
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Oscar Selnes Bognæs

Radix Spline Parameter Optimization

Achieving fast lookup times with minimal
memory usage

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2023

Oscar Selnes Bognæs

Radix Spline Parameter Optimization

Achieving fast lookup times with minimal memory
usage

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

ABSTRACT

In this study, we investigate the possibility of predicting the optimal parameter
configuration for the radix spline learned index structure. To tackle this chal-
lenge, we propose a novel approach utilizing a multi-output neural network model
trained on synthetic datasets. By generating synthetic data based on various dis-
tributions and extracting relevant features to capture dataset characteristics, we
enable the model to learn and predict the crucial parameters of radix bits and
spline error. Our experiments demonstrate the model’s capability to predict a
satisfactory parameter configuration for a considerable number of datasets. How-
ever, we also identify certain limitations and areas for improvement, such as the
need for generating more complex and diverse datasets, as well as exploring ad-
ditional features. The findings of this research contribute to the advancement of
learned index structures and pave the way for the development of more efficient
and automated parameter tuning techniques.

i

SAMMENDRAG

I denne oppgaven utforsker vi muligheten for å predikere den optimale konfig-
urasjonen av Radix Spline ved hjelp av et multi-output nevralt nettverk trent på
syntetiske datasett basert på ulike distribusjoner. Det nevrale nettverket viser
en evne til å forutsi konfigurasjoner som gir tilfredsstillende resultater, ved å ta
hensyn til de viktigste egenskapene til hvert datasett som er reflektert i trenings-
dataene. Imidlertid har vi også identifisert flere begrensninger og utfordringer i
denne studien, inkludert mangel på tilstrekkelig treningsdata og manglende repre-
sentasjon av datasettet gjennom egenskapene som er brukt. Oppdagelsene i denne
studien gir et verdifullt bidrag til lærte indekser som et felt og gir et grunnlag for
videre forskning innen dette området.

iii

PREFACE

The motivation behind this research stems from my keen interest in databases and
search. Throughout my experience in computer science, I have always found an-
alyzing vast amounts of information, identifying patterns, and manipulating data
to be intriguing. When I discovered the concept of combining AI and indexes,
specifically learned indexes, I was captivated. Given the limited literature on this
topic, I conducted a significant amount of experimentation to angle my work to-
wards contributing something entirely new to the field of learned indexes.

I would like to express my sincere gratitude to my supervisor, Svein Erik Brats-
berg, for providing the necessary guidance and freedom to complete my thesis. I
would also like to express my gratitude to Kjetil Nørvåg for providing me with a
space on the Dif-server.

Oscar Selnes Bognæs
Trondheim, June 6, 2023

iv

CONTENTS

Abstract i

Sammendrag iii

Preface iv

Contents vii

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1
1.1 Purpose and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Content of thesis . 2

2 Background and Definitions 3
2.1 Definitions . 3

2.1.1 Index Structures . 3
2.1.2 B+-tree . 3
2.1.3 Neural Network . 4
2.1.4 Cumulative Distribution Function 6
2.1.5 Probability Density Function 6
2.1.6 Z-score Normalization . 7
2.1.7 LSM-Trees . 7

3 Related Works 9
3.1 The First Learned Index Structure 9

3.1.1 ALEX . 10
3.1.2 Piecewise Geometric Model Index 12
3.1.3 SOSD Benchmark . 13
3.1.4 Radix Spline . 13
3.1.5 Hist-Tree . 16
3.1.6 PLEX . 17

v

vi CONTENTS

4 Setup and Method 21
4.1 Setup . 21

4.1.1 Generating synthetic test data 22
4.1.2 Feature extraction . 25
4.1.3 Building the indexes . 26
4.1.4 Finding the Best and Worst Parameter Configuration 26
4.1.5 Training the network . 27

5 Results and Evaluation 29
5.1 Feature Extraction . 29
5.2 Finding The Optimal Parameter Configuration 30

5.2.1 Minimum index for fastest 10% lookups (Method 1) 31
5.2.2 Z-Score Normalization (Method 2) 32

5.3 Neural Network Prediction of Parameters 33
5.3.1 Method 1 . 33
5.3.2 Method 2 . 36
5.3.3 Overall Evaluation of the Model 40
5.3.4 Z-Score Normalization for Worst Configuration 41

6 Discussion 43
6.1 Implementation . 43

6.1.1 Dual-Pass Radix Spline . 43
6.1.2 Search Engines and Elastic Search 44

6.2 Limitations . 44
6.2.1 Comparison with PLEX . 44
6.2.2 Data Generation . 44
6.2.3 Underfitted Model . 45
6.2.4 32-Bit Datasets . 45
6.2.5 K-Fold Cross-Validation . 46
6.2.6 Feature Selection . 46
6.2.7 Neural Network . 46
6.2.8 Write-Once/Read-Many . 47
6.2.9 Build Time . 47

6.3 Future work . 48
6.3.1 Generating More Complex and Diverse Data 48
6.3.2 Exploring Different Features 48
6.3.3 Improving the Neural Network Model 49
6.3.4 Comparing the Results Against a Non-Tuned Radix Spline . 49
6.3.5 Using A Weighted Z-Score Normalization 49

7 Conclusions 51
7.1 Research Question 1 . 51
7.2 Research Question 2 . 51
7.3 Research Goal . 52

References 53

Appendices: 55

CONTENTS vii

A - Detailed Tabular Data 56

LIST OF FIGURES

2.1.1 An illustration of a b-tree (GeekForGeeks 2023a). 4
2.1.2 An illustration of a feed-forward neural network (Quiza and Davim

2011). 4
2.1.3 Model fit in a classification problem (GeekForGeeks 2023b). 5
2.1.4 The merging process in an LSM-Tree (O’Neil et al. 1996). 7

3.1.1 Replacing B-Trees with learned models models (Kraska et al. 2018). 9
3.1.2 Recursive Model Index (Kraska et al. 2018). 10
3.1.3 Alex Design (Leis, Kemper, and Neumann 2013). 11
3.1.4 Linear Approximation of a key distribution (Ferragina and Vin-

ciguerra 2020). 12
3.1.5 PGM Index Structure (Ferragina and Vinciguerra 2020). 13
3.1.6 Spline Segment (Kipf et al. 2020). 14
3.1.7 Spline lookup example (Kipf et al. 2020). 15
3.1.8 Build time, lookup latency, and index size for different configura-

tions (Kipf et al. 2020). 15
3.1.9 Index sizes for real world datasets with Radix Spline (Kipf et al.

2020). 16
3.1.10Hist-tree example (Crotty 2021). 17
3.1.11Size affecting lookup time with PLEX (Stoian et al. 2021). 19

4.1.1 Data distributions . 24
4.1.2 CDF for three common distributions 24

5.2.1 3D visual representation of lookup time and index size for different
configurations . 31

5.3.1 Graphs Showing the Models Prediction 34
5.3.2 Heat map showing the optimal configuration (white square) and the

predicted configuration (red cross) 35
5.3.3 Graph illustrating the comparison between the RMSE obtained

from a single run of the model versus the average RMSE derived
from running the model five times. The comparison is performed
for both Num and Err. 36

5.3.4 Graphs Showing the Models Prediction 37
5.3.5 Heat map showing the optimal configuration (white square) and the

predicted configuration (red cross) 38

viii

LIST OF FIGURES ix

5.3.6 Graph illustrating the comparison between the RMSE obtained
from a single run of the model versus the average RMSE derived
from running the model five times. The comparison is performed
for both Num and Err. 39

5.3.7 Prediction accuracy for sorted configurations 39
5.3.8 Graph comparing Method 1 and Method 2 in regards to their av-

erage RMSE after running the model five times. 41

LIST OF TABLES

4.1.1 Data distributions . 23
4.1.2 Data distributions . 25

5.1.1 Features for one dataset per distribution 30
5.2.1 Table displaying optimal configuration using the minimum index

size for fastest 10% lookup times 32
5.2.2 Table displaying optimal configuration using the z-score normaliza-

tion method . 33
5.3.1 Table showing the predicted values, best config, and worst config . . 34
5.3.2 Table showing the predicted values, best config, and worst config . . 37

A.1 Parameter value for the data distributions 57
A.2 Feature extraction for all the datasets 60
A.3 Table displaying optimal configuration using Method 1 63
A.4 Table displaying optimal configuration using Method 2 66
A.5 Table displaying the accurate predictions from the model (Method 1) 67
A.6 Table displaying the accurate predictions from the model (Method 2) 68

x

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• ART Adaptive Radix Tree

• CDF Cumulative Distribution Function

• DBMS Database Management Systems

• HT Hist-Tree

• LSM-Tree Log-Structured Merge Tree

• MKIF Mean Key Interval Frequency

• ML Machine Learning

• MSE Mean Squared Error

• MUKI Mode of Unique Key Intervals

• NN Neural Network

• NUKI Number of Unique Key Intervals

• PGM Piecewise Geometric Model

• PLEX Practical Learned Index

• ReLU Rectified Linear Unit

• RMSE Root Mean Square Error

• RS Radix Spline

• RMI Recursive Model Index

• SOSD Search on Sorted Data

• NTNU Norwegian University of Science and Technology

xi

CHAPTER

ONE

INTRODUCTION

Structures such as B-trees, hash-maps, and Bloom filters are common indexing
structures used in DBMS. Although these indexes have improved significantly over
the years, they still do not assume anything about the data distribution. To ad-
dress this limitation, one possible solution is to learn the data distribution, which
can enable the creation of highly optimized index structures. However, manually
creating specialized solutions for every use case would require a lot of resources
and is entirely unrealistic. Therefore, introducing machine learning could provide
significant benefits when it comes to learning the data distribution.

1.1 Purpose and Motivation

Kraska et al. 2018 introduced the use of machine learning to learn the data dis-
tribution. Their study compared b-tree indexes to a learned index consisting of
a hierarchy of learned models. The Recursive Model Index (RMI), as it is called,
accurately predicts the area of the desired element faster than the b-tree while
using less memory.

Existing structures often require multiple training passes over the data, leading
to slow build times and limited effectiveness in real-world scenarios. In addition,
they can be inefficient and impractical to use. To solve this problem, Kipf et al.
2020 introduced Radix Spline, which only requires a single pass over the underly-
ing data to build the index. Furthermore, Radix Spline can be tuned to balance
lookup time and index size, this can be done by modifying two parameters: the
number of radix bits and spline error.

However, different datasets have varying characteristics that affect the building
of the index. Therefore, to achieve the best lookup time and index size, differ-
ent datasets require different parameter configurations. In this thesis, I aim to
train a neural network to recognize the unique features of various datasets accu-
rately. Hopefully, this will enable the network to accurately predict the optimal
configuration for any given dataset.

1

2 CHAPTER 1. INTRODUCTION

1.2 Goals and Research Questions
Goal Contribute to the field of learned indexes by exploring an alternative ap-
proach to auto-tune radix spline.

Research question 1 (RQ1) Can neural networks effectively learn the optimal
configuration to use with radix spline for any given dataset?

Research question 2 (RQ2) How does the neural network’s (NN) chosen con-
figuration for a specific dataset compare to the worst-case configuration for the
same dataset?

1.3 Content of thesis
In this thesis, we aim to provide a comprehensive overview of the research con-
ducted. Chapter 2 will provide essential definitions and background knowledge
necessary for further reading. Chapter 3 delves into related works, exploring var-
ious learned index structures, their limitations, and performance characteristics.
In Chapter 4, we discuss the experimental setup and methodology employed in
this research. The results of our experiments and their evaluation in relation to
the research questions are presented in Chapter 5. Chapter 6 covers the imple-
mentation details, limitations encountered, and outlines potential future research
directions. Finally, Chapter 7 concludes the thesis, summarizing the key findings
and contributions.

CHAPTER

TWO

BACKGROUND AND DEFINITIONS

2.1 Definitions

2.1.1 Index Structures

An index structure is a tool used to enhance retrieval speed in databases and
file systems. It can collect a specific key, a range of values, or a combination of
keys based on a search criterion. The use of an index structure is to reduce the
number of data blocks needed to access to meet the query requirement. In an
index structure, data is usually arranged in a tree-like structure, with each node
corresponding to a range of values or a specific key. Pointers are used in the leaf
node to point to the actual data.

2.1.2 B+-tree

A B+-tree is a tree data structure used for organizing and indexing data to facil-
itate fast retrieval, as discussed in Section 2.1.1. Unlike leaf nodes, each internal
node in a B+-tree only stores the key and a pointer to the child nodes, which in
turn point to the actual data. The keys in the internal nodes assist in the search
by excluding nodes that do not lead to the desired value.

B+-trees are balanced trees that have the same length for all paths leading from
the root node to the leaf node. This property results in a time complexity of
O(log n), which corresponds to the height of the tree. In addition, B+-trees
are optimized for performing range queries, making them a popular choice for
searching in databases and file systems (Ramakrishnan and Gehrke 2002). An
illustration of a b-tree can be seen in Figure 2.1.1.

3

4 CHAPTER 2. BACKGROUND AND DEFINITIONS

Figure 2.1.1: An illustration of a b-tree (GeekForGeeks 2023a).

2.1.3 Neural Network

A neural network is a powerful machine learning model specifically designed to
identify intricate patterns and relationships within vast amounts of data (Alpay-
din 2014), encompassing millions of entries. Due to their exceptional pattern
detection capabilities, neural networks are instrumental in numerous real-world
applications, including statistics and data science.

The structure and function of a neural network is inspired by the human brain.
It consists of interconnected layers of nodes, or neurons, which receive input from
other neurons, process the information using non-linear activation functions, and
produce outputs that are sent forward to other nodes (Alpaydin 2014).

During the training of a neural network model, the weight of each connection is
adjusted or tuned to minimize a cost function that measures the error between the
predicted outputs and the actual output for a given set of input data. Once the
model is trained, it can be used to predict other data it has never seen before by
passing it through the network and computing the output of the final layer. Figure
2.1.2 illustrates a feed-forward neural network comprising three input nodes, a
single hidden layer, and two output nodes.

Figure 2.1.2: An illustration of a feed-forward neural network (Quiza and Davim
2011).

CHAPTER 2. BACKGROUND AND DEFINITIONS 5

2.1.3.1 Feature Extraction

Feature extraction is the process of transforming raw data into a format that
highlights the key characteristics of the data, significantly reducing the resources
required to describe it. This makes the task more manageable for the machine
learning algorithm. It’s crucial to select features relevant to the specific domain
during this process. Done correctly, this can greatly minimize the amount of noise
and irrelevant data (Mathworks n.d.). Feature extraction can be accomplished
manually or automatically:

Manual feature extraction
Manual feature extraction provides greater flexibility in feature selection.
Additionally, irrelevant features can be efficiently filtered out, reducing com-
putational complexity and conserving valuable computational resources. How-
ever, it necessitates in-depth domain knowledge and a comprehensive under-
standing of the data.

Automatic feature extraction
Automatic feature extraction can automatically extract features using spe-
cialized algorithms or deep networks, eliminating the need for human inter-
vention. This approach is preferred when there is a requirement for efficient
extraction of features from raw data.

2.1.3.2 Model Fitting

In machine learning, the term ’model fit’ typically pertains to the extent to which
a model can generalize to new data that differs from the training dataset. Essen-
tially, it assesses the model’s ability to accurately predict values based on previ-
ously unseen or dissimilar data. In machine learning, a model’s fit can be charac-
terized as underfitting, overfitting, or achieving a balanced and optimal fit that is
appropriate for the task. Figure 2.1.3 illustrates the different types of model fits
in a classification problem.

Figure 2.1.3: Model fit in a classification problem (GeekForGeeks 2023b).

2.1.3.3 K-Fold Cross Validation

K-fold cross-validation is a popular technique used in machine learning to eval-
uate the performance of a predictive model. It involves partitioning the avail-
able dataset into K equal-sized subsets, or folds. The model is then trained and
evaluated K times, each time using a different fold as the validation set and the
remaining folds as the training set. This process allows for a comprehensive assess-
ment of the model’s performance, as it provides an average performance metric

6 CHAPTER 2. BACKGROUND AND DEFINITIONS

across multiple iterations. K-fold cross-validation helps in estimating how well
the model will generalize to unseen data and provides insights into the robustness
of the model. By incorporating validation at each iteration, it helps to identify
potential overfitting or underfitting issues. Overall, K-fold cross-validation is a
valuable technique for model evaluation and selection, providing a more reliable
estimation of the model’s predictive capabilities.

2.1.3.4 Root Mean Square Error

The root mean square error (RMSE) is a widely used metric in various fields,
including statistics, data analysis, and machine learning, to quantify the accuracy
of a predictive model. It measures the average magnitude of the differences be-
tween predicted values and the corresponding true values. RMSE provides a single
numerical value that summarizes the overall prediction error, with lower values
indicating better model performance. The formula for calculating RMSE involves
taking the square root of the average of squared differences between predicted
values (ŷ) and true values (y) across a dataset of size n:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.1)

In this formula, the difference between each predicted value and the corresponding
true value is squared, summed up, and divided by the number of data points. Fi-
nally, the square root is taken to obtain the RMSE. This ensures that the RMSE
value is in the same unit as the dependent variable, allowing for meaningful inter-
pretation and comparison of prediction errors.

2.1.4 Cumulative Distribution Function

The Cumulative Distribution Function (CDF) quantifies the probability that a
random variable X takes on a value less than or equal to a specified value x, pro-
viding a cumulative view of the associated probabilities (Haben, Voß, and Holder-
baum 2023). The CDF can be defined as:

FX(x) = P (X ≤ x) (2.2)

2.1.5 Probability Density Function

The Probability Density Function (PDF) is related to the CDF as it helps us un-
derstand the likelihood of different outcomes for a random variable. Unlike the
CDF, which provides the probability of the random variable being less than or
equal to a specified value, the PDF gives us the probability density or likelihood
of the random variable taking on a specific value. The PDF finds wide applica-
tion in statistics for data analysis, parameter estimation, and prediction based on
probability distributions.

CHAPTER 2. BACKGROUND AND DEFINITIONS 7

2.1.6 Z-score Normalization

Z-score normalization is a commonly used technique in data mining that calculates
the mean of all data points. Each data point is then assigned a score based on
the standard deviation from the mean. These scores provide valuable insights
into how each data point compares to the overall distribution, facilitating the
identification of outliers or patterns in the data (PATRO and Sahu 2015). The
z-score normalization for a list of integers can be defined as:

zi =
xi − x̄

s
(2.3)

2.1.7 LSM-Trees

The Log-Structured Merge Tree (LSM-Tree) is a powerful data structure utilized
in storage and database systems to overcome the limitations of traditional B-trees,
particularly in scenarios with high write intensity. The LSM-Tree provides a highly
efficient insertion operation with a worst-case time complexity of O(1). In con-
trast, search and delete operations exhibit a worst-case time complexity of O(n).
By optimizing the write path, LSM-Trees offer significant advantages in terms of
write throughput, making them well-suited for workloads where frequent updates
are required. (O’Neil et al. 1996)

The structure of an LSM-Tree consists of a MemTable for in-memory write buffer-
ing and disk-based Sorted String Tables (SSTables). The MemTable serves as a
write buffer, storing recently written data before flushing it to disk as immutable
SSTables. SSTables are organized in multiple levels, with each level containing
sorted files. The compaction process merges and eliminates redundant data to
create compacted SSTables in higher levels. This structure enables efficient write
operations and optimized read performance by balancing in-memory buffering with
disk-based storage and compaction processes. LSM-Trees are well-suited for write-
intensive workloads in storage and database systems. Figure 2.1.4 depicts the
structure of an LSM-Tree.

Figure 2.1.4: The merging process in an LSM-Tree (O’Neil et al. 1996).

8 CHAPTER 2. BACKGROUND AND DEFINITIONS

CHAPTER

THREE

RELATED WORKS

3.1 The First Learned Index Structure
One of the first learned indexes were proposed by Kraska et al. 2018 and laid
the foundation for learned indexes and proved how learning the data distribution
could have significant benefit when it comes to lookup time and memory foot-
print. Kraska et al. 2018 argued that any index is essentially already a model and
based on this assumption could easily be replaced by a learned model. Accord-
ing to Kraska et al. 2018, a B-Tree is a model because it has an error bound in
the form that the B-Tree does not point out the exact position of the key, but
rather the page. So in this case the error bound would be pos - 0 to pos + pagesize.

So in theory we can replace this B-Tree with an error bound of pos - 0 to pos +
pagesize with a learned model (for example a neural net) with an error bound of
pos - min_err to pos+max_err. An illustration of this is shown in Figure 3.1.1.

Figure 3.1.1: Replacing B-Trees with learned models models (Kraska et al. 2018).

Learning the entire data distribution can be quite expensive, especially when there
is a very complex distribution and a large number of elements. Take for example
100M records, it would be unrealistic to predict the position with high accuracy
(search range of 100 for example) using only a single model. Since neural nets are
good at learning the general data distribution this model would just not be accu-
rate enough without requiring an unreasonable amount of processing power and
memory. Instead, a tree-like tree-like structure called The Recursive Model Index

9

10 CHAPTER 3. RELATED WORKS

(RMI) is proposed, which is essentially a hierarchy of models with different stages.
This opens up the possibility to use multiple models and exploit the strengths of
the different models.

As mentioned above, a single neural net model would not be able to accurately
predict the position of a key amongst 100M records. Instead, we could use the
RMI and assign the neural net model to the first stage, here the model can reduce
the search area from 100M to 10K, a precision gain of 10000. We can then use
other models in later stages to further narrow down the search area, like linear
regression models. Linear regression models are a good choice because they are
inexpensive in lookup time. The general structure of The Recursive Model can be
seen in Figure 3.1.2.

Figure 3.1.2: Recursive Model Index (Kraska et al. 2018).

3.1.1 ALEX

As mentioned in the introduction, learned indexes can provide a great benefit
regarding search time and memory footprint. Some of the earlier work done by
Kraska et al. 2018 presents a solution that beats B+Tree by a factor of up to
three times in search time. When it comes to memory the learned index beats
the B+Tree by an order of magnitude. One of the limitations of the original RMI
structure is that it only supports static, read-only workloads. Later work done
by Ding et al. 2020 proposed a new structure to solve this, called ALEX. ALEX
builds on the same RMI structure and even improves the performance by up to
2.2x with an index size that is 15x smaller while simultaneously allowing for point
lookups, short-range queries, inserts, updates, deletes, and bulk loading.

ALEX achieves the increase in performance and the possibility for updates by im-
proving the storage layout, and search strategy, and by keeping models accurate
with dynamic data distribution and workloads.

For the storage layout, ALEX builds a tree like a B+Tree but allows for different
nodes to arbitrarily change the size and leaves extra space between the elements in
the array. This gap gradually writes off the cost of shifting keys for every insertion
by allocating the closest key to the right of the gap. ALEX also uses a method

CHAPTER 3. RELATED WORKS 11

for inserting each element as close to the predicted position as possible, called a
model-based insert.

ALEX uses exponential search which has superior performance compared to bi-
nary search in this case because model-based inserts are used. This utilizes the
prediction of the model and starts the search at the predicted position. When the
search is performed on an accurate model the exponential search will have better
performance than binary search.

Differing from the model proposed by Kraska et al. 2018, ALEX can dynamically
change the shape of the model if the data distribution is changed by a large margin
after index initialization. Adaptive expansion, node splitting, and, selective model
retraining are the implemented methods for handling dynamical changes and are
needed to ensure good performance for write workloads.

The goal of this model is to be faster than B+Tree and the previously proposed
learned index regarding the lookup time. The model should at least have the same
insert time as a B+Tree, and the memory usage should be less than a B+Tree and
the RMI. The last goal of this model is to make the space used for data storage
less than a dynamic B+Tree.

An illustration of the ALEX Design can be seen in Figure 3.1.3 and shows the
different components mentioned in this section. The figure shows how the model
is flexible and adaptive in regards to the model height and shape, how gapped
arrays are used to allow for variable node sizes, and how exponential search is
used from the prediction given by the model.

Figure 3.1.3: Alex Design (Leis, Kemper, and Neumann 2013).

12 CHAPTER 3. RELATED WORKS

3.1.2 Piecewise Geometric Model Index

The Piecewise Geometric Model Index (PGM-Index) is a learned index that sup-
ports predecessors, updates, and range searches. The PGM-Index was the work
presented in Ferragina and Vinciguerra 2020 and focuses on solving the fully-
dynamic indexable dictionary problem.

Like ALEX, the PGM-Index is flexible, and Ferragina and Vinciguerra 2020 pro-
pose three types of the PGM-Index. The third one is a multicriteria variant that
can auto-tune itself to keep up with the space-time constraints, it can do this in
a matter of seconds over hundreds of millions of keys.

The PGM-Index creates a linear approximation of the key distribution, as seen
in Figure 3.1.4. One line segment in the linear approximation might not be able
to represent all the keys within a given error margin, that’s why it’s called a
piece-wise linear approximation model (PLA-Model), we can create multiple line
segments that cover their portion of the key space.

Performance wise, the PGM-Index with only static setting, meaning no updates,
only predecessor and range search, is able to match the query performance of of
a cache-optimized static B+Tree. The PGM-Index with static setting beats the
same B+Tree when it comes to memory, taking 83x less space.

Figure 3.1.4: Linear Approximation of a key distribution (Ferragina and Vin-
ciguerra 2020).

The linear approximation of a set of keys in a given range is shown in Figure 3.1.4.
We can see that we need to search at least within 2 neighboring keys to be able
to predict the positions of all keys since key = 37 is repeated 3 three times. So
the function fs has an error of 2 (ε = 2).

The distribution of keys in the above example is exceptionally well distributed and
it isn’t very demanding to create a single linear approximation with reasonable
error bound. But if the keys would have been more clustered and spread out we

CHAPTER 3. RELATED WORKS 13

would have had to split the linear approximation into multiple line segments that
would represent each of their own key space.

The model would then use a hierarchical structure shown in Figure 3.1.5 to be
able to predict the position. In the figure, the key k = 76 is being searched for.
Starting at the top level, the root segment, we compute the position for the next
level. At this level, we search for k within our error bounds. This is repeated until
the level calculates the final position in our array, also within our error bounds,
in this case, it is +- 1.

Figure 3.1.5: PGM Index Structure (Ferragina and Vinciguerra 2020).

3.1.3 SOSD Benchmark

The Search On Sorted Data (SOSD) benchmark is an open-source framework
created to evaluate learned indexes on both synthetic and real-world datasets.
The benchmark includes baseline implementations for comparison, with one of
them being the Recursive Model Index (RMI). Notably, the SOSD Benchmark is
renowned for having the only publicly available implementation of RMI among
the components (Kipf et al. 2019).

Also, the SOSD Benchmark includes methods for generating synthetic datasets
and lookup keys, which are instrumental in evaluating the query performance.
Each of these datasets can be configured to include a range of 200 million to 800
million 32-bit or 64-bit unsigned integers.

3.1.4 Radix Spline

As mentioned in the introduction, earlier learned index models have shown us that
there is a lot of potential when it comes to improving the lookup time of index
structures. Even index structures that are highly tuned and read-optimized. The
main problem comes when the model needs to be re-trained/re-balanced after an
insert or update.

In earlier implementations of learned indexes, the building process had to do mul-
tiple passes over the data, this meant that the building process took a significant
amount of time. Radix Spline, presented in Kipf et al. 2020 only needs a single

14 CHAPTER 3. RELATED WORKS

pass over the data and can execute the work per new element in constant time.
And yet, it still manages to compete with the leading learned index structures
like the Recursive Model Index when it comes to lookup performance and space
utilization. But RMI does not support inserts and cannot be constructed in one
pass over the data. When it comes to ALEX and the PGM-Index, they do support
updates, but they have room for improvement when it comes to building perfor-
mance.

Radix Spline (RS) assumes that there is no need to support single updates and that
the single-pass training algorithm can be done together with the merge process in
an LSM-Tree. Since the merge operation is already quite heavy, performance-wise,
the time added from training the single-pass learned index would be insignificant.
RS comprises of two components: a linear spline model that provides an approx-
imation of the Cumulative Distribution Function (CDF) within a defined error
bound, and a radix table that serves as an index for the computed spline points.

Building the Radix Spline takes two steps, which can be done in a single pass over
the data. The first step is to fit a linear spline to a CDF based on the underlying
data as seen in Figure 3.1.6. This ensures a certain error bound. From this, we
get a set of spline points that are spread out on the CDF with an interpolation
between them. The second step is to build a flat radix structure, this is called
the radix table. The purpose of the radix table is to give an approximate index of
the spline points. When both steps are done we can extract a certain radix prefix
and use it as an offset in the radix table we just created. To configure RS, the
accepted spline error and the radix table size can be adjusted. These parameters
directly impact the size of the index and the time required for performing lookups.

Figure 3.1.6: Spline Segment (Kipf et al. 2020).

When doing a lookup, the lookup key is used to extract an r-bit prefix. In the
example shown in Figure 3.1.7, we get 101. This is then used to make an offset
access in the radix table from the r-bit prefix. From this, the two pointers are
retrieved and used to define a smaller search range. In the figure, the points are
5 and 6. Lastly, binary search is used to find the first occurrence of the key.

CHAPTER 3. RELATED WORKS 15

Figure 3.1.7: Spline lookup example (Kipf et al. 2020).

Kipf et al. 2020 proposes the ideal timing to apply the single-pass training algo-
rithm, specifically during the merging process in an LSM-tree. This stage generates
data in sorted order, making it optimal for building the index. As mentioned in
Section 2.1.7, LSM-trees are well suited for scenarios with frequent updates, and
incorporating radix spline with LSM-trees can have a significantly positive impact
on the query performance.

3.1.4.1 Build Time, Lookup time, and Index Size

One effective method of illustrating the trade-off between lookup time and index
size is by using a heatmap that depicts the various combinations of spline error
and number of radix bits, along with their respective impacts on lookup time and
index size. This approach was employed in the original radix spline paper, and
the corresponding results are presented in Figure 3.1.8.

Figure 3.1.8: Build time, lookup latency, and index size for different configurations
(Kipf et al. 2020).

When RS was evaluated using real-world datasets, a significant problem became
apparent. The index size for the face_200M_uint64 dataset occupied a consid-
erably larger amount of space compared to the other datasets as seen in Figure
3.1.9. This outlier issue stands out as one of the primary drawbacks of the RS in-
dex. Consequently, each dataset requires a different configuration, and it appears
that the face_200M_uint64 dataset was not utilizing the ideal configuration. As
stated, the lookup time can be traded for a smaller index size.

16 CHAPTER 3. RELATED WORKS

Figure 3.1.9: Index sizes for real world datasets with Radix Spline (Kipf et al.
2020).

3.1.5 Hist-Tree

Hist-Tree (HT) is an indexing method proposed by Crotty 2021 that approximates
data distribution using a histogram instead of functions. It utilizes a fast radix
tree-based traversal approach to locate the appropriate histogram bucket. Crotty
also introduced a compact version of Hist-Tree called Compact Hist-Tree (CHT),
which is optimized for read-only workloads. CHT acts as a lookup table, storing
nodes and their prefix sums. Importantly, CHT can be built directly from HT or
the data itself.

To conduct a lookup in HT, we first check if the key falls within the range covered
by HT. If it lies outside this range, the lookup terminates. Next, the algorithm
descends through HT by dividing the key with the bin width, calculating the bin
index. The sum of all smaller bins is then computed. Subsequently, the new key is
derived by subtracting the width multiplied by the bin index from the original key.
This process continues until a terminal bin or leaf node is reached. A terminal bin
is defined as a bin with a count below a configurable threshold. Once a leaf node
or terminal bin is reached, the position is returned.

Let’s consider an example from Crotty 2021, as shown in Figure 3.1.10. The HT
in this example has a count threshold of 16, designating all nodes with a count
lower than 16 as terminal bins, which are marked in grey. Suppose we want to
perform a lookup for the key 567. Starting at the root node, we calculate the bin
by dividing 567 by 256, yielding a result of 2. We then compute the sum of all
smaller bins, which amounts to 114 (20 + 94). Next, we update the key to 55 by
subtracting 256 multiplied by 2 from 567. This process continues until we reach
a terminal or leaf node. In this specific example, we encounter a bin with a count
of 6. Finally, we return the final sum of the counts, which totals 129 (114 + 5 +
3 + 7).

CHAPTER 3. RELATED WORKS 17

Figure 3.1.10: Hist-tree example (Crotty 2021).

3.1.6 PLEX

The Practical Learned Index (PLEX) is a specific type of learned index that com-
bines elements from CHT and RS. It features a single hyperparameter, ϵ, which
controls the trade-off between lookup time and index size. PLEX incorporates
a spline layer inspired by radix spline, ensuring an error bound within ϵ, and a
radix layer inspired by CHT. This combination results in rapid index construction,
error-bounded lookups, and the ability to easily fine-tune the trade-off between
lookup time and index size (Stoian et al. 2021).

First, we need to build the linear spline model S, which approximates the position
of each key within a specified error bound of ϵ. This spline model ensures that the
predicted position of the data remains within ϵ of the actual position in the CDF.
The spline model is defined by a set of connected linear spline points, selected
from the CDF points. Computing the optimal spline, which minimizes the num-
ber of spline points, can be achieved using dynamic programming in O(N2) time
complexity, where N represents the size of the CDF. However, due to scalability
concerns, a greedy algorithm is commonly employed in practice. Although this
algorithm does not guarantee optimality, it can be implemented in linear time,
denoted as O(N).

Secondly, we need to build the CHT. The spline points are selected and indexed in
CHT using a new implementation that builds each level level of the tree iteratively
by analyzing key chunks. This method is different than the one used in HT,
where bulkloading and creating a sparse tree were created first, here the CHT are
constucted directly. CHT has two hyperparameters: the number of radix bits (r)
for each tree node and the error parameter (δ), which represents the approximation
of key positions within the index. If q* represents the position of the spline point
and q̃ denotes the position estimated by the CHT, the position of the spline point
can be expressed as follows:

q∗ ∈ {q, . . . , q̃̃ + δ − 1} (3.1)

One limitation of learned indexes has been the manual tuning required for hy-
perparameters. Consequently, multiple index constructions may be necessary to

18 CHAPTER 3. RELATED WORKS

identify the optimal configuration that provides the best lookup time while adher-
ing to specific index size constraints. PLEX introduces cost models that enable
the estimation of lookup times and accurate computation of space consumption
for both the radix table and CHT. These models provide valuable insights with-
out requiring the actual construction of the index. Consequently, the parameters
can be selected based on the approximated lookup time and space consumption,
allowing for the index to be built just once using the optimal configuration.

3.1.6.1 Radix Table Cost Model

The cost model for the radix table is determined by the parameter r, which divides
the input data into 2r buckets based on the most significant bits of the keys. The
keys for the spline points serve as the input data for the radix table. When
performing a key lookup, we need to identify the radix bucket bk in which the key
k is stored. Once the bucket is determined, a local search is conducted on the
spline nodes within the bucket to locate the precise spline segment. This two-step
process ensures efficient retrieval of the desired spline segment corresponding to the
key being looked up. Using binary search, the number of steps equals ⌈log2(|bk|)⌉,
where the |bk| represents the number of spline points within the bucket bk. We
can then estimate the average lookup time as:

λr =
1

|D|
∑
k∈D

⌈log2(|bk|)⌉ (3.2)

Assuming that only positive lookups are performed, it can be inferred that the key
is located within the data set D. Additionally, this cost model has the capability
to detect the outlier problem associated with radix spline, as discussed in Section
3.1.4, and can be estimated during the construction of the spline model. The
time complexity of this model is represented as O(r+|S|), where r+ denotes the
maximum allowed r. Moreover, the memory consumption is proportional to O(2r).

3.1.6.2 CHT Cost Model

To estimate the lookup time and memory consumption for a large set of CHTs
with different configurations (r, δ), we employ the same logic as the radix table
cost model. The lookup process begins by determining the node vk in which the
key k is located. This corresponds to the node containing the bin that matches k
with a size less than or equal to δ. If binary search is employed as the local search
method, the number of steps required is given by the sum of the depth(vk) and
⌈log2(δ)⌉. Notably, ⌈log2(δ)⌉ remains constant for all lookup keys, hence necessi-
tating the calculation of the average depth solely for the leaf nodes.

One limitation of the cost model for CHTs is that calculating the cost using the
same method as the radix table cost model would require multiple examinations
of the original data. However, this approach is not ideal. Instead, the cost model
is simplified by calculating the average tree depth based on lookups from the set
of spline keys. Consequently, this simplified cost model does not guarantee the

CHAPTER 3. RELATED WORKS 19

ability to predict the lookup time from the data itself. The average lookup time
can be estimated as follows:

λ(r, δ) = ⌈log2(δ)⌉+
1

|S|
∑
k∈S

depth(vk) (3.3)

3.1.6.3 Evaluation of PLEX

As stated in the original PLEX paper, PLEX successfully detects the outlier prob-
lem mentioned in Section 3.1.4 using the face_200M_uint64 dataset while main-
taining the performance of RS for other datasets. In comparison to ART (Leis,
Kemper, and Neumann 2013), BTree, and PGM, PLEX does not suffer perfor-
mance degradation as the index size increases; this holds true for almost all of the
tested datasets. The primary reason for this is that navigating the index no longer
saves time due to the significant size, making a binary search more efficient. Figure
3.1.11 illustrates the comparison of lookup time and index size between PLEX and
other index structures, both learned and conventional, for four real-world 64-bit
datasets.

Figure 3.1.11: Size affecting lookup time with PLEX (Stoian et al. 2021).

20 CHAPTER 3. RELATED WORKS

CHAPTER

FOUR

SETUP AND METHOD

The accuracy of a neural network’s predictions heavily relies on the formulation
of features within each dataset, as well as the volume, diversity, and variability
of the training data. The selection of appropriate features and the availability of
sufficient data directly impact the performance of the model.

This chapter focuses on the setup and steps taken to develop a neural network
model capable of predicting the hyperparameters to be used with radix spline
for any given 32-bit dataset. We will delve into various aspects, including the
generation of synthetic data, feature extraction, the identification of the optimal
configuration for each dataset, and the subsequent training of the neural network.

4.1 Setup
All the necessary steps to complete the neural network model, including data
generation, feature extraction, lookup generation, and index building, were per-
formed on a single system, specifically Linux-5.14.0-1059-oem-x86 kernel with an
12th Gen Intel® Core™ i7-1270p CPU @ 4.80GHz × 16 CPU and 32GB of RAM.
This choice of system was critical as variations in build and lookup times of the
radix spline index structure could significantly impact the accuracy of the results
if different systems were used.

The training datasets for the neural network were generated through random sam-
pling with various distributions using NumPy (Numpy.org 2020). Each dataset
comprised either 200 million or 400 million 32-bit unsigned integers. Lookup
files containing 1 million keys were generated for each dataset in addition to the
datasets themselves. The lookup files were generated using the SOSD benchmark
(Kipf et al. 2019), an open-source C++ project designed for benchmarking learned
indexes. It is worth mentioning that the core logic of the SOSD benchmark was
not altered; instead, it was adopted and customized to meet the specific require-
ments of this project.

To predict the number of radix bits and the spline error for the Radix spline
learned index, a multi-output neural network model was employed. The model,

21

22 CHAPTER 4. SETUP AND METHOD

implemented using TensorFlow (Abadi et al. 2016) in Python, takes four different
features as input and generates two outputs. It is comprised of two layers, each
containing 128 units, and utilizes the ReLU activation function. Stochastic gradi-
ent descent (SGD) is employed as the optimizer, while mean squared error (MSE)
serves as the loss function, and root mean squared error (RMSE) is used as the
evaluation metric. The model underwent training for 1000 epochs with a batch
size of 10, enabling it to learn the relationships between the input features and
the desired outputs.

4.1.1 Generating synthetic test data

The SOSD benchmark downloaded data from the Harvard Dataverse database and
generated synthetic datasets with uniform, normal, and lognormal distributions.
However, these datasets were not sufficient to train the neural network, as they
lacked diversity and variability needed for training on a wide range of datasets.

Instead, NumPy was utilized to generate datasets based on 29 unique distribu-
tions, each representing a distinct data distribution. The aim was to investigate
the capability of neural networks to effectively learn the optimal configuration for
radix spline for any given dataset (RQ1), and during the data generation pro-
cess almost all of the available NumPy distributions were utilized. In total, we
generated 115 datasets, comprising over 200 GB of synthetic data. Following the
methodology of the SOSD Benchmark, the datasets were generated as sorted ar-
rays of uint32 keys and corresponding values, accurately reflecting the underlying
data distribution. For a comprehensive list of the distributions and their respective
probability density functions (PDFs) or probability mass functions (PMFs), please
refer to Table 4.1.1. The specific parameters utilized to create these datasets are
provided in Appendix 7.3.

Name Size Parameters PDF (PMF)

Beta 200M α, β xα−1(1−x)β−1

B(α,β)

Chi-square 200M k 1
2k/2Γ(k/2)

xk/2−1e−x/2

Dirichlet 400M α1, . . . , αK
1

B(α)

∏K
i=1 x

αi−1
i

F 200M d1, d2
Γ(

d1+d2
2

)

Γ(
d1
2
)Γ(

d2
2
)

(
d1
d2

) d1
2 x

d1
2 −1(

1+
d1
d2

x
) d1+d2

2

Gamma 200M k, θ 1
Γ(k)θk

xk−1e−x/θ

Gumbel 200M µ, β 1
β
e−(z+e−z), where z = x−µ

β

Laplace 200M µ, b 1
2b
e−

|x−µ|
b

Logistic 200M µ, s e−(x−µ)/s

s(1+e−(x−µ)/s)2

Multivariate Normal 400M µ,Σ (2π)−
k
2 |Σ|− 1

2 e−
1
2
(x−µ)TΣ−1(x−µ)

Negative Binomial 200M r, p
(
x+r−1

x

)
(1− p)xpr

CHAPTER 4. SETUP AND METHOD 23

Noncentral Chi-square 200M k, λ 1
2
e−(x+λ)/2(x

λ
)
k−2
4 Ik/2−1(

√
λx),

where Ik/2−1 is the modified
Bessel function

Noncentral F 200M d1, d2, λ
∑∞

j=0(
λ
2
)j e

−λ
2

j!
fFd1,d2

(x), where
fFd1,d2

(x) is the PDF of the cen-
tral F distribution with degrees
of freedom d1 and d2

Pareto 200M xm, α α xα
m

xα+1

Rayleigh 200M σ x
σ2 e

− x2

2σ2

Standard Cauchy 200M - 1
π(1+x2)

Standard Exponential 200M - e−x

Standard Gamma 200M - 1
Γ(k)

xk−1e−x

Standard Normal 200M - 1√
2π
e−

x2

2

Standard t 200M ν
Γ(ν+1

2
)√

νπΓ(ν
2
)

(
1 + x2

ν

)− ν+1
2

Triangular 200M a, b, c

2(x−a)

(b−a)(c−a)
for a ≤ x < c,

2(b−x)
(b−a)(b−c)

for c ≤ x ≤ b,

0 otherwise.

Von Mises 200M µ, κ 1
2πI0(κ)

eκ cos(x−µ), where I0(κ) is
the modified Bessel function of or-
der 0

Wald 200M µ, λ
(

λ
2πx3

)1/2
e
−λ(x−µ)2

2µ2x

Weibull 200M k, λ k
λ

(
x
λ

)k−1
e−(x/λ)k

Zipf 200M s x−s

ζ(s)
, where ζ(s) is the Riemann

zeta function

Uniform 200M a, b 1
b−a

Exponential 200M λ λe−λx

Lognormal 200M µ, σ 1
xσ

√
2π
e−

(ln x−µ)2

2σ2

Normal 200M µ, σ 1
σ
√
2π
e−

(x−µ)2

2σ2

Power 200M a, k k
a
(x/a)k−1(1− (x/a))k

Table 4.1.1: All the distributions used to create the synthetic data. (Numpy.org
2020)

The values of the parameters for each distribution were selected based on the con-
straints outlined in NumPy’s documentation. Additionally, the parameters were
chosen with the aim of representing the unique characteristics of each distribution.
In other words, the parameters were carefully selected to generate noticeably dif-

24 CHAPTER 4. SETUP AND METHOD

ferent datasets for the same distribution. This approach was beneficial in ensuring
the generation of a sufficient number of diverse datasets.

For the four datasets that did not require parameterization, the standard datasets.
These datasets are the same as the non-standard distribution but with a constant
parameter. The standard datasets were also generated five times, with the excep-
tion of the standard exponential dataset. Although the standard datasets exhibited
similarities, they still possessed varying features, which added value to the test set.

Each probability distribution can be visualized with a histogram, which represents
the distribution of random samples generated from the respective distribution.
The histogram displays the frequencies of values falling into intervals along the
x-axis, providing a clear representation of the data distribution. This visualization
tool was utilized to select appropriate parameters for generating multiple datasets
from a single probability distribution.

Figure 4.1.1 presents an example, showcasing the histograms for three common
probability distributions. These histograms offer insights into the shape and char-
acteristics of the distributions. Additionally, Figure 4.1.2 illustrates the CDFs of
the same distributions.

Figure 4.1.1: Graphs depicting three common probability distributions, each con-
sisting of 100,000 elements.

(a) CDF Uniform (Ikamusume-
Fan n.d.).

(b) CDF Normal (Inductiveload
n.d.).

(c) CDF Exponential (EvgSkv
n.d.).

Figure 4.1.2: CDF for three common distributions

CHAPTER 4. SETUP AND METHOD 25

4.1.2 Feature extraction

The next step in gathering test data for the neural network is feature extraction,
which involves identifying features that have a direct correlation with the index
configuration and affect the building of the Radix Spline index. As talked about
in Section 2.1.3.1, feature extraction can either be done manually or automatic.
In this experiment the features were extracted using manual feature extraction
approach.

To ensure the relevance of features and their direct correlation with the optimal
configuration for each dataset, a data-driven approach was employed. This ap-
proach aimed to identify features that exhibit a direct correlation with the optimal
configuration. One of the most common types of measures used to describe a dis-
tribution is related to the central tendency, such as mean, median, and mode.
These measures provide information about the central or average value of the dis-
tribution. Another important measure is kurtosis, which quantifies the heaviness
of the distribution’s tail. All of these measures were carefully considered when
creating the features for each dataset.

To ensure a direct correlation between these measures and the optimal configura-
tion, two 64-bit datasets with distinct distribution complexities were utilized. The
first dataset, fb_200M_uint64, was specifically chosen due to the outlier problem
with RS, providing a unique testing scenario. The second dataset, also a real-
world dataset, wiki_ts_200M_unit64.

In evaluating the central tendency of each dataset, the number of unique key inter-
vals was employed as a measure. This metric signifies the distinct spaces between
keys and provides valuable insights into the spread of the keys within the dataset.

The number of unique key intervals was collected for each dataset, and then the
datasets were constructed using 56 different configurations to determine the config-
uration that yielded the optimal lookup time and index size. Table 4.1.2 presents
the variations in features between the two datasets.

Dataset Number of unique
key intervals

Radix bits Spline error

fb_200M_uint64 76582 10 256
wiki_ts_200M_uint64 4304 16 32

Table 4.1.2: Comparison of number of unique key intervals between two dataset
from the Harvard Dataverse database (Harvard n.d.).

Table 4.1.2 could indicates that the spread and variability of the key/value pairs
significantly impact the optimal configuration choice. These findings highlight the
importance of creating features that reflect these characteristics. Building on this
assumption, four features were defined:

1. Size
This metric, also known as the number of key-value pairs, measures the

26 CHAPTER 4. SETUP AND METHOD

quantity of data in the dataset. For instance, datasets for this application
typically contain either 200M or 400M key-value pairs.

2. Mean key interval frequency
This feature calculates the average frequency of unique intervals between
keys and provides a good indication of the Kurtosis of the distribution.

3. Number of unique key intervals
The unique interval count feature calculates the number of distinct spacings
between adjacent items in the dataset, which can offer insights into the
underlying structure and patterns of the data.

4. Mode of unique key intervals
This feature calculates the highest frequency of repeated unique spacings,
which can provide an indication of the kurtosis of the data. A low value
indicates that the data is more spread out, while a higher value suggests a
greater degree of peakedness.

Modification to the Radix Spline index builder provided in the PLEX project
code were implemented to gather features for all 115 datasets. This modification
involves an extra pass through the data before building the index, which allows
for collecting the necessary information about the distribution of the data. As a
result, the implementation of the Radix Spline index becomes a dual-pass learned
index, rather than a single-pass learned index as in the original implementation.

4.1.3 Building the indexes

To achieve a high accuracy when testing the performance of each of the datasets
using the radix spline learned index, each dataset got tested using 56 different
combination of the two hyperparameters used to trade lookup time with index
size. These configurations consist of a combination of values for the radix bits
parameter (10, 12, 14, 16, 18, 20, 22, and 24) and values for the spline error pa-
rameter (4, 8, 16, 32, 64, 128, and 256).

We limited the number of radix bit configs to 8 and spline error configs to 7 in
consideration of the long build times and the scope of the project. As demonstrated
in the Radix Spline paper, the optimal configurations frequently fall within this
range, and values exceeding a spline error of 256 or more than 24 radix bits are
typically only required in exceptional circumstances.

4.1.4 Finding the Best and Worst Parameter Configuration

After building 56 indexes with various configurations for each of the 115 datasets,
all the necessary features, lookup times, and index sizes were obtained. To create
a solution for our training set, we need to determine the optimal configuration.
This will enable us to identify the best-performing combination of parameters and
build an effective model.

CHAPTER 4. SETUP AND METHOD 27

4.1.4.1 Method 1

Two approaches were employed to extract the best configuration for each dataset.
One approach involved analyzing all configurations and results using a script. This
script identified the configuration with the smallest index size among the top 10%
of lookup times. To express this mathematically, the equation below can be used.

cmin = argminc∈C′{M(c)} (4.1)

where C’ is the set of configurations corresponding to the best 10% of configura-
tions sorted by their lookup time.

4.1.4.2 Method 2

The z-score normalization technique was used as another method to rank the pairs
based on their performance. In this approach, each pair was rescaled based on the
standard deviation from the mean of all pairs, and scores were computed for each
pair. This approach takes into consideration the performance of other pairs and
may favor different configurations than the first approach. The equation below
was utilized to compute the z-score normalization of the pairs.

zi,j =
xi,j − µj

σj

(4.2)

where zi,j is the z-score normalized value for the ith pair and jth variable, xi,j is the
original value for the ith pair and jth variable, µj is the mean of the jth variable
across all pairs, and σj is the standard deviation of the jth variable across all pairs.

4.1.4.3 Finding the Worst Parameter Configuration

To specifically address RQ2, the z-score normalization technique was employed
to not only identify the optimal parameter configuration for each dataset but
also to determine the worst configuration that could be achieved with RS. It is
worth noting that the worst configuration is simply the combination of the highest
lookup time and the largest index size, without considering any constraints. By
doing this, we can directly compare the predicted configuration with the worst
possible configuration.

4.1.5 Training the network

As discussed in Section 4.1, our neural network model consists of two layers with
128 units each, and uses the ReLU activation function. The model was trained on
our training data for 1000 epochs, with a batch size of 10.

To evaluate the performance of the model, a separate test set was created us-
ing datasets downloaded from the Harvard Dataverse database (Harvard n.d.).

28 CHAPTER 4. SETUP AND METHOD

Books_200M_uint32 dataset, which is based on real-world data, was included in
the test set together with some synthetic generated datasets. Additionally, 20%
of the training data was selected and excluded from the training set to increase
the size of the test set and provide a more comprehensive evaluation.

Because the data was generated using two different methods to find the optimal
configuration, we trained and evaluated the model for each of these methods. In
addition, due to the potential for significant variation in results and accuracy
when training a neural network with limited data, each method was run up to five
times. As a result, we obtained an average accuracy by training and evaluating
the network five times for each method.

CHAPTER

FIVE

RESULTS AND EVALUATION

This chapter presents the results obtained through the different steps of the
method. Specifically, the outcomes from the feature extraction, the approaches
used to find the optimal parameter configuration, and the results from training
the neural network are discussed.

5.1 Feature Extraction
As described in Section 4.1.2, each dataset was defined by four distinct features:
size (number of key/value pairs), mean key interval frequency (MKIF), number
of unique key intervals (NUKI), and mode of unique key intervals (MUKI). Table
5.1.1 shows the results of the feature extraction for one configuration of each
dataset, while a comprehensive overview of the features for all 115 datasets is
provided in Appendix 7.3.

Dataset Size MKIF NUKI MUKI
Beta 200M 114351 1749 104866000
Chi-square 200M 8251.85 24237 80608500
Dirichlet 400M 923788 433 44888100
F 200M 7939.03 25192 51216700
Gamma 200M 8230.45 24300 28424200
Gumbel 200M 7816.16 25588 38848800
Laplace 200M 7427.76 26926 50963300
Logistic 200M 7612.38 26273 43079000
Multivariate Normal 400M 16780.6 23837 12805200
Negative Binomial 200M 25000000 8 200000000
noncentral Chisquare 200M 8360.85 23921 25823900
noncentral F 200M 9134.51 21895 86893600
Pareto 200M 9932.46 20136 134549000
Rayleigh 200M 9143.69 21873 23272900
Standard Cauchy 200M 114482 1747 199933000
Standard Exponential 200M 7455.73 26825 51046300
Standard Gamma 200M 7693.79 25995 48499000
Standard Normal 200M 8427.79 23731 25700500

29

30 CHAPTER 5. RESULTS AND EVALUATION

Standard T 200M 15584.8 12833 178669000
Triangular 200M 32867.7 6085 11589500
Vonmises 200M 11578.1 17274 38329800
Wald 200M 8322.24 24032 32126900
Weibull 200M 8050.56 24843 28229200
Zipf 200M 216685 923 199980000
Uniform 200M 573066 349 8893560
Exponential 200M 7517.67 26604 51628700
Lognormal 200M 9509.77 21031 142111000
Normal 200M 8193.36 24410 24806900
Power 200M 557103 359 8889000

Table 5.1.1: Features for one dataset per distribution

Although Table 5.1.1 only shows one configuration for each dataset, notable vari-
ations in the features of each dataset are already evident.

5.2 Finding The Optimal Parameter Configuration

After constructing each of the indexes with 56 different configurations, we ob-
tained pairs of lookup times and index size in bytes. To determine the optimal
configuration that provides the best balance between index size and lookup time,
we used two approaches discussed in Section 4.1.4.

The utilization of two distinct methods to determine the optimal combination
of spline error and number of radix bits stems from the specific requirements of
the index. By employing these two different approaches, we are able to assess
the model’s performance under configurations that address diverse needs, such
as index size. While z-score normalization can be considered the more accurate
method for scoring each configuration pair, the particular application in which
these configurations are employed might necessitate a weighted scoring system
that prioritizes lookup time or index size over implementation aspects.

Figure 5.2.1 offer a comprehensive 3D visual representation of the influence of dif-
ferent configurations on both index size and lookup time for the books_200M_uint32
dataset. Notably, only a limited number of combinations result in the top 10%
worst index size and lookup time, this provides a wide range of alternative config-
urations for applications with specific memory constraints.

CHAPTER 5. RESULTS AND EVALUATION 31

(a) Lookup time (b) Index size

Figure 5.2.1: 3D visual representation of lookup time and index size for different
configurations

5.2.1 Minimum index for fastest 10% lookups (Method 1)

The results of the first method to determine the optimal parameter configuration
are presented in Table 5.2.1. Please note that only one configuration is displayed
for each dataset. The complete list of best configurations for all 115 datasets is
included in Appendix 7.3.

Dataset Number of Radix Bits Spline Error
beta 18 64
chisquare 18 64
dirichlet 16 64
f 16 128
gamma 16 32
gumbel 16 64
laplace 18 64
logistic 16 32
multivariate_normal 18 128
negative_binomial 12 4
noncentral_chisquare 16 32
noncentral_f 18 32
pareto 20 32
rayleigh 16 64
standard_cauchy 24 256
standard_exponential 18 32
standard_gamma 18 32
standard_normal 18 64
standard_t 20 64
triangular 14 32
vonmises 16 32
wald 16 32
weibull 16 32

32 CHAPTER 5. RESULTS AND EVALUATION

zipf 20 4
uniform 14 32
exponential 18 256
lognormal 20 32
normal 16 32
power 14 32

Table 5.2.1: Table displaying optimal configuration using the minimum index size
for fastest 10% lookup times

5.2.2 Z-Score Normalization (Method 2)

Table 5.2.2 presents the results of the z-score normalization used to determine
the optimal parameter configuration. Please note that only one configuration
is displayed per dataset, but the complete list of best configurations for all 115
datasets is included in Appendix 1. It is worth noting that the optimal parameter
configuration is markedly different when using z-score normalization than when
using minimum index size for fastest 10% lookup times.

Dataset Number of Radix Bits Spline Error
beta 10 32
chisquare 10 64
dirichlet 10 8
f 10 16
gamma 12 8
gumbel 10 32
laplace 10 8
logistic 10 8
multivariate_normal 10 128
negative_binomial 10 128
noncentral_chisquare 20 32
noncentral_f 12 256
pareto 12 16
rayleigh 10 8
standard_cauchy 10 8
standard_exponential 10 16
standard_gamma 10 64
standard_normal 16 8
standard_t 10 64
triangular 14 8
vonmises 10 8
wald 10 32
weibull 10 128
zipf 10 8
uniform 10 8
exponential 10 8

CHAPTER 5. RESULTS AND EVALUATION 33

lognormal 10 16
normal 12 64
power 10 4

Table 5.2.2: Table displaying optimal configuration using the z-score normalization
method

5.3 Neural Network Prediction of Parameters
The neural network was trained using the data resulting from feature extraction
and the optimal parameters related to lookup time and index size. Subsequently,
the model was evaluated using a set of 25 synthetic datasets generated from various
distributions, as well as one real-world dataset.

5.3.1 Method 1

Figure 5.3.1 displays the results obtained from predicting the optimal parameters
using the neural network. The model used in this prediction was trained and
evaluated with the parameters selected based on the minimum index size for the
fastest 10% lookup times. The terms Num and Err signify the optimal number of
radix bits and the corresponding spline error for each dataset. On the other hand,
pNum and pErr represent the predicted values generated by the model, note that
these values are rounded to the closes feasible values. The non-rounded-rounded
predictions can be found in Appendix 7.3. Additionally, wNum and wErr denote
the worst configurations selected by the z-score normalization method for each
dataset. These particular configurations are regarded as the optimal choices for
each dataset, according to the criteria established by Method 1.

It is important to note that each of the predicted configurations has been rounded
to the nearest value for both the number of radix bits and spline error. The table
containing the precise predicted values can be found in Appendix 7.3.

Dataset Num Err pNum pErr wNum wErr
books 22 64 16 64 18 4
lognormal 16 4 22 32 10 128
normal 10 4 18 32 24 256
uniform_sparse 14 32 14 32 10 4
beta 16 32 16 64 10 4
chisquare 16 64 16 32 10 4
dirichlet 16 128 16 128 10 4
f 18 64 18 32 24 4
gamma 18 64 16 32 12 4
gumbel 14 64 16 32 12 4
laplace 16 64 18 64 10 4
logistic 16 32 18 32 10 4
negative_binomial 10 4 12 32 24 256

34 CHAPTER 5. RESULTS AND EVALUATION

noncentral_f 18 32 16 64 10 4
pareto 18 64 18 64 10 4
rayleigh 16 32 16 32 10 4
standard_cauchy 22 32 16 128 10 8
standard_gamma 16 32 16 32 12 4
standard_normal 16 64 16 32 10 4
standard_t 16 32 16 32 10 4
triangular 16 32 14 32 10 4
vonmises 14 32 14 32 14 4
wald 20 32 18 64 10 4
weibull 18 32 18 64 10 4
zipf 12 4 12 32 10 128
power 14 32 14 32 10 4

Table 5.3.1: Table showing the predicted values, best config, and worst config

Pyplot was used to create a graph (see Figure 5.3.1) that illustrates the model’s
predictions. The graph depicts the optimal configuration as a line and the pre-
dicted configurations as dots, for both the number of radix bits and spline error.

(a) Optimal Number of Radix Bits Predicted
by the Model

(b) Optimal Spline Error Predicted by the
Model

Figure 5.3.1: Graphs Showing the Models Prediction

5.3.1.1 Prediction of a real-world dataset

Out of all the datasets employed to assess the model’s prediction capabilities, only
one was derived from real-world data. The inclusion of this real-world dataset pro-
vides insights into the model’s performance in a more realistic scenario.

The predicted values for the books_200M_uint32 dataset using Method 1 were
16 for the number of radix bits and 64 for the spline error. In contrast, the actual
optimal configuration for this dataset was 22 for the number of radix bits and

CHAPTER 5. RESULTS AND EVALUATION 35

16 for the spline error. Hence, the model successfully predicted the correct spline
error but slightly underestimated the optimal number of radix bits.

To offer a comprehensive visual representation of the predicted and actual optimal
configurations for the books_200M_uint32 dataset, two heatmaps are employed.
These heatmaps provide a holistic view of the complete range of configurations,
encompassing lookup times and index sizes. The best configuration is highlighted
with a white square, while the predicted configuration generated by our model
is indicated by a red cross for both lookup times and index size. Figure 5.3.2
showcases the heatmap specifically associated with this dataset.

(a) Lookup time (b) Index size

Figure 5.3.2: Heat map showing the optimal configuration (white square) and the
predicted configuration (red cross)

5.3.1.2 Evaluation of Method 1

Upon examining Figure 5.3.1, the prediction plot reveals a modest level of agree-
ment between the model’s predicted configuration and the actual optimal con-
figuration, indicating the model’s ability to capture some essential characteristics
of the datasets. However, it is worth noting that only a subset of the predicted
values directly align with the actual optimal configuration of the dataset. This
observation highlights the model’s inadequate accuracy in reliably predicting the
optimal configuration for any given dataset (RQ1).

As noted in Section 4.1.5, the accuracy of the model varied when it was run
multiple times. Because of this, we trained the model five times and calculated
the average accuracy. The results displayed in Table 5.3.1 and Figure 5.3.1 only
show the results from the first training and evaluation. Figure 5.3.3 presents the
RMSE and average RMSE obtained after running the model five times for both
num and err.

36 CHAPTER 5. RESULTS AND EVALUATION

First training Average training
0

20

40

1.76

30.56

2.03

37.8

R
M

SE

Number of Radix Bit Spline Error

Figure 5.3.3: Graph illustrating the comparison between the RMSE obtained from
a single run of the model versus the average RMSE derived from running the model
five times. The comparison is performed for both Num and Err.

5.3.2 Method 2

In relation to Method 1, the optimal configuration for the number of radix bits
and spline error can be observed in Table 5.3.2, represented as Num and Err,
respectively. The predicted configurations are rounded to the nearest feasible
values and indicated as pNum and pErr. The non-rounded predictions can be
found in 7.3. Furthermore, the worst possible configurations are presented as
wNum and wErr. In line with Method 1, z-score normalization was employed to
identify the configuration with the highest score among the worst configurations.

Dataset Num Err pNum pErr wNum wErr
books 16 256 16 32 18 4
lognormal 16 4 20 16 10 128
normal 16 4 18 32 24 256
uniform_sparse 14 32 14 32 10 4
beta 18 32 16 16 10 4
chisquare 18 32 16 32 10 4
dirichlet 20 64 18 64 10 4
f 20 64 18 32 24 4
gamma 16 64 16 32 12 4
gumbel 16 32 18 32 12 4
laplace 18 32 18 64 10 4
logistic 18 32 18 32 10 4
negative_binomial 16 4 14 4 24 256
noncentral_f 18 32 18 32 10 4
pareto 18 64 18 64 10 4
rayleigh 18 32 16 32 10 4
standard_cauchy 20 64 20 16 10 8
standard_gamma 18 32 18 32 12 4
standard_normal 16 32 18 32 10 4
standard_t 18 32 18 32 10 4

CHAPTER 5. RESULTS AND EVALUATION 37

triangular 16 32 14 32 10 4
vonmises 14 32 14 32 14 4
wald 20 32 20 64 10 4
weibull 18 32 20 64 10 4
zipf 20 4 14 4 10 128
power 18 32 14 32 10 4

Table 5.3.2: Table showing the predicted values, best config, and worst config

Figure 5.3.4 displays prediction plots for number of radix bits and spline error.
Here, the optimal configuration is shown as a line and the predicted configuration
as dots for both.

(a) Optimal Number of Radix Bits Predicted
by the Model

(b) Optimal Spline Error Predicted by the
Model

Figure 5.3.4: Graphs Showing the Models Prediction

To better visualize the results, a heatmap will be used to display all possible
configurations in terms of their lookup times and index sizes. The heatmap will
highlight the best configuration as a white square and the predicted configuration
generated by our model as a red cross. These results are specific to the real-world
dataset mentioned earlier, namely books_200M_uint32. Figure 5.3.5 shows the
heatmap.

38 CHAPTER 5. RESULTS AND EVALUATION

(a) Lookup time (b) Index size

Figure 5.3.5: Heat map showing the optimal configuration (white square) and the
predicted configuration (red cross)

5.3.2.1 Evaluation of Method 2

The results obtained from Method 2 demonstrated a comparable level of predic-
tion accuracy to Method 1, revealing a degree of agreement between the predicted
values and the actual values. However, it should be noted that also for Method
2, only a subset of the predicted values directly correspond to the actual optimal
configuration of the dataset. Based on this, it becomes evident that the model’s
accuracy is inadequate in reliably predicting the optimal configuration for any
given dataset (RQ1).

In a similar manner to Method 1, the neural network model was trained and
evaluated five times to calculate the average RMSE for both the number of radix
bits and spline error. However, it is important to note that only the results from
the initial training and evaluation are displayed in Table 5.3.2 and Figure 5.3.1. To
provide a comprehensive overview, Figure 5.3.6 presents the RMSE and average
RMSE obtained after running the model five times for both num and err.

CHAPTER 5. RESULTS AND EVALUATION 39

First training Average training
0

5

10

15

1.53

12.16

1.73

12.44

R
M

SE

Number of Radix Bit Spline Error

Figure 5.3.6: Graph illustrating the comparison between the RMSE obtained from
a single run of the model versus the average RMSE derived from running the model
five times. The comparison is performed for both Num and Err.

In contrast to Method 1, the utilization of z-score normalization enables the as-
signment of a score to each configuration based on its resulting lookup time and
index size. Consequently, all potential configurations can be sorted according to
their scores and compared to the predicted configuration, providing a comprehen-
sive visual representation of how closely the prediction aligns with the optimal
configuration. This approach allows us to determine how close the predicted con-
figurations are to the optimal configuration for each dataset. Figure 5.3.7 presents
the datasets in the same order as presented in Table 5.3.2 on the x-axis. The graph
demonstrates that, while the correct optimal configuration was not predicted for
several datasets, the predictions still yielded highly acceptable configurations far
from the worst-case scenarios. For instance, considering the books dataset, rep-
resented as the first dataset in the graph, the predicted configuration ranked in
the top 87.5%. Furthermore, none of the predicted configurations fell below the
bottom 60%, with the lowest percentages observed for the lognormal and dirichlet
datasets at 60.7% and 62.5%, respectively. This observation suggests that the
model effectively captures the inherent pattern between the selected features and
the optimal configuration, demonstrating its satisfactory learning capability.

Figure 5.3.7: Prediction accuracy for sorted configurations

40 CHAPTER 5. RESULTS AND EVALUATION

5.3.3 Overall Evaluation of the Model

One of the most noteworthy aspects of the predictions is the outliers. Some pre-
dictions are way off the true value. For Method 1, the model predicted a num
of 21.007301, while the actual optimal num was 16 for the lognormal dataset.
Regarding the err, we also observe a more dramatic prediction for the stan-
dard_cauchy dataset, where the model predicted a spline error of 145.31194,
even though the true value was 32.

It is possible that the issues with the outliers are attributed to the limited train-
ing data available for datasets with unconventional optimal configurations. Upon
reviewing the training data using Method 1, it becomes apparent that only two
datasets possess an optimal number of radix bits equivalent to 22. Consequently,
the model is less exposed to this specific scenario, which could explain the lower
prediction accuracy observed for the lognormal dataset. This will be further ex-
plored and discussed in Section 6.2.

Table 5.3.1 and 5.3.2 display the worst possible configuration for each of the
datasets. This inclusion provides a clearer understanding of how the predicted
configuration compares to the worst possible configuration (RQ2). It is notewor-
thy that among all the datasets tested, none of them received a predicted best
configuration that matched the worst possible configuration. Furthermore, in the
results obtained using Method 1, the predicted configurations exhibited an average
discrepancy of 5.8461 and 64.1538 for the predicted num and err, respectively.
For the results stemming from using Method 2 the discrepancy between the pre-
dicted and worst configuration were 6.5384 and 55.8461 for the predicted num
and err, respectively.

This can be a good indication that, on average, the predictions deviate consider-
ably from the worst possible configuration. The notable discrepancies observed
between the predicted and worst configurations emphasize the model’s tendency
to produce substantially different results. It is essential to acknowledge that the
predicted configurations, both from Method 1 and Method 2, consistently exhibit
a significant gap when compared to the worst possible configurations (also seen in
Figure 5.3.7). These findings suggest that the model’s predictions often stray far
from the extreme end of the configuration spectrum, implying a tendency towards
more moderate or optimal configurations (RQ2).

When comparing the resulting RMSE between the two methods, a clear distinction
is evident. Method 2 demonstrates a significantly lower RMSE for the err in
comparison to Method 1. This disparity can be attributed to the application of
z-score normalization in Method 2. By employing z-score normalization, Method
2 identifies distinct pairs of parameter configurations as the optimal ones. Figure
5.3.8 illustrates a comparison of the average optimal configurations for the Number
of radix bits and Spline error using both Method 1 and Method 2. Notably, the
average optimal num remains similar across both methods, while the average err
for Method 2 is substantially lower. This suggests that Method 2’s model was
trained within a narrower range for the err, resulting in a reduced RMSE for this

CHAPTER 5. RESULTS AND EVALUATION 41

particular method.

Method 1 Method 2
0

20

40

60

16.6

52.94

17.34

33.84
Av

er
ag

e
op

ti
m

al
co

nfi
gu

ra
ti

on

Number of Radix Bits Spline Error

Figure 5.3.8: Graph comparing Method 1 and Method 2 in regards to their average
RMSE after running the model five times.

A notable observation in both methods is the significant difference in RMSE be-
tween the first training run and the average RMSE from training the model five
times. Method 1 exhibited a 12.95% lower RMSE for num and a 19.15% lower
RMSE for err compared to the average. This distinction was also apparent in
Method 2, albeit to a lesser extent. Method 2 demonstrated an 11.56% lower
RMSE for num and a 2.25% lower RMSE for err compared to the average.

The variation observed in the RMSE highlights a compelling indication of the
model’s inclination towards high variance and inherent instability. Once again,
this prevailing trend can be reasonably ascribed to the persistently limited amount
of training data.

5.3.4 Z-Score Normalization for Worst Configuration

In both Method 1 and 2, z-score normalization was employed to identify the worst
configuration by comparing the predicted values with the worst-case scenario. This
approach was chosen because the worst configuration is not subject to constraints,
unlike in Method 1. For instance, Method 1 allows for algorithm manipulation
to derive the best index sizes from the top 15% of lookup times instead of the
standard 10%. However, the worst configuration consistently remains unchanged,
determined by the sum of the highest values for index size and lookup time.

42 CHAPTER 5. RESULTS AND EVALUATION

CHAPTER

SIX

DISCUSSION

The research presented in this thesis provides valuable insights into a novel ap-
proach for predicting the optimal parameter configuration with the radix spline
index structure. In Chapter 5, we examine the outcomes obtained from this ’auto-
tuner’ and briefly discuss certain limitations inherent in the proposed method.
This chapter offers a comprehensive analysis of these limitations, shedding light
on their impact and implications for future investigations. Additionally, we present
avenues for future research and where this approach might be implemented.

6.1 Implementation

As for learned index structures in general they sought to improve query perfor-
mance and reduce storage requirements, in this section the possibility for this type
of auto-tuned radix spline will be discussed in regards to real-world applications.

6.1.1 Dual-Pass Radix Spline

As mentioned in Section 4.1.2, it is necessary to traverse the data once before
constructing the index. This step allows for the extraction of features, which are
essential for the training of the model to be able to predict the optimal parameter
configuration when building the index. This differs from the manually tuned radix
spline index structure, since RS is able to build the index after only traversing the
data once. Another assumption radix spline makes is that there is no need for
single updates and that the single-pass training can be done together with the
merge process in an LSM-Tree.

The merge process in an LSM-tree can be resource-intensive, primarily due to
the need to merge data with existing on-disk structures, eliminate duplicates, and
maintain sorted order. Considering these factors, even building the radix spline
index with a dual-pass approach, involving passing over the data twice, would not
significantly impact the overall time. In fact, it has the potential to result in time
savings as the dual-pass approach better configures the index structure, leading
to reduced lookup time. This proposition is also mentioned in Kipf et al. 2020.

43

44 CHAPTER 6. DISCUSSION

Since this research did not specifically investigate the build time, the impact on the
overall query time when considering the build process remains uncertain. Further
investigation is required to comprehensively assess the effects of the presented
approach on both build time and query performance.

6.1.2 Search Engines and Elastic Search

One limitation of building the index during the merge process of an LSM-tree is
that RS can only index the data that has been flushed to disk, excluding the data
currently residing in the memTables. Since RS is not limited to LSM-trees and
can be applied in other scenarios such as search engines or Elasticsearch, it may
find alternative applications. However, when dealing with continuously updating
data obtained by search engine crawlers, it becomes infeasible to maintain the
write-once and read-many principle that RS is well-suited for. Consequently, it is
advisable to implement RS specifically for constructing an index on static storage,
which can be updated in bulk with a lower rate.

6.2 Limitations
The following section highlights the limitations encountered in the research con-
ducted for this thesis. While some progress has been made in developing an
approach to predict the optimal parameter configuration for radix spline, certain
constraints and challenges have emerged. By acknowledging these limitations, we
gain a comprehensive understanding of the scope and implications of the research
findings, thereby paving the way for future investigations and potential improve-
ments in the field.

6.2.1 Comparison with PLEX

As discussed in Section 3.1.6, PLEX is an auto-tuned learned index that simpli-
fies the process of tuning the RS index by requiring only one hyperparameter:
the maximum prediction error ϵ. In our experiment, we employed an alternative
approach to this problem by utilizing a neural network to train a model capable
of predicting the optimal configuration for any given dataset. The results pre-
sented in the PLEX paper primarily focused on showcasing the impact of index
size on lookup time when compared to other index structures, specifically on 64-bit
datasets. Given that our training and prediction were conducted solely on 32-bit
datasets, it becomes challenging to directly compare the results obtained from our
approach with those of PLEX. But based on the radix table cost model and the
CHT cost model, it is reasonable to assume that the accuracy of the predicted
configuration is comparable to, or even superior to, the predicted configuration of
our model.

6.2.2 Data Generation

The datasets used in the SOSD Benchmark were deemed insufficiently diverse
to effectively train the model. Instead, we utilized 29 different distributions
to construct a total of 115 datasets. Most of the 29 datasets had parameters

CHAPTER 6. DISCUSSION 45

that could be adjusted to manipulate the distribution, except the five standard
distributions: standard_couchy, standard_exponential, standard_gamma, stan-
dard_normal, and standard_t.

One inherent limitation of the data is that it consists entirely of synthetic datasets
generated using well-known distributions. The parameters used to generate these
datasets adhered closely to the specifications outlined in the documentation, with
minimal deviation from the default values.

Although the generated datasets incorporated various values for the features, it is
important to note that the data remained synthetic, thereby excluding real-world
data from the model’s training. Consequently, when the model encountered more
complex real-world data or synthetic data generated with distributions having
unusual parameters, it struggled to capture the underlying patterns effectively.
As discussed in Section 2.1.3.2, this suggests that the model may be underfitted.
Notably, in certain cases, such as when predicting the optimal configuration for
the lognormal dataset, the model’s performance suffered due to the inability to
generalize well and handle unseen data.

6.2.3 Underfitted Model

In the context of neural network training, it is not surprising that the model
may exhibit signs of being underfitted, considering the limited variability in the
dataset. The generation of only 115 datasets, derived from a mere 29 distributions,
constrains the model’s exposure to diverse patterns and scenarios. Although the
model was able to predict parameter configurations within an acceptable range
for the majority of the evaluation datasets, and never selected the worst configu-
ration for any of the test datasets. It is important to note that the test sets were
predominantly synthetic generated datasets, with only one dataset representing
real-world data. Given that the model was trained primarily on these types of
datasets, it is reasonable to attribute the model’s prediction performance to the
familiarity with such data characteristics.

6.2.4 32-Bit Datasets

The scope of the project led to the generation of 115 datasets, all of which were
formatted as 32-bit data. This decision was made due to the substantial amount
of time required to generate and process such a large volume of data. Creating
lookups, extracting features, and building indexes were already time-consuming
tasks, and using 64-bit datasets would have further increased the time required.
Additionally, each dataset had a size of 1.6 GiB, resulting in a cumulative dataset
collection size exceeding 200 GiB.

During the initial stages of the project, difficulties were encountered when compil-
ing the C++ projects required for generating lookups and building the necessary
data on the NTNU DIF servers. As a result, an alternative machine with 32 GiB
of RAM, as mentioned in Section 4.1, was utilized instead. It should be noted that

46 CHAPTER 6. DISCUSSION

the limited memory capacity of this machine posed challenges during the process
of building the index and generating lookups. Conducting these tasks with 64-bit
datasets would have been unfeasible due to the memory constraints.

6.2.5 K-Fold Cross-Validation

The data used to evaluate the model were selected from the Harvard Dataverse
database Harvard n.d., including the books dataset, which represents a real-world
dataset. Additionally, 20% of the training data was manually selected for evalua-
tion purposes. To ensure diversity in the evaluation set, one dataset was manually
selected from each of the five datasets generated per distribution. Since there was
limited training data, this had to be done to be able to evaluate the model on
the wide range of distributions. Normally, one would use k-fold cross validation
to split the data into multiple folds, as mentioned in Section 2.1.3.3.

One limitation of manual dataset selection is that it may not offer a representa-
tive sample of the entire dataset. Despite selecting one dataset per distribution,
there may still be significant variations within each distribution. This limitation
can contribute to a more underfitted model since it does not utilize a systematic
and unbiased evaluation technique like k-fold cross-validation. Without such a
technique, it becomes challenging to accurately assess the model’s generalization
ability to unseen data. As a result, the evaluation may lack robustness and may
not provide a comprehensive understanding of the model’s performance on diverse
and unseen data.

6.2.6 Feature Selection

Despite the presence of four different features in the dataset, only three of them sig-
nificantly impacted the training of the model. This was primarily because the size
feature remained constant at 200M for the majority of the datasets, with only two
exceptions. The remaining features were associated with representing the distribu-
tion of keys. This limitation arises from the possibility of other factors influencing
the determination of the optimal parameter configuration for RS. Although the
selection of features was driven by a data-driven approach, involving testing and
identifying correlations between the features and the configuration, there remains
the potential for additional influential factors that were not accounted for.

6.2.7 Neural Network

While the approach presented in this thesis demonstrates the potential applica-
tion of neural networks in predicting the optimal parameter configuration for radix
spline, it is not without limitations. Firstly, it is important to note that achieving
accurate predictions with a neural network model requires a significant amount of
training data, as highlighted in the experiment conducted in this research and dis-
cussed as a limitation in Section 6.2.3. Additionally, even with sufficient training
data, the model may still fall short in accurately predicting the correct configura-
tion.

CHAPTER 6. DISCUSSION 47

Another limitation of using a neural network is the complexity. In this research,
a relatively common neural network configuration was utilized. However, to at-
tain an optimally tuned model, further testing and evaluation would be required,
which were not conducted in this experiment. Additionally, with the limited train-
ing data available, it would not have been useful to perform such extensive testing.
This is because the model exhibited significant inaccuracy, making it difficult to
discern improvements in prediction performance with other parameters.

Lastly, one of the significant limitations of neural networks lies in their resource
requirements for training and execution. Neural networks can be computation-
ally intensive, especially when handling large datasets. The high computational
demand associated with neural networks poses challenges in terms of both time
and computational resources. This can be impractical when striving to establish
efficient index structures that aim to minimize query time. Consequently, the
resource-intensive nature of neural networks presents a substantial drawback in
the context of databases, where computational efficiency plays a pivotal role.

6.2.8 Write-Once/Read-Many

This approach shares a similar assumption with RS, as both are designed to excel
in a write-once/read-many scenario. This means that making frequent changes
or updates to the data, such as single updates, would require passing over the
entire dataset and rebuilding the index for each update. Hence, it is advantageous
to build the index in conjunction with the merging process of an LSM-Tree, as
discussed in Section 6.1. However, this approach has some limitations due to
the restricted applicability. The index structure’s effectiveness is constrained by
specific use cases and may not be well-suited for scenarios that involve frequent
updates or dynamic data modifications.

6.2.9 Build Time

Throughout this thesis, the experiments have primarily focused on examining the
results of index size and lookup time, with less emphasis on the build time. How-
ever, it is important to acknowledge the significance of build time in the overall
performance of the index structure. Given the considerable time required for fea-
ture extraction from each dataset.

Upon examining the results of radix spline presented in Section 3.1.4, it becomes
evident that the build time is predominantly influenced by the spline error. Con-
sequently, it is logical to incorporate this understanding into the prediction of the
optimal configuration. Notably, one of the predicted spline errors was estimated as
4 for the negative_binomial dataset, which would result in a substantial increase
in build time. Therefore, leveraging this knowledge to guide the prediction process
can lead to more informed decisions and potentially mitigate excessive build times
in practical scenarios.

48 CHAPTER 6. DISCUSSION

6.3 Future work

The final section of the discussion is dedicated to exploring potential avenues for
future research and highlighting recommended next steps based on the obtained
results.

6.3.1 Generating More Complex and Diverse Data

The limited scope of data generation poses a significant limitation in this research,
impacting the accuracy and reliability of the neural network model in predicting
optimal configurations for radix spline. To address this limitation and improve the
effectiveness of the proposed approach, future work should focus on expanding the
dataset collection by generating a larger and more diverse range of datasets. This
would involve incorporating complex real-world data, which better represents the
varied scenarios encountered in practical applications of radix spline. By enriching
the dataset with a broader spectrum of data, future investigations can enhance
the model’s performance, robustness, and generalizability, leading to more accu-
rate predictions and better utilization of radix spline in real-world scenarios.

Future work should also focus on enhancing the dataset’s variability, especially
regarding the size. In the current research, the datasets predominantly consisted
of 200M key/value pairs, with only two distributions featuring datasets of 400M
pairs. To enhance the robustness and effectiveness of the model, it is crucial to
generate datasets with a wider range of sizes. This increased variability will not
only bolster the model’s performance but also amplify the significance of the size
feature.

Lastly, future work related to data generation should involve the inclusion of
datasets with varying bit sizes, such as 16-bit and 64-bit. By incorporating these
variations as features, it would enable training and evaluation on datasets with
different bit sizes. This would allow us to assess the model’s ability to accurately
provide a satisfactory configuration for the face_200M_uint64 dataset, thereby
addressing the outlier problem discussed throughout this thesis.

6.3.2 Exploring Different Features

There are numerous potential features associated with the data distribution. As
discussed in Section 6.2.6, the features employed in this research may not be the
most optimal ones for capturing the underlying patterns and correlations between
the dataset and the optimal parameter configuration.

In order to enhance the predictive capabilities of the model and capture a more
comprehensive understanding of the relationship between the dataset and the opti-
mal parameter configuration, future work should consider incorporating additional
features or exploring different feature sets. Specifically, focusing on features that
directly relate to the distribution of keys. By expanding the feature space, the
model can potentially uncover new patterns and correlations that were not cap-

CHAPTER 6. DISCUSSION 49

tured by the existing set of features.

6.3.3 Improving the Neural Network Model

In this study, the neural network model was configured using standard settings,
without any specific process to fine-tune it for optimal prediction performance. As
this was the initial exploration of the approach, the focus was not on fine-tuning
the model. However, future work should dedicate resources to tuning the model,
considering factors such as the number of epochs, the number of layers, and the
number of nodes per layer. These adjustments can have a substantial impact on
the model’s performance. Additionally, exploring different activation functions is
another avenue worth investigating to improve the model’s predictive capabilities.

Another crucial aspect to improve in the model is the evaluation process. If the
model is trained using a significantly larger dataset, it is recommended to employ
k-fold cross-validation. This technique provides a more accurate evaluation by
validating the model on multiple subsets of the data, allowing for a comprehensive
assessment of the performance with unseen data. By incorporating k-fold cross-
validation, valuable insights can be gained into how the model generalizes and
performs across different data partitions, enhancing the overall reliability and
robustness of the evaluation results.

6.3.4 Comparing the Results Against a Non-Tuned Radix
Spline

It would have been compelling to observe the comparative analysis between RS
with the predicted optimal configuration and the standard RS. This analysis
should include an examination of the lookup time and index size across the two
implementations. Furthermore, it is essential to extend this evaluation to incor-
porate the build time, considering that the data is traversed twice before building
the index.

6.3.5 Using A Weighted Z-Score Normalization

In our pursuit of identifying the optimal parameter configuration, we employed
two methodologies. Firstly, we implemented Method 1, a script that discerned
configurations with the smallest index size among the top 10% lookup times, as
mentioned in Section 4.1.4. By adopting this approach, we accorded higher pri-
ority to the optimization of lookup time over index size. It is worth noting that
within the top 10% lookup times, all configurations may potentially exhibit the
poorest 10% index size.

Due to this consideration, it is highly recommended to incorporate weighted z-
score normalization in future research research. This approach aims to effectively
accommodate the constraints that are specific to each system, facilitating a more
refined calibration of lookup time and index size constraints according to the
distinct requirements of individual systems.

50 CHAPTER 6. DISCUSSION

CHAPTER

SEVEN

CONCLUSIONS

In this thesis, we have embarked on an investigation to predict the optimal pa-
rameter configuration for the radix spline learned index structure. Our research
journey encompassed several critical steps aimed at unraveling the potential and
limitations of this approach. We commenced by generating synthetic data based
on different data distributions, capturing a broad range of dataset structures.
Subsequently, we diligently extracted relevant features to encapsulate the essen-
tial characteristics inherent in the datasets. Employing z-score normalization, we
identified the configurations that yielded the most favorable outcomes in terms of
lookup time and index size. Through training and evaluation, our objective was to
assess the performance and accuracy of our model. In this section, we present the
culmination of our efforts, delving into the noteworthy findings and their direct
implications in relation to our research questions.

7.1 Research Question 1

The model’s predictions were assessed by comparing them to the best configura-
tions obtained for each dataset. While some of the model’s predictions aligned
with the optimal configurations specific to certain datasets, the majority of the
predictions did not match the optimal configurations determined by the estab-
lished models discussed in Section 4.1.4. Consequently, it can be concluded that
the experiment conducted does not consistently achieve the prediction of optimal
configurations for any dataset. It is important to acknowledge that the obtained
results should not be interpreted as indicating poor performance. It is unrealistic
to expect the proposed approach to achieve 100% accuracy.

7.2 Research Question 2

To address Research Question 2, the worst configurations for all the tested datasets
were identified and compared to the predictions made by the model. None of
the predicted values matched the worst possible configurations for their respec-
tive datasets, thereby demonstrating the models’ capability to steer away from
the worst-case configuration. Upon comparing the predicted configurations to
the worst possible configurations, it was observed that there existed a degree of

51

52 CHAPTER 7. CONCLUSIONS

deviation between them. This highlights a discrepancy between the predicted
configurations and the worst-case scenarios.

7.3 Research Goal
The primary objective of this thesis was to make a contribution to the field of
learned indexes by exploring an alternative approach to auto-tune radix spline.
To this end, we have conducted a thorough investigation comprising a series of
experiments and analyses. The results obtained in this study provide compelling
evidence that the proposed approach exhibits a certain degree of effectiveness in
predicting optimal configurations. Notably, it successfully avoids the worst-case
configuration and did not encounter the outlier problem for any of the tested
datasets. As a result, this thesis makes a valuable contribution to the field of
learned indexes by shedding light on the practical application of neural networks
for auto-tuning radix spline, thereby establishing groundwork for future research
endeavors in this area.

REFERENCES

Kraska, Tim et al. (2018). “The Case for Learned Index Structures”. In: url:
https://arxiv.org/abs/1712.01208.

Kipf, Andreas et al. (2020). “RadixSpline: a single-pass learned index”. In: Proceed-
ings of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2020, Portland, Oregon,
USA, June 19, 2020, 5:1–5:5. doi: 10.1145/3401071.3401659. url: https:
//doi.org/10.1145/3401071.3401659.

Ramakrishnan, Raghu and Johannes Gehrke (2002). Database Management Sys-
tems. McGraw-Hill. isbn: 0072465638.

GeekForGeeks (2023a). Introduction of B-Tree. url: https://www.geeksforgeeks.
org/introduction-of-b-tree-2/.

Alpaydin, Ethem (2014). Introduction to Machine Learning. The MIT Press. isbn:
0262028182.

Quiza, Ramon and J. Davim (Jan. 2011). “Computational Methods and Optimiza-
tion”. In: pp. 177–208. isbn: 978-1-84996-449-4. doi: 10.1007/978-1-84996-
450-0.

Mathworks (n.d.). Feature extraction for machine learning and deep learning.
MathWorks. Accessed: 04.05.2023. url: https : / / www . mathworks . com /
discovery/feature-extraction.html.

GeekForGeeks (2023b). ML | Underfitting and Overfitting. url: https://www.
geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/.

Haben, Stephen, Marcus Voß, and William Holderbaum (May 2023). “Primer on
Statistics and Probability”. In: pp. 23–39. isbn: 978-3-031-27851-8. doi: 10.
1007/978-3-031-27852-5_3.

PATRO, S GOPAL and Dr-Kishore Kumar Sahu (Mar. 2015). “Normalization: A
Preprocessing Stage”. In: IARJSET. doi: 10.17148/IARJSET.2015.2305.

O’Neil, Patrick et al. (June 1996). “The log-structured merge-tree (LSM-tree)”. In:
Acta Informatica 33, pp. 351–385. doi: 10.1007/s002360050048.

Ding, Jialin et al. (2020). “ALEX: An Updatable Adaptive Learned Index”. In:
SIGMOD ’20. New York, NY, USA: Association for Computing Machinery.
url: https://doi.org/10.1145/3318464.3389711.

Leis, Viktor, Alfons Kemper, and Thomas Neumann (2013). “The adaptive radix
tree: ARTful indexing for main-memory databases”. In: 2013 IEEE 29th Inter-
national Conference on Data Engineering (ICDE), pp. 38–49. doi: 10.1109/
ICDE.2013.6544812.

53

https://arxiv.org/abs/1712.01208
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://doi.org/10.1007/978-1-84996-450-0
https://doi.org/10.1007/978-1-84996-450-0
https://www.mathworks.com/discovery/feature-extraction.html
https://www.mathworks.com/discovery/feature-extraction.html
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://doi.org/10.1007/978-3-031-27852-5_3
https://doi.org/10.1007/978-3-031-27852-5_3
https://doi.org/10.17148/IARJSET.2015.2305
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812

54 REFERENCES

Ferragina, Paolo and Giorgio Vinciguerra (2020). “The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds”. In: PVLDB 13.8.
issn: 2150-8097. url: https://pgm.di.unipi.it.

Kipf, Andreas et al. (2019). “SOSD: A Benchmark for Learned Indexes”. In:
NeurIPS Workshop on Machine Learning for Systems.

Crotty, Andrew (2021). “Hist-Tree: Those Who Ignore It Are Doomed to Learn”.
In: Conference on Innovative Data Systems Research. url: https : / / cs .
brown.edu/people/acrotty/pubs/cidr2021_paper20.pdf.

Stoian, Mihail et al. (Aug. 2021). “PLEX: Towards Practical Learned Indexing”.
In: url: https://www.researchgate.net/publication/353838541_PLEX_
Towards_Practical_Learned_Indexing.

Numpy.org (2020). Random sampling. Wikipedia. Accessed: 02.03.2023. url: https:
//numpy.org/doc/1.16/reference/routines.random.html.

Abadi, Martín et al. (May 2016). “TensorFlow: A system for large-scale ma-
chine learning”. In: url: https://www.researchgate.net/publication/
353838541_PLEX_Towards_Practical_Learned_Indexing.

IkamusumeFan (n.d.). Uniform CDF. Wikipedia. Accessed: 19.03.2023. url: https:
//commons.wikimedia.org/wiki/File:Uniform_cdf.svg.

Inductiveload (n.d.). Normal Distribution CDF. Wikipedia. Accessed: 19.03.2023.
url: https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.
svg.

EvgSkv (n.d.). Exponential Distribution CDF. Wikipedia. Accessed: 19.03.2023.
url: https://commons.wikimedia.org/wiki/File:Exponential_distribution_
cdf_-_public_domain.svg.

Harvard (n.d.). Harvard Dataverse. Accessed: 01.02.2023. url: https://dataverse.
harvard.edu/.

https://pgm.di.unipi.it
https://cs.brown.edu/people/acrotty/pubs/cidr2021_paper20.pdf
https://cs.brown.edu/people/acrotty/pubs/cidr2021_paper20.pdf
https://www.researchgate.net/publication/353838541_PLEX_Towards_Practical_Learned_Indexing
https://www.researchgate.net/publication/353838541_PLEX_Towards_Practical_Learned_Indexing
https://numpy.org/doc/1.16/reference/routines.random.html
https://numpy.org/doc/1.16/reference/routines.random.html
https://www.researchgate.net/publication/353838541_PLEX_Towards_Practical_Learned_Indexing
https://www.researchgate.net/publication/353838541_PLEX_Towards_Practical_Learned_Indexing
https://commons.wikimedia.org/wiki/File:Uniform_cdf.svg
https://commons.wikimedia.org/wiki/File:Uniform_cdf.svg
https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg
https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg
https://commons.wikimedia.org/wiki/File:Exponential_distribution_cdf_-_public_domain.svg
https://commons.wikimedia.org/wiki/File:Exponential_distribution_cdf_-_public_domain.svg
https://dataverse.harvard.edu/
https://dataverse.harvard.edu/

APPENDICES

55

A - DETAILED TABULAR DATA

A1 - Parameter Values - All distributions

Name Parameters Parameter Value
Beta α, β [’0.1, 0.9’, ’0.3, 0.9’, ’0.5, 0.9’, ’0.5, 0.5’, ’0.9,

0.1’]
Chi-square k [’1’, ’2’, ’5’, ’10’, ’20’]
Dirichlet α1, . . . , αK [’[1,5]’, ’[5, 20]’, ’[20, 2]’, ’[1, 20]’, ’[1, 100]’]
F d1, d2 [’182.3, 24.9’, ’200, 200’, ’2050, 10.5’, ’78, 4000’,

’8, 20’]
Gamma k, θ [’7.5, 2’, ’0.5, 1’, ’1.0, 2’, ’2, 2’, ’5, 1’]
Gumbel µ, β [’0.5, 2’, ’1, 2’, ’1.5, 3’, ’3, 4’, ’5, 6’]
Laplace µ, b [’0, 1’, ’0, 2’, ’0, 4’, ’5, 4’, ’16, 22’]
Logistic µ, s [’5, 2’, ’9, 3’, ’9, 4’, ’6, 2’, ’2, 1’]
Multivariate Normal µ,Σ [[10, 50], [[10, 0],[0, 100]]’, ’[0, 0], [[10, 0],[0,

50]]’, ’[150, 0], [[150, 0],[0, 10]]’, ’[30, 0], [[50, 0],
[0, 200]]’, ’[0, 0], [[1, 0],[0, 100]]]

Negative Binomial r, p [’1, 0.1’, ’2, 0.1’, ’5, 0.1’, ’10, 0.4’, ’15, 0.2’]
Noncentral Chi-square k, λ [’1, 1.0’, ’5, 0.1’, ’10, 0.1’, ’50, 2.4’, ’100, 50.2’]
Noncentral F d1, d2, λ [’50, 12.0, 1’, ’80, 44.1, 2’, ’100, 1500, 8’, ’2,

25421.4, 2’, ’2, 54207.2, 2’]
Pareto xm, α [’5’, ’10’, ’20’, ’50’, ’100’]
Rayleigh σ [’100’, ’500’, ’1000’, ’2000’, ’5000’]
Standard Cauchy - []
Standard Exponential - []
Standard Gamma - []
Standard Normal - []
Standard t ν []
Triangular a, b, c [’0,(nK/2)’,’(nK-1),(nK/8)’,’(nK-

1),(nK/1.5)’,’(nK-1),(nK/15)’,’(nK-
1),(nK/1.1)’]

Von Mises µ, κ [’(nK/2), 16’,’(nK/4), 8’,’(nK/8), 4’,’(nK/16),
2’,’(nK/32), 1’]

Wald µ, λ [’1, 16’, ’1, 8’, ’1, 4’, ’1, 2’, ’1, 1’]

56

Weibull k, λ [’16’, ’8’, ’4’, ’2’, ’1’]
Zipf s [’2’, ’3’, ’4’, ’5’, ’6’]
Uniform a, b [’1, 4294967295’]
Exponential λ [’4294967295’]
Lognormal µ, σ [’0,1’]
Normal µ, σ [’1, 4294967295’]
Power a, k [’1’, ’1.2’, ’1.4’, ’1.5’, ’1.8’]

Table A.1: All the parameter values for the distributions used to create the syn-
thetic data. (nK = number of keys)

57

A2 - Feature extraction - All datasets

Dataset Size MKIF NUKI MUKI
beta 200M 114351 1749 104866000
beta 200M 269542 742 32123700
beta 200M 396825 504 14582900
beta 200M 412371 485 14153000
beta 200M 113122 1768 104885000
chisquare 200M 8251.85 24237 80608500
chisquare 200M 7612.96 26271 52412800
chisquare 200M 8027.94 24913 36822000
chisquare 200M 8134.05 24588 30186000
chisquare 200M 8637.82 23154 29907300
dirichlet 400M 923788 433 44888100
dirichlet 400M 59232.9 6753 56454500
dirichlet 400M 21510 18596 76949900
dirichlet 400M 19506.5 20506 108089000
dirichlet 400M 35884.1 11147 218959000
f 200M 7939.03 25192 51216700
f 200M 8342.02 23975 28826100
f 200M 9973.07 20054 108943000
gamma 200M 8230.45 24300 28424200
gamma 200M 7252.42 27577 71749900
gamma 200M 7977.66 25070 54596600
gamma 200M 8127.77 24607 40981600
gamma 200M 8659.13 23097 33184800
gumbel 200M 7816.16 25588 38848800
gumbel 200M 7668.42 26081 37639100
gumbel 200M 7702.08 25967 38011500
gumbel 200M 7869.06 25416 39143700
gumbel 200M 7883.02 25371 39289900
laplace 200M 7427.76 26926 50963300
laplace 200M 7248.22 27593 49895600
laplace 200M 7977.98 25069 54839400
laplace 200M 7625.73 26227 52553100
laplace 200M 7483.35 26726 51355500
logistic 200M 7612.38 26273 43079000
logistic 200M 7493.72 26689 41711700
logistic 200M 7405.49 27007 41354400
logistic 200M 7611.22 26277 42746100
logistic 200M 7675.19 26058 43553400
multivariate_normal 400M 16780.6 23837 12805200
negative_binomial 200M 25000000 8 200000000
negative_binomial 200M 28571400 7 200000000

58

negative_binomial 200M 22222200 9 200000000
negative_binomial 200M 40000000 5 200000000
negative_binomial 200M 22222200 9 200000000
noncentral_chisquare 200M 8360.85 23921 25823900
noncentral_f 200M 9134.51 21895 86893600
noncentral_f 200M 7951.34 25153 38777000
noncentral_f 200M 8496.9 23538 26918100
noncentral_f 200M 7959.25 25128 42669900
noncentral_f 200M 8422.12 23747 46121400
pareto 200M 9932.46 20136 134549000
pareto 200M 9196.67 21747 89921000
pareto 200M 7882.39 25373 62662700
pareto 200M 7606.88 26292 56538500
pareto 200M 7924.24 25239 56397800
rayleigh 200M 9143.69 21873 23272900
rayleigh 200M 8849.56 22600 22002000
rayleigh 200M 8964.99 22309 22497000
rayleigh 200M 8702.08 22983 21524500
rayleigh 200M 8933.36 22388 22446500
standard_cauchy 200M 114482 1747 199933000
standard_cauchy 200M 67476.4 2964 199852000
standard_cauchy 200M 63031.8 3173 199838000
standard_cauchy 200M 74046.6 2701 199870000
standard_cauchy 200M 62754.9 3187 199837000
standard_exponential 200M 7455.73 26825 51046300
standard_gamma 200M 7693.79 25995 48499000
standard_gamma 200M 7083.91 28233 70000100
standard_gamma 200M 7503.28 26655 150223000
standard_gamma 200M 8507.02 23510 27339200
standard_gamma 200M 8494.01 23546 26601400
standard_normal 200M 8427.79 23731 25700500
standard_normal 200M 8403.36 23800 25637800
standard_normal 200M 8276.09 24166 25054500
standard_normal 200M 8323.62 24028 25332200
standard_normal 200M 8243 24263 24790700
standard_t 200M 15584.8 12833 178669000
standard_t 200M 10968.5 18234 111556000
standard_t 200M 8953.35 22338 58465800
standard_t 200M 7748.03 25813 34727300
standard_t 200M 8345.5 23965 30394000
triangular 200M 32867.7 6085 11589500
triangular 200M 32530.9 6148 11584100
triangular 200M 32727.9 6111 11592000
triangular 200M 32867.7 6085 11585000
triangular 200M 32530.9 6148 11582300
vonmises 200M 11578.1 17274 38329800

59

vonmises 200M 8525.88 23458 32366900
vonmises 200M 7016.81 28503 25971700
vonmises 200M 63211.1 3164 17927300
vonmises 200M 224719 890 12238600
wald 200M 8322.24 24032 32126900
wald 200M 7776.96 25717 34190800
wald 200M 7568.59 26425 41467000
wald 200M 7502.72 26657 53927000
wald 200M 7483.63 26725 64530500
weibull 200M 8050.56 24843 28229200
weibull 200M 8729.05 22912 23214200
weibull 200M 9924.08 20153 19248100
weibull 200M 9152.9 21851 23525400
weibull 200M 7279.08 27476 49773100
zipf 200M 216685 923 199980000
zipf 200M 3333330 60 199999000
zipf 200M 11111100 18 200000000
zipf 200M 20000000 10 200000000
zipf 200M 28571400 7 200000000
uniform 200M 573066 349 8893560
exponential 200M 7517.67 26604 51628700
lognormal 200M 9509.77 21031 142111000
normal 200M 8193.36 24410 24806900
power 200M 557103 359 8889000
power 200M 299850 667 9125670
power 200M 126904 1576 9616390
power 200M 90826.5 2202 9912750
power 200M 44692.7 4475 10886500

Table A.2: The features extracted for all the datasets

60

A3 - Best Configuration - All datasets

Dataset Number of Radix Bits Spline Error
beta 18 64
beta 16 128
beta 16 64
beta 12 64
beta 16 32
chisquare 18 64
chisquare 18 64
chisquare 18 64
chisquare 16 32
chisquare 16 64
dirichlet 16 64
dirichlet 14 64
dirichlet 16 128
dirichlet 14 128
dirichlet 16 128
f 16 128
f 14 64
f 18 64
gamma 16 32
gamma 18 32
gamma 18 32
gamma 18 64
gamma 18 64
gumbel 16 64
gumbel 18 64
gumbel 16 32
gumbel 16 64
gumbel 14 64
laplace 18 64
laplace 18 64
laplace 18 64
laplace 16 64
laplace 16 64
logistic 16 32
logistic 20 8
logistic 16 32
logistic 16 32
logistic 16 32
multivariate_normal 18 128
negative_binomial 12 4
negative_binomial 14 4

61

negative_binomial 12 4
negative_binomial 12 8
negative_binomial 10 4
noncentral_chisquare 16 32
noncentral_f 18 32
noncentral_f 16 32
noncentral_f 18 64
noncentral_f 16 32
noncentral_f 18 32
pareto 20 32
pareto 20 32
pareto 18 64
pareto 16 64
pareto 18 64
rayleigh 16 64
rayleigh 18 64
rayleigh 16 32
rayleigh 16 32
rayleigh 16 32
standard_cauchy 24 256
standard_cauchy 22 32
standard_cauchy 24 256
standard_cauchy 24 256
standard_cauchy 22 32
standard_exponential 18 32
standard_gamma 18 32
standard_gamma 18 32
standard_gamma 20 16
standard_gamma 16 32
standard_gamma 16 32
standard_normal 18 64
standard_normal 16 32
standard_normal 16 32
standard_normal 16 32
standard_normal 16 64
standard_t 20 64
standard_t 20 32
standard_t 18 32
standard_t 16 32
standard_t 16 32
triangular 14 32
triangular 14 32
triangular 14 32
triangular 14 32
triangular 16 32
vonmises 16 32

62

vonmises 16 32
vonmises 18 64
vonmises 16 32
vonmises 14 32
wald 16 32
wald 16 32
wald 16 32
wald 18 32
wald 20 32
weibull 16 32
weibull 18 64
weibull 16 32
weibull 16 32
weibull 18 32
zipf 20 4
zipf 12 4
zipf 10 4
zipf 12 4
zipf 12 4
uniform 14 32
exponential 18 256
lognormal 20 32
normal 16 32
power 14 32
power 14 32
power 14 32
power 14 32
power 14 32

Table A.3: Table displaying optimal configuration using Method 1

63

A4 - Best Configuration - All datasets

Dataset Number of Radix Bits Spline Error
beta 10 32
beta 10 8
beta 16 256
beta 12 8
beta 10 256
chisquare 10 64
chisquare 10 32
chisquare 16 8
chisquare 12 16
chisquare 12 128
dirichlet 10 8
dirichlet 10 16
dirichlet 18 32
dirichlet 10 32
dirichlet 24 128
f 10 16
f 14 8
f 12 16
gamma 12 8
gamma 10 8
gamma 10 8
gamma 10 8
gamma 12 8
gumbel 10 32
gumbel 10 8
gumbel 14 8
gumbel 10 8
gumbel 10 16
laplace 10 8
laplace 10 8
laplace 10 8
laplace 12 8
laplace 10 8
logistic 10 8
logistic 10 8
logistic 10 64
logistic 10 8
logistic 10 8
multivariate_normal 10 128
negative_binomial 10 128
negative_binomial 10 32

64

negative_binomial 12 64
negative_binomial 10 8
negative_binomial 14 64
noncentral_chisquare 20 32
noncentral_f 12 256
noncentral_f 10 8
noncentral_f 10 8
noncentral_f 10 16
noncentral_f 12 16
pareto 12 16
pareto 10 64
pareto 12 16
pareto 12 128
pareto 10 128
rayleigh 10 8
rayleigh 10 8
rayleigh 10 8
rayleigh 10 8
rayleigh 12 16
standard_cauchy 10 8
standard_cauchy 10 8
standard_cauchy 10 32
standard_cauchy 12 16
standard_cauchy 10 64
standard_exponential 10 16
standard_gamma 10 64
standard_gamma 10 8
standard_gamma 10 32
standard_gamma 10 32
standard_gamma 10 8
standard_normal 16 8
standard_normal 10 8
standard_normal 10 8
standard_normal 10 8
standard_normal 10 8
standard_t 10 64
standard_t 10 8
standard_t 10 8
standard_t 10 64
standard_t 12 16
triangular 14 8
triangular 10 8
triangular 12 8
triangular 10 8
triangular 12 16
vonmises 10 8

65

vonmises 12 8
vonmises 10 8
vonmises 10 8
vonmises 10 64
wald 10 32
wald 10 8
wald 20 256
wald 10 16
wald 10 8
weibull 10 128
weibull 10 64
weibull 10 8
weibull 10 32
weibull 10 8
zipf 10 8
zipf 10 8
zipf 12 16
zipf 10 8
zipf 10 8
uniform 10 8
exponential 10 8
lognormal 10 16
normal 12 64
power 10 4
power 20 64
power 22 32
power 18 64
power 10 128

Table A.4: Table displaying optimal configuration using Method 2

66

A5 - Predicted configurations - Non rounded

Dataset Num Err Predicted num predicted err
books 22 64 16.559944 77.46585
lognormal 16 4 21.007301 27.707832
normal 10 4 17.420912 47.90944
uniform_sparse 14 32 13.637132 31.597145
beta 16 32 16.760975 59.900875
chisquare 16 64 15.928265 37.796852
dirichlet 16 128 15.566213 140.82547
f 18 64 17.693745 43.662228
gamma 18 64 15.928947 36.20685
gumbel 14 64 16.759672 42.36778
laplace 16 64 17.418465 79.975266
logistic 16 32 17.140032 46.077526
negative_binomial 10 4 12.952838 26.212002
noncentral_f 18 32 16.719208 76.41333
pareto 18 64 17.528069 75.83009
rayleigh 16 32 16.096148 40.621628
standard_cauchy 22 32 15.556631 145.31194
standard_gamma 16 32 15.915553 40.504124
standard_normal 16 64 15.919629 43.231827
standard_t 16 32 16.029676 39.025566
triangular 16 32 14.595111 30.816849
vonmises 14 32 14.006728 36.674625
wald 20 32 17.878548 75.5414
weibull 18 32 17.402845 79.34965
zipf 12 4 12.783704 26.212002
power 14 32 14.328399 29.890652

Table A.5: Table displaying the accurate predictions from the model (Method 1)

67

A6 - Predicted configurations - Non rounded

Dataset Num Err Predicted num predicted err
books 16 256 15.221355 39.66526
lognormal 16 4 20.837484 19.160227
normal 16 4 17.55197 43.504898
uniform_sparse 14 32 14.785072 28.278358
beta 18 32 16.020077 22.995024
chisquare 18 32 16.972857 33.569336
dirichlet 20 64 18.966248 69.83592
f 20 64 17.568811 24.4113
gamma 16 64 16.92615 34.6729
gumbel 16 32 17.668081 37.401703
laplace 18 32 18.797457 52.26239
logistic 18 32 18.168694 40.64132
negative_binomial 16 4 13.84967 -0.07691622
noncentral_f 18 32 17.025091 39.185253
pareto 18 64 18.161207 49.709393
rayleigh 18 32 16.873299 31.104576
standard_cauchy 20 64 19.776594 22.108393
standard_gamma 18 32 17.115662 32.476448
standard_normal 16 32 17.32502 31.832014
standard_t 18 32 17.200897 33.782513
triangular 16 32 14.921661 29.681276
vonmises 14 32 14.643021 29.92548
wald 20 32 19.242348 50.81876
weibull 18 32 19.132484 51.679188
zipf 20 4 13.68548 -0.25703
power 18 32 14.905012 29.351665

Table A.6: Table displaying the accurate predictions from the model (Method 2)

68

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Purpose and Motivation
	Goals and Research Questions
	Content of thesis

	Background and Definitions
	Definitions
	Index Structures
	B+-tree
	Neural Network
	Cumulative Distribution Function
	Probability Density Function
	Z-score Normalization
	LSM-Trees

	Related Works
	The First Learned Index Structure
	ALEX
	Piecewise Geometric Model Index
	SOSD Benchmark
	Radix Spline
	Hist-Tree
	PLEX

	Setup and Method
	Setup
	Generating synthetic test data
	Feature extraction
	Building the indexes
	Finding the Best and Worst Parameter Configuration
	Training the network

	Results and Evaluation
	Feature Extraction
	Finding The Optimal Parameter Configuration
	Minimum index for fastest 10% lookups (Method 1)
	Z-Score Normalization (Method 2)

	Neural Network Prediction of Parameters
	Method 1
	Method 2
	Overall Evaluation of the Model
	Z-Score Normalization for Worst Configuration

	Discussion
	Implementation
	Dual-Pass Radix Spline
	Search Engines and Elastic Search

	Limitations
	Comparison with PLEX
	Data Generation
	Underfitted Model
	32-Bit Datasets
	K-Fold Cross-Validation
	Feature Selection
	Neural Network
	Write-Once/Read-Many
	Build Time

	Future work
	Generating More Complex and Diverse Data
	Exploring Different Features
	Improving the Neural Network Model
	Comparing the Results Against a Non-Tuned Radix Spline
	Using A Weighted Z-Score Normalization

	Conclusions
	Research Question 1
	Research Question 2
	Research Goal

	References
	Appendices:
	A - Detailed Tabular Data

