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Abstract

We will look at what an exact category is, and show some generall results for ex-
act categories. Afterward we will establish what Jordan-Hélder property(JHP)
for exact categories is, and look at some exact categories that does have JHP,
and some that don’t have JHP. We will also define homomorphism category
and monomorphism category of an exact category, and we show that these has
JHP, if the original exact category has JHP. We will also define homomor-
phism/monomorphism category over a quiver and an exact category and show
some results about when these has JHP.

Sammendrag

Vi vil se pa hva en eksakt kategori er, og vise noen resultater som gjelder
generelt for eksakte kategorier. Etterpa vil vi ettablere hva Jordan-Hélder egen-
skap(JHP) for eksakte kategorier er, og se pa noen eksakte kategorier som har
JHP, og noen som ikke har JHP. Vi vil ogsa definere homomorfikategori og
monomorfikategori av en eksakt kategori, og vi viser at disse kategoriene har
JHP dersom den opprinnelige eksakte kategorien har JHP. Vi definere ogsa hva
homomorfikategori/monomorfikategori over bade en kogger og eksakt kategori
er, og vi viser noen resultater for nar disse har JHP.



1 Introduction

Exact Categories were first introduced by Quillen in [5]. This was to be able to
generalize some results that abelian categories had, without the need for every
morphism to kernel and cokernel. An exact category is a additive category
with an exact structure, containing short exact sequences, that satisfies certain
axioms. We call an short exact sequence in the exact structure a conflation,
and the monomorphisms and epimorphisms that is in a conflation, are called
inflations and deflations. We can then show that many results that is true for
abelian categories, also is true for exact categories in a way. Afterward we show
what the Jordan-Holder property(JHP) is for exact categories. To do this we
establish what subobjects, inflation series and composition series is. We then
show some connection between the structure of the Grothendick group of an
exact category and when the exact category has JHP, and show some types of
exact categories that has JHP, and some that does not have JHP.

Later in the thesis we introduce the concept of homomorphism and monomor-
phism category, we then prove the following result:

Theorem 1.1 (lemma and lemma [8.10). Let C be an ezxact category, then
the homomorphy category and monomorphy category of C has JHP if and only
if C.

This makes it possible to construct new exact categories with JHP, if we
got an exact category with JHP. It is also possible to repeat creating monomor-
phism categories of monomorphism categories and these will also have JHP if
the original category had JHP.

Then we generalize monomorphism and homomorphism categories with quiv-
ers, where the ordinary monomorphism and homomorphism categories was over
the quiver 1 — 2. When investigating when these had JHP, we found that
acyclic quivers the homomorphism category had JHP if the original category
had JHP (theorem|9.5). For monomorphism categories over quivers there where
some requirement for the quiver.

Theorem 1.2 (theorem [9.13). For an ezact category C and a acyclic quiver T’
such that between any two nodes there are at maximum 1 arrow. Then we have
that the the monomorphism category of C over I' has JHP, if and only if T is a
tree quiver and C has JHP.



2 Exact categories

An exact category is an additive category C together with a collection of kernel-
cokernel pairs, a collection of short exact sequences in C. This collection is called
the exact structure, and satisfies certain properties. Exact categories is a gener-
alization of abelian categories, and abelian categories are also exact categories
if one choses the collection to contain all kernel-cokernel pairs. Monomorphism
in the collection are called essential monomorphism or inflation, and the epi-
morhisms are called essential epimorphism or deflation. First we can refresh
what a kernel and a cokernel is in an additive category.

Definition 2.1. Given a morphism f: A — B in an additive category C, the
kernel, if it exist is a morphism i: ker(f) — A such that fi = 0 and for any
other morphism g: C — A such that fg = 0 there exist a unique morphism
d: C — ker(f) such that the following diagram commutes:

ker(f) —— A

N

C

Similiary a cokernel of f is a morphism ©w: B — coker(f) such that for any
morphism g: B — D, there exist a unique morphism h: coker(f) — D such
that the following diagram commutes:

B —"— coker(f)

\ ]l)h

Even if it is technically the morphism ¢ and 7 that is the kernel and cokernel
of f, we often also call ker(f) and coker(f) the kernel and cokernel of f. This
can be justified in a way, since it is well defined up to isomorphism.

Then we can define what we mean by a kernel-cokernel pair. This is in a
way the same as a short-exact sequence.

Definition 2.2. A kernel-cokernel pair in an additive category C is a pair of
morphisms f: A — B and g: B — C, for some objects A, B and C, such that
f is the kernel of g, and g is the cokernel of f. This is equivalent to that the
following sequence is short exact:

A-t.p 2, ¢
Then we are ready to define what an exact category is.

Definition 2.3. [2, Definition 2.1] An additive category C together with the ex-
act structure A, consisting of kernel-cokernel pairs, closed under isomorphisms
and which satisfying the follow properties is an exact category:



(1): Both Ay A 0 and 0 —— A 1 4 are in A for any
object in C and therefore id s is both an inflation and a deflation.

(2a): If i is an inflation from A to B, and a arbitrary morphism f starting
in A, we have that the pushout of i and f exists, and that it preserve inflations.
This means that if the following is the pushout of i and f , then j is an inflation.

A—"5 B

bl o

c—-5D

(2b): If i is an deflation from B to A, and let f be an arbitrary morphism
ending in A, we have that the pullback of i and f exists, and that it preserve
deflations. This means that if the following is the pullback of i and f , then j

s a deflation.

J

SNYs
lf (2)

—— A

W

(8): Composition of two inflations is an inflation, and composition of two de-
flations is a deflation.

If i is an inflation from A to B i will use a tail on the arrow like this to show
that it is an inflation: A »"— B and if p is an deflation from C to D I will

use an arrow with two spearheads, like this: C 25D

To distinguish the kernel-cokernal pairs in the exact structure from a arbitrary
pair, we call the kernel-cokernel pairs in the exact structure, conflations. Note
that a kernel-cokernel pair ”is the same” as a short exact sequence, so a con-
flation is a short exact sequence containing an inflation and a deflation. To
check if a short exact sequence is a conflation, it is sufficient to show that the
monomorphism is an inflation, or that the epimorphism is a deflation.

It is not only the identity map on an object that is both an inflation and
a deflation. Any isomorphism is also both. We show this by looking at an
isomorphism f: A — B. Then the short exact sequence

A%B%O

has an isomorphism to the conflation in (1) in the definition of an exact category
in the following way:

J.p

Aot

id A f71

SO

d
AL A ——

S

ot



So f is an inflation, and it is obvious that the dual argument gives us that f is
a deflation.

In most cases, the collection of short exact sequences do not need to contain
every kernel-cokernel pairs, but there is some short exact sequences that always
haves to be in the collection, namely the split exact sequences.

Definition 2.4. An short exact sequence A —— B —— C s split exact
if it isomorphic to a short exact sequence on the form

A 107 Ao O, o
for some objects A’ and C’

Lemma 2.5. [2, Lemma 2.7] If C is an exact category, then every split exact
sequence in C is also a conflation

Proof. From the definition of split exact sequence, it is sufficient to show that

T
(10) (01)

A B C

is a conflation for any A and B. But this is a conflation if

T
(01)

A A®B

is an inflation.
So look at the following diagram:

00— B

| o

T
AN 4aB

Since the upper arrow is the kernel of the deflation idp, it follows that the upper
arrow is an inflation. Also since the diagram is a pushout, Axiom (2a) gives us
that lower row is also an inflation. O

This result show us that any exact structure has to contain the split exact
sequences. In fact the collection of all split exact sequences is an exact structure
and it is the minimal exact structure possible. We will show this, but first we
will show a result which is neccesary.

Lemma 2.6. If we got a short exact sequence on the form

T et
A (f.9) BaC (g".f") D

then the following commutative diagram is bicartesian(both pushout and pull-
back).

A B
ol
c—*p



Proof. We show that it is a pushout. Assume we have another commutative
diagram

A-1.B

J/—g J/hB

hc

C — FE
Then using the fact that hgf + hcg = 0 we get an induced morphism h from
D to FE from the cokernel property of D

T
AY9Y pac

D
N
(hp.hc) |k
~
E

O

Theorem 2.7. Let C be an additive category and let A be the collection of all
split exact sequences. Then C is an exact category with the exact structure A.

Proof. We have to show that the axioms holds. Axiom (1) holds since both short
exact sequences containing id4 are split exact sequences. Now we show that
axiom (2a). Look at (10)7: A — A® B, and an arbitrary morphism f: A — C
then we construct the following commutative diagram:

T
AU AeB

|

T
PARCRY

Using lemma [2.6] we get that this diagram is a pushout since the following is
an short exact sequence.

010

fo1

A D aeBac X4 Bac

Dually we get that axiom (2b) is true. Axiom (3) is true from the fact that
composition of two split monomorphisms is a split monomorphism, and same
for split epimorphisms. O

On the other side, it is not the case that the collection of all kernel-cokernel
pairs is an exact structure in general. The problem is that this collection of
all kernel-cokernel pair does not neccesarily satisfy all the axioms to be an
exact structure. But a result from [4] shows that there exist an maximal exact
structure. For a particular additive category there may also be several other
potential exact structures.

As exact categories are some sort of generalization of abelian categories, it
is interesting to try to find an exact category which is not abelian. An example



of a non-abelian exact category is the monomorphism category of an exact
category, which we define in lemma It follows from theorem that the
monomorphism category is not abelian.

3 Some diagram results

Working with exact categories it is handy to know some general result. Many
results for abelian categories can also be generalized for exact categories.

Proposition 3.1. [2, Proposition 2.12] Assume we have the following commu-

tative diagram:
I o

then the following are equivalent:

(1) The diagram is a pushout.

(2) The diagram is bicartesian (Pushout and pullback)

(8) The following diagram commutes where the rows are exact:

Aty B 1y E

Ll g

Cr+»D-2%E
(4) The following is an exact sequence:
LT 1ot
A ot p (5)
Proof. See |2 O
The dual of this result is also true.

Theorem 3.2. [2, Lemma 3.5] Given the following commutative diagram:

At B2y C

b

A2 s D -2y E (6)
lq
F

where the two rows and the middle column is conflations. Then there exist
morphisms j' and s such that the following diagram commutes, and both rows



and columns are conflations:

A By C
I C
A2 D2y E (7)

&—
Q
&—
@

3
o

Proof. We attain j' using the cokernel property of p. We then have the following
commuting diagram:

A5 B-L%C
[ 0
Ay D25 E

Then using the dual version of proposition [3.1} we get that the rightmost square
is bicartesian, and therefore is a pushout. Since j is an inflation, p is then also
an inflation. Now using proposition [3.I] on this square we get that the following
diagram commutes with exact columns:

B s C
ool
D2 E (9)
q s
F —
Combining the two we get the desired diagram. O

Theorem 3.3. [2, Corollary 3.2] Let C be an exact category and assume we
have the following diagram where the two rows are conflations:

A—s B —— C

Ll

A —— B —— C'

Then if two of f,g and h are inflations/deflations/isomorphism then the last
one is also an inflation/deflation/isomorphism.

Proof. See [2]. O

Now we want to define what is a projective object in an exact category is.



Definition 3.4. A Projective object P is defined to have the following property:
For any deflation [ from A to B and morphism g from P to A, there exist
morphism h from P to A such that the following diagram commutes:

P
n lg (10)
<y
A—— B
This definition of projective is very similiar to the definition of projective
objects in abelian categories, the only difference is that the morphism f must be
a deflation, and not only an epimorphism. But for an abelian category with the
“normal” exact structure, then this definition is the same as the other definition.

4 Extension closed subcategories

For certain types of subcategories of an exact category, the subcategory inherits
the exact structure. This is the case for subcategories closed under extension.

Definition 4.1. A subcategory D of an exact category C is closed under exten-
sion if for any conflation in C:

A— B ——» C

if both A and C are objects in D then B must also be in D

Proposition 4.2. Let C be an exact category and D a full additive subcategory
of C such that for any conflation in C: 0 A B C 0
if A and C are objects in D then B is also an object in D. If this is the case
then D is an exact category where the exact structure is the structure "inherited”
from C ie. A>—— B ——» C s exact in D, if it is exact in C and A, B
and C' are objects in D.

Proof. The goal is to show that D is an exact category, so it must be shown
that axioms holds It is trivial that the identity morphism on an object A in D
is both an inflation and deflation from the fact that both A and 0 are objects
in D
Next step is to prove that pushout of an inflation together with a morphism from
an object A exists and conserves inflation, and that a pullback of a deflation
and a morphism to an object A exists and conserves deflations.
Let

Ar'>B

L+l

C++sD

10



be a pushout of the inflation ¢ and the morphism f (which are inflation and
morphism in D) in C, we want to show that D is in D and that ¢’ is an inflation
in D looking at the diagram in C, proposition [3.1] implies that

A B L% E

o -

C*+sp-LFE

is a commutative diagram where both rows are exact in C, and since i is an
inflation in D, then p is a deflation in D and FE is therefore also an object in
D. From this we have that the row on the bottom is an exact sequence where
C and FE is in D and therefore D is also in D. So the lower row is an exact
sequence in D so ¢’ is an inflation

The argument for pullback is the dual of the argument for pushout.

Lastly it must be shown that a composition of two inflations is an inflation, and
the composition of two deflation is a deflation.

Proof: Let A " B and B »2— C be two inflations in D, then consider
the diagram in C,

A5 B 2% D

|

Ayl 0 Yy g
where p is the deflation of 4, so D is an object in D, and g is the deflation of ji in
C, as ji is an inflation in C. Since ¢ji = 0 = (gj)i we get a morphism k from D
to E/ such that kp = qj. From proposition the BCDE square is bicartesian
and a pushout of the inflation j and morphism p. Since this pushout is in D, E
is an object in D and the lower row is therefore an exact sequence in D so ji is
an inflation in D. O

We call the exact structure from proposition for a extension closed sub-
category D of C as the subcategory exact structure of D. It is important to
note that this exact structure does not imply that any inflation f: A — B in
C, where A and B are in D, is also an inflation in D. We need also that the
cokernel of f in C is also in D.

5 Subobjects and Inflations Series

We want to see for which exact categories JHP is satisfied, but we have not
defined what a composition series is for exact categories. In this section the
goal is to show that there is a natural way to define composition series for exact
categories.

The reason we specify that the categories are skelletaly small, is to not get any
collections that are not sets. This could be a problem both when we talk about
the poset containing subobjects of a object, but also when we start working
with the grothendick monoid/group of an exact category.

11



First of all we want to understand when A is a subobject of B This is the
case when there exist an inflation i: A — B. Technically we call ¢ a subobject
of B, but we will often say that A is a subobject of B. So when we say that A
is a subobject of B, it is connected to an inflation from A to B.

Definition 5.1. Let A, B be objects in an exact category, then A is a subobject
of B if there exist an inflation i from A to B.

We also define when two subobjects are equivalent:

Definition 5.2. Let A, B and X be objects in an exact category, then A and
B are equivalent as subobjects of X if there exist an isomorphism f between A
and B such that the following diagram commutes:

i

So we can then define the poset of an object A as the collection of isomor-
phism classes of subobjects of A with a partially order relation C.

Definition 5.3. For an object X in a skeletally small exact category C, we
define the poset of X to be the set of equivalent classes of subobjects of X together
with the relation C. We denote this set by P(X). The relation C on P(X) is
such that A C B if there exist an inflation f such that the following diagram
commutes:

Ar— X

[

Now we want to study the relation C in a P(X). It is clear that C is
reflexive since if A and B are equivalent subobjects of X, then obviously A C B
and B C A. C is also transitive since if A € B C C we get the following
diagram:

Ar— X

So gf is the inflation that gives us that A C C. At last it is antisymetric, if
A # B but A C B we can show that B ¢ A. We show this by constructing
a contradiction. Assume that A C B and B C A, then we can construct the

12



following diagram:

where ¢ = jf and j = ig. By inserting the first equation into the second one, we
get that j = jfg. Since j is a monomorphism this forces fg = idp, and we get
that gf = id4 when we insert the second equation into the first. This means
that f and g are both isomorphism, and therefore A and B are equivalent as
subobjects of X. An important thing to note is that sometimes the inflation
matters. Let us assume we have an object A and the object @;-; A. When
looking at P(€D;-, A), we can create two inflations from -, A to itself that
are not equivalent. The first one is the identity morphism, and the other inflation
is by sending the 7 -th A to the i + 1 - th A with the identity morphism on A.
With the notation we have used, we would say that @;-, A is not equivalent to
@;=, A, but technicaly it is the inflations that are not equivalent. It is obbvious
that a poset of any object contains at least itself, since the identity morphism is
an inflation, and it must also contain 0. So if X is a nonzero object, then P(X)
must at least contain the two elements X and 0. We define the simple objects
to be those that the poset contains exactly two elements.

Definition 5.4. An object A is simple if P(A) contains exactly 2 elements. In
other words A is nonzero, and A and 0 are the only subobjects of A.

Often we denote a simple object with the letter S.
Then we move on to show some results. To do this we have to define another
set.

Definition 5.5. If we have a pair of objects B,C in P(X) such that B C C
we define P(B,C) to be the set of isomorphism classes of objects Y such that
BcYcCcC

By definition of C it follows that P(B,C) is a subset of P(X). Observe
that in P(X) we have that P(0, A) is the same as P(A) and P(A, A) is the set
containing only A We can show that P(A, B) for some A C B is isomorphic to
P(B/A) where B/A is the cokernel of the inflation from A to B This will help
us to show that if P(A, B) contains exactly 2 objects, then B/A is a simple
object.

Proposition 5.6. [3, Proposition 2.5] Let A and B be objects of a poset P(Z)
in an exact category such that A C B. Then there exist a poset-isomorphism
between P(A, B) and P(B/A)

Proof. Let X be an object in P(A, B). Using theorem we get the following

13



commutative diagram with exact rows and columns

A X X/A

| T

A2+ B2 4 B/A (12)
L
B/X —— B/X

So we want to show that o : P(A,B) — P(B/A),0(X) = X/A is an poset-
isomorphism. If both X/A = Y/A then from the diagram we get that B/X =
B/Y and from this that X =Y, so sigma is injective. So let Y C B/A. By
taking the pullback of the inflation of Y into B/A and the deflation p from the
diagram, and using the dual of proposition [3.I] we get the following diagram:

Ar—s D — Y

H [ [ (13)

A—— B 2% B/A

Then D is an object in P(A, B) such that o(D) = Y. Therefore o is at least
a set-isomorphism. If we have X C Y both in P(A, B), then by constructing a
diagram similiar to eq. 7 where we replace B with Y we get that o(X) =
X/ACY/A=0(Y). So o is a poset isomorphism. O

As a consequence of this theorem we have that if A C B such that A is not
isomorphic to B and if X is such that A C X C B then X is either isomorphic
to B or A, then B/A is a simple object. This will be useful when we define
inflation series.

Definition 5.7. If C is an exact category and X an object in C, we define an
inflation series on X as a sequence of inflations and objects:

Ay Ay As A, =X

Note that if we have an inflation series such that each inflation in the series
is not an isomorphism, then we call the inflation series a proper inflation series.
We define now what an composition series is.

Definition 5.8. If C is an exact category and X an object in €, an composition
series on X such that Ag =0 and A;1/A; is simple.

It is the same as that there is no objects X # A;, A;41 such that A; C X C
A;+1. This follows from proposition Most of the times there are multiple
composition series, but we will define when two composition series are similar.
This is when the cokernels given by the inflations in the compositions series are
the same.

14



Definition 5.9. If we two series Z and Z' of an object A in an exact category,
we say that Z and Z' are isomorphic if both the length of Z and Z' are the
same, and there erist a permutation o such that if Z;/Z;_1 = Z;(i)/Z;(i)_l

Now we want to define what a length exact category is, but we must first
decide what we mean with length.

Definition 5.10. Let C be an exact category and let S be a proper inflation
series of A as following: Sy C S1 C ... C S, = A. Then the length of S is n.

Definition 5.11. A exact category C is length exact if for every object A, there
exist an upper bound Ny < oo such that any proper inflation series of A has
length less than or equal to Nx

If C is a length exact category it is easy to show that any object A has
an composition series. In the following theorem we will show that any proper
inflations series can be extended to composition series in length exact categories.
This is shown as a part of [3, Proposition 2.7]

Lemma 5.12. IfC is a length exact category and S is an proper inflation series
of A € C, then S can be extended to an composition series S’, which contains
every object in S.

Proof. Let C be a length exact category and S be a proper inflation series of
A € C where Sy = 0. If we got proper inflation series S’ such that S’ is not 0,
then we define S such that Sp =0 and S; = S,_, for ¢ > 1.

Then S is on the form: 0 =Sy C S; C S3... C S, = A. S has then length n. For
the smallest ¢ such that S;/S;_1 is not simple, we can find atleast one object X
such that S;_; C X C 5;. We then define a new proper inflation series Z where
Z; =8, for j <iand Zj4q = S, for j > 4, this new series has length n+1. Then
we repeat this process until we got an composition series S’. First the reason we
know that this cant go on forever is the fact that C is length exact. This means
that for the object A, there exist a constant N4 such that any proper inflation
series of A has length at maximum N4. Since the length increases by one each
time we repeat expanding the series, we can at worst repeat this process N4 —n
times before we get a series that can’t be expanded. Secondly if we have proper
inflation series S(where the object in node 0 is 0) which can’t be expanded this
way, it must be a composition series, this follows from the fact that as long as
there is at least one ¢ such that S;/S;_1 is not simple, the set P(S;_1,.5;) has
to contain at least one element X that is not S; or S;_1, then we can expand S
with X as described earlier in the proof. O

Now we define a property for exact category which is central for the thesis,
namely Jordan-Holder property.

Definition 5.13. An ezact category C satisfies the Jordan-Hélder property,
abbreviated JHP, if C is length exact, and if for every pair of composition series
S and Z for the same object A there exist a permutation o such that S;/S;—1 ~

Zo(i)] Zo(i-1)

15



A natural consequence of an exact category having JHP is that any compo-
sition series for a fixed object A has to have the same length. This property
is called unique length property. In general an exact category with the unique
length property does not neccesarily have JHP.

Earlier we observed that for an arbitrary exact category, we could have an
object X such that there exist an inflation 7: X — X such that 7 is not equivalent
to idx . But for length exact categories, and therefore also exact categories with
JHP, this cannot occur.

Theorem 5.14. Let C be a length exact category, and let X be an object in
C. Then ifi: X — X is an inflation, then i is an isomorphism and therefore
equivalent to idx

Proof. Assume 7 is not an isomorphism, then we can construct a proper inflation
series of X with any length. The proper inflation series with length n is the
following:

0 X = X s o X, s X,
Where X; = Xo = ... = X, = X. But this contradicts that C is a length exact
category, so ¢ must be an isomorphism. O

Theorem 5.15. If C is a lenght exact category, then for any pair of object
A C B such that A # B, we have that there exist no inflation from B to A.

(BZA)

Proof. Assume there exist two object A and B and two inflations i: A — B and
j: B — A, we can construct proper inflation series of B, of length 2n for n € N.
The inflation series of lenght 2n is

00— A s B »2 s »2 44, +"1 B,

where B; = B and A; = A for i = 1,2,...,n. This contradicts that C is length
exact. 0

Now we start looking at length functions.

Definition 5.16. Let C be a skelletaly small exact category, then a weakly
length-like function f: iso(C) — N is a map with these properties: - For a
conflation A — B — C we have that f(C)+ f(A) < f(B), and f(A) =0 if and
only if A=0

In general, there may not exist a weakly length-like fuction for a particular C.
Typically this is the case if we have some object that is not finitely generated. By
looking at composition series of objects in C, we can find a connection between
length of composition series of A and f(A) if f is a weakly length-like function.

Lemma 5.17. [3, Lemma 4.3] Let A be an object in a skelletaly small exact
category C with a composition series (A;)i=0 of length n. If f is a weakly length-
like function of C, we then have that f(A) > n
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Proof. We use induction on the length of the composition series to show this. So
first assume that A is a object with a composition series of length 1. This gives
us that A cant be 0, so from the second requirement of f to be a weakly length-
like function gives us that f(A) > 1. Then we assume we have shown it n—1, so
let A be a object with a composition series (A4;)(=f of length n. Using the first
requirement for f to be a weakly length-like function, we get from the conflation
Ap1 = A— AJ/A, 4 that f(A) > f(An-1)+ f(A/An-1) > f(An—1)+1. Since
A,,_1 has composition series (4;)!=¢~" it follows that f(A,_1) > n — 1 so we
get that f(A) >n O

As a direct consequence of this result, we get that the existence of a weakly
length-like function implies that the category is length exact, we can show that
the converse also holds.

Proposition 5.18. [5, Theorem 4.4] Let C be a skelletaly small exact category,
then there exist a weakly length-like function f for C, if and only if C is a length
exact category.

Proof. If there exist a weakly length-like function f, we have from lemma [5.1

that for any object A and any composition series of A we have that the length
of the composition series has to be less than f(A). So C is length exact. In
the case where C is a length exact category, we define the map f: iso(C) — N
to be the map such that f(A) is the lowest upper bound on the length of any
composition series of A. We then show that f is a weakly length-like function.
It is obvious that f(0) = 0 and if A # 0 it follows that 0 C A can be extended
to a composition series with length more than or equal to 1, so it follows that
f(A) > 1. Now assume we have a conflation A — B — C, it follows that for any
composition series (A4;)i=R, where n = f(A), and we can extend the inflation
series Ag C ...A,_1 C A C B to a new composition series (Ai)ig”rm for B such
that (A;/A)!="*™ is a composition series of C' where m = f(C). This gives us

that f(B) > f(A) + f(B) (may have to prove this existence) O

6 Grothendick monoid and group

Let C be an exact category, then we want to define the grothendick monoid of
C. But first we introduce what a monoid is. A monoid is like a generalization of
groups, where one does not require that inverses exist. More formally a monoid
is a set M and an binary operation + : M x M — M such that + is associative,
and M has to contain an identity element 0 such that 04+ z = x + 0 = x for all
xin M.

The classical example of a monoid is Ny, and any group is also a monoid.

Now we are ready to define grotendick monoid of C:

Definition 6.1. Let C be a skelletaly small exact category then the grothendick
monoid of C, denoted M(C) is the monoid where we denote the elements as
[A] for any object [A] in Iso(C) up to a relation ~. And we define the binary
operation + to be like this: [A] + [B] = [A @ B]. The relation ~ is the smallest
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monoid congruence such that for any conflation A — C — B, we have that
[A] + [B] ~ [C]

Definition 6.2. A monoid congruence ~ on a monoid M is an equivalence
relation on M such that for any elements a and b in M such that a ~ b, we
have that a 4+ ¢ ~ b+ ¢ for any c in M.

As of now, it is unclear when [A] ~ [B], but we can make it more clear. We
begin by presenting a result.

Lemma 6.3. Let C be a skeletaly small category. Then if for two objects A and
B in C there exist two objects D' and D" and two conflations D' — A — D"
and D' — B — D" we have that [A] = [B] in M(C).

Proof. Since we have the two conflations D’ — A — D" and D’ — B — D" it
follows directly that [A] = [D'] + [D"] = [B] 0

For a pair of objects A and B, we say that A and B share conflation partners
if it is the case that there exist D’ and D" such that we have the two conflations
in lemma . We know can show that this has some connection to when

[A] = [B].

Theorem 6.4. Let C be a skeletaly small category. Then for two objects A
and B in C, we have that [A] = [B] if and only if there exist a sequence A =
Yo, Y1, ..., Y, = B such that Y; and Y;41 share conflation partners.

Proof. The proof is very similar to the proof of [3| Proposition 3.4]. For sim-
plicity we say that [A] ~ [B] when there exist such a sequence. We first start
by showing that =~ infact is a monoid congruence. We show first that ~ is an
equivalence relation. It is clear that = is both reflexive and symmetric. For
transitivity assume A ~ B and B =~ C. We can then construct a sequence of
objects Y; between A and C such that Y; and Y;;; share conflation partners.
This we do by combining the sequences between A and B and B and C. We
then show that if [A] ~ [B] then [A] +[C] = [A® C] = [B® C] = [B] + [C]
for any object C € C. Since we have that [A] ~ [B], there exist a sequence
A =YyVY,....Y, = B where Y; and Y;;1 share conflation partners. Since Y;
and Y;, 1 share conflation partners, there exist D’ and D" such that we got the
following conflations D' — Y; — D" and D’ — Y;.1 — D", but then we can also
construct the two conflations D'®C — Yi®C — D" and D'®C — Yi®C — D",
so we then get that Y; & C' and Y, @& C share conflation partners. Then the
sequence Yy ® C, Y1 ® C, ..., Y,, ® C gives us that [A® C) = [B® (], so ~ is a
monoid congruence. We are then left to show that = is the same as ~. From
lemma we got that if [A] &~ [B] then [A] ~ [B] so we have that ~ is a
”smaller” or equal monoid congruence than ~, so we just need to show that =
respects conflations. Let A — C' — B be a conflation in C. By definition we
have that [A]+[B] = [A® B] but it is obvious that A@® B and C' share conflation
partners, so [A] + [B] = [A® B] ~ [C]. So = is the smallest monoid congruence
respecting conflations and is by definition the same as ~. O
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Definition 6.5. Let f: Iso(C) — M be a map to a monoid M. Then f respects
conflations if for any conflation A — B — C in C, f([4]) + f([C]) = f([B]).

Note that the map 7: Iso(C) — M(C) such that 7([A]) = [A] is a map that
respects conflations. This follows from the definition of M(C). Now we show
that any such map f can be factorized through .

Theorem 6.6. Let f: Iso(C) — M be a map that respects conflations, then
there exist a monoid homomorphism g: M(C) — M such that the following
commutes:

ISO(C)j' M
M(C)

Proof. Assume f is a map that respects conflations. We define g: M(C) — M to
be such that g([A]) = f([A]). We need to show that g is well defined. Assume we
have A and B such that [A] = [B] in M(C). From this there exist a sequence A =
Yo, Y1, ..., Y, = B such that Y; and Y;41 share conflation partners. So we show
that f([Yi]) = f([Yix1]). Since Y; and Y;y; share conflation partners, we know
that there exist C’, C" such that we can construct two conflations C’ — Y; — C”
and C" — Y;11 — C”. Since f respects conflations, f([Y;]) = f([C'])+f([C"]) =
F([¥i11]). Using this we get that f([A]) = f(Vi]) = - = f((Ya_1]) = F(B),
so g is well defined. It is also true that g is a monoid homomorphism, since
9([A] + [B]) = g([A® B]) = f([A® B]) = £([A]) + £(B)) = g([A]) + g([B]) .
From this it is also clear that g = f. O

This shows that the grothendick monoid we defined in definition is the
same as it is defined in [3, Definition 3.2]. We are now ready to show some
properties M(C) has.

Proposition 6.7. |3, Proposition 3.5] (1, Lemma 2.9] Let M(C) be the grothen-
dick monoid of a scelletaly small exact category C then it has the following two
properties: (1): [A] =0 if and only if A =0 and (2): [A] + [B] =0 if and only
if both A and B are 0.

Proof. We first show that the first property holds. If A = 0 it is obvious that
[A] = 0, so we are left to show the other way. If [A] = 0, we have that [A] = [0].
So there must exist a sequence 0 = Yy, Y7, ...,Y,, = A where Y; and Y, share
conflation partners, but as the only conflation with 0 in the middleis0 — 0 — 0,
and if 0 - X — 0 is a conflation then X = 0. So we get that Y; = 0 for all ¢,
and therefore A = 0. For the second property it is again obvious that if both A
and B are 0 then [A] + [B] = 0. In the case that [A] 4+ [B] = 0, we have that
[A] + [B] = [A® B] = 0. Using the first property, we then get that A® B =0
which implies both A and B are 0. O

The second property in the previous proposition is the requirement for a
monoid to be reduced. We will then show that a result for the elements of the
grothendick monoid that it is represented by simple objects.
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Theorem 6.8. /3, Lemma 3.6] If S is a simple object in a skelletaly small
category C, and A is an object in C. Then [A] = [S] in M(C) if and only if
A=S.

Proof. If [A] = [S], then there exist a sequence S = Yy, Y1, ..., Y, = A, but since
the only conflations with S in the middle are S - S — 0and 0 - S — 5, it
forces all of Y; = S which also means that A = S. O

We then are ready to define the grothendick group of an exact category C.
The grothendick group of an exact category is the group completion of the
grothendick monoid. There are several ways to define this group, as can be seen
in [6], but we will define it the following way.

Definition 6.9. Let M(C) be the grothendick monoid of a skeletaly small exact
category C. Then we define the grothendick group of C, denoted Ko(C), to be
the free abelian group on the objects in M(C) with the relation that [A] + [B] =
[A @ B], and that for a conflation A — C — B we have that [A] + [B] = [C]

This group has a very similar property to the property shown to be true for
the grothendick monoid in theorem but where M is an abelian group. This
is the way [3] defines the grothendick group.

Proposition 6.10. For the grothendick group Ko(C) of a skeletaly small exact
category C, if we have a inflation series of any object A

0= Zo Zl Zn,1 — Zn =A

then [A] = >0 | [Zi/Z;-A]

Proof. We prove this by induction on the length of an inflation series. So assume
we have an object A and a inflation series of A with length 1. Then it looks
like this: 0 C A. It is obvious that [A] = [A/0] since A/0 = A. Then assume
we know that it is true for inflation series of length < k, and assume we have a
compositon series Z of an object A with length £41. From the inflation from Zj
into Zp+1 = A we get the following conflation: Zp —— A — Zix11/Zk

And from this we get that [A] = [Z;] + [Zk+1/Zk]. Then the inflation series of
Zy, we get by removing A from Z, has length k so [Z;] = Zle[Zi/Zi,l]. By

combining the two equations we get that [A] = [Z] = Zfill [Z:/Z;-1] O
Finally by studying the structure of Ko(C) we can say something about when
C has JHP.

Theorem 6.11. [3, Theorem 4.10] Let C be a skelletaly small exact structure.
Then C has JHP if and only if Ko(C) is a free abelian group with Rank(Ky(C)) =

# sim(C)

Proof. We prove one direction of the equivalence by showing that if C does
not have JHP, then Ky(C) is not free abelian group generated by the simple
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objects in iso(C) If C does not have JHP, then there must exist an object A,
and two non-similar composition series Z and Z’ of A. Then we get that [A] =
St Zi)Ziy = Yt ZI/Z!_,. But these two sums are not similiar, so it
follows that K¢(C) is not a free abelian group generated by the simples object.
See [3] for the full proof. O

7 LU subcategories

Now when we have defined what Jordan-Holder property is, we will look at a
particular type of categories, namely representations over finite quivers.

Definition 7.1. For a field F and a acyclic quiver T' with finite number of
nodes, we define Rep(F,T') to be the category of representations of F over I.

These categories are abelian, so they have the maximum exact structure. It
is also know that JHP holds for these categories. But we are mostly interested
in looking at extension closed subcategories of these representation categories.
So for an representation category Rep(F,T), where F is a field, and T" an acyclic
quiver with finite number of node, we want to define the subcategory +U for
any object U € Rep(F,I") . The definition involves the Ext functor, so we first
remind ourself what this is.

Definition 7.2. For an abelian category C with enough projective objects, if we

study two objects A and U, and assume the following is a projective resolution
of A:

Up) Pl ™1 PO ™0 A

Then we get the complex chain:

™1

0 —— Hom(Py,U) —2= Hom(P,,U) — ...

Then Ext'(A,U) is the homology of this complex chain in the position with
Hom(P;,U).

Definition 7.3. Let U be an object in Rep(F,T), then the subcategory ~U is
the full subcategory such that X €+ U if Ext;(U, X) =0 fori > 1.

This is the kind of subcategory we are going to look at in this section.
We will show that there is a relation between when *U and the number of
indecomposable projectives and simple objects. But first we have to argue that
this is infact an exact category.

Theorem 7.4. Let ~U be the subcategory of Rep(F,T'). Then *U is closed
under exact sequences, and is therefore an exact subcategory of Rep(F,T).

Proof. So assume we have an short exact sequence: A »—— B ——» C
where A and C is in LU and B is in Rep(F,T). Since this is a short exact
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sequence then from homological algebra there is an result that gives us the fol-
lowing exact sequence:

o EXti(O, U) E— Eth(B,U) E— EXti(U, A) — EXti+1(C, U) —_— ...

(14)
Since Ext; (A, U) and Ext;(C,U) is 0 for ¢ > 1 and Ext;(B, U) lays between these
two, then Ext;(B,U) must also be zero, so B is in LU. So as LU is extension
closed subcategory, proposition implies that ~U is an exact category. O

Using the same argument, since Ext;(U, A) lies between Ext,;(U, B) and
Ext;11(U,C), if B and C is in LU, then so is A. We can also show that any
projective objects are in +U.

Lemma 7.5. If P is projective object in Rep(I', F). Then for any U we have
that P €+ U

Proof. Since the projective resolution of P is 0 — P — P, and that Hom(0,U) =
0, we get the following complex chain:

0 —— Hom(P,U) 0 0

From this it is obvious that Ext’(P,U) = 0 when i > 0. Therefore P ¢+ U O

Another property of this subcategory is that it is closed under summands.
This will be usefult to know, since we can find which objects are in +U, by
finding out which indecomposable objects are in +U.

Lemma 7.6. If A® B is in U then so is both A and B.

Proof. If A® B is in *U, then for 4+ > 0 it follows from that the Ext-functor
preserves direct sums that 0 = Ext'(A® B, U) = Ext'(A,U)®Ext"(B,U). Then
both Ext'(A,U) and Ext’(B, U) has to be zero, and therefore both A and B are
in LU O

From this result, we can see that +U is ”generated” by the indecomposable
objects in Rep(T, F) that is also in ~U. We then show some properties of the
grothendick group of +U.

Proposition 7.7. [5, Proposition 5.8, (2) and (3)] For the subcategory +U we
have that Ko(1U) is a free abelian group with Rank(Ko(+U)) = #ind.proj(+U)

Theorem 7.8. [5, Theorem 5.10] Let U be an object of Rep(F,T') for a field
F and quiver T'. If € =% U then JHP holds for & if and only if the number
of indecomposable projective in € are equal to the number of simples, up to
isomorphism.

Proof. We get from proposition that Ko(+U) is free, with rank equal to
the number of nonisomorphic indecomposable projective objects in ~U. Using
theorem we get that ~U has JHP if and only if Ko(+U) is free, with rank
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equal to the number of nonisomorphic simple in ~U. Since we already know
that Ko(+U) is free, we get that *U has JHP if and only if #ind.proj(+U) =
H#Hsim(+U) O

Now we can look some example of -U subcategories. Example: lets look
at the quiver I'=1 —%— 2 and Rep(F,T') where F is a field. Then since
Rep(F,T") is an artinian algebra so the result above holds, observe that the
indecomposables of Rep(C,T’) are Iy = F —— 0

P,=0——F and Po=1=F — . F where the indecomposable
projectives are P, and P; and the simples are I; and P,, Let U = P, and look at
LU. By "calculation” one can show that *U is objects of the form (P;)" @ (Py)™
where n and m are non-negative integers. P, is simple in Rep(F,T") so it is sim-
ple in any subcategory, but now Pj is also simple in ~U from the fact that the
inflation from P, into Py in Rep(F,T) is not a inflation in +U, since the cok-
ernel is not in +U. Since this was the only proper inflation of Py, P; is simple.
P, and P, are also the only indecomposable objects and are both projective so
in this case we have the same number of simples and ind. projectives so this
subcategory has JHP

But there exist also subcategories of this form that does not have equally
many indecomposable projectives as simple objects. We will show one example
of such a subcategory. Let us define I' as the following quiver:

AN

and consider the subcategory +U of Rep(T, F), where where U is the following
object:

]:2
TN
ao” (OnT  anp”

e | AN

F F F

It can be shown that Rep(T", ) has 12 non-isomorphic indecomposable objects.
8 of these are the injectives and projective objects generated by each node. The
remaining indecomposable, are D;, for ¢ = 2,3 and 4, where D5 is

N

and D3 and D, is on the same form, jut where representation in node 3 and
4 is 0 instead of in node 2. The last indecomposable is U. Then we find out
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which indecomposable objects that are in ~U. From lemma we have that
Py, P, P; and Py are in *U. The rest we will have to calculate to find out
wheter or not they are in +U So we start with showing that I, I3 and I, are
not in +U. So for I, we have the following projective resolution:

1 0

0 P1 P2 ]2

And we therefore get the complex chain:
0 —— Hom(P,,U) —— Hom(P,,U) —— 0

but since Hom(P,, U) = F and Hom(Py,U) 2 F2, we get that Ext! (I, U) # 0.
This means that I is not in +U, and in the same way, we can show that I3
and I, is not in LU. Then we want to determine if I; is in LU. The projective
resolution of I is

04)P1@P1*>P2€BP3€BP4*>11

By using a similiar argument as for the other injective objects, we observe
that hom(P, @ Py,U) = F*, while Hom(P, @ P; @ P,,U) = F3, which forces
Extl(Il, U) # 0. Therefore I; is not in ~U. To show that also Do, D3 and Dy
are not in U, we need to calculate Ext'(D;,U). For Dy we have the projective
resolution

04>P1 LPQEBP3*>D4

Note that the map m: P, — P> & P3 is the zero map for every node except 1,
and the map (id, —id) for node 1. This gives us the following complex chain:

0 —— Hom(P, @ P3,U) —— Hom(P,,U) — 0

where the morphism f is such that f(h) = hmy. It can be observed that ker(f) #
0, so the image, Im(f) is at most F. This forces Ext'(Dy,U) # 0. Therefore
D, is not in LU This argument can be used to also show that D3 and Dy are
also not in +U. At last we check if U is in +U. The projective resolution of U
is

0—— P s PaePeoP — U

We then get the following complex chain:

0 —— Hom(P, @ Py ® Py, U) —— Hom(P,,U) —— 0

We will then show that Im(f) is two-dimensional, and therefore Ext! (U, U) = 0.
Since f is a map essentially from F2 to F? it is equivalent to show that the
kernel is one-dimensional We know that ker(f) = Ext®(U, U) = Hom(U, U), and
it is possible to show that Hom(U,U) = F. Therefore Ext'(U,U) = 0 and it is
obvious that Ext*(U,U) = 0 when i > 1. So U €+ U.
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From this we know that +U is generated by Py, P», P3, Py and U. The
first four are the indecomposable projectives in +U, while all five indecom-
posable are simple objects in *U. From this we get that # Sim(+U) = 5 #
4 =#Ind. Proj(+U). So from theorem [7.8 we get that U does not have JHP.
We can show this directly by looking at P,@® Ps@® P,. There then exist a inflation
i: Py — Py ® P3® P, such that coker(i) = U. This proves directly that U does
not have JHP.

8 Homomorphy category and monomorphy cat-
egory

Given an exact category it is possible to construct a new category where the
objects are the morphisms of the category, and the morphisms of this new
category are pairs of morphism with a certain properties. This new category is
called the homomorphism category, and we are going to show that this category
inherits some properties from the original category, including JHP.

Definition 8.1. Let C be a category. Then let H(C) be the category such that
the objects in H(C) are all morphisms in C. If f and g are morphisms in C,
and therefore objects in H(C), then the morphism between f and g is (h1, ha),
where hy and ho are morphisms in C and ghy = haof, ie. the following diagram

commutes:
lf lg (16)

The composition of the morphisms in H(C) are defined as followed f, g and
v are objects in H(C), (h1, h2) is a morphism beetween f, and g, and (h], hj}) is
a morphism between g and v then (h], h5) o (h1, ha) = (h}h1, hyhe) It is easy to
show that the properties of a category are fulfiled, so it is truly a category. To
make it easier to explain I will call C the parent category of H(C). It is clear to
see that C if additive, then so is H(C).

It is also true that if C is an exact category, we get a natural exact structure
for H(C). This structure is such that (f1, f2) is an inflation in H(C) if f; and f,
both are inflations in C.

Proposition 8.2. IfC is an exact category, then H(C) is an exact category with
the exact structure that (f1, f2) is an inflation if f1 and fo both are inflations
in C, and (f1, f2) is a deflation if f1 and fo are deflations in C

Proof. We want to show that this is an exact category. So first we show that
(f1, f2) is a part of a kernel-cokernel pair if both f; and fs are inflations in the
parent category. If f; and f is inflations in C and (f1, f2) is a morphism in H(C),
then (g1, g2) is also a morphism in H(C), where g; and g, are the cokernels of f;
and fo respectivly. As (g1,92) o (f1, f2) = (91.f1, 92f2) = (0,0) and if there exist
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another morphism (hq, he) such that (g1, g2) o (h1,h2) = (0,0), then g;h; = 0
so since f; is a kernel of g; we have v; such that h; = f;v;. it is easy to check
that (vi,v2) is a morphism in H(C) and (h1, h2) = (f1, f2) o (v1,v2), therefore
(f1, f2) is the kernel of (g1, g2) and the dual argument gives that (g1, ¢g2) is the
cokernel of (f1, f2). Then we show that this collection of kernel-cokernel pairs
in fact follows the requirment to be an exact structure. We will only show that
the argument is true for inflations as the argument for the deflations will be the
dual argument.

First we show that the identity is an inflation. For a object f in H(C), which
is a morphism between A and B in C, then (Ida, Idpg) is the identity on f. As
Id4 and Idp are both inflations in C, (Ida, Idp) is an inflation in H(C).

Then we show that the push-out of a inflation together with an arbitrary
morphism preserves inflation. So if f,g and h be objects in H(C) and let i =
(i1,i2) be a inflation from f to g, and v = (vy,v3) is an arbitrary morphism
from f to h, and let the following diagram be the pushout of ¢ and v. Then ¢’
is also an inflation:

For simplicity let Dy be the domain of f, and C'; be the codomain of f, and the
same for g and h. We begin at looking at the two pushouts of i1, v, and iy, v
in the parent category:

DfLDg CfL)Cg

b bl s n

DhAEl Ch42>E2

We want to show that the following diagram is commutative:

Dy — D,

Pl iy J{v;g (18)

Dh4>E2

ie. that vhgiy = ibhvy. First from the diagram given by ¢, vhgiy = vhiaf.
From the second pushout we get that vhis f = i5vs f and from the diagram given
by v, we finally get that i5vs f = ihhvy, so vhgi; = i5hv; and the square above
is commutative. From the properties of the first pushout we then get a unique
morphism p from E; to Fs such that ibh = i{p and vhg = v{p. This p is the
pushout of ¢ and v and the morphism from h to p is (i}, ), which is an inflation
since both 4] and i} are inflations.

The last property that must be proven is that composition of inflations are
also inflations, so let f, g and h and let ¢ = (i1,42) and j = (j1, j2) be inflations:
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f—t g —7 4 h Since ji = (j1i1, j2i2) and j14; and jais are both inflations,
so ji is also an inflation. O

Proposition 8.3. Let H(C) be the homomorphism category of an exact category
C. If we have the morphism (f1, f2) between objects g and h in H(C) and both
f1 and fo have kernels in C we get the following diagram:

ker(fl) L> Al L) Bl

bkl
ker(fy) —2— Ay —2— By

then (i1,12) is the kernel of (f1, f2), and p is the kernel object of (f1, f2).

The dual result is also true. Note that if C is preabelian, i.e. has all kernel
and cokernels, then H(C) is also preabelian. This follows directly from proposi-
tion R3]l and its dual version.

Theorem 8.4. Let C be an abelian category. Then H(C) is also abelian.

Proof. 1t follows, from proposition that since C preabelian, then so is H(C).
Let (f1, f2) be a morphism in H(C) from u to v as described below:

AlLBl

lu Jv (19)

AQL}BQ

And by finding the kernels and cokernels of (f1, f2) we get the following com-
muting diagram:

ker(f1) P Ly S— coker(f1)

bbbk g

ker(fg) 2 A2 f2 BQ 2 COkGI‘(fz)

Finding the coimage and image of (f1, f2) we get the following diagram:

A Ity coim(f1) o, im(f7) —1 s By

[ A

A2 &) COim(fg) L} 1m(f2) >w—2> BQ

Here p is the coimage of (f1, f2) while q is the image of (f1, f2). As both ¢; and
9 are isomorphism, it is enough to show that (¢1,12) is a morphism in H(C).
In other words showing that the middle square of the diagram commutes. As
w1101 = f1 and woeoe = fa, we have that the outer square commutes, and
the leftmost and rightmost squares commutes. Using the commutativity of big
square we get the following:
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VW Y101 = Wathaoou

And then using the fact that the rightmost and lefmost square commutes,

vwi1 = woq and oou = poy we get that woqyroy = woepoi. Then as o
is an epimorphism then it follows that wsq®; = wsiop. Then as wy is an
monomorphism: gy = ¥9p so the middle square commutes. Therefore H(C) is
abelian. O

Now we look at a subcategory of the homomorphism category. The monomor-
phism category of a category C is a subcategory of H(C) where the objects are
inflations in C and the morphisms between two objects are the morphism in
H(C).

Definition 8.5. Let C be an exact category, then the monomorphy category of
C, MM(C) is a full subcategory of H(C), where the objects are inflations in C

We will show that this subcategory infact is closed under extensions, and
therefore it follows from proposition [I.2] that the subcategory is exact with the
inherited exact structure.

Lemma 8.6. Let G = H(C) and let H = MM(C) C H(C) be the monomorphism
category. H is an extension closed subcategory of G. i.e. if we have the confla-
tion f »—— g — h where f and h are objects in H and B is an object in
G, then g is in H.

Proof. Assume we have an conflation as above, then we draw the diagram:

Ay —— B —— (4
If lg Ih (22)
Ay —— By — (9

As both f and h are inflations, and both rows are conflations, we have from
theorem [3.3] that ¢ also has to be an inflation. Therefore g is also an object in
the monomorphism category. O

Proposition 8.7. If C is an exact category, then so is MM(C) with the ezact
structure such that the diagram

A1 — Bl — » Cl
[ ]
Ay —— By —» ()

is an conflation in MM(C) if it is a conflation in H(C).

Proof. If C is an exact category, then it follows from proposition that H(C)
is also an exact category. Then lemma gives us that MM(C) is a extension
closed subcategory of H(C). Using proposition [£.2]we get that MM(C) is an exact
category with subcategory exact structure from H(C), as defined above. O
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This is the exact structure we give MM(C) if nothing else is specified. One
could also wonder if the monomorphism category also preserves abelian proper-
ties. This is not the case, with the exception of the trivial abelian category. To
help us show this, we first state a lemma.

Lemma 8.8. For an exact category C and an object A # 0 in C, it follows that
the cokernel of the morphism (0,id4) in MM(C) from0 — Ato A — Ais0—0
as in the diagram below:

—_ A —

0 A 0
e g

A—— A ——

Note that even though this morphism contains two inflations, it is not an
inflation in MM(C) since the cokernel in H(C) is A —— 0 which is not in
MM(C).

Proof. Assume we have an object f in MM(C) such that

0—— A1,
b
ida fe
A— A —C
the diagram commutes and such that (fg, fc)(0,ida) = (0, fc) = (0,0). This
implies that fo = 0, and since the diagram commutes we have that foida =

0 = ffp but since f is inflation and therefore a monomorphism it follows that
fB also is 0. It is then obvious that (0,0) factors through 0 — 0 O

Theorem 8.9. If C is an exact category with at least one object A # 0 , then
MM(C) is not an abelian category.

Proof. Since A # 0 then we know that A A A and 0 —— A are objects
in MM(C). We also have the morphism (0,id,4) in MM(C):

0—— A
ida
A Ay g

From lemma we have that (0,0) is the cokernel of (0,id4) while the kernel
is (0,0)

0 0 A 0
RN
0 A4 A 0

but it then follows that Coim((0,id4)) = 0 — A while im((0,id4)) = A — A. Tt
is obvious that there exist no isomorphism between these two objects, therefore
MM(C) cannot be abelian. O
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To understand better the structure of the homomorphism category and the
monomorphism category it is useful to know what objects are simple objects
in these new categories, and also what are the projective objects. This will be
used later, when proving that these categories conserves JHP.

Lemma 8.10. For a homomorphy category G = H(C) of an exact category C,

the simple objects are the morphism on the form S —— 0 or 0 —— S
where S is a simple object in C

Proof. Assume that f is a simple object: A; % As Then we can construct
the following diagram:

[ (23)

But since f is simple, either A3 = 0 or if A; # 0 then Ay = 0. In the case
A; = 0, this forces As to be simple, because if not then there exist an object
0 C C C Ay where C #0,A3 and 0 —— C' is therefore a proper subobject
of f. In the case of A; # 0, the same argument forces A; to be simple. So these
objects are the only objects that can possibly be simple, and it is obvious that
these objects are simple. O

As the monomorphism category is a exact subcategory of the homomorphism
category, 0 —— S which is in the monomorphism category, is also simple
objects there. The other simples in the monomorphism category are of the form

S sy g

Lemma 8.11. For a monomorphism category M = MM(C) of an ezact category

C, the simple objects are on the form 0 —— S or S —— S for any simple
object S in C

Proof. For an object f in M, for a morphism (j1, j2) into f to be an inflation,
it has to not only consist of two inflations, but also the cokernel in H(C) must
also be in M.

A1 >—>j1 Bl 4»771 Bl/Al

bl z

A2 >j—2> BQ L» BQ/AQ

In the case of the diagram above, if all squares commute, (j1, j2) is a morphism
in the monomorphism category, but not generally an inflation. For it to be an
inflation, we need that the cokernel h is in the monomorphism category. In
other words h must also be an inflation.

So let f: A — B be a simple object in M, then it is obvious that both id4 and
idc, for any proper subobject C of A, are subobjects of f. Therefore if A # 0
then id4 and idy are two different subobjects of f and therefore f has to be
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isomorphic to id 4.

In the case that A = 0, it follows that the inflation Oc: 0 — C for a subobject
C of B, is a subobject of f. Therefore B has to be simple, else there exist a
subobject C of B such that C' # B or 0 and leads to f having 0p,0¢c and Op as
subobjects. O

Since we know what the simples are in the homomorphism categories, we can
now show that homomorphism categories inherits JHP from its parent category.

Theorem 8.12. If C is an exact category that have JHP, then H(C) does also
have JHP.

A

Proof. Let lf be an object in H(C), and consider the following two composition
B

series of f:
0—— A, —— A1 Ay A
[ I
0—— B, — Bp_1 By B
00— Al —— Al Al A
[ ! | | o
0—— B, —— B/, B; B

Since these are composition series of f it follows that the gives us the simples

AifAisr  AYAL

[ &

Bi/Biy1  Bj/Bj,

for 0 < i < n. We also know that the simples are on the form S — 0 or 0 — S
from lemma so it follows that either A;/A;+1 or B;/B;+1 are simple for
each i and the other one is 0. The same is true for the other composition series.
We define the set of integers ¢ such that A;/A; 1 is simple as I, and I’ is the set
containing i such that Aj/A; ; is simple. From the fact that C has JHP, we have
then that there exist permutations o and v such that A;/A; ;1 = A) ) JAL ()41
for i € I and B;/B;41 = B’W(i)/Bi{(iH_1 for 4 not in I. Here o is a permutation
between I and I’ and + ia a permutation between Z, 1 — I and Z, 41 — I'. Tt
follows from this that we can define a new permutation w such that w(i) = o (i)
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if i € I and w(i) = (i) if i ¢ I . This permutation satisfies that

AifAier A/ Ay

[ = 1 oo

Bi/BiH B:.;(i)/B:.;(i)+1
Therefore JHP is also satisfied by H(C) O

We also want to show that the monomorphism category has JHP. The way
to show this is quite similiar, but it is not so obvious how to construct the
permutation. Therefore we introduce a result about permutations.

Lemma 8.13. Let A = {a1,az,....,an} and B = {b1,ba,...,b,} be sets of objects
from a collection C with a equivalence relation "~” and a permutation o such
that a; ~ by(;). Then if there exist a bijection v: I — ~(I) for a subset I of
{1,2,...,n} such that for i € I we have that a; ~ byy. Then there exist a
permutation w on {1,2,...,n} such that a; ~ by for all i, and w(i) = (i)
when i € I.

Proof. We construct v: If ¢ € I, then w(i) = (7). And if 7 ¢ I we use the
following algorithm to decide what to map 4 to: First we look at the candidate
o(1), if this is not in the image of « then we choose w(i) = o(i). If o(i) is in the
image of 7, we then look at the new candidate o(j) where j = v~ !o (i), if this
is also in the image of -, then we repeat this process until we get something not

in the image of 7. This means that we define w(i) = o(y10)*(i), where k is

the smallest integer such that o(y~'c)¥(i) is not in the image of o.

First we show that this in fact a map. We do this by shoving that this method
does not repeat itself. Assume for ¢ ¢ I, there exist k; < ko such that
o(yto)k1 (i) = o(y~to)*2(i) and that o(y~'o)i(i) is in the image of v for
j < ko. Then it follows that o(y~'o)*2~*1(i) = o(i) and by applying ¢! that
(y~to)k2=k1(i) =i . But since kg — k1 > 0, it follows that (y~lo)*27k1(4) is in
I, but we assumed ¢ ¢ I, therefore it does not repeat. Then it follows from the
fact that im(v) is a finite set, that we will end up outside at one point.

Now we have shown that this is a well defined map, but we also want to show
that it is a permutation. To do this we show that it is injective and surjective.
Injective: Assume w(i) = w(j), both ¢ and j are in I, then it is obvious that
i =7, Alsoifi € I and j ¢ I then we know that w(j) ¢ im(y) then w(i) # w(y).
So we need to check what happens if both ¢ and j is not in /. Then we know
that o(y~1o)*1 (i) = a(y1o)*2(j) for some k; and ko, if k1 = ko it follows that
1 = j and if ky < ko we get the same contradiction as when we showed that it
was well defined. This shows that o is injective.

To show that o is surjective, we first observe that if i € im(y), i=o(y~1(i)). If
i is not in the image of v, we do the opposite of when we defined the map. We
look at (¢~ !4)*¢~!(i) and this is also non repeating, for some k this is not in
I. Then w((oc~y)*071(i)) = i. Hence w is both injective and surjective, and is
therefore a permutation. O
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Theorem 8.14. Let C be a exact category which have JHP, and let D = MM(C)
be the monomorphy category of C. Then D does also have JHP.

Proof. Let i be an object in D, and consider the following two composition
B

series of i:
00— A, — Ap_q Ay A
| 1 1 ] @
0>—— B, —— B,_1 B, B
00— Al —— Al | Al A
[T 1 [ [
0>—— B, —— Bl,_, Bj B

the simples given by these composition series are on the form:

AfAi ALJAL,

[T g

Bi/Bit1  Bj/Bj

From knowing how the simples in D looks like from lemma it follows that
the lower rows in both composition series are itself composition series of B
in C, and since C has JHP, n = m. Also there must exist an permutation o
such that B;/B;41 ~ B(’T(i)/Bl;(i)_s_1 where B, 41 = B,,,; = 0 The upper row
is not neccesarily a composition series, but as A;/A;11 is either 0 or a simple,
and the same for Aj/Aj ;, in C, there must exist a permutation w such that
AiJAjq ~ A;(i)/A;(i)Jrl. But for ¢ such that A;/A; 41 # 0 it follows that:

Bi/Biy1 ~ AifAip1 ~ ALy [AL )11 ~ Bloty/ Blotiyn (32)

s0 Bi/Bit1 ~ B, /B4, when i such that A;/A; 41 # 0. Using lemma
we get that there must exist a permutation o’ such that B;/B; 41 ~ ler’(i)/Bo’(i

)+
and o’(i) = w(i) when A;/A;+1 # 0. Then we have that

AifAi Agr(iy Ao (i) 11

[~ ] @

Bi/Bi1 By (iy/ Bor (i) 41

As the object and the two composition series where arbitrary, this shows that
D has JHP. U
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Proposition 8.15. IfC is an exact category with enough projectives, then the
projective objects in MM(C) is of the form Py " P, where P, and Py are
projectives, and i is a split monomorphism.

Proof. We first show that a projective object in MM(C) has to be an inflation
into a projective object, i.e. if A; s Ay s projective, then A has to be
projective in C. If p is an deflation from A to B, and f a morphism from A, to

B, it follows from that i that there exist a morphism d from As to A such that
the following diagram commutes:

A14>0<%0

} l l (34)

Ag%B«p—A
d

this follows from the fact that A; —— Ay is projective, but this also shows
that As must be projective in C. We then show that any projective object is
a split monomorphism. Py "% P, bea projective object in the monomor-
phism category. The goal is to show that coker(i) is projective, which implies
that the exact sequence P —t s Py — Ty coker(%) is split exact, and there-
fore 7 is a split monomorphism. So assume we have a morphism from coker(z) to
some object B and a deflasion from A to B: coker(i) —~— B «5— A From

this we can construct the following diagram:

P, 0 0

I [
P —" 3B — A (35)
-

)

coker(i

Then from the projective property of i, we get a map d from P, to A such that
gm = pd and di = 0. Since di = 0 the cokernel property of 7 gives a morphism h
such that Am = d. This implies that gm = pd = phm, but since 7 is an deflation,
and therefore an epimorphism, we have that g = ph, so coker() is projective
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and 7 is therefore split.

0
i d
kb('{/

We are then left to show any split monomorphism i between two projecive

objects in C is a projecive object in MM(C). P, ' P, is projective.
O

9 Homomorphism and monomorphism categories
over quivers

In this secton, when we talk about quiver, we assume they have a finite number
of nodes. We observe that the monomorphism and homomorphism category look
quite similar to representations over the quiver I': 1 —— 2 | but where the
objects in 1 and 2 are objects in a general category, and not finite dimensional
vector spaces over a field. In fact if C is the homomorphsim category for finite
dimensional vector spaces over a field F, then C is equivalent to Rep(F,T").
We can generalize homomorphism and monomorphism category, by looking at
such representation over quivers. Note that in this section we assume that the
quivers has finite number of nodes, and we look at quivers such that there exist
at most 1 arrow going from a node 4 to a node j, for any ¢ and j. We will first
define some concepts for quivers.

Definition 9.1. If v is a quiver and « an arrow in T’ then we denote s(a) as
the source of a, i.e. where the arrow begins. Also we denote e(a) as the target
of a., the end of the arrow.

Likewise we want to introduce some terminology for when a node is down-
stream/upstream to another node,

Definition 9.2. If T' is quiver, then we say that i is downstream of j if there
exist a path from j to ¢ in I'. In this case we also say that j is upstream of i

Note that if we have a connected acyclic quiver, then for ¢ and j are different
nodes and ¢ is downstream of j, we know that j is not downstream of .

Definition 9.3. If C is a category, and I is a quiver, then the homomorphism
category of C over T' denoted H(C,T') is the category where an object (A, f) is the
collection of objects A(i) € C for each node i in T’ and morphisms fo: A(s(a)) —
A(e(a)) for each arrow oo € T'. A morphism g between two objects (A, f) and
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(B, f") in H(C,T) is then a collection of morphisms g;: A(¢) — B(i) for each
node i such that for any arrow a € T, where i = s(a) and j = e(a) we have
that the following diagram commutes:

A(i) —2— B(i)

Note that H(C) is on this form, namely if I' = 1 — 2 then H(C) = H(C,T).
Another example is when I is the quiver: 1 —%— 2 5 3 then the homo-

morphism category of C over I' is the category where the objects are on the

form: A 1“4 B <L C' and the morphisms are on the form (hy, ha, h3)

such that the following diagram commutes:

ie. hzf = f’hl and hgg = g/hg.

It can be shown that if C is an exact category, and I' a quiver with finite nodes,
then H(C,T) is an exact category where an inflation is a morphism h: (A, f) —
(B, f') between two object (A, f) and (B, f’) in H(C,T") is such that for any node
i in T the morphism h;: A(¢) — B(%) is an inflation. Equally h is a deflation if
for every i € I', the morphism h; is a deflation.

The monomorphism category of C over I, called MM(C,T") is defined similiar
to MM(C) as the full subcategory where the objects are the objects (A, f) in
H(C,T') such that for any arrow « in I', we have that f, is an inflation. It
can be shown that MM(C,T") is extension closed subcategory of H(C,T), and is
therefore also an exact category with the subcategory structure.

When does these categories have JHP. We can show with show is that JHP
does not generally holds for all of these types of quiver. We use a example to
show this.

Example: Let F be a field and let C = vec(F) be the category of any finite
dimensional vectorspaces over the field. Now let I be the following quiver:

2 —— 1++——4
T (38)
3

and let us look at the monomorphism category of C over I'. Then the following
object A in the monomorphism category does not have unique composition
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factors:

Fl% 2 F

11)T
07 ty (39)
f’

this is the case, A has the composition series 0 C Sy C A, where Sy is on the
form:

FYs Fe—0

|

0

and the inflation from Sy to A is on the form ((1,0)7,id,0,0) Then this com-
position series gives us the composition factors Sy and A/Ss, where A/Ss is
isomorphic to

0—— F— F

q

JT_'

But one can construct similar composition series with Sy and S4 which gives

other simples composition factors, and none of the compostion factors for the
composition series 0 C S3 C A is isomorphic to the compostion factors for
0 C S92 C A. Therefore the category does not have JHP.
But there also exist quivers that does inherit JHP. The simplest example is
the monomorphism category of C. This is as stated earlier the monomorphism
category of C over the quiver: 1 —— 2 , and from theorem we have
that it has JHP, if C has JHP.

So we start by looking at homomorphism categories over acyclic quiver, we
can then show the following result.

Proposition 9.4. Let C be an exact category, and I' be an acyclic quiver. Then
any simple object in H(C,T) is of the form S'for a simple object S in C and node
i in T, where S* = (S%, f) such that S'(j) =0 if i # j and S*(i) = S. Naturally

this means that f, = 0 for any arrow o in T'.

Proof. Tt is obvious that S® is a simple object in H(C,T'), so we then have to
show that any other object is not simple. So let (A, f) be an object in H(C,T")
such that for only one node ¢ in I', we have that A(i) # 0. If A(7) is simple,
then (A, f) = A(i)". In the case that A(i) is not simple, there exist an object
B C A(i) such that B # A(). Then (A’, f') is a proper subobject of (A, f),
where A’(i) = B and A’(j) = 0 for any other node. So in this case, (4, f) is
not simple. In the case that there is at least two nodes ¢ and j such that A(7)
and A(j) are nonzero, we know from that I" is acyclic, that there exist a node &
such that A(k) # 0 but for any arrow « ending in k, we have that A(s(a)) = 0.
So we can construct a subobject (A’, f') such that A’(l) = A(l) if | # k, and
A’(k) = 0. This object is a proper subobject of (A4, f), and therefore (A4, f) is
not a simple object. U
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‘This leads up the following result.

Theorem 9.5. Let C be an exact category and T be an acyclic quiver. Then
H(C,T) has JHP, if and only if C has JHP.

Proof. Assume C has JHP, and let (A, f) be an object in H(C,T"). Then for
a composition sequence Z of (A4, f) were the length we call n. Then the get
composition factors Zj, for 0 < k < n from Z is of the form S for some simple
S € C and node i € I. For each node j € I', we can look at the composition
factors Zj, such that Z; = S}, for some simple Sy in C. Then the collection of all
Sy, for k such that Z; = S’i are the composition factors of a composition series of
A(j) and since C has JHP, they are unique. This forces the composition factors
of the S’ to be unique, but this argument works for any node, so we get that
H(C,T') has JHP. O

Then we turn our attention to monomorphism categories. We can begin by
defining a type of simple objects.

Definition 9.6. Let C be an exact category, and T' a acyclic quiver. Then for
any node i and simple object S in C, we define S* in MM(C,T') to be the object
such that if S* = (A, f), then A(j) = S for any node j such that there exist
a path from i to j in T, A(i) = S, and in any other node S is 0. f, is then
identity morphism if there is a path from i to both s(«) and e(«), and 0 for any
other arrow.

Proposition 9.7. If S is a simple object in C and i a node in T, then S* is a
simple object in MM(C,T").

Proof. Assume A = (A, f) # 0 is a subobject of S’. Let j be a node such that
there is a path from ¢ to j and such that A(j) = 0. From this we get that also
A(i) = 0. From this we get that S?/A is such that (S¢/A)(i) = S/A(i) = S, but
this forces any node with path from ¢ to also be S, but then (A4, f)(j) = 0 for
any node j € ', which is a contradiction. Therefore (4, f)(j) = S for any node
j with a path from 4, but this is the object S O

Let us look at an example of a object on this form. Example: Let
3 4
1 5
be the quiver, and S be a simple object in the parent category, then S! is on

the form
S S
» idI y T
S 0

2
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The reason we use the notation S? for these simple objects, are because they are
generated from a simple S in node i. This we say because if we have S in node
i, then from the requirement that it is in MM(C,T") we have to have inflations
to any node j with a path from ¢, so it follows that the object in node j has
to have S as a subobject. These may not be the only simple objects there are,
but we can show that if these are the only simple objects, then it has JHP if its
parent category has JHP.

Theorem 9.8. Let C be an exact category and I' be an acyclic quiver. Then
MM(C,T) has JHP if C has JHP and any simple object in MM(C,T") is on the
form S for a simple S € C and node i in T’

Proof. The way to prove this is not too different from the proof of theorem
but adjusted slightly. It also has some similarities to the proof of theorem [8.14]
Let C have JHP, and assume any simple object in MM(C, T) is on the form S°.
Assume (A4, f) is a object with a composition series Z, where n is the length of
Z. Let Z; be the composition factors of Z, so Z; = S* for some simple S in
C and node 7 in I'. So we begin by looking at a node ¢ such that there is no
other node with path to 7. It follows that the composition factors Zj, = Si is
such that Sy is the composition factors of A(i), and therefore are unique since
C. After we have considered every node i such that there is no other node with
paths to i, we look at nodes ¢ such that the nodes with paths to ¢ is already been
looked at, then the Z; = S* are the composition factors of A(i) together with
any Zr = S’ from any node j with path to i. Since these last simple objects
are unique, we can use a variant of lemma to show that these Z = S* are
also unique. Therefore MM(C,T") has JHP O

In fact using a similar argument as in theorem one can show that for a

quiver on the form: 1 2 n—1 —— n the monomor-
phism category over this quiver has JHP if the parent category has JHP. It is
also possible to show this by showing that every simple is of the form S*. We
show the following result.

Theorem 9.9. Let I' be a quiver with finite nodes of the following form:

Then the monomorphism category MM(C,T') has JHP, if and only if C has JHP.

Proof. We will show this for the quiver with four nodes, but the same arguments
work in the general case. So we have this quiver:

2 3 4

AN

1
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We want to show that any simple is of the form S? for some simple S and
node i. Then theorem gives us that JHP is inherited from the parent cate-
gory. Assume we have a object ) in the monomorphism category which is the

following:
B C D
A

When is this object simple? First we assume that A = 0. If atleast two of either
B, C or D is nonzero, let say B and C, then the object that is zero in every
node execpt in node 2 where it is B

B 0 0

N1

0

is a subobject of Q). So only one of B, C' and D can be nonzero. Assume without
loss of generality that this is B. Then if B’ C B is a subobject of B, then

B’ 0 0

N1

0
is a subobject of Q). So if @ is simple, then B has to be a simple S. But then

Q=52
But what if A # 0. Then if A is not simple and A’ is a proper subobject of

A, the object
B C D
\ 1 /

is then a subobject of Q. If A is simple, we know that A is a subobject of B,
C and D. If any of these are not simple, assume without loss of generality B is
not simple, then there exist a subobject B’ of B such that

B’ C D
A
is subobject of Q. So for @ to be simple A, B, C' and D has to all be isomorphic

to some simple S and therefore Q = S'. This proves that all simples are on the
form S?. O
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Theorem 9.10. Let C be an exact category and let T be quiver on the following
form:
1

2 3 n—1 n

where n > 3. Then MM(C,T") does not have JHP.

Proof. If C has no simple objects then the monomorphism category will also
have no simple objects so it does not make sense to talk about JHP. So assume
C has at least one simple S. Then we look at Q = (Q, f) where Q(1) = S? and
Q(2) = Q(3) = S and Q(j) = 0 for any remaining nodes j. Then the inflation
fan = (1,0)7 and the inflation f,, = (0,1). Firstly we observe that there exist

the composition series: 0 > S2 =~ @ where i is the inflation with the

identity map between S?(2) and Q(2), and the inflation (1,0) between S2(1)
and Q(1). This composition series gives us the composition factors S? and S3.

But there is also another composition series: 0 = S! — s @ here j is the

inflation were the inflation between S(1) and Q(1) is (1,1)”. This composition
series gives us the compositon factors S and but also another simple Z, where
Z(i) = S for the nodes 1,2 and 3 and zero elsewhere. Since these are not the
same simples as the first composition series, it does not have JHP. O

We see from the last proof, that the existence of a simple object which is
not on the form S* stops the monomorphism category from having JHP. This
depends on the quiver we have, and we will now define a type of quivers that is
such that any monomorphism category over the quiver has only simple of the
form S*

Definition 9.11. We call a quiver ' a tree quiver if there exist a node i in I’
such that for every other node j € T' there exist exactly 1 path from i to 5. We
call the node i the root of the tree quiver I'

Note that a tree quiver must be acyclic, because a cycle would imply multiple
paths to any node in the cycle. also we can show that for any node j in a tree
quiver there is at most 1 arrow ending in j.

Lemma 9.12. IfT is a tree quiver and i is a node in I', then there is at most
one arrow ending in j.

Proof. Assume that there exist a node i € I such that both arrows o and 3 ends
in j. We call the startnode of a and j for i, and ig. Then from the definition
of a tree quiver we have that there exist a path from the root i to i, and iyeta,
denoted w, and wg. It then follows that both aw, and fwg are differents paths
to 7 but cannot be true, so we have a contradiction. Therefore there exist no j
with two (or more) arrows ending in j. O

This shows us that for a tree quiver, there is no subsection that ”looks like”
the quivers in theorem
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Theorem 9.13. Let C be an exact category that have JHP and T’ be acyclic
quiver such that between two nodes there is at mazximum 1 arrow. Then the
monomorphism category of C over I has JHP if and only T is a tree quiver.

Proof. We first show that if every node in I' has at most 1 incoming arrow, then
all simples are on the form S* for some simple object S in C and a node i. This
we show by an induction argument. I' has to have a node that is upstream to
every other node. Lets call this node 1. Every simple that is nonzero in node 1
must then also be nonzero in every node downstream of 1. This forces any node
to be nonzero. It is also easy to show that the only simples on this form is the
simples with the same simple object S € C in every node. This is by definition
St

Then assume we know that this is true for any upstream node of k, and we
want to show that it is also true for k. So assume we have a simple object Q)
such that Q(k) # 0. If for any upstream node ¢ of k, we have that Q(k) # 0, we
know that Q = S7 for some j. In the case that Q(i) = 0 for any upstream node
1 we study the following cases: We know that the simples that are nonzero only
in the nodes downstream of k& must be of the form S* for some simple S. So
assume we have a simple Z which is nonzero both in £ and in some other node
j not downstream of k. If j is upstream of k, we know that this simple has to
be on the form of S; for some simple S and node . If j is not upstream of i,
then there exist a node j’ such that j’ is upstream of both ¢ and j and any other
node upstream of both i and j is also upstream of j'. If the object in node j’
is nonzero, then we again have that this simple is on the form S;. In the case
where the object in node j’ is zero, then we get that S* is an subobject of Z,
Sk is even a direct sum of Z. But Z is not isomorphic to S* so Z is not simple.
This proves that any simple is of the form S*. Using?? this again implies that
the monomorphism category over I" has JHP.

We are then left with proving that if there exist a node with at least two incoming
arrow, then the monomorphism category over I' does not have JHP. So assume
node ¢ has two arrows into it from node j and node k and choose a simple S in
C. Let @ be the object that is S in j and k and S? in i. It is S in every node
downstream of j or k but not i, and S? in every node downstream of i. The
inflation from j to i is (0,1)7 and the inflation from k to i is (1,0)”. Then by
using the same argument as in theorem we get that JHP is not satisfied for

Q. O

Before we have only looked at acyclic quivers, but we may also consider
cyclic quivers. If we look at homomorphism categories over quivers with cycles,
we get more simple objects than the simples on the form S?. Note that these
now are the simples with is only nonzero in node ¢. If we call a cycle in the
quiver v, we can define a simple object S as the simple object with S in the
cycle, 0 elsewhere and identity map for arrows in . But there may also be more
and potentially more complex simple objects as a consequence of the cycles. An
object with simple objects in each node in v and 0 elsewhere is also a simple
object if any morphism in the cycle is not the zero-morphism.
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Theorem 9.14. Let H(C,T') be the homomorphism category of a exact category
C, over a finite quiver I'. Then for any cycle v in ' and simple object S in C
them the object SV as defined above is a simple object in H(C,T').

Proof. Since v is a cycle in a finite quiver, it has a finite number of nodes. Let
us number the nodes in the cycle from 1 to n such that 1 has arrow into 2, 2 has
arrow into 3 and so fourth until n which has arrow into 1. Let Z = S7 be the
object such that the object in node ¢ denoted Z(i) = S and that the morphism
from Z(i) to Z(i + 1), and Z(n) to Z(1) is the identity. Then Assume A is
a subobject of Z which is not 0. This implies that there exist a node k such
that A(k) # 0, so A(k) is isomorphic to Z(k) = S. Then we get the following
commutative diagram:

A(k) 25 Ak +1)
Ifi Ikarl (40)
Z(k)

sy Z(k+1)

Since fi is an isomorphism and zj is the identity morphism, the composition
2k [k = fr+1ax is also an isomorphism. But this forces A(k + 1) to be nonzero,
so A(k + 1) must be isomorphic to Z(k 4+ 1). Repeating this argument again
gives us that A(k+1) is isomorphic to Z(k+2) and so on. This in total gives us
that A(7) is isomorphic to Z(i) for every i in the cycle. But this object is clearly
isomorphic to Z as each f; is an isomorphism. Therefore the only subobject of
Z is itself and 0, so it is a simple object. O

For an arbitrary exact category there may exist a morphism f: S — S’
between two nonisomorphic simple objects such that f is not the zero morphism.
It is not hard to find a such a category which does not satisfy this.

An example is looking at the subcategory generated by direct sums of P; and
P, for the representation over the quiver 1 — 2 . From an earlier section we
found that this was an ~U category, with the simples P; and P,. What is clear
though is that there exist a nonzero morphism from P, to P; although they are
not isomorphic.

These types of morphisms opens up the possibility for other simple objects for
homomorphism categories over quivers with cycles. We present the following
result.

Proposition 9.15. Let C be a homomorphism category of a exact category,
over a finite quiver I'. If there exists simple objects S; and monzero morphisms
Bi: S; = Siy1, fori=1,2,...,n where S, 11 = S1 then for any cycle v in T with
length equal to n,(and bigger) we can create a simple object with this sequence.

Proof. If we number the nodes in v as in the proof for theorem [9.14] and define
the object Z such that Z(i) = S;, and the arrow from Z(i) to Z(i+1) is 8;. Any
other node or arrow is 0. Then Z is an simple object in C. This is shown in the
same way as in theorem (It may not be neccesary that S; is simple) O
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Note that if we have collection of n simples, with the nonzero maps, we can
always construct a collection with n+1 simples, where the last object S,,41 = Sy,
with the identity morphism between them.

Observe that for a cycle v in I and a S in the parent category, we can always
construct the simple S7 where we use the identity morphism. It is more in-
teresting to find categories such that not every morphism in the cycle-simple
is an isomorphism. From our earlier example we have shown that there is a
non-isomorphic, nonzero morphism between the simples P> and P; for the sub-
category LU. But there is no nonzero morphisms from P; to P, so we have to
look at another category to find such a cyclesimple.

If we look at the quiver I' looking like this:

N

Then by looking at the category C containing representations of a field F over I'
modding out any path of length 2 or more and define the exact structure to be
the split exact sequences. The indecomposable projective modules P; are then
such that the object in node 7 and i + 1 is F with the identity map between
them, and the last node is 0. Since these are indecomposable objects in C, they
are simple with split exact structure. Then for H(C,T') we can construct the

following simple object:

Py <; Ps
where the morphism f; from P; to Pj is like this:

id

A

I, AN

\>4/

and fo and f3 act in a similar way. Then it follows from proposition [9.15
that this is a simple object in H(C,T").

N

0
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