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Abstract

In this thesis we study triangulated categories which appear as the cohomology
of certain differential graded categories, and those which appear as the stable
category of Frobenius categories. The classes of triangulated categories arising
from either construction coincide, and are known as algebraic triangulated
categories. Given such a triangulated category, a natural question to ask is
whether the corresponding differential graded category is unique.

1



Sammendrag

I denne oppgaven studerer vi triangulerte kategorier som oppst̊ar som koho-
mologien til visse differensialgraderte kategorier, og de som oppst̊ar som den
stabile kategorien til Frobeniuskategorier. Klassene av triangulerte kategorier
som oppst̊ar fra hver av disse konstruksjonene sammenfaller, og omtales som
algebraiske triangulerte kategorier. Gitt en slik triangulert kategori, er det
naturlig å spørre om den tilsvarende differensialgraderte kategorien er unik.
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Introduction

Triangulated categories appear in multiple branches of mathematics. In an
attempt to better understand them, several different situations where they
arise have been characterized. After going over some preliminaries, we will
study two such situations.

To understand the first case, we will define differential graded categories,
categories where morphism spaces have the structure of chain complexes. By
studying modules over such categories, we establish a variant of the Yoneda
embedding for such categories. We then prove that the cohomology of a
pretriangulated differential graded category is triangulated. The core idea is
an adaptation of the proof that the homotopy category of chain complexes is
triangulated, by using the equivalence established by the Yoneda embedding.

Next we study exact categories, a generalization of abelian categories.
We will study Frobenius categories, exact categories where injectives and
projectives coincide, and see how the stable category of such categories are
triangulated.

Finally we see how the classes of triangulated categories arising from
either of these constructions essentially coincide. We say the triangulated
categories constructed in this way are algebraic. Afterwards we will do a brief
detour looking at a broader class of triangulated categories which are called
topological.

Given an algebraic triangulated category, a natural question to ask is
whether the corresponding differential graded category is unique. We will
look at an example showing that this is not necessarily the case.
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1 Preliminaries

We start out this chapter by recalling some definitions from category theory
which we will be using. Afterwards we have a quick recap of some basic
concepts from homological algebra, and finally we recall the definition of a
triangulated category. Throughout this thesis, let k be a commutative ring.
All tensor product are assumed to be over k.

1.1 Categories

We will assume familiarity with basic category theory. We will however still
do a quick recap of the concepts we use the most in this thesis.

For a category C, we denote the collection of objects by Obj(C), or simply
C when it is clear from the context. For two objects X, Y ∈ Obj(C), we
denote the collection of morphisms from X to Y by C(X, Y ). If all these
collections of morphisms are sets, we say that the category is locally small. If
in addition the collection of objects Obj(C) forms a set, we say the category
is small.

For morphisms f ∈ C(X, Y ), g ∈ C(Y, Z) we denote the composition by
g ◦ f ∈ C(X,Z). We denote identity morphisms by 1X ∈ C(X,X). For a
morphism f ∈ C(X, Y ) and any object Z ∈ C, we can create two different
maps between morphism sets given by compostion. We denote the map given
by postcomposition with f by

f∗ : C(Z,X)→ C(Z, Y )

g 7→ f ◦ g

and the map given by precomposition with f by

f ∗ : C(Y, Z)→ C(X,Z)

g 7→ g ◦ f

Definition. For two morphisms f ∈ C(X, Y ), g ∈ C(X,Z), we define the
pushout of f, g as an object P together with two morphisms u ∈ C(Y, P ), v ∈
C(Z, P ) such that u ◦ f = v ◦ g. Moreover for any other object W and
morphisms s ∈ C(Y,W ), t ∈ C(Z,W ) such that s ◦ f = t ◦ g, we require the
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existence of a unique morphism φ ∈ C(P,W ) such that s = φ◦u and t = φ◦v.

X Y

Z P

W

f

g
s

u

t

v

∃!φ

Remark 1.1. The concept of a pullback is defined dually, though we will be
most interested in pushouts in this thesis. Note that pushouts and pullbacks
do not necessarily exist. If they do exist however, they can be shown to be
unique up to unique isomorphism.

We state some useful properties when dealing with pushouts.

Proposition 1.2. Consider the following diagram where P is the pushout of
u and v. Let W be any object, and let f, g : P → W be morphisms such that
f ◦ s = g ◦ s and f ◦ t = g ◦ t.

X Y

Z P

W

u

v t

s
g

f

Then f = g.

Proof. First we note that we have the morphisms f◦s : Z → W , f◦t : Y → W ,
satisfying (f ◦ s) ◦ v = (f ◦ t) ◦ u. Hence the pushout property of P gives a
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unique morphism φ : P → W , satisfying φ ◦ s = f ◦ s and φ ◦ t = f ◦ t.

X Y

Z P

W

v

u

f ◦ tt

f ◦ s

s

∃!φ

By assumtion both f and g satisfy both the relations required by φ, and since
this morphisms is unique, we conclude that f = g.

Proposition 1.3. Consider the following commutative diagram

X Y

Z P

W Q

f

u s

g

v t

h

where P is the pushout of f and u, and Q is the pushout of f and v ◦u. Then
Q is also the pushout of g and v.

Proof. Let V be any object, and assume we have morphisms i : P → V ,
j : W → V such that i ◦ g = j ◦ v. Considering the composition i ◦ s,
the pushout property of Q gives a unique morphism φ : Q → V satisfying
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φ ◦ t ◦ s = i ◦ s and φ ◦ h = j.

X Y

Z P

W Q

V

f

u s

i ◦ sg

v t

ih

j

φ

We immediately have that (φ ◦ t) ◦ s = i ◦ s. We also have that i ◦ g = j ◦ v =
φ ◦ h ◦ v = (φ ◦ t) ◦ g. By Proposition 1.2 we get that i = φ ◦ t. Thus the
morphism φ satisfies what is needed for the induced morphism from Q as
a pushout of g and v. Uniqueness follows from φ being unique even when
required to satisfy ”weaker” relations. Hence Q is the pushout of g and v.

Definition. A category C is called additive if all the following properties are
satisfied.

(1) All morphism spaces C(X, Y ) are abelian groups, and composition
respects this structure. In particular this means that for f, g ∈ C(Y, Z),
u, v ∈ C(X, Y ), the composition must satisfy

(f + g) ◦ u = f ◦ u+ g ◦ u

f ◦ (u+ v) = f ◦ u+ f ◦ v

(2) There exists a zero object 0 ∈ C such that C(X, 0) = C(0, X) = {0} for
all X ∈ C, where {0} is the abelian group with one object.

(3) For every pair of objects X, Y ∈ C, the biproduct X ⊕ Y exists, that
is, an object equiped with morphisms

X X ⊕ Y Y

iX

πX

πY

iY

satisfying πX ◦ iX = 1X , πY ◦ iY = 1Y and iX ◦ πX + iY ◦ πY = 1X⊕Y .

9



Remark 1.4. We will often use matrix notation when dealing with biproducts.
For example if f ∈ C(X, Y ), g ∈ C(X,Z), then we may draw the following
diagram.

X Y ⊕ Z
(
f
g

)
Keep in mind that this is just shorthand notation for the morphism iY ◦ f +
iZ ◦ g.

Y

X Y ⊕ Z

Z

iYf

g iZ

It can be shown that πY ◦ iX = 0 if X 6= Y . This means that composition of
morphisms written in matrix notation ends up behaving exactly like matrix
multiplication. Thus we will use matrix notation for biproducts whenever
this is convenient.

Definition. Let C be an additive category, and let f ∈ C(X, Y ). A cokernel
of f is an object Q and a morphism q ∈ C(Y,Q) such that q ◦f = 0. Moreover
for any other object P and morphism p ∈ C(Y, P ) satisfying p ◦ f = 0, we
require p to factor through q uniquely. In particular we require the existence
of a unique morphism g ∈ C(Q,P ) such that p = g ◦ q.

X Y Q

P

f

p

q

∃!g

Remark 1.5. The concept of kernels are defined dually. It can be shown
that the cokernel morphism q is always an epimorphisms, and dually that
all kernels are monomorphisms. Note that kernels and cokernels do not
necessarily exist, but because of the uniqueness they guarantee, it can be
shown that if they exist, they are unique up to unique isomorphism.

Definition. Given a category C, and some collection of morphisms W , the
localization of C with respect to W is the category C[W−1], which is obtained
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by inverting all morphisms in W . Specifically we require that we have a functor
Q : C → C[W−1] such that all morphisms in W are sent to isomorphisms in
C[W−1], and so that for any other functor P : C → D sending all morphisms
in W to isomorphisms, there exists a unique functor S : C[W−1]→ D such
that P = S ◦Q.

Remark 1.6. We note that from this definition alone, the category C[W−1]
does not necessarily exist. If it exists however, it can be shown to be unique
up to unique equivalence of categories. For more details on the construction
of the category C[W−1], see [5].

As we will not need the technical details, for our purposes it is enough
to understand C[W−1] as the most natural way to alter the category C such
that all morphisms in W become isomorphisms.

1.2 Graded modules

A k-category C is a category in which all morphism spaces C(X, Y ) are k-
modules, and where the composition of morphisms respects this structure.
Specifically we require that the composition

ρ : C(Y, Z)⊗ C(X, Y )→ C(X,Z), ρ(f ⊗ g) = f ◦ g

is a k-module homomorphism. Note that all k-categories are locally small,
since k-modules are sets.

A functor between k-categories F : C → D, is a map on objects F :
Obj(C)→ Obj(D), together with a k-module homomorphism for every pair
of objects X, Y ∈ Obj(C), FX,Y : C(X, Y ) → D(FX,FY ), which preserves
identities and composition.

A graded k-module A is a k-module which can be decomposed as a direct
sum indexed over the integers.

A =
⊕
p∈Z

Ap

For two graded k-modulesA andB, a graded morphism of degree n, f : A→ B
is a collection of k-module morphisms

f = {fp : Ap → Bp+n | p ∈ Z}

11



We denote the collection of all graded morphisms from A to B of degree n
by Hom(A,B)n. This forms a k-module with componentwise addition; for
morphisms f, g ∈ Hom(A,B)n, the sum is given by the collection

f + g = {(f + g)p := fp + gp : Ap → Bp+n | p ∈ Z}

We define the composition of graded morphisms in the natural way: If
f ∈ Hom(A,B)n, and g ∈ Hom(B,C)m, then the composition g ◦ f ∈
Hom(A,C)n+m is given by the collection

g ◦ f = {(g ◦ f)p := gp+n ◦ fp : Ap → Cp+n+m | p ∈ Z}

A differential graded k-module is a graded k-module A, together with a graded
morphism of degree 1 from A to itself

dA = {dpA : Ap → Ap+1 | p ∈ Z}

such that the composition dA ◦ dA = 0A, where 0A : A → A is the graded
morphism of degree 2 which is 0 everywhere. This is called the differential
of the graded k-module A. Sometimes we abbreviate dA = d if there is no
ambiguity which graded k-module the differential refers to. Throughout this
thesis we will refer to differential graded k-modules simply as chain complexes,
and assume that all such chain complexes are modules over the ring k unless
stated otherwise.

Let A and B be chain complexes, and f : A→ B a graded morphism of
degree 0. If dB ◦ f = f ◦ dA we say that f commutes with the differential. We
call such graded morphisms of degree 0 which commute with the differential
chain maps.

Definition. The category C(k) is the category where objects are chain
complexes over k, and morphisms are chain maps.

For a chain complex A, we denote by IdA the identity chain map from A
to itself.

Given a chain complex A, we define the homological constructions of
cocycles and cohomology. The n-th cocycle of A is Zn(A) := Ker(dnA), and
the n-th cohomology of A is Hn(A) := Ker(dnA)/ Im(dn−1

A ).
Let f ∈ C(k)(A,B) be a chain map. Then f(Zn(A)) ⊂ Zn(B) for all

n ∈ Z. We see this because for any a ∈ Zn(A), we have that dA(a) = 0. Since
f is a chain map, we know that dB ◦ f = f ◦ dA, and hence

dB(f(a)) = f(dA(a)) = f(0) = 0

12



Thus f(a) ∈ Zn(B).
The tensor product A ⊗ B of two graded k-modules, is a new graded

k-module with components

(A⊗B)n =
⊕
p+q=n

Ap ⊗Bq

Given graded morphisms f : A → A′ and g : B → B′, the tensor product
f ⊗ g : A⊗B → A′ ⊗B′ is defined using the Koszul sign rule

(f ⊗ g)(a⊗ b) = (−1)pqf(a)⊗ g(b)

where p is the degree of g and a ∈ Aq. If A and B are chain complexes, then
the graded module

A⊗B :=
⊕
n∈Z

(A⊗B)n

becomes a chain complex when given the differential

dA⊗B := dA ⊗ IdB + IdA⊗dB

For a chain complex A, the shifted chain complex A[n] has components
(A[n])p = An+p, and differential with components dpA[n] = (−1)ndn+p

A . For a

chain map f : A→ B, the shifted map f [n] : A[n]→ B[n], is the collection

f [n] = {f [n]p := fn+p : An+p → Bn+p | p ∈ Z}

For a chain map f : A → B, we denote the cone1 of f by C(f) :=
B ⊕ A[1], that is, the chain complex with components C(f)p = Bp ⊕ Ap+1,
and differential given by

dC(f) =

(
dB f [1]
0 dA[1]

)

1.3 Triangulated categories

We recall the definition of a triangulated category [7, Definition 3.1].

1This is often written as A[1]⊕B instead, with a lower triangular matrix as differential.
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Definition. A triangulated category is an additive category C, together with
an additive autoequivalence [1] : C → C called shift (or translation), and a
collection of distinguished triangles ∆, which are sequences on the form

X Y Z X[1]
f g h

satisfying the following.

(TR1) (a) For every object X ∈ C, the triangle

X X 0 X[1]1

is in ∆.

(b) For every morphism f : X → Y , there exists a triangle in ∆

X Y Z X[1]
f

The object Z is called a cone of the morphism f .

(c) The collection ∆ is closed under isomorphisms. That is, if the top
row is in the following diagram is in ∆, and u, v, w are isomorphisms
making the diagram commute, then the bottom row is also in ∆.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f

u

g

v

h

w u[1]

f ′ g′ h′

(TR2) For any triangle

X Y Z X[1]
f g h

in ∆, the rotated triangles

Y Z X[1] Y [1]
g h −f [1]

and

Z[−1] X Y Z
−h[−1] f g

are also in ∆.

14



(TR3) Given the following diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

	

f

u

g

v

h

∃w u[1]

f ′ g′ h′

where both rows are in ∆ and the leftmost square commutes, there
exists a morphism w making the whole diagram commute.

(TR4) Given the following diagram

X Y Z ′ X[1]

X Z Y ′ X[1]

Y Z X ′ Y [1]

Z ′ Y ′ X ′ Z ′[1]

u

v

a b

vu

u

c d

u[1]

v

a

e

c

f

a[1]

where the three rows are in ∆, there exist morphisms g, h, i completing
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the diagram

X Y Z ′ X[1]

X Z Y ′ X[1]

Y Z X ′ Y [1]

Z ′ Y ′ X ′ Z ′[1]

u

v

a b

g

vu

u

c d

h u[1]

v

a

e

c

f

a[1]

g h i

such that the bottom row is in ∆ and everything commutes.

Definition. A triangulated functor is an additive functor F : T → S be-
tween triangulated categories which commutes with shifts and preserves
distinguished triangles. Specifically we require a natual isomorphism φ with
components

φX : F (X[1]T )→ F (X)[1]S

such that for any triangle in ∆T

X Y Z X[1]T
f g h

the resulting triangle under F

FX FY FZ F (X)[1]S
F (f) F (g) φX ◦ F (h)

is in ∆S . A triangulated functor which is also an equivalence of categories is
called a triangulated equivalence.

16



2 Differential graded categories

In this chapter we define differential graded categories, or simply dg-categories.
Our goal is to see that given a so called pretriangulated dg-category, we can
construct a triangulated category. A good reference for many of the results
and concepts in this chapter is [10].

2.1 The basics

Definition. A dg-category A is a k-category in which all morphism spaces
A(X, Y ) are chain complexes over k, and where the composition of morphisms
respects this structure. Specifically we require that the composition

ρ : A(Y, Z)⊗A(X, Y )→ A(X,Z), ρ(g ⊗ f) = g ◦ f

is a chain map. We will use A throughout this thesis to denote such a dg-
category. For brevity we denote the differential of the chain complex A(X, Y )
by dX,Y .

Remark 2.1. We take a moment to note some consequences of this composition
law. First we see that if f ∈ A(X, Y )n, g ∈ A(Y, Z)m, then their composition
g ◦ f ∈ A(X,Z)n+m. This is because the element g ⊗ f ∈ A(Y, Z)⊗A(X, Y )
is by definition in degree n+m, and the chain map g ⊗ f 7→ g ◦ f preserves
this degree.

If f ∈ A(X, Y )n and g ∈ A(Y, Z)m, what is dX,Z(g ◦ f)? By applying the
definition of the differential in A(Y, Z)⊗A(X, Y ), and using the Kozul sign
rule, we get

dY,Z⊗X,Y (g ⊗ f) =

(dY,Z ⊗ IdA(X,Y ) + IdA(Y,Z)⊗dX,Y )(g ⊗ f) =

(dY,Z ⊗ IdA(X,Y ))(g ⊗ f) + (IdA(Y,Z)⊗dX,Y )(g ⊗ f) =

(−1)0·mdY,Z(g)⊗ IdA(X,Y )(f) + (−1)1·m IdA(Y,Z)(g)⊗ dX,Y (f) =

dY,Z(g)⊗ f + (−1)mg ⊗ dX,Y (f)

Here we use the fact that the identity maps and differentials are graded
morphisms of degree 0 and 1 respectively. Since the composition map ρ is a
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chain map, it commutes with the differentials. Hence we get

dX,Z(g ◦ f) = dX,Z(ρ(g ⊗ f)) =

ρ(dY,Z⊗X,Y (g ⊗ f)) =

ρ(dY,Z(g)⊗ f + (−1)mg ⊗ dX,Y (f)) =

dY,Z(g) ◦ f + (−1)mg ◦ dX,Y (f)

This is called the Leibniz rule [10, p.154], a generalization of the product rule.
As we have seen, composition preserves sum of degrees. Since composition

with 1X should leave the element unchanged (and hence degree unchanged),
we conclude that 1X ∈ A(X,X)0. Using the Leibniz rule, we also get

d(1X) =

d(1X ◦ 1X) =

d(1X) ◦ 1X + 1X ◦ d(1X) =

d(1X) + d(1X)

=⇒ d(1X) = 0

Hence 1X ∈ Z0(A(X,X)).
Let f ∈ Z0(A(X, Y )), g ∈ Z0(A(Y, Z)), then the composition satisfies

dX,Z(g ◦ f) =

dY,Z(g) ◦ f + g ◦ dX,Y (f) =

0 ◦ f + g ◦ 0 =

0

Hence g ◦ f ∈ Z0(A(X,Z)).
Now let f ∈ H0(A(X, Y )), g ∈ H0(A(Y, Z)). Is there a well defined

composition g ◦ f ∈ H0(X,Z)? Assume we have two different representatives
for each of f and g, satisfying f1 − f2 = d−1

X,Y (s1) and g1 − g2 = d−1
Y,Z(s2), for

18



s1 ∈ A(X, Y )−1 and s2 ∈ A(Y, Z)−1. We see that

d−1
X,Z(g2 ◦ s1 + s2 ◦ f1) =

d−1
X,Z(g2 ◦ s1) + d−1

X,Z(s2 ◦ f1) =

d0
Y,Z(g2) ◦ s1 + g2 ◦ d−1

X,Y (s1) + d−1
Y,Z(s2) ◦ f1 − s2 ◦ d0

X,Y (f1) =

g2 ◦ d−1
X,Y (s1) + d−1

Y,Z(s2) ◦ f1 =

g2 ◦ (f1 − f2) + (g1 − g2) ◦ f1 =

g2 ◦ f1 − g2 ◦ f2 + g1 ◦ f1 − g2 ◦ f1 =

− g2 ◦ f2 + g1 ◦ f1 =

(g1 ◦ f1)− (g2 ◦ f2)

Since (g1◦f1)−(g2◦f2) is in the image of the differential d−1
X,Z , we conclude that

the compositions g1 ◦ f1 and g2 ◦ f2 represent the same element in H0(X,Z).

Definition. We define Cdg(k), the dg-category of chain complexes over k. The
objects in this category are chain complexes. For two chain complexes A and
B, the morphism space is given by the graded module of graded morphisms
from A to B, Cdg(k)(A,B) :=

⊕
n∈Z Hom(A,B)n. This graded module can

be given the differential dA,B : Hom(A,B)n → Hom(A,B)n+1 defined by
dA,B(f) = dB ◦ f + (−1)n+1f ◦ dA. This makes Cdg(k) into a dg-category.

Since the morphism spaces A(X, Y ) in a dg-category are chain complexes,
we can construct new categories where the morphism spaces are the 0-th
cocycles and 0-th cohomology.

Definition. Let a A be a dg-category. Then we define the following two
categories.

(1) The category Z0(A) has the same objects as A, with morphism spaces
given by Z0(A)(X, Y ) := Z0(A(X, Y )). The composition is induced
by the composition in A. This is well defined, because as we saw in
Remark 2.1, the composition of two morphisms in Z0(A) is again in
Z0(A), and Z0(A) contains the identity morphisms. Note that this is
not a dg-category, but a k-category.

(2) The category H0(A) has the same objects as A, with morphism spaces
given by H0(A)(X, Y ) := H0(A(X, Y )). The composition is induced
by the composition in A, and is well defined by Remark 2.1. Note that
this is not a dg-category, but a k-category.

19



Remark 2.2. For any dg-category A, we get a natural projection functor
which we denote by πA : Z0(A) → H0(A). This functor is the identity on
objects, and the natural projection πX,Y : Z0(A(X, Y ))→ H0(A(X, Y )) on
morphisms.

In the following example, we will study the dg-category Cdg(k), and
determine what Z0(Cdg(k)), and H0(Cdg(k)) are.

Example. First we take a look at Z0(Cdg(k)). Let A,B ∈ Cdg(k). We know
that Cdg(k)(A,B) is a chain complex, where the n-th component is given by
the graded morphisms of degree n from A to B. To study Z0(Cdg(k))(A,B) :=
Ker(d0

A,B), we look at the differential in degree zero: d0
A,B : Cdg(k)(A,B)0 →

Cdg(k)(A,B)1, which is given by d0
A,B(f) = dB ◦ f − f ◦ dA. We get

d0
A,B(f) = 0 ⇐⇒
dB ◦ f − f ◦ dA = 0 ⇐⇒
dB ◦ f = f ◦ dA

That is, f ∈ Z0(Cdg(k))(A,B) ⇐⇒ f is a chain map. Hence we can conclude
that Z0(Cdg(k)) = C(k), as this is exactly the category where all morphisms
are required to be chain maps.

What about H0(Cdg(k))? Let A,B ∈ Cdg(k), and recall that

H0(Cdg(k)(A,B)) := Ker(d0
A,B)/ Im(d−1

A,B) = C(k)(A,B)/ Im(d−1
A,B)

What is Im(d−1
A,B)? If we take some s ∈ Cdg(k)(A,B)−1, then s is what is

usually described as a chain homotopy in homological algebra.

· · · A−1 A0 A1 · · ·

· · · B−1 B0 B1 · · ·

d−2
A

s−1

d−1
A

s0

d0
A

s1

d1
A

s2

d−2
B d−1

B d0
B d1

B

Applying the diffential d−1
A,B, we get the chain map d−1

A,B(s) = dB ◦ s+ s ◦ dA.

Thus the image of the differential d−1
A,B are exactly the chain maps f which can

be written as f = dB ◦s+s◦dA for some chain homotopy s. We say that such
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maps f are homotopic to zero. We say that two chain maps g, h ∈ C(k)(A,B)
are homotopic if g − h is homotopic to zero. We get

H0(Cdg(k))(A,B) := Ker(d0
A,B)/ Im(d−1

A,B) = C(k)(A,B)/ ∼

where ∼ is the equivalence relation given by homotopy. The resulting category
K(k) := C(k)/ ∼ is usually called the homotopy category of chain complexes
over k, with chain complexes as objects, and where the morphisms are chain
maps, up to homotopy.

Definition. For two dg-categories A and B, a dg-functor F : A → B
consist of a map on objects F : Obj(A) → Obj(B), together with a chain
map for each pair of objects X, Y ∈ A, FX,Y : A(X, Y ) → B(FX,FY ).
These maps should also preserve identities FX,X(1X) = 1FX

, and composition
F (g◦Af) = F (g)◦BF (f). We can picture this last property with the following
commutative diagram.

A(Y, Z)⊗A(X, Y ) A(X,Z)

B(FY, FZ)⊗ B(FX,FY ) B(FX,FZ)

◦A

FY,Z ⊗ FX,Y FX,Z

◦B

In order to study a dg-category A, it will be helpful to define the concept
of a dg A-module. This is a special type of dg-functor, namely one mapping
into the category Cdg(k). Because we understand this category well, studying
such modules will be helpful in understand the category A. Specifically we
make the following definition

Definition. A (right)2 dg A-module M is a contravariant dg-functor

M : A → Cdg(k)

In order to define what morphisms between dg A-modules are, we first
define transformations of dg-functors.

2Because of the contravariance, these are often referred to as right dg A-modules (with
the covariant case referred to as left dg A-modules). We will in this thesis simply refer to
right dg A-modules as dg A-modules for brevity.
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Definition. For two contravariant dg-functors F,G : A → B, a graded
transformation φ of degree n from F to G is a collection of elements

φ = {φX ∈ B(FX,GX)n | X ∈ A}

such that for any two objects X, Y ∈ A and any morphism f ∈ A(Y,X), the
following diagram commutes.

FX GX

FY GY

φX

F (f) G(f)

φY

We will refer to φX as the component of φ on X. The k-module Hom(F,G)n is
defined as the collection of all graded transformations of degree n from F to
G. We define the graded k-module Hom(F,G) to have Hom(F,G)n as its n-th
component. We refer to elements in Hom(F,G) as transformations from F to
G. The graded k-module Hom(F,G) can be made into a chain complex with
a differential induced by the differential in the dg-category B, component-wise.
Specifically we construct a differential dF,G : Hom(F,G)n → Hom(F,G)n+1

as follows. Let φ ∈ Hom(F,G)n. For each object X ∈ A, we have the element
dFX,GX(φX) ∈ B(FX,GX)n+1, where dFX,GX is the differential on the chain
complex B(FX,GX). Then we define dF,G(φ) to be given by the collection

dF,G(φ) = {dFX,GX(φX) | X ∈ A}

If φ : F → G is a transformation such that φX ∈ Z0(B(FX,GX)) for all
X ∈ A, then we call φ a cycle transformation.3

Using these definitions we can define what morphisms between dg A-
modules are. Specifically we have that for two dg A-modules M,N : A →
Cdg(k), the morphisms from M to N are given by transformations from M to
N .

Definition. The dg-category of dg A-modules Cdg(A), has dg A-modules as
objects, and transformations of dg-functors as morphisms.

3Not to be confused with other potential meanings of the words cycle/cyclic, this simply
refers to how for a chain complex A, the elements in Z0(A) are often called (zero-th)-cycles.
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Remark 2.3. Given functors F,G : A → B, the differential structure on
Hom(F,G) is entirely determined by the differentials in the category B. Since
all dg A-modules are functors into Cdg(k), this means that for dg A-modules
M,N , the differential structure on Cdg(A)(M,N) is induced by that of Cdg(k),
which we understand well. For brevity, we often denote the differential on
Cdg(A)(M,N) by dCdg(A), when it is clear from context which dg A-modules
we are studying.

In particular we have the following. Let φ ∈ Cdg(A)(M,N) be a
graded transformation of degree n. This means all components φX ∈
Cdg(k)(MX,NX)n, that is, all φX are graded morphisms of degree n between
the chain complexes MX and NX. We also have that if φ ∈ Cdg(A)(M,N)
is a cycle transformation, then all components φX ∈ Z0(Cdg(k)(MX,NX)) =
C(k)(MX,NX), in other words, all components are chain maps.

Definition. The category of dg A-modules C(A), has dg A-modules as
objects and cycle transformations as morphisms. By the above remark we
can equivalently define C(A) := Z0(Cdg(A)). Similarly we define the category
up to homotopy of dg A-modules H(A) := H0(Cdg(A))

We define shifts and cones in C(A) as follows. For an object M ∈
C(A), M [n] is the map which takes an object X ∈ A to the chain complex
M(X)[n]. For a morphism F ∈ C(A)(M,N), the shifted morphism F [n] ∈
C(A)(M [n], N [n]) has components given by

F [n]X := FX [n] : M(X)[n]→ N(X)[n]

where FX [n] is the usual shift of the chain map FX . Together these shifts
on objects and morphisms constitute an autoequivalence Σ : C(A)→ C(A).
For a morphism F ∈ C(A)(M,N), the cone of F , denoted C(F ), is the
map which takes an object X ∈ A to the usual cone of the chain map
FX : M(X) → N(X). Specifically we have C(F )(X) := C(FX) for all
X ∈ A.

We define a particular type of dg A-module, which will be central in a lot
of the future discussions.

Definition. Let X ∈ A. We define the dg A-module represented by X as the
contravariant dg-functor X∧ := A( · , X).

Given some morphism f ∈ A(X, Y ), we get an induced morphism on
the represented dg A-modules. We call this the morphism represented by
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f , which we denote by f∧. This morphism has all components given by

postcomposition, f∧: A( · , X)
f∗−→ A( · , Y ).

This induced morphism has some nice relations to f itself. If f ∈ A(X, Y )n,

then we know that for any Z ∈ A, the morphism f∧Z : A(Z,X)
f∗−→ A(Z, Y )

has degree n. This is because composition in A preserves sum of degrees. Thus
all components of f∧ have degree n, and hence it is a graded transformation
of degree n.

If f ∈ Z0(A)(X, Y ), we show that the induced morphism f∧ is a cy-
cle transformation. We know f∧ is of degree 0, so we need to show that
dCdg(A)(f

∧) = 0. The transformation dCdg(A)(f
∧) consists of components

on the form dA(Z,X),A(Z,Y )(f∗) for all Z ∈ A, where dA(Z,X),A(Z,Y ) is the
differential on the chain complex Cdg(k)(A(Z,X),A(Z, Y )). We have that
dA(Z,X),A(Z,Y )(f∗) = dZ,Y ◦ f∗ − f∗ ◦ dZ,X . This being zero is the same as the
following diagram commuting.

A(Z,X) A(Z, Y )

A(Z,X) A(Z, Y )

dZ,X

f∗

dZ,Y
f∗

Take any g ∈ A(Z,X). Going along the top we get

dZ,Y ◦ f∗(g) = dZ,Y (f ◦ g) = dX,Y (f) ◦ g + f ◦ dZ,X(g)

by the Leibniz rule. Now since f ∈ Z0(A)(X, Y ), we have

dX,Y (f) ◦ g + f ◦ dZ,X(g) = f ◦ dZ,X(g) = f∗ ◦ dZ,X(g)

This is exactly what going along the bottom path in the diagram means.
Hence the diagram commutes, which means dA(Z,X),A(Z,Y )(f∗) = 0 for all
Z ∈ A, and hence f∧ is a cycle transformation.

Proposition 2.4. Let s ∈ A(X, Y )−1. Then d−1
X,Y (s)∧ = d−1

Cdg(A)(s
∧).

Proof. Because s ∈ A(X, Y )−1, this gives us the morphism s∧ ∈
Cdg(A)(X∧, Y ∧)−1, where all components are given by postcomposition with
s. Recall that the differential of the chain complex Cdg(A)(X∧, Y ∧) is given
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by taking the differential at each component. Each component is the chain
complex Cdg(k)(A(Z,X),A(Z, Y )), with the differential

dA(Z,X),A(Z,Y )(s∗) = dZ,Y ◦ s∗ + s∗ ◦ dZ,X

Hence we get that for any t ∈ A(Z,X)

d−1
Cdg(A)(s

∧)Z(t) =

dZ,Y ◦ s∗(t) + s∗ ◦ dZ,X(t) =

dZ,Y (s ◦ t) + s ◦ dZ,X(t) =

d−1
X,Y (s) ◦ t− s ◦ dZ,X(t) + s ◦ dZ,X(t) =

d−1
X,Y (s) ◦ t =

(d−1
X,Y (s))∗(t) =

d−1
X,Y (s)∧Z(t) =

Hence d−1
X,Y (s)∧Z = d−1

Cdg(A)(s
∧)Z for all Z ∈ A, and thus d−1

X,Y (s)∧ = d−1
Cdg(A)(s

∧).

In order to study the represented dg A-modules, we might make the
following definition.

Definition. The category of strictly representable dg A-modules Rs(A), is
a subcategory of C(A). The objects are the strictly representable dg A-
modules. That is, it contains all objects on the form X∧ ∈ C(A) for all X ∈
Z0(A). Morphisms are the strictly representable morphisms. A morphism
F ∈ C(A)(X∧, Y ∧) is strictly representable if there exists f ∈ Z0(A)(X, Y ),
such that f∧ = F .

One problem with this definition however, is that this category only
contains the dg A-modules which are directly represented by some object
in Z0(A). This means there can exist a dg A-module M ∈ C(A), such that
M ' X∧, while M /∈ Rs(A). That is, Rs(A) is not necessarily closed under
isomorphisms in C(A). A more natural category to study is the following.

Definition. The category of representable dg A-modules R(A), is a subcat-
egory of C(A). Its objects are the representable dg A-modules, i.e. objects
M ∈ C(A) such that there exists X ∈ Z0(A) with M ' X∧ in C(A). Mor-
phisms are the representable morphisms. For two representable objects
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M ' X∧ and N ' Y ∧, a morphism F ∈ C(A)(M,N) is said to be rep-
resentable if there exists f ∈ Z0(A)(X, Y ), such that F = v ◦ f∧ ◦ u, for
isomorphisms u : M → X∧ and v : Y ∧ → N .

With this definition, we get a category that is closed under isomorphisms
in the supercategory C(A).

2.2 Yoneda embedding

To better understand a dg-category A, it will be useful to study the category
of dg A-modules, C(A). To do this, we will look at the Yoneda functor, which
will allow us to identify Z0(A) with a full subcategory of C(A).

Definition. Let A be a dg-category. The Yoneda functor, which we will
denote by Γ, maps objects and morphisms to their representatives in the
module category C(A). Specifically we define Γ : Z0(A)→ C(A) by

X 7→ X∧ := A( · , X) f 7→ f∧ : A( · , X)
f∗−→ A( · , Y )

Remark 2.5. Notice how the essential image of Γ are the objects inR(A). Thus
we can also restrict Γ and consider it as a dense functor Γ : Z0(A)→ R(A).

We take a moment to discuss the following construction, which will be
very useful in the coming arguments. For a morphism between strictly
represented dg A-modules F ∈ C(A)(X∧, Y ∧), we can obtain a morphism
f ∈ Z0(A)(X, Y ). We do this by looking at the component of F on the
object X, FX : A(X,X) → A(X, Y ), and evaluating this at the element
1X ∈ A(X,X). This gives us some morphism f := FX(1X) ∈ A(X, Y ). Since
1X ∈ Z0(A(X,X)), it follows that f ∈ Z0(A(X, Y )), since FX is a chain map.

Proposition 2.6. The functor Γ is full and faithful.

Proof. Let X, Y ∈ Z0(A), and let F : X∧ → Y ∧. Define f := FX(1X) ∈
Z0(A)(X, Y ). We show that f∧ = F .

Let Z ∈ A. We have both FZ , f
∧
Z : A(Z,X) → A(Z, Y ). Take any

g ∈ A(Z,X). Since F is a cycle transformation, we get that the following
commutative diagram holds.

A(X,X) A(X, Y )

A(Z,X) A(Z, Y )

FX

g∗ g∗

FZ
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This gives us that

f∧Z (g) = f ◦ g = g∗(f) = g∗(FX(1X)) = FZ(g∗(1X)) = FZ(g)

Hence f∧Z (g) = FZ(g) for any g ∈ A(Z,X). Since the choice of Z was
arbitrary, this shows that f∧ = F . Hence Γ is full.

To show that Γ is faithful, assume we have f, g ∈ Z0(A)(X, Y ), such
that f∧ = g∧. Looking at the component on X and evaluating at 1X we
get that f∧X(1X) = g∧X(1X). Writing out what this means, we get that
f ◦ 1X = g ◦ 1X =⇒ f = g. Hence Γ is faithful.

Corollary 2.7. The restricted Yoneda functor Γ : Z0(A) → R(A) as a
functor onto its essential image, is full, faithful and dense. Hence Z0(A) '
R(A) are equivalent k-categories.

Remark 2.8. What we have shown here is a variant of the Yoneda embedding.
Essentially this states that the equivalence above gives us a way to embed
Z0(A) as a full subcategory of C(A).

Proposition 2.9. The Yoneda functor induces a well defined functor ΓH :
H0(A)→ H(A) making the following diagram commute.

Z0(A) C(A)

H0(A) H(A)

πA

Γ

πCdg(A)

ΓH

Proof. Since the functors πA, πCdg(A) both are the identy on objects, it is
natural for ΓH to be the same on objects as Γ, hence we define ΓH(X) := Γ(X).
Now let X, Y ∈ A, and take some representative of f ∈ H0(A)(X, Y ). We
define the image of ΓH(f) in H(A)(Γ(X),Γ(Y )) to be represented by Γ(f).
We show that this is well defined and independent of representative for the
morphism f .

Let f, g ∈ Z0(A)(X, Y ), such that f − g ∈ Im(d−1
X,Y ). Then we know there

exists a morphism s ∈ A(X, Y )−1 such that d−1
X,Y (s) = f − g. Applying Γ to

this equation we get that Γ(d−1
X,Y (s)) = Γ(f−g) = Γ(f)−Γ(g). By Proposition

2.4, we know that Γ(d−1
X,Y (s)) = d−1

Cdg(A)(Γ(s)), and hence Γ(f) − Γ(g) ∈
Im(d−1

Cdg(A)).
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Proposition 2.10. The functor ΓH is full and faithful.

Proof. Let X, Y ∈ A, and choose some representative for the morphism
f ∈ H(A)(X∧, Y ∧). Since Γ is full, there exists some g ∈ Z0(A) such that
Γ(g) = f . Then

ΓH(πA(g)) = πCdg(A)(Γ(g)) = πCdg(A)(f) = f

Hence ΓH is full. Now assume ΓH(f) = 0. This means there exists s ∈
Cdg(A)(X∧, Y ∧)−1, such that d−1

Cdg(A)(s) = Γ(f). By taking the component of

these transformations on the object X, and evaluating at 1X , we get

d−1
Cdg(A)(s) = Γ(f) =⇒

d−1
Cdg(A)(s)X(1X) = Γ(f)X(1X) =⇒

(d−1
X,Y ◦ sX + sX ◦ dX)(1X) = f∗(1X) =⇒

d−1
X,Y ◦ sX(1X) = f ◦ 1X =⇒
d−1
X,Y (sX(1X)) = f

That is, f ∈ Im(d−1
X,Y ), and hence f = 0 in H0(A). Hence ΓH is faithful.

2.3 Triangulated categories from dg-categories

In this section we will prove that for a so-called pretriangulated dg-category
A, the category H0(A) has a canonical triangulation. We will first see how
we can use the functors discussed in the previous section to better understand
the category H0(A), and to define what a pretriangulated dg-category is.
Finally we will prove that H0(A) is triangulated.

Recall that we could consider Γ : Z0(A) → R(A) an equivalence onto
the full subcategory with objects in the essential image of Γ. Similarly we
denote R(A)H for the full subcategory of H(A) with objects in the essential
image of ΓH . Then we can consider the equivalence ΓH : H0(A)→ R(A)H .
But what is R(A)H? Let M ∈ R(A), then there exists some X ∈ Z0(A)
such that Γ(X) 'M in Cdg(A). Since functors preserve isomorphisms, this
means that πCdg(A)(Γ(X)) ' πCdg(A)(M), which implies that ΓH(X) 'M in
H(A). Thus we have that Obj(R(A)) ⊆ Obj(R(A)H). The result is that the
restricted functor πCdg(A) : R(A)→ R(A)H is well defined.
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Because ΓH : H0(A)→ R(A)H is an equivalence, we know there exists a
functor β : R(A)H → H0(A), satisfying β◦ΓH ' 1H0(A), and ΓH ◦β ' 1R(A)H

.
This allows us to make the following diagram.

Z0(A) R(A)

H0(A) R(A)H

πA

Γ

πCdg(A)

ΓH

β

We have that

πCdg(A) ◦ Γ = ΓH ◦ πA =⇒
β ◦ πCdg(A) ◦ Γ = β ◦ ΓH ◦ πA =⇒
β ◦ πCdg(A) ◦ Γ ' 1H0(A) ◦ πA =⇒
β ◦ πCdg(A) ◦ Γ ' πA

This factorization of πA allows us to ”visit” R(A) on the way to H0(A).
This category has some structure we are interrested in, in particular since
it is a subcategory of C(A) there are well defined shifts and cones. In
general however, R(A) is not closed under these operations. Namely for some
representable dg A-module M , we cannot be sure that the shifted module
M [n] is representable. The same is true for cones, in general, the cone of a
representable morphism might not be a representable object.

This is where the property of A being pretriangulated comes in, as it
ensures that the category of representable dg A-modules is closed under
both shifts and cones. In particular, following Keller [10, p.172] we have the
following definition.

Definition. A dg-category A is pretriangulated, if both of the following hold.

1. For every object X ∈ Z0(A), and for all n ∈ Z, there exists a unique
object (up to isomorphism) X[n] ∈ Z0(A), such that X[n]∧ ' X∧[n] in
C(A).

2. For every morphism f ∈ Z0(A)(X, Y ), there exists a unique object (up
to isomorphism) C(f) ∈ Z0(A), such that C(f)∧ ' C(f∧) in C(A).
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Remark 2.11. The first property gives us a well defined shift Σ : Z0(A) →
Z0(A), induced by the shift in C(A). The second property gives us a way
to construct cones in Z0(A). We write out explicitly what this construction
looks like. We start with some morphism f ∈ Z0(A)(X, Y ). This gives us
a morphism f∧ ∈ C(A)(X∧, Y ∧), with components f∗ : A(Z,X)→ A(Z, Y ).
The cone is defined componentwise, so C(f∧)Z = A(Z, Y )⊕A(Z,X)[1], where
the right hand side has the differential

dn =

(
dnZ,Y f∗

0 −dn+1
Z,X

)
Thus we have that

A(Z,C(f)) = C(f)∧Z ' C(f∧)Z = A(Z, Y )⊕A(Z,X)[1] ' A(Z, Y )⊕A(Z,X[1])

To show that H0(A) is triangulated, we first need to know that it is
additive. We do this by showing that Z0(A) is additive. For a general dg-
category A, this is not guaranteed. All morphisms spaces are abelian groups
(since they are k-modules), but the existence of a biproduct is not guaranteed
by our definitions. However when A is pretriangulated, then it follows that
all biproducts exist in Z0(A).

Proposition 2.12. Let A be a pretriangulated dg-category. Then Z0(A) is
additive.

Proof. Let X, Y ∈ A, and take the zero morphism 0 ∈ A(Y [−1], X). Define
the cone of this morphism B := C(0). We show that B is the biproduct of X
and Y in Z0(A).

By the definition of the cone, we know that B∧ ' C(0∧) are isomorphic
in C(A). The morphism 0∧ : Y [−1]∧ → X∧ has cone isomorphic to

X∧ ⊕ Y [−1]∧[1] ' X∧ ⊕ Y ∧[−1][1] = X∧ ⊕ Y ∧

where X∧ ⊕ Y ∧ is equipped with the appropriate differential. Thus we know
there exists an isomorphism in C(A)

φ : B∧ → X∧ ⊕ Y ∧

This means that for all Z ∈ A, we have an isomorphism of chain complexes

φZ : A(Z,B)→ A(Z,X)⊕A(Z, Y )
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natural with respect to changes in Z. Note that since we are taking the cone
of the zero morphism, the differential on A(Z,X) ⊕ A(Z, Y ) is a diagonal
matrix, and thus Z0(A(Z,X) ⊕ A(Z, Y )) ' Z0(A)(Z,X) ⊕ Z0(A)(Z, Y ).
Looking specifically at the components Z ∈ {X, Y,B}, we define the following
morphisms.

iX := φ−1
X (1X , 0) ∈ Z0(A)(X,B)

iY := φ−1
Y (0, 1Y ) ∈ Z0(A)(Y,B)

(πX , πY ) := φB(1B) ∈ Z0(A)(B,X)⊕ Z0(A)(B, Y )

All these morphisms are in Z0(A), since all components φZ are chain maps.
We now show that these morphisms satisfy the properties we expect from a
biproduct. For any f ∈ A(X,B), we get the following commutative diagram

A(B,B) A(B,X)⊕A(B, Y )

A(X,B) A(X,X)⊕A(X, Y )

f∗

φB

f∗

φX

If we specifically let f = iX and take 1B ∈ A(B,B), we get

(1X , 0) =

φX(iX) =

φX(i∗X(1B)) =

i∗X(φB(1B)) =

i∗X(πX , πY ) =

(πX ◦ iX , πY ◦ iX)

Hence πX ◦ iX = 1X . Similarly we can show that πY ◦ iY = 1Y . Now for any
g ∈ A(B,X), we get the commutative diagram

A(X,X)⊕A(X, Y ) A(X,B)

A(B,X)⊕A(B, Y ) A(B,B)

g∗

φ−1
X

g∗

φ−1
B
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Choose g = πX , and look at (1X , 0) ∈ A(X,X)⊕A(X, Y ) to get that

iX ◦ πX =

π∗X(iX) =

π∗X(φ−1
X (1X , 0)) =

φ−1
B (π∗X(1X , 0)) =

φ−1
B (πX , 0)

Similarly we can show that iY ◦ πY = φ−1
B (0, πY ), and thus we get

iX ◦ πX + iY ◦ πY =

φ−1
B (πX , 0) + φ−1

B (0, πY ) =

φ−1
B (πX , πY ) =

1B

Hence B is the biproduct of X and Y in Z0(A).

We take some time to discuss some useful notation which will use from
here on.

Notation. For an object M ∈ Cdg(A), Mn denotes map X 7→ M(X)n, for
any X ∈ A, where M(X)n is the n-th component of the chain complex M(X).
Similarly for f ∈ Cdg(A)(M,N)k a graded morphism of degree k, we denote
by fn the map X 7→ f(X)n, where f(X)n is the n-th component of the graded
morphism of chain complexes f(X) ∈ Cdg(k)(MX,NX)k. Similarly for an
object M ∈ Cdg(A), we denote by dnM the map X 7→ dnMX , where dnMX is the
n-th component of the differential on the chain complex MX. Composition
of morphisms with this notation is defined in the natural way. Namely if
f ∈ Cdg(A)(M,N)j, g ∈ Cdg(A)(N, V )k, then (g ◦ f)n represents the map
X 7→ (g ◦ f)(X)n = g(X)n+j ◦ f(X)n for any X ∈ A. Thus composition is
defined by (g ◦ f)n = gn+j ◦ fn.

Using this notation allows us to simplify arguments. For example we have
the following proposition which makes it easier to discuss homotopic maps in
C(A).

Proposition 2.13. Let f ∈ C(A)(M,N), and let s ∈ Cdg(A)(M,N)−1. If
fn = dn−1

N ◦ sn + sn+1 ◦ dnM for all n ∈ Z, then d−1
Cdg(A)(s) = f .
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Proof. Let X ∈ A, then we know that

fn(X) = dn−1
N (X) ◦ sn(X) + sn+1(X) ◦ dnM(X) =⇒

f(X)n = dn−1
NX ◦ s(X)n + s(X)n+1 ◦ dnMX

Since this is true for all n ∈ Z, we consider the chain maps with all these
morphisms as components. We get

f(X) = dNX ◦ s(X) + s(X) ◦ dMX = dMX,NX(s(X))

The last equality we get by the definition of the differential in Cdg(k). Con-
sidering the definiton of the differential in Cdg(A), we get

dCdg(A)(s) = {dMX,NX(s(X)) | X ∈ A} = {f(X) | X ∈ A} = f

Since A is pretriangulated, we have well-defined shifts and cones in Z0(A).
Using this we define them similarly in H0(A).

Definition. The shift Σ : H0(A)→ H0(A) is the functor induced by the shift
in Z0(A). Given a morphism f ∈ H0(A)(X, Y ), we choose some representative
for f , and construct the object C(f) ∈ Z0(A). Then we define the cone of f
as the object C(f) ∈ H0(A).

Remark 2.14. It can be shown that this definition of the cone in H0(A) is
independent of the representative for the morphism f .

Definition. A standard triangle in Z0(A) is a sequence on the form

X Y C(f) X[1]
f u v

for some morphism f ∈ Z0(A). Here u and v are the morphisms making the
following diagram commute in C(A)

X∧ Y ∧ C(f)∧ X∧[1]

X∧ Y ∧ Y ∧ ⊕X∧[1] X∧[1]

f∧ u∧

φ

v∧

f∧ ( 1
0 ) ( 0 1 )
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where φ is an isomorphism granted by knowing that C(f)∧ ' C(f∧) =
Y ∧ ⊕X∧[1]. We define the collection ∆ of distinguished triangles in H0(A)
as all triangles isomorphic to the image of a standard triangle under the
projection functor πA.

We will show that (H0(A),Σ,∆) is a triangulated category, but first we
discuss a pattern that will repeat throughout the proof. We will start with
some collection of objects and morphisms in H0(A), say for example

X Y

U V

f

g

We then apply ΓH to pass to the category R(A)H . Here we will use some
of the extra structure to obtain some new morphisms, making the following
diagram commute in R(A)H .

X∧ Y ∧

U∧ V ∧

f∧

s t

g∧

By applying β, we come back to H0(A). Since β ◦ ΓH ' 1H0(A), we have a
natural isomorphism φ : 1H0(A) → β◦ΓH , giving us the following commutative
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diagram in H0(A).

X Y

β(X∧) β(Y ∧)

β(U∧) β(V ∧)

U V

f

φX φY

β(f∧)

β(s) β(t)

β(g∧)

φU

g

φV

Note that the middle square commutes since β preserves compositions. The
top and bottom squares commute because φ is a natural transformation. Using
this diagram we can fill in the missing morphisms in the original diagram, by
defining the corresponding morphisms to s and t in H0(A).

s′ := φ−1
U ◦ β(s) ◦ φX ∈ H0(A)(X,U)

t′ := φ−1
V ◦ β(t) ◦ φY ∈ H0(A)(Y, V )

Since all squares in this diagram commute, these morphisms make the original
diagram commute as well. Note that if for example s is an isomorphism in
R(A)H , then the corresponding morphism s′ is an isomorphism in H0(A).

The following proof is an adaptation of the proof given in [7, Theorem
6.7], to work when dealing with dg-categories.

Theorem 2.15. Let A be a pretriangulated dg-category, and let Σ : H0(A)→
H0(A) and ∆ be defined as above. Then (H0(A),Σ,∆) becomes a triangulated
category.

Proof. (TR1) By construction, ∆ is closed under isomorphisms and all mor-
phisms fit into a distinguished triangle. Let X ∈ A, and look at the triangle

X X C(1X) X[1]
1X u v
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We want to prove that this is isomorphic to the triangle

X X 0 X[1]
1X

In particular, we need to show that C(1X) ' 0 in H0(A). We first show that
C(1X)∧ ' X∧ ⊕X∧[1] ' 0 in H(A). Denote the differential on X∧ ⊕X∧[1]
by

dnC(1X)∧ =

(
dnX∧ 1X∧n+1

0 −dn+1
X∧

)
There is only one choice of morphism in either direction between the objects
0 and C(1X), so we need to show that these are inverses in H(A). The
composition 0→ C(1X)→ 0 is clearly equal to 10. We make the following
diagram for the morphism C(1X)→ 0→ C(1X).

· · · X∧−1 ⊕X∧0 X∧0 ⊕X∧1 X∧1 ⊕X∧2 · · ·

· · · X∧−1 ⊕X∧0 X∧0 ⊕X∧1 X∧1 ⊕X∧2 · · ·

d−2

0

d−1

0s0

d0

0s1

d1

d−2 d−1 d0 d1

Here s is the graded transformation of degree −1 with components given by

sn =

(
0 0

1X∧n 0

)
We get

dn−1
C(1X)∧ ◦ sn + sn+1 ◦ dnC(1X)∧ =(
dn−1
X∧ 1X∧n
0 −dnX∧

)(
0 0

1X∧n 0

)
+

(
0 0

1X∧n+1
0

)(
dnX∧ 1X∧n+1

0 −dn+1
X∧

)
=(

1X∧n 0
dnX∧ 0

)
+

(
0 0
−dnX∧ 1X∧n+1

)
=(

1X∧n 0
0 1X∧n+1

)
=

1C(1X)∧n
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By Proposition 2.13, we get that 1C(1X)∧ = d−1
Cdg(A)(s), which means C(1X)∧ '

0 in H(A). Applying β preserves isomorphisms, hence we get that 0 ' β(0) '
β(C(1X)∧) ' C(1X) in H0(A).

(TR2) Let X
f−→ Y

u−→ C(f)
v−→ X[1] be a standard triangle in H0(A). The

left rotation of this triangle is Y
u−→ C(f)

v−→ X[1]
−f [1]−−−→ Y [1]. We need to

show that we have an isomorphism φ′ : C(u)→ X[1] in H0(A), such that the
following diagram commutes.

Y C(f) C(u) Y [1]

Y C(f) X[1] Y [1]

u w t

φ′

u v −f [1]

We have that C(u)∧ ' C(f)∧ ⊕ Y ∧[1] ' Y ∧ ⊕ X∧[1] ⊕ Y ∧[1], with the
differential

dnC(u)∧ =

dnY ∧ f∧n+1 1Y ∧n+1

0 −dn+1
X∧ 0

0 0 −dn+1
Y ∧


We define the morphisms φ : Y ∧⊕X∧[1]⊕Y ∧[1]→ X∧[1] given by components

φn =
(
0 1X∧n+1

0
)

and θ : X[1]∧ → Y ∧ ⊕X[1]∧ ⊕ Y [1]∧ given by components

θn =

 0
1X∧n+1

−f∧n+1


One can check that these commute with the respective differentials. We
consider the following diagram

Y ∧ Y ∧ ⊕X∧[1] Y ∧ ⊕X∧[1]⊕ Y ∧[1] Y ∧[1]

Y ∧ Y ∧ ⊕X∧[1] X∧[1] Y ∧[1]

u∧ w∧ t∧

φ

u∧ v∧

θ

−f∧[1]
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where

u∧ =

(
1
0

)
v∧ =

(
0 1

)
w∧ =

1 0
0 1
0 0

 t∧ =
(
0 0 1

)
We check that φ and θ make the diagram commute in H(A). We see that

(φ ◦ w∧)n =
(
0 1X∧n+1

0
)1Y ∧n 0

0 1X∧n+1

0 0

 =
(
0 1X∧n+1

)
= v∧n

and

(t∧ ◦ θ)n =
(
0 0 1Y ∧n+1

) 0
1X∧n+1

−f∧n+1

 = −f∧n+1

Hence φ makes the left square commute, and θ makes the right square
commute already in C(A). For the other compositions to commute, we need
to pass to H(A). First observe that

t∧n − (−f∧[1] ◦ φ)n =(
0 0 1Y ∧n+1

)
− (−f∧n+1

(
0 1X∧n+1

0
)
) =(

0 f∧n+1 1Y ∧n+1

)
Let s : Y ∧ ⊕X∧[1]⊕ Y ∧[1]→ Y ∧[1] be the graded transformation of degree
−1 given by components

sn =
(
1Y ∧n 0 0

)
This gives us that

− dnY ∧ ◦ sn + sn+1 ◦ dnC(u)∧ =

− dnY ∧
(
1Y ∧n 0 0

)
+
(
1Y ∧n+1

0 0
)dnY ∧ f∧n+1 1Y ∧n+1

0 −dn+1
X∧ 0

0 0 −dn+1
Y ∧

 =

(
−dnY ∧ 0 0

)
+
(
dnY ∧ f∧n+1 1Y ∧n+1

)
=(

0 f∧n+1 1Y ∧n+1

)
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Hence by Proposition 2.13, φ also makes the right square commute in H(A).
Similarly, first we calculate that

w∧n − (θ ◦ v∧)n =1Y ∧n 0
0 1X∧n+1

0 0

−
 0

1X∧n+1

−f∧n+1

(0 1X∧n+1

)
=

1Y ∧n 0
0 1X∧n+1

0 0

−
0 0

0 1X∧n+1

0 −f∧n+1

 =

1Y ∧n 0
0 0
0 f∧n+1


Let s : Y ∧ ⊕X∧[1]→ Y ∧ ⊕X∧[1]⊕ Y ∧[1] be the graded transformation of
degree −1 given by components

sn =

 0 0
0 0

1Y ∧n 0


We get

dn−1
C(u)∧ ◦ sn + sn+1 ◦ dnC(f)∧ =dn−1

Y ∧ f∧n 1Y ∧n
0 −dnX∧ 0
0 0 −dnY ∧

 0 0
0 0

1Y ∧n 0

+

 0 0
0 0

1Y ∧n+1
0

(dnY ∧ f∧n+1

0 −dn+1
X∧

)
=

 1Y ∧n 0
0 0
−dnY ∧ 0

+

 0 0
0 0
dnY ∧ f∧n+1

 =

1Y ∧n 0
0 0
0 f∧n+1


Hence by Proposition 2.13 θ also makes the left square commute in H(A).

Now we show that φ and θ are inverses in H(A). Composing them we get

φn ◦ θn = 1X∧n+1
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This shows they are already one-sided inverses of oneanother in C(A). For
the other composition order we get

θn ◦ φn =

0 0 0
0 1X∧n+1

0

0 −f∧n+1 0


Now let s : Y ∧ ⊕ X∧[1] ⊕ Y ∧[1] → Y ∧ ⊕ X∧[1] ⊕ Y ∧[1] be the graded
transformation of degree −1 given by components

sn =

 0 0 0
0 0 0

1Y ∧n 0 0


We get

dn−1
C(u)∧ ◦ sn + sn+1 ◦ dnC(u)∧ =dn−1

Y ∧ f∧n 1Y ∧n
0 −dnX∧ 0
0 0 −dnY ∧

 0 0 0
0 0 0

1Y ∧n 0 0

+

 0 0 0
0 0 0

1Y ∧n+1
0 0

dnY ∧ f∧n+1 1Y ∧n+1

0 −dn+1
X∧ 0

0 0 −dn+1
Y ∧

 =

 1Y ∧n 0 0
0 0 0
−dnY ∧ 0 0

+

 0 0 0
0 0 0
dnY ∧ f∧n+1 1Y ∧n+1

 =

1Y ∧n 0 0
0 0 0
0 f∧n+1 1Y ∧n+1


Now notice that

dn−1
C(u)∧ ◦ sn + sn+1 ◦ dnC(u)∧ + θn ◦ φn =1Y ∧n 0 0

0 0 0
0 f∧n+1 1Y ∧n+1

+

0 0 0
0 1X∧n+1

0

0 −f∧n+1 0

 =

1Y ∧n 0 0
0 1X∧n+1

0

0 0 1Y ∧n+1

 =

1C(u)∧n
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Hence by Proposition 2.13, θ ◦ φ = 1C(u)∧ . This means φ and θ are inverses
and X∧[1] ' C(u)∧ in H(A). By applying β, we get an isomorphism φ′ ∈
H0(A)(C(u), X[1]) corresponding to φ which makes the original diagram
commute.

(TR3) Assume we have the folowing diagram in H0(A), where the rows
are triangles and the leftmost square commutes.

X Y C(f) X[1]

V W C(g) V [1]

	

f

a

u

b

v

∃?φ′ a[1]

g w t

We need to show that there exists a morphism φ′ ∈ H0(A)(C(f), C(g)) such
that the two other squares also commute in H0(A).

The commutativity of the leftmost square in Z0(A) implies that there
exists s ∈ A(X,W )−1, such that b ◦ f − g ◦ a = d−1

X,W (s) in Z0(A). This
gives us the graded transformation s∧ ∈ Cdg(A)(X∧,W∧)−1. We construct
the following diagram in C(A), with appropriate differentials on the cones.

Y ∧ Y ∧ ⊕X∧[1] X∧[1]

W∧ W∧ ⊕ V ∧[1] V ∧[1]

( 1
0 )

b∧

( 0 1 )

φ a∧[1]

( 1
0 ) ( 0 1 )

Where φ is the morphism with components

φn =

(
b∧n s∧n+1

0 a∧n+1

)
This clearly makes the diagram commute, as the term s∧n+1 vanishes in both
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compositions. We check that φ commutes with the differentials.

· · · Y ∧−1 ⊕X∧0 Y ∧0 ⊕X∧1 Y ∧1 ⊕X∧2 · · ·

· · · W∧
−1 ⊕ V ∧0 W∧

0 ⊕ V ∧1 W∧
1 ⊕ V ∧2 · · ·

d−2
C(f)∧ d−1

C(f)∧

φ−1

d0
C(f)∧

φ0 φ1

d1
C(f)

d−2
C(g)∧ d−1

C(g)∧ d0
C(g)∧ d1

C(g)∧

We have the differentials

dnC(f)∧ =

(
dnY ∧ f∧n+1

0 −dn+1
X∧

)
dnC(g)∧ =

(
dnW∧ g∧n+1

0 −dn+1
V ∧

)
We get

φn ◦ dn−1
C(f)∧ − d

n−1
C(g)∧ ◦ φn−1 =(

b∧n s∧n+1

0 a∧n+1

)(
dn−1
Y ∧ f∧n
0 −dnX∧

)
−
(
dn−1
W∧ g∧n
0 −dnV ∧

)(
b∧n−1 s∧n

0 a∧n

)
=(

b∧n ◦ dn−1
Y ∧ b∧n ◦ f∧n − s∧n+1 ◦ dnX∧

0 −a∧n+1 ◦ dnX∧

)
−
(
dn−1
W∧ ◦ b∧n−1 dn−1

W∧ ◦ s∧n + g∧n ◦ a∧n
0 −dnV ∧ ◦ a∧n

)
=(

b∧n ◦ dn−1
Y ∧ − d

n−1
W∧ ◦ b∧n−1 (b∧n ◦ f∧n − g∧n ◦ a∧n)− (dn−1

W∧ ◦ s∧n + s∧n+1 ◦ dnX∧)
0 −(a∧n+1 ◦ dnX∧ − dnV ∧ ◦ a∧n)

)
=(

0 0
0 0

)
In the last equality everything vanishes because of the following. All compo-
nents of a∧ and b∧ are chain maps, hence we know that b∧n◦dn−1

Y ∧ −d
n−1
W∧ ◦b∧n−1 = 0

and a∧n+1 ◦ dnX∧ − dnV ∧ ◦ a∧n = 0. Since b ◦ f − g ◦ a = d−1
X,W (s), we get the

following by Proposition 2.4.

b∧n ◦ f∧n − g∧n ◦ a∧n = d−1
X,W (s)∧n = dCdg(A)(s

∧)n

On the other hand we also have

dCdg(A)(s
∧)n = dn−1

W∧ ◦ s
∧
n + s∧n+1 ◦ dnX∧

from the definition of the differential in Cdg(A). Hence the top right term
in the matrix also vanishes, and thus φ commutes with the differentials.
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Applying β we get a morphism φ′ ∈ H0(A)(C(f), C(g)) corresponding to φ
which makes the original diagram commute.

(TR4) Assume we have the following diagram in H0(A), where the three
first rows are triangles

X Y C(u) X[1]

X Z C(vu) X[1]

Y Z C(v) Y [1]

C(u) C(vu) C(v) C(u)[1]

u

v

a b

vu

u

c d

u[1]

v

a

e

c

f

a[1]

Then we need to show that the bottom row also forms a triangle in H0(A).
Transfering this diagram over to C(A) and decomposing the cones with
appropriate differentials, we get the following diagram.

X∧ Y ∧ Y ∧ ⊕X∧[1] X∧[1]

X∧ Z∧ Z∧ ⊕X∧[1] X∧[1]

Y ∧ Z∧ Z∧ ⊕ Y ∧[1] Y ∧[1]

Y ∧ ⊕X∧[1] Z∧ ⊕X∧[1] Z∧ ⊕ Y ∧[1] Y ∧[1]⊕X∧[2]

u∧

v∧

( 1
0 )

g∧

( 0 1 )

(vu)∧

u∧

( 1
0 )

h∧

( 0 1 )

u∧[1]

v∧

( 1
0 )

( 1
0 )

( 1
0 )

( 0 1 )

( 1
0 )

g h i
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We have filled in the missing parts with morphisms g∧, h∧ and i∧ with
components

gn =

(
v∧n 0
0 1X∧n+1

)
hn =

(
1Z∧n 0
0 u∧n+1

)
in =

(
0 1Y ∧n+1

0 0

)
One can check that these commute with the respective differentials, and
makes the entire diagram commute. To show that the bottom row gives us a
triangle, we need to consider the object C(g)∧ ' Z∧⊕X∧[1]⊕Y ∧[1]⊕X∧[2],
with the differential

dnC(g∧) =


dnZ∧ (vu)∧n+1 v∧n+1 0
0 −dn+1

X∧ 0 1X∧n+2

0 0 −dn+1
Y ∧ −u∧n+2

0 0 0 dn+2
X∧


We have to show that we have an isomorphism of triangles in H(A).

Y ∧ ⊕X∧[1] Z∧ ⊕X∧[1] Z∧ ⊕X∧[1]⊕ Y ∧[1]⊕X∧[2] Y ∧[1]⊕X∧[2]

Y ∧ ⊕X∧[1] Z∧ ⊕X∧[1] Z∧ ⊕ Y ∧[1] Y ∧[1]⊕X∧[2]

g

(
1 0
0 1
0 0
0 0

)

τ

( 0 0 1 0
0 0 0 1 )

g h

σ

i

We construct the following two morphisms.

σ : Z∧ ⊕ Y ∧[1]→ Z∧ ⊕X∧[1]⊕ Y ∧[1]⊕X∧[2],

σn =


1Z∧n 0
0 0
0 1Y ∧n+1

0 0


τ : Z∧ ⊕X∧[1]⊕ Y ∧[1]⊕X∧[2]→ Z∧ ⊕ Y ∧[1],

τn =

(
1Z∧n 0 0 0
0 u∧n+1 1Y ∧n+1

0

)
One can check that τ makes the left square commute, and σ makes the right
square commute in C(A). One can also check that σ makes the left square
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commute in H(A), by using s : Z∧ ⊕X∧[1]→ Z∧ ⊕X∧[1]⊕ Y ∧[1]⊕X∧[2],
the graded transformation of degree −1 with components

sn =


0 0
0 0
0 0
0 1X∧n+1


Similarly we can check that τ makes the right square commute by using
s : Z∧ ⊕X∧[1]⊕ Y ∧[1]⊕X∧[2]→ Y ∧[1]⊕X∧[2] given by components

sn =

(
0 0 0 0
0 1X∧n+1

0 0

)
Now we check that σ and τ are inverses in H(A).

τn ◦ σn =

(
1Z∧n 0
0 1Y ∧n+1

)
σn ◦ τn =


1Z∧n 0 0 0
0 0 0 0
0 u∧n+1 1Y ∧n+1

0

0 0 0 0


Let s : C(g)∧ → C(g)∧ be the graded transformation of degree −1 with
components

sn =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1X∧n+1

0 0


We get
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dn−1
C(g)∧ ◦ sn + sn+1 ◦ dnC(g)∧ =
dnZ∧ (vu)∧n+1 v∧n+1 0
0 −dn+1

X∧ 0 1X∧n+2

0 0 −dn+1
Y ∧ −u∧n+2

0 0 0 dn+2
X∧




0 0 0 0
0 0 0 0
0 0 0 0
0 −1n+1

X∧ 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 −1n+2

X∧ 0 0



dnZ∧ (vu)∧n+1 v∧n+1 0
0 −dn+1

X∧ 0 1X∧n+2

0 0 −dn+1
Y ∧ −u∧n+2

0 0 0 dn+2
X∧

 =


0 0 0 0
0 −1X∧n+1

0 0

0 u∧n+1 0 0
0 −dn+1

X∧ 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 dn+1

X∧ 0 −1X∧n+2

 =


0 0 0 0
0 −1X∧n+1

0 0

0 u∧n+1 0 0
0 0 0 −1X∧n+2


Now notice that

dn−1 ◦ sn + sn+1 ◦ dn + 1C(g)∧n =
0 0 0 0
0 −1X∧n+1

0 0

0 u∧n+1 0 0
0 0 0 −1X∧n+2

+


1Z∧n 0 0 0
0 1X∧n+1

0 0

0 0 1Y ∧n+1
0

0 0 0 1X∧n+2

 =


1Z∧n 0 0 0
0 0 0 0
0 u∧n+1 1Y ∧n+1

0

0 0 0 0

 = σn ◦ τn

Hence by Proposition 2.13 we get that σ ◦ τ = 1C(g) in H(A). For the other
composition order, we already have that τ ◦ σ = 1C(v)∧ in C(A), hence it
is also true in H(A). Hence C(v)∧ ' C(g)∧ in H(A). By applying β we
conclude that the original diagram commutes and the bottom row is a triangle
in H0(A).
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3 Exact categories

In abelian categories, we can form exact sequences by using the concepts of
kernels and cokernels. The goal in this section is to study exact categories,
a generalization of abelian categories. These categories allow us to define
exact sequences in categories where not all morphisms necessarily have kernels
and/or cokernels. After defining the first concepts, we define the stable
category of a special type of exact category, and see how this category is
triangulated.

3.1 The basics

There are several equivalent formulations of the properties an exact category
should satisfy, here we will use the definition given by Keller [9, p.405].

Definition. An exact category is an additive category C, together with a
family E of sequences on the form

0 X Y Z 0i d

where i is a kernel of d, and d is a cokernel of i. These sequences are called
exact sequences. The morphisms i are called inflations, and the morphisms d
are called deflations4. Furthermore, we require the following to hold

(1) The family E is closed under isomorphisms. That is, given a commuta-
tive diagram

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

∼

i

∼

d

∼

i′ d′

where the top row is in E and the vertical morphisms are all isomor-
phisms, then the bottom row is also in E.

(2) 10 is a deflation.

4These are sometimes instead called admissible monomorphisms/epimorphisms respec-
tively
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(3) The composition of two deflations is a deflation.

(4) Given a diagram

Y

X Z

f

d

where d is a deflation and f is any morphism, then the pullback exists

P Y

X Z

d̂

g f

d

and the morphism d̂ is also a deflation.

(5) Dually, given a diagram

X Y

Z

i

f

where i is an inflation and f is any morphism, the pushout exists

X Y

Z P

i

f g

î

and the morphism î is also an inflation.

Remark 3.1. It can be shown that there is an equivalent characterization of
exact categories. Namely an additive category C is exact if and only if it can
be embedded as a full, extension-closed subcategory of some abelian category
D. Here extension-closed refers to the property that if

0 A B C 0
f g

48



is an exact sequence in D, and A,C ∈ C, then B ∈ C. Some authors use this
as the definition of an exact category, see for example [6, p.10].

Example. A simple example of an exact category is Ab, the category of
abelian groups. The exact structure is given by the collection EAb containing
all short exact sequences in the usual sense.

Let X ∈ C. Since C is additive, we can consider the following additive
functors.

C( · , X) : Cop → Ab

C(X, · ) : C → Ab

We establish a useful fact about these functors.

Proposition 3.2. The functor C( · , X) is left-exact. That is, given any exact
sequence in C

0 X Y Z 0
f g

and any V ∈ C, then the sequence

0 C(Z, V ) C(Y, V ) C(X, V )
g∗ f∗

is exact in Ab.

Proof. Let g∗(a) = 0 for some a ∈ C(Z, V ). This means that a ◦ g = 0, and
since g is an epimorphism, this implies that a = 0. Hence g∗ is injective.
Now consider c := g∗(b) = b ◦ g for some b ∈ C(Z, V ). We get that f ∗(c) =
c ◦ f = b ◦ g ◦ f = 0. Hence Im(g∗) ⊆ Ker(f ∗). Now let d ∈ C(Y, V ) such
that f ∗(d) = 0. This means d ◦ f = 0, and since Z is a cokernel of f , we get
the existence of a unique morphism h completing the following commutative
diagram.

X Y Z

V

f

d

g

∃!h

Specifically we have that d = h ◦ g = g∗(h), and hence Ker(f ∗) ⊆ Im(g∗).
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Remark 3.3. Note that a similar statement can be proven for the functor
C( · , X).

Definition. An exact functor is an additive functor F : C → D between
exact categories such that the image of any exact sequence in C is an exact
sequence in D.

As we have seen, the functors C( · , X) and C(X, · ) are almost exact. We
denote the objects which make these exact in the following way.

Definition. Let C be an exact category. An object X ∈ C is called

(1) injective if the functor C( · , X) is exact.

(2) projective if the functor C(X, · ) is exact.

We now give an equivalent characterization of injective objects.

Proposition 3.4. Let I ∈ C be an object in an exact category. Then I is
injective if and only if the following holds. For any morphism i ∈ C(X, I) and
any inflation f ∈ C(X, Y ), there exists a morphism h ∈ C(Y, I) making the
following diagram commute.

0 X Y

I

i

f

∃h

Proof. Let

0 X Y Z 0
f g

be an exact sequence in C. Applying the functor C( · , I) we get the following
sequence in Ab.

0 C(Z, I) C(Y, I) C(X, I) 0
g∗ f∗

By definition, we know this sequence is exact if and only if I is injective.
Since C( · , I) is always left-exact, this sequence being exact is equivalent
to f ∗ being surjective. The morphism f ∗ being surjective is equivalent to
the following. For any i ∈ C(X, I), there exists some h ∈ C(Y, I) such that
i = f ∗(h). But since f ∗(h) = h ◦ f , this is equivalent to i = h ◦ f for some
h ∈ C(Y, I). This is exactly what we wanted to show, and hence this is an
equivalent characterization of injective objects.
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Remark 3.5. There is a similar characterization of projective objects, using
the dual of the property described here.

The following is a useful fact about exact sequences starting with an
injective.

Proposition 3.6. Let

0 I Y Z 0
f g

be an exact sequence where I is injective. Then the sequence splits, and
Y ' I ⊕ Z.

Proof. Because I is injective, there exists h : Z → I such that h ◦ f = 1I .

0 I Z

I

1i

f

∃h

Consider the idempotents s = f ◦ h : Y → Y and t = 1Y − s. Notice that

t ◦ f =

(1Y − s) ◦ f =

1Y ◦ f − s ◦ f =

f − f ◦ h ◦ f =

f − f ◦ 1I =

0

hence by the cokernel property of Z we get a unique morphism φ : Z → Y
such that t = φ ◦ g.

X Y Z

Y

f

t

g

φ
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Putting it all together, we get the diagram

0 I Y Z 0

0 I I ⊕ Z Z 0

f

h

(
h
g

) g
φ

( 1
0 ) ( 0 1 )

We will show that

(
h
g

)
is an isomorphism, with

(
f φ

)
as inverse.

(
f φ

)(h
g

)
=

f ◦ h+ φ ◦ g =

s+ t =

s+ (1Y − s) =

1Y

Checking the other composition order we get(
h
g

)(
f φ

)
=(

h ◦ f h ◦ φ
g ◦ f g ◦ φ

)
=(

1X h ◦ φ
0 g ◦ φ

)
Notice that

φ ◦ g = 1Y − e =⇒
g ◦ φ ◦ g = g ◦ (1Y − e) =⇒
g ◦ φ ◦ g = g − g ◦ f ◦ h =⇒
g ◦ φ ◦ g = g =⇒
g ◦ φ = 1Z Since g epimorphism
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We also see that

(f ◦ h) ◦ (φ ◦ g) = (s) ◦ (t) =⇒
f ◦ h ◦ φ ◦ g = s ◦ (1Y − s) =⇒
f ◦ h ◦ φ ◦ g = s− s =⇒
f ◦ h ◦ φ ◦ g = 0 =⇒
h ◦ φ = 0 Since g epimorphism, f monomorphism

Hence we get (
h
g

)(
f φ

)
=

(
1X 0
0 1Y

)

Remark 3.7. Note that the dual statement is also true; an exact sequence
ending with a projective is split, with the middle object isomorphic to the
biproduct of the outer objects.

Definition. An exact category C has enough projectives (resp.
enough injectives), if for every object X ∈ C, there exists a deflation
P → X, P projective (exists an inflation X → I, I injective).

Definition. An exact category F is called a Frobenius category, if it has
enough projectives and injectives, and if the collection of projective objects
coincides with the collection of injective objects. That is for all X ∈ F , X
projective ⇐⇒ X injective.

We will look at an example of some Frobenius categories. In order to see
that the categories in question indeed are Frobenius categories, the following
proposition will be useful.

Proposition 3.8. Let S be a PID, (p) a maximal ideal and denote R :=
S/(p2). Then there are only two finitely generated indecomposable R-modules,
R and R/(p).

Proof. We know that R-modules are in 1-1 correspondence with S-modules
annihilated by (p2). By the structure theorem for finitely generated modules
over a PID, we know any finitely generated S-module can be decomposed
into indecomposables S or S/(q), with (q) 6= 0 a power of a prime ideal. Since
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S is a PID, (p2) 6= 0, and hence S is not annihilated by (p2). Assume now
that an indecomposable S-module S/(q) is annihilated by (p2). We get that

(p2) · S/(q) = 0 ⇐⇒ (p2) ⊆ (q) =⇒ p2 ∈ (q) =⇒ p2 = q · n

for some n ∈ S. Since every PID is a UFD and p is irreducible, this implies
that q = p or q = p2 up to multiplication by a unit. Hence S/(p2) = R and
S/(p) ' R/(p) are the only indecomposable R-modules.

Remark 3.9. Note that the ring R has an ideal (p) corresponding to the ideal
(p) in S, since (p2) ⊆ (p). By the third isomorphism theorem we get the
last isomorphism S/(p) ' R/(p). Considering this ideal (p) in R, we get the
two R-modules (p) and R/(p). We have a surjective morphism of R-modules
f : R→ (p) given by multiplication by p. Ker(f) = (p), so (p) ' R/(p). In
particular this means we have an exact sequence

0 (p) Ri R/(p) 0i π

with isomorphic endpoints.

Example. Let p ∈ N be a prime number, and let Fp be the field with p
elements. We define the two rings R1 := Z/p2Z, and R2 := Fp[ε] ' Fp[x]/(x2).
Since these rings are finite (and hence artinian), and of finite representation
type (we will show this), when classifying the modules over these rings it will
be enough to study the finitely generated ones. This is because any module
over these rings is isomorphic to a (potentially infinite) direct sum of finitely
generated indecomposable modules, see [1].

First we look at some properties of these rings. Denote the elements
p1 = p ∈ R1 and p2 = ε ∈ R2. The elements pi generate a maximal ideal
in both rings which we denote by I1 = (p), I2 = (ε) respectively. We have
that R1/I1 ' Fp ' R2/I2. Thus Fp is naturally a module over both rings.
Are there other indecomposable Ri-modules than Fp and the ring itself?
Using Proposition 3.8, we get that Ri and Ri/Ii ' Fp are indeed the only
indecomposables. To see this, for i = 1, set S = Z, (p) = pZ. For i = 2, set
S = Fp[x], (p) = (x).

Next, we want to see that Fp is neither a projective nor injective Ri-module.
Consider the exact sequence of Ri-modules

0 Fp Ri Fp 0i π
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Where i is given by multiplication with pi, and π : Ri → Ri/Ii ' Fp is
the natural projection. If we assume Fp is injective, by Proposition 3.6, we
would have that Ri ' Fp ⊕ Fp. But Ri is indecomposable, hence Fp cannot
be injective. Dually if we assume Fp is projective, the dual statement to
Proposition 3.6, implies the same decomposition, and hence Fp cannot be
projective either. Since these rings have at least one indecomposable projective
and at least one indecomposable injective module, we can conclude that Ri

must be both a projective and injective Ri-module. Thus the categories
Mod(Ri) are both Frobenius categories, where M is projective ⇐⇒ M is
injective ⇐⇒ M is free.

3.2 Triangulated categories from exact categories

In this section we will define the stable category of a Frobenius category. After
establishing some useful results, we show that this is a triangulated category.

Definition. Let C be an exact category. A morphism f ∈ C(X, Y ) is said
to factor through an injective if there exists an injective object I ∈ C, and
morphisms g ∈ C(X, I), h ∈ C(I, Y ) such that f = h ◦ g. We define the subset
I(X, Y ) ⊆ C(X, Y ) to be set of all morphisms from X to Y which factor
through an injective.

Proposition 3.10. The set I(X, Y ) is a subgroup of C(X, Y ).

Proof. Let f, g ∈ I(X, Y ). If f factors through I as f = f2 ◦ f1, then
(−f1) ∈ C(X, I), which means (−f) = f2 ◦ (−f1), hence I(X, Y ) is closed
under inverses. Now assume g factors through J as g = g2 ◦ g1. Then we get
the following diagram
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X

I I ⊕ J J

Y

f1 g1

f2

iI

πI

πJ

ıJ

g2

We look at the morphisms iI ◦f1 + iJ ◦g1 ∈ C(X, I⊕J) and f2 ◦πI +g2 ◦πJ ∈
C(I ⊕ J, Y ) and observe that their composition

(f2 ◦ πI + g2 ◦ πJ) ◦ (iI ◦ f1 + iJ ◦ g1) =

f2 ◦ πI ◦ iI ◦ f1 + f2 ◦ πI ◦ iJ ◦ g1 + g2 ◦ πJ ◦ iI ◦ f1 + g2 ◦ πJ ◦ iJ ◦ g1 =

f2 ◦ 1I ◦ f1 + f2 ◦ 0 ◦ g1 + g2 ◦ 0 ◦ f1 + g2 ◦ 1J ◦ g1 =

f2 ◦ f1 + g2 ◦ g1 =

f + g

Hence f + g factors through I ⊕ J , and by noting that the direct sum of
injectives again is injective, this concludes the proof.

Definition. Let F be a Frobenius category. We define the stable category of
F , S(F), having the same objects as F , and morphisms are stable equivalence
classes of morphisms, S(F)(X, Y ) := F(X, Y )/I(X, Y ). That is, we identify
morphisms f, g ∈ F(X, Y ) if f − g factors through an injective. It can
be checked that this category has well defined composition induced by the
composition in F .

Remark 3.11. One immediate consequence of this construction, is that any
injective object in F is identified with the zero object in S(F). This is because
any morphism into or out of an injective object, factors through said injective.

Thus for an injective I, all morphisms X
f−→ I are identified with eachother,

and similarly all morphisms I
g−→ Y are identified with eachother. Hence there
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is only one morphism into, and one morphism out of I, which means I is
isomorphic to the zero object in S(F).

The following proposition will be one of the key ingredients in constructing
triangles.

Proposition 3.12. Given an exact sequence

0 X X ′′ X ′ 0x x̄

and a morphism f : X → Y , there is a unique (up to isomorphism) way to
construct the following commutative diagram

0 X X ′′ X ′ 0

Y P X ′

f

x

f̄

x̄

v w

such that P is the pushout of x and f and w ◦ v = 0. Moreover the bottom
row is always exact. We call this the induced exact sequence of the top
row and f .

Proof. We start with the following diagram

0 X X ′′ X ′ 0

Y X ′

f

x x̄

Since the morphism x is an inflation, we can construct the pushout P , which
is unique up to isomorphism. This gives the following diagram,

0 X X ′′ X ′ 0

0 Y P X ′

f

x

f̄

x̄

v
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where v is an inflation. Now we use the pushout property of P , by noting
that both 0 ◦ f = x̄ ◦ x = 0. This gives a unique morphism w : P → X ′,
satisfying w ◦ v = 0 and w ◦ f̄ = x̄. This completes the diagram.

0 X X ′′ X ′ 0

0 Y P X ′

f

x

f̄

x̄

0

v ∃w

Now we show that the bottom row is also exact. Since v is an inflation, there
exists a corresponding deflation u : P → Z. Since this is a cokernel of v, and
w ◦ v = 0, we also get a unique morphism t : Z → X ′ satisfying t ◦ u = w.
We propose that this is in fact an isomorphism. Using the cokernel property
of X ′ together with the fact that 0 = u ◦ v ◦ f = (u ◦ f̄) ◦ x, we get a unique
morphism s : X ′ → Z satisfying s ◦ x̄ = u ◦ f̄ .

0 X X ′′ X ′ 0

0 Y P X ′

Z

0

f

x

f̄

x̄

v

u

w

∃s∃t

We want to show that s and t are inverses of eachother. We get

s ◦ x̄ = u ◦ f̄ =⇒
t ◦ s ◦ x̄ = t ◦ u ◦ f̄ =⇒
t ◦ s ◦ x̄ = w ◦ f̄ =⇒
t ◦ s ◦ x̄ = x̄ =⇒
t ◦ s = 1X′ Since x̄ epimorphism

For the other composition order, we first need to show that u = s ◦ w. We
have that (s ◦ w) ◦ v = 0 = u ◦ v and (s ◦ w) ◦ f̄ = s ◦ x̄ = u ◦ f̄ .
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By Proposition 1.2, we conclude that u = s ◦ w. Now we get

t ◦ u = w =⇒
s ◦ t ◦ u = s ◦ w =⇒
s ◦ t ◦ u = u =⇒
s ◦ t = 1Z Since u epimorphism

Thus X ′ ' Z, and since exact sequences are closed under isomorphisms, the
bottom row is also exact.

When studying S(F), we will be interrested in a specific kind of exact
sequence, namely those where the middle term is injective.

Proposition 3.13. Consider the following two exact sequences in F ,

0 X I Y 0

0 X J Z 0

µ1 π1

µ2 π2

where the middle objects I and J are injective. Then Y and Z are isomorphic
in S(F).

Proof. Because of the injective property of I and J , there exist morphisms
f1, f2 making the following diagram commute.

0 X I Y 0

0 X J Z 0

0 X I Y 0

µ1

f1

π1

µ2

f2

π2

µ1 π1

Since Y and Z are cokernels of µ1 and µ2 respectively, and since 0 = π1 ◦µ1 =
(π1 ◦ f2) ◦ µ2 (similarly 0 = π2 ◦ µ2 = (π2 ◦ f1) ◦ µ1), we get that there also
exist morphisms g1, g2 making the following diagram commute
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0 X I Y 0

0 X J Z 0

0 X I Y 0

µ1

f1

π1

g1

µ2

f2

π2

g2

µ1 π1

Now notice two different paths from X to I gives us that f2◦f1◦µ1 = µ1 ⇐⇒
(f2 ◦ f1 − 1I) ◦ µ1 = 0. Using the fact that Y is a cokernel for µ1, there exists
a unique morphism h : Y → I making the following diagram commute

X I Y

I

µ1

(f2 ◦ f1 − 1I)

π1

h

In other words, we have h ◦ π1 = f2 ◦ f1 − 1I . Postcomposition with π1 gives
us that

π1 ◦ h ◦ π1 =

π1 ◦ (f2 ◦ f1 − 1I) =

π1 ◦ f2 ◦ f1 − π1 =

g2 ◦ g1 ◦ π1 − π1 =

(g2 ◦ g1 − 1Y ) ◦ π1

Since π1 is an epimorphism, this implies that π1 ◦ h = (g2 ◦ g1 − 1Y ). Since
the morphism π1 ◦ h factors through the projective I, we get that 0 =
(g2 ◦ g1− 1Y ) =⇒ g2 ◦ g1 = 1Y in the category S(F). Similarly we can argue
that g1 ◦ g2 = 1Z in S(F), by swapping the roles of the two exact sequences
in the argument. Thus Y ' Z in S(F).

The above proposition allows us to construct a well defined map T :
Obj(S(F))→ Obj(S(F)) by doing as follows. For every object X ∈ F , we
choose some exact sequence starting with X, and where the middle object is
injective.

0 X I(X) Y 0x x̄
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We can do this for every object, since F has enough injectives. Then we define
T (X) := Y in S(F). By Proposition 3.13, we know that this construction is
well defined up to isomorphism in S(F).

When studying S(F), we come across morphisms which factor through
some injective. The following proposition will give us more control over
exactly which injective morphisms may factor through.

Proposition 3.14. Let X, Y ∈ F , and let

0 X I(X) T (X) 0x x̄

be a sequence like constructed previously. Let f ∈ F(X, Y ) be a morphism
factoring through an injective, in other words f = 0 in S(F). Then f factors
through I(X) as f = α ◦ x, for some α ∈ F(I(X), Y ).

Proof. Since f factors through an injective, there exists some J ∈ F , f1 ∈
F(X, J), f2 ∈ F(J, Y ) such that f = f2 ◦ f1. We get the following diagram

0 X I(X) T (X) 0

X J Y

x

∃h

x̄

f1 f2

now since J is injective, and x is an inflation, we get that there exists
a morphism h : I(X) → J such that h ◦ x = f1. Thus the morphism
f = f2 ◦ f1 = (f2 ◦ h) ◦ x factors through I(X).

We want to extend the map T : Obj(S(F)) → Obj(S(F)) to a functor.
For a morphism f ∈ F(X, Y ), we want to construct the following commutative
diagram.

0 X I(X) T (X) 0

0 Y I(Y ) T (Y ) 0

f

x

I(f)

x̄

T (f)

y ȳ

Since I(Y ) is injective, there exists some I(f) making the leftmost square
commute. This is not necessarily unique, so we choose one. After this choice is
made, we get a unique morphism T (f) making the rightmost square commute,
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because T (X) is a cokernel of x. It can be shown that that when passing
to S(F), the morphism T (f) is well defined and independent of I(f) and
representative of the morphisms f . This means we can consider T as a functor
T : S(F)→ S(F). It can be shown that this indeed is an automorphism. For
more details, see [6, p.12].

Proposition 3.15. Consider the commutative diagram

0 X X ′′ X ′ 0

0 I Z X ′ 0

f

x

f̄

x̄

v w

where both rows are exact and I is injective. Then the bottom row is the
induced exact sequence of the top row and f . In particular, Z is the pushout
of x and f .

Proof. Let

0 I P X ′ 0s t

be the induced exact sequence of top row and the morphism f . Since both
this and the sequence

0 I Z X ′ 0v w

are exact sequences starting with an injective, we get the following commuta-
tive diagram by Proposition 3.6

0 I Z X ′ 0

0 I I ⊕X ′ X ′ 0

0 I P X ′ 0

v

φ

w

( 1
0 )

ψ

( 0 1 )

s t

where φ and ψ are isomorphisms. Hence Z ' P .
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Putting the above constructions together we can define what the triangles
in S(F) are.

Definition. Let f ∈ S(F)(X, Y ). We choose some representative f ∈
F(X, Y ), and construct the diagram

0 X I(X) T (X) 0

0 Y C(f) T (X) 0

f

x

f̄

x̄

v w

where the bottom row is the induced exact sequence of the top row and f .
The following sequence in S(F)

X Y C(f) T (X)
f v w

is called a standard triangle, and the object C(f) is called the cone of the
morphism f .

We show that this is a well defined construction when passing to S(F).
In particular we show that the object C(f) ∈ S(F) is independent of both
the choice of injective I(X), and representative of the morphism f ∈ S(F).

Proposition 3.16. The cone of a morphism f ∈ S(F)(X, Y ) is independent
of the choice of representative.

Proof. Let f, g be two different representatives for some morphism in
S(F)(X, Y ). Then we know by Proposition 3.14 that g − f = α ◦ x for
some α ∈ F(I(X), Y ). By the pushout properties, we get the unique mor-
phisms φ and ψ between the objects C(f) and C(g)

X I(X)

Y C(f)

C(g)

f

x

ḡ − u ◦ αf̄

u

v

∃!φ
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X I(X)

Y C(g)

C(f)

g

x

f̄ + v ◦ αḡ

v

u

∃!ψ

since

u ◦ f =

u ◦ (g − α ◦ x) =

u ◦ g − u ◦ α ◦ x =

ḡ ◦ x− (u ◦ α) ◦ x =

(ḡ − u ◦ α) ◦ x

and

v ◦ g =

v ◦ (f + α ◦ x) =

v ◦ f + v ◦ α ◦ x =

f̄ ◦ x+ (v ◦ α) ◦ x =

(f̄ + v ◦ α) ◦ x

These morphisms satisfy

φ ◦ v = u

φ ◦ f̄ = ḡ − u ◦ α
ψ ◦ u = v

ψ ◦ ḡ = f̄ + v ◦ α

We confirm that φ and ψ are actually inverses of each other. We use Proposi-
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tion 1.2 for this.

ψ ◦ φ ◦ v =

ψ ◦ u =

1C(f) ◦ v

ψ ◦ φ ◦ f̄ =

ψ ◦ (ḡ − u ◦ α) =

ψ ◦ ḡ − ψ ◦ u ◦ α =

(f̄ + v ◦ α)− v ◦ α =

1C(f) ◦ f̄

Hence ψ ◦ φ = 1C(f). Checking the other composition order is similar. Hence
C(f) ' C(g) in F , which means they are also isomorphic in S(F).

Proposition 3.17. The cone of a morphism f ∈ S(F)(X, Y ) is independent
of the choice of injective I(X).

Proof. We start with two different injective objects I, J , and get the following
diagrams for the construction of the two cones P and Q.

0 X I V 0

0 Y P V 0

f

i

s

i′

v v̄

0 X J W 0

0 Y Q W 0

f

j

t

j′

u ū

Since I, J are injective, and i, j inflations, we get morphisms h : J → I and
g : I → J , satisfying i = h ◦ j and j = g ◦ i. We obtain morphisms φ and ψ
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between P and Q from the following pushout diagrams

X I

Y P

Q

f

i

t ◦ gs

u

v

∃!φ

X J

Y Q

P

f

j

s ◦ h
t

v

u

∃!ψ

satisfying φ ◦ v = u, φ ◦ s = t ◦ g, ψ ◦ u = v and ψ ◦ t = s ◦ h. Now we notice
that we have (h ◦ g− 1I) ◦ i = h ◦ g ◦ i− i = i− i = 0. The cokernel property
of V gives a unique morphism α : V → I

X I V

I

i

(h ◦ g − 1I)

i′

α

satisfying α ◦ i′ = h ◦ g − 1I . Postcomposition with s gives us

s ◦ (h ◦ g − 1I) = s ◦ α ◦ i′ =⇒
s ◦ h ◦ g − s = s ◦ α ◦ v̄ ◦ s =⇒
ψ ◦ t ◦ g = s ◦ α ◦ v̄ ◦ s+ s =⇒
(ψ ◦ φ) ◦ s = (s ◦ α ◦ v̄) ◦ s+ s =⇒
(ψ ◦ φ) ◦ s = (s ◦ α ◦ v̄ + 1P ) ◦ s

Thus we have one of the requirements to use Proposition 1.2. We only need

66



to check that

(s ◦ α ◦ v̄ + 1P ) ◦ v =

s ◦ α ◦ v̄ ◦ v + 1P ◦ v =

v =

ψ ◦ u =

(ψ ◦ φ) ◦ v

Hence we conclude that ψ◦φ = s◦α◦ v̄+1P , and since s◦α◦ v̄ factors through
I, we get that ψ ◦ φ = 1P in S(F). The proof for the other composition order
is completely analogous, by just swapping the roles of I and J . Thus P ' Q
in S(F).

We define the triangulation of S(F) to be given by the autoequivalence T ,
and the collection ∆ containing all triangles which are isomorphic to standard
triangles in S(F).

Theorem 3.18. Let F be a Frobenius category, and let T : S(F)→ S(F) and
∆ be defined as above. Then (S(F), T,∆) becomes a triangulated category.

Proof. It is enough to only consider the cases for standard triangles. For full
details, see [6, Theorem 2.6].

(TR1) By construction ∆ is closed under isomorphisms and all morphisms
fit into a distinguished triangle. Let X ∈ F , and consider the following
pushout diagram.

X I(X)

X C(1X)

I(X)

1X

x

u 1I(X)

x

v

∃!φ

We immediately get that φ ◦ u = 1I(X). On the other hand, we have

u ◦ φ ◦ u = u ◦ 1I(X) = 1C(1X) ◦ u

and
u ◦ φ ◦ v = u ◦ x = v ◦ 1X = 1C(1X) ◦ v
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by Proposition 1.2 we get that u ◦ φ = 1C(1X), and hence C(1X) ' I(X).
Thus C(1X) = 0 in S(F), and the triangle

X X 0 T (X)
1X

is in ∆.
(TR2) Let X

u−→ Y
v−→ C(f)

w−→ T (X) be a standard triangle. Consider the
following commutative diagram.

Y C(u) T (X)

X I(X) T (X)

Y I(Y ) T (Y )

v w

u

u

x

I(u)

ū

x̄

T (u)

y ȳ

Since y ◦ u = I(u) ◦ x, the pushout property of C(u) gives a unique morphism
f : C(u)→ I(Y )

X I(X)

Y C(u)

I(Y )

u

x

I(u)ū

y

v

∃!f

We have the two compositions T (u) ◦w, ȳ ◦ f : C(u)→ T (Y ). By noting that

(ȳ ◦ f) ◦ v = ȳ ◦ y = 0 = (T (u) ◦ w) ◦ v
(ȳ ◦ f) ◦ ū = ȳ ◦ I(u) = T (u) ◦ x̄ = (T (u) ◦ w) ◦ ū

we get by Proposition 1.2 that ȳ◦f = T (u)◦w. Thus the following composition
is zero.

C(u) I(Y )⊕ T (X) T (Y )
( fw ) ( ȳ −T (u) )
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We construct the following commutative diagram.

0 0

0 Y C(u) T (X) 0

0 I(Y ) I(Y )⊕ T (X) T (X) 0

T (Y ) T (Y )

0 0

y

v

( fw )

w

ȳ

( 1
0 )

( ȳ −T (u) )

( 0 1 )

Since the upper two rows are exact and I(Y ) is injective, by Proposition 3.15,
we get that the middle row is the induced exact sequence by the upper row
and y. In particular we get that I(Y )⊕ T (X) is the pushout of v and y.

Now we consider the leftmost and middle columns. Since I(Y ) ⊕ T (X)
is the pushout of y and v, and ( ȳ −T (u) )( fw ) = 0, we get by Proposition 3.12
that the middle column is the induced exact sequence of the left column and
v. Thus we get that the sequence

Y C(u) I(Y )⊕ T (X) T (Y )v ( fw ) ( ȳ −T (u) )

is a standard triangle, which is isomorphic to

Y C(u) T (X) T (Y )v w −T (u)

in S(F).

(TR3) Let X
u−→ Y

v−→ C(u)
w−→ T (X) and X ′

u′−→ Y ′
v′−→ C(u′)

w′−→ T (X ′)
be two standard triangles. Let f : X → X ′, g : Y → Y ′ be morphisms such
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that u′ ◦ f = g ◦u in S(F). We also have the morphisms I(f) : I(X)→ I(X ′)
and T (f) : T (X) → T (X ′). We get the following diagram with exact rows
and where all squares commute in F .

Y C(u) T (X)

X I(X) T (X)

X ′ I(X ′) T (X ′)

Y ′ C(u′) T (X ′)

g

v w

f

u

x

I(f)

ū

x̄

T (f)

u′

x′

ū′

x̄′

v′ w′

Since the morphisms g, f commute in S(F), we know because of Proposition
3.2 that there exists some α : I(X) → Y ′ such that g ◦ u = u′ ◦ f + α ◦ x.
Now we see that

(v′ ◦ g) ◦ u =

v′ ◦ (u′ ◦ f + α ◦ x) =

v′ ◦ u′ ◦ f + v′ ◦ α ◦ x =

ū′ ◦ I(f) ◦ x+ v′ ◦ α ◦ x =

(ū′ ◦ I(f) + v′ ◦ α) ◦ x

Using the pushout property of C(u) we get a unique morphism h : C(u)→
C(u′) satisfying h ◦ v = v′ ◦ g, and h ◦ ū = ū′ ◦ I(f) + v′ ◦ α.

X Y C(u) T (X)

X ′ Y ′ C(u′) T (X ′)

f

u

g

v

h

w

T (f)

u′ v′ w′

From this definition of h, we immediately get that the second square commutes.
Now we just need to check that the rightmost square commutes, that is
w′ ◦ h = T (f) ◦ w. To see this, we first note that (w′ ◦ h) ◦ v = w′ ◦ v′ ◦ g =
0 = (T (f) ◦ w) ◦ v. We also have that
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(T (f) ◦ w) ◦ ū =

w′ ◦ ū′ ◦ I(f) + 0 =

w′ ◦ ū′ ◦ I(f) + w′ ◦ v′ ◦ α =

w′ ◦ (ū′ ◦ I(f) + v′ ◦ α) =

(w′ ◦ h) ◦ ū

By Proposition 1.2, we get that w′ ◦ h = T (f) ◦ w.
(TR4) We start out with the morphisms

u : X → Y

v : Y → Z

w := v ◦ u : X → V

and want to construct three standard triangles. We do this in a particular
way so that everything works out nicely. For the morphism u we construct
the following standard triangle.

0 X I(X) T (X) 0

0 Y Z ′ T (X) 0

u

x

ū

x̄

i i′

Now we choose some exact sequence for the object Z ′

0 Z ′ I(Z ′) T (Z ′) 0z z̄

with I(Z ′) injective. Now notice that we have the inflations i and z. The
composition is an inflation into an injective z ◦ i : Y → I(Z ′). By choosing
this inflation for constructing the standard triangle of the morphism v, we get

0 Y I(Z ′) T (Y ) 0

0 Z X ′ T (Y ) 0

v

z ◦ i

v̄

ȳ

j j′
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For the morphism w = v ◦ u we construct the following standard triangle.

0 X I(X) T (X) 0

0 Z Y ′ T (X) 0

w

x

w̄

x̄

k k′

We want to find the morphisms to complete the following diagram.

X Y Z ′ T (X)

X Z Y ′ T (X)

Y Z X ′ T (Y )

Z ′ Y ′ X ′ T (Z ′)

u

v

i i′

w

u

k k′

T (u)

v

i

j

k

j′

T (i)

Since Z ′ is a pushout and w̄ ◦x = k ◦w = k ◦ v ◦u, we get a unique morphism
f : Z ′ → Y ′

X I(X)

Y Z ′

Y ′

u

x

w̄
ū

k ◦ v

i

∃!f

such that f ◦ i = k ◦ v and f ◦ ū = w̄. Similarly, since Y ′ is a pushout and
j ◦ w = j ◦ v ◦ u = v̄ ◦ (z ◦ i) ◦ u = v̄ ◦ z ◦ ū ◦ x, we get a unique morphism
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g : Y ′ → X ′,

X I(X)

Z Y ′

X ′

w

x

v̄ ◦ z ◦ ū
w̄

j

k

∃!g

such that g ◦ k = j and g ◦ w̄ = v̄ ◦ z ◦ ū. Recall how the morphisms T (u)
and T (i) are constructed. In the following diagram, we choose morphisms
I(u), I(i) which make the leftmost squares commute. Then there exist unique
morphisms T (u) and T (i) such that the whole diagram commutes.

0 X I(X) T (X) 0

0 Y I(Z ′) T (X) 0

0 Z ′ I(Z ′) T (Z ′) 0

u

x

I(u)

x̄

T (u)

i

z ◦ i

I(i)

ȳ

T (i)

z z̄

We see that we can choose I(i) := 1I(Z′). We also have that z ◦ i ◦ u =
z ◦ ū ◦ x, hence we can choose I(u) := z ◦ ū. Thus we obtain the relations
T (u) ◦ x̄ = ȳ ◦ z ◦ ū and T (i) ◦ ȳ = z̄. We put everything together in the
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following diagram.

X Y Z ′ T (X)

X Z Y ′ T (X)

Y Z X ′ T (Y )

Z ′ Y ′ X ′ T (Z ′)

u

v

i

f

i′

w

u

k

g

k′

T (u)

v

i

j

k

j′

T (i)

f g T (i) ◦ j′

What remains is to see that this entire diagram commutes, and that the
bottom row is a triangle. By construction, we already have that f ◦ i = k ◦ v
and g ◦ k = j. To see that i′ = k′ ◦ f , we use Proposition 1.2, and note that

i′ ◦ i = 0

k′ ◦ f ◦ i = k′ ◦ k ◦ v = 0

i′ ◦ ū = x̄ = k′ ◦ w̄ = k′ ◦ f ◦ ū

Again using the same proposition, we show that T (u) ◦ k′ = j′ ◦ g. We have
that

T (u) ◦ k′ ◦ k = 0

j′ ◦ g ◦ k = j′ ◦ j = 0

T (u) ◦ k′ ◦ w̄ = T (u) ◦ x̄ = ȳ ◦ z ◦ ū = j′ ◦ v̄ ◦ z ◦ ū = j′ ◦ g ◦ w̄

Finally, to show that the bottom row is a triangle in ∆, consider the following
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diagram.

X I(X)

Y Z ′ I(Z ′)

Z Y ′ X ′

x

u ū

i

v

z

f v̄

k g

We know the two leftmost squares commute. Since Z ′ is a pushout, and

v̄ ◦ z ◦ i = j ◦ v = g ◦ k ◦ v = g ◦ f ◦ i
v̄ ◦ z ◦ ū = g ◦ w̄ = g ◦ f ◦ ū

we conclude by Proposition 1.2 that the bottom right square commutes as
well. Now we want to show that the bottom right square is a pushout. Since
Z ′ is the pushout of x and u and Y ′ is the pushout of x and v ◦u, Proposition
1.3 gives us that Y ′ is also the pushout of i and v. Using the same proposition
again, together with the fact that X ′ is the pushout of v and z ◦ i, we get
that X ′ is also the pushout of z and f . Finally we check that

T (i) ◦ j′ ◦ g ◦ k = T (i) ◦ j′ ◦ j = 0

T (i) ◦ j′ ◦ g ◦ w̄ = T (i) ◦ j′ ◦ v̄ ◦ z ◦ ū = T (i) ◦ ȳ ◦ z ◦ ū = z̄ ◦ z ◦ ū = 0

Hence we get by Proposition 1.2 that T (i) ◦ j′ ◦ g = 0. We constuct the
following diagram.

0 Z ′ I(Z ′) T (Z ′) 0

0 Y ′ X ′ T (Z ′) 0

f

z

v̄

z̄

g T (i) ◦ j′

Since T (i) ◦ j′ ◦ v̄ = T (i) ◦ ȳ = z̄, the rightmost square commutes as well.
Putting everything together we get that the bottom row is the induced exact
sequence of the top row and f , and hence

Z ′ Y ′ X ′ T (Z ′)
f g T (i) ◦ j

is a standard triangle in S(F).
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Example. Recall the rings R1 := Z/p2Z and R2 := Fp[ε] ' Fp[x]/(x2) that
we studied earlier. We have seen that the module categories Mod(Ri) are
Frobenius categories, so then we may ask, what is S(Mod(Ri))? Let M be a
finitely generated Ri-module with decomposition M ' Fsp ⊕Rt

i into indecom-
posables. When passing to S(Mod(Ri)), all the injective summands vanish,
and we are left with M ' Fsp in S(Mod(Ri)). By the previous discussion
about classifying modules over these rings [p.54], this fact generalizes to all
Ri-modules, which implies that S(Mod(Ri)) ' Mod(Fp).

Since Fp is a field, it is well known that the resulting triangulation on
Mod(Fp) is given as follows. The shift is the identity, and distinguished
triangles are the triangles which induce long exact sequences.
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4 Enhancements

A triangulated category can be said to have an enhancement, which contains
additional information about it. This allows for a better understanding of the
category in question [10, 1.1]. In this chapter we will first define what a dg-
enhancement is, and then state a result regarding equivalent characterizations
of the triangulated categories which have such enhancements. Afterwards we
will consider the question regarding whether such enhancements are unique.

4.1 Algebraic triangulated categories

We have seen that for a pretriangulated dg-category A, we can construct
the triangulated category H0(A). Does every triangulated category arise
from this construction? In general the answer is no, but when a triangulated
category arises from this construction, we call it algebraic. Specifically we
have the following definition.

Definition. Let T be a triangulated category. We say that T is algebraic, if
there exists a pretriangulated dg-category A, together with an equivalence of
triangulated categories H0(A) ' T . We then say that A is a dg-enhancement
of the category T .

In Chapter 2 we defined the category Cdg(k), and looked at how
H0(Cdg(k)) ' K(k) is the homotopy category of chain complexes over k.
We can generalize these constructions; instead of considering complexes of
modules over k, we consider complexes of objects in some additive category
A.

Definition. Let A be an additive category. The dg-category of chain com-
plexes over A, denoted Cdg(A), has objects which are chain complexes of
objects in A. For two chain complexes A,B, the set of morphisms forms a
chain complex, with the n-th component consisting of graded morphisms of
degree n from A to B.

We define the homotopy category of chain complexes over A, denoted
K(A). Obects in this category are chain complexes with components in A,
and morphisms are chain maps up to chain homotopy. Similar to what we
saw in Chapter 2, we have that K(A) = H0(Cdg(A)).

It is well known that the category K(A) is triangulated, see [7, Theorem
6.7] for more details.
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The following definition concerns how we define the concept of long exact
sequences in exact categories.

Definition. A sequence in an exact category

· · · An−1 An An+1 · · ·dn−2 dn−1 dn dn+1

is called an acyclic (or long exact), if each morphism dn can be decomposed
as

An Zn+1(A) An+1πn in+1

where Zn+1(A) := Ker(dn+1), such that each sequence

0 Zn(A) An Zn+1(A) 0in πn

is exact.

Definition. Let F be a Frobenius category. We denote by Caidg(F) the full
subcategory of Cdg(F), with objects the acyclic complexes with all components
injective.

Similarly we denote Kai(F) := H0(Caidg(F)), which can equivalently be
described as the full subcategory of K(F), with objects the acyclic complexes
with all components injective.

Remark 4.1. The category Kai(F) is clearly closed under shift of chain
complexes. It can also be shown that the cone of a morphism between acyclic
complexes is again an acyclic complex, see for example [2, Lemma 10.3]. The
cone clearly also has all components injective. Hence Kai(F) is a triangulated
subcategory of K(F), with Caidg(F) as a dg-enhancement.

Proposition 4.2. For a Frobenius category F , there is a triangulated equiva-
lence G : Kai(F)→ S(F), given by X 7→ Z0(X) on objects.

Proof. First we define what G does to morphisms. For a morphism f ∈
Kai(F)(X, Y ), we see that the image in S(F) is independent of representative,
since for any chain homotopy s, each morphism sn+1 ◦ dnX + dn−1

Y ◦ sn factors
through Xn+1 ⊕ Y n−1, which is injective. Thus we simply choose some chain
map to represent f , and make the following diagram.

X−1 Z0(X) X0

Y −1 Z0(Y ) Y 0 Y 1

f−1

π−1
X

∃!f̄

i0X

f0

π−1
Y i0Y d0

Y

78



Since we have

d0
Y ◦ f 0 ◦ i0X ◦ π−1

X =

d0
Y ◦ i0Y ◦ π−1

Y ◦ f
−1 =

0

and since π−1
X is an epimorphism, by the kernel property of Z0(Y ) we get the

morphism f̄ making the right square in the diagram commute. Moreover,
since f is a chain map, we have that

f 0 ◦ i0X ◦ π−1
X = i0Y ◦ π−1

Y ◦ f
−1 =⇒

i0Y ◦ f̄ ◦ π−1
X = i0Y ◦ π−1

Y ◦ f
−1 =⇒

f̄ ◦ π−1
X = π−1

Y ◦ f
−1 Since i0Y monomorphism

hence the leftmost square commutes as well. We define G(f) to be the
morphism represented by f̄ in S(F), and call this the induced morphism on
kernels.

To show that G is faithful, let f ∈ Kai(F)(A,B) such that G(f) := f̄ = 0
in S(F). This means that f̄ factors through some injective. We make the
following diagram

· · · A−1 Z0(A) A0 Z1(A) A1 · · ·

· · · B−1 Z0(B) B0 Z1(B) B1 · · ·

f−1

π−1
A

f̄

i0A

f0

π0
A

f̄1

i1A

f1

π−1
B i0B π0

B i1B

By Proposition 3.14, and since i0A is an inflation, we get that f̄ factors
through A0 as f̄ = α ◦ i0A for some α : A0 → Z0(B). Note that the morphism
α constructed in that proof also factors through an injective. By using the
dual statement of Proposition 3.14, and since π−1

B is a deflation, we get that α
factors through B−1 as α = π−1

B ◦s0, which put together gives the factorization
f̄ = π−1

B ◦ s0 ◦ i0A. Now notice that we have

f 0 ◦ i0A = i0B ◦ f̄ = (i0B ◦ π−1
B ◦ s) ◦ i

0
A

which means that
(f 0 − i0B ◦ π−1

B ◦ s
0) ◦ i0A = 0
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Since Z1(A) is the cokernel of i0A, this gives a unique morphism t : Z1(A)→
B0 satisfying t ◦ π0

A = f 0 − i0B ◦ π−1
B ◦ s0. Rearranging this gives us that

f 0 = t ◦ π0
A + d−1

B ◦ s0. Since i1A is an inflation and B0 is injective, we can
factor t = s1 ◦ i1A, thus we can write t ◦ π0

A = s1 ◦ i1A ◦ π0
A = s1 ◦ d0

A, and hence
f 0 = s1 ◦ d0

A + d−1
B ◦ s0. This gives us the start of a chain homotopy. To

extend it to the right, notice that

f 0 = s1 ◦ d0
A + d−1

B ◦ s
0 =⇒

π0
B ◦ f 0 = π0

B ◦ s1 ◦ d0
A + π0

B ◦ d−1
B ◦ s

0 =⇒
f̄ 1 ◦ π0

A = π0
B ◦ s1 ◦ i1A ◦ π0

A + 0 =⇒
f̄ 1 = π0

B ◦ s1 ◦ i1A Since π0
A epimorphism

Hence s1 satisfies the same starting conditions as s0, only one ”step” to
the right, and we can repeat the argument to complete extending the chain
homotopy to the right. A dual argument can be used to extend the chain
homotopy to the left. Specifically it starts out by using Z0(B) as a kernel
of π0

B, and A0 being projective, and then allows us to continue extending
the chain homotopy to the left. Hence f is chain homotopic to 0, and G is
faithful.

To show that G is full, start with some f̄ ∈ S(F)(A,B). Since i0A is an
inflation and B0 is injective, we get a morphism f 0 : A0 → B0 such that
f 0 ◦ i0A = i0B ◦ f̄ . Now since π0

B ◦ f 0 ◦ i0A = π0
B ◦ i0B ◦ f̄ = 0, we get by

the cokernel property of Z1(A), a unique morphism f̄ 1 : Z1(A) → Z1(B)
satisfying f̄ ◦ π0

A = π0
B ◦ f 0.

Z0(A) A0 Z1(A)

Z0(B) B0 Z1(B)

f̄

i0A

∃f0

π0
A

∃!f̄1

i0B π0
B

Now we can repeat the argument over and over, extending f to the right
making all squares commute. By a dual argument we can extend f to the
left. Since all squares commute, this means f = {fn | n ∈ Z} is a chain map,
which also satisfies Z0(f) = f̄ . Hence G is full.

To show that G is dense, start with any X ∈ S(F). Since F has enough
injectives, we can construct a sequence

X I0 Z1 I1 Z2 · · ·i0 π0 i1 π1
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where all In are injective, all in are inflations and where each
πn

−→ Zn+1 is the
cokernel of in. Dually, since F has enough projectives, we can construct a
sequence

· · · Z−2 P−2 Z−1 P−1 Xi−2 π−2 i−1 π−1

such that all all P n are projective, all πn are deflations, and each Zn in−→ is the
kernel of πn. Putting the sequences together we make the following complex
which we denote by C.

· · · P−2 P−1 I0 I1 · · ·i−1 ◦ π−2 i0 ◦ π−1 i1 ◦ π0

This is acyclic by construction, and Z0(C) = Ker(i1 ◦ π0) = Ker(π0) = X.
Hence G is dense.

Finally we show that triangles in Kai(F) are transformed to triangles in
S(F) under G. Let

A B B ⊕ A[1] A[1]
f v w

be a standard triangle in Kai(F), where v = ( 1
0 ), w = ( 0 1 ), and we denote

the differential on the chain complex C := B ⊕ A[1] by

dnC =

(
dnB fn+1

0 −dn+1
A

)
We want to construct the corresponding standard triangle in S(F), thus we
make the following diagram

Z0(A) A0 Z1(A)

Z0(B) Z0(C) Z1(A)

f̄

i0A

u

π0
A

v̄ w̄

The morphism denoted u is the composition

A0 B−1 ⊕ A0 Z0(C)
( 0

1 ) π−1
C
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The morphism v̄ is the induced morphism making the following diagram
commute

B−1 Z0(B) B0

B−1 ⊕ A0 Z0(C) B0 ⊕ A1

( 1
0 )

π−1
B

∃!v̄

i0B

( 1
0 )

π−1
C i0C

and similarly for w̄

B−1 ⊕ A0 Z0(C) B0 ⊕ A1

A0 Z1(A) A1

( 0 1 )

π−1
C

∃!w̄

i0C

( 0 1 )

π0
A −i1A

First we check that the morphism u makes both squares commute. Starting
with the right square, we have

w̄ ◦ u = w̄ ◦ π−1
C ◦ ( 0

1 ) = π0
A ◦ ( 0 1 ) ◦ ( 0

1 ) = π0
A

For the left square, we first calculate that

i0C ◦ u ◦ i0A ◦ π−1
A =

i0C ◦ π−1
C ◦ ( 0

1 ) ◦ d−1
A =

d−1
C ◦ ( 0

1 ) ◦ d−1
A =(

d−1
B f 0

0 −d0
A

)
◦ ( 0

1 ) ◦ d−1
A =(

f 0

−d0
A

)
◦ d−1

A =(
f 0 ◦ d−1

A

−d0
A ◦ d−1

A

)
=(

f 0 ◦ d−1
A

0

)
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While on the other hand

i0C ◦ v̄ ◦ f̄ ◦ π−1
A =

i0C ◦ v̄ ◦ π−1
B ◦ f

−1 =

i0C ◦ π−1
C ◦ v

−1 ◦ f−1 =

d−1
C ◦ v

−1 ◦ f−1 =(
d−1
B f 0

0 −d0
A

)
◦ ( 1

0 ) ◦ f−1 =(
d−1
B

0

)
◦ f−1 =(

d−1
B ◦ f−1

0

)
=(

f 0 ◦ d−1
A

0

)
Since f is a chain map

This shows that
i0C ◦ v̄ ◦ f̄ ◦ π−1

A = i0C ◦ u ◦ i0A ◦ π−1
A

and since i0C is a monomorphism and π−1
A is an epimorphism, we conclude

that v̄ ◦ f̄ = u ◦ i0A.
To show that this diagram represents a standard triangle, we first need

that w̄ ◦ v̄ = 0. Since w ◦ v = 0, we get that the same is true for the induced
maps. Next we need to show that Z0(C) is the pushout of i0X and f̄ . Take
any Z ∈ F and two morphisms s, t such that s ◦ i0A = t ◦ f̄ .

Z0(A) A0

Z0(B) Z0(C)

Z

f̄

i0A

s
u

t

v̄

∃?φ

We want to get a morphism out of Z0(C) by using it as a cokernel of the
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morphism i−1
C in the following diagram.

Z−1(C) B−1 ⊕ A0 Z0(C)

Z

i−1
C

( t◦π−1
B s )

π−1
C

∃!φ

The need to show that ( t◦π−1
B s )◦i−1

C = 0. Precomposing with the epimorphism
π−2
C we get(

t ◦ π−1
B s

)
◦ i−1

C ◦ π
−2
C =(

t ◦ π−1
B s

)
◦ d−2

C =(
t ◦ π−1

B s
)
◦
(
d−2
B f−1

0 −d−1
A

)
=(

t ◦ π−1
B ◦ d

−2
B t ◦ π−1

B ◦ f−1 − s ◦ d−1
A

)
=(

t ◦ π−1
B ◦ i

−1
B ◦ π

−2
B t ◦ π−1

B ◦ f−1 − s ◦ d−1
A

)
We know π−1

B ◦ i
−1
B = 0, so we look at what remains in the second component.

t ◦ π−1
B ◦ f

−1 − s ◦ d−1
A =

t ◦ f̄ ◦ π−1
A − s ◦ d

−1
A =

s ◦ i0A ◦ π−1
A − s ◦ d

−1
A =

s ◦ d−1
A − s ◦ d

−1
A =

0

Since π−2
C is an epimorphism, this means the original composition is zero, and

thus the cokernel property of Z0(C) gives the unique morphism φ satisfying

φ ◦ π−1
C =

(
t ◦ π−1

B s
)

Now we only need to check that φ actually makes the original pushout diagram
commute. We have that

φ ◦ u =

φ ◦ π−1
C ◦ ( 0

1 ) =(
t ◦ π−1

B s
)
◦ ( 0

1 ) =

s
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We also have

φ ◦ v̄ ◦ π−1
B =

φ ◦ π−1
C ◦ v

−1 =(
t ◦ π−1

B s
)
◦ ( 1

0 ) =

t ◦ π−1
B

Which implies that φ ◦ v̄ = t, since π−1
B is an epimorphism. The uniqueness

of φ follows from the cokernel which gave us φ, and hence Z0(C) is indeed a
pushout.

We have the following result regarding how the triangulated categories we
have seen thus far are related, from [3, Proposition 3.1].

Theorem 4.3. The following are equivalent for a triangulated category T .

(1) T is algebraic, that is, there is a triangulated equivalence T → H0(A)
for some pretriangulated dg-category A.

(2) There is a fully faithful triangulated functor T → S(F) for some Frobe-
nius category F .

(3) There is a triangulated equivalence T → S(F) for some Frobenius
category F .

(4) There is a fully faithful triangulated functor T → K(A) for some
additive category A.

Proof. It can be shown that the category C(A) is Frobenius category and that
S(C(A)) ' H(A) [10, Lemma 3.3a)]. It can also be shown that the Yoneda
functor ΓH : H0(A)→ H(A) is triangulated, as the triangulation in H0(A) is
essentially inherrited from the triangulation in H(A), as we saw in the proof
in Chapter 2. As we have already seen, ΓH is full and faithful, and hence
(1) =⇒ (2).

Now let φ : T → S(F) be a fully faithful triangulated functor. We denote
by F ′ the full subcategory of F whose objects are those in the essential
image of φ. It can be checked that F ′ is also a Frobenius category. Then the
restricted functor φ : T → S(F ′) is still triangulated, and hence a triangulated
equivalence. Hence (2) =⇒ (3).
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By Proposition 4.2, we know that there is a triangulated equivalence
φ : S(F) → Kai(F). Considering the inclusion of the full triangulated
subcategory i : Kai(F)→ K(F), we get a fully faithful triangulated functor
i ◦ φ : S(F)→ K(F). Hence (3) =⇒ (4).

Finally, we know that Cdg(A) is an enhancement of K(A), which means
K(A) ' H0(Cdg(A)). Hence we have a fully faithful triangulated functor
φ : T → H0(Cdg(A)). Denote the full subcategory of Cdg(A) with objects in
the essential image of φ by B. We need to show that B is a pretriangulated
dg-category. Let f ∈ H0(B(X, Y )). Since X, Y are in the essential image of
φ, and φ is full and faithful, we know there exists a triangle in T

U V C(g) U [1]
g

such that the following diagram commutes in H0(B), and the vertical arrows
are isomorphisms.

φ(U) φ(V ) φ(C(g)) φ(U [1])

X Y

φ(g)

f

Since φ is triangulated, we get that φ(U [1]) ' φ(U)[1] ' X[1] in H0(Cdg(A)),
which means X[1] ∈ B. Since φ is triangulated, the top row is a triangle in
H0(Cdg(A)). Thus we know that φ(C(g)) ' C(φ(g)) ' C(f) in H0(Cdg(A)).
Hence C(f) ∈ B. This means B is pretriangulated, and clearly φ : T → H0(B)
is then a triangulated equivalence. Hence (4) =⇒ (1).

4.2 Topological triangulated categories

We take a moment to briefly discuss model categories. Getting familiar with
these concepts will help us in Section 4.3, where we will use them to study an
example of a triangulated category admitting two different dg-enhancements.
We will not go into too much detail, but rather try to get a rough idea of
some core concepts.

A model category is a category C, equiped with a model structure. This
structure is given by three distiguished classes of morphisms, called weak
equivalences, fibrations and cofibrations, satisfying certain properties. For
more details, see [8, 1.1].
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These definitions allow us to define a notion of shifts and cones in C,
as well as the homotopy category Ho(C) := C[W−1], the localization of C
with respect to the class of weak equivalences. If the shift functor is an
autoequivalence on Ho(C), then we call C a stable model category [14, 2.1.1].
For our purposes these are the model categories we are interrested in, as this
is when the category Ho(C) is triangulated, see [8, Proposition 7.1.6]. We
call the triangulated categories arising from such a construction toplogical.
It can be shown that any algebraic triangulated category is also topological
[13, p.872]. The converse however, is not true in general, see for example [13,
p.873]. In fact there are triangulated categories which are not even topological,
see [11].

Example. Let R be a ring such that Mod(R) is a Frobenius category. Then
we can equip the category Mod(R) with a model structrue, which we will refer
to as standard [8, Theorem 2.2.12]. It is given by cofibrations as the injections,
fibrations as the surjections, and weak equivalences as the morphisms which
become isomorphisms when passing to S(Mod(R)). This construction results
in the fact that Ho(Mod(R)) ' S(Mod(R)).

The notion of equivalence between model categories, called Quillen equiv-
alence, is given by certain kinds of adjoint functors which induce equivalences
on the homotopy categories [14, 2.5]. We look at an example giving us such a
Quillen equivalence.

Example. Recall the rings R1 := Z/p2Z and R2 := Fp[ε] ' Fp[x]/(x2) which
we studied previously. We have seen that Mod(Ri) is a Frobenius category,
so we consider it as a model category with the standard model structure as
described in the previous example. We want to apply the statement given
in [4, Theorem 3.5]. It can be checked that Fp is a so called compact, weak
generator of Mod(Ri). Let Bi be the chain complex

· · · Ri Ri Ri · · ·pi pi pi pi

where pi is given by multiplication with the element p and ε in B1 and B2

respectively. This is a complete resolution of Fp, that is, an acyclic chain
complex of injectives such that Z0(Bi) ' Fp. We denote by Di the full
dg-subcategory of Cai

dg(Mod(Ri)) with Bi as its only object. Let C(Di) be
the category of dg Di-modules. This category has a model stucture where
the weak equivalences are the quasi-isomorphisms, and the fibrations are the
surjections [4, p.146]. Then [4, Theorem 3.5] states that there is a Quillen
equivalence between the model categories C(Di) and Mod(Ri).
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4.3 Uniqeness of enhancements

Given an algebraic triangulated category T , we have seen that it has a dg-
enhancement. A natural question to ask is whether such dg-enhancements
are unique. To answer this, we first need to define the appropriate notion of
uniqueness.

Definition. Let A,B be dg-categories, and F : A → B be a dg-functor. We
say that F is a quasi-equivalence, if it satisfies both the following:

(1) The chain map FX,Y : A(X, Y )→ B(FX,FY ) is a quasi-isomorphism
for all X, Y ∈ A. That is, the induced morphisms on homology
Hn(FX,Y ) : Hn(A(X, Y )) → Hn(B(FX,FY )) are isomorphisms for
all n ∈ Z.

(2) The induced functor H0(F ) : H0(A)→ H0(B) is dense.

Remark 4.4. Note that given a quasi-equivalence F : A → B between pre-
triangulated dg-categories, we immediately get that H0(A) ' H0(B) as
triangulated categories. In other words A and B are dg-enhancements of
the same triangulated category. To see this, observe that taking n = 0, we
get morphisms H0(FX,Y ) : H0(A)(X, Y ) → H0(B)(FX,FY ) which are all
isomorphisms. Since the induced functor H0(F ) is also dense, we conclude
that F is an equivalence of triangulated categories.

Because of the above remark, if we should have any chance of dg-
enhancements being unique, they have to be unique up to quasi-equivalence.
Thus we make the following definition.

Definition. Let DGCatk denote the category of all small dg-categories over
k. We define the category Hqe as the localization of DGCatk with respect
to the collection of quasi-equivalences.

With this definition in place, we can state what it means for a dg-
enhancement of a triangulated category to be unique [3, Definition 1.15].

Definition. Let T be an algebraic triangulated category. We say that T has
a unique dg-enhancement, if when given any two dg-enhancements A1,A2 of
T , then A1 ' A2 in Hqe.
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Here we will combine several of the results we have looked at to understand
an example given in [3, 3.3]. In this example we construct two different dg-
enhancements A1,A2 of the triangulated category Tp := Mod(Fp). We will
show that they are indeed different by contradiction; if A1 ' A2 in Hqe,
then that would contradict the following theorem, given in [3, Theorem 3.9],
see also [12, Proposition 1.7] and [4, Theorem 4.5] for details.

Theorem 4.5. Let p be a prime number and let R1 := Z/p2Z and R2 :=
Fp[ε] ' Fp[x]/(x2). Then the categories Mod(R1) and Mod(R2) with their
standard model structures are not Quillen equivalent.

Example. Let the rings R1, R2 be as above, and let Tp := Mod(Fp) be
the triangulated category discussed in the example at the end of Chap-
ter 3. We have seen that we have equivalences of triangulated categories
S(Mod(Ri)) ' Tp. By Proposition 4.2, we also have triangulated equivalences
Kai(Mod(Ri)) ' S(Mod(Ri)). Since Cai

dg(Mod(Ri)) is a natural enhancement
of Kai(Mod(Ri)), we thus have that Cai

dg(Mod(R1)) and Cai
dg(Mod(R2)) are

both enhancements of Tp.
Now assume that Cai

dg(Mod(R1)) ' Cai
dg(Mod(R2)) in Hqe. This means

that we have a zig-zag of quasi-equivalences between Cai
dg(Mod(R1)) and

Cai
dg(Mod(R2)), possibly involving other dg-categories. This induces an equiv-

alence of triangulated categories φ : Kai(Mod(R1)) → Kai(Mod(R2)). Let
Bi ∈ Cai

dg(Mod(Ri)) be the chain complex

· · · Ri Ri Ri · · ·pi pi pi pi

where pi is given by multiplication with the element p and ε in B1 and B2

respectively. The equivalence Kai(Mod(Ri)) → S(Mod(Ri)) ' Tp, maps
the object Bi to Z0(Bi) = Ker(pi) ' Fp ∈ Tp for both i = 1, 2. Hence
B1 must correspond to B2 up to isomorphism under φ. Let Di be the full
dg-subcategory of Cai

dg(Mod(Ri)), which has Bi as the only object. Because B1

corresponds to B2, the zig-zag of quasi-equivalences between Cai
dg(Mod(R1))

and Cai
dg(Mod(R2)) induces a zig-zag of quasi-equivalences between D1 and

D2. Now we use [15, Proposition 3.2]. For our purposes, it states that our
zig-zag of quasi-equivalences between D1 and D2 induces a chain of Quillen
equivalences between the categories of dg modules over the respective dg-
categories [15, Corollary 3.4]. In particular we get that the categories C(D1),
C(D2), with model structure as described in the last example in the previous
section, are Quillen equivalent. As we also saw in this example, using [4,
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Theorem 3.5] we concluded that C(Di) and Mod(Ri) are Quillen equivalent.
Thus we have the following chain of Quillen equivalences.

Mod(R1) C(D1) C(D2) Mod(R2)

This shows that Mod(R1) and Mod(R2) are Quillen equivalent. This con-
tradicts Theorem 4.5, and hence the assumtion that Cai

dg(Mod(R1)) '
Cai
dg(Mod(R2)) in Hqe is wrong. Thus Cai

dg(Mod(R1)) and Cai
dg(Mod(R2) are

two different dg-enhancements of the triangulated category Tp.
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