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Abstract

Passive credit card customers, or dormant accounts, are a great problem for banks. Customers who

open credit card accounts and either never use them or stop using them are costly, as then, the

banks do not earn from interests and must cover the expenses of keeping the accounts open. This

thesis’s main objective is to build models to predict if passive customers will stay passive or become

active within a given number of months. Thus, the problem at hand is a binary classification task

where the response is either ”passive” or ”active”. The models were constructed and optimized

based on an imbalanced data set, which consisted of historical data of the customers’ credit card use,

provided by Sparebank 1 Kreditt AS. In addition to evaluating the models’ predictive performance,

the impact of unique features on the response was also considered to gain insight into which type

of customers are more likely to become active.

Logistic regression and adaptive boosting (AdaBoost) were the two learning methods chosen to build

the classification models used in this thesis. Logistic regression was chosen to have a benchmark

result, in addition to being a well-performing and easily interpretable method. AdaBoost was chosen

because it is a well-established boosting technique and has been shown to produce good results in

similar studies. Logistic regression was applied to predict one, three, six and twelve months ahead

in time, while AdaBoost was used to predict one and twelve months ahead. Hyperparameters of

AdaBoost were tuned to improve the models’ performance. An initial screening experiment was done

with design of experiments, and further tuning was done through response surface methodology.

Balanced accuracy was the primary metric used to evaluate the models, but sensitivity was also used

to assess the models’ ability to correctly classify active customers. After optimizing the models,

variable importance was explored based on relative influence and Shapley values.

The logistic regression model used to predict one month ahead obtained a BACC score of 0.6181

with cutoff = 0.5, which was improved to 0.6486 after optimizing the cutoff value. For the logistic

model which predicted twelve months ahead, the BACC score increased from 0.5717 to 0.6362 with

optimal cutoff value. With AdaBoost, the BACC score of the one month ahead model increased

from 0.6018 to 0.6859 after tuning the hyperparameters, and the twelve months ahead obtained

a BACC score of 0.6779 with tuned hyperparameters versus 0.5102 with default values. Thus,

optimized cutoff and hyperparameter values improved the overall performance of all models, in

addition to increasing their sensitivity value, i.e., the ability to classify active customers correctly.
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Sammendrag

Passive kredittkortkunder er et stort problem for kredittbanker. Kunder som åpner kredittkortkon-

toer og enten aldri bruker kredittkortet, eller stopper å bruke det, er kostbare. I slike situasjoner

tjener ikke bankene p̊a kunden fra renter og m̊a i tillegg dekke utgifter for å holde kontoen åpen,

til tross for at den ikke brukes. Målet med denne oppgaven er å bygge modeller for å predikere om

passive kunder kommer til å forbli passive eller g̊a over til å bli aktive innen ett gitt antall måneder.

Dermed er dette et binært klassifiseringsproblem hvor responsen er enten ”passiv” eller ”aktiv”.

Modellene ble bygget og optimalisert basert p̊a et ubalansert datasett, som besto av historisk data

av kundenes tidligere kredittkortbruk, levert av Sparebank 1 Kreditt AS. I tillegg til å evaluere hvor

godt modellene predikerer, vil ogs̊a de forskjellige variablenes p̊avirkning p̊a responsen bli vurdert

for å f̊a bedre innsikt i hvilken type kunder som har størst sannsynlighet til å bli aktive.

Logistisk regresjon og adaptive boosting (AdaBoost) var de to læringsmetodene valgt til å bygge

klassifiseringsmodellene i denne oppgaven. Logistisk regresjon ble hovedsakelig valgt for å ha et

referanseresultat, i tillegg til at det er en metode som generelt presterer bra og er lett å tolke.

AdaBoost ble valgt p̊a bakgrunn av at det er en velkjent boosting teknikk som har blitt vist

å gi gode resultater i lignende studier. Logistisk regresjon ble anvendt for å predikere en, tre,

seks og tolv m̊aneder frem i tid, mens AdaBoost ble brukt for å predikere en og tolv m̊aneder

frem. Hyperparametere til AdaBoost ble optimert for å forbedre modellenes ytelse. Et innledende

screeningseksperiment ble gjort med forsøksplanlegging, og ytterligere optimering ble gjort ved hjelp

av responsoverflatemetodikk. For å evaluere modellene var det hovedsakelig balansert nøyaktighet

(BACC) som ble brukt, men sensitivitet ble ogs̊a brukt for å vurdere hvor godt modellene klarte

å klassifisere kundene som ble aktive. Etter optimalisering av modellene ble variablenes betydning

utforsket basert p̊a relativ innflytelse og Shapley verdier.

Den logistiske regresjonsmodellen som ble brukt til å predikere en m̊aned frem i tid oppn̊adde

en BACC-score p̊a 0.6181 med cutoff = 0.5, som ble forbedret til 0.6486 etter optimalisering av

cutoff-verdien. For den logistiske modellen som predikerte tolv m̊aneder frem, økte BACC-score fra

0.5717 til 0.6362 med optimal cutoffverdi. Med AdaBoost økte BACC-verdien for modellen som

predikerte én m̊aned frem fra 0.6018 til 0.6859 etter optimering av hyperparametrene, og modellen

for tolv måneder frem oppn̊adde en BACC-verdi p̊a 0.6779 med optimaliserte hyperparametre mot

0.5102 med standardverdier. Dermed, ble den generelle ytelsen til alle modellene forbedret med

v



optimaliserte cutoff- og hyperparameterverdier, i tillegg til å øke deres sensitivitetsverdi, dvs. evnen

til å klassifisere aktive kunder korrekt.
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Chapter 1

Introduction

Credit cards are for most adults nowadays a staple payment solution. According to Pokora (2023),

84% of U.S. adults had at least one credit card in 2021. An American adult has on average three

different credit card accounts. In fact, almost 50% of American adults opened one or more new

credit card accounts in 2022. The Federal Reserve Bank of San Francisco started a yearly study

in 2016 to map the population’s financial habits. The percentage of payments made using a credit

card reached its highest level in 2021 with a total of 28%. The study also found that there is a clear

correlation between both household income and usage of credit cards, as well as educational degree

and credit card use. The study reports that among families with an income less than 25000 USD,

only 57% have a credit card, while 98% of the families with a yearly income greater than 100000

USD have a credit card. Regarding educational level, only 52% of those with less than a high school

degree have a credit card, on the other hand, 96% of those with at least a bachelor’s degree have a

credit card. A more recent survey done by Forbes Advisor in February 2023 found that debit cards,

either physical or virtual, are the most common payment method with 54% among consumers, and

credit cards, physical or virtual, come second with 36% of consumers.

There is no doubt that credit cards are a widely used payment method. Over the past decades the

popularity of credit cards has increased. These changes in financial habits have also led to changes

in what the issuers offer the consumers. When most of the population already own a credit card,

the banks needed new methods to attract new customers, as well as retain a good relationship with

their existing ones. Some of those changes are sign-up bonuses and reward programs, (Tsosie 2019).

However, with the rising popularity of such bonuses and rewards, a new problem arose; credit card

churning. Credit card churning is when a customer opens a new credit card account solely to benefit

from the sign-in bonuses, make minimum payments with the card to achieve the benefits, and close

the account before the yearly fees are charged to the card.

According to numbers from the central bank of Norway, the use of credit cards has increased also in

Norway the last decade (Finanstilsynet 2022). In 2019, Gjeldsregisteret was introduced which gave
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an overview of unsecured loans. This made it possible for both consumers and financial institutions

to see the amount of credit card debt and other consumer loans. Between 2019 and 2021 the total

volume of credit decreased 28.6%. This decrease may be a result of several events. Gjeldsregisteret

gave banks information about the customers’ credit card loans which earlier were unknown if not

specified by the customer itself. In addition, the credit limit is now counted as loan in the estimation

of mortgage. Thus, some people discarded unnecessary credit cards and reduced their credit limit to

be able to purchase real estate. The main reason, however, is most likely the coronavirus pandemic.

Uncertainty due to the pandemic lead to reduced consumption. Earlier, the most common sector

to pay with credit cards had been for abroad travels, but now, that was no longer possible.

Annual fees on credit cards are not common in Norway. As a result, the problem of credit card

churning is not as relevant as in the U.S. However, the lack of fees induces another problem; dormant

accounts. These are credit card accounts opened by the customer, and then either never activated

the card, or the customer used it for a period then left the account open but inactive for a longer

period. An owner of a dormant account is called a passive customer and is costly for the banks as

the account is kept open even though it is inactive. Even though inactive accounts are costly for

the banks, the possible profit of converting them into active accounts is great. Nie et al. (2011)

found that retaining an existing customer can save banks up to 5 times the cost of making a sale

to a new customer. Consequently, it has become more common for banks to invest more in their

existing customers to keep long-lasting relations and avoid attrition.

Banks possess substantial amounts of data about their customers and the customers’ consumption.

The combination of substantial data and modern technology give great possibilities to learn more

about the customers. Data mining, which is the process of analyzing large data sets to identify

patterns and relationships, has become more common to solve many business problems. The process

involves several steps where the final goal is to transform raw data into useful information. In

addition to having large quantities of data, bank data is also very seldom faulty, which is favorable

when the objective is to learn from the data and build appropriate models. In real-world business

problems, the goal is not only to make good predictions, but model interpretability is also necessary

to make well-reasoned decisions. Thus, as the application of machine learning models has become

more common, so has the use of explainable AI (Artificial Intelligence), which are tools to help

interpret and understand predictions made by machine learning models.

By analyzing data of dormant account owners and identifying which customers are more likely to

become active, there is an immense potential economic gain for banks. Sparebank 1 Kreditt AS has

collected data of some of their customers who at one point in time have been passive, in addition

to longitudinal data of the relevant customers’ earlier payments with the credit card. The objective

of this thesis is to exploit and build models based on these data to make predictions of unfamiliar

customers if they are likely to become active or not. Before being able to predict new observa-

tions, the data is pre-processed, relationships and correlation are analyzed, and hyperparameters

optimized. Four different cases are considered; prediction of one, three, six and twelve months

ahead in time. The predictive performance of two different models will be examined and compared.

Relevant hyperparameters are chosen and tuned to optimize the models and increase the predictive
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performance. In addition to predicting and classifying customers into active and passive, variable

importance and interpretation are evaluated. This is essential to enable Sparebank 1 to learn more

about the customers and to find the common factors for those who become active.

1.1 Related Research

As there is great potential earning in identifying churners, several papers have been written where

the objective is to study and predict credit card churn. Miao and Wang (2022) investigated the

predictive performance of three well-known methods on credit card customer churn. The data

set used to train and evaluate the models consisted of 21 explanatory variables and over 10000

observations. The paper explored random forests, linear regression, and K-nearest neighbor (KNN),

and performed grid search to tune hyperparameters. Evaluation of the models was done based on

AUC and recall ratio with 5-fold cross validation. The results showed that random forests performed

best on both metrics, KNN obtained the second highest score of recall ratio, while linear regression

had the second highest score of AUC. Furthermore, random forests was used to study the feature

importance. This showed that the total transaction amount, and the count of transactions during

the last twelve months, in addition to the total revolving balance on the credit card were the most

influential features.

In AL-Najjar et al. (2022), feature-selection methods were used together with five different machine

learning methods with the aim of predicting credit card customer churn. The five methods were

Bayesian network, C5 tree, chi-square automatic interaction detection (CHAID) tree, classification

and regression (CR) tree, and neural network. The C5 tree is a specific algorithm for implementation

of a decision tree which uses entropy as splitting criteria and a post pruning technique by Binomial

Confidence Limit, unlike the CART algorithm which uses the Gini index as splitting criteria and pre

pruning by cost complexity, (Patil et al. 2012). All methods were trained, validated and tested based

on three different cases; all explanatory variables, selected variables based on two-step clustering

and KNN, and selected variables based on a feature-selection method. Accuracy, precision, recall,

false omission rate (FOR) and F1-score were the metrics used to evaluate the models. All five

models on the three different cases performed well with accuracy greater than 0.9. However, the

combination of variable clustering with KNN and C5-tree outperformed the other methods. Total

transaction count, total revolving balance and change in transaction count were found to be the

three most important variables in the best performing model. Reducing the feature dimension was

shown to improve the performance of the models, specifically clustering of variables.

Class imbalance in the response of a data set is common in several real-world problems, including

customer churning. Geiler et al. (2022) investigated seven different methods to handle imbalanced

data sets together with eight supervised machine learning methods; näıve Bayesian classifier, logistic

regression, KNN, support vector machine (SVM) with and without kernel, decision trees, and two

ensemble methods; random forests and extreme gradient boosting (XGBoost). Evaluation of both

the rebalancing methods and learning methods are done based on AUC with 5-fold cross validation.
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The results show that a model combining logistic regression, XGBoost and random forests performs

best among the models. Comparing the different models applied to seven distinct types of balanced

data sets in addition to no balancing, the combined model of logistic regression, random forests and

XGBoost obtains highest AUC score in 6 out of 8 cases. The highest value in AUC is obtained by the

combined model with a balancing method called Tomek Links applied to the data set. Tomek Links

is an undersampling method which removes observations where the Euclidean distance between the

majority and minority class is small, (Zeng et al. 2016).

Vafeiadis et al. (2015) did a study on five widely used machine learning methods applied to a

customer churning prediction problem from the telecommunications industry. The predictive per-

formance of multi-layer artificial neural networks, decision trees, SVM, näıve Bayes, and logistic

regression were tested, as well as a boosting version of the three former methods. Two different

SVM models were used, one with polynomial kernel and the other with Gaussian Radial Basis

kernel function. To tune the hyperparameters Monte Carlo simulations were performed with a

wide range of configurations. In the evaluation of the classifiers, four different metrics calculated

based on the confusion matrix were used; precision, recall, accuracy and F -measure. Boosting of

each method was done using the AdaBoost.M1 algorithm, i.e., the original AdaBoost algorithm for

classification. The results show significant improvement in all methods with boosting compared

to without. Specifically, the F -measure increased more than 15% for the two SVM models when

boosting was applied. The best performing classifier was boosted SVM with the polynomial kernel.

1.2 Outline

In this thesis, the predictive performance of logistic regression and AdaBoost are investigated

based on the problem statement. Logistic regression is chosen as the baseline method because of its

simplicity in addition to in general performing quite well on several types of problems. Ensemble

methods like random forests and XGBoost are often investigated in studies regarding customer

churn. The results from Vafeiadis et al. (2015) showed impressive performance of AdaBoost, which

is a different ensemble method. There AdaBoost was used with three different weak learners, where

SVM produced the best results. However, Kim et al. (2013) found that in cases with moderate class

imbalance, SVM generally performs poorer than other methods. Therefore, the second method is

AdaBoost chosen with decision trees as the weak learners.

This thesis’s outline is as follows. Chapter 2 describes the theoretical background for the models,

in addition to performance metrics, optimization of hyperparameters and methods to calculate

variable importance. In Chapter 3, the data set is described together with visualizations of selected

features, and the pre-processing of the data. The analysis and results are presented in Chapter 4.

Discussion of the results and concluding remarks are given in Chapter 5.
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Chapter 2

Theoretical Background

This chapter delves into the theoretical foundations of the methods used in this thesis. Generalized

linear models are first described, with binary logistic regression as a special case. Furthermore,

adaptive boosting is introduced, along with hyperparameter tuning through response surface meth-

odology. Also, this chapter describes the various methods and metrics used to assess and evaluate

the models. Sections 2.1 and 2.2.1 are based on corresponding sections in Strømseng (2022).

2.1 Generalized Linear Model

Generalized linear models (GLMs) are an extension of ordinary linear regression that relate the

linear model to the response variables using a link function. They consist of three key components,

the first being the random component represented by the probability distribution of the response

variable (y1, . . . , ym), where m is the number of observations. The response variable is assumed to

follow a distribution belonging to the exponential family, which can be expressed in the following

form

f(y|θ, ϕ;w) = exp

(
yθ − b(θ)

ϕ
w + c(y, ϕ, w)

)
,

where θ is the canonical parameter, ϕ is a dispersion parameter and w is a known value. The first

and second derivative of the function b(θ) must exist, and f(y|θ, ϕ;w) must be such that it can be

normalized, (Fahrmeir et al. 2022).

The second component specifies the linear combination of the explanatory variables in the model.

This is called the systematic component,
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ηi = xT
i β =

p∑
j=1

βjxij , i = 1, . . . , n,

where, β = (β1, β2, . . . , βp)
T is the vector of unknown regression parameters, p is the number of

explanatory variables, and xi is a p × 1 vector containing the values of the explanatory variables

for yi.

The last and third component is the link function, which specifies the relationship between the

expected value of the response and the linear combination of the explanatory variables, ηi = g(µi),

(Stanberry 2013).

2.1.1 Binary Logistic Regression

Logistic regression is a type of GLM that is well-suited for problems where the response variable

is binary or represents a probability. When the response variable is binary, commonly represented

as ”Yes”/”No” or encoded as 1/0, binary logistic regression is employed. In this case, a decision

boundary, or cutoff value, is used to determine whether an instance of the response variable yi
should be classified as 0 or 1. A popular choice for the cutoff value is typically 0.5, which means

that if the predicted probability of belonging to category 1 is greater than or equal to 0.5, it is

classified as 1, and 0 if the probability is less than 0.5. However, in certain situations, such as when

the distribution of the response variable is skewed, it may be advantageous to experiment with

different cutoff values.

In binary logistic regression, it is assumed that the distribution of the response variable follows a

binomial distribution with the number of independent trials, denoted by n, equal to 1 ,

yi ∼ Bin(ni = 1, pi).

Note that this is the same as a Bernoulli distribution with parameter pi. The expected value of the

response is by definition

µi = E(yi) = pi,

where,

pi = P(yi = 1|xi)

= [1 + exp(−xT
i β)]

−1.
(2.1)

The systematic component defines that the explanatory variables xi are linear in the parameters

β, ηi = xT
i β, (Harrell 2015). From Equation 2.1 the odds of yi = 1 occurring is obtained,
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pi
1− pi

=
P(yi = 1|xi)

P (yi = 0|xi)
= exp (β0) exp (β1xi1) · . . . · exp (βpxip).

The logit link function is the natural logarithm of the odds, and by exponentiating both sides,

an expression for the odds can be obtained, (Harrell 2015). Consequently, the odds ratio can be

expressed as follows,

Odds{yi = 1|xi1, . . . , xij + 1, . . . , xip}
Odds{yi = 1|xi1, xi2, . . . , xip}

=
exp(β0 + β1xi1 + · · ·+ βj(xij + 1) + . . . βpxip)

exp(β0 + β1xi1 + · · ·+ βpxip)

=
exp(β0) · exp(β1xi1) . . . exp(βj(xij + 1) . . . exp(βpxip)

exp(β0) · exp(β1xi1) . . . exp(βpxip)
.

(2.2)

From Equation 2.2, a one unit increase in xij with all other held constant, results in an increase

in the odds that yi = 1 by a factor of exp(βj). Or perhaps a more intuitive interpretation; if xij

increases by one unit, the log-odds will increase by a factor of βj .

2.1.2 Maximum Likelihood Estimation

To derive estimates for the parameters β = (β1, . . . , βp) from the observed data y1, . . . , ym, max-

imum likelihood estimation (MLE) is used. It is assumed that the response variable yi follows a

Binomial(1, p) distribution with a probability density function of f(yi; pi) = pyi

i [1 − pi]
1−yi . The

likelihood function is given by,

L(β) =

m∏
i=1

f(yi; pi) =

m∏
i=1

pyi

i [1− pi]
1−yi .

Further, the log likelihood function is

l(β) =

m∑
i=1

log (Li(β) =

m∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)] . (2.3)

The MLE of β is the value that maximizes the likelihood function, but in practice, it is often easier

to work with the log-likelihood function. Since the logarithmic function is monotonic, the value of

β that maximizes the log-likelihood function also maximizes the likelihood function. Substituting

Equation 2.1 into Equation 2.3 results in,
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l(β) =

m∑
i=1

[
yi · log

(
[1 + exp(−xT

i β]
−1
)
+ (1− yi) · log

(
1− [1 + exp(−xT

i β)]
−1
)]

=

m∑
i=1

[
yi · xT

i β − log
(
exp(xT

i β) + 1
)]

.

(2.4)

To obtain the estimate for β, the first derivative of Equation 2.3 with respect to the parameters β

is computed. It is then set equal to zero and solved for β,

s(β) =
∂l(β)

∂β
=

m∑
i=1

xi(yi − pi) = 0. (2.5)

The function s(β) is called the score function. To solve Equation 2.5 and obtain an estimate for β, a

numerical optimization method must be employed. One widely used method is the Newton-Raphson

method, which iteratively optimizes the log-likelihood function,

β̂
(k+1)

= β̂
(k)

+
[
H
(
β̂
(k)
)]−1

s
(
β̂
(k)
)

(2.6)

until the difference between β̂
(k)

and β̂
(k+1)

is insignificant. Here H(β) is the observed Fisher

information, given by

H(β) = −∂s(β)

∂βT
.

Another optimization method is the Fisher scoring algorithm. This method replaces the observed

Fisher information with the expected Fisher information,

F(β) = E [H(β)] .

The Fisher information matrix is required to be invertible for all β in order for the Fisher scoring

algorithm to converge to the maximum likelihood solution. This requirement is met if the design

matrix X = (x1, . . .xm) has full rank. For the logit model, the expected Fisher information is equal

to the observed, F(β) = H(β). Thus, in this case, the Fisher scoring algorithm corresponds to the

Newton-Raphson method.

Iterative Re-weighted Least Squares (IRLS) is the method used in the glm function in R to solve

the optimization problem. For a GLM,
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H(β) = F(β) = xTW(β)x, (2.7)

where W(β) = diag
[
h(xT

1 β1)(1− h(xT
1 β1)), . . . , h(x

T
p βp)(1− h(xT

p βp))
]
. Insert this and the ex-

pression for the score function, Equation 2.5, in Equation 2.6 to yield,

xTW
(
β̂
(k)
)
xβ̂

(k+1)
= xTW

(
β̂
(k)
)
·
[
xβ̂

(k)
+W

(
β̂
(k)
)
·
(
y − h

(
xT β̂

(k)
))]

, (2.8)

(Seeber 1993). Equation 2.8 solved with respect to β̂
(k+1)

results in updates which correspond

to the Fisher scoring algorithm. For an adequately large sample size, the maximum likelihood

estimator can be assumed to follow a normal distribution with β as the expected value and the

inverse of the expected Fisher information as the covariance matrix,

β̂ ∼ N
(
β, F−1(β)

)
. (2.9)

As a result, confidence bounds and hypothesis tests can be generated based on the normal distri-

bution.

2.1.3 Model Selection

Model selection is a critical process in statistical analysis, as it enables the selection of the most

suitable model for a given data set. The primary goal of model selection is to compare two or more

models and determine which one provides the best fit to the observed data. An ideal model should

be both accurate and interpretable. In some cases, a simpler model may be preferred over a more

complex one, even if this results in a slight loss of fit for the model. Additionally, simpler models

tend to have better generalization properties, meaning they can perform well on new, unseen data.

The challenge in model selection lies in balancing the trade-off between model complexity and model

fit, with the goal of identifying the model that best explains the data while still being interpretable.

For regression, if one candidate model includes a subset of the explanatory variables found in

another, the two models are considered nested. In such cases, an analysis of variance (ANOVA)

test can be used to determine if the additional variables have a significant impact on the model’s

fit. This is done by conducting a hypothesis test where the null hypothesis is that the parameters

of the variables left out in the simple model are equal to zero, while the alternative hypothesis is

that one or more of these parameters are different from zero.

The anova function in R provides various tests such as the F -test and the likelihood ratio test. The

latter is based on the ratio of the log-likelihoods of the two candidate models,
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LRT = −2 log

[
Ls(β̂)

Lc(β̂)

]
= −2

(
log
[
Ls(β̂)

]
− log

[
Lc(β̂)

])
,

where Ls and Lc are the likelihood of the simple and complex model, respectively. The LRT

statistic converges to a χ2 distribution with degrees of freedom equal to the difference in parameters

between the complex and simple model. If the p-value associated with the test statistic is less than

a predetermined significance level α, the null hypothesis is rejected, and the complex model is

favored. Conversely, if the p-value exceeds α, the extra variables do not have a significant impact

on the model’s performance, indicating that the simpler model is preferable.

Subset selection is another method of model selection that aims to identify a subset of explanatory

variables that have the greatest impact on the response. One common strategy for subset selection

is backward elimination, which begins with the full model using all p explanatory variables and

successively eliminates the variable that has the least effect on the model fit. This choice is based on

the variable that results in the largest reduction in the AIC, which stands for the Akaike information

criterion and is defined as

AIC = 2
[
k − l(β̂)

]
,

where k is the number of estimated parameters in the model and l(β̂) is the maximized value of

the model’s log likelihood function. When using AIC as model choice criteria, the best model is

the one with lowest AIC value. The complexity of the model is penalized with the term 2k, while

the goodness of fit is rewarded by the term −2l(β̂).

Another criterion that can be used is the Bayesian information criterion (BIC), which is defined as,

BIC = k ln(m)− 2l(β̂),

where m is the number of observations. As for the AIC, k is the number of estimated parameters in

the model and l(β̂) is the maximized value of the model’s log likelihood function. BIC uses the same

term as AIC to reward the model’s goodness of fit but penalizes by k ln(m) instead of 2k. Thus,

the preferred model is the one with lowest BIC value. The process of the backward elimination is

the same regardless of if AIC or BIC is the chosen criterion.

Backward elimination examines 1 + p(1 + p)/2 models, making it a more efficient model selection

method compared to other similar techniques, such as best subset selection, particularly when the

number of explanatory variables p is large. However, it is a greedy method and does not guarantee

to produce the optimal model using a subset of all p explanatory variables, (James et al. 2021).
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2.2 Statistical Learning

Statistical learning is a branch of applied mathematics that concerns the development and applic-

ation of statistical methods to solve problems related to data analysis and prediction. One of the

primary objectives is to understand the underlying relationship between input variables and output

variables, which can be used to make predictions or classify new observations.

Supervised learning is a specific subfield of statistical learning that deals with predicting an outcome

variable based on one or more input variables. The outcome variable is often called a response,

denoted y, and is connected to the explanatory variables x = (x1, . . . ,xp). This relationship can

be expressed by,

y = f(x) + ε,

where the systematic information that x provides about y is represented by f , and ε is a random

error term. Statistical learning can be regarded as the set of techniques to estimate f . There are

two types of supervised learning problems: regression and classification. In regression problems,

the response is a continuous variable, while in classification problems, the response is a categorical

variable. When using a supervised learner, the data is split into a training set and a test set, where

the training set is used to fit the model and the test set is used to evaluate the model’s performance,

(James et al. 2021). The main goal of supervised learning is to minimize the difference between the

predicted values and the actual values of the response variable in the test set.

2.2.1 Performance Metrics for Classification

There are two primary considerations when evaluating a model: interpretability and performance.

In the case of classification problems, the confusion matrix, shown in Figure 2.1, is often an essential

factor in evaluating performance. This matrix summarizes the model’s classification performance

based on test data. The confusion matrix’s elements show the counts of positive classified cases

that were correctly identified (true positives or TP) and those that were negative (false positives or

FP), as well as the count of negative classified cases that were correctly identified (true negatives or

TN) and those that were incorrectly classified (false negatives or FN). A false positive is also called

a type-I error, and a false negative is a type-II error. The accuracy (ACC) is one of the possible

metrics that can be obtained from the confusion matrix, and it is calculated by,

ACC =
TP + TN

TP + FP + TN + FN
.

It has been established that evaluating classification performance using accuracy on an imbalanced

data set presents certain issues. For instance, if the response of 80% of the observations belong

to the negative class, then classifying all observations as negative will give an accuracy of 80%.
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However, none of the observations that belong to the positive class has then been correctly classified.

Therefore, it is advisable to consider alternative metrics when working with data where the response

classes are imbalanced, (Luque et al. 2019).
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Figure 2.1: Illustration of a general confusion matrix for classification.

The ability of a model to accurately classify the positive class is measured by sensitivity, also known

as the true positive rate or recall. Sensitivity can be expressed as

Sensitivity =
TP

TP + FN
.

A value of sensitivity close to 1 indicates that the model performs well at classifying the positive

class. Specificity is a model’s ability to classify the negative class. Specificity is given by

Specificity =
TN

TN + FP
,

and is also called the true negative rate. Like sensitivity, if the value of specificity is close to 1,

then most of the negative instances are correctly classified. Sensitivity and specificity are useful for

establishing the threshold for classifying a response as positive or negative. In situations where the

data is imbalanced, such as in medical diagnosis, and fraud detection, the minority class is often the

one of greater interest. Then, it is important to have a classifier with a strong ability to recognize

and correctly classify the minority class, implying a high sensitivity while maintaining a reasonable

specificity value.

12



Precision evaluates the number of the instances classified as positive, were actually positive,

Precision =
TP

TP + FP
.

The positive predictive value is another term for precision. Conversely, the negative predictive value

estimates the proportion of negative instances that were accurately classified as negative,

Negative predictive value =
TN

TN + FN
.

Balanced accuracy is a metric used to evaluate classification models in situations where the distri-

bution of the response classes in the data set is imbalanced. It provides an overall assessment of

the model’s performance as it measures the average of sensitivity and specificity,

Balanced accuracy =
Sensitivity + Specificity

2
=

1

2

[
TP

TP + FN
+

TN

TN + FP

]
.

By considering both sensitivity and specificity, balanced accuracy addresses the potential bias to-

wards the majority class that can occur with traditional accuracy metrics. In this way, balanced

accuracy gives a more reasonable estimation of the model’s ability to classify both positive and

negative cases. The balanced accuracy score ranges between 0 and 1, with 1 indicating perfect

classification performance.

Another commonly used metric for evaluating model performance is the Receiver Operating Charac-

teristic (ROC) curve. Consider a set of l observations to be classified as either positive or negative,

each with a corresponding predicted probability (p∗1, p
∗
2, . . . , p

∗
l ). A threshold value c ∈ (0, 1) is

applied to determine whether an observation is classified as positive or negative, depending on

whether the predicted probability is greater or less than c. To construct the ROC curve, the true

positive rate (sensitivity) and false positive rate, defined as (1− specificity), are computed for each

value of c, and plotted with the false positive rate on the x-axis and the true positive rate on the

y-axis, (Nam and D’Agostino 2002). Some examples of ROC curves are shown in Figure 2.2. A

diagonal line from (0, 0) to (1, 1) represents a model that performs no better than random guessing,

while a curve below this line indicates worse performance. The ROC curves in Figure 2.2 illustrate

different scenarios of predictive performance, ranging from somewhat better than random guessing

(pink curve) to perfect prediction (green curve) to a more realistic scenario of a well-performing

predictor (orange curve).

The Area Under the ROC Curve (AUC) is a metric used to assess the classification performance of

a model. A high AUC score close to 1 indicates a better model performance in correctly classifying

positive and negative examples. On the other hand, an AUC score closer to 0.5, represented by

the dashed diagonal line in Figure 2.2, suggests that the model has no discriminative ability. One

way to interpret AUC is that it represents the probability of a randomly selected positive instance
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being ranked higher than a randomly selected negative instance by the model’s classification output,

(Mandrekar 2010).
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Figure 2.2: Illustration of two different ROC curves, in addition to the case of random guessing

shown as a gray dashed line, and a perfect predictor shown as green. Obtained from Strømseng

(2022).

2.2.2 K-Fold Cross-Validation

When a statistical model’s performance is tested, it is beneficial to have a large test set to get a

good estimate. However, in most cases the access to data is limited and some techniques which use

the training data to estimate this quantity are helpful. k-fold cross-validation is one such approach.

It randomly splits the observations in the training set into k approximately equal parts, or folds.

The first fold is used as a validation set to estimate the performance metric, while the other k − 1

folds are used as a training set to fit the statistical model. This procedure is repeated k times,

with a different fold used as validation set each time. In the end, the k different measures of the

performance metric are averaged, and a final estimate of the model’s performance is obtained. In

practice, any k ≤ n can be used, where n is the number of observations. The case where k = n

is called leave-one-out cross-validation (LOOCV). This choice of k requires the model to be fitted

n times, which can be computationally expensive, (James et al. 2021). To ease the computational

cost, k = 5 and k = 10 are two popular choices. Figure 2.3 visualizes the 5-fold cross-validation.
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Figure 2.3: Illustration of 5-fold cross-validation.

2.3 Tree-Based Methods

Tree-based methods are supervised learning algorithms and can be applied to both regression and

classification problems. The predictor space is divided into smaller sub spaces based on a set of

splitting criteria. Several splits of the predictor space construct a tree like structure. This is called

a decision tree, a simple and interpretable method which is the base of several powerful machine

learning methods, (James et al. 2021).

2.3.1 Decision Trees

Decision trees are the foundation of tree-based methods and can solve both classification and regres-

sion problems. Regression trees predict a quantitative response, while classification trees predict a

qualitative response. Because of this, the process of building the two types is done a bit differently,

even though they are remarkably similar. The first step in the process of building a decision tree is

to separate the predictor space, i.e., the set of possible values for the predictors, into J distinct sub

spaces, or regions, R1, R2, . . . , Rj , which also must be non-overlapping. For a regression tree, these

regions are most often constructed by dividing the predictor space into high-dimensional rectangles,

where the objective is to find those that minimize the RSS. Let yi be the response of observation i

in the region Rj and ŷRj
be the mean response for the training instances within rectangle j, then

the RSS is given by
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J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2. (2.10)

The first split is the one that minimizes the RSS the most, then the splitting process continues

at the child nodes. RSS cannot be used as a criterion to make binary splits. Thus, classification

trees use other criteria that are more suited. For a classification tree, the predicted response of an

observation is decided by the most commonly occurring class of training instances in that region.

There are several alternatives to RSS, and one of them is the classification error rate which is the

fraction of training instances which is not in the most common class in the given region. The

classification error rate is given by

Em = 1−max
k

(p̂mk), (2.11)

where p̂mk is the portion of training instances in the m’th region that belong to class k. For tree-

growing, however, the classification error is not adequately sensitive. For this reason, the measures

Gini index and entropy are preferred. The Gini index is a measure across all K classes of the total

variance and is given by

Gm =

K∑
k=1

p̂mk(1− p̂mk). (2.12)

If the values of all p̂mk are close to either zero or one, then the value of Gini index will be small.

Thus, for a region, or leaf node, with most instances from the same class, the value is small.

Therefore, the Gini index is called a node purity measure, (James et al. 2021). The split with the

lowest Gini index is chosen as the first split, and the process is continued at the child nodes. In the

case of binary classification, with p being the proportion in the second class, the Gini index can be

expressed as 2p(1− p).

Entropy is an alternative measure to Gini index which is quite similar, as this also will have a small

value in the case where all p̂mk are close to zero or one. Entropy is defined by

Dm = −
K∑

k=1

p̂mk log(p̂mk). (2.13)

Like for the Gini index, if the m’th leaf node is pure, then the value of entropy is small. Thus,

the splits are done to minimize the entropy. Both entropy and Gini index are differentiable, and

therefore suited for numerical optimization, (Hastie et al. 2009).

To consider all possible ways to divide the predictor space is computationally unattainable. There-

fore, recursive binary splitting is applied. It starts at the top of the tree and divides the predictor
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space consecutively, a top-down approach. Recursive binary splitting is greedy as it at each step,

performs the split, which is considered best at that specific step, instead of making the split which

in the end will lead to an improved tree. The best split is the one which results in the greatest

decrease of the chosen criteria.

The first split is done by considering all predictors X1, . . . , Xp, and all cut point values s for each

predictor and selecting the predictor and cut point which yield the tree with lowest criteria value.

For the next step, the algorithm evaluates the potential splits for each of the new regions. The

splitting criteria for each potential split is calculated, and the split which leads to the lowest criteria

value is chosen. The process is repeated until some stopping criteria is met. The response of a test

instance can then be predicted by passing down its set of predictor values until a region Rj is

reached. For regression, the response of that instance is predicted to be the mean of all response

values in region Rj from the training instances. While for classification, it is predicted as the most

frequent class of training instances in region Rj , (James et al. 2021).

Even though decision trees are nice in terms of interpretability, there are some issues and limitations

related to them. Firstly, categorical predictors with many classes tend to be favored over those

with less by the criterion used to split the predictor space. Cases where the number of classes in

one predictor is large can lead to serious overfitting. Another issue is that they are unstable, a

consequence of their hierarchical structure. Slight changes in the data can result in different trees,

which is the reason why trees have high variance, (Hastie et al. 2009).

2.3.2 Ensemble Learning

Ensemble learning refers to a wide range of methods which combine the predictions of several

weak learners. A weak learner can be any machine learning method, where a model is built based

on input data. Let the function f represent the true relationship between the input and the

response. The goal of a learning method is to find a function h which is a good approximation to

f , (Dietterich et al. 2002). Each weak learner makes a prediction of a new observation using the

produced model, and the ensemble method combines the predictions of all weak learners to make

the final prediction, which is the output. It is an intuitive concept as humans consult others to

obtain different viewpoints to make well-rounded decisions. One model may be good at predicting

some observations, while have difficulties predicting others. Thus, by combining the predictions of

several models, the overall error will be reduced, (Sagi and Rokach 2018).

Dietterich et al. (2002) lists three problems with methods based on one single weak learner, which

can be partially solved by ensemble methods; the statistical problem, the computational problem,

and the representation problem. The former occurs if the number of observations in the training

data is too small for the space of weak learners under consideration to work well. Such a method

has high variance. If the method cannot guarantee to find the optimal weak learner in the space of

possible learners, the computational problem occurs. Lastly, if a good approximation to the true

unknown function f is not contained in the space of weak learners, the representation problem
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occurs. The method will then have high bias. Thus, ensemble methods have the potential of

reducing both the variance and bias, (Dietterich et al. 2002).

There are both dependent and independent ensemble methods. The latter is called bagging and is

when each weak learner is constructed independently from the rest, random forests is one example

of such methods. This makes it possible to implement the method in a parallel approach where

the weak learners can be trained at the same time. In the case of dependent methods, the output

of one weak learner affects how the next is produced, (Sagi and Rokach 2018). Boosting is a

dependent technique which starts by building a weak learner from the training data. The next

weak learner is then built to correct the errors of the previous. The procedure is repeated until

either all observations in the training data are predicted correctly, or the maximum number of weak

learners is reached.

2.3.3 Adaptive Boosting

Adaptive boosting (AdaBoost) is a dependent ensemble method which was proposed by Yoav Freund

and Robert Shapire in 1995, (Rojas et al. 2009). It was originally introduced for binary classification,

which will be the focus here, although generalizations of the algorithm have been made for multi

class and bounded real valued output. AdaBoost generates a strong learner from a weighted sum

of weak learners, which for xi is given by

F (xi) =

L∑
l=1

αlhl(xi), (2.14)

where the αl’s are the weights and the sign of F (xi) is the predicted class of xi. Let the input of the

AdaBoost algorithm be a training set of N observations (x1, y1), . . . , (xN , yN ). Each xi contains

feature values which belong to an instance space X, and yi is the corresponding label from a label

set Y = −1,+1. Let h1, . . . , hL be the set of weak learners, where the output of each weak learner

is a classification hj(xi) ∈ {−1,+1} for each i = 1, 2, . . . , N . After (m − 1) iterations, the current

strong learner is a linear combination of m− 1 weak learners,

F(m−1)(xi) = α1h1(xi) + · · ·+ αm−1hm−1(xi),

which is extended further in iteration m to

F(m)(xi) = F(m−1)(xi) + αmhm(xi),

where αm and hm need to be determined in an optimal way. At the first iteration, F(m−1)(xi) is

the zero function. The total cost of the strong learner is defined as the exponential loss
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E =

N∑
i=1

exp
(
−yi

[
F(m−1)(xi) + αmhm(xi)

])
,

which is rewritten as

E =

N∑
i=1

w
(m)
i exp (−yiαmhm(xi)) , (2.15)

where

w
(m)
i = exp

[
F(m−1)(xi)

]
(2.16)

for i = 1, 2, . . . , N . Here, w(m) is the vector of weights for all observations in the training set at

iteration m. At the first iteration all w
(m)
i ’s are equal to 1. The sum in Equation 2.15 can be

split into the total cost of correctly classified observations, and the total cost of wrongly classified

observations,

E =
∑

yi=hm(xi)

w
(m)
i exp(−αm) +

∑
yi ̸=hm(xi)

w
(m)
i exp(αm)

=

N∑
i=1

w
(m)
i exp(−αm) +

∑
yi ̸=hm(xi)

w
(m)
i (exp(αm)− exp(−αm)).

Then,
∑

yi ̸=hm(xi)
w

(m)
i is the only part of the right-hand side that depends on hm. Thus, assuming

αm > 0, the hm that minimizes E is the same that minimizes
∑

yi ̸=hm(xi)
w

(m)
i , which is the

weak learner with the lowest weighed error. For simplicity, we write Wc =
∑

yi=hm(xi)
w

(m)
i and

We =
∑

yi ̸=hm(xi)
w

(m)
i . The corresponding weight is found by differentiating E with respect to

αm,

dE

dαm
= −Wce

−αm +Wee
αm ,

where the total cost of correctly and wrongly classified observations was simplified to Wce
−αm and

Wee
αm respectively. Then, set dE/dαm = 0 and solve for αm to obtain

αm =
1

2
ln

(
Wc

We

)
.
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With W = (Wc+We) as the total sum of weights, which is assumed constant in each iteration, this

can be written as

αm =
1

2
ln

(
W −We

We

)
=

1

2
ln

(
1− εm
εm

)
,

where εm = We/W is the weighted error of the weak learner hm, (Rojas et al. 2009).

Instead of restricting the range of the weak learners to [−1, 1], R. E. Schapire and Singer (1998)

suggest a generalization where ht can have range all over R. This is an extension of AdaBoost to

handle real-valued output of weak learners, called confidence-rated predictions. Let ht(xi) be the

weak learner of a given instance xi. They interpret the sign of ht(xi) to be the predicted response

of instance xi, equal to −1 or +1. The magnitude |ht(xi)| is interpreted as the level of confidence

of the relevant prediction.

For a binary classification problem, a random classifier will have an error rate of 1/2. Thus, by

letting the error εt of a weak learner ht be written as εt = 1
2 − γt, then γt is a measure of to

which degree the predictions made by ht outperform those of a random classifier. Freund and R. E.

Schapire (1997) proved an upper bound of the training error ε for the final strong learner F . In

the case where all weak learners perform slightly better than a random classifier, then the training

error will decrease exponentially, (Freund, R. Schapire et al. 1999).

Overfitting is a recurrent challenge when training machine learning models. Although overfitting

can occur when applying AdaBoost, several experiments have found that this does not happen,

(R. E. Schapire 2013). Some proposal and theory in order to explain this can be found in Bartlett

et al. (1998).

Many machine learning problems can be converted into optimization problems. The methods can

be defined such that the objective is to minimize a loss function. This loss function should measure

the goodness of fit of the model on the observed data. Even though not intended to, AdaBoost

can also be seen as a procedure to minimize the exponential loss function in a greedy manner. The

exponential loss is given by

1

N

N∑
i=1

exp {−yiF (xi)} , (2.17)

where F (x) is defined in Equation 2.14. As stated earlier, the final prediction is determined by the

sign of F . By minimizing the exponential loss, selecting a function F which sign is probable to

correspond with the correct label of xi is favored. Thus, this procedure aligns with the objective

of reducing the number of misclassifications. By considering AdaBoost as a greedy procedure to

minimize the exponential loss, it can be regarded as a variation of functional gradient descent,

which has led to generalization of boosting to other learning methods, (R. E. Schapire 2013).
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2.4 Tuning of Hyperparameters

Machine learning algorithms have been applied in a wide range of application domains. They can

solve a variety of problems by recognizing relationships in, often substantial amounts of, data.

Problems of various kinds often require different algorithms. In general, machine learning methods

have two types of parameters; model parameters and hyperparameters. The former is automatically

estimated by the algorithm from the data, while hyperparameters are set manually prior to training

a model, as they define the structure of the model. Hyperparameter tuning is the process of finding

the optimal configuration of hyperparameters which results in building the best model, (Yang and

Shami 2020). The optimal configuration is specific for each case and depends on the type of problem

and data set at hand.

There are several techniques to perform optimization of hyperparameters without any deep under-

standing of the algorithm or its possible settings of hyperparameter values. Some of those techniques

define a search space for the hyperparameters, and then search for the hyperparameter configura-

tion which performs best, in that space. Such methods are called decision-theoretic, and grid search

is one of the most used methods among the techniques within that area. Grid search evaluates all

combinations of hyperparameters given to the configuration grid and can thus be regarded as a

brute-force method, (Yang and Shami 2020). Grid search is convenient in the sense that it is easy

to implement and can be parallelized. However, there are several disadvantages, where the main

one is connected to the methods lack of efficiency when there are many hyperparameters to tune.

As the number of hyperparameters increases, the number of points to evaluate in the configuration

space increase exponentially, which is called the curse of dimensionality, (Yang and Shami 2020).

Therefore, unless the number of hyperparameters to tune is small, such that the corresponding

configuration space also is small, grid search is highly inefficient.

Another decision-theoretic method is random search. Unlike grid search which evaluates all values

in the defined configuration space, random search samples a predetermined number of values from a

uniform density within the upper and lower bounds, i.e., in the same space. Random search can be

more effective than grid search in high dimensional spaces, specifically when the function of interest

has low effective dimensionality. A function of two variables f(x, y) is said to have low effective

dimensionality if it can be approximated by another function of only one variable, f(x, y) ≈ g(x).

Figure 2.4 shows how a grid of points project inefficiently onto the subspace of either parameter,

in terms of the coverage of the subspace. While even though the uniformly random points are

more uneven in the original configuration space, the coverage of the subspaces are much improved,

(Bergstra and Bengio 2012).

Although random search can be more efficient than grid search, the approach still has some disad-

vantages in that each point is evaluated independent of the previous, thus time and computational

effort can be wasted in less favorable regions. In addition, if the optimal configuration lies outside

the defined space, this point will not be found in that search, neither will the methods give any

indication that the search space should be moved to another region or in which direction that region

is. Therefore, the focus in this thesis will be to optimize hyperparameters in a more systematic
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manner through design of experiments and the method of steepest ascent.

Figure 2.4: Layout of grid search to the left and random search to the right, both with nine

configuration points to optimize a function with low effective dimensionality, f(x, y) = g(x)+h(y) ≈
g(x). Above each square layout, g(x) is shown in green, and to the left of each square layout, h(x)

is shown in yellow. The circles on the green curve visualize the distinct values of g(x) which are

evaluated by the nine trial points. Obtained from Bergstra and Bengio (2012).

2.4.1 Design of Experiments

Design of Experiments (DOE) is a systematic process of constructing, conducting, and analyzing

a series of experiments. An experiment is designed by selecting which variables and their range to

explore, and the number of times to run it. The primary goal of DOE is to optimize the response

variable by identifying the factors with greatest impact on the response. D. C. Montgomery (2017)

lists three basic principles of DOE; replication, randomization and blocking. Replication is essential

to estimate internal standard error. Experiments should ideally be done in a randomized order to

avoid the results being affected by external factors. Blocking is useful to deal with variation in

the experiment that is known but is not able to be controlled, (Lujan-Moreno et al. 2018). In

the case of hyperparameter tuning where all computations are done on the same machine and

software, randomization and blocking is generally not needed. One Factor At a Time (OFAT) is a

method which as the name indicates, varies one factor while keeping the rest constant, (Yuangyai

and Nembhard 2015), while factorial experiments vary the factors together and can thus detect

relationships between factors.
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2.4.2 Two Level Factorial Design

A two-level, or 2k, factorial design is an experimental design where each factor has two levels. The k

represents the number of factors in the design, and each factor has one low level and one high level,

commonly denoted as −1 and 1 respectively. Every combination of factors and their respective

levels are evaluated to discover both main effects and interaction effects. For each experiment, a

response is obtained, thus, for a design with n experiments, there are n responses, y1, y2, . . . , yn,

which are observed when conducting the experiments. In the case where the objective is to tune

hyperparameters, the hyperparameters are represented by the factors and the levels are the values

of the corresponding hyperparameter to be evaluated. The response is then an evaluation metric

which value is obtained by testing a trained model with hyperparameter values determined by the

design. A linear regression model is fitted with the factors as explanatory variables and lastly

analyzed to detect the factors with most impact on the response and the most beneficial value

combination of those.

Table 2.1: Standard form of a general design of a 23 factorial design with three factors A, B and

C.

Experiment No. A B C AB AC BC ABC Level code y

1 -1 -1 -1 1 1 1 -1 l y1
2 1 -1 -1 -1 -1 1 1 a y2
3 -1 1 -1 -1 1 -1 1 b y3
4 1 1 -1 1 -1 -1 -1 ab y4
5 -1 -1 1 1 -1 -1 1 c y5
6 1 -1 1 -1 1 -1 -1 ac y6
7 -1 1 1 -1 -1 1 -1 bc y7
8 1 1 1 1 1 1 1 abc y8

Suppose a design with k = 3 factors, that is a 23 factorial design. Let the three factors be denoted

as A, B and C, each with two levels. A full 23 factorial design has 8 different combinations and

consists therefore of 8 experiments. Table 2.1 shows the standard form of a 23 factorial design

with one replicate. A sign matrix determines the levels of the factors in each experiment, where

−1 represents a factor’s low level, and 1 represents the high level. The level code is denoted by

lowercase letters and illustrate which factors are at their high level, e.g. l is the level code where

all factors are at their low level, a is the level code with A at its high level while B and C are on

their low level, and ab represents A and B at their high level with C on its low level. From a 23

factorial design, there are a total of 7 effects that can be estimated with the use of the observed

responses y1, . . . y8; three main effects A B and C, three two-factor interaction effects AB, AC and

BC, and one three-factor interaction effect ABC. For a two-level design, the main effect of a factor

is defined as the expected average response when the relevant factor is at the high level, minus the

expected average response when the factor is at the low level. A two-factor interaction is defined

as half the main effect of one factor when the other is at the high level, minus half the main effect
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of the same factor when the other factor is at the low level.

The main effect of a single factor can be estimated by the difference of the average response when

the factor is at its high level, ȳh, and the average response when the factor is at its low level, ȳl.

E.g., in a 23 factorial design, the main effect of factor A is defined as

Â = ȳAh
− ȳAl

=
1

4
[(y2 + y4 + y6 + y8)− (y1 + y3 + y5 + y7)] .

An estimate of a two-factor interaction is computed by the difference between half the main effect

of one factor when the other factor is on the high level, and half the main effect of the former factor

when the other is at its low level. This is equivalent to summing the responses when the two factors

are at the same level, and subtract by the sum of the responses when the factors are at opposite

levels, and divide by half the number of observations. The estimated interaction between A and B

in a 23 factorial design is then given by,

ÂB =
1

4
[(y1 + y4 + y5 + y8)− (y2 + y3 + y6 + y7)] .

Finally, the three-factor interaction ABC is estimated by the average difference when the interaction

AB and C are at the same level, and when AB and C are at different levels,

ÂBC =
1

4
[(y2 + y3 + y5 + y8)− (y1 + y4 + y6 + y7)] .

In a factorial experiment, the response y can be expressed by a linear regression model. For a 23

factorial design this model is given by,

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3

+β23x2x3 + β123x1x2x3 + ε.
(2.18)

Here, β’s are the regression parameters to estimate, and ε is the error term. The error terms εi
are assumed to be independent with εi ∼ N (0, σ2), i = 1, 2, . . . , 8. The variables x1, x2 and x3

represent the factors A, B and C coded to −1 and 1 such that the factor columns are orthogonal.

The main effect of a factor is a measure of how much the expected response will change when the

factor is moved from low to high level, that is from −1 to 1. A regression coefficient on the other

hand, measures how much the expected response will change with a one-unit change in the factor,

from 0 to 1. Thus, the regression coefficients in Equation 2.18 are half of their factor’s corresponding

effects. A transformation of the factors can be done to obtain coded variables with levels 1 and −1.
For factor A this is done by,
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x1 =
A− (Ah +Al)/2

(Ah −Al)/2
,

where the low and high level of A are represented by Al and Ah respectively.

One of the three principles of DOE is replication. One replicate of the experiment results in two

response values with the same expected value for each level combination. Then, a model independent

variance can be estimated. Let two observed response values for the first level combination be

denoted by y11 and y12. The variance of the observations is then estimated by,

2∑
j=1

(y1j − ȳ1)
2 =

(
y11 −

y11 + y12
2

)2

+

(
y12 −

y11 + y12
2

)2

=

(
y11 − y12

2

)2

+

(
y12 − y11

2

)2

=
(y11 − y12)

2

2
.

Such estimates are obtained for each level combination, i.e., 8 in a 23 factorial design. The final es-

timate of the variance is computed by averaging over all estimates. More generally, if an experiment

is replicated (m− 1) times, each level combination has m observed response values, an estimate for

the variance of the observation i is defined by

σ̂2
i =

m∑
j=1

(
Yij − Ȳi

)2
m− 1

, i = 1, 2, . . . , n,

and these can be averaged to obtain a final estimate, (Tyssedal n.d.).

2.4.3 Two Level Fractional Factorial Design

If the number of factors, k, becomes large, then the number of runs needed in a 2k factorial

design increases quickly, and the full design may be infeasible to perform. For that reason, running

a fraction of the full factorial design can be beneficial to save time and computational effort. A

fraction of a two-level design with k factors is referred to as a 2k−p fractional factorial design, where

2k−p is the number of level combinations to observe. Here, the focus will be on a half fraction of the

2k factorial design, often called a 2k−1 fractional factorial design. Such a design is created with one

of the factors’ columns in the design matrix being defined by an interaction column not containing

that factor. Pairs like that are called aliases, and independent estimation of their linear effects is

not possible. In general, the main effects and lower order interactions are more significant compared

to higher order interactions which often can be negligible. A design’s resolution is defined by the

number of letters in the shortest term of the defining relation. Constructing a 2k − 1 fractional
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factorial design with the k’th factor’s column in the design matrix defined by the column of the

interaction of the other k − 1 factors, gives a design with the highest feasible resolution, (Goos

2002).

Now, let k = 5 and consider a 25−1 fractional factorial design with factors A, B, C, D and E.

Following the design described above, factor E should then be defined by the four-factor interaction

ABCD, which is called the generator. Table 2.2 shows the design of a 25−1 fractional factorial

experiment with one replicate. As E has the same sign as ABCD, the design’s defining relation is

defined as

I = ABCDE,

where I is called the identity element. This design is of resolution V since a main effect is aliased

with a four-factor interaction, and two-factor interactions are aliased with three-factor interactions.

In general, a resolution of a fractional factorial design either greater than or equal to V, assures

that estimation of all main and two-factor interaction effects is feasible, given that interactions of

order three or higher are negligible, (Goos 2002).

Table 2.2: Design of a 25−1 fractional factorial design of one replicate with five factors A, B, C, D

and E.

Experiment No. A B C D E = ABCD Level code

1 -1 -1 -1 -1 1 e

2 1 -1 -1 -1 -1 a

3 -1 1 -1 -1 -1 b

4 1 1 -1 -1 1 abe

5 -1 -1 1 -1 -1 c

6 1 -1 1 -1 1 ace

7 -1 1 1 -1 1 bce

8 1 1 1 -1 -1 abc

9 -1 -1 -1 1 -1 d

10 1 -1 -1 1 1 ade

11 -1 1 -1 1 1 bde

12 1 1 -1 1 -1 abd

13 -1 -1 1 1 1 cde

14 1 -1 1 1 -1 acd

15 -1 1 1 1 -1 bcd

16 1 1 1 1 1 abcde
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2.4.4 Adding Center Points to a 2k Design

A two-level factorial design assumes the factor effects to be linear and is therefore valuable to

capture significant main effects and interactions. In fact, a general first-order model including

interaction terms given by

y = β0 +

k∑
j=1

βjxj +
∑
i<j

k∑
=2

βijxixj + ε (2.19)

is able to represent some curvature in the response function. This is a result of the interaction terms

βijxixj which induce a twist of the plane, (Myers and Montgomery 2002). However, if quadratic

effects are present, the curvature captured by Equation 2.19 is not adequate, and a second-order

response surface model

y = β0 +

k∑
j=1

βjxj +
∑
i<j

k∑
j=2

βijxixj +

k∑
j=1

βjjx
2
j + ε (2.20)

should be considered. One method to test if the second-order model in Equation 2.20 is more

suitable, is to add center points to the 2k design. Suppose nC observations at the center point are

added to the 2k design. Let ȳC be the average response of the nC center point runs, and ȳF be

the average response of the factorial point runs. If the response of the center points lies near the

plane constructed by the factorial points, then the difference ȳF − ȳC will be small. However, if

the distance between the center point responses and the plane through the factorial points is large,

then the difference ȳF − ȳC is large. This may mean that the curvature in the response function

is quadratic, and a second-order response surface model should be used, (Myers and Montgomery

2002). Analysis of variance can be used to determine if the difference is significantly large.

Let m be the number of distinct points in the design, and ri is the number of observations for level

combination i. Then, for each point in the design, the residuals are given by

yij − ŷi = (yij − ȳi)− (ŷi − ȳi),

where i = 1, 2, . . .m and j = 1, 2, . . . ri. By inserting this expression into the equation for residual

sum of squares yields
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SSE =

m∑
i=1

ri∑
j=1

(yij − ŷi)
2

=

m∑
i=1

ri∑
j=1

(yij − ȳi)
2 +

m∑
i=1

ri(ȳi − ŷi)
2

= SSPE + SSLOF .

Meaning, the residual sum of squares can be written as the sum of the pure error sum of squares

and the lack of fit sum of squares. Suppose p terms are fitted to the data, and n is the total number

of runs. The residual sum of squares then has (n − p) degrees of freedom. The pure error sum of

squares has (n−m) degrees of freedom, thus the lack of fit sum of squares has the resulting (m−p)

degrees of freedom.

In a design matrix, the low level of a factor is coded as −1 and the high level as 1, while center

points are coded as 0. A result of this is that the center points have no impact on the computation

of the contrasts, which further results in two objectives of the addition of center points. The first

is based on the variation of the response in the center points, which can be used to estimate the

pure error, (Lujan-Moreno et al. 2018). The second objective is a test for lack of fit, related to the

difference ȳF − ȳC . To perform a test for lack of fit, the F -statistic

F =
SSLOF /(m− p)

SSPE/(n−m)

can be used. The null and alternative hypotheses tested by the lack of fit test is

H0 :

k∑
j=1

βjj = 0

H1 :

k∑
j=1

βjj ̸= 0.

Thus, if the result of the F -test is to reject the null hypothesis, the lack of fit is significant and there

is need for a response surface model with quadratic terms. While if the value of the F -statistic

is small, there is not sufficient evidence to conclude that quadratic terms are needed and a model

with main effects and interactions may be suitable.
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2.4.5 Response Surface Methodology

Response Surface Methodology (RSM) is a set of statistical and mathematical techniques whose ob-

jective is to develop, analyze and optimize processes. It is an efficient method convenient for hyper-

parameter optimization, specifically in the case where several hyperparameters are assumed to affect

the response of interest. The relationship between the independent input variables x1, x2, . . . , xk

and the response y can be represented by y = f(x1, x2, . . . , xk) + ε, where f is the response func-

tion, and ε represents the error not accounted for in f . In general, the relationship is visualized

graphically through response surface and contour plots. The true form of f is unknown, and it

must therefore be approximated. If the region of interest is relatively small, a first-order model

with interaction terms in Equation 2.19 may be adequate, (Myers and Montgomery 2002). While

if the curvature is stronger than represented by the interaction terms in the first-order model, the

second-order response surface model in Equation 2.20 is more appropriate.

Applications of RSM are most often done in a sequential manner. Firstly, a screening experiment

is done to identify the most influential variables. This is typically done using DOE, with the

assumption that a first-order model is suitable. With the most important variables established, the

response surface study can start. In the first phase, the current variable levels must be considered

to determine if these lead to a response value near the optimum, or if the process should be moved

to a new region closer to the optimum. In the case of the latter, the method of steepest ascent,

which is an optimization technique, can be used. Once the process is near the optimum, the next

phase is to approximate the response function in a smaller region. As the response function often

is curved in the area around an optimum, a second-order model is a good approximation. Phase

one and two of the response surface study may be repeated until the optimum is reached.

Method of Steepest Ascent

When a two-level design is executed, it is necessary for the practitioner to determine the low and

high levels for each factor. These levels will therefore often be determined based on educated

guesses, and it may be beneficial to move into a new region where the response is improved before

the conduction of experiments is continued. The method of steepest ascent is a first-order gradient

based optimization technique, (Myers and Montgomery 2002), with the objective of exploring a new

region where the response is improved, and not to discover which variable configuration that obtains

an optimal response. The method of steepest ascent proceeds sequentially along the direction of

maximum increase in the response. Figure 2.5 illustrates the path of steepest ascent in the case

with two variables.

Consider a first-order regression model fitted with the use of an orthogonal design,

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk.
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Figure 2.5: Illustration of the path of steepest ascent, where the contours are the expected response.

Given a fixed distance r from the center of the design, the path of steepest ascent is the direction

of where the point which provides the maximum expected response ŷ lies. Mathematically, this is

expressed in the following way

max
(x1,x2,...,xk)

β0 + β1x1 + β2x2 + · · ·+ βkxk subject to

k∑
i=1

x2
i = r2. (2.21)

The center point of the design is (0, 0, . . . , 0), thus the constraint resembles a sphere with radius r.

The optimization problem in Equation 2.21 is solved by using Lagrange multipliers. The maximum

of the Lagrange function

L = β0 + β1x1 + β2x2 + · · ·+ βkxk − λ

(
k∑

i=1

x2
i − r2

)
,

is obtained by calculating the partial derivatives of L with respect to xj ,

∂L

∂xj
= βj − 2λxj , j = 1, 2, . . . , k.

By setting the expression of the partial derivatives equal to zero and solving for xj , yields a co-
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ordinate of xj in the direction of steepest ascent,

xj =
βj

2λ
, j = 1, 2, . . . , k.

The final coordinate of steepest ascent is then

x1 = ρβ1, x2 = ρβ2, . . . xk = ρβk,

where ρ = 1/2λ is a positive constant of proportionality, which is decided by the practitioner and

regulates the distance from the center point. Thus, the distance xj is moved, is proportional to

the absolute value of the regression coefficient βj , and the direction is determined by the coefficient

sign. Experiments are conducted along the path until there is no more improvement in the observed

response value. The location of the maximum response value along the path is then the base for a

second experimental region. A new first-order design for estimating main effects and interactions

is then implemented. Often it is favorable to add center point to the design to test for lack of fit.

If the test is not rejected, the new model is used to find a second path of steepest ascent, referred

to as a mid-course correction. After conducting some experiments, the improvement will likely

be limited. Thus, a new base is obtained to conduct a more refined experiment and optimization

process, (Myers and Montgomery 2002). Usually, this is done by modifying the design to fit a

second-order model.

Central Composite Design - Experimental Design for Fitting Second-Order Models

The second-order model is given in Equation 2.20 and contains 1 + 2k + k(k − 1)/2 parameters.

Among the designs to fit second-order models, central composite design (CCD) is the most popular.

A CCD involves three main components. The first is a two-level factorial, alternatively a two-level

fraction preferably of resolution V, used to estimate the linear terms and two-factor interactions

in a variance-optimal way. The second component is the nc center runs. These enable a form of

internal estimate of error, called the pure error, along with recognizing existence of curvature and

contribute to the estimation of quadratic terms. The main contributor in estimating the quadratic

terms however is the 2k axial points, which are the last component.

There are two important decisions to consider when constructing a CCD; the axial distance α,

and the number of center points nc. The choice of the former depends on both the region of

operability and interest. The latter tends to influence the distribution of the scaled prediction

variance N ·Var [ŷ(x)] /σ2 in the region of interest. The axial distance is often set to be between 1.0

and
√
k, where α = 1.0 places all axial points on the face of the cube or hypercube, while α =

√
k

places all axial points on a sphere. Table 2.3 shows a CCD with three variables, one center run,

and axial distance given by α. For a spherical region, each factor has five levels; the center point 0,
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low and high level, −1 and 1, from the factorial and the axial points −
√
k and +

√
k. A CCD for

k = 3 and α =
√
3 is visualized in Figure 2.6.

Table 2.3: A central composite design with variables x1, x2 and x3, axial distance α and one center

run.

Experiment No. x1 x2 x3

1 -1 -1 -1

2 1 -1 -1

3 -1 1 -1

4 1 1 -1

5 -1 -1 1

6 1 -1 1

7 -1 1 1

8 1 1 1

9 -α 0 0

10 α 0 0

11 0 -α 0

12 0 α 0

13 0 0 -α

14 0 0 α

15 0 0 0

Figure 2.6: Illustration of a central composite design with three variables, x1, x2 and x3, and

α =
√
3.
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To guarantee that ŷ(x) is a good estimator for E[y(x)] in the whole region of interest, the scaled

prediction variance should be reasonably stable. For that reason, the idea of design rotatability

was introduced by Box and Hunter (1957). It states that a rotatable design is one where two

locations at the same distance from the design center have the same value of N · Var [ŷ(x)] /σ2.

The objective of this idea is to produce stability in the way that N · Var [ŷ(x)] /σ2 is constant on

a sphere. Fitting a second-order model with a spherical design leads XTX to be singular, which

further causes N · Var [ŷ(x)] /σ2 to be infinite. By adding enough center runs, the stability of

N · Var [ŷ(x)] /σ2 becomes reasonable in the design region, (Myers and Montgomery 2002). Thus,

the design for a spherical region is either rotatable or near rotatable, and the use of three to five

center runs is recommended in practice.

Analysis of Second-Order Response Surfaces

Experimental data with presence of curvature can be described by the second-order response surface

model in Equation 2.20, which is both flexible and easily fitted using designs like CCD. Through

second-order analysis of the response surface, the stationary point can be found, and the point can

be classified. The stationary point is where all the partial derivatives of ŷ are equal to zero, i.e.,

the solution of

∂ŷ

∂x1
=

∂ŷ

∂x2
= . . .

∂ŷ

∂xk
= 0.

By analyzing the plot of the contours of the second-order system, a stationary point can be iden-

tified as a maximum, minimum or saddle point. These depend on the model coefficients which

are estimates of the β’s in Equation 2.20. Consequently, these contours are based on estimated

responses. Let the fitted second-order response surface model be written as

ŷ = b0 + xTb+ xT B̂x, (2.22)

where b0 represent the estimate of the intercept, xT = [x1, x2, . . . , xk], b
T = [b1, b2, . . . , bk] is the

estimate of the linear coefficients, and the second-order coefficients are represented by

B̂ =


b11 b12/2 . . . b1k/2

b22 . . . b2k/2
. . .

...

sym. bkk

 .

The location of the stationary point xs is found by differentiating Equation 2.22 with respect to x,

∂ŷ

∂x
= b+ 2B̂x.
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Figure 2.7: Canonical form of the second-order model with two variables, x1 and x2. The stationary

point is represented by (x1,s, x2,s).

Then, the derivatives are set equal to zero and solved for xs to obtain the system’s stationary point,

xs = −
1

2
B̂−1b.

The corresponding estimated response is given by

ŷs = b0 +
1

2
xT
s b.

By considering the signs of the eigenvalues of matrix B̂, the character of the stationary point can

be determined. First, Equation 2.22 must be transformed into the canonical form, where the new

center is the stationary point, and the axes are rotated to coincide with the principal axes of the

contour system. Figure 2.7 shows an illustration of the second-order model with two variables in

canonical form. The canonical translation yields

ŷ = ŷs +

k∑
i=1

λiw
2
i , (2.23)

where ŷs is the estimated response at the stationary point, and λ1, λ2, . . . , λk are the eigenvalues

of B̂. The variables w1, w2, . . . , wk are given by
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w = PT (x− xs)

and are called canonical variables. Here P is a k × k matrix where the columns correspond to

the normalized eigenvectors related to the eigenvalues of B̂. Let Λ be the diagonal matrix of the

eigenvalues of B̂, then

PT B̂P = Λ.

The signs of the eigenvalues of B̂ determine the nature of the stationary point xs, (Myers and

Montgomery 2002). In the case of all λ1, λ2, . . . , λk are negative, then the stationary point is

a maximum. If all eigenvalues are positive, the stationary point is a minimum. While if the

eigenvalues have both negative and positive signs, the stationary point is a saddle point. The

relative magnitude of the eigenvalues indicates the sensitivity of the response system, e.g., if the

absolute values are close to zero there is a plane with approximately the same response value, while

large absolute values may indicate there is solely one point with the optimal response value. In the

case of a saddle point, new experiments should be conducted along a linear path in the direction

of increasing or decreasing response, depending on the objective. The eigenvectors can be used to

suggest which direction to follow.

2.5 Explainable AI

For simple models, the original model is its own best explanation. However, this does not hold

for more complex models as they are difficult to understand. Machine learning models are often

represented as a black box. The model processes the input data and returns a prediction, but

the reason for the prediction is unknown. However, in most real-world cases it is preferable to

understand how the unique features affect the outcome. Explainable AI are different methods and

processes which make it possible for humans to gain knowledge of the relation between the input

data and the predictions.

2.5.1 LIME

Local interpretable model-agnostic explanations (LIME) is a technique to interpret single predic-

tions of a machine learning model by approximating a local surrogate model. Two important

criterion of LIME is interpretability and local fidelity. The idea of the latter is that although it can

be impossible to obtain a globally reliable explanation, it is sufficient with local reliability to obtain

useful information. Thus, the aim is to find an interpretable model which is locally reliable.

Let f(x) be the machine learning model being explained for instance x, and g(x) the explanation

model which is in the class of potential interpretable models g ∈ G. These potential models can

35



have various levels of complexity. In general, less complex models are easier to interpret. Denote

Ω(g) as the complexity of the explanation model g ∈ G. Let L be the loss function which measure

how faithful g is at approximating the prediction of f in the nearby area defined by πx, (Ribeiro

et al. 2016). The explanation of instance x obtained by LIME is given by,

argmin
g∈G
L(f, g, πx) + Ω(g). (2.24)

As the M in LIME implies, the explanation g needs to be model-agnostic. Thus, the loss function

L(f, g, πx) should be minimized while avoiding any assumptions about f . Samples are drawn

uniformly at random from non-zero elements around x, and then perturbed. Let Z be the data

set of perturbed samples z. Black box predictions f(z) are obtained as labels for the explanation

model g. Further, the perturbed samples are weighted according to their proximity to x, which is

the instance of interest, (Ribeiro et al. 2016). Closer sample instances are weighted higher. Lastly,

an interpretable model is trained on the data set Z and used to explain the prediction of instance

x.

There are several advantages of LIME. One of them is the fact that the local interpretable model

given by LIME does not depend on the underlying machine learning model used. This gives flexibil-

ity in the way that the model which makes the predictions may be changed to improve performance,

while the same local model can be used to interpret the predictions. Another advantage is that

LIME allows the use of other features than those used to train the underlying machine learning

model. This makes it possible to have a model trained on complex and less interpretable features,

e.g., components of principal component analysis, while the local interpretable model is trained on

the original, more interpretable features. Of course, the interpretable features are assumed derived

from the same data set as those used to train the machine learning model. In addition, LIME can

be applied to tabular data, text, and images, which few other methods for variable explanation can.

Despite the advantages, there are also some disadvantages related to LIME. In the case of applying

LIME to tabular data, defining the correct neighborhood is a big unsolved problem. In addition, the

explanations can be very unstable. For instance, Alvarez-Melis and Jaakkola (2018) showed great

variation in the explanation of two nearby points in a simulated study. Also, the explanations made

by LIME can be manipulated to hide biases, which can make LIME explanations less trustworthy.

2.5.2 Shapley Values

Another method to explain the predictions made by machine learning models is Shapley values. This

is a concept from co-operative game theory originally used to assign payouts to players according

to their contribution towards the total payout. In the case of prediction explanation by machine

learning models, the players are replaced with features and the total payout by the prediction. The

Shapley value of a feature is given by the average expected marginal contribution to the prediction,

after all feature combinations have been considered, (Aas et al. 2021). Thus, a feature’s Shapley
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value reflects how much the prediction made by the model is affected by adding the relevant feature.

Let F be the set of all features. The Shapley value method retrains the model on all possible

feature coalitions S ⊆ F = {1, . . . , F} and based on the effect of including the relevant feature has

on the prediction, the feature is given an importance value. The effect of a feature is computed by

training two models, one including the relevant feature and another excluding it, v(S ∪ {i}) and

v(S) respectively, where v() is the characteristic function. The predictions made by the two models

are then compared on the values of the input features in the relevant subset, v(S ∪ {i}) − v(S).

This difference is computed for all permutations of all possible coalitions to capture the effect of

withholding a feature. The Shapley value is then given by,

ϕi =
∑

S⊆F\{i}

|S|! (F − |S|−1)!
F !

[v(S ∪ {i})− v(S)] , i = 1, . . . , F, (2.25)

which is the weighted average of all differences, (Lundberg and Lee 2017).

Consider an example with three features, F = {1, 2, 3}. For three features there are eight different

subsets, where the model output of each of them are given by,

v(∅) = 0, v({1}) = 0, v({2}) = 0, v({3}) = 0

v({1, 2}) = 60, v({1, 3}) = 40, v({2, 3}) = 70, v({1, 2, 3}) = 100.

Table 2.4: The six different coalitions with three features with corresponding computed differences

and Shapley values denoted by ϕ.

1 2 3

1 ← 2 ← 3 0 60 40

1 ← 3 ← 2 0 60 40

2 ← 1 ← 3 60 0 40

2 ← 3 ← 1 30 0 70

3 ← 1 ← 2 40 60 0

3 ← 2 ← 1 30 70 0

Sum 160 250 190

ϕ 26.67 41.67 31.67

Table 2.4 shows the six different coalitions with the respective Shapley values. Consider the cal-

culation of the predicted differences in the first row. With only feature 1 present, the predicted

value is 0 from v({1}) = 0. The effect of adding feature 2 is equal to 60, which is computed

by the difference v({1, 2}) − v({1}) = 60 − 0. Adding feature 3 yields an effect of 40, since

37



v({1, 2, 3}) − v({1, 2}) = 100 − 60. The Shapley values are computed by weighting the computed

differences according to Equation 2.25, which for feature 1 yields

ϕ1 =
1

3
[v({1, 2, 3})− v({2, 3})] + 1

6
[v({1, 2})− v({2})]

+
1

6
[v({1, 3})− v({3})] + 1

3
[v({1})− v(∅)]

=
1

3
(100− 70) +

1

6
(60− 0) +

1

6
(40− 0) +

1

3
(0− 0)

= 26.67.

There are two main advantages with Shapley values. The first is that it is the only explanation

method with a mathematically solid theory. Secondly, it guarantees that the difference between

the prediction and the average prediction is fairly distributed across the features. However, the

complexity of the method is a great drawback. The number of possible coalitions of the feature

values grows exponentially. Thus, in most real-world problems, the exact solution is not feasible.

Because of this, several methods to approximate the Shapley values have been proposed. One of

them is SHAP.

2.5.3 SHAP

SHAP (SHapley Additive exPlanations) estimates the Shapley values from co-operative game theory

to explain individual predictions. SHAP was proposed by Lundberg and Lee (2017) as a unified

approach to interpret predictions made by machine learning models.

Kernel SHAP is one method to estimate Shapley values which can be regarded as two distinct parts;

(1) approximating the Shapley values in Equation 2.25, and (2) estimating v(S). Consider part (1)

and assume v(S) to be known. The Shapley values can be defined as the optimal solution to the

weighted least squares problem of minimizing

∑
S⊆F

[
v(S)−

(
ϕ0 +

∑
i∈S

ϕi

)]2
k(F, |S|) (2.26)

with respect to ϕ0, . . . , ϕF , where the Shapley kernel weights are

k(F, S) = (F − 1)/

[(
F

|S|

)
|S|(F − |S|)

]
.

Let Z be a 2F × (F + 1) binary matrix which represents all coalitions of including/excluding the

different features, where the first column contains all 1’s, while entity i+ 1 in row j is 1 if feature
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i is present in coalition j, and 0 if excluded. Let v(S) be contained in the vector v, and W be a

2F × 2F diagonal matrix which contains k(F, |S|). For both v and W, S is the feature coalition of

the corresponding row in Z. The weighted least squares problem in Equation 2.26 can be written

as

(v − Zϕ)TW(v − Zϕ), (2.27)

where ϕ is the vector containing ϕ0, . . . , ϕF , and the solution is

ϕ = (ZTWZ)−1ZTWv. (2.28)

Instead of using the whole feature set F , Kernel SHAP samples a subset D of F according to a

probability distribution which follows the Shapley weighting kernel, and use only the rows of Z and

elements of v corresponding to the subset, ZD and vD. The sampled subsets are equally weighted

in the new least squares problem. Thus, an approximation to Equation 2.28 is obtained,

ϕ = (ZT
DWDZD)−1ZT

DWDvD. (2.29)

The next part is to estimate v(S). Consider a predictive model f(x) trained on a training set

{yi,xi}i=1,...,n, and let x = x∗ be a specific feature vector. For a subset S, the contribution value

is given by

v(S) = E [f(x)|xS = x∗
S ] .

Let S̄ be the complement of S for the purpose of writing xS̄ as the part of x which is not contained

in xS . The right-hand side can then be computed by

E [f(x)|xS = x∗
S ] = E [f(xS̄ ,xS)|xS = x∗

S ]

=

∫
f(xS̄ ,x

∗
S)p(xS̄ |xS = x∗

S)dxS̄ .

The conditional distribution p(xS̄ |xS = x∗
S) is seldom known, (Aas et al. 2021). The Kernel SHAP

assumes the features to be independent, and thus avoids this problem. The integral can then be

approximated with Monte Carlo integration.
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Chapter 3

The Data Set

The data set used in this thesis is provided by Sparebank 1 Kreditt AS. It was retrieved in February

2023 and consists of four data tables; passive table, application table, purchase history table, and

purchase history segment table. Table 3.1 gives a summary of the four tables. All tables contain dif-

ferent information about the customers, and are connected through the variable BK ACCOUNT ID,

which is the personal account number for a customer. Each BK ACCOUNT ID represents a cus-

tomer who at some point stopped using their credit card and has been inactive for at least six

months. The response AktivEtterPassiv denotes if the given customer has become an active credit

card user after the period of being passive. An active customer is defined as an individual who uses

their credit card. An inactive customer is defined as someone who has not used their card the last

month, and a passive customer is defined as someone who has been inactive for at least six months.

Table 3.1: An overview of the data tables with description and number of explanatory variables.

Data table Description Number of variables

Passive Information about the customers’

credit card use and transactions

10

Application Information about the customers’

application data

21

Purchase history Information about the customers’

payments

8

Purchase history seg-

ment

Information about the customers’

purchase history split into seg-

ments

21

This chapter will introduce the explanatory variables and response before the data pre-processing
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performed will be described. Finally, visualizations of some explanatory variables will be presented

to improve the understanding of their impact on the response.

3.1 Explanatory Variables and Response

The data set contains 60 explanatory variables. Of these, some variables contain information of

credit limit, age, when the card was last used, and the customer’s marital status at the time of

application. All variables are listed together with explanations in Appendix A. The passive table

has 10 explanatory variables, in addition to the response. Among these are variables describing

when the credit card was used first and last, gender and type of credit card. This table contains

longitudinal data of 27485 unique BK ACCOUNT ID’s with a total of 260959 observations. The

number of observations for one customer differs, but consistent for them all is that at the time of

the first observation for each customer, it has been at least six months since last time they used

their credit card. The next observations are monthly updates of the customer’s credit card use and

transactions, until they become active. If a customer did not become active, the last observation is

from the same month as the data was retrieved by Sparebank 1. Transactions can happen while the

customer is passive, even though they do not use their card. Some customers become active and

then stopped using their card for at least six months. In such cases, there are no observations after

they were active until they have been inactive for six months, then there are monthly observations

until they once again start to use their card, or the month of data retrieval is reached. This leads

to some customers having several passive periods.

The application table contains application data of 20933 unique BK ACCOUNT ID’s, and 21 ex-

planatory variables. These include information of the customer from the time they applied for the

credit card, such as amount of student loan, type of employment and number of children. The

purchase history table contains payment history for 5081 unique BK ACCOUNT ID’s from the

last twelve months before the customer became passive and consists of 8 explanatory variables.

These include payments to external repayment loan accounts, external collection accounts and

external credit card accounts. This table contains a total of 5475 observations, as some custom-

ers have several periods of being passive and can thus have one observation before each passive

period. And lastly, purchase history segment table contains monthly longitudinal purchase history

for 28375 unique BK ACCOUNT ID’s which is divided into different segments; airline, food stores,

hardware, etc. This table has a total of 174492 observations and 21 different segments.

The response AktivEtterPassiv denotes whether a given customer has become active after the

passive period or not. Thus, it is a binary response which equals 1 if the customers once again

started to use their card, and 0 if they are still categorized as a passive customer.
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3.2 Data Pre-Processing

Both the passive table and purchase history segment table contain longitudinal data. To model

data on this form can be challenging. Therefore, data pre-processing is necessary to transform

the data into a more convenient form; one row per BK ACCOUNT ID. This was done using the

software R in R studio.

The aim is to compare the performance of models when predicting one, three, six and twelve months

ahead. Four data frames were created, one for each situation. Let us consider the preparation of the

one month ahead data frame. For each BK ACCOUNT ID in the passive table; first, the relevant

observations according to the number of months to predict ahead, called the valid observations,

were found for the one month ahead prediction. These are all observations but the last. The last

observation of the customer reflects if they have become active or not and is thus only used to set

the value of the response. Next, information from the valid observations were extracted by adding

new variables. Some examples are the number of passive periods, number of transactions, and

number of months between the first and last time the credit card was used. Several of the variables

in the passive table were just dates. New variables were added to describe the number of months

between events, instead of the date of the event as dates are not informative for a model. For

the purchase history table, only the last valid observation for each BK ACCOUNT ID was kept.

This was done by comparing the dates of these observations to the date of the customer’s last valid

observation in the passive table. Each observation in purchase history table is a summary of the last

twelve months based on the date of the observation. Including observations further back in time is

assumed to add little to no additional information. Similarly for the purchase history segment table,

only the last valid observation for each BK ACCOUNT ID was kept, as these observations also are

summaries of the last twelve months. Lastly, these three modified tables and the application table

were merged into the one month ahead data frame.

A similar procedure was done to the three months ahead, six months ahead and the twelve months

ahead data frames, with updated number of valid observations depending on the number of months

to predict ahead. As the number of observations for each BK ACCOUNT ID in the passive table

differs, not all customers have enough observations to be included in all four data frames. Table

3.2 shows an overview of the number of instances in each data frame, as well as the portion of

customers that are categorized as active at the end of the (last) period.

After the transformation was done, the BK ACCOUNT ID variable was removed, as it did not

contain any relevant information for the models, and missing values could be handled. Indicator

variables were added to specify which customers lack observations from the application table, pur-

chase history table or purchase history segment table. Some customers have application data, but

do not have values for DebtRegisterNum/ DebtRegisterIELA or SumAvailable, which are three of

the variables in the application table. Thus, indicator variables are added to specify cases with

application data where one of these is missing. Missing values in variables regarding purchase

history or payments are set to zero, assuming it has not occurred. Missing values in the variable

NoOfChildren is also set to zero, as these are assumed to not have children. Missing values in
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Table 3.2: An overview of the four data frames with total number of observations, number of

observations where AktivEtterPassiv = 1, and percentage of observations where AktivEtterPassiv

= 1.

AktivEtterPassiv = 1

Data frame Total no. of obs. Frequency Percentage

One month 27485 11232 40.9%

Three months 20527 7295 35.5%

Six Months 15553 4714 30.3%

Twelve months 9395 2624 27.9%

the rest of the numeric variables, are set to be the median of the relevant column. Finally, miss-

ing values in categorical variables are categorized as ”Unknown”. This handling of missing values

is applied to all four data frames, one month ahead, three months ahead, six months ahead and

twelve months ahead.

The next step was to dummy encode categorical variables. A new column was added for each

category, equal to 1 if that category was present and 0 else. The original variable was removed

together with the majority category of each variable, which acts as the reference for the remaining

categories. The data frames were then split into training and test sets. The split was done randomly,

with 75% of observations in each of the four training sets, one for each data frame, and the remaining

25% in the four test sets.

Logistic regression requires the data to be standardized. This is important to avoid vastly different

magnitudes in the explanatory variables, which could lead to some variables wrongly dominating

the model. Standardization was done by finding the mean and standard deviation of each column

in the training set, then each column in the training set was subtracted by its mean and divided

by its standard deviation. As the test set should be new and unknown data, it was standardized

using the same method, with the mean and standard deviation of the training set. All four data

frames were standardized.
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3.3 Visualization

Visualizations of the variables can be a helpful tool to get an improved understanding of the relations

between the response and explanatory variables. These relations are assumed to be consistent in all

four data tables. All visualizations in this section are based on the one month ahead data frame,

before the handling of missing values, as it is the data frame with the most observations of the four.
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Figure 3.1: Correlation matrix of the one month ahead data frame, with explanatory variables from

the passive table.

Figure 3.1 shows the correlation between explanatory variables from, or made of variables in, the

passive table. The variable PeriodeLengde reflects the number of months in which information of

the customers’ credit card usage is used to predict their future activity. MndUtenKortbrukiPerioden

is the number of months in which the card has not been used in that same period. The correlation

between these two variables is close to 1. Since the data set consists of passive customers, it is

reasonable that a substantial portion of the customers have not used their card in the relevant

period. There is also some correlation between AntallPassivPerioder, which reports the number of

distinct times the customer has been passive in the period, and MndFraFørsteTilSisteBruk, which

is the number of months between the customer’s first and last credit card use.
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Figure 3.2: Correlation matrix of the one month ahead data frame, with explanatory variables from

the purchase history table and purchase history segment table.

Figure 3.2 shows the correlation between explanatory variables from both the purchase history table

and purchase history segment table. Some of the segments contained in the latter table have two

features, one which sums the last twelve months and one summing the last three months. Among

the segments containing both are hardware, hotel/motel, and airline. The twelve- and three-month

summary of these segments are correlated as seen from the figure. Apart from these, the most correl-

ated variables are those related to payments to the same type of external accounts, such as the vari-

ables describing payments to repayment loan accounts; CountDistinctPaidToRepaymentLoanL12,

CountPaidToRepaymentLoanL12 and SumPaidToRepaymentLoanL12.
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Figure 3.3: Correlation matrix of the one month ahead data frame, with explanatory variables from

the application table after dummy encoding.

The last correlation matrix is of the variables in the application table where categorical variables are

dummy encoded, shown in Figure 3.3. The variables FLI AMT and SFLI AMT are strongly correl-

ated. This is to be expected as they both describe a customer’s simplified liquidity indicator, where

SFLI AMT is the simplified liquidity indicator based on a 5% increase in interest. The simplified

liquidity indicator is a measure of a customer’s ability to pay. APPLIED CREDIT LIMIT AMT

and GRANTED CREDIT LIMIT AMT are also correlated. The two variables reflect the amount
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of credit limit the customer applied for, and the amount they were granted. From Figure 3.3 it can

also be seen that applications where the employment duration is not set are positively correlated

with retirees, while it is negatively correlated with those who are employees. The rest of the most

correlated variables are related to tax class. It is reasonable that the tax class generally is consist-

ent from one year to the next, i.e., positive correlation between LastYear2 TAX CLASS CD and

LastYear3 TAX CLASS CD of same category, and negative correlation of dissimilar categories.
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Figure 3.4: Density plots of four selected explanatory variables. a) Number of months without

use of credit card in the period. b) Sum of purchases the last 12 months in the vehicles segment.

c) Sum of amount paid to external repayment loan accounts the last 12 months. d) Customer’s

simplified liquidity indicator.

Inspection of density plots can improve the understanding of how the variables are distributed.

Figure 3.4 shows density plots of four selected variables, divided by the response, AktivEtterPassiv.

The curve of those who become active is displayed in light blue, while those who stay passive are

displayed by a light red colored curve. Plot a) in Figure 3.4 shows that the portion of customers that
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become active is greater the fewer months where the credit card has not been used in the period.

Plot b) indicates that customers who have bought a greater amount in the vehicles segment tend

to become active more often than customers who bought less in the same category. The curves in

plot c) show a similar distribution of the active and passive customers. The curve of customers

who become active is slightly left-skewed compared to the one of passive customers, which suggests

customers with a lower count of payments made to external repayments loan accounts are somewhat

more likely to become active. In plot d) of FLI AMT, there is no noteworthy distinction between

active and passive customers. The two curves follow each other very closely, which indicates that

separating customers who stay passive from those who become active based on their value of

FLI AMT is difficult.
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Chapter 4

Analysis and Results

This chapter will briefly describe how the models were implemented before presenting and analyzing

the obtained results. Model outputs and results from R for logistic regression are included in

Appendix B, and for AdaBoost in Appendix C.

4.1 Logistic Regression

The logistic regression models were fitted using the glm() function in R. First, the data was

pre-processed as described in Chapter 3.2, which resulted in four data frames; one month ahead,

three months ahead, six months ahead, and twelve months ahead. Collinearity between variables

leads to the design matrix X not having full rank which further results in XTX being singular. This

is a problem in estimation of the coefficients, thus, the alias() function in R was used to find linearly

dependent variables which needed to be removed. This resulted in discarding PeriodeLengde from

all four data frames, and ‘EMPLOYMENT DURATION DESC Not set‘ from six months ahead

and twelve months ahead, as well as CountDistinctPaidToRepaymentLoanL12 and CountDistinct-

PaidToCCL12 from twelve months ahead.

The first model was fitted by applying logistic regression to the one month ahead data frame, this

will be referred to as the oneMo model. Summary of the full model output is found in Appendix

B.1. Table 4.1 shows estimate of the intercept together with the variables whose p-value is less

than 0.001. The p-value is a measure of a variable’s statistical significance, and various levels of

significance is represented by; (***) for 0.001, (**) for 0.01, (*) for 0.05, and (.) for 0.1.

Remember, Equation 2.2 showed that a one-unit increase in xij leads to an increase in the odds

that yi = 1 of exp (βj). Thus, the estimates of the coefficients represent the effect each variable

has on the log-odds ratio that the response belongs to class 1. Consider the variable MndUten-
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Table 4.1: Partial model output of oneMo with estimated coefficients and p-value for the variables

with p-value less than 0.001, and the intercept.

Coefficients Estimate Pr(> |z|)
(Intercept) -6.651e-01 0.004153

MndUtenKortbrukiPerioden -9.872e-02 < 2e-16

MndFraFørsteTilSisteBruk -1.849e-02 1.07e-11

RESTAURANTS BARS 12 -1.546e-01 4.14e-12

TRAVEL AGENCIES 12 -6.494e-02 9.46e-05

HOTEL MOTEL 3 -8.952e-02 0.000854

AktiviPerioden 6.838e-01 6.11e-07

Missing purchaseSeg -5.381e-01 6.18e-11

Missing application 5.609e-01 5.99e-06

Missing sumAvail 9.225e-01 < 2e-16

ApplicationSalesChannel Kredittbanken -2.897e+00 9.33e-05

ApplicationSalesChannel Mobilbank 1.756e-01 0.000570

ApplicationSalesChannel Nettbank 2.846e-01 1.07e-08

HABITATION TYPE NAME RENTER -2.837e-01 7.79e-05

KortbrukiPerioden, which is the number of months where the credit card was not used in the

considered period. The estimated coefficient of this variable is equal to −0.0987, as seen in the

partial model output in Table 4.1. Thus, a one-unit increase in MndUtenKortbrukiPerioden while

keeping all other variables constant, decreases the log-odds of the response belonging to class 1 by

0.0987. Or a one-unit increase in the same variable results in the odds decreasing by a factor of

exp (−0.0987) = 0.9060. This means that a customer who has more inactive months is less likely

to become active.

Logistic regression was then fitted to the three months ahead, six months ahead and twelve months-

ahead data frames, which resulted in three models that will be referred to as the threeMos, sixMos

and twelveMos models, respectively. Recall, as the models are supposed to predict different numbers

of months ahead, they have distinct training and test sets. Thus, the number of observations used to

train and test the models differs. In addition, the number of explanatory variables differs slightly; in

the one month ahead and three months ahead data frames there are 94, while the six months ahead

has 92, and the twelve months ahead has 90. Full model outputs are found in Appendix B.1, which

show that many of the same variables are regarded as statistically significant in the four models.

If a significance level of 0.05 is considered then the oneMo model has 27 significant explainable

variables, the threeMos model has 22, the sixMos model has 25, and the twelveMos model has 23.

With this level of significance, 29% of the explainable variables in the oneMo model is regarded
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as significant, 22% in threeMos, 27% in sixMos, and 26% in twelveMos. For instance, ProductId,

which is a numeric variable corresponding to which type of credit card the customer has, is one

of the variables with lowest p-value in all four models, together with MndUtenKortbrukiPerioden,

which is the number of months in the considered period where the credit card was not used.

However, there are also some differences, e.g., MndUtenKortbrukFørPerioden, which is the number

of months between the passive period and the last time the credit card was used before that period,

is statistically significant at a level 0.001 in twelveMos, and 0.05 in threeMos, while in oneMo and

sixMos that variable is not regarded as significant.

In Table 4.2, confusion matrices are shown of all four models applied to their respective test sets,

with cutoff at 0.5. In each table, the top left is the number of observations correctly classified as

passive, and the bottom right is the number of observations correctly classified as active, while the

top right and bottom left are the number of observations wrongly classified as passive and active,

respectively. All four models have trouble classifying the observations that become active, which is

the minority class as there are more observations where the customer stays passive. I.e., the minority

class is active and the majority class is passive. The oneMo model is able to classify the largest part

of the minority class in the test set, while the sixMos and twelveMos models perform approximately

equally poorly. This is expected as the one month ahead data frame has the highest percentage of

the minority class, and the further ahead the model should predict, the more imbalanced the data

set is, as seen in Table 3.2. It is advantageous to identify which customers are more likely to become

active, such that the account of a customer who would become active is not closed. The type II

error is high when a lot of positive observations are falsely classified as negative. Thus, reducing

the type II error is desired, and a method to achieve this will be applied and discussed later.

Table 4.2: Confusion matrices after using the different models to classify the corresponding test

set, with cutoff = 0.5.
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Based on the confusion matrices, the metrics sensitivity, specificity, and balanced accuracy (BACC)

are computed. Table 4.3 presents these metrics together with the area under the ROC curve (AUC)

for each model. All four models have an AUC value between 0.69 and 0.70, and their ROC curves,

shown in Figure 4.1, are very similar. The twelveMos model has the highest value in specificity, but

in return, the lowest value in sensitivity, which means that the model performs poorly at classifying

the positive class, as seen from the confusion matrix in Table 4.2 (d). The small value of sensitivity

results in the twelveMos model having the lowest BACC value among the four models. As the

months to predict ahead decrease, the models’ sensitivity increases and thus also the BACC value,

despite the specificity decreasing. Hence, the oneMo model has the smallest value of specificity, but

the largest of sensitivity and BACC. Based on the observations from the confusion matrices and

the percentage of imbalance in the different data frames, this was expected.

Table 4.3: Reported metrics of the four models applied to their respective test set, cutoff = 0.50.

Model Sensitivity Specificity AUC BACC

oneMo 0.4545 0.7816 0.6917 0.6181

threeMos 0.3035 0.8562 0.6897 0.5799

sixMos 0.2143 0.9304 0.6992 0.5723

twelveMos 0.2117 0.9318 0.6931 0.5717
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Figure 4.1: ROC curve for the oneMo, threeMos, sixMos and twelveMos models.
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4.1.1 Feature Selection

Among the four models, the percentage of explanatory variables regarded as significant was between

22% and 29%. Thus, several of the variables contribute with little to no effect on the response.

This suggests that reducing the variable dimension is reasonable. Backward elimination (BE) was

therefore performed on the four models with both BIC and AIC, using the function step() with

k = ln(m) to define the penalty term for BIC and k = 2 for AIC, where m is the number of

observations in the training set.

BE with BIC was applied to the four models. Applied to the oneMo model resulted in a new

model with 18 explanatory variables, to the threeMos model there were 14 variables remaining,

16 variables for the sixMos model, and 15 for the twelveMos model. Model outputs are found in

Appendix B.2. Now, all variables in these models are regarded as statistically significant at level

0.05. Compared to the original models which all had at least 90 explanatory variables, these are

considerable reductions. Reported metrics for the four BIC-reduced models are shown in Table 4.4.

Compared to the reported metrics of the original models in Table 4.3, the specificity values have

increased slightly, while all other values have reduced a little.

Table 4.4: Reported metrics of the four BE models with BIC when applied to their respective test

set, with cutoff = 0.50.

Model Sensitivity Specificity AUC BACC

oneMo 0.4381 0.7920 0.6891 0.6151

threeMos 0.2874 0.8713 0.6839 0.5793

sixMos 0.1951 0.9358 0.6878 0.5654

twelveMos 0.1887 0.9474 0.6919 0.5680

As the BIC-reduced models are nested in their corresponding original models, ANOVA analysis is

performed. The ANOVA analysis tests the null hypothesis that the coefficient of variables found in

the full model, but not in the reduced model, are equal to zero, against the alternative hypothesis

that at least one of those coefficients are different from zero. That way, the test evaluates if the

reduced or full model is preferred. The ANOVA analysis of oneMo, threeMos, sixMos and twelveMos

between their full and BIC-reduced models resulted in p-values of 1.457e−07, 9.722e−09, 1.313e−05
and 0.0001217, respectively, and can be found in Appendix B.4. These are all smaller than 0.05,

thus, the null hypotheses are rejected, and the full models are preferred.

BE applied to the oneMo model with AIC resulted in a model of 46 explanatory variables, which is

more than twice the number of variables in the BIC-reduced oneMo model. Similarly, BE with AIC

applied to the threeMos, sixMos and twelveMos models resulted in reduced models of 49, 43 and 41

explanatory variables, respectively. The AIC-reduced models have remarkably more variables than

the corresponding BIC-reduced models. However, the number of variables is still greatly reduced

from the full original models. Outputs of the AIC-reduced models are found in Appendix B.3.
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These show that most of the variables included are regarded as statistically significant, but not all

as for the BIC-reduced models. Table 4.5 reports the metrics of the four AIC-reduced models after

applied on the test sets. Compared to metrics of the BIC-reduced models, the specificity values are

somewhat smaller for the AIC-reduced models, on the contrary, the sensitivity and BACC values

are slightly improved.

Table 4.5: Reported metrics of the four BE models with AIC when applied to their respective test

set, with cutoff = 0.50.

Model Sensitivity Specificity AUC BACC

oneMo 0.4500 0.7823 0.6907 0.6162

threeMos 0.3001 0.8587 0.6890 0.5794

sixMos 0.2117 0.9288 0.6973 0.5703

twelveMos 0.2086 0.9324 0.6930 0.5705

ANOVA analysis is also performed between the four original models and their corresponding AIC-

reduced models, shown in Appendix B.5. The four ANOVA analyses all resulted in p-values close

to 1; 0.9989, 0.9961, 0.9904 and 0.9983 for oneMo, threeMos, sixMos and twelveMos, respectively.

Since the p-values are large there is not sufficient evidence to reject the null hypotheses. Considering

the four AIC-reduced models have fewer variables than their respective full models, they could be

regarded as the preferred models. Though, as the full models had higher values in sensitivity and

BACC, and thus performed better at predicting the minority class, these will be considered further.

4.1.2 Optimize the Cutoff Value

In cases of imbalanced data set, logistic regression with default cutoff at 0.5 may produce quite

poor results. Finding the optimal cutoff value can therefore improve the predictive performance

of the model fairly much. Before optimizing the cutoff, consider the classification plots in Figure

4.2. Here, the predicted probability of all observations made by the model is represented by the

x-axis, and the y-axis shows the count. The pink histograms visualize the distribution of the true

negative class’s predicted probability, while the blue histograms visualize the distribution of the true

positive class’s predicted probability according to the relevant model. There is substantial amount

of overlap in all four plots. Thus, the models will never completely separate the two classes, but it

is obvious that a cutoff value of 0.5 is not optimal for any of the models, and optimizing the cutoff

is expected to improve the predictive performance.

The function performance() with "sens" and "spec" was used to calculate the sensitivity and

specificity values of 6999 different cutoff points which further was used to find the cutoff that

maximized the average of those, i.e., the balanced accuracy. The confusion matrices are presented

in Table 4.6, with the estimated optimal cutoff value for each model.
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Figure 4.2: Classification plot of the four full logistic regression models, with observations belonging

to the negative class shown in pink, and positive class as blue. The x-axis represent the predicted

probability of belonging to the positive class according to the model.

Table 4.7 reports the optimal cutoff value for each of the models, together with classification metrics.

The found optimal cutoff for all four models is close to the portion of minority observations in the

respective training sets, reported in Table 3.2. The oneMo model performs best at classifying the

positive class with a sensitivity value of 0.6906, and the highest score of BACC. The threeMos

model has the largest value of specificity, but the smallest of sensitivity, while the sixMos has the

second largest sensitivity value, which results in the second highest BACC score. However, the

difference in BACC between oneMo, threeMos and sixMos are only at the level of thousandths.

The twelveMos model has the second smallest value of sensitivity and smallest specificity value of

all the models, resulting in the lowest BACC score.

Thus, the oneMo model performs best and the twelveMos model worst among the four as anti-

cipated. However, a bigger difference in BACC was expected as predicting one month ahead was

envisioned easier than twelve. Therefore, only the one month ahead and twelve months ahead data

frames will be used in the further modeling and analyses of adaptive boosting.
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Table 4.6: Confusion matrices after using the different models to classify their corresponding test

set, with optimized cutoff values.
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Table 4.7: Reported metrics of the four models when applied to their respective test set, with

optimized cutoff values.

Model Cutoff value Sensitivity Specificity BACC

oneMo 0.41 0.6906 0.6066 0.6486

threeMos 0.37 0.6544 0.6390 0.6467

sixMos 0.29 0.6853 0.6097 0.6475

twelveMos 0.26 0.6672 0.6053 0.6362

4.2 Adaptive Boosting

In this section, oneMo and twelveMos will refer to AdaBoost models fitted to the one month ahead

and twelve months ahead data frames, respectively. If referring to the logistic regression models,

this will be specified.

AdaBoost was fitted using the function gbm() in R with distribution = "adaboost", which is an

extended implementation to the AdaBoost algorithm introduced by Freund and Schapire in 1995,

(Greenwell et al. 2022). Before optimizing the hyperparameters, AdaBoost was fitted with default

values for all hyperparameters to have reference points for comparison of the results. Two default

models were fitted, one with AdaBoost applied to the one month ahead data frame, and the other

applied to the twelve months ahead data frame. For logistic regression, the data frames needed

to be normalized, this is not required for AdaBoost. Therefore, the data frames used to fit the
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AdaBoost models are not normalized. After training, the two default models were evaluated on

their respective test set. Table 4.8 shows the confusion matrix of both the oneMo and twelveMos

models with default hyperparameter values.

Table 4.8: Confusion matrices after using the two default AdaBoost models to classify their corres-

ponding test set, with cutoff = 0.5.
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Reported classification metrics are shown in Table 4.9. The different amount of imbalance is even

more clear than for the logistic models, and the sensitivity values show that both default AdaBoost

models have great difficulties at predicting the positive class. Both AUC scores are higher for the

default AdaBoost models compared to their corresponding logistic models, while the sensitivity

and BACC values are reduced. Specifically, the default twelveMos model has an extremely low

value of sensitivity while the specificity is close to 1. This indicates that most observations are

classified as the negative class, this can also be seen in the confusion matrix in Table 4.8b. The

BACC value of 0.5102 shows that the model performs almost equivalent to random guessing. Even

though the default oneMo model is able to classify more of the minority class, many of them are

still misclassified as seen in the confusion matrix in Table 4.8a.

Table 4.9: Reported metrics of AdaBoost on the one month ahead and twelve months ahead data

frames, with default values on all hyperparameters and cutoff = 0.5.

Model Sensitivity Specificity AUC BACC

Default oneMo 0.3881 0.8156 0.6947 0.6018

Default twelveMos 0.0251 0.9953 0.7135 0.5102

Four hyperparameters from the gbm() function in addition to the cutoff are chosen for optimization

to improve the results. The parameters and their corresponding default value are presented in Table

4.10.

Table 4.10: Chosen hyperparameters with default values.

Hyperparameter n.trees interaction.depth shrinkage bag.fraction cutoff

Default value 100 1 0.1 0.5 0.5
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The gbm() function returns a value between 0 and 1 for each observation, a predicted probability

to belong to the positive class, similar to logistic regression. The cutoff is not a built-in parameter

in the gbm() function, however, as the response is binary it is needed to define which observations

to classify as positive and negative. Optimizing the cutoff showed quite impressive improvements

in the logistic models and has in general a profound effect on imbalanced classification problems.

The value of n.trees specifies the number of trees to fit. The larger number of trees to grow, the

longer the model needs to run. The interaction.depth parameter is the maximum depth of the

trees, which corresponds to the upper bound of level of variable interaction. Thus, a larger value

of interaction.depth leads to a more complex model which can be more prone to overfitting. The

shrinkage parameter, also called learning rate, specifies how fast the model should learn. In general,

a value between 0.001 and 0.1 is advised for this hyperparameter, and a smaller value will make

the learning process slower and take more time to run. In addition, a small shrinkage value often

requires more trees, increasing the run time even more. Last, bag.fraction determines the fraction

of randomly chosen observations from the training set that should be used to build the next tree.

If the value of bag.fraction is set equal to 1, then all observations will be used.

4.3 Tuning Hyperparameters in Adaptive Boosting

Tuning of the hyperparameters is done through Response Surface Methodology. This method

consists of several steps, where the first is a screening experiment performed with Design of Experi-

ments. Then, steepest ascent is used to explore a different experimental region, where a second-order

response surface model is fitted. First, the optimization of hyperparameters in the oneMo model

will be considered, then the twelveMos model.

4.3.1 Optimizing the One-Month-Ahead Model through Response Sur-

face Methodology

Since there are five hyperparameters to tune, a 25−1 fractional factorial design is chosen for the

screening experiment to reduce the number of runs needed. First, low and high levels of each

parameter must be set. The default value of n.trees is 100, which in general is considered a quite

small amount. Thus, the low level of n.trees is set equal to 100, and the high level to 600. The

interaction.depth’s default value is 1, which is the smallest possible. Therefore, 1 is set to be the

low level and 5 to be the high level of interaction.depth. The shrinkage parameter is advised to be

between 0.001 and 0.1, the low and high levels are therefore decided to be 0.03 and 0.07. The low

and high levels of bag.fraction are set around its default value, 0.5±0.1. As the optimal cutoff point

often corresponds with the fraction of minority observations, the low level of cutoff is set equal 0.4

and high level equal 0.45. The low and high levels of each hyperparameter are shown in Table 4.11,

together with the factor names.
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Table 4.11: Selected low and high levels of each hyperparameter.

Factor Hyperparameter Low Level High Level

A n.trees 100 600

B interaction.depth 1 5

C shrinkage 0.03 0.07

D bag.fraction 0.4 0.6

E cutoff 0.4 0.45

Table 2.2 shows the setup for the 25−1 fractional factorial experiment which was conducted and

replicated one time. The results from the full experiment are found in Table C.1 in the appendix.

5-fold cross-validation was performed at each experiment run and the reported response is the mean

BACC. Table 4.12 shows the mean BACC of the identical runs. The highest BACC value is 0.6752

and was obtained at level code abd.

Table 4.12: Results of the 25−1 fractional factorial design of AdaBoost on the one month ahead

data frame, with mean BACC from the duplicate runs.

Experiment No. A B C D E Level code Mean BACC

1 & 17 -1 -1 -1 -1 1 e 0.6213

2 & 18 1 -1 -1 -1 -1 a 0.6532

3 & 19 -1 1 -1 -1 -1 b 0.6586

4 & 20 1 1 -1 -1 1 abe 0.6722

5 & 21 -1 -1 1 -1 -1 c 0.6365

6 & 22 1 -1 1 -1 1 ace 0.6536

7 & 23 -1 1 1 -1 1 bce 0.6657

8 & 24 1 1 1 -1 -1 abc 0.6743

9 & 25 -1 -1 -1 1 -1 d 0.6225

10 & 26 1 -1 -1 1 1 ade 0.6483

11 & 27 -1 1 -1 1 1 bde 0.6542

12 & 28 1 1 -1 1 -1 abd 0.6752

13 & 29 -1 -1 1 1 1 cde 0.6275

14 & 30 1 -1 1 1 -1 acd 0.6574

15 & 31 -1 1 1 1 -1 bcd 0.6672

16 & 32 1 1 1 1 1 abcde 0.6745
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A model with main effects and interactions was fitted to the 25−1 fractional factorial design with

BACC as response. Table 4.13 shows the coefficient estimates, while the full model summary is

displayed in Appendix C.1. Excluding the intercept, 12 of the coefficients are regarded significant at

a level of 0.01. Considering the p-values, factors A and B have the smallest values and are therefore

those of most statistical significance. In addition, the p-value of factor C and interactions AB and

AC are also quite small. The residuals of the model with main effects and interactions are assumed

to be independent and approximately normally distributed. To see if this assumption holds, the

normal Q-Q plot of the residuals in Figure C.1 is considered. The residuals lie quite nicely on the

line around 0, while around ±1 they deviate a bit but still follow the line closely. The endpoints

deviate most from the line. In Figure C.2, the residuals are plotted and there does not seem to

be any pattern. This suggests that the model assumption of independent and normally distributed

residuals holds.

Table 4.13: Coefficient estimates of the model with main effects and interactions fitted to the 25−1

fractional factorial design for the one month ahead data frame with AdaBoost.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.539e-01 1.646e-04 3971.860 < 2e-16 ***

A 9.684e-03 1.646e-04 58.826 < 2e-16 ***

B 1.384e-02 1.646e-04 84.096 < 2e-16 ***

C 3.183e-03 1.646e-04 19.336 1.61e-12 ***

D -5.498e-04 1.646e-04 -3.340 0.004156 **

E -1.734e-03 1.646e-04 -10.531 1.33e-08 ***

A:B -3.402e-03 1.646e-04 -20.666 5.77e-13 ***

A:C -1.829e-03 1.646e-04 -11.112 6.22e-09 ***

A:D 8.131e-04 1.646e-04 4.939 0.000148 ***

A:E 3.030e-04 1.646e-04 1.840 0.084318 .

B:C -5.135e-04 1.646e-04 -3.119 0.006605 **

B:D 5.602e-04 1.646e-04 3.403 0.003640 **

B:E 6.365e-04 1.646e-04 3.867 0.001367 **

C:D 9.699e-05 1.646e-04 0.589 0.563979

C:E -1.644e-05 1.646e-04 -0.100 0.921695

D:E -4.940e-04 1.646e-04 -3.001 0.008468 **

Figure 4.3 shows the main effects of the five factors A, B, C, D and E. The mean response for

the low and high levels of each factor are displayed as small squares with a line connecting them.

The slope of the line represents the effect of moving the factor from low to high level has on the

response. Thus, a steeper slope means that the factor has a greater effect on the response. If the
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line connecting the mean response for the low and high level is approximately horizontal, then the

factor has no to little effect on the response. From Figure 4.3, factors A and B both have steep

and positive slopes and affect the response the most. C also has a positive slope, while E has a

negative. From Table 4.13, factor B has the largest estimated coefficient, which agrees with the

observation that B has the steepest slope in Figure 4.3. The magnitude of D’s slope and estimated

coefficient are both relatively small, thus, D has little effect on the response.
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Figure 4.3: Main effects plot of factors A, B, C, D and E after performing the 25−1 fractional

factorial screening experiment for AdaBoost on the one month ahead data frame.

Figure 4.4 displays the interaction effects between the distinct factors. An interaction plot shows

how the relationship between one factor and the response can depend on a second factor. The

second factor’s low and high levels are represented by a red dotted line and a black solid line,

respectively. The mean response for the low and high levels of the first factor are displayed as red

squares and black triangles for the low and high level of the second factor, respectively, with the

lines connecting them. If the two resulting lines are parallel, then there is no interaction between

the two factors. However, the more non-parallel the lines are, the greater is the interaction. In

Figure 4.4, there are interactions between A and B, and A and C. This is confirmed by Table 4.13,

where these interactions have among the largest estimated coefficients and smallest p-values. From

the model summary, interactions between A and D, B and C, B and D, B and E, and D and E

are significant at level 0.05. However, these interactions have smaller estimated coefficients. Thus,

they have less impact on the response compared to other effects.
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Figure 4.4: Interaction plots of factors A, B, C, D and E after performing the 25−1 fractional

factorial screening experiment for AdaBoost on the one month ahead data frame.

Figure 4.5 shows the normal plot of the estimated main and interaction effects. Under the as-

sumption that the response is normally distributed, the effects are also normally distributed. The

effects that form a straight line are assumed normally distributed with zero mean and can often

be neglected, while those furthest away from the line are assumed to have nonzero mean and are

regarded significant. From Figure 4.5, factors A, B and C, in addition to the interactions between

A and B, and A and C are furthest from the line. Thus, these are the factors considered significant

at a significance level of 0.05. This side with the findings from the main and interaction effects.

Based on this analysis of the main and interaction effects, A, B and C are the factors that will be

considered for further optimization.

Since the slope of D was quite gentle, and the interaction between the other factors were less

noteworthy, D was set at its default value 0.5 in the continued optimization. The effect of moving

factor E from high level to low level was substantial, while the interaction effects with the other

factors were not. Thus, E was set at its low level, 0.4. To decide the levels of A, B, and C,

interaction effects should be considered. First, from the main effects plot in Figure 4.3, the highest

response is obtained when both A and B are at their high level, while the interaction effect between

the two factors was negative. Looking at the interaction plot in Figure 4.4, even though the

interaction effect is negative, the highest BACC value is obtained when both A and B are at their

high levels. Considering A and C, these also have positive main effects while the interaction effect
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between them is negative. However, from the interaction plot, the highest value of BACC is also

here obtained with both A and C at high level. Therefore, all three factors should be at their high

level. Hence, from the screening experiment, the hyperparameter values are established as A = 600,

B = 5, C = 0.07, D = 0.4, and E = 0.5.
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Figure 4.5: Normal plot of estimated main and interaction effects after performing the 25−1 frac-

tional factorial screening experiment for AdaBoost on the one month ahead data frame.

In the next part of the optimization process, the experimental region is moved through the method

of steepest ascent where the goal is to approach the optimum. Based on the findings of the screening

experiment, where A, B and C were the most influential factors, the movement will be along the

vector where the slope of all three factors increases. From the model output in Table 4.13, the

estimated slope of A is 0.009684, 0.01384 for B, and 0.003183 for C. This means that the magnitude

of the slope of n.trees is 3 times larger than shrinkage, and the slope of interaction.depth has a

magnitude which is more than 4 times larger than shrinkage. In the 25−1 fractional factorial design,

a one-unit increase in n.trees, interaction.depth and shrinkage was 250, 2 and 0.02, respectively.

The shrinkage parameter was determined to start in 0.05 with a step size of 0.01. The step sizes

of n.trees and interaction.depth were then determined based on shrinkage’s step size value. Thus,

starting at 3, interaction.depth was increased with 4 at each step, while n.trees started at 350 with

a step size of 375. The cutoff was held constant at 0.4 and bag.fraction at the default value of

0.5. The path of steepest ascent with resulting response is shown in Table 4.14, and the response
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is the mean BACC value of 5-fold cross-validation. The highest value of BACC was 0.6785, which

was obtained at the first step from the center point, with n.trees = 725, interaction.depth = 7

and shrinkage = 0.06. It is assumed that the improvement stopped early because of the negative

interaction effects between A and B, and A and C.

Table 4.14: Path of steepest ascent for n.trees, interaction.depth and shrinkage in AdaBoost with

cutoff = 0.4 and resulting BACC.

n.trees interaction.depth shrinkage cutoff BACC

350 3 0.05 0.4 0.6684

725 7 0.06 0.4 0.6785

1100 11 0.07 0.4 0.6769

1475 15 0.08 0.4 0.6771

1850 19 0.09 0.4 0.6662

In the new experimental region, a 23 factorial experiment was conducted with center points for

n.trees, interaction.depth and shrinkage. Their center points were set equal to the configuration

which obtained highest BACC score along the path of steepest ascent. The low and high levels

of n.trees were chosen to be 725 ± 75. For interaction.depth the respective levels were set equal

7 ± 2, and for shrinkage 0.06 ± 0.02. The experiment was replicated one time, and center points

were added to detect if a second-order model should be used. The full experiment is shown in rows

1 to 22 of Table C.2 in the appendix, where the reported BACC values are the mean after 5-fold

cross-validation, and Table 4.15 shows the mean BACC of identical runs. A model with first order

and two-way interactions was fitted to the 23 factorial design with center points, using the rsm()

function in R, and BACC as response. The full model summary is shown in Listing 2 in Appendix

C.1. The lack of fit test has 2 degrees of freedom since there are 9 distinct points, including a

center point, in the design, and 7 terms are fitted to the data; three first order terms, three two-way

interaction terms, and one intercept. The null hypothesis of the test is that a model with main

effects and two-factor interactions is a good approximation to the data. Since the resulting p-value

is small, equal to 0.0467, and significant at a level of 0.05, the null hypothesis is rejected, and the

test suggests lack of fit.

Thus, a second-order model should be fitted to the data. Axial points at α ≈ ±
√
3 are therefore

added for each factor to construct a central composite design according to Table 2.3. The axial

points of n.trees were 595 and 855, for interaction.depth they were 4 and 10, and for shrinkage

they were 0.025 and 0.095. The resulting mean BACC after 5-fold cross-validation is shown in rows

23-28 in both Table 4.15 and C.2 in the appendix.

The full summary of the second-order response model is presented in Listing 3 in Appendix C.1.

Now, the p-value of the lack of fit test is 0.7395, i.e., not significant at a level of 0.05, which

suggests that the second-order model with quadratic terms is a more suitable fit to the true response
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Table 4.15: Results of the central composite design with three factors for AdaBoost on the

one month ahead data frame.

Experiment No. A B C BACC

1 & 12 -1 -1 -1 0.6763

2 & 13 1 -1 -1 0.6768

3 & 14 -1 1 -1 0.6791

4 & 15 1 1 -1 0.6797

5 & 16 -1 -1 1 0.6768

6 & 17 1 -1 1 0.6760

7 & 18 -1 1 1 0.6760

8 & 19 1 1 1 0.6755

9 & 20 0 0 0 0.6778

10 & 21 0 0 0 0.6797

11 & 22 0 0 0 0.6783

23 -1.73 0 0 0.6781

24 1.73 0 0 0.6779

25 0 -1.5 0 0.6752

26 0 1.5 0 0.6769

27 0 0 -1.75 0.6762

28 0 0 1.75 0.6752

surface. At a significance level of 0.05, the first and second order effects of interaction.depth and

shrinkage are significant, in addition to the interaction effect between the two. The stationary

point proposed by the model is at n.tree = 701, interaction.depth = 8 and shrinkage = 0.04448,

with eigenvalues 0.00000000, −0.00042269 and −0.00126178. Since the first eigenvalue is zero

and the other two are negative, the stationary point is essentially a line maximum. Figure 4.6

shows contour plots of the response surface, and perspective plots are shown in Figure C.3 in

the appendix. The plot of n.trees and interaction.depth sliced at shrinkage = 0.06 visualize the

maximum on a line within the design region. Such a response surface is called a stationary ridge

system. The plot of n.trees and shrinkage taken at slice interaction.depth = 7 show a weakly

rising ridge system. 5-fold cross-validation was performed at the suggested stationary point which

obtained BACC values of 0.6902, 0.6883, 0.6684, 0.6822, and 0.6753. The mean of these five

runs is 0.6809, which is a small improvement compared to earlier obtained results. Thereby, all

values of n.trees, interaction.depth and shrinkage on the line passing through the stationary point

with a direction given by the eigenvector [0.9558, 0.1511,−0.2522]T are potential candidates for an

optimum.
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Figure 4.6: Contour plots of the first fitted second-order response surface model with AdaBoost.
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A linear path in the direction of the eigenvector with origin at the proposed stationary point is

found using the function canonical.path() in R. Table 4.16 shows the estimated canonical path for

distances between −2 and 5 from the stationary point with mean BACC after 5-fold cross-validation.

Table 4.16: Results of AdaBoost performed along the canonical path starting from the stationary

point proposed by the first second-order model.

Distance n.trees interaction.depth shrinkage BACC

-2 558 8 0.05458 0.6799

-1 630 8 0.04952 0.6813

0 701 8 0.04448 0.6808

1 773 9 0.03944 0.6794

2 845 9 0.03440 0.6821

3 916 9 0.02934 0.6810

4 988 10 0.02430 0.6798

5 1060 10 0.01926 0.6809

The configuration n.trees = 845, interaction.depth = 9 and shrinkage = 0.03440 obtained the

highest BACC score of 0.6821, which is an improvement from earlier obtained results. A new

second-order response surface was fitted with this new configuration as center point. Axial points

with α ≈
√
3 was used, and a total of six center runs. For n.trees, the low and high levels were 770

and 920, respectively, with axial points 715 and 975. The low and high levels of interaction.depth

were 9±1 with axial points 7 and 11. For shrinkage, the respective low and high levels were 0.02940

and 0.03940, with axial points 0.02574 and 0.04306. Table C.3 shows the mean BACC after 5-fold

cross-validation, and the model summary is displayed in Listing 4, both in Appendix C.1. The

lack of fit test has a p-value of 0.4886, indicating that the second-order model with quadratic terms

still is a suitable approximation to the data. None of the estimated coefficients are statistically

significant at level 0.05. The estimated stationary point is at n.trees = 851, interaction.depth

= 8, and shrinkage = 0.02202, with eigenvalues 0.0002652, −0.0001944 and −0.0004517. Since the

eigenvalues have opposite signs, the stationary point is a saddle point. Contour and perspective

plots are shown in Figures C.4 and C.5 in the appendix. These plots indicate that the optimum

may lie outside the design region.

The response surface suggests following the direction of the eigenvector corresponding to the positive

eigenvalue. However, after repeating the process of moving along the eigenvector and fitting a new

second-order response surface two times, the stationary point was still a saddle point. Instead, a

new second-order response surface was fitted with center point in the configuration which obtained

highest BACC score from the previous central composite design, which is shown in Table C.3. The

largest value of BACC was 0.6834 and was obtained with n.trees = 770, interaction.depth = 10,

and shrinkage = 0.03940. Low and high levels for n.trees were 695 and 845, respectively, with axial
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points 640 and 900. For interaction.depth, the low and high levels were 9 and 11, with axial points

8 and 12. The low and high levels for shrinkage were set to 0.03440 and 0.04440, and axial points

0.03074 and 0.04806. The second-order response surface was fitted with α ≈
√
3 and six center

runs. In Appendix C.1, the mean BACC value after 5-fold cross-validation of each configuration is

presented in Table C.4, and the model summary is displayed in Listing 5. There are no significant

estimated coefficients at level 0.05. The p-value of the lack of fit test is 0.3307, which means there

is no significant lack of fit at level 0.05.

The stationary point is estimated at n.trees = 759, interaction.depth = 10, and shrinkage = 0.03884,

which after 5-fold cross-validation the following values were obtained, 0.6859, 0.6847, 0.6823, 0.6892

and 0.6685, resulting in a mean BACC of 0.6821. The eigenvalues were 0.00000000, −0.00040159
and −0.00124404, which, once again, means that the response surface is a ridge system.

Table 4.17: Chosen hyperparameters with optimal values for the oneMo model.

Hyperparameter Optimal value

n.trees 759

interaction.depth 10

shrinkage 0.03884

bag.fraction 0.5

cutoff 0.4

The optimal hyperparameters found through response surface methodology are shown in Table

4.17. The value of bag.fraction is kept at its default value, while the rest were adjusted. The

OneMo AdaBoost model was trained with these values for the hyperparameters and evaluated on

the one month ahead test set. The resulting confusion matrix is shown in Table 4.18 together with

the confusion matrix of the OneMo model with default values on the hyperparameters. The number

of observations wrongly classified as passive, i.e., the top right element in the confusion matrices,

decreased from 1750 to 764 with optimized hyperparameter values, and the number of correctly

classified active observations increased from 1110 to 2096.

Table 4.18: Confusion matrices after using AdaBoost with default and optimized hyperparameter

values to classify the one month ahead test set.

Actual

0 1

P
re
d
ic
te
d 0 3365 1750

1 761 1110

(a) Default

Actual

0 1

P
re
d
ic
te
d 0 2636 764

1 1490 2096

(b) Optimized
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Figure 4.7: Contour plots of the third fitted second-order response surface model with AdaBoost.
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Table 4.19 shows the resulting classification metrics of the default and optimized oneMo models

evaluated on the test set. The specificity has decreased a substantial amount, however, the sens-

itivity has increased from 0.3881 to 0.7329 which leads to an increase in BACC score from 0.6018

to 0.6859. The BACC score obtained on the test set was in fact larger than the score obtained on

the training set. A large value of sensitivity is of interest as this value reflects the portion of active

customers the model can classify correctly.

Table 4.19: Reported metrics of AdaBoost on the one month ahead data frame, with default and

optimized hyperparameter values.

Model Sensitivity Specificity AUC BACC

Default oneMo 0.3881 0.8156 0.6947 0.6018

Optimized oneMo 0.7329 0.6389 0.7577 0.6859

4.3.2 Optimizing the Twelve-Months-Ahead Model though Response Sur-

face Methodology

Also, for the twelve months ahead data frame, a screening experiment was the first step in the

optimization process. Similar to the optimization of the one month ahead data frame, a 25−1

fractional factorial experiment was conducted with the same five hyperparameters; n.trees, interac-

tion.depth, shrinkage, bag.fraction and cutoff. Based on the observations of the optimal cutoff for

the logistic twelveMos model compared to the logistic oneMo model, the levels of the cutoff were

decreased compared to the values used in the oneMo screening experiment. The low and high levels

of the cutoff were decided to be 0.26 and 0.3, respectively, while the rest were kept the same. Table

4.20 shows the low and high levels of each hyperparameter used in the screening experiment for

AdaBoost on the twelve months ahead data frame.

Table 4.20: Selected low and high levels of each hyperparameter.

Factor Hyperparameter Low Level High Level

A n.trees 100 600

B interaction.depth 1 5

C shrinkage 0.03 0.07

D bag.fraction 0.4 0.6

E cutoff 0.26 0.3

The 25−1 fractional factorial experiment was conducted according to the setup from Table 2.2 and

replicated one time. 5-fold cross-validation was performed for each configuration, with mean BACC
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as the response. Table C.6 in the appendix shows the results from the full experiment. Table 4.21

shows results of the same experiment, however, the reported BACC is the mean of the duplicate

runs. The highest BACC score was 0.6772, obtained for level code abd.

Table 4.21: Results of the 25−1 fractional factorial design of AdaBoost on the twelve months ahead

data frame with mean BACC of the duplicate runs.

Experiment No. A B C D E Level code Mean BACC

1 -1 -1 -1 -1 1 e 0.6085

2 1 -1 -1 -1 -1 a 0.6530

3 -1 1 -1 -1 -1 b 0.6692

4 1 1 -1 -1 1 abe 0.6733

5 -1 -1 1 -1 -1 c 0.6361

6 1 -1 1 -1 1 ace 0.6545

7 -1 1 1 -1 1 bce 0.6680

8 1 1 1 -1 -1 abc 0.6662

9 -1 -1 -1 1 -1 d 0.6075

10 1 -1 -1 1 1 ade 0.6573

11 -1 1 -1 1 1 bde 0.6687

12 1 1 -1 1 -1 abd 0.6772

13 -1 -1 1 1 1 cde 0.6456

14 1 -1 1 1 -1 acd 0.6526

15 -1 1 1 1 -1 bcd 0.6734

16 1 1 1 1 1 abcde 0.6672

A model with main effects and interactions was fitted to the 25−1 fractional factorial design with

BACC as response. Table 4.22 displays the coefficient estimates, and the full model summary

is shown in Appendix C.2. Omitting the intercept, 9 of the coefficient estimates are considered

significant at a level 0.05. Factors A and B have the smallest p-values and greatest absolute value

in their estimated coefficients. Also, factor C and the interactions between A and B, A and C,

and B and C have relatively small p-values. The normal Q-Q plot of the residuals in Figure C.7 is

studied to assess if the assumption of independent and approximately normally distributed residuals

holds for the model with main effects and interactions. The residuals fall nicely on a line, with

only the end points deviating a bit. Figure C.8 shows the plotted residuals which look randomly

distributed. Thus, the assumption of independent and normally distributed residuals seems to hold.

The main effects of factors A, B, C, D and E are shown in Figure 4.8. Like before, the small squares

represent the mean BACC at the low and high levels of each factor, and the slope of the line which

connects the two squares represents the effect on the response when one factor is changed from
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Table 4.22: Coefficient estimates of the model with main effects and interactions fitted to the 25−1

fractional factorial design for the twelve months ahead data frame with AdaBoost.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.549e-01 5.714e-04 1146.010 < 2e-16 ***

A 7.774e-03 5.714e-04 13.605 3.27e-10 ***

B 1.551e-02 5.714e-04 27.139 8.28e-15 ***

C 3.068e-03 5.714e-04 5.369 6.27e-05 ***

D 1.299e-03 5.714e-04 2.272 0.0372 *

E 5.007e-04 5.714e-04 0.876 0.3938

A:B -7.201e-03 5.714e-04 -12.603 1.01e-09 ***

A:C -5.606e-03 5.714e-04 -9.811 3.58e-08 ***

A:D -3.836e-04 5.714e-04 -0.671 0.5116

A:E -8.881e-05 5.714e-04 -0.155 0.8784

B:C -4.748e-03 5.714e-04 -8.310 3.38e-07 ***

B:D -7.852e-05 5.714e-04 -0.137 0.8924

B:E -1.590e-03 5.714e-04 -2.782 0.0133 *

C:D 4.566e-04 5.714e-04 0.799 0.4360

C:E 3.659e-04 5.714e-04 0.640 0.5310

D:E 3.029e-03 5.714e-04 5.301 7.17e-05 ***

low to high level. Factor B has the steepest slope and A has the second steepest, where moving

both factors from low to high level increases the response. This is also reflected in their estimated

coefficients in Table 4.22, where A and B have the largest values. Factors D and E have relatively

horizontal slopes compared to the other factors, which implies that the main effects of D and E

alone have minor impact on the response.

Figure 4.9 shows interaction effects between each factor pair. Such plots are useful to analyze

how the relationship between one factor and the response can be affected by a second factor. The

interaction plot of A and B has the most non-parallel lines, which indicates that the interaction

between A and B is the strongest. This is also seen in Table 4.22, where A : B has the smallest

p-value among the estimated interaction coefficients. The p-values of A : C and B : C are not

much larger, which also are reflected in their interaction plots. For both interactions, the lines

are non-parallel and intersect when A and B are moved to their high levels. Some of the other

interactions have slightly non-parallel lines, e.g., the interaction plot of D and E shows intersecting

lines. However, the main effects of these factors are not as significant and have smaller estimated

coefficients in Table 4.22, and the small interaction between the two is not regarded important.
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Figure 4.8: Main effects plot of factors A, B, C, D and E after performing the 25−1 fractional

factorial screening experiment for AdaBoost on the twelve months ahead data frame.
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Figure 4.9: Interaction plots of factors A, B, C, D and E after performing the 25−1 fractional

factorial screening experiment for AdaBoost on the twelve months ahead data frame.
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fractional factorial screening experiment for AdaBoost on the twelve months ahead data frame.

In a normal plot, factors with estimated coefficients close to zero fall on an approximate line, while

those further from zero fall off the line and are regarded significant. In the normal plot shown in

Figure 4.10, factors A and B fall furthest off the line with positive effects, in addition to C and

the interaction D : E. Also, the interactions A : B, A : C and B : C fall off the line with negative

effects, at a significance level at 0.05. All other main and interaction effects are here seemingly

normally distributed with zero mean, and thus less important than these.

The levels of all factors were decided based on main and interaction effects. Firstly, bag.fraction and

cutoff, factors D and E, had negligible effects on the response both as main effects and in interaction

with other factors, except the interaction with each other. Therefore, bag.fraction was kept at its

default value 0.5 and cutoff was set to 0.28. The factors with most impact on the response were A,

B and C, i.e., n.trees, interaction.depth and shrinkage. All three factors had positive main effects,

while the three interaction effects between them were negative. From the interaction plot between

A and B, the highest BACC score was obtained with both at their high level. Thus, appropriate

values of n.trees and interaction.depth are assumed around their high levels.

Since n.trees, interaction.depth and shrinkage were found to have the most impact on the response,

new experiments are conducted along the gradient of these three to examine if the response can

be improved further. From the estimated coefficients, the gradient of (n.trees, interaction.depth,
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shrinkage) is approximately [0.5, 1, 0.2], which in original units means that when increasing interac-

tion.depth by 2, n.trees should be increased by 125 and shrinkage by 0.004. In the interaction plots

between A and C, and B and C, C at its low level yielded a slightly larger value of BACC. However,

the difference is not substantial and the value of shrinkage is increased according to the gradient

from the center value. Table 4.23 shows resulting mean BACC after 5-fold cross-validation at each

step along the gradient, starting in 350 for n.trees, 3 for interaction.depth and 0.05 for shrinkage.

The starting values correspond to the center value of each hyperparameter from the 25−1 fractional

factorial experiment. Cutoff was held constant at 0.28, and bag.fraction at 0.5. The largest BACC

score was obtained at the center point. Thus, because of negative interaction effects, experiments

along the gradient did not improve the response.

Table 4.23: Optimizing n.trees, interaction.depth and shrinkage along the gradient for the twelveMos

model.

n.trees interaction.depth shrinkage cutoff BACC

350 3 0.050 0.28 0.6786

475 5 0.054 0.28 0.6677

600 7 0.058 0.28 0.6715

725 9 0.062 0.28 0.6614

A 23 factorial experiment with a total of eight center runs was conducted with factors for n.trees,

interaction.depth and shrinkage. The center point was decided as the configuration yielding highest

BACC score in Table 4.23. The cutoff was held constant at 0.28, and bag.fraction at 0.5. The

low and high levels of n.trees were set to 350 ± 75, for interaction.depth the low level was set to

2 and high level to 4, and for shrinkage, the respective low and high levels were 0.05 ± 0.01. The

mean BACC value after 5-fold cross-validation for each configuration is shown in Table C.7 in the

appendix. The model summary is presented in Listing 7 in Appendix C.2. The p-value of the test

for lack of fit is 0.1132, which means at a level 0.05 there is no significant lack of fit and the model

with main effects and interactions is an appropriate approximation. The estimated coefficient of

interaction.depth is the only significant effect at a level of 0.05.

Thus, new experiments were conducted along the gradient of interaction.depth, while the values

of n.trees and shrinkage were kept constant at 350 and 0.05, respectively. Table 4.24 shows the

resulting mean BACC value after 5-fold cross-validation at each step. The largest BACC value was

obtained with n.trees = 360, interaction.depth = 5 and shrinkage = 0.0554.

A new 23 factorial experiment with eight center runs was conducted with center point at the

configuration yielding the highest BACC score in Table 4.24. Low and high levels of n.trees was

set at 350 ± 50, for interaction.depth they were set to 5 and 7, respectively, and 0.050 ± 0.005 for

shrinkage. Table C.8 in the appendix shows the mean BACC value after 5-fold cross-validation for

each configuration. The model summary is displayed in Listing 8 in Appendix C.2. The p-value

of the test for lack of fit is 0.9361, which means that there is no evidence of lack of fit, and the
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Table 4.24: Optimizing interaction.depth along the gradient for the twelveMos model.

n.trees interaction.depth shrinkage cutoff BACC

350 3 0.0500 0.28 0.6746

350 4 0.0500 0.28 0.6698

350 5 0.0500 0.28 0.6719

350 6 0.0500 0.28 0.6758

350 7 0.0500 0.28 0.6757

350 8 0.0500 0.28 0.6757

350 9 0.0500 0.28 0.6701

model with main effects and interactions is an appropriate approximation. None of the estimated

coefficients are significant at a level 0.05, thus, there is no clear direction the experimental region

could be moved to improve the response further. Optimal values for the hyperparameters were

therefore decided to be the center values from the 23 factorial experiment, which are presented in

Table 4.25.

Table 4.25: Chosen hyperparameters with optimal values for the twelveMos model.

Hyperparameter Optimal value

n.trees 350

interaction.depth 6

shrinkage 0.050

bag.fraction 0.5

cutoff 0.28

The value of bag.fraction was kept at its default, while the four others were adjusted from their

default value. The twelveMos AdaBoost model was trained with optimal hyperparameter values

and then evaluated on the twelve months ahead test set. Table 4.26 presents the confusion matrix

of twelveMos with default and optimized hyperparameters. The number of observations wrongly

classified as passive has decreased from 659 to 234, and the number of correctly classified act-

ive observations has increased from 17 to 442. However, the number of wrongly classified active

observations has also increased, from 8 to 508.

The classification metrics of the two twelveMos models, with default and optimized hyperpara-

meters, evaluated on the test set is presented in Table 4.27. The default twelveMos model had

an exceedingly small value of sensitivity while the specificity was close to 1. This indicates that

the model classified almost all observations to belong to the passive class. This is also seen in the
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Table 4.26: Confusion matrices after using AdaBoost with default and optimized hyperparameter

values to classify the twelve months ahead test set.

Actual

0 1

P
re
d
ic
te
d 0 1696 659

1 8 17

(a) Default

Actual

0 1

P
re
d
ic
te
d 0 1196 234

1 508 442

(b) Optimized

corresponding confusion matrix in Table 4.26a, where only 25 observations were classified as active.

For the optimized twelveMos model, the specificity decreased from 0.9953 to 0.7019. However, the

sensitivity increased from 0.0251 to 0.6538, which lead to an increase in the BACC to 0.6779.

Table 4.27: Reported metrics of AdaBoost on the twelve months ahead data frame, with default

and optimized hyperparameter values.

Model Sensitivity Specificity AUC BACC

Default twelveMos 0.0251 0.9953 0.7135 0.5102

Optimized twelveMos 0.6538 0.7019 0.7503 0.6779

Figure 4.11 shows classification plot of the default oneMo and twelveMos models, and the optimized

oneMo and optimized twelveMos models, before using the cutoff to classify the observations. The x-

axis represents the model’s predicted probability of an observation, and the y-axis is the count. Like

the classification plots of the logistic models, the pink histograms visualize the true negative class,

while the blue visualize the true positive class, i.e., passive and active observations, respectively.

Specifically for the optimized oneMo model, the separation of the two classes is greatly improved

compared to the default oneMo in Figure 4.11a and the oneMo logistic model, shown in Figure

4.2a. For the twelveMos model, there is still considerable overlap between the two classes, which is

reflected in the confusion matrix and in the results in Table 4.27. However, the optimized twelveMos

model is more confident in predicting the passive observations compared to the default twelveMos

model.

Instead of classifying an observation as active or passive based on a chosen cutoff value, an al-

ternative approach could be used. That is, if the predicted value is below a specific threshold, the

customer will remain passive with a certain probability. Conversely, if the predicted value exceeds

a certain threshold, the customer will become active with a certain probability. By adopting this

perspective, it is possible to select a desired probability and determine the minimum predictive

value, a threshold, at which a customer is likely to become active with that probability. This could

also be applied to the logistic regression models.
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Figure 4.11: Classification plot of the oneMo and twelveMos models with default and optimizes

hyperparameters. Observations belonging to the negative class are shown in pink, and positive

class as blue. The x-axis represents the predicted probability of belonging to the positive class

according to the model, with optimized hyperparameters.

4.4 Variable Importance

The importance of unique features, or variables, and how they affect the response is examined for

the two optimized AdaBoost models, both through the relative influence, which is calculated by the

gbm() function, and SHAP. At each split in each tree constructed by gbm(), the improvement in

split criterion is computed. The improvement each variable has contributed to, is averaged across

all trees where that variable was used. The resulting value is the relative influence of the relevant

variable.

Figure 4.12 visualizes beeswarm plots of the top 15 features in the optimized AdaBoost oneMo

and twelveMos models. In a beeswarm plot, each observation in the data set is given an explan-

ation represented by a dot on each feature row. The color of the dot represents the true feature

value of that observation, and the dot’s position on the x-axis is decided by its estimated Shapley

value. Gatherings of dots along a feature row show the density of the observations’ Shapley values.
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Figure 4.12: ”Beeswarm” plot. Visualization of the variables’ influence on the response based on

their Shapley values computed on the respective training sets.
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The top three feature is the same for the two models; MndUtenKortbrukiPerioden, ProdictId and

PeriodeLengde. Further down we find several of the same variables, however the order is changed

slightly. The Shapley value distribution of the same features is very similar for the two models.

Consider MndUtenKortbrukiPerioden, observations with high values of that feature have negative

Shapley values and are quite evenly spread out creating a line. The observations with lower values

of MndUtenKortbrukiPerioden have larger Shapley values. In addition, there are several of these

observations which create clusters along the feature row.

Figure 4.13 shows the relative influence of the top 15 explanatory variables in the optimized oneMo

and twevleMos models. For the oneMo model, the top two features are the same as in the beeswarm

plot in Figure 4.12a; MndUtenKortbrukiPerioden and PeriodeLengde. Among all 15 features visu-

alized, 12 of them are presented in both the beeswarm and the relative influence plot. Even though

the variable importance is computed differently for the two types of plots and the ordering of the

features is different, this still shows that most of the same features are considered important in rela-

tion to the response. For the twelveMos model, the top four variables are the same in the beeswarm

plot in Figure 4.12b and in the relative influence plot in Figure 4.13b, with some difference in

the ordering. Here, ten of the fifteen features are the same in both plots with some difference in

ordering. Again, this shows that the features regarded to have most influence on the response by

the two methods are much the same.

Hence, the features considered most important based on Shapley values and relative influence are

remarkably similar. However, if we compare the top 15 variables by relative influence from the

oneMo AdaBoost model, to the 15 variables with lowest p-value from the oneMo logistic model,

only five variables are listed to have significant effect on the response in both models. In the

same situation for the respective twelveMos models, six of the same variables are considered to

have significant impact on the response in the models. I.e., among the top fifteen most important

variables, more than half of them are different for the two methods.

Figure 4.14 visualizes dependence plots of the feature Alder, which is the age of the customers, in

the two models. Again, each observation is given an explanation represented by a dot. Here, the

dot’s position on the x-axis is that observation’s, or customer’s, age, and the y-axis is the computed

Shapley value. The color of the dot here represents the observation’s value of PeriodeLengde. The

value of PeriodeLengde reflects the number of months in which information of the customers’ credit

card usage is used to predict their future activity. The two plots show a similar trend up to the age

of 75, from there the Shapley value decrease for both models, however, the decrease is more apparent

for the oneMo model than for the twelveMos model. This can be a result of less observations in the

data set of the latter model.

Specifically in Figure 4.14b of twelveMos, it is interesting to note that observations where the

customer is younger and the value of PeriodeLengde is larger, then the Shapley value is smaller,

and with a smaller value of PeriodeLengde, the Shapley value is generally a bit larger. While for

customers of age 50 to 75 with larger value of PeriodeLengde, the Shapley value is also larger

compared to customers of the same age with smaller value of PeriodeLengde.
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Figure 4.13: Relative influence of the variables in the optimized AdaBoost models computed on the

respective training sets.
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Figure 4.14: Dependence plot of age where the color represent the value of PeriodeLengde, computed

on the respective training sets.
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Chapter 5

Discussion and Concluding

Remarks

In this thesis, the predictive performance of logistic regression and AdaBoost have been investigated

on imbalanced data sets. The main objective has been to predict and classify credit card use of

passive customers. Logistic regression was applied on four distinct data sets to predict one, three,

six and twelve months ahead, while AdaBoost was applied on two data sets to predict one and

twelve months ahead. Different techniques were tested to improve the response; balanced accuracy

(BACC).

First, logistic regression was fitted to the four data sets of one, three, six and twelve months

ahead with cutoff = 0.5. The model that predicted one month ahead, oneMo, obtained the highest

BACC score of 0.6181, and the longer ahead the models predicted, the more decreased the BACC

score. The twelveMos model obtained a BACC score of 0.5717. This was expected as the one month

ahead data set was the least imbalanced with 41% belonging to the positive class, while in the other

data sets the level of imbalance increased together with the number of months to predict ahead.

Feature selection through backward elimination was tested on all four models, both with BIC and

AIC. However, neither method improved the BACC score of any of the models. Next, the cutoff

values were optimized. For all four models, the resulting cutoff value was close to the percentage

of minority instances in the respective data sets. With optimized cutoff value, the BACC score

increased for all models, in addition to greatly improved sensitivity values. The resulting oneMo

model had a BACC score of 0.6486, and 0.6362 for the twelveMos model.

AdaBoost was the second method fitted to the one and twelve months ahead training sets. The

various levels of imbalance in the two data sets became obvious when AdaBoost was trained with

default hyperparameter values. The oneMo model obtained a BACC of 0.6018 with quite small

value of sensitivity and quite large value of specificity, while the twelveMos model obtained a BACC
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score of 0.5102 with an extremely small value of sensitivity and a specificity value close to 1. Then,

four hyperparameters in addition to the cutoff value were optimized for both oneMo and twelveMos.

For the oneMo model, the optimization resulted in an improved BACC score of 0.6859, and the

sensitivity increased from 0.3881 to 0.7329. This means that the model’s overall performance and

ability to correctly classify the minority class were greatly improved. For the twelveMos model,

both sensitivity and BACC increased a considerable amount with a resulting BACC of 0.6779 and

sensitivity of 0.6538.

For the logistic models with optimized cutoff, there was a slight difference in the overall performance.

The BACC score of the oneMo, threeMos and sixMos differed only with thousandths, and of the

twelveMos with hundredths. Beforehand, the predictive performance of one month ahead was

expected to be superior compared to twelve months ahead. This has turned out to not be the case.

Also, for the optimized AdaBoost models, the difference in BACC score of oneMo and twelveMos

was less than 0.01.

The distinction of logistic regression’s and AdaBoost’s predictive performance is noteworthy. The

oneMo logistic model obtained a BACC score of 0.6486, while the oneMo AdaBoost model obtained

0.6859. Also, the sensitivity value of the logistic model was 0.6906, and for AdaBoost it was 0.7329.

These results show quite impressive performance of AdaBoost compared to logistic regression, which

was also visualized in the classification plots in Figure 4.11c versus Figure 4.2a. The two classes

are better separated in the classification plot of the AdaBoost model than for the logistic model.

The reason for this may be that the ”S” shaped sigmoid function used in logistic regression fits

the data set poorly, which limits the model’s performance. If we consider the twelveMos models,

AdaBoost still exceeds the overall performance of logistic regression, with a BACC score of 0.6779

over 0.6362. However, as seen in their classification plots, logistic in Figure 4.2d and AdaBoost

in Figure 4.11d, there is a large amount of overlap between the two classes for both models. It is

also worth noticing that the logistic twelveMos model obtained a larger value of sensitivity, 0.6672

versus 0.6538 for the AdaBoost model, which introduce another aspect to consider when working

with a classification problem; choosing suitable metrics.

The choice of classification metric decides how the models are evaluated. In addition, when a model

is optimized with a classification metric as response, the chosen metric also influences the resulting

model. There is not a global agreement on which metric is best, and choosing a suitable metric

depends on the problem at hand and if a response class is considered most valuable. In this thesis,

all optimization of models was done to maximize the BACC score. BACC was chosen as it measures

the model’s overall performance and accounts for imbalanced response. Sensitivity has also been

considered in the analysis and discussion of the results, as it measures a model’s ability to classify

the positive class, which in this case is the customers who become active. For the twelveMos models,

where the AdaBoost model provides the best overall performance, while the logistic model performs

better at classifying the positive class, the question of what is valued the most becomes relevant.

Also, if predicting the positive class is valued over a better overall prediction, optimization of the

cutoff values could have been done through a cost function instead of maximizing the BACC.
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Another aspect to consider is the models’ interpretability. This is often viewed in context of

performance and the trade-off between the two. Often, machine learning methods, like AdaBoost,

perform better than statistical methods, like logistic regression. In return, the latter are usually

easier to interpret than machine learning methods. Interpretation is often an important aspect to

consider in classification problems as it gives the end user valuable information of unique features’

impact on the response. In this case, an interpretable model can help Sparebank 1 gain insight

to which characteristics are repetitious for the customers who become active. However, several

techniques within explainable AI have made it possible to explain the relationship between features

and the response, even for ”black box” machine learning methods. Among those techniques are

Shapley values, used in this thesis to explain the AdaBoost models. As seen, the most important

variables according to Shapley values and relative influence were mostly in agreement. However,

the top 15 variables by relative influence from the AdaBoost models, differed quite a lot from the

variables with lowest p-value in the corresponding logistic models. This demonstrates that the

importance of features is calculated differently for the distinct methods.

5.1 Recommendations for Further Work

The goal of the models is essentially to model human behavior, which is a challenging task. For

further work, including more variables, both personal and economical, could be beneficial to better

capture the customers’ behavior and improve the models. Adding personal variables that comply

with GDPR can be challenging, however, educational level and the number of times they have

moved in the last 5 years are some variables that could be of interest.

Even though optimizing hyperparameters led to improved performance, neither method performed

optimally for this classification problem. Other techniques to tune the hyperparameters could be

used. In addition, AdaBoost could be tested with different weak learners, e.g., support vector

machines (SVM) which obtained best results in Vafeiadis et al. (2015). Adaptive boosting is also

possible to perform with neural networks. Taherkhani et al. (2020) applied AdaBoost with a

convolutional neural network on an imbalanced data set, which achieved almost 17% higher accuracy

compared to classical AdaBoost with decision trees.

Regarding variable importance, it is also possible to compute Shapley values for logistic regression.

These would be different from the interpretation of the estimated coefficients, and could be used to

discuss the difference in how the methods calculate the importance of variables.
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Appendix

A Variables with explanation

Table A.1: All variables in the original data set provided by Sparebank 1, with a short explanation.

Variable Explanation

Utgangspunkt Start date of the period which passive customers

were predicted to become active or not

BK ACCOUNT ID Internal account ID

Alder Age of customer

Kjønn Gender of customer

ProductId Type of credit card

Revolver Customer who pays nothing or part of the monthly

invoice

Fullpayer Customer who pays the whole monthly invoice

FørsteBrukt Date of which the customer used their card for the

first time

SisteTransaksjon Date of the last transaction

SisteKortbruk Date of the last card use

ApplicationSalesChannel Sales channel which the customer applied for

credit card

APPLIED CREDIT LIMIT AMT Credit limit the customer applied for in NOK
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GRANTED CREDIT LIMIT AMT Credit limit the customer was granted in NOK

GROSS INCOME AMT Customer’s gross income in NOK

STUDENT LOAN AMT Customer’s amount of student loan in NOK

MORTGAGES AMT Customer’s amount of mortages in NOK

EMPLOYMENT TYPE NAME Categorical variable of customer’s type of employ-

ment

EMPLOYMENT DURATION DESC Categorical variable of the duration the customer

has been in current employment

HABITATION TYPE NAME Customer’s type of habitation

MARITAL STATUS NAME Customer’s marital status

DebtRegisterNum Number of different credit card debt and consumer

loans the customer have

DebtRegisterIELA Amount of credit card debt and consumer loans

the customer have

TAX CLASS CD Customer’s tax class last year

LastTaxYear2 TAX CLASS CD Customer’s tax class two years ago

LastTaxYear3 TAX CLASS CD Customer’s tax class three years ago

HOMEOWNER IND Binary variable defining if the customer is a

homeowner or not

HOUSING COOPERATIVE IND Binary variable defining if the customer lives in a

housing cooperative or not

NoOfChildren Number of children the customer have

FLI AMT Simplified market liquidity indicator (customer’s

ability to pay)

SFLI AMT Simplified market liquidity indicator based in a 5%

increase in interests

AIRLINE 12 Sum of transactions in given class last 12 months

ELECTRIC APPLIANCE 12 Sum of transactions in given class last 12 months

FOOD STORES WAREHOUSE 12 Sum of transactions in given class last 12 months
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HOTEL MOTEL 12 Sum of transactions in given class last 12 months

HARDWARE 12 Sum of transactions in given class last 12 months

INTERIOR FURNISHINGS 12 Sum of transactions in given class last 12 months

OTHER RETAIL 12 Sum of transactions in given class last 12 months

OTHER SERVICES 12 Sum of transactions in given class last 12 months

OTHER TRANSPORT 12 Sum of transactions in given class last 12 months

RECREATION 12 Sum of transactions in given class last 12 months

RESTURANT BARS 12 Sum of transactions in given class last 12 months

SPORTING TOY STORES 12 Sum of transactions in given class last 12 months

TRAVEL AGENCIES 12 Sum of transactions in given class last 12 months

VEHICLES 12 Sum of transactions in given class last 12 months

QUASI CASH 12 Sum of transactions in given class last 12 months

AIRLINE 3 Sum of transactions in given class last 3 months

ELECTRIC APPLIANCE 3 Sum of transactions in given class last 3 months

FOOD STORES WAREHOUSE 3 Sum of transactions in given class last 3 months

HOTEL MOTEL 3 Sum of transactions in given class last 3 months

HARDWARE 3 Sum of transactions in given class last 3 months

INTERIOR FURNISHINGS 3 Sum of transactions in given class last 3 months

SumPaidToCCL12 Sum paid from bank account to known external

credit card accounts last 12 months

SumPaidToRepaymentLoan12 Sum paid from bank account to known external

repayment loan accounts last 12 months

CountPaidToRepaymentLoan12 Number of payments from bank account to known

external repayment loan accounts last 12 months

CountPaidToCCL12 Number of payments from bank account to known

external credit card accounts last 12 months

CountDistinctPaidToRepaymentLoan12 Number of payments from bank account to known

distinct external repayment loan accounts last 12

months
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CountDistinctPaidToCCL12 Number of payments from bank account to known

distinct external credit card accounts last 12

months

CountRoundPaidToRepaymentLoan12 Number of round (whole 100 nok) payments from

bank account to known distinct external repay-

ment loan accounts last 12 months

CountRoundPaidToCCL12 Number of round (whole 100 nok) payments from

bank account to known external credit card ac-

counts last 12 months

AktivEtterPassiv Binary response variable, defines if the customer

became active or not within the relevant period
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B Model Output from R for Logistic Regression

B.1 Full Logistic Models

One Month Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ., family = binomial,

data = oneMo_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9936 -1.0114 -0.6334 1.1425 2.9078

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.651e-01 2.320e-01 -2.866 0.004153 **

Alder 2.408e-03 1.383e-03 1.742 0.081578 .

Kjønn -2.216e-02 3.146e-02 -0.704 0.481176

ProductId 3.475e-02 2.179e-03 15.948 < 2e-16 ***

TransaksjonerMensPassiv 1.867e-02 7.553e-03 2.472 0.013452 *

AntallPassivPerioder 2.493e-01 1.200e-01 2.078 0.037754 *

MndUtenKortbrukiPerioden -9.872e-02 2.579e-03 -38.273 < 2e-16 ***

MndFraFørsteTilSisteBruk -1.849e-02 2.720e-03 -6.797 1.07e-11 ***

MndUtenKortbrukFørPerioden -1.466e-02 2.323e-02 -0.631 0.528063

APPLIED_CREDIT_LIMIT_AMT 7.916e-02 4.459e-02 1.776 0.075814 .

GRANTED_CREDIT_LIMIT_AMT -4.343e-02 4.460e-02 -0.974 0.330209

GROSS_INCOME_AMT 1.947e+00 2.868e+00 0.679 0.497221

STUDENT_LOAN_AMT 2.838e-02 1.724e-02 1.646 0.099698 .

MORTGAGES_AMT 1.707e-02 2.565e-02 0.665 0.505878

DebtRegisterNum -3.388e-03 1.637e-02 -0.207 0.836083

DebtRegisterIELA 2.940e-08 2.603e-07 0.113 0.910081

HOMEOWNER_IND -8.571e-03 2.837e-02 -0.302 0.762537

HOUSING_COOPERATIVE_IND -1.381e-02 1.997e-02 -0.691 0.489358

NoOfChildren 4.537e-03 2.125e-02 0.214 0.830885

FLI_AMT -6.021e-01 9.321e-01 -0.646 0.518311

SFLI_AMT 5.817e-01 9.290e-01 0.626 0.531240

SumAvailable -8.240e-03 2.124e-02 -0.388 0.698061

Applied_vs_Granted -1.217e-02 2.419e-02 -0.503 0.614985

SumPaidToCCL12 -4.741e-02 2.006e-02 -2.364 0.018089 *

SumPaidToRepaymentLoanL12 -2.445e-03 2.341e-02 -0.104 0.916847
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CountPaidToRepaymentLoanL12 -1.350e+01 1.156e+02 -0.117 0.907021

CountPaidToCCL12 -4.068e-02 2.903e-01 -0.140 0.888543

CountDistinctPaidToRepaymentLoanL12 1.343e+01 1.155e+02 0.116 0.907391

CountDistinctPaidToCCL12 5.764e-02 2.902e-01 0.199 0.842543

CountRoundPaidToRepaymentLoanL12 -1.371e-02 1.827e-02 -0.750 0.453024

CountRoundPaidToCCL12 1.228e-03 1.968e-02 0.062 0.950247

AIRLINE_12 -7.857e-02 2.695e-02 -2.915 0.003553 **

ELECTRIC_APPLIANCE_12 6.040e-02 2.265e-02 2.667 0.007652 **

FOOD_STORES_WAREHOUSE_12 3.897e-02 2.272e-02 1.715 0.086334 .

HOTEL_MOTEL_12 7.666e-02 2.754e-02 2.784 0.005374 **

HARDWARE_12 2.162e-02 2.192e-02 0.986 0.324053

INTERIOR_FURNISHINGS_12 3.105e-02 2.210e-02 1.405 0.160086

OTHER_RETAIL_12 1.455e-02 1.667e-02 0.873 0.382538

OTHER_SERVICES_12 4.230e-03 1.569e-02 0.270 0.787455

OTHER_TRANSPORT_12 -4.669e-02 1.948e-02 -2.396 0.016556 *

RECREATION_12 2.865e-03 1.621e-02 0.177 0.859747

RESTAURANTS_BARS_12 -1.546e-01 2.230e-02 -6.932 4.14e-12 ***

SPORTING_TOY_STORES_12 6.087e-03 1.516e-02 0.401 0.688122

TRAVEL_AGENCIES_12 -6.494e-02 1.663e-02 -3.904 9.46e-05 ***

VEHICLES_12 4.224e-02 1.552e-02 2.721 0.006506 **

QUASI_CASH_12 -3.220e-02 1.658e-02 -1.942 0.052124 .

AIRLINE_3 3.220e-02 2.519e-02 1.278 0.201129

ELECTRIC_APPLIANCE_3 3.111e-03 2.141e-02 0.145 0.884508

FOOD_STORES_WAREHOUSE_3 1.350e-02 1.987e-02 0.679 0.497014

HOTEL_MOTEL_3 -8.952e-02 2.684e-02 -3.335 0.000854 ***

HARDWARE_3 -4.816e-03 2.088e-02 -0.231 0.817605

INTERIOR_FURNISHINGS_3 6.811e-03 2.111e-02 0.323 0.746924

AktiviPerioden 6.838e-01 1.371e-01 4.988 6.11e-07 ***

Missing_purchaseSeg -5.381e-01 8.228e-02 -6.539 6.18e-11 ***

Missing_application 5.609e-01 1.239e-01 4.527 5.99e-06 ***

Missing_purchaseHist -4.922e-02 5.233e-02 -0.940 0.346992

Missing_debt 5.216e-02 4.401e-02 1.185 0.235947

Missing_sumAvail 9.225e-01 6.669e-02 13.833 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web -3.802e-02 6.700e-02 -0.567 0.570382

ApplicationSalesChannel_Kredittbanken -2.897e+00 7.414e-01 -3.907 9.33e-05 ***

ApplicationSalesChannel_Mobilbank 1.756e-01 5.097e-02 3.445 0.000570 ***

ApplicationSalesChannel_Nettbank 2.846e-01 4.976e-02 5.720 1.07e-08 ***

ApplicationSalesChannel_Responsside 1.462e+01 3.247e+02 0.045 0.964081

EMPLOYMENT_TYPE_NAME_AT_HOME -1.246e+01 3.247e+02 -0.038 0.969395

EMPLOYMENT_TYPE_NAME_DISABILITY_ -1.247e+01 3.247e+02 -0.038 0.969381

PENSIONER

EMPLOYMENT_TYPE_NAME_OTHER -1.262e+01 3.247e+02 -0.039 0.969005
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EMPLOYMENT_TYPE_NAME_RETIREE -1.254e+01 3.247e+02 -0.039 0.969195

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED 2.319e-02 1.090e-01 0.213 0.831442

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY -1.089e+01 3.247e+02 -0.034 0.973246

EMPLOYMENT_TYPE_NAME_STUDENT -1.220e+01 3.247e+02 -0.038 0.970041

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 1.555e-01 8.970e-02 1.734 0.082917 .

EMPLOYMENT_TYPE_NAME_UNEMPLOYED -1.318e+01 3.247e+02 -0.041 0.967617

EMPLOYMENT_DURATION_DESC_Between_1_and_ 1.677e-02 5.680e-02 0.295 0.767837

3_years

EMPLOYMENT_DURATION_DESC_Less_than_1_ 6.894e-02 6.723e-02 1.025 0.305156

year

EMPLOYMENT_DURATION_DESC_Not_set 1.237e+01 3.247e+02 0.038 0.969604

HABITATION_TYPE_NAME_APARTMENT -1.253e-01 1.032e-01 -1.214 0.224803

HABITATION_TYPE_NAME_OTHER -2.013e-01 1.059e-01 -1.901 0.057342 .

HABITATION_TYPE_NAME_PARENTS -2.105e-01 9.284e-02 -2.268 0.023354 *

HABITATION_TYPE_NAME_RENTER -2.837e-01 7.182e-02 -3.951 7.79e-05 ***

MARITAL_STATUS_NAME_COHABITING 1.086e-01 5.437e-02 1.998 0.045766 *

MARITAL_STATUS_NAME_DIVORCED 5.517e-03 9.374e-02 0.059 0.953065

MARITAL_STATUS_NAME_MARRIED 7.420e-02 7.526e-02 0.986 0.324218

MARITAL_STATUS_NAME_WIDOWED -5.724e-02 1.087e-01 -0.527 0.598468

TAX_CLASS_CD_0 -1.790e-01 3.203e-01 -0.559 0.576325

TAX_CLASS_CD_Unknown -2.912e-01 1.106e-01 -2.634 0.008437 **

LastTaxYear2_TAX_CLASS_CD_0 -6.301e-01 4.894e-01 -1.288 0.197913

LastTaxYear2_TAX_CLASS_CD_1E -9.679e-02 1.311e-01 -0.738 0.460271

LastTaxYear2_TAX_CLASS_CD_2 2.609e-01 5.655e-01 0.461 0.644510

LastTaxYear2_TAX_CLASS_CD_2F 3.959e-01 2.627e-01 1.507 0.131760

LastTaxYear2_TAX_CLASS_CD_Unknown 7.833e-02 1.152e-01 0.680 0.496526

LastTaxYear3_TAX_CLASS_CD_0 1.157e-01 7.602e-01 0.152 0.879038

LastTaxYear3_TAX_CLASS_CD_1 1.361e-01 9.289e-02 1.465 0.143017

LastTaxYear3_TAX_CLASS_CD_1E 2.040e-01 1.516e-01 1.345 0.178503

LastTaxYear3_TAX_CLASS_CD_2 2.528e-01 3.876e-01 0.652 0.514175

LastTaxYear3_TAX_CLASS_CD_2F 5.464e-01 2.113e-01 2.587 0.009695 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27833 on 20600 degrees of freedom

Residual deviance: 25470 on 20506 degrees of freedom

AIC: 25660

Number of Fisher Scoring iterations: 11

99



Three Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ., family = binomial,

data = threeMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8446 -0.9425 -0.6503 1.1687 2.4216

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.809e-01 2.867e-01 -3.422 0.000622 ***

Alder 4.321e-03 1.596e-03 2.708 0.006763 **

Kjønn 6.314e-02 3.702e-02 1.706 0.088072 .

ProductId 4.353e-02 2.569e-03 16.941 < 2e-16 ***

TransaksjonerMensPassiv 2.638e-02 8.478e-03 3.111 0.001864 **

AntallPassivPerioder 2.756e-01 1.568e-01 1.758 0.078778 .

MndUtenKortbrukiPerioden -1.010e-01 3.117e-03 -32.409 < 2e-16 ***

MndFraFørsteTilSisteBruk -2.787e-02 3.567e-03 -7.813 5.59e-15 ***

MndUtenKortbrukFørPerioden -6.354e-02 2.796e-02 -2.273 0.023054 *

APPLIED_CREDIT_LIMIT_AMT 1.542e-02 5.392e-02 0.286 0.774870

GRANTED_CREDIT_LIMIT_AMT 2.106e-02 5.398e-02 0.390 0.696495

GROSS_INCOME_AMT 3.398e+00 3.548e+00 0.958 0.338155

STUDENT_LOAN_AMT 2.611e-02 1.989e-02 1.312 0.189373

MORTGAGES_AMT -1.852e-03 4.518e-02 -0.041 0.967311

DebtRegisterNum -1.301e-02 1.948e-02 -0.668 0.504238

DebtRegisterIELA -2.418e-07 3.294e-07 -0.734 0.462890

HOMEOWNER_IND 8.500e-03 3.396e-02 0.250 0.802380

HOUSING_COOPERATIVE_IND 9.571e-03 2.368e-02 0.404 0.686099

NoOfChildren -2.342e-02 2.509e-02 -0.934 0.350550

FLI_AMT -2.614e-01 1.982e+00 -0.132 0.895047

SFLI_AMT 2.330e-01 1.979e+00 0.118 0.906268

SumAvailable -3.755e-02 3.899e-02 -0.963 0.335592

Applied_vs_Granted -2.445e-03 3.015e-02 -0.081 0.935375

SumPaidToCCL12 -2.112e-02 2.376e-02 -0.889 0.374200

SumPaidToRepaymentLoanL12 2.297e-02 2.773e-02 0.828 0.407491

CountPaidToRepaymentLoanL12 3.069e+00 5.216e+01 0.059 0.953075

CountPaidToCCL12 -3.889e-02 2.984e-01 -0.130 0.896304

CountDistinctPaidToRepaymentLoanL12 -3.131e+00 5.209e+01 -0.060 0.952062

CountDistinctPaidToCCL12 1.320e-02 2.982e-01 0.044 0.964698

CountRoundPaidToRepaymentLoanL12 -3.016e-02 2.215e-02 -1.361 0.173418
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CountRoundPaidToCCL12 6.311e-03 2.383e-02 0.265 0.791152

AIRLINE_12 -2.797e-02 3.060e-02 -0.914 0.360712

ELECTRIC_APPLIANCE_12 2.931e-02 2.665e-02 1.100 0.271381

FOOD_STORES_WAREHOUSE_12 -5.194e-02 2.852e-02 -1.821 0.068597 .

HOTEL_MOTEL_12 2.355e-02 3.080e-02 0.765 0.444458

HARDWARE_12 6.003e-03 2.475e-02 0.243 0.808362

INTERIOR_FURNISHINGS_12 1.149e-03 2.541e-02 0.045 0.963932

OTHER_RETAIL_12 3.423e-02 1.895e-02 1.806 0.070888 .

OTHER_SERVICES_12 -4.823e-03 1.839e-02 -0.262 0.793062

OTHER_TRANSPORT_12 -1.992e-02 2.140e-02 -0.931 0.351906

RECREATION_12 4.369e-02 1.912e-02 2.285 0.022334 *

RESTAURANTS_BARS_12 -5.049e-02 2.401e-02 -2.103 0.035477 *

SPORTING_TOY_STORES_12 -1.862e-02 1.807e-02 -1.030 0.302895

TRAVEL_AGENCIES_12 -3.541e-02 1.897e-02 -1.867 0.061919 .

VEHICLES_12 4.256e-02 1.775e-02 2.398 0.016497 *

QUASI_CASH_12 -2.363e-02 1.946e-02 -1.214 0.224688

AIRLINE_3 -9.022e-03 2.994e-02 -0.301 0.763185

ELECTRIC_APPLIANCE_3 1.206e-02 2.594e-02 0.465 0.642063

FOOD_STORES_WAREHOUSE_3 7.080e-02 2.367e-02 2.991 0.002784 **

HOTEL_MOTEL_3 4.054e-02 2.856e-02 1.420 0.155727

HARDWARE_3 6.586e-03 2.413e-02 0.273 0.784925

INTERIOR_FURNISHINGS_3 -2.326e-03 2.441e-02 -0.095 0.924098

AktiviPerioden 7.427e-01 1.763e-01 4.213 2.52e-05 ***

Missing_purchaseSeg -6.096e-01 9.863e-02 -6.181 6.39e-10 ***

Missing_application 6.312e-01 1.506e-01 4.191 2.78e-05 ***

Missing_purchaseHist -3.546e-02 6.431e-02 -0.551 0.581380

Missing_debt 1.624e-01 5.291e-02 3.069 0.002145 **

Missing_sumAvail 9.106e-01 7.702e-02 11.824 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web -1.235e-01 7.983e-02 -1.547 0.121771

ApplicationSalesChannel_Kredittbanken -1.622e+00 1.171e+00 -1.385 0.166127

ApplicationSalesChannel_Mobilbank 1.985e-01 6.269e-02 3.167 0.001541 **

ApplicationSalesChannel_Nettbank 3.753e-01 6.020e-02 6.234 4.56e-10 ***

ApplicationSalesChannel_Responsside 1.375e+01 1.970e+02 0.070 0.944362

EMPLOYMENT_TYPE_NAME_AT_HOME -1.149e+01 1.970e+02 -0.058 0.953488

EMPLOYMENT_TYPE_NAME_DISABILITY_ -1.165e+01 1.970e+02 -0.059 0.952852

PENSIONER

EMPLOYMENT_TYPE_NAME_OTHER -1.122e+01 1.970e+02 -0.057 0.954585

EMPLOYMENT_TYPE_NAME_RETIREE -1.170e+01 1.970e+02 -0.059 0.952649

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED 1.019e-01 1.273e-01 0.800 0.423625

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY -1.042e+01 1.970e+02 -0.053 0.957809

EMPLOYMENT_TYPE_NAME_STUDENT -1.116e+01 1.970e+02 -0.057 0.954808

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 1.399e-01 1.087e-01 1.288 0.197880
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EMPLOYMENT_TYPE_NAME_UNEMPLOYED -1.185e+01 1.970e+02 -0.060 0.952033

EMPLOYMENT_DURATION_DESC_Between_1_and_ -2.091e-02 6.983e-02 -0.299 0.764621

3_years

EMPLOYMENT_DURATION_DESC_Less_than_1_ 6.290e-02 8.215e-02 0.766 0.443866

year

EMPLOYMENT_DURATION_DESC_Not_set 1.144e+01 1.970e+02 0.058 0.953688

HABITATION_TYPE_NAME_APARTMENT -3.376e-02 1.223e-01 -0.276 0.782413

HABITATION_TYPE_NAME_OTHER -1.730e-01 1.334e-01 -1.297 0.194654

HABITATION_TYPE_NAME_PARENTS -1.361e-01 1.132e-01 -1.203 0.229019

HABITATION_TYPE_NAME_RENTER -3.206e-01 8.782e-02 -3.651 0.000261 ***

MARITAL_STATUS_NAME_COHABITING 1.286e-01 6.659e-02 1.931 0.053529 .

MARITAL_STATUS_NAME_DIVORCED 5.379e-02 1.113e-01 0.483 0.629016

MARITAL_STATUS_NAME_MARRIED 8.576e-02 9.062e-02 0.946 0.343951

MARITAL_STATUS_NAME_WIDOWED -1.600e-01 1.309e-01 -1.222 0.221569

TAX_CLASS_CD_0 -8.166e-01 5.159e-01 -1.583 0.113469

TAX_CLASS_CD_Unknown -2.871e-01 1.344e-01 -2.137 0.032631 *

LastTaxYear2_TAX_CLASS_CD_0 -7.983e-01 5.924e-01 -1.347 0.177822

LastTaxYear2_TAX_CLASS_CD_1 5.929e-03 1.390e-01 0.043 0.965979

LastTaxYear2_TAX_CLASS_CD_1E -2.036e-01 2.031e-01 -1.002 0.316313

LastTaxYear2_TAX_CLASS_CD_2 5.291e-01 5.742e-01 0.921 0.356834

LastTaxYear2_TAX_CLASS_CD_2F 1.032e-01 3.392e-01 0.304 0.760976

LastTaxYear3_TAX_CLASS_CD_0 -4.114e-01 1.121e+00 -0.367 0.713743

LastTaxYear3_TAX_CLASS_CD_1 2.146e-01 1.113e-01 1.928 0.053901 .

LastTaxYear3_TAX_CLASS_CD_1E 3.874e-01 1.799e-01 2.153 0.031306 *

LastTaxYear3_TAX_CLASS_CD_2 2.813e-01 4.526e-01 0.621 0.534313

LastTaxYear3_TAX_CLASS_CD_2F 7.049e-01 2.425e-01 2.906 0.003658 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20282 on 15552 degrees of freedom

Residual deviance: 18530 on 15458 degrees of freedom

AIC: 18720

Number of Fisher Scoring iterations: 10

Six Months Ahead

Call:
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glm(formula = as.factor(AktivEtterPassiv) ~ ., family = binomial,

data = sixMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0313 -0.8492 -0.6250 1.1277 2.6728

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.458e+00 4.366e-01 -3.340 0.000839 ***

Alder 5.984e-03 1.904e-03 3.143 0.001672 **

Kjønn 2.943e-02 4.478e-02 0.657 0.510973

ProductId 5.417e-02 3.163e-03 17.125 < 2e-16 ***

TransaksjonerMensPassiv 3.457e-02 1.064e-02 3.248 0.001163 **

AntallPassivPerioder -1.211e-02 3.002e-01 -0.040 0.967830

MndUtenKortbrukiPerioden -9.801e-02 3.914e-03 -25.045 < 2e-16 ***

MndFraFørsteTilSisteBruk -4.482e-02 5.047e-03 -8.879 < 2e-16 ***

MndUtenKortbrukFørPerioden -2.856e-02 3.778e-02 -0.756 0.449634

APPLIED_CREDIT_LIMIT_AMT 6.315e-02 6.503e-02 0.971 0.331527

GRANTED_CREDIT_LIMIT_AMT -3.625e-02 6.499e-02 -0.558 0.576978

GROSS_INCOME_AMT 5.774e+00 4.354e+00 1.326 0.184843

STUDENT_LOAN_AMT 4.533e-02 2.379e-02 1.906 0.056695 .

MORTGAGES_AMT -1.675e-01 9.755e-02 -1.717 0.086008 .

DebtRegisterNum -7.251e-04 2.403e-02 -0.030 0.975922

DebtRegisterIELA -2.858e-07 3.555e-07 -0.804 0.421392

HOMEOWNER_IND 5.801e-03 3.986e-02 0.146 0.884283

HOUSING_COOPERATIVE_IND 3.355e-02 2.863e-02 1.172 0.241304

NoOfChildren -6.566e-02 3.059e-02 -2.146 0.031854 *

FLI_AMT 7.707e-01 3.600e-01 2.141 0.032292 *

SFLI_AMT -7.099e-01 3.486e-01 -2.036 0.041734 *

SumAvailable -2.305e-01 9.622e-02 -2.396 0.016577 *

Applied_vs_Granted 2.904e-03 3.624e-02 0.080 0.936140

SumPaidToCCL12 -9.743e-03 3.085e-02 -0.316 0.752143

SumPaidToRepaymentLoanL12 3.465e-02 4.024e-02 0.861 0.389169

CountPaidToRepaymentLoanL12 -1.458e+01 2.281e+02 -0.064 0.949031

CountPaidToCCL12 -6.528e-01 9.656e-01 -0.676 0.498992

CountDistinctPaidToRepaymentLoanL12 1.451e+01 2.278e+02 0.064 0.949218

CountDistinctPaidToCCL12 6.207e-01 9.632e-01 0.644 0.519277

CountRoundPaidToRepaymentLoanL12 -8.831e-02 3.758e-02 -2.350 0.018787 *

CountRoundPaidToCCL12 -2.243e-02 3.169e-02 -0.708 0.479111

AIRLINE_12 4.252e-02 3.402e-02 1.250 0.211451

ELECTRIC_APPLIANCE_12 3.605e-02 3.181e-02 1.133 0.257099
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FOOD_STORES_WAREHOUSE_12 -4.835e-02 3.687e-02 -1.312 0.189678

HOTEL_MOTEL_12 2.588e-02 3.735e-02 0.693 0.488289

HARDWARE_12 -4.488e-02 3.529e-02 -1.272 0.203402

INTERIOR_FURNISHINGS_12 1.634e-04 3.444e-02 0.005 0.996215

OTHER_RETAIL_12 2.316e-02 2.167e-02 1.069 0.285255

OTHER_SERVICES_12 -5.500e-03 2.245e-02 -0.245 0.806458

OTHER_TRANSPORT_12 -1.420e-03 2.396e-02 -0.059 0.952750

RECREATION_12 2.492e-02 2.122e-02 1.174 0.240256

RESTAURANTS_BARS_12 -3.173e-02 2.601e-02 -1.220 0.222519

SPORTING_TOY_STORES_12 -2.085e-02 2.237e-02 -0.932 0.351268

TRAVEL_AGENCIES_12 2.445e-02 2.061e-02 1.186 0.235543

VEHICLES_12 3.198e-02 2.117e-02 1.511 0.130900

QUASI_CASH_12 -6.333e-03 2.398e-02 -0.264 0.791726

AIRLINE_3 -4.305e-02 3.445e-02 -1.250 0.211345

ELECTRIC_APPLIANCE_3 1.268e-02 3.086e-02 0.411 0.681189

FOOD_STORES_WAREHOUSE_3 5.093e-02 2.940e-02 1.733 0.083162 .

HOTEL_MOTEL_3 3.703e-02 3.481e-02 1.064 0.287490

HARDWARE_3 5.253e-02 3.086e-02 1.702 0.088738 .

INTERIOR_FURNISHINGS_3 1.410e-02 3.243e-02 0.435 0.663713

AktiviPerioden 9.680e-01 3.179e-01 3.045 0.002326 **

Missing_purchaseSeg -9.925e-01 1.284e-01 -7.727 1.10e-14 ***

Missing_application 5.712e-01 1.875e-01 3.046 0.002316 **

Missing_purchaseHist 1.033e-01 8.506e-02 1.214 0.224570

Missing_debt 1.917e-01 6.531e-02 2.934 0.003342 **

Missing_sumAvail 1.051e+00 8.713e-02 12.064 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web -2.067e-01 9.335e-02 -2.214 0.026813 *

ApplicationSalesChannel_Mobilbank 3.298e-01 7.894e-02 4.178 2.94e-05 ***

ApplicationSalesChannel_Nettbank 4.039e-01 7.553e-02 5.347 8.94e-08 ***

ApplicationSalesChannel_Responsside 1.568e+01 5.354e+02 0.029 0.976632

EMPLOYMENT_TYPE_NAME_AT_HOME -4.061e-01 9.464e-01 -0.429 0.667895

EMPLOYMENT_TYPE_NAME_DISABILITY_ -1.221e-01 1.309e-01 -0.933 0.350822

PENSIONER

EMPLOYMENT_TYPE_NAME_OTHER 1.334e-01 2.555e-01 0.522 0.601594

EMPLOYMENT_TYPE_NAME_RETIREE -2.219e-01 1.074e-01 -2.067 0.038774 *

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED 2.804e-02 1.555e-01 0.180 0.856854

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY -1.207e+01 3.783e+02 -0.032 0.974548

EMPLOYMENT_TYPE_NAME_STUDENT 4.344e-01 1.236e-01 3.516 0.000439 ***

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 1.848e-01 1.367e-01 1.351 0.176535

EMPLOYMENT_TYPE_NAME_UNEMPLOYED 7.418e-02 5.506e-01 0.135 0.892836

EMPLOYMENT_DURATION_DESC_Between_1_and_ 8.184e-02 8.735e-02 0.937 0.348803

3_years

EMPLOYMENT_DURATION_DESC_Less_than_1_ 4.941e-02 1.027e-01 0.481 0.630291
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year

HABITATION_TYPE_NAME_APARTMENT -8.610e-02 1.514e-01 -0.569 0.569506

HABITATION_TYPE_NAME_OTHER -1.834e-01 1.636e-01 -1.121 0.262260

HABITATION_TYPE_NAME_PARENTS -2.807e-01 1.396e-01 -2.010 0.044379 *

HABITATION_TYPE_NAME_RENTER -3.962e-01 1.088e-01 -3.641 0.000272 ***

MARITAL_STATUS_NAME_COHABITING 9.084e-02 8.234e-02 1.103 0.269936

MARITAL_STATUS_NAME_DIVORCED 1.512e-01 1.408e-01 1.074 0.282885

MARITAL_STATUS_NAME_MARRIED 1.026e-01 1.138e-01 0.901 0.367556

MARITAL_STATUS_NAME_WIDOWED -1.757e-01 1.610e-01 -1.092 0.275026

TAX_CLASS_CD_0 -1.318e-01 5.753e-01 -0.229 0.818781

TAX_CLASS_CD_Unknown -4.355e-01 1.670e-01 -2.607 0.009133 **

LastTaxYear2_TAX_CLASS_CD_0 -1.568e+00 1.072e+00 -1.463 0.143469

LastTaxYear2_TAX_CLASS_CD_1 -1.638e-01 1.717e-01 -0.954 0.340065

LastTaxYear2_TAX_CLASS_CD_1E -2.659e-01 2.481e-01 -1.072 0.283743

LastTaxYear2_TAX_CLASS_CD_2 5.985e-01 7.590e-01 0.789 0.430345

LastTaxYear2_TAX_CLASS_CD_2F 4.478e-01 3.685e-01 1.215 0.224274

LastTaxYear3_TAX_CLASS_CD_0 2.009e-01 1.163e+00 0.173 0.862921

LastTaxYear3_TAX_CLASS_CD_1 3.231e-01 1.419e-01 2.277 0.022789 *

LastTaxYear3_TAX_CLASS_CD_1E 4.125e-01 2.193e-01 1.881 0.060008 .

LastTaxYear3_TAX_CLASS_CD_2 4.695e-01 4.852e-01 0.968 0.333232

LastTaxYear3_TAX_CLASS_CD_2F 5.253e-01 2.850e-01 1.843 0.065292 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14205 on 11631 degrees of freedom

Residual deviance: 12939 on 11539 degrees of freedom

AIC: 13125

Number of Fisher Scoring iterations: 12

Twelve Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ., family = binomial,

data = twelveMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max
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-3.4488 -0.8089 -0.5739 1.0233 2.8925

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.126e+00 9.350e-01 -3.344 0.000826 ***

Alder 3.289e-03 2.547e-03 1.291 0.196648

Kjønn -3.017e-02 5.931e-02 -0.509 0.610981

ProductId 4.130e-02 4.729e-03 8.735 < 2e-16 ***

TransaksjonerMensPassiv 4.804e-02 1.445e-02 3.325 0.000885 ***

AntallPassivPerioder -7.070e-01 7.724e-01 -0.915 0.360003

MndUtenKortbrukiPerioden -1.249e-01 6.043e-03 -20.668 < 2e-16 ***

MndFraFørsteTilSisteBruk -7.304e-02 8.410e-03 -8.685 < 2e-16 ***

MndUtenKortbrukFørPerioden 3.479e-01 7.871e-02 4.420 9.85e-06 ***

APPLIED_CREDIT_LIMIT_AMT -2.460e-02 9.258e-02 -0.266 0.790500

GRANTED_CREDIT_LIMIT_AMT 1.121e-01 9.240e-02 1.213 0.225227

GROSS_INCOME_AMT 1.523e-01 3.537e+00 0.043 0.965659

STUDENT_LOAN_AMT 9.323e-02 3.248e-02 2.870 0.004103 **

MORTGAGES_AMT -9.804e-02 5.125e-02 -1.913 0.055747 .

DebtRegisterNum 2.282e-02 3.198e-02 0.713 0.475578

DebtRegisterIELA -3.879e-02 4.403e-02 -0.881 0.378268

HOMEOWNER_IND 3.596e-02 5.680e-02 0.633 0.526654

HOUSING_COOPERATIVE_IND 6.208e-02 3.982e-02 1.559 0.119004

NoOfChildren -1.192e-01 4.191e-02 -2.845 0.004435 **

FLI_AMT 5.245e-01 5.597e-01 0.937 0.348730

SFLI_AMT -4.304e-01 5.281e-01 -0.815 0.415091

SumAvailable -2.357e-01 9.552e-02 -2.467 0.013618 *

Applied_vs_Granted 1.514e-02 5.058e-02 0.299 0.764726

SumPaidToCCL12 3.557e-02 3.992e-02 0.891 0.372990

SumPaidToRepaymentLoanL12 1.276e-02 5.785e-02 0.221 0.825467

CountPaidToRepaymentLoanL12 5.459e-02 5.683e-02 0.961 0.336733

CountPaidToCCL12 -4.598e-02 5.200e-02 -0.884 0.376564

CountRoundPaidToRepaymentLoanL12 -9.196e-02 5.028e-02 -1.829 0.067419 .

CountRoundPaidToCCL12 -4.900e-02 4.786e-02 -1.024 0.305946

AIRLINE_12 -1.659e-02 3.955e-02 -0.419 0.674922

ELECTRIC_APPLIANCE_12 2.979e-02 4.125e-02 0.722 0.470245

FOOD_STORES_WAREHOUSE_12 -1.896e-02 4.346e-02 -0.436 0.662626

HOTEL_MOTEL_12 1.309e-02 5.970e-02 0.219 0.826436

HARDWARE_12 -1.011e-01 6.743e-02 -1.499 0.133847

INTERIOR_FURNISHINGS_12 1.964e-02 4.758e-02 0.413 0.679711

OTHER_RETAIL_12 -3.736e-04 2.810e-02 -0.013 0.989391

OTHER_SERVICES_12 1.239e-02 2.994e-02 0.414 0.678951

OTHER_TRANSPORT_12 2.766e-03 2.976e-02 0.093 0.925952
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RECREATION_12 2.442e-02 2.765e-02 0.883 0.377040

RESTAURANTS_BARS_12 6.658e-02 3.118e-02 2.135 0.032749 *

SPORTING_TOY_STORES_12 -2.938e-02 2.931e-02 -1.003 0.316099

TRAVEL_AGENCIES_12 5.573e-02 2.622e-02 2.125 0.033563 *

VEHICLES_12 3.145e-02 2.801e-02 1.123 0.261549

QUASI_CASH_12 1.480e-02 2.875e-02 0.515 0.606596

AIRLINE_3 5.701e-02 3.951e-02 1.443 0.149014

ELECTRIC_APPLIANCE_3 1.551e-02 4.001e-02 0.388 0.698295

FOOD_STORES_WAREHOUSE_3 4.061e-02 3.817e-02 1.064 0.287313

HOTEL_MOTEL_3 4.934e-02 5.414e-02 0.911 0.362197

HARDWARE_3 5.877e-02 4.768e-02 1.233 0.217752

INTERIOR_FURNISHINGS_3 -1.903e-02 4.502e-02 -0.423 0.672590

AktiviPerioden 1.571e+00 7.910e-01 1.986 0.046999 *

Missing_purchaseSeg -9.886e-01 1.750e-01 -5.648 1.62e-08 ***

Missing_application 1.642e+00 2.656e-01 6.182 6.33e-10 ***

Missing_purchaseHist 3.895e-01 1.380e-01 2.823 0.004757 **

Missing_debt 2.177e-01 8.822e-02 2.467 0.013609 *

Missing_sumAvail 1.225e+00 1.057e-01 11.586 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web 7.771e-02 1.213e-01 0.641 0.521674

ApplicationSalesChannel_Mobilbank 5.352e-01 1.097e-01 4.880 1.06e-06 ***

ApplicationSalesChannel_Nettbank 6.060e-01 1.003e-01 6.043 1.51e-09 ***

ApplicationSalesChannel_Responsside 1.598e+01 5.354e+02 0.030 0.976186

EMPLOYMENT_TYPE_NAME_AT_HOME -1.258e+00 1.292e+00 -0.974 0.330138

EMPLOYMENT_TYPE_NAME_DISABILITY_ 1.321e-01 1.790e-01 0.738 0.460406

PENSIONER

EMPLOYMENT_TYPE_NAME_OTHER -2.749e-01 3.788e-01 -0.726 0.467971

EMPLOYMENT_TYPE_NAME_RETIREE 1.001e-02 1.424e-01 0.070 0.943917

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED 2.964e-01 2.188e-01 1.355 0.175484

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY 1.430e+00 1.308e+00 1.093 0.274282

EMPLOYMENT_TYPE_NAME_STUDENT 3.066e-01 1.671e-01 1.835 0.066498 .

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 5.204e-01 1.806e-01 2.882 0.003955 **

EMPLOYMENT_TYPE_NAME_UNEMPLOYED 5.999e-01 6.575e-01 0.912 0.361535

EMPLOYMENT_DURATION_DESC_Between_1_ 1.069e-01 1.196e-01 0.894 0.371101

and_3_years

EMPLOYMENT_DURATION_DESC_Less_than_ -9.837e-03 1.435e-01 -0.069 0.945360

1_year

HABITATION_TYPE_NAME_APARTMENT -2.233e-01 2.137e-01 -1.045 0.296141

HABITATION_TYPE_NAME_OTHER -2.638e-01 2.234e-01 -1.181 0.237644

HABITATION_TYPE_NAME_PARENTS -2.937e-01 1.953e-01 -1.504 0.132502

HABITATION_TYPE_NAME_RENTER -3.764e-01 1.540e-01 -2.444 0.014509 *

MARITAL_STATUS_NAME_COHABITING 1.695e-01 1.131e-01 1.499 0.133832

MARITAL_STATUS_NAME_DIVORCED 3.221e-01 1.887e-01 1.707 0.087821 .
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MARITAL_STATUS_NAME_MARRIED 3.405e-01 1.510e-01 2.255 0.024118 *

MARITAL_STATUS_NAME_WIDOWED -8.560e-02 2.096e-01 -0.408 0.682962

TAX_CLASS_CD_0 -2.889e-01 6.028e-01 -0.479 0.631755

TAX_CLASS_CD_Unknown -9.054e-01 2.292e-01 -3.950 7.82e-05 ***

LastTaxYear2_TAX_CLASS_CD_0 -1.256e+01 2.289e+02 -0.055 0.956234

LastTaxYear2_TAX_CLASS_CD_1 -8.804e-02 2.141e-01 -0.411 0.680969

LastTaxYear2_TAX_CLASS_CD_1E -2.371e-01 3.178e-01 -0.746 0.455558

LastTaxYear2_TAX_CLASS_CD_2 4.471e-02 1.252e+00 0.036 0.971525

LastTaxYear2_TAX_CLASS_CD_2F 3.310e-01 4.712e-01 0.703 0.482358

LastTaxYear3_TAX_CLASS_CD_0 -1.201e+01 3.784e+02 -0.032 0.974683

LastTaxYear3_TAX_CLASS_CD_1 2.201e-02 1.775e-01 0.124 0.901322

LastTaxYear3_TAX_CLASS_CD_1E -1.504e-02 2.813e-01 -0.053 0.957352

LastTaxYear3_TAX_CLASS_CD_2 -2.919e-01 7.619e-01 -0.383 0.701625

LastTaxYear3_TAX_CLASS_CD_2F -2.629e-01 3.845e-01 -0.684 0.494212

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8370.6 on 7070 degrees of freedom

Residual deviance: 7473.4 on 6980 degrees of freedom

AIC: 7655.4

Number of Fisher Scoring iterations: 12

B.2 BIC-Reduced Logistic Models

One Month Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ProductId +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

CountPaidToRepaymentLoanL12 + ELECTRIC_APPLIANCE_12 +

RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 +

VEHICLES_12 + AktiviPerioden + Missing_purchaseSeg + Missing_application +

Missing_sumAvail + ApplicationSalesChannel_Kredittbanken +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

TAX_CLASS_CD_Unknown, family = binomial, data = oneMo_train.stand)
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Deviance Residuals:

Min 1Q Median 3Q Max

-1.8738 -1.0217 -0.6442 1.1523 2.5874

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.328382 0.042806 -7.671 1.70e-14 ***

ProductId 0.033482 0.001964 17.045 < 2e-16 ***

MndUtenKortbrukiPerioden -0.095664 0.002465 -38.802 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.016161 0.002520 -6.414 1.42e-10 ***

CountPaidToRepaymentLoanL12 -0.055812 0.015613 -3.575 0.000351 ***

ELECTRIC_APPLIANCE_12 0.077437 0.015299 5.062 4.16e-07 ***

RESTAURANTS_BARS_12 -0.137324 0.019213 -7.147 8.85e-13 ***

TRAVEL_AGENCIES_12 -0.067830 0.016563 -4.095 4.21e-05 ***

VEHICLES_12 0.051524 0.015252 3.378 0.000730 ***

AktiviPerioden 0.935135 0.058692 15.933 < 2e-16 ***

Missing_purchaseSeg -0.552491 0.081244 -6.800 1.04e-11 ***

Missing_application 0.537391 0.091566 5.869 4.39e-09 ***

Missing_sumAvail 0.924734 0.065749 14.065 < 2e-16 ***

ApplicationSalesChannel_Kredittbanken -2.937734 0.738662 -3.977 6.98e-05 ***

ApplicationSalesChannel_Mobilbank 0.200721 0.047693 4.209 2.57e-05 ***

ApplicationSalesChannel_Nettbank 0.303978 0.047265 6.431 1.26e-10 ***

HABITATION_TYPE_NAME_PARENTS -0.216195 0.062398 -3.465 0.000531 ***

HABITATION_TYPE_NAME_RENTER -0.232375 0.045329 -5.126 2.95e-07 ***

TAX_CLASS_CD_Unknown -0.309417 0.083260 -3.716 0.000202 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27833 on 20600 degrees of freedom

Residual deviance: 25627 on 20582 degrees of freedom

AIC: 25665

Number of Fisher Scoring iterations: 4

Three Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ProductId +
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MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

CountDistinctPaidToRepaymentLoanL12 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_sumAvail +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

HABITATION_TYPE_NAME_RENTER + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2F,

family = binomial, data = threeMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7648 -0.9528 -0.6626 1.1821 2.3459

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.931161 0.080196 -11.611 < 2e-16 ***

ProductId 0.041939 0.002288 18.332 < 2e-16 ***

MndUtenKortbrukiPerioden -0.096625 0.002972 -32.511 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.026899 0.003203 -8.399 < 2e-16 ***

CountDistinctPaidToRepaymentLoanL12 -0.070014 0.019459 -3.598 0.000321 ***

AktiviPerioden 1.070996 0.070581 15.174 < 2e-16 ***

Missing_purchaseSeg -0.653350 0.097150 -6.725 1.75e-11 ***

Missing_application 0.460440 0.072250 6.373 1.86e-10 ***

Missing_sumAvail 0.902312 0.075089 12.017 < 2e-16 ***

ApplicationSalesChannel_Mobilbank 0.202315 0.058351 3.467 0.000526 ***

ApplicationSalesChannel_Nettbank 0.386424 0.056812 6.802 1.03e-11 ***

HABITATION_TYPE_NAME_RENTER -0.239493 0.054578 -4.388 1.14e-05 ***

LastTaxYear3_TAX_CLASS_CD_1 0.314073 0.062697 5.009 5.46e-07 ***

LastTaxYear3_TAX_CLASS_CD_1E 0.302232 0.071652 4.218 2.46e-05 ***

LastTaxYear3_TAX_CLASS_CD_2F 0.698322 0.177502 3.934 8.35e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20282 on 15552 degrees of freedom

Residual deviance: 18703 on 15538 degrees of freedom

AIC: 18733

Number of Fisher Scoring iterations: 4
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Six Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ProductId +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk + FLI_AMT +

SFLI_AMT + SumAvailable + CountPaidToCCL12 +

CountRoundPaidToRepaymentLoanL12 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_sumAvail +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

HABITATION_TYPE_NAME_RENTER + TAX_CLASS_CD_Unknown, family = binomial,

data = sixMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8332 -0.8528 -0.6386 1.1521 2.6377

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.074176 0.065616 -16.371 < 2e-16 ***

ProductId 0.051171 0.002854 17.930 < 2e-16 ***

MndUtenKortbrukiPerioden -0.093470 0.003751 -24.918 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.044191 0.004487 -9.850 < 2e-16 ***

FLI_AMT 1.012790 0.296969 3.410 0.000649 ***

SFLI_AMT -0.965572 0.291578 -3.312 0.000928 ***

SumAvailable -0.160942 0.071157 -2.262 0.023711 *

CountPaidToCCL12 -0.083715 0.026047 -3.214 0.001309 **

CountRoundPaidToRepaymentLoanL12 -0.114942 0.035112 -3.274 0.001062 **

AktiviPerioden 1.017772 0.088727 11.471 < 2e-16 ***

Missing_purchaseSeg -1.059101 0.126964 -8.342 < 2e-16 ***

Missing_application 0.558695 0.131255 4.257 2.08e-05 ***

Missing_sumAvail 1.050138 0.085348 12.304 < 2e-16 ***

ApplicationSalesChannel_Mobilbank 0.307946 0.072269 4.261 2.03e-05 ***

ApplicationSalesChannel_Nettbank 0.441822 0.070639 6.255 3.98e-10 ***

HABITATION_TYPE_NAME_RENTER -0.241074 0.069461 -3.471 0.000519 ***

TAX_CLASS_CD_Unknown -0.504223 0.123455 -4.084 4.42e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14205 on 11631 degrees of freedom

Residual deviance: 13078 on 11615 degrees of freedom
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AIC: 13112

Number of Fisher Scoring iterations: 5

Twelve Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ ProductId +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + STUDENT_LOAN_AMT +

RESTAURANTS_BARS_12 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_sumAvail + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + HABITATION_TYPE_NAME_RENTER +

TAX_CLASS_CD_Unknown, family = binomial,

data = twelveMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.5085 -0.8144 -0.5969 1.0738 2.8695

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.813302 0.460020 -8.289 < 2e-16 ***

ProductId 0.038854 0.004270 9.098 < 2e-16 ***

MndUtenKortbrukiPerioden -0.117014 0.005756 -20.328 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.071509 0.007573 -9.443 < 2e-16 ***

MndUtenKortbrukFørPerioden 0.375998 0.079058 4.756 1.98e-06 ***

STUDENT_LOAN_AMT 0.087110 0.028026 3.108 0.00188 **

RESTAURANTS_BARS_12 0.085582 0.027691 3.091 0.00200 **

AktiviPerioden 0.919066 0.130306 7.053 1.75e-12 ***

Missing_purchaseSeg -1.023434 0.171819 -5.956 2.58e-09 ***

Missing_application 1.600242 0.190185 8.414 < 2e-16 ***

Missing_purchaseHist 0.510372 0.106488 4.793 1.64e-06 ***

Missing_sumAvail 1.240472 0.102757 12.072 < 2e-16 ***

ApplicationSalesChannel_Mobilbank 0.477960 0.098934 4.831 1.36e-06 ***

ApplicationSalesChannel_Nettbank 0.581828 0.093229 6.241 4.35e-10 ***

HABITATION_TYPE_NAME_RENTER -0.278761 0.090187 -3.091 0.00200 **

TAX_CLASS_CD_Unknown -0.961818 0.177992 -5.404 6.53e-08 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8370.6 on 7070 degrees of freedom

Residual deviance: 7601.9 on 7055 degrees of freedom

AIC: 7633.9

Number of Fisher Scoring iterations: 4

B.3 AIC-Reduced Logistic Models

One Month Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + APPLIED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT +

STUDENT_LOAN_AMT + SumPaidToCCL12 + CountPaidToRepaymentLoanL12 +

CountDistinctPaidToRepaymentLoanL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + INTERIOR_FURNISHINGS_12 +

OTHER_TRANSPORT_12 + RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 +

VEHICLES_12 + QUASI_CASH_12 + HOTEL_MOTEL_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_sumAvail +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_OTHER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED + `EMPLOYMENT_DURATION_DESC_Not set` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_2F,

family = binomial, data = oneMo_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0298 -1.0124 -0.6342 1.1442 2.8914
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.643676 0.144590 -4.452 8.52e-06 ***

Alder 0.002275 0.001298 1.752 0.079775 .

ProductId 0.033517 0.002029 16.521 < 2e-16 ***

TransaksjonerMensPassiv 0.018717 0.007500 2.495 0.012579 *

AntallPassivPerioder 0.249558 0.119817 2.083 0.037267 *

MndUtenKortbrukiPerioden -0.098869 0.002569 -38.488 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.018672 0.002664 -7.008 2.42e-12 ***

APPLIED_CREDIT_LIMIT_AMT 0.042843 0.016955 2.527 0.011510 *

GROSS_INCOME_AMT 1.457986 2.825269 0.516 0.605818

STUDENT_LOAN_AMT 0.031700 0.016287 1.946 0.051619 .

SumPaidToCCL12 -0.033037 0.015815 -2.089 0.036714 *

CountPaidToRepaymentLoanL12 -13.456352 115.127981 -0.117 0.906954

CountDistinctPaidToRepaymentLoanL12 13.388415 115.005962 0.116 0.907324

AIRLINE_12 -0.051040 0.016499 -3.094 0.001978 **

ELECTRIC_APPLIANCE_12 0.064854 0.015604 4.156 3.24e-05 ***

FOOD_STORES_WAREHOUSE_12 0.054000 0.017537 3.079 0.002076 **

HOTEL_MOTEL_12 0.073784 0.027363 2.696 0.007007 **

INTERIOR_FURNISHINGS_12 0.038066 0.015661 2.431 0.015075 *

OTHER_TRANSPORT_12 -0.047288 0.019447 -2.432 0.015029 *

RESTAURANTS_BARS_12 -0.152637 0.021741 -7.021 2.21e-12 ***

TRAVEL_AGENCIES_12 -0.064443 0.016573 -3.889 0.000101 ***

VEHICLES_12 0.045607 0.015392 2.963 0.003047 **

QUASI_CASH_12 -0.032552 0.016496 -1.973 0.048461 *

HOTEL_MOTEL_3 -0.087751 0.026645 -3.293 0.000990 ***

AktiviPerioden 0.688626 0.136870 5.031 4.87e-07 ***

Missing_purchaseSeg -0.545571 0.081793 -6.670 2.56e-11 ***

Missing_application 0.495368 0.097019 5.106 3.29e-07 ***

Missing_sumAvail 0.923957 0.066280 13.940 < 2e-16 ***

ApplicationSalesChannel_Kredittbanken -2.880769 0.740546 -3.890 0.000100 ***

ApplicationSalesChannel_Mobilbank 0.186465 0.049053 3.801 0.000144 ***

ApplicationSalesChannel_Nettbank 0.297267 0.048048 6.187 6.14e-10 ***

ApplicationSalesChannel_Responsside 14.608146 324.743717 0.045 0.964120

EMPLOYMENT_TYPE_NAME_DISABILITY_ -0.236025 0.103988 -2.270 0.023224 *

PENSIONER

EMPLOYMENT_TYPE_NAME_OTHER -0.401415 0.167033 -2.403 0.016252 *

EMPLOYMENT_TYPE_NAME_RETIREE -0.316626 0.096512 -3.281 0.001035 **

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 0.164424 0.087903 1.871 0.061412 .

EMPLOYMENT_TYPE_NAME_UNEMPLOYED -0.956326 0.418732 -2.284 0.022380 *

EMPLOYMENT_DURATION_DESC_Not_set 0.135832 0.067944 1.999 0.045589 *

HABITATION_TYPE_NAME_APARTMENT -0.164521 0.083541 -1.969 0.048913 *
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HABITATION_TYPE_NAME_OTHER -0.189757 0.097013 -1.956 0.050466 .

HABITATION_TYPE_NAME_PARENTS -0.214892 0.074379 -2.889 0.003863 **

HABITATION_TYPE_NAME_RENTER -0.266087 0.051821 -5.135 2.83e-07 ***

MARITAL_STATUS_NAME_COHABITING 0.085858 0.046597 1.843 0.065392 .

TAX_CLASS_CD_Unknown -0.290187 0.085961 -3.376 0.000736 ***

LastTaxYear2_TAX_CLASS_CD_0 -0.709482 0.448860 -1.581 0.113963

LastTaxYear2_TAX_CLASS_CD_2F 0.461706 0.243735 1.894 0.058186 .

LastTaxYear3_TAX_CLASS_CD_2F 0.376683 0.167460 2.249 0.024488 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27833 on 20600 degrees of freedom

Residual deviance: 25493 on 20554 degrees of freedom

AIC: 25587

Number of Fisher Scoring iterations: 11

Three Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ Alder + Kjønn +

ProductId + TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + GRANTED_CREDIT_LIMIT_AMT +

GROSS_INCOME_AMT + STUDENT_LOAN_AMT + SumAvailable +

SumPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountRoundPaidToRepaymentLoanL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + OTHER_RETAIL_12 + RECREATION_12 +

RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

FOOD_STORES_WAREHOUSE_3 + HOTEL_MOTEL_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_debt +

Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Not set` + HABITATION_TYPE_NAME_RENTER +
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MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2F,

family = binomial, data = threeMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8169 -0.9439 -0.6524 1.1681 2.4275

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.060485 0.256646 -4.132 3.59e-05 ***

Alder 0.004484 0.001518 2.954 0.003140 **

Kjønn 0.065303 0.036501 1.789 0.073602 .

ProductId 0.043433 0.002446 17.756 < 2e-16 ***

TransaksjonerMensPassiv 0.025601 0.008448 3.031 0.002441 **

AntallPassivPerioder 0.276579 0.156491 1.767 0.077164 .

MndUtenKortbrukiPerioden -0.100823 0.003104 -32.477 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.028295 0.003492 -8.102 5.41e-16 ***

MndUtenKortbrukFørPerioden -0.063284 0.027763 -2.279 0.022642 *

GRANTED_CREDIT_LIMIT_AMT 0.036949 0.020753 1.780 0.075004 .

GROSS_INCOME_AMT 3.126856 3.509776 0.891 0.372983

STUDENT_LOAN_AMT 0.032414 0.019241 1.685 0.092063 .

SumAvailable -0.037428 0.027425 -1.365 0.172328

SumPaidToCCL12 -0.029530 0.018814 -1.570 0.116522

CountDistinctPaidToRepaymentLoanL12 -0.048619 0.022032 -2.207 0.027334 *

CountRoundPaidToRepaymentLoanL12 -0.030705 0.021740 -1.412 0.157841

AIRLINE_12 -0.033301 0.018534 -1.797 0.072370 .

ELECTRIC_APPLIANCE_12 0.038668 0.017419 2.220 0.026431 *

FOOD_STORES_WAREHOUSE_12 -0.056318 0.027782 -2.027 0.042648 *

OTHER_RETAIL_12 0.032982 0.018655 1.768 0.077068 .

RECREATION_12 0.044233 0.019008 2.327 0.019961 *

RESTAURANTS_BARS_12 -0.055033 0.023613 -2.331 0.019775 *

TRAVEL_AGENCIES_12 -0.035708 0.018914 -1.888 0.059036 .

VEHICLES_12 0.042410 0.017590 2.411 0.015908 *

FOOD_STORES_WAREHOUSE_3 0.070320 0.023411 3.004 0.002667 **

HOTEL_MOTEL_3 0.056398 0.017785 3.171 0.001519 **

AktiviPerioden 0.752574 0.175927 4.278 1.89e-05 ***

Missing_purchaseSeg -0.606229 0.098245 -6.171 6.80e-10 ***

Missing_application 0.654684 0.120262 5.444 5.22e-08 ***

Missing_debt 0.159305 0.051329 3.104 0.001912 **
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Missing_sumAvail 0.915657 0.076654 11.945 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web -0.132594 0.078057 -1.699 0.089378 .

ApplicationSalesChannel_Kredittbanken -1.621884 1.172523 -1.383 0.166590

ApplicationSalesChannel_Mobilbank 0.188112 0.061032 3.082 0.002055 **

ApplicationSalesChannel_Nettbank 0.372059 0.058696 6.339 2.32e-10 ***

ApplicationSalesChannel_Responsside 12.771746 119.468129 0.107 0.914864

EMPLOYMENT_TYPE_NAME_DISABILITY_ -0.437763 0.123506 -3.544 0.000393 ***

PENSIONER

EMPLOYMENT_TYPE_NAME_RETIREE -0.438856 0.112030 -3.917 8.95e-05 ***

EMPLOYMENT_TYPE_NAME_UNEMPLOYED -0.662715 0.433442 -1.529 0.126274

`EMPLOYMENT_DURATION_DESC_Not set` 0.204036 0.077637 2.628 0.008587 **

HABITATION_TYPE_NAME_RENTER -0.257861 0.056815 -4.539 5.66e-06 ***

MARITAL_STATUS_NAME_COHABITING 0.121696 0.059069 2.060 0.039375 *

MARITAL_STATUS_NAME_WIDOWED -0.182017 0.124137 -1.466 0.142577

TAX_CLASS_CD_0 -0.882844 0.503709 -1.753 0.079656 .

TAX_CLASS_CD_Unknown -0.293733 0.114929 -2.556 0.010595 *

LastTaxYear2_TAX_CLASS_CD_0 -0.826435 0.571894 -1.445 0.148434

LastTaxYear2_TAX_CLASS_CD_2 0.711913 0.489702 1.454 0.146011

LastTaxYear3_TAX_CLASS_CD_1 0.224174 0.083150 2.696 0.007017 **

LastTaxYear3_TAX_CLASS_CD_1E 0.253619 0.096086 2.639 0.008303 **

LastTaxYear3_TAX_CLASS_CD_2F 0.643217 0.187194 3.436 0.000590 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20282 on 15552 degrees of freedom

Residual deviance: 18554 on 15503 degrees of freedom

AIC: 18654

Number of Fisher Scoring iterations: 9

Six Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + APPLIED_CREDIT_LIMIT_AMT +

GROSS_INCOME_AMT + STUDENT_LOAN_AMT + MORTGAGES_AMT + NoOfChildren +

FLI_AMT + SFLI_AMT + SumAvailable + CountPaidToCCL12 +
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CountRoundPaidToRepaymentLoanL12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HARDWARE_12 + VEHICLES_12 +

FOOD_STORES_WAREHOUSE_3 + HOTEL_MOTEL_3 + HARDWARE_3 +

AktiviPerioden + Missing_purchaseSeg + Missing_application +

Missing_purchaseHist + Missing_debt + Missing_sumAvail +

`ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_STUDENT + HABITATION_TYPE_NAME_PARENTS +

HABITATION_TYPE_NAME_RENTER + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_2F + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2F,

family = binomial, data = sixMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0722 -0.8490 -0.6262 1.1326 2.6461

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.578772 0.161477 -9.777 < 2e-16 ***

Alder 0.005650 0.001836 3.078 0.00209 **

ProductId 0.053622 0.003121 17.183 < 2e-16 ***

TransaksjonerMensPassiv 0.032023 0.010576 3.028 0.00246 **

MndUtenKortbrukiPerioden -0.097710 0.003892 -25.105 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.044289 0.004853 -9.126 < 2e-16 ***

APPLIED_CREDIT_LIMIT_AMT 0.038435 0.024005 1.601 0.10935

GROSS_INCOME_AMT 5.165930 4.376575 1.180 0.23786

STUDENT_LOAN_AMT 0.057274 0.023151 2.474 0.01336 *

MORTGAGES_AMT -0.178094 0.095897 -1.857 0.06329 .

NoOfChildren -0.059203 0.029355 -2.017 0.04372 *

FLI_AMT 0.921039 0.349880 2.632 0.00848 **

SFLI_AMT -0.856644 0.339196 -2.526 0.01155 *

SumAvailable -0.243705 0.094153 -2.588 0.00964 **

CountPaidToCCL12 -0.047769 0.030108 -1.587 0.11261

CountRoundPaidToRepaymentLoanL12 -0.104598 0.034557 -3.027 0.00247 **

ELECTRIC_APPLIANCE_12 0.044685 0.020453 2.185 0.02890 *

FOOD_STORES_WAREHOUSE_12 -0.056608 0.034469 -1.642 0.10053

HARDWARE_12 -0.048602 0.034478 -1.410 0.15864

VEHICLES_12 0.031079 0.020960 1.483 0.13814

FOOD_STORES_WAREHOUSE_3 0.051834 0.029044 1.785 0.07432 .
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HOTEL_MOTEL_3 0.054278 0.020220 2.684 0.00727 **

HARDWARE_3 0.055762 0.030143 1.850 0.06433 .

AktiviPerioden 0.956526 0.092434 10.348 < 2e-16 ***

Missing_purchaseSeg -1.008413 0.127627 -7.901 2.76e-15 ***

Missing_application 0.513700 0.161417 3.182 0.00146 **

Missing_purchaseHist 0.133626 0.080870 1.652 0.09846 .

Missing_debt 0.199647 0.063970 3.121 0.00180 **

Missing_sumAvail 1.061934 0.086457 12.283 < 2e-16 ***

ApplicationSalesChannel_Autentisert_web -0.207036 0.092028 -2.250 0.02447 *

ApplicationSalesChannel_Mobilbank 0.333297 0.077030 4.327 1.51e-05 ***

ApplicationSalesChannel_Nettbank 0.410816 0.073877 5.561 2.68e-08 ***

ApplicationSalesChannel_Responsside 12.684270 119.468131 0.106 0.91545

EMPLOYMENT_TYPE_NAME_RETIREE -0.201002 0.103593 -1.940 0.05234 .

EMPLOYMENT_TYPE_NAME_STUDENT 0.330019 0.100717 3.277 0.00105 **

HABITATION_TYPE_NAME_PARENTS -0.250499 0.114370 -2.190 0.02851 *

HABITATION_TYPE_NAME_RENTER -0.365549 0.084182 -4.342 1.41e-05 ***

MARITAL_STATUS_NAME_WIDOWED -0.231914 0.152268 -1.523 0.12774

TAX_CLASS_CD_Unknown -0.398041 0.146916 -2.709 0.00674 **

LastTaxYear2_TAX_CLASS_CD_0 -1.408737 1.065091 -1.323 0.18595

LastTaxYear2_TAX_CLASS_CD_2F 0.717781 0.302572 2.372 0.01768 *

LastTaxYear3_TAX_CLASS_CD_1 0.183632 0.103732 1.770 0.07669 .

LastTaxYear3_TAX_CLASS_CD_1E 0.207843 0.123565 1.682 0.09256 .

LastTaxYear3_TAX_CLASS_CD_2F 0.358123 0.236121 1.517 0.12934

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14205 on 11631 degrees of freedom

Residual deviance: 12968 on 11588 degrees of freedom

AIC: 13056

Number of Fisher Scoring iterations: 9

Twelve Months Ahead

Call:

glm(formula = as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + MndUtenKortbrukFørPerioden +
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GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + NoOfChildren + SumAvailable +

CountPaidToRepaymentLoanL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + ELECTRIC_APPLIANCE_12 + RESTAURANTS_BARS_12 +

TRAVEL_AGENCIES_12 + AIRLINE_3 + HOTEL_MOTEL_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_1E,

family = binomial, data = twelveMos_train.stand)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4909 -0.8119 -0.5792 1.0316 2.8944

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.939538 0.488662 -8.062 7.51e-16 ***

Alder 0.003258 0.002150 1.516 0.129618

ProductId 0.041622 0.004473 9.304 < 2e-16 ***

TransaksjonerMensPassiv 0.048634 0.014371 3.384 0.000714 ***

MndUtenKortbrukiPerioden -0.123659 0.005992 -20.638 < 2e-16 ***

MndFraFørsteTilSisteBruk -0.073224 0.007722 -9.483 < 2e-16 ***

MndUtenKortbrukFørPerioden 0.356055 0.078481 4.537 5.71e-06 ***

GRANTED_CREDIT_LIMIT_AMT 0.093554 0.033849 2.764 0.005712 **

GROSS_INCOME_AMT 0.498816 8.416553 0.059 0.952740

STUDENT_LOAN_AMT 0.092155 0.030298 3.042 0.002353 **

MORTGAGES_AMT -0.050686 0.039323 -1.289 0.197413

NoOfChildren -0.114638 0.037678 -3.043 0.002346 **

SumAvailable -0.119885 0.048568 -2.468 0.013573 *

CountPaidToRepaymentLoanL12 0.062232 0.036718 1.695 0.090099 .

CountRoundPaidToRepaymentLoanL12 -0.089410 0.049173 -1.818 0.069025 .

CountRoundPaidToCCL12 -0.061370 0.043466 -1.412 0.157972

ELECTRIC_APPLIANCE_12 0.040500 0.026474 1.530 0.126070

RESTAURANTS_BARS_12 0.074161 0.028445 2.607 0.009129 **

TRAVEL_AGENCIES_12 0.055719 0.026115 2.134 0.032879 *

AIRLINE_3 0.046686 0.028340 1.647 0.099487 .
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HOTEL_MOTEL_3 0.060163 0.026489 2.271 0.023130 *

AktiviPerioden 0.857955 0.132616 6.469 9.84e-11 ***

Missing_purchaseSeg -1.003063 0.173800 -5.771 7.86e-09 ***

Missing_application 1.603937 0.222330 7.214 5.42e-13 ***

Missing_purchaseHist 0.399962 0.125576 3.185 0.001447 **

Missing_debt 0.216962 0.085942 2.525 0.011586 *

Missing_sumAvail 1.229772 0.104318 11.789 < 2e-16 ***

ApplicationSalesChannel_Mobilbank 0.529393 0.105932 4.997 5.81e-07 ***

ApplicationSalesChannel_Nettbank 0.597462 0.096606 6.184 6.23e-10 ***

ApplicationSalesChannel_Responsside 15.974622 535.411221 0.030 0.976198

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED 0.330799 0.212946 1.553 0.120318

EMPLOYMENT_TYPE_NAME_STUDENT 0.263377 0.138084 1.907 0.056473 .

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE 0.527986 0.176814 2.986 0.002826 **

HABITATION_TYPE_NAME_OTHER -0.321286 0.203601 -1.578 0.114562

HABITATION_TYPE_NAME_PARENTS -0.344628 0.161299 -2.137 0.032633 *

HABITATION_TYPE_NAME_RENTER -0.444230 0.115165 -3.857 0.000115 ***

MARITAL_STATUS_NAME_COHABITING 0.190046 0.108830 1.746 0.080765 .

MARITAL_STATUS_NAME_DIVORCED 0.334454 0.183054 1.827 0.067687 .

MARITAL_STATUS_NAME_MARRIED 0.374733 0.138134 2.713 0.006671 **

TAX_CLASS_CD_Unknown -0.906375 0.191052 -4.744 2.09e-06 ***

LastTaxYear2_TAX_CLASS_CD_0 -12.482261 229.838510 -0.054 0.956689

LastTaxYear2_TAX_CLASS_CD_1E -0.216528 0.135968 -1.592 0.111273

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8370.6 on 7070 degrees of freedom

Residual deviance: 7498.4 on 7029 degrees of freedom

AIC: 7582.4

Number of Fisher Scoring iterations: 12

B.4 ANOVA Analysis of BIC-Reduced and Full Logistic Models

One Month Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ ProductId + MndUtenKortbrukiPerioden +
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MndFraFørsteTilSisteBruk + CountPaidToRepaymentLoanL12 +

ELECTRIC_APPLIANCE_12 + RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 +

VEHICLES_12 + AktiviPerioden + Missing_purchaseSeg + Missing_application +

Missing_sumAvail + ApplicationSalesChannel_Kredittbanken +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

TAX_CLASS_CD_Unknown

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountDistinctPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_AT_HOME + EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_OTHER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY +

EMPLOYMENT_TYPE_NAME_STUDENT + EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

`EMPLOYMENT_DURATION_DESC_Not set` + HABITATION_TYPE_NAME_APARTMENT +

HABITATION_TYPE_NAME_OTHER + HABITATION_TYPE_NAME_PARENTS +

HABITATION_TYPE_NAME_RENTER + MARITAL_STATUS_NAME_COHABITING +

MARITAL_STATUS_NAME_DIVORCED + MARITAL_STATUS_NAME_MARRIED +

MARITAL_STATUS_NAME_WIDOWED + TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_1E +
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LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear2_TAX_CLASS_CD_Unknown + LastTaxYear3_TAX_CLASS_CD_0 +

LastTaxYear3_TAX_CLASS_CD_1 + LastTaxYear3_TAX_CLASS_CD_1E +

LastTaxYear3_TAX_CLASS_CD_2 + LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 20582 25626

2 20506 25470 76 156.87 1.457e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Three Months Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ ProductId + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + CountDistinctPaidToRepaymentLoanL12 +

AktiviPerioden + Missing_purchaseSeg + Missing_application +

Missing_sumAvail + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + HABITATION_TYPE_NAME_RENTER +

LastTaxYear3_TAX_CLASS_CD_1 + LastTaxYear3_TAX_CLASS_CD_1E +

LastTaxYear3_TAX_CLASS_CD_2F

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + MndUtenKortbrukFørPerioden +

APPLIED_CREDIT_LIMIT_AMT + GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT +

STUDENT_LOAN_AMT + MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA +

HOMEOWNER_IND + HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 + CountPaidToCCL12 +

CountDistinctPaidToRepaymentLoanL12 + CountDistinctPaidToCCL12 +

CountRoundPaidToRepaymentLoanL12 + CountRoundPaidToCCL12 + AIRLINE_12 +

ELECTRIC_APPLIANCE_12 + FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 +

HARDWARE_12 + INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 +

OTHER_SERVICES_12 + OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +
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EMPLOYMENT_TYPE_NAME_AT_HOME + EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_OTHER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY +

EMPLOYMENT_TYPE_NAME_STUDENT + EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

`EMPLOYMENT_DURATION_DESC_Not set` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15538 18703

2 15458 18530 80 172.45 9.722e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Six Months Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ ProductId + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + FLI_AMT + SFLI_AMT + SumAvailable +

CountPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_sumAvail +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

HABITATION_TYPE_NAME_RENTER + TAX_CLASS_CD_Unknown

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +
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SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountDistinctPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside + EMPLOYMENT_TYPE_NAME_AT_HOME +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_OTHER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED +

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 11615 13078

2 11539 12939 76 139.28 1.313e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Twelve Months Ahead

Analysis of Deviance Table
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Model 1: as.factor(AktivEtterPassiv) ~ ProductId + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + MndUtenKortbrukFørPerioden +

STUDENT_LOAN_AMT + RESTAURANTS_BARS_12 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_sumAvail + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + HABITATION_TYPE_NAME_RENTER +

TAX_CLASS_CD_Unknown

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside + EMPLOYMENT_TYPE_NAME_AT_HOME +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_OTHER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED +

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +
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LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7055 7601.9

2 6980 7473.4 75 128.42 0.0001217 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

B.5 ANOVA Analysis of AIC-Reduced and Full Logistic Models

One Month Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

APPLIED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

SumPaidToCCL12 + CountPaidToRepaymentLoanL12 +

CountDistinctPaidToRepaymentLoanL12 + AIRLINE_12 +

ELECTRIC_APPLIANCE_12 + FOOD_STORES_WAREHOUSE_12 +

HOTEL_MOTEL_12 + INTERIOR_FURNISHINGS_12 + OTHER_TRANSPORT_12 +

RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + HOTEL_MOTEL_3 + AktiviPerioden + Missing_purchaseSeg +

Missing_application + Missing_sumAvail +

ApplicationSalesChannel_Kredittbanken +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_OTHER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Not set` + HABITATION_TYPE_NAME_APARTMENT +

HABITATION_TYPE_NAME_OTHER + HABITATION_TYPE_NAME_PARENTS +

HABITATION_TYPE_NAME_RENTER + MARITAL_STATUS_NAME_COHABITING +

TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_2F + LastTaxYear3_TAX_CLASS_CD_2F

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +
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MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountDistinctPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_AT_HOME + EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_OTHER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY +

EMPLOYMENT_TYPE_NAME_STUDENT + EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

`EMPLOYMENT_DURATION_DESC_Not set` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1E + LastTaxYear2_TAX_CLASS_CD_2 +

LastTaxYear2_TAX_CLASS_CD_2F + LastTaxYear2_TAX_CLASS_CD_Unknown +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 20554 25493

2 20506 25470 48 23.499 0.9989
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Three Months Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + GRANTED_CREDIT_LIMIT_AMT +

GROSS_INCOME_AMT + STUDENT_LOAN_AMT + SumAvailable + SumPaidToCCL12 +

CountDistinctPaidToRepaymentLoanL12 + CountRoundPaidToRepaymentLoanL12 +

AIRLINE_12 + ELECTRIC_APPLIANCE_12 + FOOD_STORES_WAREHOUSE_12 +

OTHER_RETAIL_12 + RECREATION_12 + RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 +

VEHICLES_12 + FOOD_STORES_WAREHOUSE_3 + HOTEL_MOTEL_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_debt +

Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED + `EMPLOYMENT_DURATION_DESC_Not set` +

HABITATION_TYPE_NAME_RENTER + MARITAL_STATUS_NAME_COHABITING +

MARITAL_STATUS_NAME_WIDOWED + TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_1 + LastTaxYear3_TAX_CLASS_CD_1E +

LastTaxYear3_TAX_CLASS_CD_2F

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountDistinctPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +
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Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Kredittbanken + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_AT_HOME + EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER +

EMPLOYMENT_TYPE_NAME_OTHER + EMPLOYMENT_TYPE_NAME_RETIREE +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY +

EMPLOYMENT_TYPE_NAME_STUDENT + EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE +

EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

`EMPLOYMENT_DURATION_DESC_Not set` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15503 18554

2 15458 18530 45 23.784 0.9961

Six Months Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + APPLIED_CREDIT_LIMIT_AMT +

GROSS_INCOME_AMT + STUDENT_LOAN_AMT + MORTGAGES_AMT + NoOfChildren +

FLI_AMT + SFLI_AMT + SumAvailable + CountPaidToCCL12 +

CountRoundPaidToRepaymentLoanL12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HARDWARE_12 +

VEHICLES_12 + FOOD_STORES_WAREHOUSE_3 + HOTEL_MOTEL_3 + HARDWARE_3 +

AktiviPerioden + Missing_purchaseSeg + Missing_application +

Missing_purchaseHist + Missing_debt + Missing_sumAvail +

`ApplicationSalesChannel_Autentisert web` +
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ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_STUDENT +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_WIDOWED + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_1 + LastTaxYear3_TAX_CLASS_CD_1E +

LastTaxYear3_TAX_CLASS_CD_2F

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountDistinctPaidToRepaymentLoanL12 +

CountDistinctPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +

INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail + `ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside + EMPLOYMENT_TYPE_NAME_AT_HOME +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_OTHER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED +

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +
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LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 11588 12968

2 11539 12939 49 28.837 0.9904

Twelve Months Ahead

Analysis of Deviance Table

Model 1: as.factor(AktivEtterPassiv) ~ Alder + ProductId +

TransaksjonerMensPassiv + MndUtenKortbrukiPerioden +

MndFraFørsteTilSisteBruk + MndUtenKortbrukFørPerioden +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + NoOfChildren + SumAvailable + CountPaidToRepaymentLoanL12 +

CountRoundPaidToRepaymentLoanL12 + CountRoundPaidToCCL12 +

ELECTRIC_APPLIANCE_12 + RESTAURANTS_BARS_12 + TRAVEL_AGENCIES_12 +

AIRLINE_3 + HOTEL_MOTEL_3 + AktiviPerioden + Missing_purchaseSeg +

Missing_application + Missing_purchaseHist + Missing_debt +

Missing_sumAvail + ApplicationSalesChannel_Mobilbank +

ApplicationSalesChannel_Nettbank + ApplicationSalesChannel_Responsside +

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + TAX_CLASS_CD_Unknown +

LastTaxYear2_TAX_CLASS_CD_0 + LastTaxYear2_TAX_CLASS_CD_1E

Model 2: as.factor(AktivEtterPassiv) ~ Alder + Kjønn + ProductId +

TransaksjonerMensPassiv + AntallPassivPerioder +

MndUtenKortbrukiPerioden + MndFraFørsteTilSisteBruk +

MndUtenKortbrukFørPerioden + APPLIED_CREDIT_LIMIT_AMT +

GRANTED_CREDIT_LIMIT_AMT + GROSS_INCOME_AMT + STUDENT_LOAN_AMT +

MORTGAGES_AMT + DebtRegisterNum + DebtRegisterIELA + HOMEOWNER_IND +

HOUSING_COOPERATIVE_IND + NoOfChildren + FLI_AMT + SFLI_AMT +

SumAvailable + Applied_vs_Granted + SumPaidToCCL12 +

SumPaidToRepaymentLoanL12 + CountPaidToRepaymentLoanL12 +

CountPaidToCCL12 + CountRoundPaidToRepaymentLoanL12 +

CountRoundPaidToCCL12 + AIRLINE_12 + ELECTRIC_APPLIANCE_12 +

FOOD_STORES_WAREHOUSE_12 + HOTEL_MOTEL_12 + HARDWARE_12 +
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INTERIOR_FURNISHINGS_12 + OTHER_RETAIL_12 + OTHER_SERVICES_12 +

OTHER_TRANSPORT_12 + RECREATION_12 + RESTAURANTS_BARS_12 +

SPORTING_TOY_STORES_12 + TRAVEL_AGENCIES_12 + VEHICLES_12 +

QUASI_CASH_12 + AIRLINE_3 + ELECTRIC_APPLIANCE_3 + FOOD_STORES_WAREHOUSE_3 +

HOTEL_MOTEL_3 + HARDWARE_3 + INTERIOR_FURNISHINGS_3 + AktiviPerioden +

Missing_purchaseSeg + Missing_application + Missing_purchaseHist +

Missing_debt + Missing_sumAvail +

`ApplicationSalesChannel_Autentisert web` +

ApplicationSalesChannel_Mobilbank + ApplicationSalesChannel_Nettbank +

ApplicationSalesChannel_Responsside + EMPLOYMENT_TYPE_NAME_AT_HOME +

EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER + EMPLOYMENT_TYPE_NAME_OTHER +

EMPLOYMENT_TYPE_NAME_RETIREE + EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED +

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY + EMPLOYMENT_TYPE_NAME_STUDENT +

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE + EMPLOYMENT_TYPE_NAME_UNEMPLOYED +

`EMPLOYMENT_DURATION_DESC_Between 1 and 3 years` +

`EMPLOYMENT_DURATION_DESC_Less than 1 year` +

HABITATION_TYPE_NAME_APARTMENT + HABITATION_TYPE_NAME_OTHER +

HABITATION_TYPE_NAME_PARENTS + HABITATION_TYPE_NAME_RENTER +

MARITAL_STATUS_NAME_COHABITING + MARITAL_STATUS_NAME_DIVORCED +

MARITAL_STATUS_NAME_MARRIED + MARITAL_STATUS_NAME_WIDOWED +

TAX_CLASS_CD_0 + TAX_CLASS_CD_Unknown + LastTaxYear2_TAX_CLASS_CD_0 +

LastTaxYear2_TAX_CLASS_CD_1 + LastTaxYear2_TAX_CLASS_CD_1E +

LastTaxYear2_TAX_CLASS_CD_2 + LastTaxYear2_TAX_CLASS_CD_2F +

LastTaxYear3_TAX_CLASS_CD_0 + LastTaxYear3_TAX_CLASS_CD_1 +

LastTaxYear3_TAX_CLASS_CD_1E + LastTaxYear3_TAX_CLASS_CD_2 +

LastTaxYear3_TAX_CLASS_CD_2F

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7029 7498.4

2 6980 7473.4 49 24.918 0.9983
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C Model Output from R for Adaptive Boosting

C.1 One Month Ahead Hyperparameter Tuning

Design of Experiments

Listing 1: Model with main effects and interactions fitted to the 25−1 fractional factorial design

Call:

lm.default(formula = BACC ~ .^2, data = plan.one)

Residuals:

Min 1Q Median 3Q Max

-0.0016448 -0.0003315 0.0000000 0.0003315 0.0016448

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.539e-01 1.646e-04 3971.860 < 2e-16 ***

A1 9.684e-03 1.646e-04 58.826 < 2e-16 ***

B1 1.384e-02 1.646e-04 84.096 < 2e-16 ***

C1 3.183e-03 1.646e-04 19.336 1.61e-12 ***

D1 -5.498e-04 1.646e-04 -3.340 0.004156 **

E1 -1.734e-03 1.646e-04 -10.531 1.33e-08 ***

A1:B1 -3.402e-03 1.646e-04 -20.666 5.77e-13 ***

A1:C1 -1.829e-03 1.646e-04 -11.112 6.22e-09 ***

A1:D1 8.131e-04 1.646e-04 4.939 0.000148 ***

A1:E1 3.030e-04 1.646e-04 1.840 0.084318 .

B1:C1 -5.135e-04 1.646e-04 -3.119 0.006605 **

B1:D1 5.602e-04 1.646e-04 3.403 0.003640 **

B1:E1 6.365e-04 1.646e-04 3.867 0.001367 **

C1:D1 9.699e-05 1.646e-04 0.589 0.563979

C1:E1 -1.644e-05 1.646e-04 -0.100 0.921695

D1:E1 -4.940e-04 1.646e-04 -3.001 0.008468 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0009313 on 16 degrees of freedom

Multiple R-squared: 0.9986, Adjusted R-squared: 0.9973

F-statistic: 776.8 on 15 and 16 DF, p-value: < 2.2e-16
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Figure C.1: Normal Q-Q plot of the residuals from the model with main effects and interactions

fitted to the 25−1 fractional factorial design for the one month ahead data frame with AdaBoost.
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Figure C.2: Plot of the residuals from the model with main effects and interactions fitted to the

25−1 fractional factorial design for the one month ahead data frame with AdaBoost.
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Table C.1: Results of the 25−1 fractional factorial design with all 32 runs of AdaBoost on the

one month ahead data frame.

Experiment No. A B C D E Level code BACC

1 -1 -1 -1 -1 1 e 0.6210

2 1 -1 -1 -1 -1 a 0.6534

3 -1 1 -1 -1 -1 b 0.6590

4 1 1 -1 -1 1 abe 0.6721

5 -1 -1 1 -1 -1 c 0.6365

6 1 -1 1 -1 1 ace 0.6552

7 -1 1 1 -1 1 bce 0.6649

8 1 1 1 -1 -1 abc 0.6743

9 -1 -1 -1 1 -1 d 0.6222

10 1 -1 -1 1 1 ade 0.6489

11 -1 1 -1 1 1 bde 0.6551

12 1 1 -1 1 -1 abd 0.6745

13 -1 -1 1 1 1 cde 0.6274

14 1 -1 1 1 -1 acd 0.6581

15 -1 1 1 1 -1 bcd 0.6673

16 1 1 1 1 1 abcde 0.6754

17 -1 -1 -1 -1 1 e 0.6215

18 1 -1 -1 -1 -1 a 0.6530

19 -1 1 -1 -1 -1 b 0.6584

20 1 1 -1 -1 1 abe 0.6722

21 -1 -1 1 -1 -1 c 0.6365

22 1 -1 1 -1 1 ace 0.6519

23 -1 1 1 -1 1 bce 0.6665

24 1 1 1 -1 -1 abc 0.6742

25 -1 -1 -1 1 -1 d 0.6229

26 1 -1 -1 1 1 ade 0.6477

27 -1 1 -1 1 1 bde 0.6532

28 1 1 -1 1 -1 abd 0.6758

29 -1 -1 1 1 1 cde 0.6275

30 1 -1 1 1 -1 acd 0.6566

31 -1 1 1 1 -1 bcd 0.6670

32 1 1 1 1 1 abcde 0.6735
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Listing 2: First-order model with two-way interaction terms fitted to the 23 factorial design with

center points

Call:

rsm(formula = BACC ~ FO(x1, x2, x3) + TWI(x1, x2, x3), data = centerPlan.one.coded)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7742e-01 2.9413e-04 2303.1205 < 2e-16 ***

x1 -2.6899e-05 3.4490e-04 -0.0780 0.93887

x2 5.6103e-04 3.4490e-04 1.6267 0.12463

x3 -9.6147e-04 3.4490e-04 -2.7877 0.01380 *

x1:x2 4.2012e-05 3.4490e-04 0.1218 0.90467

x1:x3 -2.8285e-04 3.4490e-04 -0.8201 0.42500

x2:x3 -8.6672e-04 3.4490e-04 -2.5130 0.02389 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.5374, Adjusted R-squared: 0.3524

F-statistic: 2.904 on 6 and 15 DF, p-value: 0.04389

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 1.9839e-05 6.6129e-06 3.4745 0.04283

TWI(x1, x2, x3) 3 1.3328e-05 4.4425e-06 2.3341 0.11523

Residuals 15 2.8549e-05 1.9033e-06

Lack of fit 2 1.0732e-05 5.3662e-06 3.9154 0.04667

Pure error 13 1.7817e-05 1.3705e-06

Stationary point of response surface:

x1 x2 x3

-0.3425763 -0.9874422 0.5469884

Stationary point in original units:

A B C

699.30677652 5.02511557 0.07093977

Eigenanalysis:

eigen() decomposition

$values
[1] 0.0004623965 0.0000000000 -0.0004500230
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$vectors
[,1] [,2] [,3]

x1 -0.2450392 0.95031124 0.1920010

x2 -0.6688808 -0.30906604 0.6760744

x3 0.7018221 0.03723894 0.7113783

Table C.2: Results of the first central composite design with three factors for AdaBoost on the

one month ahead data frame.

Experiment No. A B C BACC

1 -1 -1 -1 0.6761

2 1 -1 -1 0.6771

3 -1 1 -1 0.6784

4 1 1 -1 0.6801

5 -1 -1 1 0.6759

6 1 -1 1 0.6762

7 -1 1 1 0.6764

8 1 1 1 0.6743

9 -1 -1 -1 0.6765

10 1 -1 -1 0.6765

11 -1 1 -1 0.6798

12 1 1 -1 0.6792

13 -1 -1 1 0.6776

14 1 -1 1 0.6757

15 -1 1 1 0.6755

16 1 1 1 0.6767

17 0 0 0 0.6764

18 0 0 0 0.6797

19 0 0 0 0.6769

20 0 0 0 0.6791

21 0 0 0 0.6796

22 0 0 0 0.6797

23 -1.73 0 0 0.6781

24 1.73 0 0 0.6779

25 0 -1.5 0 0.6752

26 0 1.5 0 0.6769

27 0 0 -1.75 0.6762

28 0 0 1.75 0.6752
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Listing 3: Second-order model fitted to the first central composite design

Call:

rsm(formula = BACC ~ SO(x1, x2, x3), data = centerPlan.wAxial.coded.one)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7851e-01 4.4523e-04 1523.9664 < 2.2e-16 ***

x1 -3.1120e-05 2.3324e-04 -0.1334 0.895339

x2 5.6368e-04 2.4167e-04 2.3324 0.031486 *

x3 -7.7827e-04 2.3263e-04 -3.3456 0.003600 **

x1:x2 4.2012e-05 2.7355e-04 0.1536 0.879651

x1:x3 -2.8285e-04 2.7355e-04 -1.0340 0.314834

x2:x3 -8.6672e-04 2.7355e-04 -3.1684 0.005319 **

x1^2 -3.6604e-05 2.6824e-04 -0.1365 0.892971

x2^2 -8.5235e-04 3.2824e-04 -2.5967 0.018224 *

x3^2 -7.9149e-04 2.6418e-04 -2.9960 0.007752 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.7063, Adjusted R-squared: 0.5595

F-statistic: 4.81 on 9 and 18 DF, p-value: 0.002263

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 1.9936e-05 6.6454e-06 5.5504 0.007076

TWI(x1, x2, x3) 3 1.3328e-05 4.4425e-06 3.7105 0.030766

PQ(x1, x2, x3) 3 1.8565e-05 6.1882e-06 5.1685 0.009430

Residuals 18 2.1551e-05 1.1973e-06

Lack of fit 5 3.7341e-06 7.4680e-07 0.5449 0.739540

Pure error 13 1.7817e-05 1.3705e-06

Stationary point of response surface:

x1 x2 x3

-0.3146176 0.6951044 -0.7759167

Stationary point in original units:

A B C

701.40367873 8.39020876 0.04448167

Eigenanalysis:
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eigen() decomposition

$values
[1] 0.0000000000 -0.0004226938 -0.0012617767

$vectors
[,1] [,2] [,3]

x1 0.9558047 0.2862929 0.06688671

x2 0.1510755 -0.6734386 0.72364122

x3 -0.2522174 0.6815547 0.68692762

Table C.3: Results of the second central composite design with three factors for AdaBoost on the

one month ahead data frame.

Experiment No. A B C BACC

1 -1 -1 -1 0.6792

2 1 -1 -1 0.6782

3 -1 1 -1 0.6809

4 1 1 -1 0.6769

5 -1 -1 1 0.6824

6 1 -1 1 0.6781

7 -1 1 1 0.6834

8 1 1 1 0.6808

9 0 0 0 0.6801

10 0 0 0 0.6787

11 0 0 0 0.6830

12 -1.73 0 0 0.6783

13 1.73 0 0 0.6795

14 0 -2 0 0.6774

15 0 2 0 0.6827

16 0 0 -1.73 0.6794

17 0 0 1.73 0.6814

18 0 0 0 0.6823

19 0 0 0 0.6793

20 0 0 0 0.6783
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Figure C.3: Perspective plots of the first fitted second-order response surface model with AdaBoost.
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Listing 4: Second-order model fitted to the second central composite design

Call:

rsm(formula = BACC ~ SO(x1, x2, x3), data = ccd2.one)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8027e-01 8.0009e-04 850.2327 <2e-16 ***

x1 -7.0713e-04 5.2378e-04 -1.3500 0.2068

x2 9.4394e-04 5.2378e-04 1.8022 0.1017

x3 9.3041e-04 5.2378e-04 1.7763 0.1061

x1:x2 -1.4615e-04 6.9290e-04 -0.2109 0.8372

x1:x3 -2.4029e-04 6.9290e-04 -0.3468 0.7359

x2:x3 4.1505e-04 6.9290e-04 0.5990 0.5625

x1^2 -4.2249e-04 4.9383e-04 -0.8555 0.4123

x2^2 -3.8804e-05 4.9383e-04 -0.0786 0.9389

x3^2 8.0394e-05 4.9383e-04 0.1628 0.8739

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.4886, Adjusted R-squared: 0.02839

F-statistic: 1.062 on 9 and 10 DF, p-value: 0.4596

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 3.1594e-05 1.0531e-05 2.7419 0.09893

TWI(x1, x2, x3) 3 2.0110e-06 6.7030e-07 0.1745 0.91120

PQ(x1, x2, x3) 3 3.0950e-06 1.0317e-06 0.2686 0.84660

Residuals 10 3.8409e-05 3.8409e-06

Lack of fit 5 1.9462e-05 3.8923e-06 1.0271 0.48864

Pure error 5 1.8947e-05 3.7895e-06

Stationary point of response surface:

x1 x2 x3

0.08110566 -1.23527388 -2.47668778

Stationary point in original units:

A B C

851.08292433 7.76472612 0.02201656

Eigenanalysis:
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eigen() decomposition

$values
[1] 0.0002652016 -0.0001944120 -0.0004516854

$vectors
[,1] [,2] [,3]

x1 0.1995111 -0.05080095 0.9785778

x2 -0.5847279 -0.80753906 0.0772917

x3 -0.7863133 0.58762227 0.1908177

Table C.4: Results of the third central composite design with three factors for AdaBoost on the

one month ahead data frame.

Experiment No. A B C BACC

1 -1 -1 -1 0.6801

2 1 -1 -1 0.6812

3 -1 1 -1 0.6793

4 1 1 -1 0.6783

5 -1 -1 1 0.6812

6 1 -1 1 0.6754

7 -1 1 1 0.6796

8 1 1 1 0.6796

9 0 0 0 0.6815

10 0 0 0 0.6838

11 0 0 0 0.6800

12 -1.73 0 0 0.6789

13 1.73 0 0 0.6808

14 0 -2 0 0.6772

15 0 2 0 0.6800

16 0 0 -1.73 0.6812

17 0 0 1.73 0.6798

18 0 0 0 0.6808

19 0 0 0 0.6799

20 0 0 0 0.6804
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Figure C.4: Contour plots of the second fitted second-order response surface model with AdaBoost.
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Listing 5: Second-order model fitted to the third central composite design

Call:

rsm(formula = BACC ~ SO(x1, x2, x3), data = ccd.best.one)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.68105646 0.00066806 1019.4476 < 2e-16 ***

x1 -0.00017035 0.00043735 -0.3895 0.70507

x2 0.00026420 0.00043735 0.6041 0.55924

x3 -0.00039815 0.00043735 -0.9104 0.38405

x1:x2 0.00046821 0.00057856 0.8093 0.43719

x1:x3 -0.00072876 0.00057856 -1.2596 0.23642

x2:x3 0.00078537 0.00057856 1.3575 0.20448

x1^2 -0.00046147 0.00041234 -1.1192 0.28923

x2^2 -0.00086595 0.00041234 -2.1001 0.06207 .

x3^2 -0.00025735 0.00041234 -0.6241 0.54651

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.5159, Adjusted R-squared: 0.08028

F-statistic: 1.184 on 9 and 10 DF, p-value: 0.3954

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 3.6028e-06 1.2009e-06 0.4485 0.7239

TWI(x1, x2, x3) 3 1.0937e-05 3.6456e-06 1.3614 0.3100

PQ(x1, x2, x3) 3 1.4002e-05 4.6674e-06 1.7430 0.2213

Residuals 10 2.6779e-05 2.6779e-06

Lack of fit 5 1.6117e-05 3.2233e-06 1.5116 0.3307

Pure error 5 1.0662e-05 2.1324e-06

Stationary point of response surface:

x1 x2 x3

-0.15261610 0.08670294 -0.11157355

Stationary point in original units:

A B C

758.55379237 10.08670294 0.03884213

Eigenanalysis:
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eigen() decomposition

$values
[1] 0.0000000000 -0.0004015866 -0.0012440404

$vectors
[,1] [,2] [,3]

x1 0.4828926 0.7534786 0.4461891

x2 -0.2353936 0.6024729 -0.7626377

x3 -0.8434481 0.2632420 0.4682937

Table C.5: Results of AdaBoost performed along the canonical path starting from the stationary

point proposed by the third second-order model.

Distance n.trees interaction.depth shrinkage BACC

-2 686 11 0.04728 0.6809

-1 722 10 0.04306 0.6810

0 759 10 0.03884 0.6819

1 795 10 0.03463 0.6794

2 831 10 0.03041 0.6803

3 867 9 0.02619 0.6805

4 903 9 0.02198 0.6793

5 940 9 0.01776 0.6806

148



A
650

700

750

800

850

B

9

10

11

0.676

0.678

0.680

Slice at C = 0.04

A
650

700

750

800

850

C

0.035

0.040

0.045

0.676

0.678

0.680

Slice at B = 10

B9

10

11

C

0.035

0.040

0.045

0.676

0.678

0.680

Slice at A = 770

Figure C.6: Perspective plots of the third fitted second-order response surface model with AdaBoost.
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C.2 Twelve Months Ahead Hyperparameter Tuning

Design of Experiments

Table C.6: Results of the 25−1 fractional factorial design with all 32 runs of AdaBoost on the

twelve months ahead data frame.

Experiment No. A B C D E Level code BACC

1 -1 -1 -1 -1 1 e 0.6107

2 1 -1 -1 -1 -1 a 0.6535

3 -1 1 -1 -1 -1 b 0.6686

4 1 1 -1 -1 1 abe 0.6746

5 -1 -1 1 -1 -1 c 0.6351

6 1 -1 1 -1 1 ace 0.6533

7 -1 1 1 -1 1 bce 0.6738

8 1 1 1 -1 -1 abc 0.6649

9 -1 -1 -1 1 -1 d 0.6064

10 1 -1 -1 1 1 ade 0.6561

11 -1 1 -1 1 1 bde 0.6667

12 1 1 -1 1 -1 abd 0.6733

13 -1 -1 1 1 1 cde 0.6417

14 1 -1 1 1 -1 acd 0.6525

15 -1 1 1 1 -1 bcd 0.6739

16 1 1 1 1 1 abcde 0.6656

17 -1 -1 -1 -1 1 e 0.6062

18 1 -1 -1 -1 -1 a 0.6525

19 -1 1 -1 -1 -1 b 0.6697

20 1 1 -1 -1 1 abe 0.6719

21 -1 -1 1 -1 -1 c 0.6370

22 1 -1 1 -1 1 ace 0.6556

23 -1 1 1 -1 1 bce 0.6622

24 1 1 1 -1 -1 abc 0.6675

25 -1 -1 -1 1 -1 d 0.6085

26 1 -1 -1 1 1 ade 0.6585

27 -1 1 -1 1 1 bde 0.6707

28 1 1 -1 1 -1 abd 0.6810

29 -1 -1 1 1 1 cde 0.6495

30 1 -1 1 1 -1 acd 0.6527

31 -1 1 1 1 -1 bcd 0.6729

32 1 1 1 1 1 abcde 0.6688
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Listing 6: Linear model fitted to the 25−1 fractional factorial design

Call:

lm.default(formula = BACC ~ .^2, data = plan.twelve)

Residuals:

Min 1Q Median 3Q Max

-0.005753 -0.001214 0.000000 0.001214 0.005753

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.549e-01 5.714e-04 1146.010 < 2e-16 ***

A1 7.774e-03 5.714e-04 13.605 3.27e-10 ***

B1 1.551e-02 5.714e-04 27.139 8.28e-15 ***

C1 3.068e-03 5.714e-04 5.369 6.27e-05 ***

D1 1.299e-03 5.714e-04 2.272 0.0372 *

E1 5.007e-04 5.714e-04 0.876 0.3938

A1:B1 -7.201e-03 5.714e-04 -12.603 1.01e-09 ***

A1:C1 -5.606e-03 5.714e-04 -9.811 3.58e-08 ***

A1:D1 -3.836e-04 5.714e-04 -0.671 0.5116

A1:E1 -8.881e-05 5.714e-04 -0.155 0.8784

B1:C1 -4.748e-03 5.714e-04 -8.310 3.38e-07 ***

B1:D1 -7.852e-05 5.714e-04 -0.137 0.8924

B1:E1 -1.590e-03 5.714e-04 -2.782 0.0133 *

C1:D1 4.566e-04 5.714e-04 0.799 0.4360

C1:E1 3.659e-04 5.714e-04 0.640 0.5310

D1:E1 3.029e-03 5.714e-04 5.301 7.17e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.003232 on 16 degrees of freedom

Multiple R-squared: 0.988, Adjusted R-squared: 0.9768

F-statistic: 87.86 on 15 and 16 DF, p-value: 1.774e-12
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Figure C.7: Normal Q-Q plot of the residuals from the linear model fitted to the 25−1 fractional

factorial design for the twelve months ahead data frame with AdaBoost.
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Figure C.8: Plot of the residuals from the linear model fitted to the 25−1 fractional factorial design

for the twelve months ahead data frame with AdaBoost.
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Table C.7: Results of the first 23 factorial design with center runs, with three factors for AdaBoost

on the twelve months ahead data frame.

Experiment No. A B C BACC

1 -1 -1 -1 0.6712

2 1 -1 -1 0.6690

3 -1 1 -1 0.6748

4 1 1 -1 0.6738

5 -1 -1 1 0.6717

6 1 -1 1 0.6662

7 -1 1 1 0.6720

8 1 1 1 0.6745

9 -1 -1 -1 0.6657

10 1 -1 -1 0.6671

11 -1 1 -1 0.6680

12 1 1 -1 0.6698

13 -1 -1 1 0.6691

14 1 -1 1 0.6674

15 -1 1 1 0.6723

16 1 1 1 0.6752

17 0 0 0 0.6738

18 0 0 0 0.6734

19 0 0 0 0.6712

20 0 0 0 0.6764

21 0 0 0 0.6754

22 0 0 0 0.6712

23 0 0 0 0.6702

24 0 0 0 0.6694
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Listing 7: Model with first-order and interaction effects fitted to the first 23 factorial design with

center points

Call:

rsm(formula = BACC ~ FO(x1, x2, x3) + TWI(x1, x2, x3), data = centerPlan.twelve.coded)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.67120077 0.00056044 1197.6306 < 2.2e-16 ***

x1 -0.00012483 0.00068640 -0.1819 0.857841

x2 0.00206863 0.00068640 3.0138 0.007822 **

x3 0.00055647 0.00068640 0.8107 0.428733

x1:x2 0.00088695 0.00068640 1.2922 0.213586

x1:x3 -0.00011514 0.00068640 -0.1677 0.868759

x2:x3 0.00039649 0.00068640 0.5776 0.571081

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.4098, Adjusted R-squared: 0.2015

F-statistic: 1.967 on 6 and 17 DF, p-value: 0.1274

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 7.3672e-05 2.4557e-05 3.2577 0.04739

TWI(x1, x2, x3) 3 1.5314e-05 5.1047e-06 0.6772 0.57791

Residuals 17 1.2815e-04 7.5382e-06

Lack of fit 2 3.2312e-05 1.6156e-05 2.5286 0.11315

Pure error 15 9.5838e-05 6.3892e-06

Stationary point of response surface:

x1 x2 x3

-1.9049418 -0.2910015 -0.8099988

Stationary point in original units:

A B C

207.12936649 2.70899854 0.04190001

Eigenanalysis:

eigen() decomposition

$values
[1] 0.0004664568 0.0000000000 -0.0005090857
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$vectors
[,1] [,2] [,3]

x1 0.6566514 0.40037629 0.6391461

x2 0.7198802 -0.08001975 -0.6894703

x3 0.2249033 -0.91285030 0.3407680

Table C.8: Results of the second 23 factorial design with center runs, with three factors for AdaBoost

on the twelve months ahead data frame.

Experiment No. A B C BACC

1 -1 -1 -1 0.6744

2 1 -1 -1 0.6712

3 -1 1 -1 0.6793

4 1 1 -1 0.6745

5 -1 -1 1 0.6757

6 1 -1 1 0.6654

7 -1 1 1 0.6775

8 1 1 1 0.6670

9 -1 -1 -1 0.6767

10 1 -1 -1 0.6689

11 -1 1 -1 0.6717

12 1 1 -1 0.6646

13 -1 -1 1 0.6689

14 1 -1 1 0.6778

15 -1 1 1 0.6695

16 1 1 1 0.6722

17 0 0 0 0.6697

18 0 0 0 0.6770

19 0 0 0 0.6678

20 0 0 0 0.6751

21 0 0 0 0.6748

22 0 0 0 0.6748

23 0 0 0 0.6688

24 0 0 0 0.6727
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Listing 8: Model with first-order and interaction effects fitted to the second 23 factorial design with

center points

Call:

rsm(formula = BACC ~ FO(x1, x2, x3) + TWI(x1, x2, x3), data = centerPlan2.twelve.coded.2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7233e-01 8.7500e-04 768.3720 < 2e-16 ***

x1 -2.0087e-03 1.0717e-03 -1.8744 0.07817 .

x2 -1.7364e-04 1.0717e-03 -0.1620 0.87320

x3 -4.5279e-04 1.0717e-03 -0.4225 0.67795

x1:x2 -4.7381e-04 1.0717e-03 -0.4421 0.66396

x1:x3 8.5773e-04 1.0717e-03 0.8004 0.43453

x2:x3 -2.8067e-05 1.0717e-03 -0.0262 0.97941

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Multiple R-squared: 0.2113, Adjusted R-squared: -0.06705

F-statistic: 0.7591 on 6 and 17 DF, p-value: 0.6114

Analysis of Variance Table

Response: BACC

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 6.8318e-05 2.2773e-05 1.2393 0.3263

TWI(x1, x2, x3) 3 1.5376e-05 5.1252e-06 0.2789 0.8398

Residuals 17 3.1237e-04 1.8375e-05

Lack of fit 2 2.7400e-06 1.3700e-06 0.0664 0.9361

Pure error 15 3.0963e-04 2.0642e-05

Stationary point of response surface:

x1 x2 x3

0.2693378 -0.9911022 1.7872070

Stationary point in original units:

A B C

363.46689096 5.00889779 0.05893603

Eigenanalysis:

eigen() decomposition

$values
[1] 0.0004959790 0.0000000000 -0.0004841025
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$vectors
[,1] [,2] [,3]

x1 0.7027295 0.01526496 -0.7112933

x2 -0.3531387 0.87540100 -0.3301002

x3 0.6176279 0.48315637 0.6205608
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