwidth between it and the L2.
The write bandwidth is also limited by MLP but for a different reason. Because
store instructions leave the store queue whenever they have been acknowledged
by the L1 cache, its size does not affect MLP as long as it does not fill up and the
Frontend can keep fetching instructions. However, only one store may be sent to
the L1 at a time and the cache pipeline is often busy due to writebacks or store
replays. Because of this, there is simply no room for the core to send enough store
instructions to use enough MSHRs to achieve the theoretical bandwidth between
the L1 and L2.

To measure the bandwidth that is achievable between the L1 and L2 the strided
microbenchmark can be used, where each memory access triggers a miss, there-
fore generating as much MLP between the L1 and L2 as possible. As each word
read or written by the core represents an entire cache line, i. e. 8 words, the band-
width between L1 and L2 is 8 times what is measured into the core. The bandwidth
between the L1 and L2 caches measured using the strided benchmark is shown in
figure 6.2.

The L2 bandwidth measured with the load microbenchmark is shown in figure
6.2 and does not differ significantly from the L1 bandwidth that is shown in fig-
ure 6.1, meaning that the L1 is perfectly capable of utilising achieving read band-
width given enough MLP. Furthermore, the read bandwidth to the main memory
now reaches the theoretical maximum. For both read and write bandwidth, the
first memory size used, i.e. The benchmarks with a working set of 64 KB and 4
MB perform significantly better than the rest of the memory regions for that level

40 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

in the hierarchy, with the 4 MB benchmark measuring a bandwidth that exceeds
the theoretical limit. This is likely due to the lower level not being sufficiently
flushed, meaning that some requests hit the lower level of the memory hierarchy.
Therefore, the bandwidth measured by the later regions is more representative.
While the bandwidth measured by the loadstore and store microbenchmarks in-
creases from figure 6.1, it is still far less than what is theoretically possible. The
loadstore benchmark has lower bandwidth than the store one, yet that is expected
as it needs to execute two memory instructions per word along with an arithmetic
instruction, instead of one store instruction for the store benchmark. Neverthe-
less, the performance of the store and loadstore benchmarks indicate that the
L1 cache has a bottleneck preventing it from achieving the theoretically possible
write bandwidth.

6.2 Identifying bandwidth bottleneck

The bandwidth from the L1 cache and beyond is governed by the miss handling,
as explained in section 3.5. The two factors dictating it are how many MSHRs
are active at a time, and how long they spend resolving a miss, as this governs
how many blocks can be fetched to the L1 per second. The time an MSHR spends
resolving a miss will be referred to as the MSHR latency and is counted in the
number of cycles between when the MSHR gets handed a miss to resolve and
it returns to the idle state. As an example to show how the number of MSHRs
and latency affect, consider how the latency changes if we double the number of
MSHRs in use on average. If the latency stays the same, twice as much data will
be fetched to the L1 cache, because twice as many cache lines have been fetched
within the same timeframe. If the latency instead doubles, the bandwidth will stay
the same, as the same number of misses will be resolved.

To discover the cause of the discrepancy between the observed and theoretical
bandwidth in figure 6.2, one must therefore have to look at both the amount
of MSHRs active and the MSHR latency. The bandwidth would be improved by
either increasing the average amount of MSHRs active, thereby increasing MLP
or by reducing the latency. By logging the state of each MSHR every cycle during
one loop of the strided load and store microbenchmarks, it is possible to see how
the BOOM handles memory parallelism for both eviction-heavy applications and
those without evictions. From logging the MSHR states, it is possible to observe
the average number of active, i.e. non-idle MSHRs and the average latency per
miss. Both benchmarks have about 13 of 16 MSHRs in use on average during the
benchmarks. While is this not optimal as the BOOM configuration used has 16
MSHRs, the real difference lies in the latency. The average latency per miss for
the load and store microbenchmark is shown in figure 6.3.

We can see that the store benchmark suffers from far higher latency than loads,
with a miss taking about 3 times as many cycles to resolve than for a load. While
a slight difference should be expected because the store benchmark must evict
a dirty line, as shown in figure 3.3, the addition of some extra steps does not

Chapter 6: Bandwidth analysis 41

load store
0

50

100

150

200

writeback refill probing write to cache finish replay stores load replay

Benchmark

La
te

nc
y

in
 c

yc
le

s

Figure 6.3: Average MSHR latency for the load and store microbenchmark broken
down by different stages of resolving a miss.

explain the massive difference in latency. Clearly, the handling of misses in the
store benchmarks suffers from a bottleneck not present for the misses in the load
benchmarks. To understand where this bottleneck the different states shown in
figure 6.3 must be discussed. The different stages shown correspond roughly to
the steps shown in figure 3.3. Refill refers to fetching a cache line from the L2,
load replay entails returning the fetched data to the LSU and probing is reading
the cache metadata to determine if an eviction is necessary and which way to
store the fetched cache line. Writeback is writing back a dirty cache line, while
write to cache refers to updating the cache with the new cache line. If there were
any stores to the missing cache line, they would be replayed to the cache. Lastly,
finish refers to updating the metadata and clearing the MSHR state.

From the breakdown, we can see that the difference mostly comes from the
MSHRs spending time on writeback. Only the store benchmark spends time on
writeback, as it is the only one to write data to memory, thereby creating dirty
cache lines which must be written back to the L2. However, an average miss
spends about 200 cycles on writeback. Further examining the time each MSHR
spends on writeback reveals that the MSHRs only spend 6 cycles waiting for the
writeback unit to read out the cache line to be evicted before proceeding to the
next step of updating the cache lines. The writeback unit can then write back
the dirty cache line parallel with the cache being updated with the newly fetched
cache line. The rest of the cycles spent on writeback consists of simply waiting for
the writeback unit to become available. Clearly, the writeback handling is a bot-
tleneck for eviction-heavy applications and must be improved to increase memory
bandwidth for such applications. Moreover, we can break down the latency even
further to show the average per miss per MSHR, as shown in figure 6.4. Here we
can see that the latency varies wildly between MSHRs, with some MSHRs spend-

42 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800
writeback refill probing write to cache finish replay stores load replay

MSHR Index

A
ve

ra
ge

 la
te

nc
y

in
 c

yc
le

s

Figure 6.4: Average latency per miss for each of the MSHRs using the standard
arbiter.

ing 14 times as many cycles as others resolving misses, and the difference is due
to the cycles spent on writeback varying from 10 to over 700 cycles.

Chapter 7

Optimisations and evaluation

7.1 Writeback arbitration

Only a single writeback may be performed at a time, so when there are multiple
units requesting to use the writeback unit at the same time, arbitration is neces-
sary. This arbitration is handled by a standard chisel arbiter module. The arbiter
in the chisel language works by having a set of multiple producers and a single
consumer, where each producer has a valid output and a ready input signal. The
arbiter has a single consumer which has a valid input signal and a ready out-
put signal. Once the consumer sets ready high, it will be forwarded to one of the
producers which has set valid high, and this producer’s data will be sent to the
consumer.

This leaves open the question of which producer should get to forward its
data when multiple producers have their valid signal set to high. The standard
chisel arbiter, which is used for writeback arbitration between MSHRs, has a static
priority. Therefore if both MSHR number 0 and number 1 request a writeback at
the same time, MSHR 0 will always get priority over MSHR 1. The second option
for an arbiter in the chisel language is a round-robin arbiter. This arbiter works by
giving priority in a round-robin fashion, whereby the producer with the highest
priority is rotated around. If producer 0 and 1 request has valid high, producer
0 gets priority, yet the next time producer 1 would get priority. This ensures that
over time, no single producer gets higher priority than the others. When there are
no clear differences between the producers, this arbiter results in equal access to
the consumer.

This static priority works well for cases where you always want to prioritise
some signals over others, for example in the case of arbitrating between the Prober
and the MSHRs for writeback, where you would want to give probes priority.
However, having static priority for different MSHRs creates the uneven latency
distribution seen in figure 6.4.

For very writeback-heavy applications, this can result in the time an MSHR
needs to resolve a miss varying wildly depending on writeback priority. If an MSHR
has a load after a store in its request queue, the load must wait for the store to be

43

44 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

0 2 4 6 8 10 12 14
0

50

100

150

200

250

writeback refill probing write to cache finish replay stores load replay

MSHR Index

A
ve

ra
ge

 la
te

nc
y

in
 c

yc
le

s

Figure 7.1: Average latency per miss for each of the MSHRs using the Round
Robin Arbiter.

performed before the MSHR can resolve the load by sending data to the LSU, as
described in figure 3.3. As such, a miss being handed to the "wrong" MSHR may
result in a load taking significantly longer to be committed. In the worst case,
this may lead to starvation as a load gets stuck at the head of the ROB and will
not be committed until the new misses are not handed to the MSHRs leading
to reduced MLP and stalling the entire core. Therefore, having an even latency
distribution between the MSHRs is desirable. This can be achieved by using a
round-robin arbiter for MSHR writeback arbitration, and the latency distribution
with this arbiter is shown in figure 7.1.

The new latency is now very even. However, comparing figures 7.1 and 6.3
reveals that the average latency has increased from 232 cycles to 272 cycles. Nev-
ertheless, bandwidth increases very slightly as the average number of MSHRs in
use increases from about 13 to 15.8, meaning that the MHA is capable of using
all MSHRs. Thus, replacing the arbiter has little effect on the overall bandwidth
measured by any of the benchmarks. From synthesising the entire BOOM with
different arbiters, as well as the two arbiters alone, the resource usage is roughly
equivalent between the two. As such, the change requires few additional resources
while avoiding starvation and fully utilising the MSHRs of the BOOM’s MHA. To
conclude, switching arbiters has little effect on memory bandwidth or resource
usage, yet may avoid starvation in certain applications where a load must wait for
an MSHR to complete writeback.

7.2 Reducing the writeback bottleneck

While the latency breakdown in figure 7.1 is far more even, writeback still domin-
ates miss handling for an MSHR. Each MSHR spends, on average, over 200 cycles

Chapter 7: Optimisations and evaluation 45

Prober MSHRs

To LSU

Request From cache

To L2 cache via tilelink channel C

Response from L2 via tilelink B

1

2

3

4

5

Request

Data bufferData buffer

Figure 7.2: Overview of the pipelined writeback unit.

on writeback handling. As mentioned, most of this is spent waiting for the write-
back unit to become available, as the MSHRs only have to wait until the writeback
unit has finished reading out the cache line before continuing. This takes about 6
cycles on average, which is the minimum for this BOOM configuration described
in table 5.1 because it can read out 16 bytes per cycle, and require 1 cycle for
reading out of the data arrays as well as another 1 cycle for the final read to make
its way through the cache pipeline. Therefore, most of the time spent on writeback
is spent waiting for the writeback unit to become available. In order to reduce the
time spent on writeback, the throughput of the writeback unit must be improved.
As data is only being written back to the L2 cache 22% of the time, there is room
to increase the throughput of the writeback unit.

7.2.1 Pipelined writeback unit

As described by figure 3.4, the writeback unit first reads out the cache line to
be written back, notifies the LSU of the writeback, and then performs a Release
transaction as defined by Tilelink. This entails writing the cache line to the L2 in
a burst message and waiting for an acknowledgement. The writeback unit may
only accept a request from another MSHR once all the steps are completed. To
improve throughput, the writeback unit can be pipelined, enabling it to read out
a cache line from the cache while performing a release for another cache line. The

46 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Non-pipeliend without restriction Non-pipelined with restriction Pipelined with restriction
0

50

100

150

200

writeback refill probing write to cache replay stores finish load replay

MHA optimistaion

La
te

nc
y

in
 c

yc
le

s

Figure 7.3: Average latency per miss for the store benchmark with a non-
pipelined writeback unit with and without restrictions on issuing acquires as well
a pipelined writeback unit with restrictions.

new pipelined writeback unit is shown in figure 7.2.
The pipeline is divided into two stages, where each stage handles a separate

request. The first stage starts once a request is received 1 . Then the cache line
is read into one of two data buffers 2 . When the next stage is idle, the request
is transferred into another register, and the data buffers used by each stage are
switched. The second stage first notifies the LSU of the writeback 3 , before be-
ginning the writeback with a ReleaseData message in the case of a writeback, or a
ProbeAckData message in the case of a probe 4 . If the request was a writeback,
the second stage waits for an acknowledgement in the form of a ReleaseAck 5
before returning to the idle state.

7.2.2 Effect on latency

To evaluate the effect of writeback pipelining, one must look at whether or not
it reduces the time spent by MSHRs on writeback. As the introduction of the
pipelined writeback unit necessitated the removal of the deadlock described in
section 4.5, I must first evaluate whether the introduced restriction on issuing
acquires affect latency. As shown in figure 7.3, the restrictions on acquire barely
affect latency, with the exception of a slight increase in the cycles spent on refill.
This is to be expected, as the MSHR must spend time waiting for a Release to
be finished before issuing an Acquire. Nevertheless, the average latency remains
about the same, and the bottleneck is still clearly the writeback process.

The latency with and without the pipelined writeback unit is shown in figure
7.3. The average MSHR latency is reduced from about 233 to 160 cycles a re-
duction of about 30%, so the writeback unit is able to significantly increase the
throughput of the writeback unit. There is a stark change in the latency break-

Chapter 7: Optimisations and evaluation 47

down, with a major shift to the refill part of latency. Refill consists of issuing the
acquire and waiting for the L2 cache to respond with the data. To understand the
shift, I break down the refill stage into which cycles are spent before the Acquire is
issued and which cycles are spent waiting on the data from L2. Both cores spend,
on average, about 14 cycles waiting for the cache line from the L2. The difference
lies in how many cycles are spent waiting to send the Acquire. The issuing of an
Acquire itself takes only one cycle, so any additional cycles are spent waiting on
being able to issue. The core with the non-pipelined writeback unit spends about
3.6 cycles, while the core with the pipelined config spends 97.7 cycles waiting.
This change is explained by neither core being able to issue an acquire while a
release is in progress, as explained in section 4.5. However, the pipelined write-
back unit is able to have a release in progress at almost all times because it can
read out cache lines in parallel, as underlined by figure 7.5. Therefore, most of
the time spent in refill is spent waiting for a release transaction to complete. Be-
cause the bottleneck has shifted from which MSHR may use the writeback unit to
which MSHR may issue an Acquire, this puts increased pressure on the Acquire
arbitration. The situation is similar to the one described in figure 6.4, with the
switch being as simple and resulting in results similar to those displayed in figure
7.1.

7.2.3 Bandwidth analysis of writeback pipelining

Figure 7.4 shows the bandwidth measured with the non-pipelined and pipelined
writeback unit. As expected, the read bandwidth is not affected since the load
benchmark does not need to write back any dirty cache lines, as it never writes
data to memory. The bandwidth measured by the store microbenchmark is sig-
nificantly increased, with an increase of 31% for the L2 and 24% for the main
memory. This corresponds well with the decrease in latency observed in figure
7.3. However, the L2 bandwidth is still only about 60% of what is possible for the
L2. Some overhead from writeback is to be expected, yet as shown in figure 7.3
writeback is still a bottleneck. The bandwidth to main memory is somewhat bet-
ter, being about 80% of the theoretical bandwidth and is not much worse than the
load bandwidth. As there will always be a little overhead due to the extra steps
needed for miss handling in write-back caches, the store benchmark is expected
to have a bit lower bandwidth than the load benchmark.

The loadstore benchmark only has a very slight increase in bandwidth and
only to the L2. While the measured bandwidth is only slightly lower than the store
benchmark without writeback pipelining, the gap increases significantly after. This
indicates that the loadstore benchmark did not suffer from the same bottleneck
as the store benchmark. I measured the average latency and number of MSHRs
in use for a loop of the loadstore benchmark, showing that it was only able to
have about 4.3 active MSHRs active at the same time, out of a total of 16. As
the loadstore benchmark must execute twice as many memory instructions for
the same bandwidth as the load and store benchmark, this low MLP is even more

48 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

20GB/s

30GB/s

40GB/s

50GB/s
Load Load Pipelined

L2 Main memory

Theoretical Read

Theoretical Read

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

10GB/s

15GB/s

20GB/s

25GB/s

Store Store Pipelined

L2

Main memory
Theoretical Write

Theoretical Write

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

10GB/s

20GB/s

30GB/s
Loadstore Loadstore Pipelined

L2

Main memory
Theoretical Write

Theoretical Write

Figure 7.4: Memory bandwidth when running the different strided microbench-
marks for different sizes of memory with both a pipelined and non-pipelined wb-
unit.

detrimental to performance. Further analysis showed that the BOOM’s MHA inter-
acts unfavourably with the loadstore benchmark. More specifically, the restriction
on only having one outstanding miss with the same index is detrimental to the
loadstore benchmark, which moves data between two regions in memory where
the addresses of related loads and stores often have the same index bits. Further-
more, the fact that the MHA can only process one miss per cycle means that even
though LSU can fire a load and store to memory at the same time if both miss one
of them will be nacked and must be fired again later. To conclude, the bandwidth
of the MHA is the major bottleneck for loadstore benchmark preventing it from
exploiting MLP and achieving high bandwidth.

7.3 Increasing Tilelink width

While the pipelined writeback unit reduces overall latency by 30%, a writeback is
still the bottleneck preventing the store benchmark from achieving higher band-
width. In addition, as writebacks are continuously performed by the writeback
unit, they limit MLP by preventing MSHRs from issuing acquires as soon as they
are able to, as some MSHRs have to wait for about 100 cycles before being able

Chapter 7: Optimisations and evaluation 49

Read from cache 16 Read from cache 32 Writeback 16 Writeback 32
0

2

4

6

8

10

12

read from cache wait for s1 invalid stage 1 wait for ack write to L2

invalid stage 2 lsu

Writeback pipeline stage and Tilelink width

La
te

nc
y

in
 c

yc
le

s

Figure 7.5: Breakdown of the time spent in different parts of the writeback pro-
cess with 16 and 32 bytes per Tilelink beat. Invalid indicates that the stage of the
writeback unit is idle.

to issue an Acquire. Therefore, total latency can still be reduced significantly by
improving the throughput of the writeback unit. By breaking down what parts
of the writeback process the writeback unit spends time on, it is possible to see
which parts to optimise in order to improve throughput.

The breakdown shown in figure 7.5 shows that the writeback unit is almost
always busy, as both stages of the pipeline spend only about a single cycle in the
invalid state on average. Because the pipeline stages must pass through the in-
valid states before accepting another request this is the minimum. While it would
be possible to change the writeback unit so that its pipeline stages do not need to
pass through the invalid stage, it would entail additional logic and would likely
only increase the time spent waiting for either the next stage or an acknowledge-
ment. Furthermore, separating the write to L2 and wait for ack would be difficult
to separate, as the writeback unit must then be able to handle multiple releases
in-flight at the same time, as there is no guarantee that the acknowledgements
would be returned in order. This means that the writeback would need separate
trackers for each Release in flight, with each Release needing a separate source
ID in Tilelink, similar to how each MSHR has its own ID for Acquires. In addition,
having multiple Releases in progress at the same time may lead to a deadlock sim-
ilar to the one in section 4.5, as discussed in section 4.4. As the LSU stage takes
only 1 cycle, further pipelining will not yield benefits. The time spent in wait for
ack cannot be improved without making changes to the L2 cache. This leaves read
from cache and write to L2. One way to reduce the time spent in those states is
to increase the bytes written each cycle, thereby reducing the number of beats
in the burst message and the number of cycles needed for a Release to finish. In
addition, as the read width of the BOOMs L1 cache is determined by the width of
the Tilelink data field, the time spend reading out cache lines will also be reduced.

50 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

16 32
0

20

40

60

80

100

120

140

160

refill writeback probing write to cache finish replay stores load replay

Tilelink Width

La
te

nc
y

in
 c

yc
le

s

Figure 7.6: Average latency per miss for the store benchmark with 16 and 32
bytes per Tilelink beat.

The breakdown shown in figure 7.5 shows that increasing the data width in
Tilelink reduces the time spent for each of the stages by about 1 cycle, and in-
creases the portion of time spent waiting for the L2. Average latency per miss is
also decreased, as shown by figure 7.6. There is now little room for improving
the throughput of the writeback unit by altering it, as most of the time is spent
waiting for acknowledgement from the L2. As the L2 is highly pipelined there is
a minimum of 4 cycles before a ReleaseAck can be received. As the ReleaseAck
and GrantData messages must be multiplexed over channel D, this often causes
additional cycles spent waiting for an acknowledgement. Therefore, it is difficult
to reduce the time it takes for a ReleaseAck to be received.

As expected from the slight reduction in latency shown in figure 7.6, the band-
width measured in the store microbenchmark increases slightly as shown in fig-
ure 7.7. The bandwidth to main memory does not increase significantly, as it was
already close to what was possible with the pipelined writeback unit, indicating
that the maximal write bandwidth to main memory has been reached. The L2
bandwidth does increase slightly, yet is still only about 2/3s of what is achievable
to the L1. As shown in figure 7.6 the writeback process still takes longer than it
needs when missing in the L1 due to writeback. Therefore, bandwidth can still
be improved by reducing the writeback bottleneck. One way to do this would
be to separate the miss handling of multiple cache banks so that each may issue
writebacks in parallel. Unfortunately, the BOOM does not currently support this,
as cache banks do not alter the miss handling. This is underlined by performance
not increasing as shown in figure 7.7.

Chapter 7: Optimisations and evaluation 51

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

10GB/s

12GB/s

14GB/s

16GB/s

18GB/s

20GB/s

22GB/s

24GB/s

26GB/s

Non Pipelined Pipelined Pipelined Wide Pipelined Wide Double Banked

Working set

B
an

dw
id

th

L2

Main memory
Theoretical Write

Theoretical Write

Figure 7.7: Memory bandwidth into the L1 for the store benchmarks with differ-
ent memory sizes.

7.4 Resource consumption

To evaluate if the performance increase is worth it, one must look at the increase
in resource usage. The resource usage of the entire synthesized BOOMs is shown
in table 7.1, with the increases shown as well. The FPGA resources not shown
were unchanged between the BOOM with the standard writeback unit and the
BOOM with the pipelined one. As we see from table 7.1 the new writeback unit
uses very few additional resources with there only being a slight increase for LUT
and flip-flops. The Tilelink widening uses significantly more resources. This can
be explained by the read width of the SRAM modules in the data cache being the
same as the Tilelink width, as well as there being a Tilelink buffer between the
L1 and L2 caches. Therefore it is not sufficient to increase the channel width, but
other more expensive changes must also be made.

Table 7.1: Resource usage of the BOOM with the different configurations used.

Resource Base Pipelined WB Diff Wide Tilelink Diff

LUT 838851 840276 0,170 % 893980 6,4 %
LUTRAM 19884 19884 0 24820 24,9%
Flip-flops 357170 357799 0,176 % 381212 6,5%

BRAM 813,50 813,50 0 408,50 -50%

52 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

Baseline Prefetch distance 2 Prefetch distance 3 Prefetch distance 4 Prefetch distance 5
0

0.2

0.4

0.6

0.8

1

Standard WB Pipelined WB Wide Tilelink

Benchmark

N
or

m
al

is
ed

 e
xe

cu
tio

n
tim

e

Figure 7.8: Execution time of LBM benchmarks with different software prefetch-
ing distances. Normalised to baseline with standard writeback unit.

7.5 LBM performance

To evaluate if the increase in bandwidth is useful for the performance of actual
programs, I consider the performance of LBM with and without the pipelined
writeback unit and the increase in Tilelink width. The execution time in cycles
for each of the programs on the different BOOM-cores is shown in figure 7.8.
Both the pipelined writeback unit and the widening of the Tilelink channel in-
crease performance for all programs. However, the increase is not uniform, with
the greatest increase being for the variants of LBM with software prefetching,
namely Prefetch distance 2 - 5, where distance represents the number of loop it-
erations which data is prefetched for. This would indicate that LBM suffers from
a bottleneck other than write bandwidth, with write bandwidth only being the
bottleneck when prefetching is introduced. Nevertheless, the pipelined writeback
unit and wide Tilelink still reduce execution time for the baseline by 0,47% and
0,83% respectively. The program with prefetching distance 3 has the best per-
formance of the programs for all optimisations, and the pipelined writeback unit
increases performance by about 3,8%. However, with a Tilelink-width of 32, the
versions of LBM with prefetching have roughly the same execution time regardless
of the prefetch distance.

The cycle stacks for the different benchmark executions are shown in figure
7.9. I obtained the cycle stacks using methods developed by Gottschall et. al. [35].
The INT, FP and MEM categories represent time spent on executing the different
types of instructions. Hence, they naturally compose the largest portion of execu-
tion time and since LBM is a floating point-heavy benchmark, spending most of
its time executing floating point instructions is to be expected. As there are many
floating point instructions with true dependencies, it is difficult to avoid spending
a large amount of time on floating point execution. ST-LLC, ST-TLB and ST-L1 rep-

Chapter 7: Optimisations and evaluation 53

0 0.5T 1T 1.5T

Prefetch wide tilelink

Prefetch pipelined

Prefetch non-pipelined

base
ST-LLC
ST-TLB
ST-L1
DR-SQ
INT
FP
MEM

Cycles

B
en

ch
m

ar
k

Figure 7.9: Cycle stacks of the main function for the exp3 and baseline LBM
benchmarks for different optimisations. Cycle stacks for baseline do not vary
much with optimisation, so only the non-pipelined results are shown.

resent stalls, i. e. cycles where no instruction is committed, caused by a miss to the
LLC, TLB and L1 cache respectively. DR-SQ represent a drain, i. e. when the ROB
empties due to the frontend locking up, caused by the Store Queue being full and
thus preventing new instructions from being dispatched. While the largest number
of cycles are devoted to the execution of floating point instructions, the baseline
suffers from a lot of stalls due to misses in the LLC, which in this case is the L2
cache. Prefetching significantly reduces the stalls from LLC misses, yet it remains
the largest source of stalls. Pipelining further reduces LLC stalls by about 75%,
with the wide Tilelink almost removing them entirely. The number of cycles not
spent on stalls increases slightly with writeback pipelining, as some of the execu-
tion cycles that were previously hidden behind stalls now come to the front. With
writeback pipelining the largest source of stalls is the TLB. Nevertheless, there are
still a significant amount of stalls and Frontend lock-ups from the memory system,
such as stalls from L1 and LLC misses as well as the store queue filling up. This
indicates that there is still room for improvement in the BOOM’s memory system.
In addition, the presence of stalls from LLC and L1 misses with prefetching indic-
ates that performance would be improved with additional bandwidth, as could in
theory completely hide the latency from LLC misses by prefetching early enough
with sufficient bandwidth.

Although the cause for performance improvement in LBM with prefetching is
clear, the cycles stacks offer no clear explanation for the lack of improvement in
LBM without prefetching. The cycle stacks for the baseline benchmark are similar
to the one shown in figure 7.9, regardless of optimisation. As the bottleneck is
the memory instructions, as indicated by the number of stalls due to LLC misses,
one would expect increased memory bandwidth to reduce the number of stalls
and improve performance, yet this is not the case. The fact that prefetching is

54 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

needed to make LBM bandwidth bound suggests that the BOOM is not able to fully
utilise the available bandwidth without it. Therefore, there is likely a bottleneck
preventing the BOOM from exploiting enough MLP to achieve high bandwidth.

As the Tilelink widening gives a smaller increase in performance than the
pipelined writeback unit on its own, for significantly more resources, increas-
ing it is not cost-effective. In addition, the theoretical read bandwidth between
the L1 and L2 now exceeds the bandwidth between the L1 and the BOOM core.
Therefore, the memory issue width of the BOOM core should be increased before
Tilelink is made wider so that the read bandwidth to the core would increase as
well.

7.6 Other optimisations

The main bottleneck for the store microbenchmark is still the writeback process, as
shown in figure 7.6 and LBM would benefit from increased bandwidth as indicated
by the memory stalls in figure 7.9. The main bottleneck is that only a single release
transaction can be in progress at a time. As the writeback unit spends most of
its time waiting for acknowledgement from the L2 cache, shown in figure 7.5,
relaxing this constraint would make it possible to overlap releases in the same
way as Acquires. One way of having multiple releases in parallel would be to
alter the miss handling architecture of the data cache so that each cache bank
has its own MSHRs, as described by Tuck et. al. [19]. Each bank may then be its
own Tilelink agent connected to the L2, and may then issue Tilelink transactions
separately. While this would improve bandwidth, imbalanced accesses and misses
to the cache banks may lead to only one of the banks being used, resulting in the
same bottleneck observed in this thesis. In addition, each bank would likely have
fewer MSHRs than in a unified miss handling architecture, and imbalanced access
could therefore cause the cache to lock up. On the other hand, the introduction of
address mappings similar to those developed for DRAM [36]may reduce lock-ups
due to imbalanced access.

Further increases in bandwidth may be accomplished by overlapping the write-
back of dirty cache lines with fetching new cache lines, instead of doing these steps
sequentially. This is specifically mentioned as a possibility in the Tilelink specific-
ation [32], as there is no restriction on issuing a release while an Acquire is in
flight. Overlapping the stages will mean doing the probing and writeback stages
of miss-handling while waiting for the new cache line from the L2. For workloads
with few writebacks and thus low contention for using the writeback unit, this
could hide the entire latency of writebacks under the fetch latency from the L2.
However, it might also result in more misses, as instructions might use the evicted
cache line.

Tuck et. al. also underlined the importance of having an MHA with high band-
width in the sense that it can process many cache misses per cycle [19]. While
this was accomplished with a multi-banked MHA to allow for multiple reads and
writes to the MSHRs each cycle, this is not necessary for the BOOM. While the

Chapter 7: Optimisations and evaluation 55

BOOM’s MHA is only capable of handling one cache miss each cycle, the address
of all misses is sent to the MSHRs to check for a match. Extending the MHA to
process more than one miss per cycle would mean that fewer requests from the
LSU would have to be sent to the cache multiple times before being handled. An-
other change to MHA that may offer increased performance for certain programs
is removing the restriction on not having two outstanding misses with the same
indexed bits. Both of these would reduce the time it takes for MSHRs to be al-
located, making it easier to exploit MLP and hide the latency of cache misses. As
LBM requires prefetching to be bandwidth bound, this may increase performance
as loads will be executed earlier.

Lastly, the BOOM data cache only supports a single write per cycle, even when
having multiple banks. As pointed out by Sohi [28], being able to support mul-
tiple writes per cycle is an advantage of multi-banked caches as opposed to having
duplicate caches which is the other option in the BOOM. Therefore, making the
Load/Store unit and the data cache able to support multiple writes per cycle in a
multi-banked configuration could improve performance, especially if the memory
issue width were to be increased further. As LBM suffers from the store queue
filling up, which causes the frontend of the core to stop dispatching instructions,
draining the ROB, making it easier for stores to leave the store queue would im-
prove performance. In addition, stores cannot be sent to the L1 cache while the
writeback unit is reading out a cache line or an MSHR is replaying either loads or
stores as the L1 cache is hard-wired to only accept one of these requests at a time.
As such, making it possible for the L1 cache to process stores while reading out a
cache line or replaying load requests would also avoid the store queue filling up.

Chapter 8

Conclusion and Further work

8.1 Conclusion

In this thesis I explain the Berkeley Out-of-order Machine’s memory system in
detail, the Tilelink protocol and different cache organisations and their effect on
performance. Furthermore, I evaluate the bandwidth for different levels of the
memory hierarchy, addressing task 1 in section 1.2. This evaluation highlights
that the BOOM delivers insufficient memory bandwidth when going beyond the
L1 for eviction-heavy applications. With further analysis, I conclude that this is
caused by the writeback of dirty cache lines becoming a bottleneck when hand-
ling many concurrent misses that require dirty cache lines to be written back. As
the writeback unit cannot concurrently read out a cache line while writing back
another dirty cache line, its throughput is limited which causes the mentioned
bottleneck.

To improve the memory bandwidth I develop an improved pipelined write-
back unit capable of reading out the next line to be written back concurrently
with writing another cache line to the L2, increasing throughput significantly. By
identifying and alleviating this bottleneck I address task 2 as defined in section
1.2. This writeback unit increases the bandwidth for eviction-heavy applications
by 20 to 30% for only a 0,2% increase in resource consumption, addressing task 3.
Lastly, small changes are made to writeback arbitration to avoid starvation for cer-
tain applications without an increase in resource consumption. All these changes
are then evaluated on LBM with and without prefetching, to show an almost 4%
increase in performance for LBM with software prefetching, addressing task 4
as described in section 1.2. While evaluating the pipelined writeback unit, I en-
counter and fix a Tilelink deadlock in the BOOM where the L2 cache would not
acknowledge a writeback if enough new cache lines were requested while the
writeback was in progress.

57

58 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

8.2 Future work

The evaluation with LBM in section 7.5 shows that there is still room for improve-
ment in performance, especially for the version without prefetching, which is not
bandwidth bound. Based on this, I suggest several areas of the BOOM with could
benefit from improvement.

8.2.1 Data cache and Miss Handling Architecture

While the number for MSHRs and the width of the BOOM’s data cache is config-
urable, the number of misses that can be handled each cycle is not. As the number
of MSHRs is increased, it becomes ever more difficult for the BOOM to use them
all at a time. In addition, the bandwidth from the loadstore benchmark in figure
7.4 shows that the restriction on only being able to handle a single miss with the
same index bits at the time may impact performance. Lastly, the fact that the data
cache can only handle a single store per cycle, and only when it is not performing
an eviction or replaying misses may lead to the store queue filling up even when
MSHRs are available, as underlined by the performance impact shown in figure
7.9. All this shows that improvements to the BOOM’s data cache and MHA would
likely improve performance, especially for programs which exploit a large amount
of MLP.

8.2.2 Write bandwidth

The write bandwidth presented in figure 7.4 is still below what is theoretically
feasible and LBM with software prefetching still suffers from memory-related stalls
in figure 7.9. Therefore, the write bandwidth achieved by the pipelined writeback
unit is not sufficient. Writeback is still the bottleneck for achieving higher band-
width, as shown by figures 7.3 and 7.6. As the writeback unit spends most of its
time waiting for ReleaseAck messages as per Tilelink, adding support for having
multiple Releases in flight concurrently would reduce the writeback bottleneck.
This could be done by either having separate miss-handling for each cache bank
or by enabling the writeback unit to issue a Release for a cache line while waiting
for a ReleaseAck for another.

Bibliography

[1] E. F. Nesset, Analysing the memory hierarchy of the BOOM, English, Dec.
2022.

[2] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi and S. Reinhardt, ‘The
M5 Simulator: Modeling Networked Systems,’ IEEE Micro, vol. 26, no. 4,
pp. 52–60, Jul. 2006.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill and D. A. Wood, ‘The gem5 simulator,’ ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[4] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen, N. Deru-
migny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz, A. Farmahini-
Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, A. Gutier-
rez, B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M.
Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C.
Menard, A. Mondelli, M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen,
N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,
M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta,
R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z.
Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon and É. F. Zulian, ‘The gem5
Simulator: Version 20.0+,’ arXiv preprint arXiv:2007.03152, Sep. 2020.

[5] T. E. Carlson, W. Heirman and L. Eeckhout, ‘Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,’ in Pro-
ceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11, Association for Computing
Machinery, Nov. 2011, pp. 1–12.

[6] R. Panda, S. Song, J. Dean and L. K. John, ‘Wait of a Decade: Did SPEC
CPU 2017 Broaden the Performance Horizon?’ In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb. 2018,
pp. 271–282.

59

60 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

[7] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz, J.
Bachrach and K. Asanovic, ‘FireSim: FPGA-Accelerated Cycle-Exact Scale-
Out System Simulation in the Public Cloud,’ in 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA), Jun. 2018,
pp. 29–42.

[8] J. Zhao, B. Korpan, A. Gonzalez and K. Asanovic, ‘SonicBOOM: The 3rd
Generation Berkeley Out-of-Order Machine,’ Fourth Workshop on Computer
Architecture Research with RISC-V, May 2020.

[9] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, en. Morgan Kaufmann, Nov. 2017, ISBN: 978-0-12-811906-8.

[10] W. A. Wulf and S. A. McKee, ‘Hitting the memory wall: Implications of the
obvious,’ en, ACM SIGARCH Computer Architecture News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[11] D. A. Patterson, ‘Latency lags bandwith,’ Communications of the ACM, vol. 47,
no. 10, pp. 71–75, Oct. 2004.

[12] Yuan Chou, B. Fahs and S. Abraham, ‘Microarchitecture optimizations for
exploiting memory-level parallelism,’ en, in Proceedings. 31st Annual Inter-
national Symposium on Computer Architecture, 2004., Munchen, Germany:
IEEE, 2004, pp. 76–87.

[13] W. M. Johnson, ‘Super-Scalar Processor Design,’ en, Stanford University,
Technical report, Jun. 1989.

[14] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras and L. Eeckhout, ‘The load
slice core microarchitecture,’ en, in Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, ACM, Jun. 2015, pp. 272–
284.

[15] R. M. Tomasulo, ‘An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,’ IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33,
Jan. 1967.

[16] D. Leibholz and R. Razdan, ‘The Alpha 21264: A 500 MHz out-of-order exe-
cution microprocessor,’ in Proceedings IEEE COMPCON 97. Digest of Papers,
Feb. 1997, pp. 28–36.

[17] S. Palacharla, N. P. Jouppi and J. E. Smith, ‘Complexity-effective superscalar
processors,’ in Proceedings of the 24th annual international symposium on
Computer architecture, ser. ISCA ’97, May 1997, pp. 206–218.

[18] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E. Smith, ‘A mechanistic per-
formance model for superscalar out-of-order processors,’ en, ACM Transac-
tions on Computer Systems, vol. 27, no. 2, pp. 1–37, May 2009.

[19] J. Tuck, L. Ceze and J. Torrellas, ‘Scalable Cache Miss Handling for High
Memory-Level Parallelism,’ in 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO’06), Dec. 2006, pp. 409–422.

Bibliography 61

[20] A. J. Smith, ‘Cache Memories,’ ACM Computing Surveys, vol. 14, no. 3,
pp. 473–530, Sep. 1982.

[21] P. Shivakumar and N. P. Jouppi, ‘CACTI 3.0: An Integrated Cache Timing,
Power, and Area Model,’ en, Western Research Labs, Compaq, Technical
report, Aug. 2001.

[22] N. P. Jouppi, ‘Cache write policies and performance,’ ACM SIGARCH Com-
puter Architecture News, vol. 21, no. 2, pp. 191–201, May 1993.

[23] D. Kroft, ‘Lockup-free instruction fetch/prefetch cache organization,’ in Pro-
ceedings of the 8th annual symposium on Computer Architecture, ser. ISCA
’81, May 1981, pp. 81–87.

[24] K. I. Farkas and N. P. Jouppi, ‘Complexity/performance tradeoffs with non-
blocking loads,’ ACM SIGARCH Computer Architecture News, vol. 22, no. 2,
pp. 211–222, Apr. 1994.

[25] S. Li, K. Chen, J. B. Brockman and N. P. Jouppi, ‘Performance Impacts of
Non-blocking Caches in Out-of-order Processors,’ en, HP Labs Tech, Tech-
nical paper HPL-2011-65, 2011.

[26] A. Agarwal, K. Roy and T. Vijaykumar, ‘Exploring high bandwidth pipelined
cache architecture for scaled technology,’ in Automation and Test in Europe
Conference and Exhibition 2003 Design, Mar. 2003, pp. 778–783.

[27] D. Nicolaescu, B. Salamat, A. Veidenbaum and M. Valero, ‘Fast Speculative
Address Generation and Way Caching for Reducing L1 Data Cache Energy,’
in 2006 International Conference on Computer Design, ISSN: 1063-6404,
Oct. 2006, pp. 101–107. DOI: 10.1109/ICCD.2006.4380801.

[28] G. S. Sohi and M. Franklin, ‘High-bandwidth data memory systems for su-
perscalar processors,’ in Proceedings of the fourth international conference
on Architectural support for programming languages and operating systems,
ser. ASPLOS IV, Apr. 1991, pp. 53–62.

[29] S. Mittal, ‘A Survey of Recent Prefetching Techniques for Processor Caches,’
ACM Computing Surveys, vol. 49, no. 2, 35:1–35:35, Aug. 2016.

[30] C. Celio, D. Patterson and K. Asanovic, ‘The Berkeley Out-of-Order Machine
(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V
Processor,’ en, Electrical Engineering and Computer Sciences University of
California at Berkeley, Technical report UCB/EECS-2015-167, Jun. 2015.

[31] C. Celio, P.-F. Chiu, K. Asanović, B. Nikolić and D. Patterson, ‘BROOM: An
Open-Source Out-of-Order Processor With Resilient Low-Voltage Operation
in 28-nm CMOS,’ IEEE Micro, vol. 39, no. 2, pp. 52–60, Mar. 2019.

[32] ‘SiFive Tilelink Specification version 1.8.1,’ SiFive Inc, Technical report,
Jan. 2020. [Online]. Available: https://starfivetech.com/uploads/
tilelink_spec_1.8.1.pdf.

https://doi.org/10.1109/ICCD.2006.4380801
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf

62 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

[33] D. Biancolin, S. Karandikar, D. Kim, J. Koenig, A. Waterman, J. Bachrach
and K. Asanovic, ‘FASED: FPGA-Accelerated Simulation and Evaluation of
DRAM,’ in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Feb. 2019, pp. 330–339.

[34] A. Agarwal, R. Simoni, J. Hennessy and M. Horowitz, ‘An evaluation of dir-
ectory schemes for cache coherence,’ ACM SIGARCH Computer Architecture
News, vol. 16, no. 2, pp. 280–298, May 1988.

[35] B. Gottschall, M. Jahre and E. Lieven, ‘TEA: Time-Proportional Event Ana-
lysis,’ in To appear in the Proceedings of the International Symposium on
Computer Architecture ISCA.

[36] Z. Zhang, Z. Zhu and X. Zhang, ‘A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality,’ in Proceed-
ings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000, Dec. 2000, pp. 32–41.

Chapter 9

Appendix

9.1 Memory benchmarks

Example of the main loops in the benchmarks used to test load and store band-
width to the CPU

start:
li a5, mem_region_base
start_iteration:

ld a4, 0(a5)
ld a4, 8(a5)
ld a4, 16(a5)
ld a4, 24(a5)
ld a4, 32(a5)
ld a4, 40(a5)
ld a4, 48(a5)
ld a4, 56(a5)
addi a5, a5, 64
bne a5, a3, start_iteration // Run until entire memory region
has been loaded from,→

addi a2, 1
bne a2, N_Iterations, start

Listing 1: Assembly code illustrating the streaming load microbenchmark used

63

64 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

start:
li a5, mem_region_base
start_iteration:

ld a4, 0(a5)
ld a4, 64(a5)
ld a4, 128(a5)
ld a4, 192(a5)
ld a4, 256(a5)
ld a4, 320(a5)
ld a4, 384(a5)
ld a4, 448(a5)
addi a5, a5, 512
bne a5, a3, start_iteration // Run until entire memory region
has been loaded from,→

addi a2, 1
bne a2, N_Iterations, start

Listing 2: Assembly code illustrating the strided load microbenchmark used

start:
li a5, mem_region_base
start_iteration:

sd a4, 0(a5)
sd a4, 8(a5)
sd a4, 16(a5)
sd a4, 24(a5)
sd a4, 32(a5)
sd a4, 40(a5)
sd a4, 48(a5)
sd a4, 56(a5)
addi a5, a5, 64
bne a5, a3, start_iteration // Run until entire memory region
has been loaded from,→

addi a2, 1
bne a2, N_Iterations, start

Listing 3: Assembly code illustrating the streaming store microbenchmark used

Chapter : Appendix 65

start:
li a5, mem_region_base
start_iteration:

sd a4, 0(a5)
sd a4, 64(a5)
sd a4, 128(a5)
sd a4, 192(a5)
sd a4, 256(a5)
sd a4, 320(a5)
sd a4, 384(a5)
sd a4, 448(a5)
addi a5, a5, 512
bne a5, a3, start_iteration // Run until entire memory region
has been loaded from,→

addi a2, 1
bne a2, N_Iterations, start

Listing 4: Assembly code illustrating the strided store microbenchmark used

66 Erling Feet Nesset: Improving the L1 cache bandwidth of the BOOM

start:
li a5, mem_region1_base
li a6, mem_region2_base
start_iteration:

ld a4, 0(a5)
sd a4, 0(a6)
ld a4, 8(a5)
sd a4, 8(a6)
ld a4, 16(a5)
sd a4, 16(a6)
ld a4, 24(a5)
sd a4, 24(a6)
ld a4, 32(a5)
sd a4, 32(a6)
ld a4, 40(a5)
sd a4, 40(a6)
ld a4, 48(a5)
sd a4, 48(a6)
ld a4, 56(a5)
sd a4, 56(a6)
addi a5, a5, 64
bne a5, a3, start_iteration // Run until entire memory region
has been loaded from,→

addi a2, 1
bne a2, N_Iterations, start

Listing 5: Assembly code illustrating the streaming loadstore microbenchmark
used

	Problem Description
	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Interpretation of Problem Description
	Contributions and Outline
	Outline

	Background
	Out-of-order processing units
	Out-of-order execution
	Components of an Out-of-order execution processor
	Balance in out-of-order cores
	Memory level parallelism

	Caches
	Introduction to caches
	Cache organisation
	Write handling
	Non blocking caches
	Other cache optimisations

	Berkeley out-of-order Machine
	Overview
	Load store unit
	BOOM L1 Data Cache
	Hit handling
	Miss handling
	Writeback handling
	L2 Cache and DRAM

	Tilelink
	Tilelink Cached
	Messages
	Message components
	Transaction ordering
	Tilelink deadlock in the BOOM

	Experimental setup
	Bandwidth analysis
	Measuring Memory Bandwidth
	Identifying bandwidth bottleneck

	Optimisations and evaluation
	Writeback arbitration
	Reducing the writeback bottleneck
	Pipelined writeback unit
	Effect on latency
	Bandwidth analysis of writeback pipelining

	Increasing Tilelink width
	Resource consumption
	LBM performance
	Other optimisations

	Conclusion and Further work
	Conclusion
	Future work
	Data cache and Miss Handling Architecture
	Write bandwidth

	Bibliography
	Appendix
	Memory benchmarks

