
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Ann Iren Fossøy

Implementation and Performance
Analysis of
Interior-Point Methods for Solving
Mathematical Programs with
Complementarity
Constraints

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Caroline Satye Nakama
June 2023

Ann Iren Fossøy

Implementation and Performance
Analysis of
Interior-Point Methods for Solving
Mathematical Programs with
Complementarity
Constraints

Master’s thesis in Chemical Engineering and Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Caroline Satye Nakama
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Abstract

The aim of this thesis is to implement and evaluate interior-point methods for mathematical pro-
grams with complementarity constraints, MPCC. MPCC has become a powerful framework for
modelling systems with complementarity relationships. These relationships are present in many
practical problems, such that effective solving strategies are crucial. However, complementarity
constraints present specific difficulties due to their inherent nonconvex nature and violation of es-
sential constraint qualifications. In order to tackle these challenges, two potential solution strategies
have been proposed in the literature, the Classic and Dynamic approaches. These approaches are
based on a penalty reformulation and were, in this thesis, implemented as extensions of existing
interior-point-based algorithms for nonlinear optimisation. However, the Dynamic approach dif-
fers from the Classic by allowing greater flexibility in adjusting the penalty parameter. In order
to evaluate their performance, an in-house developed solver was used as the foundation for their
implementations. After conducting a small-scale problem investigation, it was observed that both
algorithms performed well overall, but the Dynamic algorithm outperformed the Classic when un-
bounded penalty problems were confronted. To further investigate the methods, IPOPT was used
as the basis as a more advanced solver was required for this purpose. However, it was challeng-
ing to incorporate the additional features as this solver prohibits access to specific steps. Despite
this, the integration of the Classic implementation was deemed sufficient and applied to a multi-
component flash tank where phase changes were modelled through complementarity constraints.
The steady-state simulations were successfully conducted, while the dynamic simulation presented
a significant challenge and needed multiple adjustments. Despite this, a successful simulation which
agreed with the physical expectations was eventually obtained. Further research should, however,
focus on improving the integration with the existing solvers to obtain a better implementation of the
algorithms. Additional model modifications may also be necessary, as poorly posed and non-unique
model formulations may be the blame for the problems encountered. Despite the difficulties faced,
the Classic and Dynamic methods appeared promising, but further investigations are necessary
before a definitive conclusion can be drawn.

i

ii

Samandrag

Denne avhandlinga tar for seg implementering og evaluering av løysningsmetodar for matematiske
program med komplementaritetsavgrensingar, også kjent som MPCC. Desse løysningsmetodane
baserer seg på ein bestemt optimaliseringsmetode nærmare kjent som indrepunktmetoden. MPCC
er eit kraftig rammeverk for å modellere system der komplementaritetsrelasjonar er til stades. Desse
relasjonane er funne i kombinasjon med mange reelle problem, slik at effektive løysningsstrategiar
er avgjerande. MPCC er svært utfordrande å løyse ettersom dei er ikkje-konvekse optimaliser-
ingsproblem, som bryt med fundamentale konsept innanfor optimalisering. For å handtere desse
problema, har det blitt foreslått to ulike løysningsstrategiar i litteraturen, nærmare kjent som den
klassiske og dynamiske metoden. Implementeringa av desse metodane har i denne avhandlinga
basert seg på eksisterande optimaliseringsløysara som brukar indrepunktmetoden. Den dynamiske
framgangsmåten skil seg frå den klassiske ved at den tilet hyppigare justeringar av straffeparam-
eteren. Denne parameteren er i kostnadsfunksjonen og bestemmer vektinga av tilfredsstillinga til
komplementaritetsavgrensingane. For å samanlikne metodane blei ein internt utvikla løysar brukt
som grunnlag for implementeringa, og metodane blei anvendt på mindre komplekse problem. Re-
sultat frå denne undersøkinga demonstrerte at begge metodane presterte generelt bra, men at den
dynamiske metoden overgjekk den klassiske metoden i spesifikke tilfelle. IPOPT blei vidare brukt
som grunnlag for implementeringane, ettersom ein velutvikla løyser var nødvendig for å undersøke
metodane ytterlegare. Det var i midlertidig utfordrande å inkorporera algoritmane med denne
løysaren, ettersom løysaren og grensesnittet forbaud brukaren tilgang til visse trinn i løysaren. Til
tross for dette blei implementeringa av den klassiske algoritmen tilstrekkeleg og vidare brukt for å
simulera ein multikomponent flashtank med faseendringar. Den stasjonære simuleringa blei vellykka
gjennomført, medan den dynamiske simuleringa bydde på fleire utfordringar. Fleire justeringar var
nødvendig for å oppnå ei simulering som var i tråd med dei fysiske forventingane. Vidare forsking
bør i midlertidig fokusera på å forbetra integrasjonen med dei eksisterande løysarane, slik at ei betre
implementering av algoritmane kan bli oppnådd. Det er også forbetringspotensial i flashtankmod-
ellen, da problema som oppstod kan skyldast ei dårleg, ikkje-unik modellformulering. Til tross
for problema som oppstod undervegs, viser den klassiske og den dynamiske algoritmen eit lovande
potensial. Ytterlegare eksperimentering er uansett nødvendig for å trekke ein endeleg konklusjon
om metodane.

iii

iv

Preface

This master’s thesis was completed during the spring semester of 2023 as the final part of my five
years master’s degree program in Chemical Engineering at the Norwegian University of Science
and Technology, NTNU. My thesis was written at the Department of Chemical Engineering, in the
Process Systems Engineering group.

I would like to thank my supervisor Johannes Jäschke for his excellent guidance, expertise, and
support throughout the project. Furthermore, I would like to express my gratitude to Caroline
Satye Nakama for introducing me to the fascinating subject of MPCC, her enthusiasm, and our
interesting discussions. I would also like to thank Evren Mert Turan for all his excellent coding
assistance.

Lastly, I would like to thank all my friends here in Trondheim, as well as my family, for their
major support throughout my studies. I could never have completed this study without them!

Declaration of Compliance:

I hereby declare that this is an independent work according to the exam regulations of the Norwe-
gian University of Science and Technology, NTNU.

Trondheim, June 2023
Ann Iren Fossøy

v

vi

Contents

1 Introduction 1
1.1 Scope of Work . 2
1.2 Outline . 2

2 Background and Theory 3
2.1 Constrained Optimisation . 3

2.1.1 Continuous Optimisation . 4
2.1.2 Local and Global Solutions . 4
2.1.3 Convex Optimisation . 4

2.2 Constraint Qualifications . 5
2.3 Optimality Conditions . 6
2.4 Penalty Approaches . 7
2.5 Interior-Point Method . 7

2.5.1 The Barrier and Continuation Interpretations 8
2.5.2 The Interior-Point Algorithm . 9
2.5.3 Filter . 10

2.6 Mathematical Program with Complementarity Constraints 11
2.7 The Penalty Reformulation of the MPCC . 12
2.8 Interior-Penalty Method for MPCC . 13

2.8.1 The Classic Approach . 15
2.8.2 The Dynamic Approach . 17

2.9 Orthogonal Collocation . 19

3 Implementation and Small-Scale Problem Investigation 23
3.1 Int Point Solver . 23
3.2 Interior Point OPTimizer . 24

3.2.1 The JuMP Interface . 25
3.3 A small-scale Problem Investigation . 25

3.3.1 Similarity in Performance . 28

vii

3.3.2 Unbounded Penalty Problem . 29

4 Flash Tank Model 31
4.1 Flash Calculations . 31
4.2 Enthalpy Calculations . 31
4.3 Phase Equilibrium . 33

4.3.1 Vapour-liquid Equilibrium Calculations . 34
4.4 Phase Changes . 35
4.5 Assumptions and Model Parameters . 36
4.6 Material Balances . 37
4.7 Energy Balances . 38
4.8 Phase Distribution . 39
4.9 Valve Equations . 39

5 Case Study of Flash Tank 41
5.1 Stationary Flash Tank . 41
5.2 Dynamic flash tanks . 45

5.2.1 Simulation Problems . 52

6 Final Remarks 57
6.1 Recommendations for Further Work . 58

Appendices 61

A Units Used in Julia 63

B Complementarity Reformulations 65

C Flash Tank Model Equations 67
C.1 Stationary Flash Tank . 67
C.2 Dynamic Flash Tank . 69

D Flash Tank Simulation Failure 71

E The Maxwell Relations 75

F The Approaches Implemented in Julia 77
F.1 The Classic Implementation . 77
F.2 The Dynamic Implementation . 86

G The Flash Thank implementation 93
G.1 The Flash Tank Functions . 93
G.2 The Stationary Flash Tank Simulation . 102

viii

G.3 The Dynamic Flash Tank Simulation . 105

ix

x

List of Tables

2.1 The chosen values for parameters in the Classic and Dynamic algorithms. 17
2.2 The collocation point as the shifted Gauss-Legendre and Radau roots. 21

3.1 The results from the small-scale problem investigation for the Classic and Dynamic
approach. 27

4.1 The thermodynamic data of water and methanol. 37

A.1 The units of the parameters used in the simulations in Julia. 63
A.2 The units of the variables used in the simulations in Julia. 64

xi

xii

List of Figures

2.1 Lagrange polynomial representation of solution across a finite element of length h . . 20

3.1 The penalty and complementarity value at each inner iteration for the scale5 problem. 28
3.2 The penalty and complementarity value at each inner iteration for the Ralph2 problem. 29

4.1 A phase diagram for a flash distillation at constant pressure 35
4.2 An illustration of the flash tank. 36

5.1 The temperature, pressure and volume in the flash tank at steady-state in relation
to heat removal. 42

5.2 The liquid and vapour mole fractions at steady-state with respect to heat removal. . 43
5.3 The relaxation parameter, the slack variables and the molar flow values in the flash

tank at steady state with respect to heat removal. 44
5.4 The temperature, volume and heat removal change with time. 46
5.5 The liquid and vapour mole fractions in the flash tank with respect to time. 47
5.6 The liquid and vapour holdups and the component molar holdups with respect to time. 48
5.7 The values of the molar flow rates, the pressure, the relaxation parameter, �, and

both sL and sV with respect to time. 49
5.8 The values of the complementarity variables for the max operator and the absolute

expression in the valve equations with respect to time. 50
5.9 The results of a failed simulation. The molar flow rates, the volume, the temperature

and the molar holdup . 53
5.10 The result from a failed simulation showing oscillations. The slack variables, the

pressure and � . 54

D.1 The result of a failed simulation. The values of the temperature, volume, component
holdup, the molar flows, and the mole fractions. 72

D.2 The result of a failed simulation. The values of sL, sV , �, pressure and molar holdup. 73

xiii

D.3 The result of a failed simulation. The values of the complementarity variables for the
max operator and the absolute expression in the valve equations. 74

xiv

Nomenclature

Acronyms

API Application Programming Interface

CPU Central Processing Unit

IPOPT Interior Point Optimiser

KKT Karush-Kuhn-Tucker

LICQ Linear Independence Constraint Qualifications

MFCQ Mangasarian-Formovitz Constraint Qualifications

MPCC Mathematical Programs with Complementarity Constraints

MPEC Mathematical Programs with Equilibrium Constraints

NLP Nonlinear Programming

xv

xvi

Chapter 1
Introduction

In recent decades, there has been an increased interest in a particular type of constrained optimisa-
tion problem, mathematical programs with complementarity constraints, shortened as MPCC. This
modelling framework expands the traditional mathematical programming paradigm by including
complementarity constraints [1]. A mutually dependent relationship between two variables is es-
tablished in these constraints, forcing at least one variable to be at its bound [2]. The main reason
for this growing interest in MPCCs is their ability to model a wide range of real-world scenarios.
This modelling framework can represent certain discrete decisions and non-smooth phenomena by
integrating them seamlessly with continuous optimisation variables. As a result, MPCCs apply to
a wide range of disciplines, including engineering, economics, and ecology, as well as many others
[3]. Specifically, in chemical engineering, MPCCs play a significant role and can be used to capture
phenomena such as flow reversal, phase disappearance and safety valve operations. Problems with
disjunctions have conventionally been solved with binary variables through mixed integer program-
ming or disjunctive programming techniques. These methods are non-smooth approaches, renowned
for being computationally demanding and time-consuming. MPCC, on the other hand, offers a more
precise and effective approach which enhances system performance [2].

Unfortunately, solving MPCCs has proven to be challenging due to their highly nonconvex na-
ture, as well as the linear dependency of the constraints. These programs might resemble standard
nonlinear optimisation programs, but the presence of the complementarity conditions introduces
both theoretical and numerical difficulties [2]. There have been proposed various approaches to
address MPCCs in the literature, including penalisation, relaxation, smoothing, and lifting [4]. An
attractive way of solving MPCC is to reformulate it to an equivalent nonlinear program, NLP such
that state-of-the-art nonlinear optimisation tools for smooth optimisation can be applied [5]. How-
ever, this poses certain challenges, as MPCC tends to violate constraint qualifications, which are
fundamental concepts crucial for the NLP solvers to work properly [3]. As a result, further adjust-
ments are required to make these approaches adequate.

1

Chapter 1 – Introduction

In the chemical industry, MPCCs can be used in combination with flash tanks where phase changes
are present. The appearance and disappearance of equilibrium phases require adeptness in the model
equations of the process. The flash tank has in previous master thesis [6] been simulated using a
non-smooth approach with mid-functions [7]. However, Biegler posed a continuous method which
involved complementarity constraints. In this method, the vapour-liquid equilibrium condition is
relaxed by a parameter if the system happens to be in the single-phase regime. To ensure conti-
nuity in the model, the mole fractions are extended continuously into these regimes, even though
they might not be defined there if the corresponding phase is absent [8]. However, this specific
formulation of a flash tank system will not solve adequately without a sufficient method for solving
MPCC.

1.1 Scope of Work

In this thesis, the possibility of adjusting NLP solvers for solving MPCC is further investigated. Two
interior-point algorithms for solving MPCC have been proposed in the literature, the Dynamic and
the Classic approach [9]. These approaches involve reformulating the problem by using a penalty
technique, which was according to the specialisation project found to be promising [10]. The main
difference between the approaches is how frequently the penalty parameter can be updated. In
this thesis, the approaches will be integrated into two already existing interior-point solvers, where
the degree of accessibility and complexity vary. The interior-point solvers selected for this study
are the in-house developed solver, Int Point Solver [11] and IPOPT [12]. A small-scale study is
performed to distinguish between the methods, as well as a larger case study of a flash tank. The
main objective of this thesis is thus to look into different implementation aspects, evaluate the two
approaches in terms of performance and study their ability to simulate a flash tank where multiple
phases are present.

1.2 Outline

In this thesis, relevant background information about optimisation, interior-point methods and
MPCC, in general, is provided in Chapter 2. This chapter also presents the Classic and Dynamic
algorithms and explains the concept of orthogonal collocation, a numerical technique for solving
differential equations. Further, a discussion of important implementation aspects relevant to this
thesis can be found in Chapter 3, as well as the results of the small-scale problem investigation.
In Chapter 4, important concepts within thermodynamics are explained, such that the flash tank
model can be derived. Chapter 5 presents the result of the case study of the flash tank involving
both a stationary and a dynamic version. Lastly, Chapter 6 provides a deeper discussion and gives
the conclusion reached based on the result, as well as the recommendations for further research.

2

Chapter 2
Background and Theory

A brief introduction to constraint optimisation is presented in the first part of this chapter. This
is essential as the primary focus will be on a particular class within this domain, MPCC. The
introduction of complementarity in optimisation raises some challenges. To explain how these
challenges are overcome, key concepts within optimisation need to be clarified. Further in the
chapter, the penalty approach and the interior-point method are introduced. These techniques
are then combined and adapted to handle complementarity constraints, leading to the Classic and
Dynamic approaches. Lastly, a short introduction to a numerical method for solving differential
equations, orthogonal collocation, is given to cover the dynamic part of the flash tank model.

2.1 Constrained Optimisation

Constrained optimisation involves selecting the values of the variables which minimises the objective
function with respect to certain restrictions. This can be mathematically expressed as,

min
x

f(x)

s.t. ci(x) = 0, i 2 E ,

ci(x) � 0, i 2 I,

(2.1)

where f(x) is the objective function and ci(x), i 2 E and ci(x), i 2 I denote the equality and the
inequality constraints, respectively. All points satisfying these constraints belong to the feasible set,
defined as follows,

⌦ = {x |ci(x) = 0, i 2 E ; ci(x) � 0, i 2 I}. (2.2)

However, the constraints may mutually contradict each other, leading to an empty feasible set. In
this case, the problem in question is deemed infeasible and no solution exists [13]

3

Chapter 2 – Background and Theory

2.1.1 Continuous Optimisation

Optimisation can also be divided into discrete and continuous forms. In discrete optimisation, the
variables are drawn from a finite set, such that the variables are of integer or binary type. However,
this thesis deals with continuous optimisation. In continuous optimisation, the discrete variables
originate from an uncountable infinite set. These optimisation problems tend to be easier to solve
due to the smoothness of the functions facilitating the prediction of an effective search direction.
If the gradient of the objective function and constraint functions exist, they can provide valuable
information about the behaviour of the function in the neighbourhood of a specific point [13].

2.1.2 Local and Global Solutions

In optimisation, a distinction is also made between local and global solutions. A Local solution has
to satisfy the following equation,

f(x⇤) f(x) for x 2 N \ ⌦,

where N = kx � x
⇤k < " with " > 0 denotes the neighbourhood of the solution x

⇤. In other
words, the local solution is the point resulting in the lowest function value within a restricted
neighbourhood of feasible points. On the contrary, the global solution is the point giving the
lowest possible function value, taking all the feasible points into consideration. Global solutions
are generally more computationally demanding to find than local solutions, except for the case of
convex optimisation [8].

2.1.3 Convex Optimisation

Convexity is a property found beneficial in combination with continuous optimisation as it reduces
the complexity of the problem. A constrained optimisation problem, as given in equation(2.1),
is convex only when both the objective function and the associated feasible set are convex. The
objective function, f(x) x 2 Rn, is convex if and only if the following property,

f(↵x1 + (1� ↵)x2) ↵f(x1) + (1� ↵)f(x2), (2.3)

holds for all points x1, x2 2 Rn and any arbitrary number of ↵ 2 (0, 1). The special case of strict
convexity occurs if the inequality is found to be strict. Further, a feasible set, ⌦, will be convex if
and only if,

↵x1 + (1� ↵)x2 2 ⌦, (2.4)

hold for all points x1, x2 2 ⌦ and ↵ 2 (0, 1). Thus, any straight line connecting two points within
the set must also exist entirely within the set. This will be the case only if the equality constraint
functions are linear, and the inequality constraint functions are concave [8].

4

2.2. Constraint Qualifications

The convexity property is advantageous as it ensures that every minimum is a global minimum.
Additionally, in the case of strict convexity, there will be only one minimum, referred to as the
unique global solution. The convex property also facilitates the convergence of these solutions and
can make even large-scale problems remarkably efficient to solve. However, even though the con-
vexity property is found desirable, many practical problems are found to be non-convex [13]. In the
case of non-convexity, global solutions are regarded as challenging to discover within a reasonable
amount of time. This is due to the widely varying curvature, several saddle points and the potential
of multiple solutions and local optima. In addition, unlike convex problems, the initial guess plays
a decisive factor in which local points the algorithm detects [14].

2.2 Constraint Qualifications

Constraint qualifications are additional regularity conditions crucial in the detection of candidates
for solutions. An essential step in most optimisation algorithms is determining whether a feasible
descent step away from the current point is possible. Gradients of objective functions and constraint
functions are usually useful for this purpose. However, in the case of nonlinear programming, these
functions need to be linearized by Taylor series expansions. For this information to be sufficient, the
geometric feature of the feasible set needs to be constructively captured by the linearized approxi-
mation around the point in question. The constraint qualifications will ensure that this similarity is
adequate by introducing certain restrictions on the constraint functions. These restrictions eliminate
undesired irregularities at the boundary of the feasible set, such that the linearized approximation
resembles the constraint set sufficiently. As constraint qualifications play a pivotal role in the char-
acterization of optimum, they are found essential for optimisation algorithms to perform successfully
[13].

There are several different constraint qualifications, where the linear independence constraint qual-
ification, LICQ, tends to appear rapidly in the design of optimisation algorithms. This qualification
requires that the active constraint gradients are linearly independent of each other. Another, but
weaker, constraint qualification, is the Mangasarian-Formovitz constraint qualification, MFCQ. This
regularity condition is fulfilled if the gradients of the equality constraint are linearly independent,
and if there additionally exists a search direction d such that the following requirements,

rci(x⇤)Td > 0, for all i 2 A(x⇤) \ I,

rci(x⇤)Td = 0, for all i 2 E ,

are fulfilled. A(x⇤) is here referred to as the active set consisting of both the equality constraint and
the active inequality constraints. According to the requirements, the direction d should point into
the interior of a specific region formed by the linearized active inequality constraints. In addition,
d has to exist inside the null space of the gradient of the equality constraints for MFCQ to be fully
satisfied [2].

5

Chapter 2 – Background and Theory

2.3 Optimality Conditions

After a feasible step has been applied, the optimisation algorithm has to evaluate whether the algo-
rithm has succeeded in detecting a possible optimum. The optimality conditions play an essential
role in this matter, as they are mathematical expressions established to recognise and certify solu-
tions. The optimality conditions can be divided into two groups, necessary and sufficient conditions.
The necessary conditions are requirements needed to be fulfilled for each solution and are therefore
found advantageous in the detection of solution candidates. In spite of this, the necessary conditions
cannot be used to verify whether a candidate is indeed the optimal solution. For this purpose, suf-
ficient conditions are essential, as they can declare if a given solution is in fact the correct solution.
However, sufficient conditions are not characterised as necessary, and may therefore fail for certain
strict local minimisers [13].

In the case of constrained optimisation problems, the first-order necessary conditions are referred to
as the Karush-Kuhn-Tucker conditions, the KKT conditions. However, in order for these conditions
to be necessary for an optimum, the LICQ has to be satisfied with any local solutions, and the
objective function, as well as the constraint functions, need to be continuously differentiable. The
KKT conditions express that there exists a Lagrange multiplier vector, �⇤ for any local solution,
x
⇤, such that the following requirements are satisfied,

rxL(x⇤,�⇤) = 0, (2.5a)

ci(x
⇤) = 0, for all i 2 E , (2.5b)

ci(x
⇤) � 0, for all i 2 I, (2.5c)

�
⇤
i � 0, for all i 2 I, (2.5d)

�
⇤
i ci(x

⇤) = 0, for all i 2 I [E , (2.5e)

where L(x,�) is the Lagrangian function given as follows,

L(x,�) = f(x) +
X

i2E
�ici(x) +

X

i2I
�ici(x). (2.6)

However, as KKT conditions are unable to confirm the optimality of a point, the curvature of
the constraints needs to be examined to make further conclusions. The second-order necessary
conditions require positive curvature in the direction of the constraints at the solution, provided
that both KKT conditions and LICQ hold. Mathematically speaking, this means that

d
Tr2

xxL(x⇤,�⇤)d � 0, (2.7)

6

2.4. Penalty Approaches

must be verified for all solutions. In this context, d denotes the constraint direction, which has to
be non-zero and fulfil the following requirements,

rci(x⇤)Td = 0, for all i 2 E , (2.8a)

rci(x⇤)Td = 0, for all i 2 A(x⇤) \ I where �
⇤
i > 0, (2.8b)

rci(x⇤)Td � 0, for all i 2 A(x⇤) \ I where �
⇤
i = 0. (2.8c)

Finally, the second-order sufficient conditions declare that if a feasible point, x⇤, satisfies the KKT
conditions, i.e equation (2.5), and the second-order necessary conditions as well, i.e. the curvature
requirement given in equation (2.7), the x

⇤ is in fact the solution of the constrained optimisation
problem [13].

2.4 Penalty Approaches

Penalty approaches are methods of solving constrained optimisation problems by reconstructing
them into partly or fully unconstrained problems. The objective function is extended by terms
created from the constraints, allowing the constraints to be removed without being violated. There
exist several penalty functions. Among those, the exact penalty function is found practical, refor-
mulating a general constrained optimisation problem, as given in equation (2.1), in the following
way

min
x

f(x) + ⇡

X

i2E
|ci(x)|+ ⇡

X

i2I
[ci(x)]

�
, (2.9)

where [y]� := max(y, 0), and ⇡ is the penalty parameter. The penalty parameter is a positive
scalar that specifies the weighting of constraint satisfaction compared to the objective function
minimization. The exact penalty functions are desirable as a certain value of the penalty parameter
can return the exact solution of the original optimisation problem. However, the exact penalty
function has the drawback of being non-differentiable for certain points, due to the presence of the
absolute value [13].

2.5 Interior-Point Method

The interior-point methods consist of algorithms utilising a special technique for solving optimisation
problems. They are characterised by requiring strict satisfaction of the inequality constraints, such
that the boundary of the feasible set is being avoided. Therefore, the algorithm search for solutions
in the interior of the feasible region rather than exploring the boundary [15]. Within the interior-
point methods, primal-dual methods are regarded as the most successful and practical approaches,
proceeding by searching for primal and dual variables which fulfil the KKT conditions. These
methods have proven to be successful in combination with both linear and nonlinear problems [13].

7

Chapter 2 – Background and Theory

2.5.1 The Barrier and Continuation Interpretations

There exist two interpretations of interior-point methods, barriers and continuation, where both
are deemed useful in the derivation of the technique. The barrier approach requires constrained
optimisation problems, as in equation (2.1), to be rewritten in the following way

min
x

f(x)

s.t. ci(x) = 0, i 2 E ,

ci(x)� s = 0, i 2 I,

s � 0,

(2.10)

where the inequality constraints are transformed into equalities by the use of slack variables, s � 0.
By keeping this definition in mind, the equivalent barrier problem becomes as follows,

min
x

f(x)� µ

nX

i=1

ln(si)

s.t. ci(x) = 0, i 2 E ,

ci(x)� si = 0, i 2 I,

(2.11)

where µ > 0 is the barrier parameter. In this formulation, s � 0 is removed as a constraint, as
the logarithm prohibits s from becoming too close to zero. This is due to � ln(s) approaching
infinity as s approaches zero. The barrier approach involves solving a sequence of barrier problems
with decreasing barrier parameters, µ. Eventually, when µ approaches zero, the barrier problem
approaches the optimal solution, x⇤.

In the other approach, the continuation interpretation, the KKT conditions are applied to problem
(2.10), such that the following system is obtained,

rf(x)�rcE(x)��rcI(x)z = 0 (2.12a)

cE(x) = 0 (2.12b)

cI(x)� s = 0 (2.12c)

Sz � µe = 0, (2.12d)

where µ = 0 and s, z � 0. In this set of equations, � and z are the Lagrangian multipliers of
the equality and inequality constraints, respectively. Further, cE is the vector holding the equality
constraints, while cI contains the inequalities. In the continuous interpretation, the perturbed KKT
system, given in equation (2.12), is solved for a sequence of positive µ approaching zero. However,
s, z > 0 must be satisfied for each solution, in order to be accounted acceptable. Eventually, when
µ is adequately close to zero, a point that satisfies the KKT conditions is achieved [13].

8

2.5. Interior-Point Method

2.5.2 The Interior-Point Algorithm

A basic interior point method computes the step direction by applying Newton’s method to the
nonlinear system in equation (2.12), resulting in the following primal-dual system,

2

66666664

rL2
xx 0 �rcTE (x) �rcTI (x)

0 Z 0 S

rcE(x) 0 0 0

rcI(x) �I 0 0

3

77777775

2

66666664

px

ps

p�

pz

3

77777775

= �

2

66666664

rf(x)�rcTE (x)��rcTI (x)z

Sz � µe

cE(x)

cI(x)� s

3

77777775

. (2.13)

Once the step directions, p = (px, ps, py, pz), have been computed, each step needs to be appro-
priately sized. A line backtracking search strategy can be used to compute this length. In this
technique, the step size is initialised to a relatively large value before it is gradually reduced until
a sufficient decrease in the objective function is obtained [13]. When the step sizes are computed,
the new iterates can be calculated through,

x
+ = x+ ↵spx, s

+ = s+ ↵sps, (2.14a)

�
+ = y + ↵zp�, z

+ = z + ↵zpz, (2.14b)

where ↵s and ↵z are the step sizes. The algorithm makes progress towards a solution by computing
steps based on the derived primal-dual system given in equation (2.13). However, the algorithm
must receive an indication of when the optimal solution has been reached in order to terminate.
From the perturbed KKT-system in equation (2.12), the optimality error of the barrier problem can
be defined as,

Eµ(x, s,�, z) := max

(
||rf(x) +rcE(x)��rcI(x)z||1

sd
, ||c(x)||1,

||Sz � µe||1
sc

)
, (2.15)

where sd and sc are the scaling parameters, and c(x) consist of both cI(x) � s and cE(x). The
first term in the maximum operator is referred to as dual infeasibility, the second term is primal
infeasibility, and the last term is complementarity infeasibility. The overall optimal solution requires
that the optimality error (2.15) is significantly small for an adequately small µ. In other words,

Eµ(x
⇤
, s

⇤
,�

⇤
, z

⇤) ✏tol, (2.16)

needs to be satisfied, for µ ⇡ 0 and a specified overall tolerance ✏tol > 0. However, in order to
proceed from one barrier problem to the next barrier problem, only an approximated solution is
required. The tolerance for the optimality error is then loosened, such that the following condition
needs to be satisfied,

Eµ(x, s,�, z,) ✏µ, (2.17)

where ✏ is a constant such that ✏µ � ✏tol [12]. The overall algorithm can then be written as in
Algorithm 1.

9

Chapter 2 – Background and Theory

Algorithm 1 Interior-Point algorithm [13]

Initialization: Select x
0 and s

0
> 0, �0 and z

0
> 0. Choose an initial barrier parameter µ

0
> 0,

the overall tolerance ✏tol and the parameter ✏

Set k 0

Repeat until Eµk(xk,�k
, z

k) ✏tol

Repeat until Eµk(xk, sk,�k
, z

k)
✏
µ
k

Obtain p = (px, ps, p�, pz) by solving the system in equation (2.13)
Compute ↵

s
,↵

z with line search strategy.
Compute w

k+1 = (xk+1
, s

k+1
,�

k+1
, z

k+1) by using equation (2.14)
Set µ

k+1 µ
k and k k + 1

end
Decrease µ

k

end

In the presented method, the approximated solution of the previous barrier problem will be used
in the initialisation of the current problem. In this algorithm, there is an outer barrier loop and an
inner loop, where the barrier parameter is decreased for each outer iteration. There exist several
ways of decreasing the barrier parameter. However, to prevent the barrier parameter from decreasing
too drastically in comparison to the overall tolerance, the following rule can be used,

µ
k+1 = max

⇢
✏tol
10

,min
n
µµ

k
, (µk)✓µ

o�
, (2.18)

where 0 < µ < 1 and 1 < ✓µ < 2 are given constants [12].

2.5.3 Filter

In interior point methods, a filter or a merit function is essential for the algorithm to evaluate
whether a step computed from the primal-dual system should be accepted. A merit function bases
its recommendation on a combination of both improvements in objective function and constraint
violation. Filter methods, on the contrary, accept trial points if they improve either the objective
function, 'µk(x) or the constraint violation ✓(x). It is, however, the latter quantity that has the
highest priority. If the current constraint violation is above a certain minimum, ✓(xk) > ✓

min, a trial
step is accepted if either improvement in the objective function or constraint violation is obtained.
In the opposite case, when ✓(xk) ✓

min, a greater emphasis is placed on improving the objective
function.

More specifically, the filter is a set consisting of combinations of constraint violations and objective
function values that result in ineffective trial points. At each new outer iteration k, the filter is
initialised to,

Fk := {(✓,'µ) 2 R2 : ✓ � ✓
max}. (2.19)

10

2.6. Mathematical Program with Complementarity Constraints

The filter will during the inner iterations be augmented with newly discovered failed combinations.
The purpose of the filter is to prevent the algorithm from returning to the neighbourhood of already
rejected points, such that cycling can be avoided. If a trial point gives a combination of the objective
function value and constraint violation such that,

(✓(xk(↵)),'(xk(↵)) 2 Fk,

the trial point will be unacceptable to the current filter and therefore rejected by the algorithm [12].

2.6 Mathematical Program with Complementarity Con-

straints

Mathematical programs with complementarity constraints are a special type of optimisation pro-
grams characterized by containing complementarity constraints on the form, 0 x1 ? x2 � 0. This
complementarity relationship restricts at least one of the two variables to be on their bound. The
overall definition of an MPCC then becomes,

min
x

f(x)

s.t. ci(x) = 0, i 2 E ,

ci(x) � 0, i 2 I,

0 x1 ? x2 � 0,

(2.20)

where x1 and x2 are vectors, and x = (x1, x2). The complementarity relationship implies the
following,

x1i = 0 _ x2i = 0 8i

x1 � 0, x2 � 0,
(2.21)

where the logical "or" operator is defined as inclusive allowing both variables to be active at their
bound [9]. It is desirable to embed this relationship within an NLP formulation such that well-
developed tools can be applied to ensure fast convergence. However, MPCCs in their original form,
as given in equation (2.20), are singular optimization problems which make direct usage of NLP
solvers impossible. Thus, other analytical reformulations of the complementarity relationship have
been studied,

x
T
1 x2 = 0, x1, x2 � 0, (2.22a)

x1ix2i = 0 8i, x1i, x2i � 0, (2.22b)

x1ix2i 0 8i, x1i, x2i � 0. (2.22c)

However, even further adjustments of these formulations are necessary as they tend to fail in com-
bination with NLP solvers. The complementarity relationship introduces an inherent nonconvexity,

11

Chapter 2 – Background and Theory

which makes even local solutions hard to detect. Moreover, MPCCs also violate important constraint
qualifications such as LICQ and MPCQ, which are essential for well-posed nonlinear programs [2].

Due to the violation of the constraint qualifications other concepts of stationary need to be taken
into consideration in order to classify solutions of MPCC. The NLP methods can give convergence
to stationarity points which are not surly optimum. There exist different concepts of stationarity for
MPCCs, but Bouligand stationarity, known as B-stationarity, is the type of stationarity which char-
acterises optimality for MPCCs. By linearizing the objective function and the constraint functions,
the following system is obtained,

min
d

rf(x⇤)Td

s.t. ci(x
⇤) +rci(x⇤)Td � 0, i 2 I

ci(x
⇤) +rci(x⇤)Td = 0, i 2 E

0 x
⇤
1 + dx1 ? x

⇤
2 + dx2 � 0,

(2.23)

where x⇤ = (x⇤1, x
⇤
2). A point will be defined as B-stationary if it is feasible and if d = 0 is the solution

to the linearized program in equation 2.23. However, B-stationary is found to be impractical and
challenging to handle. Strong stationarity is a stronger and more tractable stationarity condition
implying B-stationarity if MPEC-LICQ, a special kind of constraint qualification, holds. It has
been proven that if a certain point is a solution to the MPCC, and the MPEC-LICQ holds, then
the point will be strongly stationary indeed. The assumption of strong stationarity then enables
the use of equivalent, well-posted NLP reformulation to find the solutions of MPCCs [8]. However,
a detailed description of MPCC stationarity concepts is outside the scope of this thesis. For more
information, interested readers are encouraged to look into the monogram [16].

2.7 The Penalty Reformulation of the MPCC

To avoid the difficulties which arise with the standard reformulation of the MPCC, the penalty
technique is applied such that the optimisation problem can be expressed as follows,

min
x

f(x) + ⇡x
T
1 x2

s.t. ci(x) = 0, i 2 E

ci(x) � 0, i 2 I

x1, x2 � 0,

(2.24)

where ⇡ > 0 is the penalty parameter. In this reformulation, the complementarity pairs are re-
moved as constraints and added as a new term in the objective function. The penalty term x

T
1 x2

should according to the general penalty approach be written as [xT1 x2]
� = max(0, xT1 x2). However,

since x1, x2 � 0 the two expressions become identical, making x
T
1 x2 sufficient. This particular re-

formulation is smooth and therefore permits standard nonlinear programming tools to be applied

12

2.8. Interior-Penalty Method for MPCC

successfully [13]. However, a challenge associated with penalty technique is determining a suitable
penalty parameter value, ⇡. Generally, the magnitude of ⇡ is unknown in advance and depends
greatly on the problem at hand.

2.8 Interior-Penalty Method for MPCC

By taking the reformulation of the MPCC in equation (2.24) into account, the equivalent barrier
problem becomes as follows,

min
x

f(x) + ⇡x
T
1 x2 � µ

X

i2I
log si � µ

pX

i=1

log x1i � µ

pX

i=1

log x2i

s.t. ci(x) = 0, i 2 E ,

ci(x)� si = 0, i 2 I,

(2.25)

where p is the number of elements in the vectors xi, µ > 0 is the barrier parameter and si > 0,
i 2 I are the slack variables transforming the inequality constraints into equality constraints. The
associated Lagrangian can be further expressed as,

Lµ,⇡(x, s,�, z) =f(x) + ⇡x
T
1 x2 � µ

X

i2I
log si � µ

pX

i=1

log x1i � µ

pX

i=1

log x2i

�
X

i2E
�ici(x)�

X

i2I
zi(ci(x)� si),

(2.26)

such that the Karush-Kuhn-Tucker conditions for the barrier problem, also known as the first-order
necessary conditions, will be,

rf(x)�rcE(x)T��rcI(x)T z �

0

BBBB@

0

µX
�1
1 e� ⇡x2

µX
�1
2 e� ⇡x1

1

CCCCA
= 0,

sizi � µ = 0, i 2 I,

ci(x) = 0, i 2 E ,

ci(x)� si = 0, i 2 I.

(2.27)

In these equations, rcE and rcI are vectors containing the gradients of each individual equality
and inequality constraint, respectively. Further, Xi are diagonal matrices with xi on the diagonal.
By using the same convention for s, the KKT conditions can be expressed expressed in a more
concise manner,

rxLµ,⇡(x, s,�, z) = 0, (2.28a)

Sz � µe = 0, (2.28b)

c(x, s) = 0, (2.28c)

13

Chapter 2 – Background and Theory

where

c(x, s) =

0

B@
cE(x)

cI(x)� s

1

CA . (2.29)

To successfully solve the MPCC, these optimality conditions, as well as the complementarity re-
lationships, need to be sufficiently satisfied. In order to determine the level of complementarity
satisfaction the following mathematical expression is used,

||min{xk1, xk2}||1 (2.30)

This formulation is found advantageous as it is independent of the number of variables and the
scaling of the problem only has a minor effect. By following the interior-point method principles in
Chapter 2.5, a general algorithm for solving MPCC is presented in Algorithm 2. In this algorithm
the barrier parameter µ

k, as well as the stopping tolerances, ✏
k
pen, ✏

k
comp are decreasing for each

iteration k and will eventually converge to 0 as k ! 1. In order to determine if this algorithm
has successfully solved the problem a stopping test needs to be conducted. In this thesis, the test
involves verifying if the optimality error, given in equation (2.15), is sufficiently low and ensuring
that the barrier parameter and corresponding complementarity error are within a certain tolerance.

Algorithm 2 Interior-Penalty Method for MPCCs [9].

Initialization: Choose initial primal and dual variables, w0 = (x0, s0,�0
, z

0). Set k = 1.
Repeat

1. Choose barrier parameter µ
k, and the stopping tolerances and ✏

k
comp, ✏kpen.

2. Get ⇡
k. Find an approximate solution w

k to the barrier problem, that satisfies
x
k
1, x

k
2, s

k
, z

k
> 0 and,

||rxLµ,⇡(x, s,�, y)|| ✏
k
pen, (2.31a)

||Sz � µe|| ✏
k
pen, (2.31b)

||c(x, s)|| ✏
k
pen, (2.31c)

and,
||min{xk1, xk2}||1 ✏

k
comp (2.32)

3. Let k k + 1

Until stopping test satisfied.

There exist various approaches to adjusting the penalty parameter, ⇡. The parameter can be kept
constant or increased dynamically throughout the optimisation of the barrier problem, leading to
the Classic and the Dynamic approach, respectively [9].

14

2.8. Interior-Penalty Method for MPCC

2.8.1 The Classic Approach

In the Classic practical interior-point method the penalty parameter is kept fixed in the inner iter-
ation loop until the barrier problem is solved within a given accuracy. The Classic approach is fully
represented in Algorithm 3. When the conditions presented in equation (2.33) are satisfied, the val-
ues of the complementarity relationships are assessed in step 3. If the norm of the complementarity
pairs is above the present tolerance, the penalty parameter in the objective function is increased.
The algorithm will then return to the inner loop, such that a new primal-dual step is computed
based on the KKT system. On the contrary, if the complementarity condition is adequately sat-
isfied the penalty parameter remains unchanged, and the stopping test is conducted. A successful
computes test indicates that the solution has been found. However, in the event of a failed test, the
barrier parameter will be decreased, and consequently, the tolerances as well, and a new iteration
in the barrier loop will be carried out [9]. In Algorithm 3, j denotes the inner iteration, while k is
the barrier loop iteration.

15

Chapter 2 – Background and Theory

Algorithm 3 : The Classic interior-Penalty Method for MPCCs [9].

Initialization: Choose initial primal and dual variables, w0 = (x0, s0,�0
, z

0), an initial penalty
parameter, ⇡0, and lastly the parameter � 2 (0, 1).
Set j = 0, k = 1

Repeat (barrier loop)

1. Find a barrier parameter µ
k

Compute ✏
k
pen

Let ✏
k
comp = (µk)� .

Let ⇡
k = ⇡

k�1
.

2. Repeat (inner loop)

i. set j + 1 j and the current point to be w
j�1

ii. Compute a primal-dual step p
j = (pjx, p

j
s, p

j
�, p

j
z) with µ = µ

k, ⇡ = ⇡
k and w

j�1 based
on the KKT conditions given in equation (2.27).

iii. Let w
j = w

j�1 + ↵
j
p
j

until the conditions as follows,

||rxLµ,⇡(x, s,�)|| ✏
k
pen, (2.33a)

||Sz � µe|| ✏
k
pen, (2.33b)

||c(x)|| ✏
k
pen, (2.33c)

are satisfied.

3. If ||min{xj1, x
j
2}||1 ✏

k
comp

let w
k = w

j , k k + 1

else set ⇡
k 10⇡k and go to step 2.

until a stopping test is satisfied

16

2.8. Interior-Penalty Method for MPCC

2.8.2 The Dynamic Approach

There are some disadvantages related to fixing the penalty parameter throughout the optimisation
of the barrier problem. The Dynamic interior-penalty method, presented in Algorithm 4, allows
the penalty parameter to be adjusted in each inner iteration loop, making it more flexible than the
Classic. In the inner loop, the complementarity satisfaction is checked before the barrier problem is
successfully solved. Additionally, the largest complementarity value from the m previous iterations
is multiplied with a fraction ⌘ to be compared with the current complementarity value, see step
iv. in Algorithm 4. If the norm of the complementarity pairs is above the present tolerance and
equation 2.34 is true as well, the penalty parameter is increased. However, in the event that the
opposite is true, the algorithm will proceed to check if the conditions in equation 2.35 are satisfied
without increasing the penalty parameter first. The Dynamic and Classic approaches contain several
parameters. The values of the parameters are collected from Leyffers paper and are listed in Table
2.1 [9].

Table 2.1: The chosen values for parameters in the Classic and Dynamic algorithms [9].

Parameter Description Value

⇡
0 The initial penalty value 1

� In the complementarity tolerance 0.4

⌘ The fraction used in equation (2.34) 0.9

m The integer used in equation (2.34) 3

17

Chapter 2 – Background and Theory

Algorithm 4 : The dynamic interior-Penalty Method for MPCCs [9].

Initialization: Choose initial primal and dual variables, w0 = (x0, s0,�0
, z

0), an initial penalty
parameter, ⇡0, the parameters � 2 (0, 1), and ⌘ 2 (0, 1), and lastly an integer m � 0.
Set j = 0, k = 1

Repeat (barrier loop)

1. Find a barrier parameter µ
k

Compute ✏
k
pen

Let ✏
k
comp = (µk)� .

2. Repeat (inner loop)

i. set j + 1 j and the current point to be w
j�1. Let ⇡

j = ⇡
j�1

ii. Compute a primal-dual step p
j = (pjx, p

j
s, p

j
�, p

j
z) with µ = µ

k, ⇡ = ⇡
k and w

j�1 based
on the KKT conditions given in equation (2.27).

iii. Let w
j = w

j�1 + ↵
j
p
j

iv. If ||min{xj1, x
j
2}||1 ✏

k
comp and

x
jT
1 x

j
2 > ⌘ max{xjT1 x

j
2, .., x

(j�m+1)T
1 x

(j�m+1)T
2 }, (2.34)

set ⇡
j 10⇡k and go to step 2

until the conditions as follows,

||rxLµ,⇡(x, s,�)|| ✏
k
pen, (2.35a)

||Sz � µe|| ✏
k
pen, (2.35b)

||c(x)|| ✏
k
pen, (2.35c)

are satisfied.

3. If ||min{xj1, x
j
2}||1 ✏

k
comp

let w
k = w

j , k k + 1

else set ⇡
k 10⇡k and go to step 2.

until a stopping test is satisfied.

18

2.9. Orthogonal Collocation

2.8.2.1 Remarks on Implementation

According to the description of the Dynamic approach, the penalty parameter can be increased
after each inner iteration, see Algorithm 4 step iv.. In spite of this, forcing the solver to complete
two iterations before possibly adjusting the penalty parameter was found to yield beneficial results.
Additionally, after the penalty parameter is changed, the algorithm should complete two iterations
before permitting further changes. These adjustments contributed to preventing the penalty value
to be increased unnecessarily. Based on the original implementation, a poor initial guess could
encourage the algorithm to increase the penalty value immediately, as

x
jT
1 x

j
2 > ⌘max{xjT1 x

j
2}

always will be true. However, the algorithm might discover that an increase in penalty value is
unnecessary if a few iterations are conducted before permitting the adjustment. In this thesis, the
proposed suggestions are used in the implementation of the Dynamic approach.

2.9 Orthogonal Collocation

When solving dynamic optimisation problems numerically, it is often convenient to discrete the
system of differential equations to obtain an optimisation problem of the form (2.1). In this thesis,
this is obtained by using orthogonal collocation. Orthogonal collocation is a numerical technique
for solving differential equations on the form,

dz

dt
= f(z(t), t), z(0) = z0. (2.36)

The fundamental idea is that the solution of the differential equation can be represented through
polynomials. The partitioned domain consists of finite elements, where each element, t 2 [ti�1, ti],
can be represented through different polynomials of order K + 1,

z
K
i (t) = ↵0 + ↵

t
1 + ...+ ↵Kt

K
. (2.37)

A polynomial can be represented in several equivalent ways, including the Lagrange interpolation
representation. They are a linear combination of scaled basis polynomials which result in the lowest
degree polynomial that passes through a set of data points. The interpolation requires in total
K + 1 interpolation points, ⌧ , in each interval. The Lagrange interpolation polynomial for interval
i becomes,

z
K
i (t) =

KX

j=0

`j(⌧)zi,j , t 2 [ti�1, ti], (2.38)

where
t = ti�1 + hi⌧, (2.39)

and the basis polynomials are,

`j(⌧) =
KY

k=0,k 6=j

⌧ � ⌧k

⌧j � ⌧k
. (2.40)

19

Chapter 2 – Background and Theory

In this representation, hi denotes the length of element i, and ⌧ are the interpolation points satis-
fying,

⌧ 2 [0, 1], ⌧0 = 0, ⌧j < ⌧j+1, (2.41)

where j = 0, . . . ,K � 1. The basis polynomials are, in fact, delta functions such that,

`j(⌧i) = �ji =

8
<

:
1, if j = i

0, if j 6= i.

(2.42)

This polynomial representation is desirable as it ensures that the interpolation polynomials pass
through all the given interpolation points, resulting in z

K(ti,j) = zi,j . This is illustrated in Figure
2.1. The collocation points can, in theory, be chosen arbitrarily. However, there are certain choices
leading to a better approximation, such as shifted Gauss Legendre roots and the Radau Roots,
presented in Table 2.2.

t

zi,0

zi,1

zi,2

zi,3

⌧1⌧0 ⌧2 ⌧3

h

ti�1 ti

z
K(t)

Figure 2.1: Lagrange polynomial representation of solution across a finite element of length h. ⌧ is there
the collocation points.

As stated before, the solution can be represented through polynomials, as given in equation (2.38).
However, for this representation to be valid the collocation equation needs to be satisfied. The col-
location equation is obtained by substituting the Lagrange polynomial representation into equation
(2.36),

dz
K

dt
(ti,k) = f(zK(ti,k), ti,k), k = 1, . . . ,K. (2.43)

20

2.9. Orthogonal Collocation

Table 2.2: The collocation point as the shifted Gauss-Legendre and Radau roots [8].

Degree K Legrendre Roots Radau Roots

1 0.500000 1.000000

2
0.211325

0.788675

0.333333

1.000000

3

0.112702

0.500000

0.887298

0.155051

0.644949

1.000000

4

0.069432

0.330009

0.669991

0.930568

0.088588

0.409467

0.787659

1.000000

5

0.046910

0.230765

0.500000

0.769235

0.953090

0.057104

0.276843

0.583590

0.860240

1.000000

21

Chapter 2 – Background and Theory

This ensures that the time derivatives of the polynomial approximation are identical to the original
differential equation at all the collocation points. By taking the polynomial structure into account
and additionally substituting t with ⌧ , the collocation equation can be reformulated as,

K=0X

j=0

zi,j
d`j(⌧k)

d⌧
= hif(zi,k, ti,k), k = 1, . . . ,K. (2.44)

In this equation, the terms aj,k = d`j(⌧k)
d⌧ are constants and can therefore be pre-computed based on

the choice of the fixed collocation points, and represented in form of a squared matrix,

a =

2

66664

d`0(⌧0)
d⌧ · · · d`0(⌧k)

d⌧
...

d`k(⌧0)
d⌧ · · · d`k(⌧k)

d⌧

3

77775
. (2.45)

In the case of three collocation points, the collocation equation becomes,

zi,0(�30⌧2k + 36⌧k � 9) + zi,1(46.7423⌧
2
k � 51.2592⌧k + 10.0488)

+ zi,2(�26.7423⌧2k + 20.5925⌧k � 1.38214) + zi,3(10⌧
2
k �

16

3
⌧k +

1

3
)

= hif(zi,k, ti�1 + ⌧k), k = 1, .., 3. (2.46)

By inserting the specific type of collocation points, the constant terms in the brackets can be
computed and represented using the squared matrix given in equation (2.45). In addition to the
collocation constraints obtained in equation (2.44), continuity constraints are crucial in order to
ensure continuity between the finite elements as the system has been discretized. The continuity
constraints are dependent on the implementation approach, but with Lagrange interpolation profiles,
they can be expressed as,

zi+1,0 =
KX

j=0

`j(⌧ = 1)zi,j , i = 1, ..., N � 1 (2.47a)

zf =
KX

j=0

`j(⌧ = 1)zN,j , z1,0 = z0. (2.47b)

However, in some cases, it may be sufficient to enforce the endpoint of one interval to be equal to
the first collocation point in the next interval [8],

zi�1,K � zi,0 = 0. (2.48)

22

Chapter 3
Implementation and Small-Scale
Problem Investigation

The following section discusses the implementation of the Classic and Dynamic interior-penalty
methods, along with some of the challenges encountered during the implementation. The Classic
and the Dynamic algorithm were presented in Section 2.8 in Algorithm 3 and 4, respectively. The
algorithms were implemented as extensions to already existing interior point solvers. In this thesis,
a solver developed in-house, hereafter referred to as the Int Point Solver, as well as IPOPT, were
taken into consideration. Toward the end of this chapter, the result from a small-scale problem
investigation is presented to compare the approaches in terms of performance.

The programming language used for the implementations was Julia [17]. The algorithms were here
implemented as functions with the optimisation problem and the complementarity pairs passed as
arguments. In the initialisation state, the penalty technique was applied, such that the complemen-
tarity pairs were included in the objective function and multiplied by the initial penalty value. As
mentioned in the previous section, the initial value was set to ⇡

0 = 1 as this was recommended in
literature [9]. The complete implementations of the Classic and Dynamic Algorithms with IPOPT
can be found in Appendix F.1 and F.2, respectively.

3.1 Int Point Solver

The Int Point Solver was developed purely in Julia by Dr Nakama [11], following the same principles
as the IPOPT implementation [12]. As the solver was developed in-house, the distinct stages within
the algorithm were easily accessible. In this manner, the additional features associated with the
complementarity constraints in the approaches were completely incorporated into the interior-point
solver. These features consist of computing the complementarity values and the complementarity
tolerances and, if necessary, adjusting the penalty parameter accordingly. The solver is responsible
for reducing the barrier parameter, step computation, and expanding the filter as the optimisation

23

Chapter 3 – Implementation and Small-Scale Problem Investigation

process proceeds.

Despite meeting the basic requirements of an interior-point solver, the solver is still under de-
velopment and certain concepts have not yet been implemented, such as the feasibility restoration
phase, second-order correction and the ability to handle sparse systems efficiently. The feasibility
restoration phase aims to restore feasibility when an infeasible region has been reached, while the
second-order correction provides additional information to expedite convergence if a trial point has
been rejected. These are concepts which contribute to improving the overall performance [12]. Due
to these limitations, the solver is currently most suitable for solving low-complexity problems and
may need to be provided with good initial guesses to converge.

3.2 Interior Point OPTimizer

IPOPT, short for Interior POint OPTimizer, is an open-source numerical software package for solv-
ing large-scale nonlinear optimisation problems [12]. This solver was implemented originally in
Fortran and C. The primary concept was to incorporate the additional features described in the
algorithms into a state-of-the-art interior-point-based solver. Essentially, the solver should be re-
sponsible for decreasing the barrier parameter, step computation and filter updating, as for the
Int Point Solver. However, it was found challenging to adapt IPOPT for these additional features
in a satisfactory manner, as the solver prevents the user from accessing and applying changes at
certain stages in the optimisation process. Hence, to facilitate the process, the barrier parameter
was manually decreased and passed to the solver as an optimiser attribute.

In the implementation, IPOPT handles mainly the inner iterations, whereas the barrier loop is
manually implemented due to access restrictions. In the barrier loop, the current threshold for the
optimality error and the complementarity tolerance were computed based on the present barrier pa-
rameter. The threshold, as well as the barrier parameter, were then passed to IPOPT as optimiser
attributes. In the Classic approach, the complementarity values are examined after each barrier
problem is successfully solved within the current tolerance. The Dynamic approach, however, also
assessed the complementarity satisfaction for each inner iteration. To access information during the
optimisation process, a callback function was required. This callback function is invoked by the
solver such that custom information can be accessed at a specific point in the optimisation process.
However, the callback function could only provide information about the complementarity values
and was not capable of performing any modifications to the problem.

There are many advantages of using IPOPT as the basis for the implementations. As a well-
developed, effective, and robust solver, IPOPT is capable of handling a wide range of optimisation
problems of high complexity. This solver is, on the contrary to the Int Point Solver, provided with
support for sparse structures, feasibility restoration and second-order correction. Despite this, a

24

3.3. A small-scale Problem Investigation

complex solver which is not primarily coded in Julia has its limitations. As pointed out, the barrier
parameter was supposed to be decreased by IPOPT in the implementation. However, the solver and
the JuMP interface prohibit modification of the objective function during the optimisation process.
Hence, IPOPT had to be terminated for the penalty parameter to be increased. These interruptions
seemed to confuse the solver. Even though warm-starts for the primal and dual solutions were used,
the solver was not provided with all the information from the previous runs. The filter, for instance,
could not be initialised with the filter from the previous barrier problem. These confusions may
encourage the algorithm to increase the penalty parameter unnecessarily, leading to convergence
failure. In the implementation, the barrier parameter was therefore adjusted manually to avoid
unnecessary interruptions. This is, however, not a perfect implementation as IPOPT is presumably
not designed to allow manual adjustment of the barrier parameter. In this thesis, although not
entirely optimal, the barrier parameter was adjusted manually as the algorithms were still able to
solve the problems sufficiently. Despite this adjustment, there were still problems associated with
the Dynamic implementation. This approach requires the possibility of modifying the problems
during the inner interaction, such that interruptions are unavoidable. Due to the lack of a sufficient
implementation, this thesis will not explore the Dynamic approach with IPOPT any further.

3.2.1 The JuMP Interface

As mentioned, JuMP was used as the high-level interface for the modelling [18]. This software
package has recently added the ability to set warm-starts for the primal and dual solutions, a feature
that improves performance when solving sequences of related problems. This option was found
beneficial in the implementation of the Classic and Dynamic algorithms, as the barrier parameter
was decreased manually in the algorithm. The primal and dual warm starts permit the present
barrier problem to be initiated with the optimal solution of the previous barrier problem. During
the specialisation project, the specified feature was unpublished and was described as a drawback
of the approach [10]. However, in this thesis, this feature was included and shown to have a positive
impact on performance, as the number of iterations generally decreased.

3.3 A small-scale Problem Investigation

The Classic and Dynamic approaches were implemented with both interior-point solvers. To com-
pare the approaches in terms of performance the Int Point Solver was used, as the complementarity
features were sufficiently integrated into the solver in this implementation. However, this imple-
mentation does not support efficient sparse structure handling, so the comparison is based on rather
small-scaled problems.

To perform the comparison, several MPCC problems were retrieved from the MacMPEC collec-
tion, a library containing various MPCC test problems provided by Sven Leyffer [19]. The result
from the comparison is presented in Table 3.1, where the penalty parameter value, the number of

25

Chapter 3 – Implementation and Small-Scale Problem Investigation

iterations, as well as some additional comments are given. The restoration phase and second-order
correction notes indicate that the algorithm failed to converge and additional features, which are
yet not implemented, might be needed to restore feasibility. The problems which showed a differ-
ence in performance are highlighted in orange. The first noticeable difference is that the Classic
implementation used fewer iterations to solve the bilevel1 problem than the Dynamic. The Dynamic
algorithm increased the penalty parameter to ⇡ = 100, while the Classic deemed the initial penalty
value of ⇡ = 1 to be sufficient. The unnecessarily high penalty value associated with the Dynamic
approach may be responsible for the extra iterations encountered. Despite this, both approaches
were able to detect the optimal solution. The table further shows that problem bilevel2 was only
solved with the Classic implementation. However, except for these two problems, the Dynamic
approach performed better or equally well as the Classic approach. The table additionally reveals
that the majority of the problems were effectively solved by both implementations. This similarity
in performance can however be explained by the collection consisting of mostly well-scaled problems
of low complexity.

26

3.3. A small-scale Problem Investigation

Table 3.1: Results of small-scale problem investigation with ⇡ values and the number of iterations for both
approaches included. The problems highlighted in orange are the problems where a difference
between the approaches was observed. According to the table, both methods performed well in
this study. The problems were retrieved from the MacMPEC library [19].

Problem Classic implementation Dynamic implementation

⇡ it comment ⇡ it comment

bard1 1 21 - 1 21 -

bard3 1 32 - 1 32 -

bard3m 10 33 - 10 33 -

bilevel1 1 24 - 100 32 -

bilevel2 1 45 - - - restoration phase

bilin - - restoration phase - - restoration phase

design-cent-1 1 - second order correction 10 26 -

design-cent-2 - - diverging 10 32 -

desilva 1 21 - 1 21 -

df1 1 26 - 1 26 -

ex9.1.1 1 22 - 1 22 -

ex9.1.4 - - restoration phase - - restoration phase

ex9.1.7 - - restoration phase - - restoration phase

ex9.2.4 1 15 - 1 15 -

ex9.2.8 1 16 - 1 16 -

flp2 10 25 - 10 25 -

gauvin 1 19 - 1 19 -

jr2 10 17 - 10 17 -

kth1 1 18 - 1 18 -

kth3 10 20 - 10 20 -

outrata31 - - second order correction - - second order correction

outrata32 1 22 - 1 22 -

outrata34 10 29 - 10 29 -

ralph2 - - unbounded problem 10 50 -

scale1 1000 16 - 1000 16 -

scale5 10000 67 - 10000 67 -

scholtes1 1 17 - 1 17 -

scholtes4 10000 19 - 10000 19 -

27

Chapter 3 – Implementation and Small-Scale Problem Investigation

3.3.1 Similarity in Performance

The resemblance in performance can be demonstrated through problem scale5, presented in Figure
3.1. In this figure, the orange dashed line gives the penalty parameter value, and the blue line
represents the complementarity values at each iteration. As shown in the figure, both approaches
were capable of increasing the penalty parameter to ⇡ = 1000 after just a few iterations had been
conducted. Despite this, there was still a need for an additional increase in the penalty value for
the formulation to be sufficient. The Dynamic algorithm identified this need in fewer iterations
than the Classic. Nevertheless, this did not seem to have a remarkable impact on the performance
as the approaches converged to the optimal solution in the same amount of iterations. Based on
this specific problem, it appeared that both approaches performed equally well despite the small
difference.

(a) Classic (b) Dynamic

Figure 3.1: The penalty and complementarity value, ||min{xk
1 , x

k
2}||1, at each inner iteration for the scale5

problem. The Classic and Dynamic approaches performed essentially the same.

28

3.3. A small-scale Problem Investigation

3.3.2 Unbounded Penalty Problem

The ralph2 problem captured a significant difference between the two approaches. The behaviours of
the algorithms for this particular problem are presented in Figure 3.2. The Classic implementation,
in Figure3.2a, shows a drastic increase in the complementarity value since the very first iteration.
Although this increase continued, the penalty parameter remained unchanged. This is due to the
initial value of the penalty parameter resulting in an unbounded barrier problem. The Classic im-
plementation only allows the penalty parameter to be modified once the barrier problem has been
solved successfully. The barrier problem, however, is not solvable with the initial penalty value,
causing the iterations to diverge. The Classic implementation is, therefore, incapable of solving
the problem. It is noteworthy that the complementarity value after twenty iterations is hidden due
to the figure’s scaling. This scaling is, however, intentional as it makes the figures comparable.
Despite this, it is evident that the complementarity values continue increasing toward infinity until
the maximum of iterations is reached.

The Dynamic approach, on the other hand, is well suited for such problems, as the complementarity
values are evaluated frequently, such that the need for a larger penalty value can be detected early.
Figure 3.2b shows that only three iterations were required before the penalty value was increased.
After this modification, a remarkable reduction in the complementarity value was obtained, and the
optimal solution was eventually detected. According to these results, the Dynamic approach is un-
equivocally preferred when dealing with unbounded penalty problems. This result is also consistent
with the result obtained in the paper which the implementations are based on [5].

(a) Classic (b) Dynamic

Figure 3.2: The penalty and complementarity value, ||min{xk
1 , x

k
2}||1, at each inner iteration for the Ralph2

problem. The complementarity values diverge with the Classic approach as it is incapable of
increasing the penalty problem. The Dynamic approach manages to increase the penalty
parameter and solves the problem.

29

Chapter 3 – Implementation and Small-Scale Problem Investigation

30

Chapter 4
Flash Tank Model

The purpose of this chapter is to describe the multiphase flash tank model used in this thesis,
which is based on the master’s thesis of Reed [6] which follows a non-smooth approach [7]. To
begin with, an introduction to flash calculations is given, followed by a description of a few basic
thermodynamic expressions associated with the flash tank model, including enthalpy calculations
and phase equilibrium. Additionally, a proposal of how phase changes can be accounted for in the
model in terms of complementarity constraints is provided. This section is then followed by an
introduction of model assumptions and parameters, and the derivation of the differential and the
algebraic equations for the flash tank model. The model equations in steady state form, as well as
in dynamic form, are also listed in Appendix C. The code is provided in Appendix G.

4.1 Flash Calculations

A flash is a single-equilibrium-stage distillation, with the purpose of separating a mixture, such that
the more volatile components will appear in the vapour phase, while the less volatile components
will emerge as a liquid. In the case of a liquid feed, heat will be added such that the most volatile
components will be vaporised. Vapour feed, on the other hand, should be partially condensed by
removing heat. In flash calculations, the vapour-liquid-equilibrium equations are combined with the
component’s material and energy balances. There exist several types of flash calculations depending
upon which variables are known in advance [20]. The approach used in this thesis will be further
elaborated on.

4.2 Enthalpy Calculations

Enthalpy is a thermodynamic property, defined as

H = U + P · V, (4.1)

31

Chapter 4 – Flash Tank Model

where P is the pressure of the system, V is the volume and U is the internal energy. Enthalpy is
a state function such that the value is only dependent on the initial and final state of the system,
regardless of the path taken. There exist different ways of calculating the enthalpy change in the
system depending on the available data. The enthalpy value at specified states can, however, only
be determined relative to a reference state. By assuming an ideal mixture, the enthalpy, of both
liquids and gases, can be calculated by taking the sum of each component’s contribution,

h =
ncX

i

zi · hi, (4.2)

where hi is the ideal molar enthalpy and zi is the molar fraction of component i [21]. The enthalpy
change, dh, of a system can be calculated through intensive properties. By expressing the change
as a function of temperature, T and pressure, P , the total differential of the enthalpy becomes,

dh =

✓
@h

@T

◆

p

dT +

✓
@h

@P

◆

T

dP. (4.3)

Specific heat capacity,

cp =

✓
@h

@T

◆

p

, (4.4)

is a thermodynamic property which describes the amount of energy needed to increase the tem-
perature of a substance by one unit if the pressure remains constant. The specific heat capacity is
specific for each substance and independent of the type of process. By inserting this definition into
equation (4.3), the enthalpy change becomes,

dh = cp dT +

✓
@h

@P

◆

T

dP. (4.5)

In order to further transform the equation, another fundamental representation of enthalpy is re-
quired,

dh = Tds+ V dP, (4.6)

where s is the entropy of the system. The change of the entropy can, as enthalpy, be expressed in
terms of temperature and pressure, such that the following expression is obtained,

ds =

✓
@s

@T

◆

p

dT +

✓
@s

@P

◆

T

dP. (4.7)

Equation (4.7) can then be substituted into equation (4.6), which result in,

dh = T

✓
@s

@T

◆

p

dT +

V + T

✓
@s

@P

◆

T

�
dP. (4.8)

By further comparing the coefficients of dP and dT in equation (4.5) and (4.8), the relations
✓
@h

@P

◆

T

= V + T

✓
@s

@P

◆

T

, (4.9)

32

4.3. Phase Equilibrium

✓
@s

@T

◆

P

=
cp

T
, (4.10)

are obtained. By using one of the Maxwell relations, see Appendix E, equation (4.9) can then be
transformed to, ✓

@h

@P

◆

T

= V �
✓
@V

@T

◆

p

. (4.11)

Lastly, by substituting this relation into equation (4.5) the expression for the enthalpy change
becomes [22],

dh = cp dT +

"
V �

✓
@V

@T

◆

p

#
dP. (4.12)

This equation, however, can be further simplified by assuming ideal gas,

dh = cp dT. (4.13)

This relation is also found valid for liquids as the enthalpy of a liquid is, as for an ideal gas, assumed
to be independent of the pressure [21].

The expression of the enthalpy in the vapour and liquid phase in the flash tank model can then be
obtained. By assuming constant cp, and choosing the reference condition to be a specific temper-
ature in the liquid phase, and an enthalpy contribution as in equation (4.2) the enthalpies can be
calculated as follows,

hL =
ncX

i

xi · cp,L,i · (T � Tref), (4.14)

hV =
ncX

i

yi (�hvap,i + cp,V,i · (T � Tref)) . (4.15)

In this context, �hvap,i denotes the vaporisation enthalpy of component i, while cp,L,i and cp,V,i is
the heat capacity of component i in liquid and gas phase, respectively.

4.3 Phase Equilibrium

Phase equilibrium is a concept which describes the distribution and balance of different phases
within a system. For phase equilibrium to be established between two different phases, ↵ and �,
the global Gibbs free energy, G needs to be minimised, such that

dG = dG
↵ + dG

� = 0. (4.16)

Under the assumption of constant temperature and pressure, Gibbs free energy in two-phase systems
can be expressed as follows,

(dG)T,P =
ncX

i=1

µ
↵
i dn

↵
i +

ncX

i=1

µ
�
i dn

�
i = 0, (4.17)

33

Chapter 4 – Flash Tank Model

where nc is the number of components, µi is the chemical potential and ni is the molar mass of
component i. According to the law of material balance, the number of moles leaving phase ↵ needs
to be equal to the moles appearing in phase �, such that dn

�
i = �dn↵

i 8i 2 [1, nc] [23]. By taking
this into account, equation (4.17) can be rewritten as follow,

(dG)T,P =
ncX

i

(µ↵
i � µ

�
i)dn

↵
i = 0. (4.18)

The molar mass change of a specific component in phase ↵, dn
↵
i , can further be assumed to be

independent close to the equilibrium point, such that the equilibrium condition becomes,

µ
↵
i = µ

�
i , 8i 2 [1, nc]. (4.19)

According to this condition, a component needs to have the same chemical potential in all the
existing phases for phase equilibrium to be established. The last criterion of phase equilibrium is
that the temperature and the pressure are uniform throughout the system, such that [24]

T
↵ = T

�
, P

↵ = P
�
. (4.20)

4.3.1 Vapour-liquid Equilibrium Calculations

In a system with established vapour-liquid equilibrium, the concentrations can be approximated
through certain theories. Henry’s law constant, also known as the vapour-liquid distribution ratio,
describes how a chemical component distributes itself between the liquid and vapour phases,

Ki =
yi

xi
, (4.21)

where yi and xi are the mole fraction of vapour and liquid phase, respectively. A high K value
indicates that the component prefers to be in the vapour phase, while a low value favours the
liquid phase. The value of K is characteristic of each chemical component and is dependent on
temperature, pressure and phase compositions. However, the phase composition dependency can
in most cases be neglected. The K value can be further calculated through Raoult’s law with the
assumption of an ideal mixture,

Ki =
p
sat
i (T)

p
, (4.22)

where p
sat
i , the saturation pressure, is the vapour pressure of pure component i at temperature

T . This vapour pressure can further be found through empirical relationships such as Antoine’s
equation,

log10(p
sat
i) = Ai �

Bi

T + Ci
, (4.23)

where Ai, Bi and Ci are constants unique for each chemical compound i [21].

34

4.4. Phase Changes

4.4 Phase Changes

Flash separators are usually assumed to operate at vapour-liquid equilibrium, between the dew and
bubble point conditions, in the two-phase region. An illustration of the phase diagram for a flash
separation is given in Figure 4.1. In this figure, the dew point curve indicates when a pure vapour
mixture of two components starts condensing into the liquid phase. The bubble point curve, on the
other hand, shows when a corresponding liquid mixture starts vaporising.

T

Dew Point curve

Tin

T

y1x1

Bubble Point curve

Vapour

Liquid

Figure 4.1: A phase diagram for a flash distillation at constant pressure, where the inlet flow is assumed to
be pure vapour at Tin. The dew point curve, as well as the bubble point curve, are presented
in green in the figure.

In the case of phase disappearance, the mixture will appear outside the two-phase region, and the
vapour-liquid equilibrium will no longer be present. These phase transitions need to be accounted
for in the calculations. Biegler posed an approach which involves using a relaxation parameter and
incorporating complementarity relationships, such as the following equations are obtained [8],

yi = �Kixi, (4.24a)

� � 1� sV + sL = 0, (4.24b)

0 FL ? sL � 0, (4.24c)

0 FV ? sV � 0, (4.24d)

where � is the relaxation parameter, FV and FL are the vapour and liquid outlet flows, and sV

and sL are the corresponding slack variables. This formulation ensures continuity in the model
by extending the phase mole fractions into the single-phase regime, even when the corresponding
phase is absent. If both phases are present, the vapour-liquid equilibrium will hold and � = 1.
The complementarity constraints will in this scenario require that both slack variables are zero as

35

Chapter 4 – Flash Tank Model

FL > 0 and FV > 0. However, if either the liquid phase or the vapour phase is absent, the associated
slack variable becomes positive and � 6= 1. The phase equilibrium condition is hence being relaxed
such that a feasible solution can be obtained. The complementarity system is necessary in order to
capture the cases of phase disappearance and phase appearance, but will however make the model
more computationally demanding to solve [8].

4.5 Assumptions and Model Parameters

The flash will in this thesis be modelled as a UV -flash, such that the internal energy, U , the volume,
V , and the component holdups, Mi are specified. Hence, the temperature, T , the pressure P , the
vapour fraction, f , and the composition in both the vapour and liquid phase, (xi, yi), can be found
through flash calculations [25],

(U, V,Mci)! (T, P, f, xi, yi). (4.25)

An illustration of the flash tank is given in Figure 4.2, where the molar inlet flow, its composition
and its temperature are specified.

Fin Tin z

FL x

Q

FV y

Figure 4.2: An illustration of the flash tank. Fin is the inlet flow with the inlet temperature Tin and the
composition z. The liquid and vapour flow is also shown as FL and FV , respectively, with their
corresponding composition. Q illustrate the heat being removed from the tank.

As earlier stated, the definition of a reference condition is necessary for performing the enthalpy
calculations over the system. In this thesis, the reference condition is defined as a pure component
in the liquid phase at Tref = 298.15 K. The phases are further assumed to be homogeneous, which
indicates that the phases have uniform properties throughout, such that the temperature and the
composition are the same in every part of the phase. Additionally, ideal gas is assumed to be a
sufficient approximation for the vapour, and the liquid is assumed to be incompressible compared to

36

4.6. Material Balances

the vapour. The feed in the simulation is determined to be an equimolar mixture between methanol
and water in pure vapour. The thermodynamic data for both components is presented in Table 4.1.

Table 4.1: The thermodynamic data of water and methanol. The heat of vaporisation is collected from
Skogestad [21], heat capacities from Cengel [22] and Antoine equation parameters from NIST
[26]

Parameter Water Methanol Unit

cp,L 75.351 81.08 kJ/(kmolK)

cp,V 33.58 44.06 kJ/(kmolK)

hvap 40.660 35.21 kJ/mol

⇢ 55.33 24.72 kmol/m3

A 4.6543 5.15853 -

B 1435.264 1569.613 -

C �64.848 �34.846 -

4.6 Material Balances

The model has a dynamic material and energy balance which can be expressed through differential
equations. The general balance of an extensive quantity, ', is given as,

d'

dt
= 'in � 'out + 'gen � 'loss, (4.26)

where 'gen and 'loss are the amount generated and lost by the system, respectively. By assuming
that no reaction takes place, the generation and the loss term can be neglected such that the molar
balance for the system’s components can be simplified to,

dMi

dt
= Mi,in �Mi,out i = 1, . . . , nc. (4.27)

Expressing the molar component holdup in terms of molar flows and compositions, the balance
becomes,

dMi

dt
= Fin · zi � FL · xi � FV · yi i = 1, . . . , nc, (4.28)

where Fin is the total inlet flow, FL and FV is the liquid and vapour flow, respectively, and zi, xi

and yi denote the molar fraction of component i in the different flows. For the system to be fully
defined, additional equations for the molar holdups are required,

Mi = ML · xi +MV · yi i = 1, . . . , nc (4.29)
ncX

i

Mi = ML +MV , (4.30)

37

Chapter 4 – Flash Tank Model

where ML and MV are the molar holdups in the liquid and vapour phases, respectively. Additionally,
as the phase mole fractions are extended into the single-phase regime, the following balance is still
valid and is therefore included in the model as well,

ncX

i

yi �
ncX

i

xi = 0. (4.31)

4.7 Energy Balances

The dynamic equation for the energy balance can be derived by following a similar procedure as for
the material balance. The kinetic and potential energy is assumed to be negligible, resulting in a
balance that revolves around internal energy. From equation (4.26), the energy balance becomes,

dU

dt
= Uin � Uout +Q+W, (4.32)

where Q denotes the heat transferred to the system and W is the supplied work. There exist several
types of work. However, by the assumption of constant volume and no shaft or mechanical work,
there is only flow work present in the system, Wflow = pV . By applying the definition of enthalpy
H = U + PV , the balance for the system can then be given as [21],

dU

dt
= Hin �Hout +Q, (4.33)

and in terms of molar enthalpy and molar flows, this results in,

dU

dt
= Finhin � FLhL � FV hv +Q, (4.34)

where hin is the molar enthalpy of the inlet flow, while hL and hV are the molar enthalpy of the
liquid and vapour flow, respectively. The expressions for hL and hV were previously derived in this
chapter but are restated below,

hL =
ncX

i

xi · cp,L,i · (T � Tref), (4.35)

hV =
ncX

i

yi (�hvap,i + cp,V,i · (T � Tref)) . (4.36)

By using these expressions above, the total enthalpy holdup in the flash tank can be related to the
molar holdups as follows,

H = MLhL +MV hV , (4.37)

Lastly, to combine the enthalpy with the internal energy in the system, the definition of enthalpy
is included as an equation as well,

H = U + PV. (4.38)

38

4.8. Phase Distribution

4.8 Phase Distribution

In the derivation of the energy balance, the volume was assumed to be constant. It is further assumed
that the entire volume is occupied at each time, such that the following equation is obtained,

Vtot = VV + VL, (4.39)

where VV is the volume in the vapour phase, while VL is the volume in the liquid phase. The volume
of the vapour phase can be found through ideal gas low,

pVV = MV TR, (4.40)

where R is the gas constant. The liquid volume, however, is calculated by,

VL =
ML

⇢L
, (4.41)

where ⇢L is the density of the liquid in the tank computed by taking the sum of each component’s
contributions,

1

⇢L
=

ncX

i

xi

⇢i
, (4.42)

where ⇢i is density of pure component i.

4.9 Valve Equations

The outflows, both the liquid and the vapour flow, can be determined through valve equations. The
valve equations proposed are,

FV = cV · VV

V
· p� p

0

p
|p� p0|+ ✏

, (4.43)

FL = cL · VL

V
· p� p

0

p
|p� p0|+ ✏

, (4.44)

where p
0 is the outlet pressure, cV and cL are valve coefficients for the vapour and liquid flow,

respectively, and ✏ > 0 is a small value crucial for the function to be Lipschitz continuous at p = p
0.

However, in the case of reverse flow, the pressure difference along the valve becomes negative, and the
expressions above become undefined. To prevent this, check valves are included in the expressions
through a max operator. Thus, the modified valve equations become as follows,

FV = cV · VV

V
· max

0,

p� p
0

p
|p� p0|+ ✏

!
, (4.45)

FL = cL · VL

V
· max

0,

p� p
0

p
|p� p0|+ ✏

!
. (4.46)

39

Chapter 4 – Flash Tank Model

The check valves will turn off the outlet flows when the pressure difference along the valve becomes
negative [7]. However, these expressions are non-smooth due to both the absolute value operator
and the maximum operator. Equation (4.45) and (4.46) can, however, be reformulated through
complementarity relationships. The absolute value z := |p � p

0| can be expressed in the following
way,

z = savm + savp (4.47a)

p� p
0 = savm � savp (4.47b)

0 savm ? savp � 0, (4.47c)

where savm and savp are the complementarity variables. Furthermore, the max expression,

w := max
✓
0,

p� p
0

p
z + ✏

◆
,

can be equivalently expressed as

w = 0 + swm (4.48a)

p
0 � p = (z + ✏)0.5(swp � swm) (4.48b)

0 swm ? swp � 0, (4.48c)

where swm and swp is another pair of complementarity variables [8]. By including equation (4.47)
and (4.48), the vapour and liquid flow can be given as,

FV = cV · VV

V
· w, (4.49)

FL = cL · VL

V
· w. (4.50)

A more detailed derivation of the absolute and max operator expressed in terms of complementarity
relationships is given in Appendix B.

40

Chapter 5
Case Study of Flash Tank

To further assess the Classic approach’s ability to address MPCCs, a study was conducted on a
multi-phase flash tank. The implementation based on IPOPT was chosen for this study due to
its capability of solving complex problems. The section starts by presenting the results from the
simulation of the steady-state flash tank, before proceeding to the dynamic version.

5.1 Stationary Flash Tank

In the simulations, pure vapour entered the tank at Tin = 410 K, with a flow rate of Fin = 0.1 kmol/s.
Both water and methanol were present in the feed in an equimolar ratio, z = [0.5 0.5]. In the simu-
lations, the heat removal, Q was varied to observe how the steady-state values changed accordingly.
Throughout this chapter, the dark grey will indicate single-phase regions, whereas the two-phase
region will be shaded in light grey.

The plots of the temperature, the pressure and the volume at steady-state with respect to heat
removal are presented in Figure 5.1. As long as the heat removal rate was significantly low, the sys-
tem operated in the vapour-only regime. The temperature profile, presented in Figure 5.1a, shows
a fast temperature decrease in this region until the dew point was reached, at Q ⇡ �0.15 MW.
The system then entered the two-phase region, where the latent heat of vaporisation was released
to the surrounding, resulting in a less drastic temperature decrease. As the heat removal increased,
more liquid occupied the tank volume, as shown in Figure 5.1c. This change in phase distribution
affected the pressure in the tank. As an ideal gas behaviour was assumed, the pressure will decrease
when less vapour is present as the number of gas molecules decreases. The liquid, however, will not
have a significant impact on the pressure as its compressibility is assumed to be negligible. Thus,
the pressure decrease observed in Figure 5.1b is consistent with the expectations. Eventually, the
heat removal was sufficient for no vapour to remain, at Q ⇡ �3.75 MW, such that the temperature
decrease returned to a stepper rate, and the volume was entirely occupied by the liquid.

41

Chapter 5 – Case Study of Flash Tank

(a) Steady-state temperature [K] (b) Steady-state pressure [bar]

(c) Steady-state volume [m3
]

Figure 5.1: The temperature, pressure and volume in the flash tank at steady-state in relation to heat
removal. The areas shaded in dark grey represent one-phase regions.

42

5.1. Stationary Flash Tank

According to Figure 5.2a, the steady-state mole fraction of water in the vapour decreased as the
heat removal increased. This is reasonable as water will start condensing before methanol, due to
its higher saturation temperature. Water, therefore, had a higher mole fraction than methanol in
the liquid, until the liquid-only regime was reached and the outflow became equimolar, see Fig-
ure 5.2b. It is worth mentioning that the mole fractions given in the one-phase region, the dark
grey areas, apply only when the corresponding phase is present. The liquid phase was absent until
Q ⇡ �0.18 MW, such that the fractions prior to this, do not provide any useful physical informa-
tion. Similarly, when the heat removal was above Q ⇡ �3.75 MW the vapour phase disappeared
and the corresponding mole fraction became meaningless.

(a) Steady-state vapour mole fraction, y (b) Steady-state liquid mole fraction, x

Figure 5.2: The liquid and vapour mole fractions at steady-state with respect to heat removal. Dark grey
areas represent one-phase regions.

In order to account for phase disappearance, a relaxation parameter, � was included along with
two slack variables, sL and sV . Figure 5.3b shows how the steady-state value of � changed as the
heat removal increased. Initially, the flash tank operated in the vapour-only regime, such that � < 1.
However, when both phases became present, in the light grey area, � increased to 1, and remained
constant until the vapour phase disappeared completely. The flash tank then entered the liquid-
only regime, and � was adjusted accordingly. sL and FL, and sV and FV are the complementarity
pairs accounting for the phase changes. Their steady-state values with respect to heat removal are
presented in Figure 5.3 as well. According to the figure, the presence of vapour flow caused the
corresponding slack variable to become zero, sV = 0, which is consistent with the complementarity
constraint. sV then remained at zero until Q reached a significant level causing the vapour flow
to disappear. The other complementarity pair, consisting of FL and sL, were also in line with the
complementarity restrictions. When FL > 0, then sL = 0 and vice versa.

43

Chapter 5 – Case Study of Flash Tank

(a) Steady-state molar flows [kmol/s] (b) Steady-state relaxation parameter, �.

(c) Slack variable for the vapour phase, sV (d) Slack variable for the liquid phase, sL

Figure 5.3: The relaxation parameter, � the slack variables sL and sV , and the molar flow rates in the flash
tank at steady state with respect to heat removal. The single-phase regions are represented in
dark grey.

44

5.2. Dynamic flash tanks

The result for the steady-state simulation were obtained without any significant challenges, and
matched the theoretical and physical expectations as previously elaborated. This findings, there-
fore, strongly support the use of complementarity relationship to account for the phase changes in
steady-state flash tank simulations. The obtained result also demonstrates the Classic approach’s
ability to tackle a stationarity flash tank system efficiently and precisely.

5.2 Dynamic flash tanks

A dynamic version of the flash tank was created by including the differential equations and the
continuity constraint associated with the orthogonal collocation method. The simulations were con-
ducted with three collocation points of shifted Gauss-Legendre roots in each final element. The
initial condition of the model was chosen to be the values obtained from the stationary flash tank
with zero heat removal. The heat removal in the dynamic flash tank was gradually decreased until
t = 150 s, as described in Algorithm 5. Subsequently, the heat removal remained consistently at
�4 MW.

Algorithm 5 Decreasing the heat removal
t 1

while t 250 do
if t < 5 then

Q 0

else if 5 t < 150 then
Q �4

150�5 · (t� 5)

else
Q �4

end if
t t+ 1

end while

The temperature, the volume and the heat removal profiles are presented in Figure 5.4. As in
the previous section, the dark grey areas represent the single-phase regions, while the light grey
shows the two-phase regime. Initially, the temperature decrease was large as no phase transition
was present. However, this decrease declined as vapour condensed due to the released latent heat of
vaporisation counteracting the temperature decrease. As the system entered the two-phase region,
the volume of the tank was gradually more occupied by the liquid, which can be observed in Figure
5.4b. This result is consistent with the results obtained from the steady-state investigation, as both
the volume and the temperature profiles follow the same pattern. Moreover, it is noteworthy that
the system has not reached steady-state at t = 250 s as the temperature was still decreasing at this

45

Chapter 5 – Case Study of Flash Tank

time. A longer time horizon is, however, possible, but this horizon was considered appropriate and
sufficient to illustrate the dynamic flash tank simulation.

(a) Temperature [K]

(b) Volume [m3] (c) Heat removal [MW]

Figure 5.4: The temperature, volume and heat removal change with time, t. Dark grey areas represent
one-phase regions.

46

5.2. Dynamic flash tanks

The component composition in both the vapour and the liquid phase is presented in Figure 5.5.
These graphs will not be discussed in detail, as they follow the same pattern as the previously dis-
cussed steady-state observations. However, to briefly recap, methanol dominated the vapour phase,
while water occupied the liquid as expected due to the difference in saturation temperature. As
previously stated, the mole fractions are only useful when the corresponding phase exists, as the
values are assigned only to maintain continuity in the model equations. Overall, the composition
profiles correspond to the expectation based on the physical properties of the two components, and
the result from the steady-state simulation as well.

(a) Mole fraction vapour, y (b) Mole fraction liquid, x

Figure 5.5: The liquid and vapour composition in the flash tank with respect to time. The dark grey areas
represent single-phase regions. The liquid is absent until t ⇡ 10 s such that the mole fraction of
liquid before this time is meaningless. The same applies for the mole fraction of vapour above
t ⇡ 175 s, as the vapour flow is zero subsequent to this.

The molar component holdups and the molar phase holdups are presented in Figure 5.6. The
liquid and vapour holdups results, presented in Figure 5.6a, correspond to the previous observa-
tions. As the amount of heat removed increased, the vapour holdup decreased while the liquid
holdup increased. Further, it can be observed through Figure 5.6b that both components’ holdup
increased with time. This increase is expected due to the density difference between the liquid
and vapour phases. A more significant component holdup was necessary when the liquid amount
increased to ensure that the entire volume was occupied at all times. A second observation is that
the molar holdup of water was constantly slightly above the molar holdup of methanol. As water
constituted most of the liquid, this outcome was predictable.

47

Chapter 5 – Case Study of Flash Tank

(a) Vapour and liquid molar holdup [kmol]. (b) Component molar holdup [kmol]

Figure 5.6: The liquid and vapour holdups and the component molar holdups with respect to time. The
dark grey areas represent the single-phase regions.

As previously mentioned, the phase transitions were represented through complementarity pairs.
Figure 5.7 shows how the molar flows, the relaxation variable and the slack variables changed over
time. In the initial stage, the tank was in the vapour-only regime. The relaxation parameter was
then below one, while the slack variables were sV = 0 and sL 6= 0. However, as soon as the tank
entered the two-phase region, at t ⇡ 10 s, � increased to one and remained at this value as long as
the tank existed within this region. In addition, when the liquid started flowing out of the tank, the
associated slack variable, sL, decreased to zero, which agrees with the complementarity constraints.
According to Figure 5.7a, the flow rates were both zero at t ⇡ 144 s. This is a result of the pressure
of the flash tank decreasing below the outlet pressure, which can be observed in Figure 5.7b. At
this moment, the tank was mostly filled with liquid, which is less dense than vapour. As a result,
the pressure dropped to maintain the tank’s total volume. As both FV = 0 and FL = 0 the corre-
sponding slack variables became non-zero, and � 6= 1. However, at t ⇡ 175 s the liquid flow started
increasing again such that sL returned to zero, and � > 1, as expected according to the relaxed
liquid-vapour equilibrium equation.

In the valve equations for the flow rates, the max operator and the absolute value are expressed
in terms of complementarity relationships as well. Figure 5.8a and 5.8b provide the values of the
complementarity variables for the max operator, swp and swm, respectively. When the pressure
in the tank was above the outlet pressure, swm > 0 while swp = 0. This corresponds to the first
expression in the valve equations, equation (4.46) and (4.45), to be dominant. However, when the
drastic pressure drop inside the tank appeared, at t ⇡ 144 s, both outflows became zero as the
second term in the valve equations became active. This can be observed in the slack variables as
swm = 0 and swp > 0. Eventually, the pressure returned to normal, which caused swp to increase

48

5.2. Dynamic flash tanks

(a) The molar flows [kmol/s] (b) Pressure [bar]

(c) The relaxation parameter, �.

(d) Slack variable for the liquid phase, sL. (e) Slack variable for the vapour phase, sV .

Figure 5.7: The values of the molar flow rates, the pressure, the relaxation parameter, �, and both the
slack variables for each of the two phases with respect to time, t. The areas shaded in dark
grey represent one-phase regions.

49

Chapter 5 – Case Study of Flash Tank

and swp to return to zero. Similar patterns can be seen in the complementarity pair representing
the absolute value, savm and savp. Initially, when the pressure is above the outlet pressure, savm = 0

and savp > 0. Eventually, when the pressure dropped, savm increased while savp became zero. At
t ⇡ 175 s, they returned to their original state as the pressure in the flash tank increased. According
to this simulation, the complementarity pairs were able to represent both the max operator and the
absolute operator correctly.

(a) Complementarity variable for max operator, swm. (b) Complementarity variable for max operator, swp.

(c) Complementarity variable for absolute value, savm (d) Complementarity variable for absolute value, savp.

Figure 5.8: The values of the complementarity variables for the max operator, swm and swp, and the
absolute expression, savm and savp in the valve equations, see equation (4.46) and (4.45), with
respect to time. The areas shaded in dark grey represent one-phase regions.

The obtained result agrees with the anticipated physical behaviour, reinforcing the reliability of
the Classic approach. The result is also consistent with the result presented in Reed’s master thesis,
which is based on a non-smooth model approach rather than using complementarity constraints as
in this thesis. This similarity further strengthens the belief that the model is correctly implemented.

50

5.2. Dynamic flash tanks

It should be pointed out that the flash tank model is an oversimplified representation of a flash tank
system and does not reflect reality entirely. A real flash tank system would remove heat at a slower
pace and allow for flow reversal, preventing the sudden pressure drop observed in the simulations.
However, the obtained result is in line with the model presented in this thesis.

It was quite challenging to make the algorithm converge to a solution that made sense from a phys-
ical perspective. To make the problem easily converge, the time horizon was extended compared to
Reed’s proposal, such that heat could be removed at a slower rate. However, further adjustments
were necessary. At first, the entire time horizon, along with all final elements, was given to the al-
gorithm, but the solver was unable to converge. To reduce the size of the optimisation problem, the
algorithm was provided with one or a few final elements at a time. To ensure continuity in the simu-
lation, each final element’s initial condition was set equal to the previous element’s result. Splitting
the optimisation problem in this manner would normally be forbidden but since the objective func-
tion is set to a constant value of 1, rather than minimizing costs or maximising profits, this can be
done. Trial-and-error testing was used to determine the number of elements that should be provided
at once. At first, it was found beneficial to provide the solver with one final element at a time until
t = 90. Then, the entire time horizon t 2 [90, 200] was provided at once. The last final elements,
however, had to be provided one at a time as initially. This splitting is also presented in Algorithm
6. However, there may be other combinations which may yield convergence as well. To further help
the solver in the direction of the optimal solution, the temperature in one element was constrained
to be below or equal to the temperature of the previous element. This is a reasonable constraint as
heat is removed in the model such that a decrease in temperature is to be expected. Additionally,
constraints on the flow rates and the pressure were included as well. This seemed to make the
algorithm successfully converge to a meaningful solution, which corresponds with the expectations
as well as Reed’s findings. The implemented code for this simulation can be found in Appendix G.3.

51

Chapter 5 – Case Study of Flash Tank

Algorithm 6 : Splitting of time horizon in dynamic flash tank.
One final element, nfe, corresponds to one second.
t 1

while t 250 do
if t > 90 then

nfe 1

Classic solve MPCC
t t+ 1

else if t = 90 then
nfe 111

Classic solve MPCC
t 201

else
nfe 1

Classic solve MPCC
t t+ 1

end if
end while

5.2.1 Simulation Problems

Several attempts were carried out to achieve convergence to a meaningful solution. In order to ex-
plain the issues encountered during the simulations, an examination of a specific simulation which
did not achieve the intended results will be further conducted. One final element at a time was
provided to the solver in this specific attempt. Additionally, the rate of heat removal was chosen
to be greater than in the successful simulations, consequently leading to a shorter time horizon of
200 s. Except for these changes, the constraints and model equations were identical to the successful
simulation.

The flow rate, temperature, volume, and component molar holdup profiles are presented in Fig-
ure 5.10. According to these results, the simulation appears to be accurate. These profiles also
match the physical predictions and are identical to the result obtained in the previous section.
However, the slack variables, the relaxation parameter and the pressure profiles presented in Figure
5.9 reveal the inaccuracies in the simulation. At t ⇡ 95 s the pressure inside the tank goes below the
outlet pressure causing the outlet flow valves to close. This allows the pressure to vary to a greater
extent without violating any constraints, causing the oscillations observed in Figure 5.10a. The os-
cillatory behaviour of the pressure reveals the lack of process insights within the simulation, which
emphasise the limitations of the model formulation. An oscillatory behaviour can also be observed
in Figure 5.10c and 5.10d showing the sL and sV profiles, respectively. When the valves closed,
the outlet flows became zero, FL = 0 and FV = 0. Consequently, this allowed the corresponding

52

5.2. Dynamic flash tanks

slack variables sL and sV to be either zero or above zero. However, the results show that the slack
variables, and the relaxation parameter as well, are not uniquely defined, indicating that multiple
solutions exist. The rest of the results from this specific simulation can be found in Appendix D.

(a) The molar flow rates [kmol/s] (b) The volume [m3
]

(c) The temperature [K] (d) The component molar holdup [kmol]

Figure 5.9: The result of a failed simulation. The molar flow rates, the volume, the temperature and the
molar holdup with respect to time. The dark grey areas shows the single-phase regions.

53

Chapter 5 – Case Study of Flash Tank

(a) The pressure [bar] (b) The relaxation parameter �

(c) The slack variable for the liquid, sL (d) The slack variable for the vapour, sV

Figure 5.10: The result from a failed simulation showing oscillations. The pressure, the slack variables and
the relaxation parameter, � with respect to time.

54

5.2. Dynamic flash tanks

This particular simulation reveals that the model formulation, and perhaps the Classic implementa-
tion, is not as robust and well-defined as desired after all. As previously mentioned, the simulations
lack process insights and are consequently highly dependent on the system being well-posed and
uniquely defined. In the situation where none of the phases is present, the equations accounting
for the phase equilibrium and the phase transitions may appear inadequate. The results apply that
convergence of the flash tank was best achieved when only a single phase was present. In the case
of phase transition, and especially when FL, FV = 0, it is likely that the MPCC solutions do not
satisfy strong stationarity or B stationarity, resulting in the convergence issues encountered. If it
was possible to ensure convergence to strong stationarity points only, the results presented in this
section might be avoidable. However, this is beyond the scope of this thesis and will not be further
discussed.

55

Chapter 5 – Case Study of Flash Tank

56

Chapter 6
Final Remarks

As previously stated, MPCCs are generally hard to solve due to some inherent properties. This
thesis explored two interior-penalty algorithms, the Classic and Dynamic, for solving such problems.
Important implementation aspects were discussed, and a performance evaluation was conducted.
These approaches were implemented as extensions of already developed interior point-solvers. The
in-house developed Int Point Solver was easily adapted for the additional features required by the
algorithms, as the various parts of the solver were readily accessible. As curtain concepts related to
performance had yet to be included, this solver was deemed appropriate for more minor problems.
This implementation demonstrated that the Dynamic algorithm outperformed the Classic algorithm
when faced with unbounded penalty problems. However, except for such cases, the Classic algorithm
was sufficient for the majority of the problems. In order to explore the methods more thoroughly,
a case study was performed on a flash tank. IPOPT was chosen as the implementation basis for
this study due to its remarkable proficiency with sparse systems. However, achieving a successful
integration between IPOPT and the additional features turned out to be challenging. In order to
overcome the problems encountered, the barrier parameter was adjusted manually to prevent certain
interruptions. Unfortunately, problems were still associated with the Dynamic algorithm, such that
the case study was conducted with the Classic algorithm.

The results from the steady-state flash tank simulations were promising. The Classic approach
was able to adjust the penalty parameter effectively, resulting in a solution that made sense from
a physical perspective. The associated complementarity constraints and the relaxation parameter
�, were assigned values which corresponded with the expectations. Despite the encouraging result,
several challenges were encountered with the dynamic version. Adjustments were required for the
algorithm to return a valid solution according to the physical assumptions. The solver had to be pro-
vided with fewer elements than anticipated, the time horizon needed to be extended and additional
constraints were required. The oscillating behaviour could result from the problem formulations
not being unique. Several combinations of the variables were possible, such that the solver had to
be guided in the right direction. The deficiencies in the implementation could also contribute to

57

Chapter 6 – Final Remarks

some of the convergence issues encountered. A successful simulation was eventually obtained, which
demonstrated that the Classic implementation can, with certain modifications, address a dynamic
flash tank.

To conclude, both the Dynamic and the Classic approach appeared promising in the problem
investigation. However, the study was limited to rather small-scale problems, such that a more
comprehensive study is needed to make an overall conclusion. The dynamic simulation revealed
that the flash tank model need to be modified, as it was impossible to achieve an accurate simula-
tion using the current model without providing guidance. Thus, this case study demonstrated that
MPCCs are in fact demanding to solve. The simulation issues could, however, also arise from an
inaccurate algorithm implementation as well. Overall, the findings in this master thesis, provide
valuable insights into the potential of the methods but also emphasise the need for further research
on this subject.

6.1 Recommendations for Further Work

In this thesis, the implementation was carried out with the programming language Julia. However,
IPOPT is primarily coded in another coding language, such that a conversion is done along the way.
As a result, it is difficult to access all the steps within the algorithm. Further research could there-
fore be to use a C API. API is short for Application Programming Interface and C API specifically
refers to an interface designed with the C programming language. For the purpose of this thesis,
the C API may be more suited than the JuMP interface, as more precise control of the algorithm
is allowed. Another suggestion is using a solver primarily coded in Julia, with efficient sparse han-
dling included. Such a solver could be MadNLP [27], which is a relatively newer optimization solver
compared to IPOPT.

As pointed out, an improvement in the model formulation may be necessary as well to obtain
a well-posed, uniquely defined system. A suggestion could be to include the slack variables in the
objective function. By doing so, it may be possible to improve convergence. However, a deep pro-
cess insight is required to make such adjustments work properly in the simulations. There may
be other improvements in the simulations that can be carried out as well. As previously stated,
the flash tank model is a significantly simplified representation of a flash tank system. In the flash
tank model, the rate of heat removal is significantly faster than what would typically occur in a
real flash tank system. Additionally, in a real flash tank system, the presence of check valves is not
employed, such that reverse flows are allowed. The behaviour of the molar flows and the pressure
in the figures are correct according to assumptions but are not representative of a real flash tank
system. Removing the check valves such that reverse flows are possible and reducing the rate of
heat removal may therefore be suggestions for improvements. However, this may also increase the
computational demand of the simulations.

58

Bibliography

[1] Alberto Seeger. Recent Advances in Optimization. Springer-Verlag Berlin Heidelberg, 2006.

[2] BT Baumrucker, Jeffrey G Renfro, and Lorenz T Biegler. Mpec problem formulations and
solution strategies with chemical engineering applications. Computers & Chemical Engineering,
32(12):2903–2913, 2008.

[3] M Teresa T Monteiro and José Filipe P Meira. A penalty method and a regularization strategy
to solve mpcc. International Journal of Computer Mathematics, 88(1):145–149, 2011.

[4] Tim Hoheisel, Christian Kanzow, and Alexandra Schwartz. Theoretical and numerical com-
parison of relaxation methods for mathematical programs with complementarity constraints.
Mathematical Programming, 137(1):257–288, 2013.

[5] Sven Leyffer. Mathematical programs with complementarity constraints. SIAG/OPT Views-

and-News, 14(1):15–18, 2003.

[6] Marius Reed. Nonsmooth modelling of multiphase multicomponent heat exchangers with phase
changes. Master’s thesis, NTNU, 2018.

[7] Ali M Sahlodin, Harry AJ Watson, and Paul I Barton. Nonsmooth model for dynamic simu-
lation of phase changes. AIChE Journal, 62(9):3334–3351, 2016.

[8] Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applications to chemical

processes. SIAM, 2010.

[9] Sven Leyffer, Gabriel López-Calva, and Jorge Nocedal. Interior methods for mathematical
programs with complementarity constraints. SIAM Journal on Optimization, 17(1):52–77,
2006.

[10] Ann Iren Fossøy. Evaluation of strategies for solving mathematical programs with complemen-
tarity constraints, 2023. Specialization Project, NTNU.

[11] Caroline S.M Nakama. Interior point solver algorithm. Internal report, January 2023. Unpub-
lished.

59

Chapter – BIBLIOGRAPHY

[12] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical programming, 106(1):
25–57, 2006.

[13] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[14] Lorenz T. Biegler. Nonlinear Programming. Society for Industrial and Applied Mathematics,
2010.

[15] Nikolaos Ploskas, Nikolaos Samaras, et al. Linear programming using MATLAB®, volume
127. Springer, 2017.

[16] Sven Leyffer and Todd S Munson. A globally convergent filter method for mpecs. Preprint

ANL/MCS-P1457-0907, Argonne National Laboratory, Mathematics and Computer Science

Division, 2007.

[17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1), 2017. URL https://doi.org/10.1137/

141000671.

[18] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and
Juan Pablo Vielma. Jump 1.0: Recent improvements to a modeling language for mathematical
optimization. Mathematical Programming Computation, 2023. In press.

[19] Sven Leyffer. MacMPEC. https://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC, 2015. Ac-
cessed: 12.08.22.

[20] Junior D Seader, Ernest J Henley, and D Keith Roper. Separation process principles: With

applications using process simulators. John Wiley & Sons, 2016.

[21] Sigurd Skogestad. Chemical and energy process engineering. CRC press, 2008.

[22] Yunus A Cengel, Michael A Boles, and Mehmet Kanoğlu. Thermodynamics: an engineering

approach, volume 5. McGraw-hill New York, 2011.

[23] Morten Helbæk, Signe Kjelstrup, and Morten Helb. Fysikalsk kjemi. Fagbokforl., 2006.

[24] Tore Haug-Warberg. Den termodynamiske arbeidsboken. Kolofon forlag AS, 2006.

[25] P Flatby, S Skogestad, and P Lundström. Rigorous dynamic simulation of distillation columns
based on uv-flash. In Advanced Control of Chemical Processes 1994, pages 261–266. Elsevier,
1994.

[26] Eds. P.J. Linstrom and W.G. Mallard. NIST Chemistry WebBook. NIST Standard Reference
Database Number 69.

[27] Sungho Shin, Carleton Coffrin, Kaarthik Sundar, and Victor M Zavala. Graph-based modeling
and decomposition of energy infrastructures. arXiv preprint arXiv:2010.02404, 2020.

60

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

Appendices

61

Appendix A
Units Used in Julia

Table A.1: The units of the parameters used in the simulations in Julia.

Parameters Description Unit

⇢ The density Mmol/m3

cp,L The specific heat capacity, liquid MJ/(kmol kK)

cp,V The specific heat capacity, vapour MJ/(kmol kK)

hvap The heat of vaporisation MJ/kmol

Tref The reference temperature kK

63

Chapter A – Units Used in Julia

Table A.2: The units of the variables used in the simulations in Julia.

Variables Description Unit

U The internal energy MJ

H The enthalpy MJ

Mi The component molar holdup kmol

ML The liquid molar holdup kmol

MV The vapour molar holdup kmol

FL The liquid outflow kmol/s

FV The vapour outflow kmol/s

⇢L The liquid density Mmol/m3

hL The molar liquid enthalpy MJ/kmol

hV The molar vapour enthalpy MJ/kmol

T The temperature kK

p The pressure MPa

VV The vapour volume m3

VL The liquid volume m3

psat,i The saturation pressure MPa

xi The liquid molar fraction -

yi The vapour molar fraction -

ki The equilibrium constant -

64

Appendix B
Complementarity Reformulations

Complementarity formulation can be used to represent non-smooth functions such as the absolute
value and the max operator. The absolute value operator w = |f(x)| can be equivalently expressed
as,

w = f(x)y (B.1)

y = arg
⇢
min
ŷ
�f(x)ŷ s.t� 1 ŷ 1

�
(B.2)

The optimality condition to the optimisation problem can be formulated as,

f(x) = savm � savp, (B.3a)

0 savm ? (1� y) � 0, (B.3b)

0 savp ? (y + 1) � 0. (B.3c)

It is then possible to eliminate y by manipulating equation (B.3b) and (B.3c). Lastly, by inserting
equation (B.3a) into equation (B.1) the final representation of the absolute value operator by utilising
complementarity formulations becomes,

z = savm + savp, (B.4a)

f(x) = savm � savp, (B.4b)

0 savm ? savp � 0. (B.4c)

A similar approach can be followed to rewrite the max operator w = max {f(x), u}. The max
operator can be expressed as follow,

w = f(x) + (u� f(x))y, (B.5)

y = arg
⇢
min
ŷ

(f(x)� u)ŷ s.t 0 ŷ 1

�
. (B.6)

65

Chapter B – Complementarity Reformulations

The optimality condition for this problem becomes,

w = f(x) + (u� f(x))y (B.7a)

f(x)� u = swp � swm, (B.7b)

0 swm ? (1� y) � 0 (B.7c)

0 swp ? y � 0 (B.7d)

By manipulating these equations such that y is eliminated, the final expression for the max operator
in terms of complementarity formulations becomes [8],

w = f(x) + swm, (B.8a)

f(x)� u = swp � swm, (B.8b)

0 swp ? swm � 0. (B.8c)

66

Appendix C
Flash Tank Model Equations

C.1 Stationary Flash Tank

The phase equilibrium equations

log10(psat,i) = Ai �
Bi

T + Ci
(C.1)

Ki =
psat,i

p
(C.2)

� ·Ki · xi = yi (C.3)

ncX

i=1

yi �
ncX

i=1

xi = 0 (C.4)

� � 1� sV + sL = 0 (C.5)

The material balances
F · zi = FV · yi + FL · xi (C.6)

Mi = ML · xi +MV · yi (C.7)

ncX

i=1

Mi = ML +MV (C.8)

67

Chapter C – Flash Tank Model Equations

The energy balances
F · hi = FL · hL + FV · hV (C.9)

hL =
ncX

i

xi · cp,L,i · (T � Tref), (C.10)

hV =
ncX

i

yi [hvap,i + cp,V,i · (T � Tref)] , (C.11)

H = ML · hL +MV · hV (C.12)

H = U + p · V (C.13)

Phase distribution
VV + VL = V (C.14)

VV · p = MV ·R · T (C.15)

1

⇢L
=

ncX

i=1

xi

⇢i
(C.16)

The valve equations
z = savm + savp (C.17)

p� p
0 = savm � savp (C.18)

0 savm ? savp � 0 (C.19)

w = 0 + swm (C.20)

p
0 � p = (z + ✏)0.5(swp � swm) (C.21)

0 swm ? swp � 0 (C.22)

FV = cV · VV

V
· w, (C.23)

FL = cL · VL

V
· w. (C.24)

68

C.2. Dynamic Flash Tank

C.2 Dynamic Flash Tank

The phase equilibrium equations

log10(psat,i(t)) = Ai �
Bi

T (t) + Ci
(C.25)

ki(t) =
psat,i(t)

p(t)
(C.26)

�(t) · ki(t) · xi(t) = yi(t) (C.27)

ncX

i=1

yi(t)�
ncX

i=1

xi(t) = 0 (C.28)

�(t)� 1� sV (t) + sL(t) = 0 (C.29)

The material balances

dMi(t)

dt
= Fin(t) · zi � FL(t) · xi(t)� FV (t) · yi(t) +Q(t) (C.30)

Mi(t) = ML(t) · xi(t) +MV (t) · yi(t) (C.31)

ncX

i=1

Mi(t) = ML(t) +MV (t) (C.32)

69

Chapter C – Flash Tank Model Equations

The energy balances

dUi(t)

dt
= Fin · hin � FL(t) · hL(t)� FV (t) · hV (t) (C.33)

hL(t) =
ncX

i

xi(t) · cp,L,i · (T (t)� Tref), (C.34)

hV (t) =
ncX

i

yi(t) [hvap,i + cp,V,i · (T (t)� Tref)] , (C.35)

H(t) = ML(t) · hL(t) +MV (t) · hV (t) (C.36)

H(t) = U(t) + p(t) · V (C.37)

Phase distribution
VV (t) + VL(t) = V (C.38)

VV (t) · p(t) = MV (t) ·R · T (t) (C.39)

1

⇢L(t)
=

ncX

i=1

xi(t)

⇢i
(C.40)

The valve equations
z(t) = savm(t) + savp(t) (C.41)

p(t)� p
0 = savm(t)� savp(t) (C.42)

0 savm(t) ? savp(t) � 0 (C.43)

w(t) = 0 + swm(t) (C.44)

p
0 � p(t) = (z(t) + ✏)0.5(swp(t)� swm(t)) (C.45)

0 swm(t) ? swp(t) � 0 (C.46)

FV (t) = cV · VV (t)

V
· w(t), (C.47)

FL(t) = cL · VL(t)

V
· w(t). (C.48)

70

Appendix D
Flash Tank Simulation Failure

The following figures show the results from a failed simulation of a dynamic flash tank where the
solver received one final element at a time, and the time horizon was 200 s.

71

Chapter D – Flash Tank Simulation Failure

(a) The temperature [K]. (b) Component molar holdup [kmol]

(c) The volume [m3] (d) The molar flows [kmol s�1]

(e) The liquid mole fraction, x (f) The vapour mole fraction,y.

Figure D.1: The result of a failed simulation. The values of temperature, volume, component holdup,
the molar flows, and the mole fractions with respect to time. The dark grey areas show the
single-phase regions

72

Flash Tank Simulation Failure

(a) Pressure [bar]. (b) Liquid and vapour molar holdup [kmol]

(c) The slack variable for liquid phase sL (d) The slack variable for vapour phase sV

(e) The relaxation parameter, �.

Figure D.2: The result of a failed simulation. The values of the slack variables sL and sV , the relaxation
parameter �, the pressure and the molar holdups. The single-phase regions are represented in
dark grey.

73

Chapter D – Flash Tank Simulation Failure

(a) The complementarity value for max operator, swm (b) The complementarity value for max operator, swp

(c) The complementarity value for absolute value, savm (d) The complementarity value for absolute value, savp

Figure D.3: The result of a failed simulation. The values of the complementarity variables for the max
operator and the absolute expression in the valve equations with respect to time. The dark
grey area indicates the two-phase region.

74

Appendix E
The Maxwell Relations

Entropy, s is a thermodynamic property which can not be measured directly. For this property to be
computed, it must be related to other measurable properties. The Maxwell relations are equations
which relate partial derivatives of the properties pressure P volume V , temperature T and entropy
with each other. It is important to note that these relations only apply to simple compressible
systems. The Maxwell relations are derived from the Gibbs equations,

du = Tds� PdV (E.1a)

dh = Tds+ V dP (E.1b)

da = �sdT + V dP (E.1c)

dg = �sdT + V dP, (E.1d)

where u is internal energy and a and g are the Helmholtz and Gibbs energy, respectively. By
examining these relations, they appear to be on the form,

dz = Mdx+Ndy, (E.2)

with, ✓
@M

@y

◆

x

=

✓
@N

@x

◆

y

. (E.3)

Equation (E.3) can be applied to all of the properties u,h,a and g as they have exact differentials.
The Maxwell relations are then derived [22],

✓
@T

@V

◆

s

= �
✓
@P

@s

◆

V

(E.4a)

✓
@T

@P

◆

s

=

✓
@V

@s

◆

p

(E.4b)
✓

@s

@V

◆

T

=

✓
@P

@T

◆

V

(E.4c)
✓

@s

@P

◆

T

= �
✓
@v

@T

◆

p

(E.4d)

75

Chapter E – The Maxwell Relations

76

Appendix F
The Approaches Implemented in Julia

The following codes are the implementations of the Classic and Dynamic approaches using IPOPT
as the implementation basis.

F.1 The Classic Implementation

⌥ ⌅
#

Implementation of the Classic algorithm.

#

Based on the paper:

"Interior Methods for Mathematical Programs with

Complementarity Constraints" by Sven Leyffer

#

Ann Iren Fossøy

Spring 2023

#

Last update: 04.06.23

#

Custom union types

ProdL = Union{VariableRef, AffExpr}

ProdNL = Union{QuadExpr, NonlinearExpression,ProdL}

TypeL = Union{QuadExpr, VariableRef, AffExpr}

TypeNL = Union{NonlinearExpression,TypeL}

"""

classic_solve_mpcc!(model, comp, objective = :obj; kwargs...)

Solves an MPCC problem defined in JuMP using the Classic interior-penalty approach

with IPOPT as basis.

�model� is a JuMP model containing the MPCC problem;

�comp� is an array of pairs with the complementarity variables;

�objective� is a symbol for the JuMP expression definng the objective function;

77

Chapter F – The Approaches Implemented in Julia

�kwargs� are parameters used by the MPCC algorithm;

"""

function classic_solve_mpcc!(model, comp, objective = :obj ; kwargs...)

Defining parameters

� = get(kwargs, :gamma, 0.4);

⇡ = get(kwargs, :pi, 1); # the penalty parameter starting value

µ = get(kwargs, :mu, 0.1); # the barrier parameter starting value

✏ = get(kwargs, :✏, 10);

✏tol = get(kwargs, :✏tol, 1e-8);

µ = get(kwargs, :µ, 0.2)

✓µ = get(kwargs, :✓µ, 1.5)

nc = length(comp);

cvar = Vector{Tuple{Any,Any}}(undef, nc); # the vector with the comp. pairs

lenComp = Array{Int64, 1}(undef, nc) # the length of each comp. pairs

pen = Array{Any, 1}(undef, nc) # the vector with penalty terms

obj = getindex(model, objective)

Intalization of iteration

k = 1;

j = 0;

lastObjVal = 0;

objVal = 0;

itCounter = 0;

for i in 1:nc

add_comp_pair!(cvar, comp[i][1],comp[i][2],i)

add_length!(lenComp,cvar[i][1],i)

if lenComp[i] == 1

add_pen!(pen, model, i, [cvar[i][1]; cvar[i][2]]...)

else
add_pen!(pen, model, i,lenComp[i], [cvar[i][1]; cvar[i][2]]...)

end
end

Adding the penalty terms to the objective function

update_objective!(model,obj,⇡,nc,pen...);

Number of variables

n = num_variables(model);

m = num_constraints(model,count_variable_in_set_constraints = false);

while k <= 100

✏comp = µˆ�

✏pen = µ * ✏

set_optimizer_attributes(model, "mu_target" => µ, "mu_init" => µ,

"dual_inf_tol" => ✏pen,

"constr_viol_tol" => ✏pen,

"compl_inf_tol" => ✏pen,

"warm_start_init_point" => "yes"

);

78

F.1. The Classic Implementation

iters = [] # number of iterations

dual_inf = [] # the primal infeasbility

primal_inf = [] # the dual infeasbility

compl_inf = [] # the complementarity infeasbility

val_obj = [] # the objective function value

val_var = [] # the values of the variables

x_it = []

y_it = []

function my_callback(

alg_mod::Cint,

iter_count::Cint,

obj_value::Float64,

inf_pr::Float64,

inf_du::Float64,

mu::Float64,

d_norm::Float64,

regularization_size::Float64,

alpha_du::Float64,

alpha_pr::Float64,

ls_trials::Cint)

append!(iters, iter_count)

append!(dual_inf,inf_du)

append!(primal_inf, inf_pr)

append!(val_obj, obj_value)

To acesses the complementarity infeasibility in each iteraion

x, z_L, z_U = zeros(n), zeros(n), zeros(n)

g, lambda = zeros(m), zeros(m)

scaled = true

prob = unsafe_backend(model).inner

Ipopt.GetIpoptCurrentIterate(prob,scaled,n,x,z_L,z_U,m,g,lambda)

x_L_violation, x_U_violation = zeros(n), zeros(n)

compl_x_L, compl_x_U, grad_lag_x = zeros(n), zeros(n), zeros(n)

nlp_constraint_violation, compl_g = zeros(m), zeros(m)

Ipopt.GetIpoptCurrentViolations(

prob,

scaled,

n,

x_L_violation,

x_U_violation,

compl_x_L,

compl_x_U,

grad_lag_x,

m,

nlp_constraint_violation,

compl_g,

)

inf_compl = maximum([compl_x_L;compl_x_U])

append!(compl_inf,inf_compl)

append!(val_var,[x])

append!(x_it,x[1])

append!(y_it,x[2])

return true

end

79

Chapter F – The Approaches Implemented in Julia

MOI.set(model, Ipopt.CallbackFunction(), my_callback)

Optimizing the model

optimize!(model);

Get number of inner iterations

j += last(iters)

Get the complementarity satisfaction

comp_satisfaction = complementaritycheck(cvar,nc)

if comp_satisfaction > ✏comp # if complementarity not satisfied

if ⇡ < 1e14

⇡ = ⇡ * 10

update_objective!(model,obj,⇡,nc,pen...)

else
error("Couldn't find a suitable value for pi")

end

else # if complementarity satisfied satisfied

print_iteration(model,k,objVal,µ,⇡)

lastObjVal = objVal

objVal = objective_value(model)

Checking stopping test for MPCC

if (µ <= ✏tol && optimality(primal_inf,dual_inf,compl_inf) <= ✏tol

&& abs(objVal - lastObjVal) <= ✏tol)

print_result(model,k,objVal,j)

return 1

break

else
k += 1;

µ = decrease_µ(µ, ✏tol, µ, ✓µ)

i = 1

while i < 5

if last(compl_inf) < ✏*µ

µ = decrease_µ(µ, ✏tol, µ, ✓µ)

else
break

end
i += 1

end
set_optimal_start_values(model)

end
end
if k > 100

println("Maximum number of iterations reached.")

end
end
return 0

80

F.1. The Classic Implementation

end

"""

add_comp_pair!(cvar,comp_1,comp_2,i)

Adds the complementarity pair into a vector cvar

�comp_1� is the first expression in the complementarity pair;

�comp_2� is the second expression in the complementarity pair;

�cvar� is the vector containing the complementairty pairs;

�i� is the number of the current complementarity pairs;

"""

function add_comp_pair!(cvar, comp_1::Matrix{T},

comp_2::Matrix{T}, i)where T <: TypeNL

cvar[i] = (collect(Iterators.flatten(comp_1)),

collect(Iterators.flatten(comp_2)));

end

function add_comp_pair!(cvar,comp_1::T,

comp_2::T ,i) where T<:JuMP.Containers.DenseAxisArray

cvar[i] = (collect(Iterators.flatten(comp_1)),

collect(Iterators.flatten(comp_2)));

end

function add_comp_pair!(cvar, comp_1::Union{VariableRef, AffExpr, QuadExpr},

comp_2::NonlinearExpression,i)

cvar[i] = (collect(Iterators.flatten(comp_1)),

collect(Iterators.flatten(comp_2)));

end

function add_comp_pair!(cvar, comp_1::NonlinearExpression,

comp_2::Union{VariableRef, AffExpr, QuadExpr},i)

cvar[i] = (collect(Iterators.flatten(comp_1)),

collect(Iterators.flatten(comp_2)));

end

function add_comp_pair!(cvar, comp_1::NonlinearExpression,

comp_2::NonlinearExpression, i)

cvar[i] = (collect(Iterators.flatten(comp_1)),

collect(Iterators.flatten(comp_2)));

end

function add_comp_pair!(cvar, comp_1, comp_2, i)

cvar[i] = (comp_1, comp_2)

end

"""

81

Chapter F – The Approaches Implemented in Julia

add_length!(compi, lenComp, i)

Find the length of the current complementairty pair and add to vector.

�compi� is one of the complementarity expressions in the pair;

�lenComp� is the vector storing the lengths;

�i� is the number of the current complementarity pair;

"""

function add_length!(lenComp,compi::VariableRef,i)

lenComp[i] = 1;

end

function add_length!(lenComp,compi,i)

lenComp[i] = length(compi)

end

"""

add_pen!(pen, model, i, cvar...)

Multuiply the complementairty pairs, creating the penalty terms, and adding

it to the vector 'pen'

�pen� is the vector containing the penalty expressions;

�model� is the JuMP model;

�i� is the number of the current complementarity pair;

�cvar� containts the complementarity pair;

"""

function add_pen!(pen, model::JuMP.Model,i, cvar::ProdNL...)

pen[i] = @NLexpression(model, cvar[1] * cvar[2]);

end

function add_pen!(pen, model::JuMP.Model,i, cvar::ProdL...)

pen[i] = @expression(model, cvar[1] * cvar[2]);

end

function add_pen!(pen, model::JuMP.Model, i, len, cvar::ProdL...)

cvar_1 = cvar[1:len]

cvar_2 = cvar[len+1:end]
pen[i] = @expression(model,

sum(cvar_1[j] * cvar_2[j] for j in eachindex(cvar_1)));

end

function add_pen!(pen, model::JuMP.Model, i, len, cvar::ProdNL...)

cvar_1 = cvar[1:len]

cvar_2 = cvar[len+1:end]
pen[i] = @NLexpression(model,

82

F.1. The Classic Implementation

sum(cvar_1[j] * cvar_2[j] for j in eachindex(cvar_1)));

end

"""

update_objective!(model, obj, ⇡, nc, pen...)

Multiplying the complementairty pairs, creating the penalty terms,

and adding it to the vector 'pen'

�model� is the JuMP model;

�obj� is the objective function;

�⇡� is the current value for ⇡;

�nc� is the length of the cvar vector;

�pen� is the vector containing the penalty expressions;

"""

function update_objective!(model::JuMP.Model, obj::NonlinearExpression,

⇡, nc, pen...)

@NLobjective(model, Min, obj + ⇡ * sum(pen[i] for i in 1:nc));

end

function update_objective!(model::JuMP.Model,obj,⇡, nc, pen::TypeNL...)

@NLobjective(model, Min, obj + ⇡ * sum(pen[i] for i in 1:nc));

end

function update_objective!(model::JuMP.Model,obj::NonlinearExpression,

⇡, nc, pen::TypeNL...)

@NLobjective(model, Min, obj + ⇡ * sum(pen[i] for i in 1:nc));

end

function update_objective!(model::JuMP.Model,obj,⇡,nc,pen::TypeL...)

@objective(model, Min, obj + ⇡ * sum(pen[i] for i in 1:nc));

end

"""

complementaritycheck(cvar,nc)

Cheaking the complementarity satisfation by taking the infity norm of

the smallest element in each complementarity pair

�cvar� the vector containg the complementarity pairs;

�nc� is the length of the cvar vector;

"""

function complementaritycheck(cvar,nc)

compVal = Vector{Tuple{Any,Any}}(undef,nc);

minVal = [];

for i in 1:nc

83

Chapter F – The Approaches Implemented in Julia

compVal[i] = (value.(cvar[i][1]), value.(cvar[i][2]))

append!(minVal,min.(compVal[i][1], compVal[i][2]))

end
norm(minVal, Inf)

end

"""

print_iteration(model, k, ovjVal, µ, ⇡)

Print each iteration

�model� is the JuMP model;

�k� is the current outer iteration;

�objVal� is the objective function value;

�µ� is the current barrier parameter;

�⇡� is the current penalty parameter;

"""

function print_iteration(model,k,objVal,µ, ⇡)

@printf("it: %2i, obj = %.3f, Termination = %11s,log(mu) = %3.1f,

pi = %1i \n", k, objVal, termination_status(model) ,log10(µ),⇡)

end

"""

print_result(model, k, objVal,j)

Print the result.

�model� is the JuMP model;

�k� is the numer of outer iteration;

�objVal� is the objective function value found;

�j� is the total number inner iterations;

"""

function print_result(model,k,objVal,j)

println("\n Outer iterations = ", k,

"\n Objective value = ", objVal,

"\n Inner iterations = ", j);

end

"""

set_optimal_start_values(model)

Set primal and dudal warm start from JuMP

Taken from: https://jump.dev/JuMP.jl/stable/tutorials/conic/start_values/

�model� is the JuMP model

"""

function set_optimal_start_values(model::Model)

Store a mapping of the variable primal solution

variable_primal = Dict(x => value(x) for x in all_variables(model))

In the following, we loop through every constraint and store a mapping

84

F.1. The Classic Implementation

from the constraint index to a tuple containing the primal and dual

solutions.

constraint_solution = Dict()

nlp_dual_start = nonlinear_dual_start_value(model)

for (F, S) in list_of_constraint_types(model)

We add a try-catch here because some constraint types might not

support getting the primal or dual solution.

try
for ci in all_constraints(model, F, S)

constraint_solution[ci] = (value(ci), dual(ci))

end
catch

@info("Something went wrong getting $F-in-$S. Skipping")

end
end
Now we can loop through our cached solutions and set the starting values.

for (x, primal_start) in variable_primal

set_start_value(x, primal_start)

end
for (ci, (primal_start, dual_start)) in constraint_solution

set_start_value(ci, primal_start)

set_dual_start_value(ci, dual_start)

end
set_nonlinear_dual_start_value(model, nlp_dual_start)

return
end

"""

optimality(primal_inf,dual_inf, compl_inf)

Returns the largest value of the primal, dual and complementarity infeasbility

�primal_inf� vector containing the primal infeasbility

�primal_dual� vector containing the dual infeasbility.

�compl_inf� vector containing the complementarity infeasbility

"""

function optimality(primal_inf,dual_inf,compl_inf)

max(last(primal_inf),last(dual_inf),last(compl_inf))

end

"""

decrease_µ(µ0,✏tol,µ,✓µ)

Decreasing µ accroding to a spesific rule.

This way, the barrier parameter does not become smaller than necessary

given the overall tolerance "tol of the problem.

�µ0� the previous µ

�✏tol� the overall tolerance

�µ� spesific parameter satisfying 0 < µ < 1

�✓µ� spesific parameter satisfying 1 < ✓µ < 2

"""

function decrease_µ(µ0,✏tol,µ,✓µ)

µ = max(✏tol*0.1, min(µ*µ0, µ0ˆ✓µ))

85

Chapter F – The Approaches Implemented in Julia

end⌃ ⇧

F.2 The Dynamic Implementation

⌥ ⌅
#

Implementation of the Dynamic algorithm.

#

Based on the paper: "Interior Methods for Mathematical Programs

with Complementarity Constraints" by Sven Leyffer

#

Ann Iren Fossøy

Spring 2023

#

Last update: 04.06.23

#

"""

dynamic_solve_mpcc!(model, comp, objective = :obj; kwargs...)

Solves an MPCC problem defined in JuMP using the Dynamic interior-penalty approach

with IPOPT as basis.

�model� is a JuMP model containing the MPCC problem;

�comp� is an array of pairs with the complementarity variables;

�objective� is a symbol for the JuMP expression definng the objective function;

�kwargs� are parameters used by the MPCC algorithm;

"""

function dynamic_solve_mpcc!(model, comp, objective = :obj ; kwargs...)

defining parameters

� = get(kwargs, :gamma, 0.4);

⇡ = get(kwargs, :pi, 1); # the penalty parameter starting value

µ = get(kwargs, :mu, 0.1); # the barrier parameter starting value

✏ = get(kwargs, :✏, 10);

✏tol = get(kwargs, :✏tol, 1e-8);

µ = get(kwargs, :µ, 0.2)

✓µ = get(kwargs, :✓µ, 1.5)

⌘ = get(kwargs, :⌘, 0.9)

nc = length(comp);

cvar = Vector{Tuple{Any,Any}}(undef, nc); # the vector with the comp. pairs

lenComp = Array{Int64, 1}(undef, nc) # the length of each comp. pair

pen = Array{Any, 1}(undef, nc) # the vector with the penalty terms

obj = getindex(model, objective)

Intalization of iteration

k = 1;

j = 0;

m_val = 3

86

F.2. The Dynamic Implementation

val = ones(m_val) # values attained in the m last iterations

lastObjVal = 0;

objVal = 0;

for i in 1:nc

add_comp_pair!(cvar, comp[i][1],comp[i][2],i)

add_length!(lenComp,cvar[i][1],i)

if lenComp[i] == 1

add_pen!(pen, model, i, [cvar[i][1]; cvar[i][2]]...)

else
add_pen!(pen, model, i, lenComp[i], [cvar[i][1]; cvar[i][2]]...)

end

end

Adding the penalty terms to the objective function

update_objective!(model,obj,⇡,nc,pen...);

Number of variables

n = num_variables(model);

m = num_constraints(model,count_variable_in_set_constraints = false);

p = 0; # the current indice

itCounter = 0; # total number of inner iteraitons

while k <= 100

✏comp = µˆ�

✏pen = µ * ✏

set_optimizer_attributes(model, "mu_target" => µ, "mu_init" => µ,

"dual_inf_tol" => ✏pen,

"constr_viol_tol" => ✏pen,

"compl_inf_tol" => ✏pen)

iters = [] # Number of iterations

dual_inf = [] # The primal infeasbility

primal_inf = [] # The dual infeasbility

compl_inf = [] # The complementarity infeasbility

val_obj = [] # The objective function value

val_var = [] # The values of the variables

x_it = []

y_it = []

compVal = []

piVal = []

current_val_val = [0.]

⌘_max_val_val = [0.]

condition = true;

87

Chapter F – The Approaches Implemented in Julia

function my_callback(

alg_mod::Cint,

iter_count::Cint,

obj_value::Float64,

inf_pr::Float64,

inf_du::Float64,

mu::Float64,

d_norm::Float64,

regularization_size::Float64,

alpha_du::Float64,

alpha_pr::Float64,

ls_trials::Cint)

append!(iters, iter_count)

append!(dual_inf,inf_du)

append!(primal_inf, inf_pr)

append!(val_obj, obj_value)

To acesses the complementarity infeasibility in each iteraion

x, z_L, z_U = zeros(n), zeros(n), zeros(n)

g, lambda = zeros(m), zeros(m)

scaled = true

prob = unsafe_backend(model).inner

Ipopt.GetIpoptCurrentIterate(prob,scaled,n,x,z_L,z_U,m,g,lambda)

x_L_violation, x_U_violation = zeros(n), zeros(n)

compl_x_L, compl_x_U, grad_lag_x = zeros(n), zeros(n), zeros(n)

nlp_constraint_violation, compl_g = zeros(m), zeros(m)

Ipopt.GetIpoptCurrentViolations(

prob,

scaled,

n,

x_L_violation,

x_U_violation,

compl_x_L,

compl_x_U,

grad_lag_x,

m,

nlp_constraint_violation,

compl_g,

)

inf_compl = maximum([compl_x_L; compl_x_U])

append!(compl_inf,inf_compl)

append!(val_var,[x])

append!(x_it,x[1])

append!(y_it,x[2])

if iter_count !=0

append!(compVal,complCheck(model,cvar,nc))

append!(piVal, ⇡)

p = (itCounter % m_val != 0) ? p + 1 : 1

update_val!(val,model,cvar,nc,p,lenComp)

if iter_count >= 3

88

F.2. The Dynamic Implementation

max_val = maximum(val)

current_val = val[p]

compSat = complCheck(model,cvar,nc)

condition = !(compSat > ✏comp && current_val > ⌘*max_val)

For debugging

current_val_val[1] = current_val

⌘_max_val_val[1] = ⌘*max_val

else
condition = true

end

itCounter += 1

else
condition = true

end

return condition

end
MOI.set(model, Ipopt.CallbackFunction(), my_callback)

Optimizing the model

optimize!(model);

Get number of inner iterations

j += last(iters)

If current_val > ⌘*max_val

if MOI.get(model, MOI.TerminationStatus()) == MOI.INTERRUPTED

if ⇡ < 1e8

⇡ = ⇡ * 10

update_objective!(model,obj,⇡,nc,pen...)

else
error("Couldn't find a suitable value for pi")

end

else
Get the complementarity satisfaction

comp_satisfaction = complementaritycheck(cvar,nc)

if comp_satisfaction >= ✏comp # if complementarity not satisfied

if ⇡ < 1e8

⇡ = ⇡ * 10

update_objective!(model,obj,⇡,nc,pen...)

else
error("Couldn't find a suitable value for pi")

end

else # if complementarity satisfied

print_iteration(model,k,objVal,µ,⇡)

lastObjVal = objVal

objVal = objective_value(model)

89

Chapter F – The Approaches Implemented in Julia

Checking stopping test for MPCC

if (µ <= ✏tol && optimality(primal_inf,dual_inf,compl_inf) <= ✏tol

&& abs(objVal - lastObjVal) < ✏tol)

print_result(model,k,objVal,j)

return 1

break

else
k += 1;

µ = decrease_µ(µ, ✏tol, µ, ✓µ)

i = 1

while i < 5

if last(compl_inf) < ✏*µ

µ = decrease_µ(µ, ✏tol, µ, ✓µ)

else
break

end
i += 1

end
set_optimal_start_values(model)

set_optimizer_attributes(model,

"warm_start_init_point" => "yes")

end
end

end
if k > 100

println("Maximum number of iterations reached.")

end
end
return 0

end

"""

update_val!(val,model,cvar,,nc,p,lencomp)

Updating the val vectors after each inner iterations.

The val vector containts the product of the complementarity pairs in the

m last iterations

�val� the vector beining updated

�model� the JuMP model

�cvar� the vector holding the comp. pairs

�p� the current indice to be updated

�lenComp� the vector containg the length of the comp. pairs

"""

function update_val!(val,model,cvar,nc,p,lenComp)

compVal = Vector{Tuple{Any,Any}}(undef,nc);

compProd = Array{Float64, 1}(undef, nc)

function func(xi)

return callback_value(model,xi)

end

90

F.2. The Dynamic Implementation

for i in 1:nc

compVal[i] = (value.(func,cvar[i][1]), value.(func,cvar[i][2]))

compProd[i] = (lenComp[i] == 1) ? compVal[i][1] * compVal[i][2]

: sum(compVal[i][1][j] * compVal[i][2][j] for j in lenComp[i])

end
val[p] = sum(compProd[i] for i in nc)

end

"""

complCheck(model,cvar,nc)

Check the complementarity satisfaction after each inner iterations

�model� the JuMP model

�cvar� the vector holding the comp. pairs

returns the infity norm

"""

function complCheck(model,cvar,nc)

compVal = Vector{Tuple{Any,Any}}(undef,nc);

minVal = [];

function funci(xi)

return callback_value(model,xi)

end

for i in 1:nc

compVal[i] = (value.(funci,cvar[i][1]), value.(funci,cvar[i][2]))

append!(minVal,min.(compVal[i][1], compVal[i][2]))

end
norm(minVal, Inf)

end⌃ ⇧

91

Chapter F – The Approaches Implemented in Julia

92

Appendix G
The Flash Thank implementation

G.1 The Flash Tank Functions

⌥ ⌅
#

Functions for composing the flash model

#

using MPCCLibrary;

R = 8.314 # MJ/(kmol · Kk)

struct Dynamic

nfe::Int16 # number of final elements

ncp::Int8 # number of collocation points

tspan::Tuple{Float64, Float64} # the time horizon

end

struct Substance

name::String

rho::Float64 # density Mmol/m^3

CpL::Float64 # Heat capacity liquid MJ/(kmol · Kk)

CpV::Float64 # Vapor capacity liquid MJ/(kmol · Kk)

Hvap::Float64 # Heat of vaporization MJ/(kmol)

Antoine_par::Array{Float64,1} # [A, B, C] bar & K

Tref::Float64 # Referance temperature Kk

end

mutable struct Feed

Comp::Array{Substance,1}

z::Array{Float64,1} # Mole fraction

F::Float64 # Feed stream Kmol/s

T::Float64 # Temperature of feed Kk

p::Float64 # Preesure of feed MPa

Feed() = new()

end

93

Chapter G – The Flash Thank implementation

--------------------------- Singel flash tank --------------------------------

"""

flash_ss!(model, Fin, kwargs...)

A representation of a steady state model of flash tank;

Adds constraints to model based on the inlet feed.

Returns the complementarity pairs as a vector

�model� is a JuMP model containing the MPCC problem;

�Fin� is the feed given as a struct;

�kwargs� are custom choice for parameters;

"""

function flash_ss!(model::Model, Fin::Feed ;kwargs...)

parameters

Q = get(kwargs, :Q, 0.); # MW

V = get(kwargs, :V, 0.2); # m^3

p0 = get(kwargs, :p0, 0.1); # MPa

✏ = get(kwargs, :✏, 1e-10);

cL = get(kwargs, :cL, 5); # kmol/(s ·
p
(MPa))

cV = get(kwargs, :cV, 1); # kmol/(s ·
p
(MPa))

C0 = 3*145.0377e-6;

feed spesifications

z = Fin.z;

F = Fin.F; # kmol/s

Tin = Fin.T; # Kk

pin = Fin.p; # MPa

nc = length(z); # number of components

components spesifications

A = Array{Float64,1}(undef, nc);

B = Array{Float64,1}(undef, nc);

C = Array{Float64,1}(undef, nc);

rho = Array{Float64,1}(undef, nc); # Mmol/m^3

CpL = Array{Float64,1}(undef, nc); # MJ/(kmol · Kk)

CpV = Array{Float64,1}(undef, nc); # MJ/(kmol · Kk)

h_vap = Array{Float64,1}(undef, nc); # MJ/(kmol)

Tref = Array{Float64,1}(undef, nc); # Kk

for i in 1:nc

A[i] = Fin.Comp[i].Antoine_par[1];

B[i] = Fin.Comp[i].Antoine_par[2];

C[i] = Fin.Comp[i].Antoine_par[3];

rho[i] = Fin.Comp[i].rho;

CpL[i] = Fin.Comp[i].CpL;

CpV[i] = Fin.Comp[i].CpV;

h_vap[i] = Fin.Comp[i].Hvap;

Tref[i] = Fin.Comp[i].Tref;

end

hin = sum(z .* (h_vap .+ CpV .* (Tin .- Tref))) # MJ/kmol

94

G.1. The Flash Tank Functions

n = pin*V/(R*Tin) # kmol

model variables

@variable(model, 0 <= x[1:nc] <= 1);

@variable(model, 0 <= y[1:nc] <= 1);

@variable(model, FLr >= 0 , start = 0); # kmol

@variable(model, FVr >= 0 , start = 0.2); # kmol

@variable(model, K[1:nc] >= 0);

@variable(model, psat[1:nc] >= 0); # MPa

@variable(model, hL, start = 0); # MJ/kmol

@variable(model, hV, start = hin); # MJ/kmol

@variable(model, T >= 0, start = Tin); # Kk

@variable(model, p >= 0, start = pin); # MPa

@variable(model, VV >= 0, start = 0.2); # m^3

@variable(model, VL >= 0, start = 0); # m^3

@variable(model, Mc[1:nc] >= 0, start = n); # kmol

@variable(model, ML >= 0, start = 0); # kmol

@variable(model, MV >= 0, start = n); # kmol

@variable(model, U); # MJ

@variable(model, H); # MJ

@variable(model, rhoL >= 0); # MJ/Mmol

auxiliary variables

@variable(model, beta, start = 1);

@variable(model, sv >= 0); # slack for vapor fraction

@variable(model, sl >= 0); # slack for liquid fraction

@variable(model, ap >= 0); # absolute value for p - p0

@variable(model, avp >= 0); # auxiliary value for absolute expression

@variable(model, avm >= 0); # auxiliary value for absolute expression

@variable(model, am >= 0); # maximum value in the valve calculation

@variable(model, wp >= 0); # auxiliary value for maximum expression

@variable(model, wm >= 0); # auxiliary value for maximum expression

constraints

phase equilibrium

@NLconstraint(model, ant[i in 1:nc],

psat[i] == 0.1 * 10ˆ(A[i] - B[i]/(T*1e3 + C[i])))

@constraint(model, eqp[i in 1:nc], K[i] * p == psat[i]);

@NLconstraint(model, eqc[i in 1:nc], beta * K[i] * x[i] == y[i]);

@constraint(model, equil,

sum(y[i] for i in 1:nc) - sum(x[i] for i in 1:nc) == 0);

@constraint(model, aux, beta - 1 - sv + sl == 0);

material balance

@constraint(model, bal_c[i in 1:nc], F*z[i] - FVr*y[i] - FLr*x[i] == 0);

@constraint(model, tot_c[i in 1:nc], Mc[i] == ML*x[i] + MV*y[i]);

@constraint(model, bal_t, sum(Mc[i] for i in 1:nc) == ML + MV);

energy balance

@constraint(model, bal_e, F*hin - FLr*hL - FVr*hV + Q == 0);

@constraint(model, ent_l,

hL == sum(x[i] * CpL[i] * (T - Tref[i]) for i in 1:nc));

@constraint(model, ent_v,

hV == sum(y[i] * (h_vap[i] + CpV[i] * (T - Tref[i])) for i in 1:nc));

@constraint(model, ent_t, H == ML * hL + MV * hV);

@constraint(model, ent, H == U + p * V);

95

Chapter G – The Flash Thank implementation

volume calculation

@constraint(model, vol, VV + VL == V);

@constraint(model, v_vap, VV * p == MV * R * T);

@constraint(model, v_liq, VL * rhoL * 1e3 == ML);

@NLconstraint(model, densL, 1/rhoL == sum(x[i]/rho[i] for i in 1:nc))

valves (outlet)

@constraint(model, abs1, p - p0 == avp - avm);

@constraint(model, abs2, ap == avp + avm);

@NLconstraint(model, max1, p0 - p == (apˆ0.5 + ✏)*(wp - wm));

@constraint(model, max2, am == wm);

@constraint(model, valL, FLr == cL * (VL/V) * am);

@constraint(model, valV, FVr == cV * (VV/V) * am);

objective function defined as an expression

return [(sv, FVr); (sl, FLr); (avp, avm); (wp, wm)];

end

"""

flash_dynamic!(model, Fin, Dyn, kwargs...)

A representation of a dynamic model of flash tank;

Adds constraints to model based on the inlet feed.

Returns the complementarity pairs as a vector

�model� is a JuMP model containing the MPCC problem;

�Dyn� is a struct containg nfe, ncp and tspan

�Fin� is the feed given as a struct;

�kwargs� are custom choice for parameters;

"""

function flash_dynamic!(model::Model, Fin::Feed, Dyn::Dynamic,;kwargs...)

dynamic parameters

nfe = Dyn.nfe;

ncp = Dyn.ncp;

tspan = Dyn.tspan;

adot = collocation_matrix(ncp, "Radau");

dt = (tspan[2]-tspan[1])/nfe;

parameters

Q = get(kwargs, :Q, zeros(nfe));

V = get(kwargs, :V, 0.2);

p0 = get(kwargs, :p0, 0.1);

✏ = get(kwargs, :✏, 1e-10);

cL = get(kwargs, :cL, 5);

cV = get(kwargs, :cV, 1);

C0 = 3*145.0377e-6;

feed spesifications

z = Fin.z;

F = ones(nfe)*Fin.F;

Tin = Fin.T;

pin = Fin.p;

nc = length(z);

96

G.1. The Flash Tank Functions

A = Array{Float64,1}(undef, nc);

B = Array{Float64,1}(undef, nc);

C = Array{Float64,1}(undef, nc);

rho = Array{Float64,1}(undef, nc);

CpL = Array{Float64,1}(undef, nc);

CpV = Array{Float64,1}(undef, nc);

h_vap = Array{Float64,1}(undef, nc);

Tref = Array{Float64,1}(undef, nc);

for i in 1:nc

A[i] = Fin.Comp[i].Antoine_par[1];

B[i] = Fin.Comp[i].Antoine_par[2];

C[i] = Fin.Comp[i].Antoine_par[3];

rho[i] = Fin.Comp[i].rho;

CpL[i] = Fin.Comp[i].CpL;

CpV[i] = Fin.Comp[i].CpV;

h_vap[i] = Fin.Comp[i].Hvap;

Tref[i] = Fin.Comp[i].Tref;

end

hin = ones(nfe) * sum(z .* (h_vap .+ CpV .* (Tin .- Tref)))

n = pin*V/(R*Tin)

model variables

@variable(model, 0 <= x[1:nc,1:nfe,2:ncp+1] <= 1);

@variable(model, 0 <= y[1:nc,1:nfe,2:ncp+1] <= 1);

@variable(model, 0 <= FLr[1:nfe,2:ncp+1] <= 0.102, start = 0);

@variable(model, 0 <= FVr[1:nfe,2:ncp+1] <= 0.102, start = 0);

@variable(model, K[1:nc,1:nfe,2:ncp+1] >= 0);

@variable(model, psat[1:nc,1:nfe,2:ncp+1] >= 0);

@variable(model, hL[1:nfe,2:ncp+1], start = 0);

@variable(model, hV[1:nfe,2:ncp+1], start = hin[1]);

@variable(model, 0 <= T[1:nfe,2:ncp+1] <= Tin, start = Tin);

@variable(model, 0.05 <= p[1:nfe,2:ncp+1] , start = pin);

@variable(model, 0 <= VV[1:nfe,2:ncp+1] <= V, start = 0.2);

@variable(model, 0 <= VL[1:nfe,2:ncp+1] <= V, start = 0);

@variable(model, Mc[1:nc,1:nfe,1:ncp+1] >= 0, start = n);

@variable(model, ML[1:nfe,2:ncp+1] >= 0, start = 0);

@variable(model, MV[1:nfe,2:ncp+1] >= 0, start = n);

@variable(model, U[1:nfe,1:ncp+1]);

@variable(model, H[1:nfe,2:ncp+1]);

@variable(model, rhoL[1:nfe,2:ncp+1] >= 0);

auxiliary variables

@variable(model, 0 <= beta[1:nfe,2:ncp+1], start = 1);

@variable(model, 0 <= sv[1:nfe, 2:ncp+1] <= 2); # slack for vapor fraction

@variable(model, 0 <= sl[1:nfe, 2:ncp+1] <= 2); # slack for liquid fraction

@variable(model, 0 <= ap[1:nfe, 2:ncp+1] <= 2); # absolute value for p - p0

@variable(model, 0 <= avp[1:nfe, 2:ncp+1] <= 2); # auxiliary value for abs.

@variable(model, 0 <= avm[1:nfe, 2:ncp+1] <= 2); # auxiliary value for abs.

@variable(model, 0 <= am[1:nfe, 2:ncp+1] <= 2); # maximum value in the valve eq.

@variable(model, 0 <= wp[1:nfe, 2:ncp+1] <= 2); # auxiliary value for max expr.

@variable(model, 0 <= wm[1:nfe, 2:ncp+1] <= 2); # auxiliary value for max expr.

constraints

phase equilibrium

97

Chapter G – The Flash Thank implementation

@NLconstraint(model, ant[i in 1:nc, j in 1:nfe, k in 2:ncp+1],

psat[i,j,k] == 0.1 * 10ˆ(A[i] - B[i]/(T[j,k]*1e3 + C[i])))

@constraint(model, eqp[i in 1:nc, j in 1:nfe, k in 2:ncp+1],

K[i,j,k] * p[j,k] == psat[i,j,k]);

@NLconstraint(model, eqc[i in 1:nc, j in 1:nfe, k in 2:ncp+1],

beta[j,k] * K[i,j,k] * x[i,j,k] == y[i,j,k]);

@constraint(model, equil[j in 1:nfe, k in 2:ncp+1],

sum(y[i,j,k] for i in 1:nc) - sum(x[i,j,k] for i in 1:nc) == 0);

@constraint(model, aux[j in 1:nfe, k in 2:ncp+1],

beta[j,k] - 1 - sv[j,k] + sl[j,k] == 0);

material balance

@constraint(model, bal_c[i in 1:nc, j in 1:nfe, k in 2:ncp+1],

sum(Mc[i,j,l] * adot[l,k] for l in 1:ncp+1) ==

dt*(F[j]*z[i] - FVr[j,k]*y[i,j,k] - FLr[j,k]*x[i,j,k]));

@constraint(model, cont_m[i in 1:nc, j in 1:nfe-1],

Mc[i,j,end] - Mc[i,j+1,1] == 0);

@constraint(model, tot_c[i in 1:nc, j in 1:nfe, k in 2:ncp+1],

Mc[i,j,k] == ML[j,k]*x[i,j,k] + MV[j,k]*y[i,j,k]);

@constraint(model, bal_t[j in 1:nfe, k in 2:ncp+1],

sum(Mc[i,j,k] for i in 1:nc) == ML[j,k] + MV[j,k]);

energy balance

@constraint(model, bal_e[j in 1:nfe, k in 2:ncp+1],

sum(U[j,l] * adot[l,k] for l in 1:ncp+1) ==

dt*(F[j]*hin[j] - FLr[j,k]*hL[j,k] - FVr[j,k]*hV[j,k] + Q[j]));

@constraint(model, cont_u[j in 1:nfe-1], U[j,end] - U[j+1,1] == 0);

@constraint(model, ent_l[j in 1:nfe, k in 2:ncp+1],

hL[j,k] == sum(x[i,j,k] * CpL[i] * (T[j,k] - Tref[i]) for i in 1:nc));

@constraint(model, ent_v[j in 1:nfe, k in 2:ncp+1],

hV[j,k] == sum(y[i,j,k] * (h_vap[i] + CpV[i]*(T[j,k] - Tref[i]))

for i in 1:nc));

@constraint(model, ent_t[j in 1:nfe, k in 2:ncp+1],

H[j,k] == ML[j,k] * hL[j,k] + MV[j,k] * hV[j,k]);

@constraint(model, ent[j in 1:nfe, k in 2:ncp+1],

H[j,k] == U[j,k] + p[j,k] * V);

volume calculation

@constraint(model, vol[j in 1:nfe, k in 2:ncp+1],

VV[j,k] + VL[j,k] == V);

@constraint(model, v_vap[j in 1:nfe, k in 2:ncp+1],

VV[j,k] * p[j,k] == MV[j,k] * R * T[j,k]);

@constraint(model, v_liq[j in 1:nfe, k in 2:ncp+1],

VL[j,k] * rhoL[j,k] * 1e3 == ML[j,k]);

98

G.1. The Flash Tank Functions

@NLconstraint(model, densL[j in 1:nfe, k in 2:ncp+1],

1/rhoL[j,k] == sum(x[i,j,k]/(rho[i]) for i in 1:nc))

valves (outlet)

@constraint(model, abs1[j in 1:nfe, k in 2:ncp+1],

p[j,k] - p0 == avp[j,k] - avm[j,k]);

@constraint(model, abs2[j in 1:nfe, k in 2:ncp+1],

ap[j,k] == avp[j,k] + avm[j,k]);

@NLconstraint(model, max1[j in 1:nfe, k in 2:ncp+1],

p0 - p[j,k] == (ap[j,k]ˆ0.5 + ✏)*(wp[j,k] - wm[j,k]));

@constraint(model, max2[j in 1:nfe, k in 2:ncp+1],

am[j,k] == wm[j,k]);

@constraint(model, valL[j in 1:nfe, k in 2:ncp+1],

FLr[j,k] == cL * (VL[j,k]/V) * am[j,k]);

@constraint(model, valV[j in 1:nfe, k in 2:ncp+1],

FVr[j,k] == cV * (VV[j,k]/V) * am[j,k]);

objective function defined as an expression

return [(sv, FVr); (sl, FLr); (avp, avm); (wp, wm)], T;

end

"""

set_initial_condition!(model, icmodel)

Set the result from the from the simulation of the icmodel as initial condition

for the current model.

�model� is a JuMP model containing the MPCC problem;

�icmodel� the JuMP model used as basis for the initial condition

"""

function set_initial_condition!(model::Model,icmodel::Model)

Mc0 = value.(icmodel[:Mc])

U0 = value.(icmodel[:U])

initializing dynamic variables

Mc = model[:Mc]

U = model[:U]

fix.(Mc[:,1,1], Mc0, force = true);

fix.(U[1,1], U0, force = true);

end

function set_initial_condition!(model::Model,value)

initializing dynamic variables

Mc = model[:Mc]

U = model[:U]

Mc0 = value[:Mc]

99

Chapter G – The Flash Thank implementation

U0 = value[:U]

fix.(Mc[:,1,1], Mc0, force = true);

fix.(U[1,1], U0, force = true);

end
"""

get_ss_values!(ssmodel)

Returns a vector which containts the steady state values.

�ssmodel� is a JuMP model containing the MPCC problem;

"""

function get_ss_values(ssmodel::Model)

ssvars = [:x; :y; :FLr; :FVr; :K; :psat; :hL; :hV;

:T; :p; :VV; :VL; :Mc; :ML; :MV; :U; :H;

:rhoL; :beta; :sv; :sl; :ap; :avp; :avm; :am; :wp; :wm;]

ssvalues = Dict{Symbol,Any}();

for v in ssvars

ssvalues[v] = value.(ssmodel[v]);

end
return ssvalues

end

"""

get_last_values!(ssmodel)

Returns a vector which containts the values of the variables for the last

nfe and ncp

�ssmodel� is a JuMP model containing the MPCC problem;

"""

function get_last_values(ssmodel::Model)

ssvars = [:x; :y; :FLr; :FVr; :K; :psat; :hL; :hV; :T;

:p; :VV; :VL; :Mc; :ML; :MV; :U; :H; :rhoL; :beta;

:sv; :sl; :ap; :avp; :avm; :am; :wp; :wm;]

ssvalues = Dict{Symbol,Any}();

for v in ssvars

if ndims(value.(ssmodel[v])) == 3

ssvalues[v] = value.(ssmodel[v][:,end,end])
else

ssvalues[v] = value.(ssmodel[v][end,end])
end

end
return ssvalues

end
"""

get_last_values_each_element!(ssmodel,fe)

Returns a vector which containts the value from the last ncp for each

final element.

�ssmodel� is the JuMP model;

"""

100

G.1. The Flash Tank Functions

function get_last_values_each_element(ssmodel::Model,fe)

ssvars = [:x; :y; :FLr; :FVr; :K; :psat; :hL; :hV;

:T; :p; :VV; :VL; :Mc; :ML; :MV; :U; :H;

:rhoL; :beta; :sv; :sl; :ap; :avp; :avm; :am; :wp; :wm;]

ssvalues = Dict{Symbol,Any}();

for v in ssvars

if ndims(value.(ssmodel[v])) == 3

ssvalues[v] = value.(ssmodel[v][:,fe,end])
else

ssvalues[v] = value.(ssmodel[v][fe,end])
end

end
return ssvalues

end

"""

set_initial_guess_from_ss!(model, ssguess,feed)

set the inital guess for a model from a steady state model

�model� is the JuMP model to get initial guesses;

�ssguess� a vector containg the result from a steady state sim.

"""

function set_initial_guess_from_ss!(model::Model, ssguess::Dict{Symbol,Any})

nc = length(ssguess[:x]);

guesses = copy(ssguess)

for (key, value) in guesses

if length(value) == nc

for j in 1:nc

set_start_value.(model[key][j,:,:], value[j])

end
else

set_start_value.(model[key][:,:], value)

end
end

end⌃ ⇧

101

Chapter G – The Flash Thank implementation

G.2 The Stationary Flash Tank Simulation

⌥ ⌅
#

Single flash tank

#

import PyPlot;

using Revise

using MPCCLibrary

using LaTeXStrings

using Serialization

include("flash_functions.jl");

Defining the substances

water = Substance("water", 1/18.02, 75, 35 , 40.660,

[4.6543; 1435.264; -64.848], 0.29815);

methanol = Substance("methanol", 0.792/32.04, 81.08, 44.06, 35.210,

[5.15853; 1569.613; -34.846], 0.29815);

Creating feed stream

feed = Feed();

feed.Comp = [methanol; water];

feed.F = 0.1; # kmol/s

feed.z = [0.5; 0.5]; # composition

feed.T = 0.410; # Kk

feed.p = 0.12;

ssmodel = create_model(linear_solver = "ma97", print_level = 0);

sscomp = flash_ss!(ssmodel, feed, Q = -0.19);

@expression(ssmodel, obj, 1.);

classic_solve_mpcc!(ssmodel, sscomp);

#values = get_ss_values(ssmodel);

print_ss_values(ssmodel,true,-0.19)

ssmodel = create_model(linear_solver = "ma97", print_level = 0);

sscomp = flash_ss!(ssmodel, feed, Q = -0.20);

@expression(ssmodel, obj, 1.);

classic_solve_mpcc!(ssmodel, sscomp);

values = get_ss_values(ssmodel);

print_ss_values(values,true,-0.20)

Q1 = collect(0:-0.03:-0.18)

Q2 = collect(-0.28:-0.2:-3.70)

Q3 = collect(-3.83:-0.03:-4.0)

Q = vcat(Q1, Q2, Q3)

tot_t = length(Q)

102

G.2. The Stationary Flash Tank Simulation

T = Vector{Float64}(undef,tot_t)

p = Vector{Float64}(undef,tot_t)

beta = Vector{Float64}(undef,tot_t)

x = Vector{Array{Float64,1}}(undef, tot_t)

y = Vector{Array{Float64,1}}(undef, tot_t)

Mc = Vector{Array{Float64,1}}(undef, tot_t)

FLr = Vector{Float64}(undef,tot_t)

FVr = Vector{Float64}(undef,tot_t)

VV = Vector{Float64}(undef,tot_t)

VL = Vector{Float64}(undef,tot_t)

ML = Vector{Float64}(undef,tot_t)

MV = Vector{Float64}(undef,tot_t)

sv = Vector{Float64}(undef,tot_t)

sl = Vector{Float64}(undef,tot_t)

for t in 1:tot_t

println("i = ", t)

println("Q = ", Q[t])

ssmodel = create_model(linear_solver = "ma97", print_level = 0);

sscomp = flash_ss!(ssmodel, feed, Q = Q[t]);

@expression(ssmodel, obj, 1.);

classic_solve_mpcc!(ssmodel, sscomp);

values = get_ss_values(ssmodel);

print_ss_values(values,true,Q[t])

T[t] = values[:T]

FLr[t] = values[:FLr]

FVr[t] = values[:FVr]

VV[t] = values[:VV]

VL[t] = values[:VL]

x[t] = values[:x]

y[t] = values[:y]

Mc[t] = values[:Mc]

p[t] = values[:p]*10

beta[t] = values[:beta]

MV[t] = values[:MV]

ML[t] = values[:ML]

sv[t] = values[:sv]

sl[t] = values[:sl]

end

output_file = open("ss_flash.jls", "w")

serialize(output_file, T)

serialize(output_file, FLr)

serialize(output_file, FVr)

serialize(output_file, VV)

serialize(output_file, VL)

serialize(output_file, x)

serialize(output_file, y)

serialize(output_file, beta)

serialize(output_file, p)

serialize(output_file, MV)

serialize(output_file, ML)

serialize(output_file, sv)

103

Chapter G – The Flash Thank implementation

serialize(output_file, sl)

serialize(output_file, Mc)

close(output_file)⌃ ⇧

104

G.3. The Dynamic Flash Tank Simulation

G.3 The Dynamic Flash Tank Simulation

⌥ ⌅
import PyPlot;

using Revise

using MPCCLibrary

using LaTeXStrings

using Serialization

include("flash_functions.jl");

Defining the substances

water = Substance("water", 1/18.02, 75, 35 , 40.660,

[4.6543; 1435.264; -64.848], 0.29815);

methanol = Substance("methanol", 0.792/32.04, 81.08, 44.06, 35.210,

[5.15853; 1569.613; -34.846], 0.29815);

Creating feed stream

feed = Feed();

feed.Comp = [methanol; water];

feed.F = 0.1; # kmol/s

feed.z = [0.5; 0.5]; # composition

feed.T = 0.410; # kK

feed.p = 0.12; # MPa

Q = Vector{Float64}()

for t in 1:250

if t < 5

append!(Q,0)

elseif 5 <= t <= 150

temp = -4/(150-5) * (t-5)

append!(Q,temp)

else
append!(Q,-4)

end
end

Dynamic parameters

nfe = 1

ncp = 3;

tspan = (0.,1);

dyn_par = Dynamic(nfe, ncp, tspan);

dt = (tspan[2]-tspan[1])/nfe

t = tspan[1]:dt:tspan[2]

tot_t = length(Q)

Singel study state flash tank for inital condition

icmodel = create_model(linear_solver = "ma97", print_level = 0);

iccomp = flash_ss!(icmodel, feed, Q = 0.0);

@expression(icmodel, obj, 1.);

classic_solve_mpcc!(icmodel, iccomp);

105

Chapter G – The Flash Thank implementation

ic = get_ss_values(icmodel);

T = Vector{Float64}(undef,tot_t)

p = Vector{Float64}(undef,tot_t)

beta = Vector{Float64}(undef,tot_t)

x = Vector{Array{Float64,1}}(undef, tot_t)

y = Vector{Array{Float64,1}}(undef, tot_t)

Mc = Vector{Array{Float64,1}}(undef, tot_t)

FLr = Vector{Float64}(undef,tot_t)

FVr = Vector{Float64}(undef,tot_t)

VV = Vector{Float64}(undef,tot_t)

VL = Vector{Float64}(undef,tot_t)

ML = Vector{Float64}(undef,tot_t)

MV = Vector{Float64}(undef,tot_t)

sv = Vector{Float64}(undef,tot_t)

sl = Vector{Float64}(undef,tot_t)

avp = Vector{Float64}(undef,tot_t)

avm = Vector{Float64}(undef,tot_t)

wp = Vector{Float64}(undef,tot_t)

wm = Vector{Float64}(undef,tot_t)

values = Dict()

global t = 1;

while t <= 250

Qt = Q[t]

println("------------------------------")

println("t = ", t)

println("Q = ",Qt)

if t == 1

model = create_model(linear_solver = "ma97", print_level = 0)

comp,Tm = flash_dynamic!(model,feed,dyn_par, Q = ones(nfe)*Qt)

set_initial_condition!(model, icmodel);

@expression(model, obj, 1.)

classic_solve_mpcc!(model,comp, :obj)

global values = get_last_values(model)

T[t] = values[:T]

FLr[t] = values[:FLr]

FVr[t] = values[:FVr]

VV[t] = values[:VV]

VL[t] = values[:VL]

x[t] = values[:x]

y[t] = values[:y]

Mc[t] = values[:Mc]

p[t] = values[:p]

beta[t] = values[:beta]

MV[t] = values[:MV]

ML[t] = values[:ML]

sv[t] = values[:sv]

sl[t] = values[:sl]

avp[t] = values[:avp]

avm[t] = values[:avm]

wp[t] = values[:wp]

wm[t] = values[:wm]

global t += 1

106

G.3. The Dynamic Flash Tank Simulation

elseif t == 90

model = create_model(linear_solver = "ma97", print_level = 0)

comp,Tm = flash_dynamic!(model,feed,Dynamic(111,3,(0.,111)),Q = Q[90:200])

set_initial_condition!(model,values)

set_initial_guess_from_ss!(model, values)

@expression(model, obj, 1.)

classic_solve_mpcc!(model,comp, :obj)

for i in 1:111

t = 89 + i

println(t)

values = get_last_values_each_element(model,i)

T[t] = values[:T]

FLr[t] = values[:FLr]

FVr[t] = values[:FVr]

VV[t] = values[:VV]

VL[t] = values[:VL]

x[t] = values[:x]

y[t] = values[:y]

Mc[t] = values[:Mc]

p[t] = values[:p]

beta[t] = values[:beta]

MV[t] = values[:MV]

ML[t] = values[:ML]

sv[t] = values[:sv]

sl[t] = values[:sl]

avp[t] = values[:avp]

avm[t] = values[:avm]

wp[t] = values[:wp]

wm[t] = values[:wm]

println(T[t])

println(beta[t])

end
global t = 201

global values = get_last_values_each_element(model,111)

else
model = create_model(linear_solver = "ma97", print_level = 0)

comp,Tm = flash_dynamic!(model,feed,dyn_par, Q = ones(nfe)*Qt)

@constraint(model,Tcon[j in 1:nfe, k in 2:ncp+1], Tm[j,k] <= values[:T])

set_initial_condition!(model,values)

set_initial_guess_from_ss!(model, values)

@expression(model, obj, 1.)

classic_solve_mpcc!(model,comp, :obj)

global values = get_last_values(model)

T[t] = values[:T]

FLr[t] = values[:FLr]

FVr[t] = values[:FVr]

VV[t] = values[:VV]

VL[t] = values[:VL]

x[t] = values[:x]

y[t] = values[:y]

Mc[t] = values[:Mc]

p[t] = values[:p]

107

Chapter 6 – The Flash Thank implementation

beta[t] = values[:beta]

MV[t] = values[:MV]

ML[t] = values[:ML]

sv[t] = values[:sv]

sl[t] = values[:sl]

avp[t] = values[:avp]

avm[t] = values[:avm]

wp[t] = values[:wp]

wm[t] = values[:wm]

global t = t + 1;

end
end

output_file = open("singelFlash.jls", "w")

serialize(output_file, T)

serialize(output_file, FLr)

serialize(output_file, FVr)

serialize(output_file, VV)

serialize(output_file, VL)

serialize(output_file, x)

serialize(output_file, y)

serialize(output_file, beta)

serialize(output_file, p)

serialize(output_file, MV)

serialize(output_file, ML)

serialize(output_file, sv)

serialize(output_file, sl)

serialize(output_file, avp)

serialize(output_file, avm)

serialize(output_file, wp)

serialize(output_file, wm)

serialize(output_file, Mc)

close(output_file)⌃ ⇧

108

	Introduction
	Scope of Work
	Outline

	Background and Theory
	Constrained Optimisation
	Continuous Optimisation
	Local and Global Solutions
	Convex Optimisation

	Constraint Qualifications
	Optimality Conditions
	Penalty Approaches
	Interior-Point Method
	The Barrier and Continuation Interpretations
	The Interior-Point Algorithm
	Filter

	Mathematical Program with Complementarity Constraints
	The Penalty Reformulation of the MPCC
	Interior-Penalty Method for MPCC
	The Classic Approach
	The Dynamic Approach

	Orthogonal Collocation

	Implementation and Small-Scale Problem Investigation
	Int Point Solver
	Interior Point OPTimizer
	The JuMP Interface

	A small-scale Problem Investigation
	Similarity in Performance
	Unbounded Penalty Problem

	Flash Tank Model
	Flash Calculations
	Enthalpy Calculations
	Phase Equilibrium
	Vapour-liquid Equilibrium Calculations

	Phase Changes
	Assumptions and Model Parameters
	Material Balances
	Energy Balances
	Phase Distribution
	Valve Equations

	Case Study of Flash Tank
	Stationary Flash Tank
	Dynamic flash tanks
	Simulation Problems

	Final Remarks
	Recommendations for Further Work

	Appendices
	Units Used in Julia
	Complementarity Reformulations
	Flash Tank Model Equations
	Stationary Flash Tank
	Dynamic Flash Tank

	Flash Tank Simulation Failure
	The Maxwell Relations
	The Approaches Implemented in Julia
	The Classic Implementation
	The Dynamic Implementation

	The Flash Thank implementation
	The Flash Tank Functions
	The Stationary Flash Tank Simulation
	The Dynamic Flash Tank Simulation

