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Abstract: In the development of a digital twin (DT) for hydropower turbines, dynamic modeling
of the system (e.g., penstock, turbine, speed control) is crucial, along with all the necessary data
interface, virtualization, and dashboard designs. Since the DT must mimic the actual dynamics of the
hydropower turbine accurately, adaptive learning is required to train these dynamic models online so
that the models in the DT can effectively follow the representation of the actual hydropower turbine
dynamics accurately and reliably. This study presents an adaptive learning method for obtaining the
hydropower turbine models for DT development of hydropower systems using the recursive least
squares algorithm. To simplify the formulation, the hydropower turbine under consideration was
assumed to operate near a fixed operating point, where the system dynamics can be well represented
by a set of linear differential equations with constant parameters. In this context, the well-known
six-coefficient model for the Francis turbine was formulated as the starting point to obtain input and
output models for the turbine. Then, an adaptive learning mechanism was developed to learn model
parameters using real-time data from a hydropower turbine testing system. This led to semi-physical
modeling, in which first principles and data-driven modeling are integrated to produce dynamic
models for DT development. Applications to a pilot system at the Norwegian University of Science
and Technology (NTNU) were made, and the models learned adaptively using the data collected
from the university’s pilot system. Desired modeling and validation results were obtained.

Keywords: hydropower systems; Francis turbine; synchronous generator; dynamic modeling;
adaptive learning; simulations

MSC: 68Q32

1. Introduction

With an average machine age of more than 64 years, the US hydropower fleet requires
smart modernization to reduce costs and enhance the overall reliability and value of the na-
tion’s longest-serving renewable energy technology. Hydropower operations are becoming
more complex and demanding as hydropower increasingly provides grid reliability and
resiliency while variable renewable energy production, such as solar and wind installations,
continues to expand. As the electric power grid prioritizes reliability, resiliency, and value
amidst an evolving mix of variable renewable and baseload assets, hydropower technology
will require the integration and full benefit of the best available and future advancements
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in sensors, data and control systems, analytics, simulation, optimization, and computing
capabilities to remain competitive. We refer to this need as the hydropower digitalization
challenge; the development of a digital twin (DT) would be an effective solution to address
such a challenge.

A DT is a combination of a real system and its coupled computational model [1–3].
DTs are a hallmark of advanced digitalization within an industry. Data and feedback within
a DT provide capacities for autonomy, memory, and embedded intelligence that learn and
respond to an evolving environment. This digital embodiment of physical system behavior
enables improvements in performance, resource mobilization, asset management, invest-
ment planning, and scenario analysis. DT adoption has grown rapidly since its inception in
2003 to address needs for design, production, prognostics, and health management [4,5].
DTs are used to design new products in a responsive, efficient, and informed manner,
and to synchronize design and production. DTs are also used to monitor, control, and
optimize production processes reliably and flexibly—DT-enabled production optimization
has reduced material waste and prolonged machine lifetime [3–10]. However, DT market
penetration is limited [6–9]; fewer than 15% of industries use DTs, and the rest have nascent
or no plans to implement DTs in the next 5 years. DT development in the electric power
sector, including hydropower, is nascent [10] but has been embraced by and benefited
manufacturing. For example, the Turlough Hill hydroelectric plant in Ireland uses a DT to
implement predictive maintenance, thereby improving reliability and reducing costs for an
aging facility, but DT applications for hydropower systems are few [11].

In this context, Figure 1 shows the basic components of a DT for hydropower systems—an
open platform framework, as described in [12]. It can be seen that the framework will
collect data from real hydropower systems and continuously update its dynamic models for
various components of hydropower systems. Thus, the DT can comprehensively represent
the actual plant operation in digital form for use in operational optimization, condition
monitoring, and workforce training. The framework also has a powerful user interface,
including visualization and augmented reality, to allow user-friendly functionalities for the
hydropower industry, hydropower system equipment manufacturers, and academia.
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Based on the described framework and requirements, in the development of a DT
for hydropower systems, dynamic modeling of the system (such as the penstock, turbine,
generator, and linkages to the power grid units) is important, in addition to all the necessary
data interface, virtualization, and dashboard designs. Since the DT must mimic the actual
dynamics of the hydropower system accurately, adaptive learning is required to train the
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dynamic models online so that the models in the DT can effectively and responsively follow
the representation of the actual hydropower system dynamics accurately and reliably. This
effectiveness requires the integration of physical modeling with data-driven approaches to
enable the models in the DT to learn and update their parameters in real time when new
sets of data are collected from the reference hydropower systems, as shown in Figure 1. In
this context, adaptive learning methods such as the recursive least squares method [12,13]
should be used together with the structure of the physical models [14,15] to learn the
dynamics of the system. Indeed, parameter estimation and system identification have been
used for hydropower systems for some time [16–19]. For example, a system identification
method for estimating the relationship between the water level and generating power
was developed in [16]. System identification has also been used to estimate the transfer
functions of hydropower dynamics for frequency containment reserves [17]. For nonlinear
feature estimation, in [18], a neural network-based method has been developed for the
predictive control of hydropower plant operational efficiency. In this context, an adaptive
fuzzy particle swarm optimization approach has been used to estimate parameters of the
hydro-turbine regulation system [19].

In this work, we present an adaptive learning method to obtain the online models
for hydropower turbines in the DT development of hydropower systems, as shown in
Figure 1. We emphasize the establishment of adaptive modeling of water flow and turbine
speed control systems. To simplify the formulation, we assumed that the system under
consideration operates near a fixed operating point, where the system dynamics can be well
represented by a set of linear differential equations with constant parameters [20]. In this
context, the well-known six-coefficient model [21] for the Francis turbine was formulated
as a starting point in the state space form. Once these state space physical models were
established, a set of input and output models [13] were obtained, and an adaptive learning
mechanism was developed to update input and output model parameters in real time
using the data from the hydropower system [16]. This leads to semi-physical modeling,
in which first principles and data-driven modeling are effectively integrated to produce
dynamic turbine models. In comparison with the existing methods, the linearized six-
coefficient models formulated in this paper define the correct model structure and number
of parameters to be estimated using an online scheme, while data-driven modeling and
learning are performed using the simple yet well-known recursive least squares algorithm.
Such a combination provides a fast adaptive learning solution for online modeling and
learning that is effective for the learning phase of the digital twin when it is connected to
the actual hydropower plant. Applications to a pilot testing system in the Water Power
Laboratory at the Norwegian University of Science and Technology (NTNU) were made,
and the models were learned adaptively using the data collected from the test system with
desired modeling and validation results.

The rest of the paper is organized as follows: Section 2 describes the formulation
of the six-coefficient model for the Francis turbine in the state space form together with
standard discretization. Section 3 describes the establishment of transfer function-based
input and output models so that the hydropower turbine could be modeled by a set of
transfer functions. Section 4 presents an adaptive learning algorithm using the recursive
least squares learning principle in which the model parameters can be learned and updated
using real-time data. Section 5 describes applications to the testing hydropower system
at NTNU, showing the effectiveness of the proposed adaptive learning strategy. Section 6
presents conclusions and future work. The nomenclature is defined in Table 1.
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Table 1. Nomenclature.

Symbol Description

a grid interface parameter
b turbine interface parameter
eg damping ratio contributed by the power grid

espeed tracking error of the incremental speed control for the incremental shaft speed
eqx, equ, eqh linearized coefficients for the water flow rate (q) calculated at a fixed operating point O

ex, eu, eh linearized coefficients for the turbine torque (m) calculated at a fixed operating point O
h normalized incremental water head
H water head (time-variant)
H0 average water head
J equivalent inertia

KI integral gain in the speed controller
KI,v integral gain in the voltage controller
Kp proportional gain in the speed controller
l length of the water pipeline
L equivalent load when connected to the grid
m normalized turbine torque

mg0 load torque
M turbine torque (time-variant)
M0 average turbine torque
O a selected and fixed operating point for the hydropower generation unit connected to the grid
q normalized incremental water flow rate
Q water flow rate (time-variant)
Q0 average water flow rate
Tw water inertia time constant
u guide vane opening (time-variant)
u0 average guide vane opening
up set point of active power, which reflects the power demand from the grid
us output of the governor (speed controller)
x normalized incremental turbine shaft speed
τ time interval, 0.2 s
ω turbine shaft speed (time-variant)
ω0 average turbine shaft speed
∆u normalized incremental guide vane opening angle
u guide vane opening angle

2. Turbine System Model

The water system for realizing electricity generation should consider the features of
the reservoir, penstock, turbine chamber, and discharge (tail water stream), all of which
together comprise a complex nonlinear hydropower dynamic system that requires data-
driven modeling and initial manufacturing data from turbine manufacturers. By using
hydropower turbine-generator experimental data, we can construct a systematic model for
simulating the hydropower generator system for DT development.

As shown in Figure 2, the operational system for hydropower turbine units consists of
the penstock dynamics, turbine, speed sensor, speed controller, and a hydraulic servo that
amplifies the control output to drive the guide vane opening for the control of the water
flow to the turbine, where the transfer function 1

Js reveals the relationship between the net
torque and the shaft speed with s being the Laplace variable.
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2.1. Turbine Speed (Frequency) Control System

The control structure of the turbine speed is shown in Figure 2; the closed-loop system
consists of the dynamics of the turbine, hydraulic servo, and controller. For the hydropower
turbine to be controlled, the input is the guide vane opening that controls the amount of
water entering the turbine, and the output is the shaft speed (frequency) and the water
head. The objective of such a closed-loop control is to maintain the required shaft speed
(frequency) subjected to load changes, as denoted by L, when the hydropower generation
is connected to the power grid and, at the same time, minimize the water head variations.

2.2. Torque and Water Flow Module

Figure 2 also shows the torque and water flow rate modules when the generation
unit operates. In the hydropower turbine dynamics for the mechanical torque and water
flow rate, the inputs are the guide vane opening, the shaft speed, and the water head,
respectively. The outputs are the turbine torque (M) and water flow rate (Q).

The following nonlinear functions are generally used:

Q = g(ω, u, H), (1)

M = f (ω, u, H), (2)

where ω is the time-varying variable denoting the turbine speed (rad/s), which is related to
the frequency through ω = 2π f0 with f0 being the turbine-generator frequency controlled
around 50 Hz for the NTNU testing system when the hydropower generation unit is
connected to the grid. In Equation (1), H is the water head, and u is the guide vane opening.
{g, f } are two unknown nonlinear functions that need to be learned using the operational
real-time data from the actual plant.

Throughout this paper it is assumed that the turbine operates at a selected fixed
operating point, O = {ω0, H0, Q0, u0}, for the hydropower generation unit connected to
the grid. Based on the fixed operating point O, the relative (normalized) incremental values
of turbine shaft speed, water head, water flow rate, guide vane opening, and torque are
defined as follows.

x =
ω−ω0

ω0
; h =

H − H0

H0
; q =

Q−Q0

Q0
; ∆u =

u− u0

u0
, m =

M−M0

M0
, (3)

where x is the normalized incremental value for the shaft speed, h is the normalized
incremental water head, q is the normalized incremental water flow rate, ∆u is the normal-
ized incremental guide vane opening, and m is the normalized incremental mechanical
torque, with M0 being the turbine operating torque that maintains the operating point
O = {ω0, H0, Q0, u0}. Since x, h, q, m, and ∆u are all normalized incremental variables,
they do not have physical units. In this context, the initial boundary conditions for the
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variables in Equation (2) are all set to zero, as in the modeling it is assumed that the system
has the operating point O = {ω0, H0, Q0, u0} as initial boundary conditions.

Using definitions in Equation (3), the nonlinear dynamics of the mechanical torque
and water flow rate can be linearized to provide the following six-coefficient linearized
dynamic model for the normalized incremental torque (m) and the normalized incremental
water flow rate (q) of the turbine [21].

m = exx + eu∆u + ehh, (4)

q = eqxx + equ∆u + eqhh, (5)

where ex, eu, and eh are the linearized coefficients for the torque generation calculated at a
fixed operating point O. eqx, equ, and eqh are the linearized coefficients for the water flow
rate calculated at a fixed operating point O. These six coefficients [21] are obtained from

ex =
∂ f
∂x

(O), eu =
∂ f
∂u

(O), eh =
∂ f
∂h

(O), (6)

eqx =
∂g
∂x

(O), equ =
∂g
∂u

(O), eqh =
∂g
∂h

(O), (7)

These constants can be estimated based on experimental data. Using these definitions,
the shaft rotation can be expressed by the following dynamics (i.e., the swing equation):

J
dx
dt

= m−mL, (8)

where mL is a load torque in normalized incremental sense and J = ω0 J0, with J0 being the
inertia.

2.3. State Space Model for Non-Elasticity Water System Dynamics

When the water in the penstock is incompressible, the system is regarded as nonelas-
tic [22,23]. In this case, the relationship between the water head and the water flow rate is

h = −Tw
dq
dt

, (9)

In Equation (5), the input is the normalized incremental water flow rate (q), and the
output is the normalized incremental water head (h), as defined in Equation (3), and Tw is
the water inertia time constant, which is defined as

Tw =
lQ0

9.8H0
, (10)

where l is the length of penstock pipeline, and Q0 and H0 are from the operating point
O = {ω0, H0, Q0, u0}. For the NTNU testing system used in this study, Tw = 0.0415 m2·s.
By integrating the linearized Equations (3)–(9) into a state space format, the following state
space model can be readily obtained.

X =

[
x
h

]
, (11)

.
X = AX + B1∆u + B2∆

.
u + L0mL, (12)

where A, B1, B2, and L0 are formulated using the six-coefficient linearized models in
Equations (3)–(5) to give:

A =

[ ex
J

eh
J

− eqxex
eqh J −

(
eheqx
eqh J + 1

eqhTw

)], (13)
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B1 =

[ eu
J

− eqxeu
eqh J

]
, B2 =

[
0
− equ

eqh

]
, L0 =

[
− 1

J
eqx
eqh J

]
, (14)

In the system, the input is the normalized incremental value of the guide vane opening
and its rate of change, and the outputs are the shaft speed and the water head. Figure 3
shows such a state space model structure.
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The open-loop stability of the hydropower turbine can be ensured if all the eigenvalues
of A are inside the left-hand side of the complex plane. The turbine torque is used to balance
the grid load, which can be generally expressed as

mL = egx + mg0, (15)

where eg is the damping ratio contributed by the power grid, and mg0 is the load, which is
assumed here to be less than 10% of total load variations since large load changes would
trigger the nonlinearities of the mechanical torque and water flow rate and make the
linearized model unsuitable.

2.4. State Space Model for Elastic Water Flows

Again, for linearized modeling, nonelastic water flow was considered for large water
head and long penstock. In this case, the following better approximated water system
dynamics are used [23]:

h =
−Tws

1 + αT2
e s2 q, (16)

This transfer function shows the second order dynamics between the water heads and
the water flow rate. In Equation (10),

Te =
L
a

, (17)

where Te is the wave travel time, “s” is the Laplace variable, and a = 1480 m/s is the velocity
of the sound travelling in the water.

Thus, the following time-domain differential equation can be formulated, which links
the water flow rate to the water head in the normalized incremental sense as defined in
Equation (3) for the hydropower turbine.

αT2
e

d2h
dt2 + h = −Tw

dq
dt

, (18)

In this case, the state vector for the penstock dynamics is denoted as

z(t) =
[

h
dh
dt

]
, (19)
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Then, the following penstock state space model can be obtained:

.
z =

[
0 1
− 1

αT2
e

0

]
z +

[
0
− 1

αTe

](
Tw

Te

)
dq
dt

= Ahz + Bh v, (20)

where v =
(

Tw
Te

)
dq
dt is regarded as a kind of calculable input to the penstock system for

elastic water flows. Further formulation of Equation (18) using the six-coefficient model
and Equation (8) leads to:

αT2
e

d2h
dt2 + h = −Tw

(
eqx

.
x + equ∆

.
u + eqh

.
h
)

, (21)

.
x =

ex

J
x +

eu

J
∆u +

eh
J

h− 1
J

mL, (22)

Combining these two equations gives

αT2
e

d2h
dt2 + Tweqh

dh
dt

+

(
1 +

Tweqxeh

J

)
= −

Tweqxex

J
x−

Tweqxeu

J
∆u− Twequ∆

.
u−

Tweqx

J
mL, (23)

At this stage, the extended state vector is denoted as

ξT =
[

x h dh
dt

]
, (24)

Then, the following state space model of the whole turbine dynamics for the elastic water flow
can be obtained:

.
ξ =


ex
J

eh
J 0

0 0 1
− Tweqxex

αT2
e J − J+Tweqxeh

αT2
e J − Tweqh

αT2
e

ξ +


eu
J
0

− Tweqxeu

αT2
e J

∆u +

 0
0

− Twequ

αT2
e

∆
.
u +

 −
1
J

0
− Tweqx

αT2
e J

mL, (25)

In this case, the state space form can be represented as

.
ξ = Aξ + B1∆u + B2∆

.
u + L0mL, (26)

where system matrices in Equation (8) become

A =


ex
J

eh
J 0

0 0 1
− Tweqxex

αT2
e J − J+Tweqxeh

αT2
e J − Tweqh

αT2
e

, (27)

B1 =


eu
J
0

− Tweqxeu

αT2
e J

, B2 =

 0
0

− Twequ

αT2
e

, L0 =

 −
1
J

0
− Tweqx

αT2
e J

, (28)

This format indicates that the system has third-order dynamics—again subjected to the inputs
of the normalized incremental values of the guide vane opening and its rate of change, as shown in
Figure 3.

These open-loop state space models can be further transferred into direct input and output
models that help construct the adaptive learning algorithms that use available collected real-time data
to learn the component models of the hydropower turbine and estimate relevant model parameters.

2.5. PID Controller for Shaft Speed
The open-loop system structure shown in Figure 3 can be integrated with the controller (speed

governor) to form a typical closed-loop control system for the shaft speed, as shown in Figure 2. In
this context, the controller should be designed so that the shaft speed is well controlled within its
targeted set point ranges with minimal variation in the water head, and it should be subjected to the
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operational constraint on the rate of changes for the guide vane opening as well. In this context, the
widely used PID controller has the following form [23]:

espeed = 0− x, (29)

us = Kpespeed + KI

∫ t

0
espeeddτ + KD

despeed

dt
, (30)

where espeed is the tracking error of the normalized incremental shaft speed, us is the output of the
controller (i.e., the output of the speed governor of the hydropower turbine as shown in Figure 2),
Kp is the proportional gain, KI is the integral gain, KD is the derivative gain, and t is the time. The
selection of these control gains was determined from the test rig at NTNU during the test runs.
In the real-time control set-up, the above PID controller is discretized in line with the following
discretization procedure in the next subsection, where the PID control is represented as a second-order
linear time-constant differential equation.

2.6. Discretization
The control design objective is to obtain the speed control signal, the governor’s output ∆u, so

that x optimally tracks zero with a required bounded rate of changes. Considering that the system
in either Equation (12) or Equation (26) is linear time-invariant, this study uses the discretization
equations as follows:

.
X = AX + B1∆u + B2∆

.
u + L0mL, (31)

X(k + 1) = GX(k) + HB1∆u(k) + HB2∆
.
u(k) + HLmL(k), (32)

G = exp(Aτ), (33)

HB1 =
∫ τ

0
exp(Aϕ)B1dϕ, (34)

HB2 =
∫ τ

0
exp(Aϕ)B2dϕ, (35)

HL =
∫ τ

0
exp(Aϕ)L0dϕ, (36)

where τ is the sampling time interval for the discretization. By applying this discretization to the state
space models, the discretized model can be obtained. For the NTNU test rig, τ = 0.2 s, indicating
that there are five sampled points per second.

2.7. Hydraulic Servo for the Guide Vane Opening
The output of the speed controller will normally be amplified by a hydraulic servo system that

has enough power to operate the movement of the guide vane. The guide vane opening is denoted
as u.

In general, the hydraulic servo in the waterpower laboratory at NTNU can be modeled in a
discretized format as second-order dynamics at sampling interval τ = 0.2 s.

u(k)
us(k)

=
0.5

1− z−1 + 0.5z−2 , (37)

where u(k) is the output of the hydraulic servo, which is also the guide vane opening, and us(k) is
the output of the speed controller as shown in Figure 2.

3. Discretized Input and Output Models
To facilitate the estimation of the system parameters, the following transfer function models

will be formulated using the state space model in Equations (12) and (26).
The objective was to obtain the relationship between the input (guide vane opening) and the

outputs (the shaft speed and the water head). For this purpose, these input and output models were
formulated in the Laplace transformation domain. Moreover, nonelastic and elastic water flows were
both considered.
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3.1. Input and Output Model for Nonelastic Water Flow
When the system is under nonelastic water flow with a constant load ( mL = 0), in the Laplace

transform format, the following equations reveal the relationship between the shaft speed and the
water head with respect to the guide vane opening.

Jsx = exx + ehh + eu∆u, (38)

h = −Tws
(

eqxx + eqhh + equ∆u
)

, (39)

where “s” in Equations (38) and (39) denotes the Laplace variable.
Also, to simplify the representation, when variables such as {x, h, ∆u} are used together with

the Laplace variable “s”, they are inherently in their Laplace transformed senses.
By solving the water head from Equation (39), the following can be obtained:

h = −
Tweqxs

1 + Tweqhs
x−

Twequs
1 + Tweqhs

∆u, (40)

By substituting Equation (40) into Equation (38) and rearranging all the terms, the following
can be obtained:

Jsx =

[
ex −

Tweheqxs

1 + Tweqhs

]
x +

[
eu −

Twehequs

1 + Tweqhs

]
∆u, (41)

Thus, the relationship between ∆u(s) and x(s) for nonelastic water flow is given as

D2(s)x(s) = N2(s)∆u(s), (42)

where it has been denoted that

D2(s) = Tweqh Js2 +
[

J − Tw

(
eqhex − eheqx

)]
s− ex, (43)

N2(s) = eu +
(

eueqh − equeh

)
Tws, (44)

Accordingly, the transfer function between u(s) and h(s) is(
1 + Tweqhs

)
D(s)h(s) = −

[
TweqxsN(s) + TwequsD(s)

]
∆u(s), (45)

To summarize, we have

x(s) =
N2(s)
D2(s)

∆u(s), (46)

h(s) =
−
[
TweqxsN(s) + TwequsD(s)

](
1 + Tweqhs

)
D(s)

∆u(s), (47)

Equations (46) and (47) reveal how the guide vane opening affects the shaft speed and water
head during system operation under nonelastic water flow. In the next subsection, similar models for
elastic water flow are formulated.

3.2. Input and Output Model for Elastic Water Flow
In cases where the water is compressible, simple second-order dynamics, as shown in Equation (16),

can be used. Using this elastic water model for penstock, a similar formulation to Equations (38)–(47)
can also be performed to obtain the input and output models for the guide vane opening, shaft
speed, and water head. For example, Equation (38) stays the same, and the water head and flow rate
dynamics become:

h = − Tws
1 + aT2

e s2

(
eqxx + eqhh + equ∆u

)
, (48)

Re-arranging Equation (48) leads to the following model:(
1 + Tweqhs + aT2

2 s2
)

h = −Tweqxsx− Twequs∆u, (49)

which reveals the relationship of the water head with respect to the speed and the guide vane opening
as the control input.
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Substituting Equation (49) into Equation (38) and eliminating h leads to the following direct
relationship between the shaft speed and the guide vane opening:

x(s)
u(s)

=
N3(s)
D3(s)

, (50)

where it can be formulated that

D3(s) = aJT2
e s3 +

(
JTweqh − exaT2

e

)
s2 +

(
J − exTweqh + ehTweqx

)
s− ex, (51)

N3(s) = euaT2
e s2 + euTweqhs +

(
eu − Twequeh

)
, (52)

which are third-order and second-order polynomials, respectively. As in general ex < 0, the denomi-
nator in Equation (51) satisfies the necessary condition for the stability for the speed system.

Equation (50) shows that the dynamics between the shaft speed and guide vane opening follow
a third-order differential equation when the water flow is elastic.

4. Least Squares Adaptive Learning Scheme Using Real-Time Data for Elastic Water
Flows Case

Using the models developed in Section 3, relevant learning strategies can be obtained for
estimating the input and output model parameters using the sampled data from the actual system. In
this context, only the system with elastic water flow was examined since the nonelastic water flow
has simpler equations for describing the dynamics among the guide vane opening, shaft speed, and
water head.

Equation (50) shows that the system has third-order elastic water flow between the guide vane
opening and the shaft speed. In this context, the discretization using Equation (32) would lead
to the following discretized input and output model between the shaft speed and the guide vane
opening [13].

x(k + 1) = a1x(k) + a2x(k− 1) + a3x(k− 2) + b1∆u(k− 1) + b2∆u(k− 2) + c0d(k), (53)

where x(k) = x(kτ) and u(k) = u(kτ) are the sampled shaft speed and guide vane opening of the
turbine in their normalized incremental senses, respectively. k = 1, 2, . . . is the sampling index, τ is the
sampling period as denoted before, and d(k) is related to the discretized and normalized incremental
value of the load torque, with c0 being a coefficient. a1, a2, a3, b1, b2, and c0 are the coefficients to
calibrate.

Assuming that the data are collected from the test runs in which the load is constant, then in
most cases, d(k) = 0 and the estimation of c0 is not necessary. Furthermore, {a1, a2, a3, b1, b2, c0}
are coefficients as a result of discretization, and they are complicated functions of the six coefficients
defined in Equations (6) and (7) and other parameters in the state space model represented in
Equations (24) and (25).

Assuming that the real-time data can be collected and denoted as the data sequence of {∆u(k), x(k)},
then the objective of parameter learning for the input and output model is to use these collected input
and output data to estimate the model parameters in Equation (53). Of course, once these parameters
are well estimated, the original six coefficients inside the state space model can be formulated using
the inverse mapping between model parameters in Equation (53) and the six coefficients in the state
space model. For this purpose, we denote:

θ = [a1, a2, a3, b1, b2]
T , (54)

ϕ(k) = [x(k), x(k− 1), x(k− 2), ∆u(k− 1), ∆u(k− 2)]T , (55)

Then, when the test runs for the data collection are under a fixed load condition, Equation (53)
can be simply expressed by

x(k + 1) = θT ϕ(k), (56)

Assuming that the current sample time is (k + 1)T and the data are available from k = 1 up to
k + 1, the least squares algorithm can simply be used to recursively estimate the parameters as shown
in the following form:

θ̂(k + 1) = θ̂(k) +
P(k)ϕ(k)ε(k)

1 + ϕT(k)P(k)ϕ(k)
, (57)
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ε(k) = x(k + 1)− θ̂T(k)ϕ(k), (58)

P−1(k + 1) = P−1(k) + ϕ(k)ϕT(k), (59)

where θ̂(k + 1) is the estimate of θ at sample time (k + 1)T, and P(k) is a variance matrix calculated
from Equation (59). The initial values of θ̂(k) and P(k) are prespecified depending on prior knowledge
of the parameter values. The structure of adaptive learning is shown in Figure 4, which is in line with
the generic learning scheme in [24,25].
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Equations (57)–(59) constitute a learning strategy to estimate model parameters and ultimately
the six coefficients. Once the parameters are estimated, they would constitute adaptive modeling for
the hydropower turbine.

In the same way, the model for water head can also be learned adaptively. Equation (18) shows
that the discretized model of the water head is of the following form:

h(k + 1) = ahh(k) + bhh(k− 1)− chTw
dq
dt

(k− 1), (60)

Therefore, Equation (60) can be further expressed in the following vector form—
Equation (61)—which is similar to that in Equation (56):

h(k + 1) = [ah, bh, ch]

 h(k)
h(k− 1)

−Tw
dq
dt (k− 1)

 = θT
h ϕh(k), (61)

Thus, the similar recursive least squares algorithm to that in Equations (57)–(59) can be modified
to estimate θh = [ah, bh, ch]

T , where the adaptive learning structure is again similar to that in Figure 4.

5. Experimental and Data Processing
This section describes the hydropower experimental data collection at NTNU and the process

for estimating the model parameters in Section 4. For this purpose, a hydropower system control
experiment was conducted, and the data were collected by collaborators at NTNU. The system
structure is shown in Figure 5, where the water head ranged from 12 to 30 m and the flow rate ranged
from 0.1 to 0.4 m3/s during testing and data collection.

The main variables measured and collected were the shaft speed, flow rate, pressure difference
(i.e., water head) between inlet and outlet pressures, guide vane opening, mechanical torque, and load
torque. The goal of processing the experimental data was to obtain the normalized values for these
variables and ensure that they were uniformly sampled for the discretization models. The variables
are summarized in Table 2. Six measurements of these variables were collected in the experiment
in the waterpower laboratory at NTNU. Since the sampling interval for these variables was from
different sensors, the sample frequency and total sample size from the sensors varied significantly.
For example, the samples collected for the differential pressure were around 506 per 0.1 s, whereas
the samples collected for the turbine speed were 4–7 per one second. Therefore, to consistently use
the data, preprocessing was needed to clean up unnecessary information from the experimental data
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and unify the data sampling frequency to 5 Hz; this means that there are five sampled points per
second with τ = 0.2 s, which was then used for discretized models in Equations (53) and (60).
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Table 2. Experimental data summary.

Variable Unit Average Sampling Frequency

Water head (H) Pa 5060/s
Water flow rate (Q) m3/s 5060/s
Turbine torque (M) N·m 5060/s

Load torque (L) N·m 5060/s
Guide vane opening angle (u) ◦ 10/s

Six groups of tests were conducted with changes in experiment conditions at the test rig at
NTNU in June and July 2022. First, four open-loop tests (Tests 1–4) were conducted in which the
guide vane opening (u) was directly changed while keeping other initial conditions fixed; the system
load L was fixed at 378 N·m, and the power generated was 14.9 kW. In this experiment, the maximum
guide vane opening angle was 14◦.

In Test 1, the guide vane opening went from 6.63◦ to 7.63◦; in Test 2, it went from 7.60◦ to
6.60◦; in Test 3, it went from 6.60◦ to 5.60◦; in Test 4, it went from 5.60◦ to 6.60◦. These changes
reflect the open-loop tests in which the input was the guide vane opening and the outputs were the
other variables in Table 2. In addition to the open-loop tests, two closed-loop tests (Tests 5 and 6)
were conducted. Test 5 was carried out by changing the shaft speed set point from 342 to 360 rpm
with speed control PI gains at Kp = 7.5 and TI = 0.5. Test 6 was carried out by changing the shaft
speed set point from 360 to 342 rpm at Kp = 7.5 and TI = 0.15. The recursive least squares method
in Equations (57)–(59) was used to learn the system parameters grouped in θ = [a1, a2, a3, b1, b2]

T

given by Equation (54), and the estimated outputs of the shaft speed, water head, and water flow
rate were calculated using the estimated model parameters and compared with the actual system
response data. The sampling frequency of turbine shaft speed (rpm) was used as a reference for
unifying the data collection frequency. Therefore, the sample data were collected approximately
every 0.2 s. For the measurements with sampling frequencies different from the sampling frequency
of the turbine shaft speed (rpm), the value of the sample at the same time as the turbine shaft speed
(rpm) sample was obtained through interpolation.

Also, all the responses of shaft speed, guide vane opening, water flow, and water head were in
the normalized incremental sense as defined in Equation (3) except the shaft speed in the following
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figures, which are the true values. The operating point O = {ω0, H0, Q0, u0} in the test runs was
selected as follows:

{ω0, H0, Q0, u0} =
{

342.48 rpm, 9.93 m, 0.14 m3s−1, 6.60◦
}

.

In the test runs, the magnitudes of perturbations of the guide vane opening for the open-loop
tests and the set point of the shaft speed were less than ±1◦ and ±18 rpm, respectively. These values
are of sufficiently small magnitudes to ensure that the assumption of linearization is satisfied. With
such small magnitudes of input changes, the formulation of the models in Sections 2–4 is valid in
representing the linearized dynamics of the system.

5.1. Learning of Input and Output Models for Elastic Case
During learning, the first two open-loop testing data sets were combined in the data preprocess-

ing stage. Figure 6 shows the responses of the six variables in a normalized incremental sense, where
the light-green curve is the guide-vane opening, the read curve stands for the torque, the light-blue
line displays the shaft speed, the split red line around zero is the water flow, and the blue curve
describes the water pressure.
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torque, and guide vane opening collected for Tests 1 and 2.

In applying the adaptive learning algorithm in Equations (57)–(59), the initial θ̂(0) = 0 and the
variance matrix P(0) = I5×5 were selected, with I5×5 being the 5 × 5 identity matrix.

Figure 7 shows the two responses of the shaft speed in the top diagram; the blue line represents
the original actual speed response x(k), and the red line represents the estimated shaft speed x̂(k) in the
progress of the adaptive learning using the recursive least squares algorithm in Equations (57)–(59).
This has clearly demonstrated the desired adaptive learning effect, as these two variables are very
close to each other. In this case, the estimated shaft speed was calculated from the following model.

x̂(k + 1) = θ̂T(k)ϕ̂(k), (62)

ϕ̂(k) = [x̂(k), x̂(k− 1), x̂(k− 2), ∆u(k− 1), ∆u(k− 2)]T , (63)

Equation (37) shows the learned model, and the modeling error for the shaft speed is thus
defined as

espeed(k) = x(k)− x̂(k), (64)

This modeling error is different from the residual signal ε(k) in the adaptive learning algorithm
Equations (57)–(59) because ϕ̂(k) is different in the two equations. The model uses the same guide
vane opening as presented in Figure 4. In Figure 7, the bottom diagram provides the actual system
input—the guide vane opening in its normalized incremental values.
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Figure 8 shows the modeling error reflected by the calculation in Equation (64) when the
adaptive learning phase in Equations (57)–(59) is progressing. As shown in Figure 8, the modeling
error was less than 1% in general. The maximum absolute modeling error was 0.84%. On the other
hand, for the water head, the learned model is given by

ĥ(k + 1) = θ̂T
h (k)

 ĥ(k)
ĥ(k− 1)

−Tw
dq
dt (k− 1)

, (65)

Accordingly, Figures 9 and 10 show the responses of the actual and estimated water flow rate
and water head, with the blue-colored curve as the real data and the red-colored curve as the model
outputs. The figures confirm that the desired learning effect was obtained.
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At the end of the run for Tests 1 and 2, the estimated θ̂ has the following value:

θ̂T = [0.5061 0.3950− 0.0512 0.0319 0.0434]

Therefore, since d(k) = 0 for Tests 1 and 2, the discretized model for the shaft speed and the
guide vane open is given by

x̂(k + 1) = 0.5061x̂(k) + 0.395x̂(k− 1)− 0.0512x(k− 2) + 0.0319∆u(k− 1) + 0.0434∆u(k− 2), (66)

Similarly, after the test runs and adaptive learning application, the estimated parameters for the
water head model are given by θ̂T

h = [0.2855 0.3225 0.0843], which indicates that the model for the
water head is

h(k + 1) = 0.2855h(k) + 0.3225h(k− 1)− 0.0843Tw
dq
dt

(k− 1), (67)

Since the water starting constant is at a constant 0.0415 in the NTNU test rig, Equation (67) becomes

ĥ(k + 1) = 0.2855ĥ(k) + 0.3225ĥ(k− 1)− 0.0035
dq
dt

(k− 1), (68)

For Test 5, the actual system responses are shown in Figure 11, all in the normalized incremental
sense.

Again, using the adaptive learning algorithm in Equations (57) and (59), the estimated values of
the shaft speed, water flow rate, and pressure were obtained. The estimated variables were calculated
using Equation (66), which resulted in the responses in Figures 12–14.



Mathematics 2023, 11, 4012 17 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22 
 

 

At the end of the run for Tests 1 and 2, the estimated �̂� has the following value: 

�̂�𝑇 = [0.5061  0.3950 − 0.0512   0.0319   0.0434]  

Therefore, since 𝑑(𝑘) = 0 for Tests 1 and 2, the discretized model for the shaft speed 

and the guide vane open is given by 

�̂�(𝑘 + 1) = 0.5061�̂�(𝑘) + 0.395�̂�(𝑘 − 1) − 0.0512𝑥(𝑘 − 2) +  0.0319∆𝑢(𝑘 − 1) +

 0.0434∆𝑢(𝑘 − 2), 
(66) 

Similarly, after the test runs and adaptive learning application, the estimated param-

eters for the water head model are given by �̂�ℎ
𝑇  = [0.2855 0.3225 0.0843], which indicates 

that the model for the water head is 

ℎ(𝑘 + 1) =  0.2855ℎ(𝑘) +  0.3225ℎ(𝑘 − 1) − 0.0843𝑇𝑤
𝑑𝑞

𝑑𝑡
(𝑘 − 1), (67) 

Since the water starting constant is at a constant 0.0415 in the NTNU test rig, Equation 

(67) becomes 

ℎ̂(𝑘 + 1) =  0.2855ℎ̂(𝑘) +  0.3225ℎ̂(𝑘 − 1) − 0.0035
𝑑𝑞

𝑑𝑡
(𝑘 − 1), (68) 

For Test 5, the actual system responses are shown in Figure 11, all in the normalized 

incremental sense. 

 

Figure 11. Actual system responses of shaft speed, water flow rate, pressure, guide vane opening, 

and torque all in the normalized incremental sense as in Equation (3). 

Again, using the adaptive learning algorithm in Equations (57) and (59), the esti-

mated values of the shaft speed, water flow rate, and pressure were obtained. The esti-

mated variables were calculated using Equation (66), which resulted in the responses in 

Figures 12–14. 

Figure 11. Actual system responses of shaft speed, water flow rate, pressure, guide vane opening,
and torque all in the normalized incremental sense as in Equation (3).

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 12. Top: actual and estimated shaft speeds in rpm. Bottom: actual guide vane opening in its 

normalized incremental values in the closed loop shaft speed control mode. 

 

Figure 13. Actual and estimated water flow rate in the normalized incremental values. The blue line 

stands for real data and the red line for the model output. 

 

Figure 14. Actual (blue) and estimated (red) water heads in their normalized incremental values. 

Figure 12. Top: actual and estimated shaft speeds in rpm. Bottom: actual guide vane opening in its
normalized incremental values in the closed loop shaft speed control mode.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 12. Top: actual and estimated shaft speeds in rpm. Bottom: actual guide vane opening in its 

normalized incremental values in the closed loop shaft speed control mode. 

 

Figure 13. Actual and estimated water flow rate in the normalized incremental values. The blue line 

stands for real data and the red line for the model output. 

 

Figure 14. Actual (blue) and estimated (red) water heads in their normalized incremental values. 

Figure 13. Actual and estimated water flow rate in the normalized incremental values. The blue line
stands for real data and the red line for the model output.



Mathematics 2023, 11, 4012 18 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 12. Top: actual and estimated shaft speeds in rpm. Bottom: actual guide vane opening in its 

normalized incremental values in the closed loop shaft speed control mode. 

 

Figure 13. Actual and estimated water flow rate in the normalized incremental values. The blue line 

stands for real data and the red line for the model output. 

 

Figure 14. Actual (blue) and estimated (red) water heads in their normalized incremental values. Figure 14. Actual (blue) and estimated (red) water heads in their normalized incremental values.

Again, all the actual and estimated system responses were very close to each other, demonstrat-
ing the desired learning and estimation effects. These responses can be regarded as a side-by-side
simulation when the DT is linked in parallel to the actual hydropower turbine unit in a synchronous
manner. In this case, the DT must generate synchronized, close-to-actual system responses to ensure
that it can accurately learn the dynamics of the system.

5.2. Direct Estimate of the Six Coefficients
Since for the NTNU hydropower testing rig the mechanical torque and the water flow rate can

be directly measured together with the shaft speed, water head, and guide vane opening, we can
also use Equations (4) and (5) to obtain the least squares estimate of the six coefficients [21] at the
operating point defined by

{ω0, H0, Q0, u0} =
{

342.48 rpm, 9.93 m, 0.14 m3s−1, 6.60◦
}

In this context, the matrix form of the least squares method for calculating these six coefficients
through the batched data is shown as follows:

ex
eh
eu

 =



→
x
→
h
→
u

× [→x →
h

→
u
]
−1

×


→
x
→
h
→
u

×→m, (69)

eqx
eqh
equ

 =



→
x
→
h
→
u

× [→x →
h

→
u
]
−1

×


→
x
→
h
→
u

×→q , (70)

where
→
x is the column of the normalized incremental values of the turbine speed,

→
h is the column of

the normalized incremental values of the water head,
→
u is the column of the normalized incremental

values of the guide vane opening,
→
m is the column of the normalized incremental values of the turbine

mechanical torque, and, finally,
→
q is the column of the normalized values of the water flow rate.

Thus, for test runs 1 and 2, the six-coefficient {ex, eh, eu, eqx, eqh, equ} is estimated using
Equations (69) and (70) to be {−0.1438, 0.1513, 0.1178, −0.0222, 0.0646, 0.0026}.

6. Conclusions
In this study, an adaptive learning model was developed for hydropower turbines using the

recursive least squares approach as the learning strategy for the initial development of a DT for
hydropower systems. Under the assumption that the system operates near a fixed operating point
defined by the shaft speed, water flow rate, water head, and guide vane opening, a set of linearized
models was formulated in the state space and input and output forms using six-coefficient modeling
in hydropower turbine modeling. Recursive least squares learning was then established to estimate



Mathematics 2023, 11, 4012 19 of 20

the model parameters of the input and output models for the shaft speed and water head. The desired
modeling results were obtained through a set of experiments on a Francis turbine in the Waterpower
Laboratory test rig at NTNU. The model outputs closely tracked the actual system outputs effectively,
with very small tracking errors, demonstrating the potential of using the developed adaptive learning
for DT development in the near future. Moreover, since the NTNU test rig can directly measure the
mechanical torque and water flow rate, a direct estimation of the six coefficients was also made using
the least squares algorithm.

The work reported here focused on adaptive learning models for hydropower turbines alone
for digital twin development. Future efforts will be needed to include a synchronous generator in
the modeling so that adaptive learning modeling for the whole hydropower generating unit can be
obtained. In addition, considering the large variation in dynamics, nonlinear system modeling using
integrated physical modeling and data-driven approaches (such as neural networks [24,25]) is also
needed to capture the nonlinearities of the system.

It can be seen that once the digital twin is established, as shown in Figure 1, it can be used to
generate comprehensive operational scenarios for the operators to optimize the plant operation. It can
also simulate and generate faulty scenario data that can be used to validate various fault diagnosis
and prediction strategies, making it a key tool for predictive maintenance in the hydropower industry.
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