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Abstract

Background: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance
in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test.
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Methods: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated
blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed
for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subse-
quently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with
that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis
and by estimating models’ sensitivity. All tests were 2-sided.

Results: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] ¼
0.70 to 0.81) compared with 0.64 (95% CI ¼ 0.57 to 0.70) for the PLCOm2012 model (Pdifference ¼ .001). The EarlyCDT-Lung had a sensitiv-
ity of 14% (95% CI ¼ 8.2% to 19%) and a specificity of 86% (95% CI ¼ 81% to 92%) for incident lung cancer. At the same specificity of
86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI ¼ 41% to 57%) and 30% (95% CI ¼ 23% to 37%) for
the PLCOm2012 model.

Conclusion: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction
model and the commercialized EarlyCDT-Lung.

Lung cancer is the leading cause of cancer death globally (1). In
2011, the National Lung Screening Trial in the United States dem-
onstrated that screening high-risk individuals with low-dose
computed tomography (LDCT) can reduce lung cancer mortality
through early detection (2). This finding has since been replicated
in several randomized trials (3-6). Currently, the US Preventive
Services Task Force (USPSTF) guideline recommends annual
LDCT screening for individuals aged 50-80 years who have
smoked at least 20 pack-years and either currently smoke or
have quit within the last 15 years (7). However, these eligibility
criteria leave a large proportion of incident lung cancer cases
ineligible for LDCT screening (8).

Risk biomarkers may be useful as a pre-LDCT screening eligi-
bility test if they improve risk assessment. Proposed biomarkers
span multiple domains including proteins, microRNAs, autoanti-
bodies, and methylation of circulating tumor DNA (9-14). We
recently reported that the commercialized autoantibody-based
Early Cancer Detection Test (EarlyCDT)-Lung was not useful in
predicting incident lung cancer based on prediagnostic samples
from individuals with any history of regular smoking (15).
However, our previous pilot study suggested that a panel of circu-
lating proteins can improve lung cancer risk discrimination of a
smoking-based risk model (16).

One of the key benefits of a risk-informative, biomarker-based
prescreening test would be to identify individuals who are at high
lung cancer risk despite not meeting current eligibility criteria.
The current study aimed to evaluate if a preliminary proteomics-
based, risk-prediction model can improve the lung cancer risk-
discriminatory performance of the EarlyCDT-Lung autoantibody
test and the PLCOm2012 model in a study sample reflecting the
intended use population after age, sex, and smoking status is
taken into account. We used prediagnostic samples and
smoking-matched cancer free participants from 6 prospective
cohorts participating in the Lung Cancer Cohort Consortium
(LC3). This allowed us to study individuals from the entire spec-
trum of lung cancer risk experienced by the general population
with a history of smoking.

Methods
Study design and study sample
This study focused on risk biomarkers used among individuals
with a history of smoking in the general population, and we used
prediagnostic blood samples from 6 population cohorts partici-
pating in the LC3 consortium. A detailed description and justifi-
cation of the study design and the included cohorts were
provided by Robbins et al. (17).

To train a preliminary protein-based prediction model, we
used data from the discovery phase of the Integrative Analysis of
Lung Cancer Etiology and Risk (INTEGRAL) project (18), including
478 case-control pairs from the Cancer Prevention Study II (CPS-
II, USA, 115 case-control pairs), the Trøndelag Health Study
(HUNT, Norway, 163 case-control pairs), the Melbourne
Collaborative Cohort Study (MCCS, Australia, 108 case-control
pairs), and the Singapore Chinese Health Study (SCHS, Singapore,
92 case-control pairs). To evaluate the risk-discriminative per-
formance of the EarlyCDT-Lung and the preliminary protein-
based risk model, we analyzed 154 case-control pairs from the
European Investigation into Cancer and Nutrition (EPIC, Europe,
90 case-control pairs) and the Northern Sweden Health and
Disease Study (NSHDS, Sweden, 64 case-control pairs).

We first identified incident lung cancer with a history of regu-
lar smoking (International Classification of Diseases code: C34) in
each cohort who were diagnosed at most 3 years after donating
their blood samples. For each lung cancer participant, 1 cancer
free participant was randomly selected using incidence density
sampling from risk sets consisting of all cohort participants alive
and free of cancer (except nonmelanoma skin cancer) at the time
of diagnosis of the index case. Matching criteria included cohort,
study center, sex, date of blood collection, date of birth, smoking
status, quit years in 2 categories for former smokers (<10 and
�10 years since quitting), and intensity in 2 categories for current
smokers (<15 and �15 cigarettes smoked per day). A detailed
description was provided by Robbins et al. (17)

This study was approved by the Ethics Committee of the
International Agency for Research on Cancer. The ethics approval
title was “Biomarkers of lung cancer risk (LC3)” (No. 11-13).
Informed consent from all participants was obtained in each
cohort.

Proteomics assays
We used the Olink Proteomics discovery platform at the Olink
core facility in Uppsala (Sweden) to measure circulating proteins.
Relative concentrations of proteins were measured by quantita-
tive polymerase chain reaction. Measurements expressed as nor-
malized protein expression values on log-base-2 scale, which
were derived from the cycle threshold (Ct) values obtained from
the quantitative polymerase chain reaction. The INTEGRAL proj-
ect measured 1161 proteins in the EPIC and NSHDS cohorts and
between 392 and 484 proteins in the remaining 4 cohorts (17). For
the present study, we only considered 302 proteins that were
assayed on the 6 discovery cohorts, including the Cardiovascular
III, Inflammation, Immuno-oncology, and Oncology II panels. We
replaced protein values below the limit of detection with the limit
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of detection divided by the square root of 2 and rescaled each
protein to a mean of 0 and a standard deviation of 1 within each
cohort. We excluded proteins with missing values in greater than
10% of participants (Interleukin-2, IL2) and imputed missing val-
ues as mean values for the remaining proteins. Participants,
including their paired participants, with missing data for greater
than 10% of proteins were excluded (8 pairs: CPS, 1; HUNT, 1;
MCCS, 4; SCHS, 2).

EarlyCDT-Lung assays
EarlyCDT-Lung was assayed at Umeå University (Sweden) using
kits produced by Oncimmune (Nottingham, UK) according to the
manufacturer’s protocol. The detailed protocol could be found in
the previous article (15). In brief, 7 antigens (CAGE, GBU4-5, HuD,
MAGE A4, NY-ESO-1, p53, and SOX2) and a control protein (VOL)
were measured. The test results were classified as “no significant
level,” “moderate level,” and “high level” according to the highest
reading acquired among each of the 7 autoantibody markers.

Statistical analyses
Development of a preliminary protein-based risk prediction
model
We used the development dataset to identify a set of risk infor-
mative proteins and train a preliminary protein-based risk model
(CPS-II, HUNT, MCCS, and SCHS). We initially evaluated the asso-
ciation between each protein and lung cancer risk using logistic
regression models with adjustment for matching factors (cohort,
age, sex, year of blood collection, smoking status, smoking inten-
sity, quit years for former smokers). The effective number of test
method was used to account for multiple tests (19): we consid-
ered proteins associated with lung cancer risk if their P value was
less than .05 divided by the number of principal components
needed to explain 95% of the variance in proteins (ie, P< .05/nent).
We subsequently applied the least absolute shrinkage and selec-
tion operator (LASSO) logistic regression model based on all pro-
teins identified as being associated with lung cancer risk. First,
we used tenfold cross-validation to confirm a suitable shrinkage
parameter (k). Second, we randomly generated 500 different
datasets in which 75% of case-control pairs were included as the
training set. For each training set, we applied the LASSO logistic
regression models adjusted for matching factors, including age,
sex, year of blood collection, smoking status, smoking intensity,
and quit years for former smokers, as well as the PLCOm2012
model. We defined the final set of risk-informative proteins for
inclusion in the preliminary protein-based risk model as those
selected in at least 400 of the 500 training sets.

We subsequently developed a preliminary risk model in each
training set using logistic regression, the protein-based risk
model that included the selected proteins and matching factors.
The remaining 500 (25%) case-control pairs were used to generate
corresponding bootstrap-corrected risk discrimination estimates
by averaging the area under curve (AUC) across the 500 random
draws. The full development set was used to build the final
model and generate the apparent AUCs as internal model validity
metrics.

Discrimination analyses in an external validation sample
We applied the PLCOm2012 and the protein-based risk prediction
models on the validation sample (EPIC and NSHDS combined) to
estimate the AUC for each model, with adjustment for the
matching factors. Differences between receiver operating charac-
teristics curves were evaluated using paired comparison with the
bootstrap method (R pROC package). To compare the validity of

the EarlyCDT-Lung with the risk prediction models, we first cal-

culated the sensitivity and specificity of EarlyCDT-Lung using the

moderate threshold, which is recommended for clinical practice.

We subsequently identified the model cutoff for each respective

risk model that yielded the same specificity as the EarlyCDT-

Lung. Differences between sensitivity estimates were evaluated

using McNemar test. Stratified analyses were conducted by age,

sex, smoking status, lead time, tumor-node-metastasis stage, eli-

gibility by USPSTF screening criteria (7), and PLCOm2012 high-

risk threshold (1.00%) (20).

Software used for statistical analyses
Statistical analyses were performed with the statistical software

R version 4.0.4. The packages we used are listed in the

Supplementary Methods (available online). All tests were 2-sided,

and the cutoff to reject the null hypothesis was .05.

Results
Baseline characteristics
The final analysis included 624 lung cancer participants and 624

paired cancer-free participants with measurements of 301 pro-

teins; 470 pairs of lung cancer participants and cancer-free

participants were included from the development cohorts

(HUNT, SCHS, CPS-II, and MCCS), and 154 pairs of lung cancer

participants and cancer-free participants were included from the

validation cohorts (EPIC and NSHDS). Compared with partici-

pants in the development cohorts, participants in the validation

cohorts were younger and more frequently female and partici-

pants who currently smoke. According to the USPSTF lung cancer

screening criteria (7), 60% of lung cancer participants and 50% of

cancer-free participants in the development cohorts and 57% of

lung cancer participants and 48% of cancer-free participants in

the validation cohorts were eligible for screening. According to

the PLCOm2012 model, the median 6-year risk of developing lung

cancer was 2.4% for lung cancer participants and 1.5% for can-

cer-free participants in the development cohorts and 0.98% for

lung cancer participants and 0.69% for cancer-free participants in

the validation cohorts (Table 1).

Selection of protein markers and training of
protein-based risk models
We identified 22 proteins associated with lung cancer risk after

correction for multiple testing in the development set. Four pro-

tein markers, including carcinoembryonic antigen-related cell

adhesion molecule 5 (CEACAM5), macrophage metalloelastase

(MMP12), interleukin 6 (IL6), and CUB domain-containing protein

1 (CDCP1), were selected by multivariable LASSO logistic regres-

sion in at least 400 of 500 training sets (Figure 1) and were, thus,

included in the final protein-based risk models. Table 2 shows

the b-coefficients for each model. Because the cancer-free partici-

pants were individually matched to the lung cancer participants

by age, sex, and smoking status, all AUC estimates reflect the

residual the risk-discriminatory performance of each risk model

after accounting for the matching factors. The AUC for the

PLCOm2012 model alone was 0.61 (95% confidence interval [CI] ¼
0.57 to 0.65). The training-sample AUC for the protein-based risk

model was estimated at 0.72 (95% CI ¼ 0.69 to 0.75; bootstrap-

corrected AUC ¼ 0.71) (Table 2).
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Risk-discriminative performance in the validation
sample
When standardizing the risk score from the protein-based risk

model (mean ¼ 0 [1]), we found that the odds ratio (OR) for lung

cancer was 3.43 (95% CI ¼ 2.43 to 5.00) per 1 standard deviation

increase (Table 3).
The overall AUC for the PLCOm2012 model in the validation

sample was 0.64 (95% CI ¼ 0.57 to 0.70), reflecting the residual

risk-discriminatory performance after accounting for age, sex,

and smoking status. When applying the protein-based risk mod-

els in the validation sample, the AUC was estimated at 0.75 (95%

CI ¼ 0.70 to 0.81, protein-based model vs PLCOm2012 model;

Pdifference¼ .001) (Figure 2). The AUC estimates for the protein-

based model appeared higher in strata with lower risk of lung

cancer (Table 4). The risk-discriminatory performance for the

protein biomarker-based risk model was higher in lung cancer

participants who donated blood samples within 1.5 years of diag-

nosis (AUC ¼ 0.79) compared with samples diagnosed after

1.5 years (AUC ¼ 0.73).
In the overall validation sample, the EarlyCDT-Lung gave posi-

tive results for 21 lung cancer participants and 21 cancer-free

participants, yielding a sensitivity of 14% (95% CI ¼ 8.2% to 19%)

and a specificity of 86% (95% CI ¼ 81% to 92%) (Table 5), which

corresponds to a Youden index of 0. To allow direct comparisons

between the models, we estimated the sensitivity according to
the specificity defined by the EarlyCDT-Lung. The corresponding
sensitivity (ie, at a specificity of 86%) for the protein-based model
was 49% (95% CI ¼ 41% to 57%; Pdifference in sensitivity to EarlyCDT ¼
4� 10-10) and 30% (95% CI ¼ 23% to 37%; Pdifference in sensitivity to

protein-based model ¼ 5� 10-4) for the PLCOm2012 model. The sensi-
tivity for the protein-based model was higher than that for
EarlyCDT-Lung across all evaluated risk strata (Table 5).

Discussion
We developed and externally evaluated a protein-based predic-
tion tool derived from high-throughput proteomics data using
prediagnostic samples. Our study sample captured the entire
spectrum of lung cancer risk of individuals with a history of
smoking. Based on lung cancer participants and cancer-free par-
ticipants nested in 4 prospective cohorts, we developed a 4-
marker protein-based model with subsequent validation in 2
independent prospective cohorts. The protein-based model per-
formed well in the validation sample and outperformed the
EarlyCDT-Lung and PLCOm2012 model in relevant strata.

The protein-based risk model demonstrated good discrimina-
tion between the lung cancer participants and smoking-matched
cancer-free participants with an overall AUC of 0.75. Importantly,
because the cancer-free participants were individually matched

Table 1. Characteristics of the study participants

Development set Validation set

Characteristics
Lung cancer
participants

Cancer-free
participants

Lung cancer
participants

Cancer-free
participants

Total No. of participants 470 470 154 154
Female participants, No. (%) 145 (30.9) 145 (30.9) 62 (40.3) 62 (40.3)
Median age (Q1-Q3), y 69 (64-74) 69 (64-74) 60 (53-60) 59 (53-60)
Median BMI (Q1-Q3), kg/m2 25 (23-28) 26 (23-29) 25 (23-28) 26 (23-29)
Prediagnosis lead time, y

Mean (SD) 1.5 (0.9) — 1.7 (0.9) —
Median (Q1-Q3) 1.5 (0.75-2.2) — 1.9 (0.98-2.5) —

Smoking characteristics, No. (%)
Former smokers 246 (52.3) 242 (51.5) 54 (35.1) 56 (36.4)
Current smokers 224 (47.7) 228 (48.5) 100 (64.9) 98 (63.6)
No. cigarettes smoked per day, median (Q1-Q3) 20 (10-30) 15 (9.5-20) 15 (10-20) 13 (9.4-19)
Years smoked, median (Q1-Q3) 43 (34-50) 40 (27-48) 37 (31-43) 35 (26-42)
Quit years, median (Q1-Q3)a 15 (6.3-26) 18 (6.8-32) 11 (3.7-19) 10 (5.4-24)
Participating cohorts, No. (%)
CPS 114 (24.3) 114 (24.3) — —
HUNT 162 (34.5) 162 (34.5) — —
MCCS 104 (22.1) 104 (22.1) — —
SCHS 90 (19.1) 90 (19.1) — —
EPIC — — 90 (58.4) 90 (58.4)
NSHDS — — 64 (41.6) 64 (41.6)

TNM stage, No. (%)
I-II 49 (10.4) — 19 (12.3) —
III 73 (15.5) — 26 (16.9) —
IV 94 (20.0) — 30 (19.5) —
Unknown or missing 254 (54.1) — 79 (51.3) —

Histology, No. (%)
Adenocarcinoma 161 (34.3) — 50 (32.5) —
Small cell carcinoma 74 (15.7) — 24 (15.6) —
Squamous cell carcinoma 103 (21.9) — 26 (16.9) —
Other/NOS 132 (28.1) — 54 (35.1) —

Eligible for lung cancer screening, USPSTF, No. (%) 279 (59.4) 234 (49.8) 87 (56.5) 74 (48.1)
6-year risk by PLCOm2012 model, median (Q1-Q3), % 2.4 (1.1-4.6) 1.5 (0.51-4.0) 0.98 (0.46-1.9) 0.69 (0.25-1.3)
Eligible for lung cancer screening, PLCOm2012,

cutoff: 1.00%, No. (%)
359 (76.4) 287(61.1) 76 (49.4) 61 (39.6)

a Only former smokers. “—” signifies information is not available. BMI ¼ body mass index; CPS ¼ Cancer Prevention Study; EPIC ¼ European Investigation into
Cancer and Nutrition; HUNT ¼ Trøndelag Health Study; MCCS ¼Melbourne Collaborative Cohort Study; NSHDS ¼ Northern Sweden Health and Disease Study;
SCHS ¼ Singapore Chinese Health Study; TNM ¼ tumor-node-metastasis; NOS ¼ not otherwise specified; USPSTF ¼ US Preventive Services Task Force; Q ¼ quintile.
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to the lung cancer participants by smoking, age, and sex, the risk-
discriminative performance afforded by those important risk fac-
tors was accounted for by design, thus substantially attenuating
our AUC estimates for PLCOm2012 model and biomarker-based
models compared with that expected in a randomly selected
study sample (21). Conversely, this study design provided more
granularity for comparing AUC estimates between risk models.
We found that the AUC for the protein-based risk model was
higher in lung cancer participants who donated their blood closer
to diagnosis (lead-time <1.5 years: 0.79; lead-time �1.5 years:
0.73) (Table 4). These results were expected considering the rela-
tively short lead-time of up to 3 years and are in line with the
hypothesis that the protein-to-lung cancer-risk associations
reflect systemic response to a yet-to-be diagnosed lung cancer,
rather than being generic risk markers (18).

The protein-based risk model included 4 specific markers:
CEACAM5, MMP12, IL6, and CDCP1. CEACAM5 is an oncofetal

protein, member of the immunoglobulin family that is usually
overexpressed in several cancer types, including lung cancer.
CEACAM5 has been applied in several biomarker panels for lung
cancer prediction (22-24). MMP12 belongs to a family of zinc-
dependent proteases that are involved in the degradation of
extracellular matrix components and is secreted by inflamma-
tory macrophages (25), which has been reported to be involved in
the modulation of extracellular matrix during lung cancer meta-
stasis (26). IL6 and CDCP1 are related to the immune system and
inflammation (27). We have previously demonstrated that IL6, as
well as CDCP1, is associated with lung cancer risk several years
before cancer onset (27,28).

As recently reported by Wu et al. (15) and the German LDCT
Lung Cancer Screening Intervention study (29), the poor perform-
ance of the EarlyCDT-Lung was notable. The sensitivity for the
protein-based risk model was markedly higher (49%) than that of
the EarlyCDT-Lung (14%) at the same specificity (86%). We
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Figure 1. Proportion of proteins selected in 500 training datasets by LASSO logistic regression model. Proteins selected more than 400 times are marked
as black. LASSO ¼ least absolute shrinkage and selection operator; CEACAM5 ¼ carcinoembryonic antigen-related cell adhesion molecule 5; MMP12 ¼
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PAR ¼ urokinase plasminogen activator surface receptor.

Table 2. b-coefficients and multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for lung cancer risk factors in the
development set

PLCOm2012 modela Protein-based risk modela

b OR (95% CI) b OR (95% CI)

Predictors in models
Logit of PLCOm2012 model 0.15 1.16 (1.08 to 1.26) — —
CEACAM5, per SD — — 0.79 2.21 (1.81 to 2.74)
MMP12, per SD — — 0.34 1.40 (1.18 to 1.67)
IL6, per SD — — 0.24 1.27 (1.09 to 1.48)
CDCP1, per SD — — 0.2 1.23 (1.05 to 1.44)

Model performanceb

Apparent, AUC (95% CI) 0.61 (0.57 to 0.65) 0.72 (0.69 to 0.75)
Bootstrap-corrected, AUC (SD) 0.60 (0.03) 0.71 (0.03)

a Models were adjusted by matching factors: cohort, sex, year of blood collection, age, and smoking status (former smokers with <10 or �10 years since quitting
and current smokers with <15 or �15 cigarettes smoked per day). “—” signifies no values were given because factors are not included in the corresponding models.
AUC ¼ area under the curve; CEACAM5 ¼ carcinoembryonic antigen-related cell adhesion molecule 5; MMP12 ¼macrophage metalloelastase; IL6 ¼ interleukin 6;
CDCP1 ¼ CUB domain-containing protein 1.

b The AUC estimates reflect the residual risk-discriminatory performance of the risk models after accounting for age, sex, and smoking status (matching factors
in the case-control study).
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Table 3. Odds ratios (ORs) and 95% confidence intervals (CIs) for lung cancer in relation to protein-based risk model in the validation
set, scores of the model were scaled as mean¼ 0 (1)

Groups
No. of lung cancer

participants
No. of cancer-free

participants

Protein-based risk modela

Per 1-SD increase
OR (95% CI)

Overall 154 154 3.43 (2.43 to 5.00)
Age, y

Younger than 60 91 98 3.06 (2.02 to 4.88)
60 or older 63 56 3.47 (2.02 to 6.43)

Sex
Male 92 92 2.81 (1.84 to 4.51)
Female 62 62 5.07 (2.77 to 10.4)

Smoking status
Former 54 56 6.12 (3.07 to 14.0)
Current 100 98 2.78 (1.87 to 4.30)

Prediagnosed lead-time lung cancer participants and all cancer-free participants, y
<1.5 63 154 4.28 (2.70 to 7.30)
�1.5 91 154 3.28 (2.18 to 5.12)

TNM stage and all cancer-free participants
I-II 19 154 6.83 (2.84 to 19.7)
III-IV 56 154 4.91 (2.87 to 9.12)
Unknown or missing 79 154 2.95 (1.96 to 4.65)

USPSTF 2020
Yes 87 74 3.19 (1.99 to 5.41)
No 67 80 3.73 (2.21 to 6.90)

PLCOm2012, threshold: 1.00%
Yes, mean risk: 2.58% 76 61 2.65 (1.65 to 4.48)
No, mean risk: 0.41% 78 93 4.22 (2.53 to 7.61)

a Model was adjusted by matching factors: cohort, sex, year of blood collection, age, and smoking status (former smokers with <10 or �10 years since quitting,
and current smokers with <15 or �15 cigarettes smoked per day). TNM ¼ tumor-node-metastasis; USPSTF ¼ US Preventive Services Task Force.

1−Specificity
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EarlyCDT Lung

PLCOm2012 model−AUC = 0.64 (95% CI= 0.57−0.70)
Protein−based risk model−AUC = 0.75 (95% CI= 0.70−0.81)

Figure 2. Comparison of ROC curves for the PLCOm2012 model and protein-based risk model in the validation set. The ROCs and associated AUC
estimates reflect the residual risk-discriminatory performance of the risk models after accounting for age, sex, and smoking status (matching factors in
the case-control study). AUC ¼ area under the curve; EarlyCDT ¼ Early Cancer Detection Test; ROC ¼ receiver operating characteristics.
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observed some evidence that the protein-based risk model per-
formed better in study participants at lower risk of lung cancer,
whereas the EarlyCDT-Lung tended to perform better for study
participants at higher risk (Tables 4 and 5), an observation that

was also reported in the Danish study for the EarlyCDT-Lung (30).
The EarlyCDT-Lung was developed in a series of 10 peer-reviewed
studies (31-40), including prospective studies of patients on suspi-
cion of lung cancer or heavy smokers (34,37). The poor

Table 4. AUC of PLCOm2012 model and protein-based risk model in the validation seta

Groups
No. of lung cancer

participants
No. of cancer-free

participants
PLCOm2012 model Protein-based risk model

AUC (95% CI) AUC (95% CI)

Overall 154 154 0.64 (0.57 to 0.70) 0.75 (0.70 to 0.81)
Age, y

Younger than 60 91 98 0.62 (0.54 to 0.70) 0.76 (0.69 to 0.83)
60 and older 63 56 0.65 (0.55 to 0.75) 0.74 (0.65 to 0.83)

Sex
Males 92 92 0.65 (0.57 to 0.73) 0.71 (0.63 to 0.78)
Females 62 62 0.62 (0.52 to 0.72) 0.81 (0.74 to 0.89)

Smoking status
Former 54 56 0.72 (0.62 to 0.81) 0.81 (0.73 to 0.90)
Current 100 98 0.58 (0.50 to 0.66) 0.72 (0.65 to 0.79)

Prediagnosed lead-time lung cancer participants and all cancer-free participants, y
<1.5 63 154 0.62 (0.53 to 0.70) 0.79 (0.72 to 0.86)
�1.5 91 154 0.65 (0.58 to 0.72) 0.73 (0.66 to 0.80)

TNM stage and all cancer-free participants
I-II 19 154 0.56 (0.42 to 0.71) 0.76 (0.66 to 0.87)
III-IV 56 154 0.61 (0.52 to 0.69) 0.78 (0.71 to 0.86)
Unknown or missing 79 154 0.67 (0.60 to 0.74) 0.73 (0.66 to 0.80)

USPSTF 2020
Yes 87 74 0.58 (0.49 to 0.67) 0.72 (0.64 to 0.80)
No 67 80 0.66 (0.58 to 0.75) 0.78 (0.70 to 0.86)

PLCOm2012, threshold: 1.00%
Yes, mean risk: 2.58% 76 61 0.63 (0.54 to 0.73) 0.70 (0.61 to 0.79)
No, mean risk: 0.41% 78 93 0.63 (0.55 to 0.71) 0.79 (0.71 to 0.86)

a The AUC estimates reflect the residual risk-discriminatory performance of the risk models after accounting for age, sex, and smoking status (matching
factors). AUC ¼ area under the curve; TNM ¼ tumor-node-metastasis; USPSTF ¼ US Preventive Services Task Force.

Table 5. Comparison of diagnostic performance of EarlyCDT-Lung, PLCOm2012 model, and protein-based risk model in the validation
set

Groups
No. of lung

cancer participants
No. of cancer-free

participants

EarlyCDT-Lung PLCOm2012 model Protein-based risk model

Sensitivity (95% CI) Pb Sensitivitya (95% CI) Pc Sensitivitya (95% CI)

Overall 154 154 14% (8.2 to 19) 4� 10�10 30% (23 to 37) 5� 10�4 49% (41 to 57)
Age, y

Younger than 60 91 98 14% (7.1 to 21) 6� 10�6 26% (17 to 35) .002 49% (39 to 60)
60 and older 63 56 13% (4.5 to 21) 6� 10�6 35% (23 to 47) .06 51% (38 to 63)

Sex
Male 92 92 12% (5.3 to 19) 4� 10�6 32% (22 to 41) .05 46% (35 to 56)
Female 62 62 16% (7.0 to 25) 1� 10�5 19% (9.5 to 29) 4� 10�5 56% (44 to 69)

Smoking status
Former 54 56 19% (8.2 to 29) 4� 10�5 33% (21 to 46) .02 56% (42 to 69)
Current 100 98 11% (4.9 to 17) 6� 10�7 26% (17 to 35) .004 46% (36 to 56)

Prediagnosed lead-time lung cancer participants and all cancer-free participants, y
<1.5 63 154 14% (5.6 to 23) 3� 10�6 29% (17 to 40) .002 57% (45 to 69)
�1.5 91 154 13% (6.2 to 20) 2� 10�5 31% (21 to 40) .06 44% (34 to 54)

TNM stage and all cancer-free participants
I-II 19 154 21% (2.7 to 39) .096 26% (6.5 to 46) .21 47% (25 to 70)
III-IV 56 154 11% (2.6 to 19) 1� 10�5 25% (14 to 36) .02 52% (39 to 65)
Unknown or missing 79 154 14% (6.3 to 22) 2� 10�5 34% (24 to 45) .09 48% (37 to 59)

USPSTF 2020
Yes 87 74 14% (6.5 to 21) 2� 10�4 23% (14 to 32) .02 40% (30 to 51)
No 67 80 13% (5.3 to 22) 3� 10�7 37% (26 to 49) .008 58% (46 to 70)

PLCOm2012, threshold: 1.00%
Yes, mean risk: 2.58% 76 61 16% (7.6 to 24) .01 38% (27 to 49) .49 33% (22 to 43)
No, mean risk: 0.41% 78 93 12% (4.4 to 19) 3� 10�7 26% (16 to 35) 5� 10�4 54% (43 to 65)

a Sensitivities for the PLCOm2012 model and protein-based risk model were estimated by adjusting the cutoff of each respective risk model that yielded the
same specificity as the EarlyCDT-Lung, which was estimated at 86% in the overall smoking–matched control population and varied between 84% and 90%
depending on the strata. EarlyCDT-Lung ¼ Early Cancer Detection Test; TNM ¼ tumor-node-metastasis; USPSTF ¼ US Preventive Services Task Force

b P value for the sensitivity difference between protein-based risk model and EarlyCDT-Lung at the same specificity level.
c P value for the sensitivity difference between protein-based risk model and PLCOm2012 model at the same specificity level.

1056 | JNCI: Journal of the National Cancer Institute, 2023, Vol. 115, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/115/9/1050/7186270 by guest on 17 Septem

ber 2023



performance of the EarlyCDT-Lung may, at least partly, reflect
that it was developed and tested on high-risk individuals.

As highlighted previously, whereas our matched study design
does not provide risk-discrimination metrics reflecting the
expected model performance in a random study sample, the
study design provides a valid and efficient means to compare the
performance of different risk models. The final phase of the
INTEGRAL project will use a case-cohort study design among
people who ever smoked of more than 1500 lung cancer partici-
pants and 3000 cancer-free participants from the LC3 consortium
to provide the absolute risk models that can be implemented in
clinical practice to assess LDCT screening eligibility (17). We
therefore emphasize that the protein-based models presented
here are preliminary, and the final selection of proteins, model
parameters, and model-based risk-discriminative performance
may change in the forthcoming case-cohort analysis. The second
potential concern is that the protein panels used in the study
were selected from a discovery analysis in the EPIC and NSHDS
studies, which may slightly bias the model performance in these
cohorts. However, LASSO and round-robin sensitivity analysis
indicated that this potential bias was minimal (Supplementary
Figures 1 and 2; Supplementary Tables 2 and 3, available online).
Another limitation concerns the sample size for stratified analy-
sis. Whereas our overall study sample was relatively large consid-
ering the 3-year lead-time restriction, more than 50% of the
incident lung cancer cases lacked data on clinical tumor-node-
metastasis stage, thus limiting our ability to provide robust dis-
crimination estimates by stage, as well as for histological sub-
types (Supplementary Tables 4 and 5, available online). We also
lacked information on chronic obstructive pulmonary disease,
family history of cancer, and personal history of cancer; although
we imputed for the current data (Supplementary Methods,
Supplementary Table 1, available online), it may slightly decrease
the risk discriminatory performance of the PLCOm2012 model.
The key strength of our study is the direct comparison of 2 differ-
ent marker panels in the same population with use of prediag-
nostic samples drawn up to 3 years prior to lung cancer
diagnosis, along with the use of independent development and
validation samples. Considering the 3-year lag-time restriction,
our sample size was relatively large, and study samples originat-
ing from Europe, North America, Asia, and Australia ensured
external validity of our findings.

More generally, we would argue that any biomarker intended
for use in informing screening eligibility should be developed
with the aim to identify the large number of lung cancer cases
who are currently not eligible for LDCT screening. Including pre-
diagnostic samples from low-risk people is crucially important
throughout the development and validation of such a biomarker.
To this end, the preliminary protein-based prediction model
assessed in our study had promising performance characteristics
that warrant further evaluation in a larger study sample.
Ultimately, this should include an evaluation of whether the ben-
efits in risk-discriminative performance outweighs the cost and
inconvenience inherent to using a blood-based risk-assessment
tool compared with a standard risk model such the PLCOm2012.

We developed a preliminary protein-based model and exter-
nally validated its performance in discriminating future lung
cancer participants and smoking matched cancer-free partici-
pants. Based on prediagnostic blood samples drawn up to 3 years
prior to lung cancer diagnosis from population cohorts, we found
that the protein-based risk model showed promising risk-
discriminative performance, both in comparison with the
EarlyCDT-Lung and the PLCOm2012 risk model.
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