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Abstract

The rapid growth of spatial data due to the proliferation of IoT devices and smartphones

presents new challenges for spatial data management. Spatial databases have been effec-

tive in querying spatial data for several decades, but topological queries are often consid-

ered computationally expensive, and existing data structures that improve such queries

typically sacrifice performance on spatial queries. In this thesis, we aim to enhance the

efficiency of topological queries in spatial data without altering the underlying data struc-

ture. To achieve this, we propose using linked lists to traverse trajectories as a graph,

thereby enabling efficient identification of trajectory heads and tails without requiring

expensive lookups. We conducted benchmarking tests that show the proposed method to

be significantly faster than previous approaches, indicating that it merits further explo-

ration. This study contributes to the field of spatial data management by presenting a

novel approach to improve the efficiency of topological queries, which could have practical

implications for real-world applications.



Sammendrag

Den raske veksten av romlig data grunnet økt tilgjengelighet av IoT-enheter og smarttele-

foner presenterer nye utfordringer for romlig datah̊andtering. Databasesystemer designet

for romlig data har vært effektive i spørring av romlig data i flere ti̊ar, men imidlertid an-

ses topologiske spørringer ofte som beregningsmessig dyre, og eksisterende datastrukturer

som forbedrer slike spørringer, ofrer ofte ytelse p̊a romlige spørringer. I denne oppgaven

har vi som mål å forbedre effektiviteten av topologiske spørringer av romlig data uten å

endre den underliggende datastrukturen. For å oppn̊a dette, foresl̊ar vi å bruke lenkede

lister til å traversere spor av noder som en graf, og dermed muliggjøre effektiv identi-

fikasjon av start- og sluttnoder uten å måtte ha en indeks eller full tabellskanning. Vi

gjennomførte ytelsestester som viser at den foresl̊atte metoden er betydelig raskere enn

tidligere tilnærminger, noe som indikerer at den fortjener ytterligere utforskning. Denne

studien bidrar til feltet for romlig datah̊andtering ved å presentere en ny tilnærming for å

forbedre effektiviteten av topologiske spørringer, som kan ha praktiske implikasjoner for

virkelige applikasjoner.
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Chapter 1
Introduction

The integration of the Internet of Things (IoT) into modern society has become increas-

ingly widespread in recent years, leading to a surge in the amount of data generated daily,

particularly spatial data. McKinsey estimates that IoT has an economic impact of $3.9

trillion $11.1 trillion per year in 2025 [1, p. 2]. Notably, companies like Strava have be-

come household names, earning millions of dollars by generating, storing, and aggregating

spatial data for their users [2]. Typically, this type of data is presented as trajectories

in the form of linked directional points in two or three dimensions that depict the path

of the user. An example of this can be seen in Figure 1.1. While spatial databases have

traditionally been efficient at querying data based on their spatial properties, performing

topological queries, which extract information by examining the trajectory as a whole, is

still considered to be computationally expensive [3]. Topological queries are closer de-

fined in Section 2.4. To address this issue, data structures such as TB-trees have been

developed as R-tree variants that prioritize preserving trajectory segments when splitting

rather than the spatial properties of the data points. This results in a trade-off that nega-

tively impacts the ability to effectively query spatial properties and topological properties

simultaneously without the need for several indexes.

This paper proposes utilizing linked lists to enhance topological queries without mod-

ifying the underlying indexing data structure, but by modifying the data itself. We aim

to solve the research question ”can linked lists be utilized to improve topological

query performance?”. To facilitate this we need to complete the following objectives:

1. Find a suitable dataset for experimentation. This will be closer described in Sec-

tion 3.3.

2. Implement an underlying indexing method to allow for range searches.

3. Compare the response time for topological queries performed using iterative, indexed
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Figure 1.1: A trajectory as presented in the Strava application on iOS.
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and linked list approaches to determine which has the best performance.

1.1 Chapter overview

This thesis is structured into several chapters, with the second chapter providing back-

ground information about spatial data, existing data structures and indexing methods,

which will be presented, discussed, and compared. Furthermore, the context will be fur-

ther explained, and related work will also be discussed in this chapter. The third chapter

will focus on the methodology employed in this project, where we will introduce our new

implementation and describe how the benchmarking process was conducted, including

our choice of technology and dataset. In Chapter 4, we will present the results of our

benchmarking and compare them to the predicted outcomes. These will be discussed

further in Chapter 5. Finally, we will conclude, discuss further work and the implications

of our findings in the last chapter.

1.2 Abbreviations

Throughout this thesis, there will be some abbreviations used. Table 1.1 shows all the

abbreviations and their meaning.
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Table 1.1: Abbreviations
Abbreviation Meaning

API Application Programming Interface
C Crosses query

DBMS Database Management System
DE-9IM The Dimensionally Extended 9-Intersection Model

E Enters query
GIS Geographic Information Systems
GPS Global Positioning System
ID Identification
IN Indexed (query variation)
IoT Internet of Things
IT Iterative (query variation)

JVM Java Virtual Machine
k Number of datapoints within a region
l Leaf node
L Leaves query
LL Linked List (query variation)

maxFill Maximum Filling Factor
MBR Minimum Bounding Rectangle
minFill Minimum Filling Grade

N Total number of data points
n Node

OGC The Open Geospatial Consortium
OLAP Online Analytical Processing
RDBMS Relational Database Management System

SE Start and End query
SFC Space-Filling Curve
T Trajectory

TB-Tree Trajectory Bundling Tree
W Query Window
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Chapter 2
Background

Some context and knowledge are required for understanding what this thesis aims to solve.

It is assumed that the reader has some knowledge of the topic of database management

systems and spatial data, but a brief introduction will be given in this chapter. For a more

detailed explanation of spatial data and its underlying data structures, materials such as

The Design and Analysis of Spatial Data Structures are recommended [4; 5; 6; 7; 8; 9; 10].

2.1 Indexes

Database indexing is a fundamental concept in database management systems (DBMS)

that involves organizing data in a manner that facilitates efficient retrieval of information

[9]. The efficiency of data retrieval is critical for the performance of database applications,

particularly those that handle large amounts of data. The type of index depends on the

type of data, as well as what fields of the data are frequently accessed. DBMSs such as

MySQL use B-trees as the default when creating an index, with some exceptions such as

using R-trees when indexing spatial data [11]. For search engines using full-text search,

it would be beneficial to use another index known as a reverse index as it is better suited

for text retrieval.

Indexes can be either clustered or nonclustered. Clustered indexes, often referred to

as primary indexes, are indexes where the data is stored directly in the index as opposed

to nonclustered or secondary indexes where the data is stored separately, but the index

contains pointers to the data [9, p. 631]. As the data is stored directly in the indexing

structure when using clustered indexes it can only have one clustered index, but it can

also have nonclustered indexes pointing to the data in the clustered index. With nonclus-

tered indexes, one can have several indexes for the data as they are simply pointers to the

data. For instance, if you have data with spatial properties, as well as other properties,
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you can have one index such as a B-tree for the non-spatial properties and an R-tree

for the spatial properties. Spatial indexes are most commonly nonclustered as there are

non-spatial fields associated with the data, which are often preferred to have physically

close together to improve join query performance.

2.2 Spatial Data

Spatial data is simply data that contains spatial properties in some shape or form. These

can include but are not limited to, points, lines, rectangles, regions, surfaces and volumes

[4]. There can be additional data present, but that is not a requirement. One of the most

common data types to pair with spatial data is temporal data. This is known as spa-

tiotemporal data and is used extensively throughout different fields such as geographic

information science, climate science, public health and logistics [12; 13; 14; 15]. One

interesting effect of storing spatial and temporal data together is that you can create tra-

jectories, essentially drawing a line from the starting point, through all the intermittent

points and to the endpoint. To know when to save the user’s location the two most com-

mon methods are to either save the location at a set time interval or to save the location

after a set distance interval. Another way, commonly used by apps such as Google Maps,

is to save the location when the user moves a lot or uses apps that use GPS signals [16].

From the GPS positions alongside a timestamp, you can see how long each stop is, the

average movement speed, where the user spends most of their time and generate patterns

in user movements. This data can be very valuable to companies that can use this data to

precisely target relevant users. In Figure 2.1 the same trajectory as shown in Figure 1.1

has overlaid colors showing the pace at different parts of the trajectory.

To limit the scope of this project, we will not focus on the temporal part of the data.

We will instead only look at the spatial properties, such as the coordinates, but we can use

the temporal properties to induce an ordering of the points, creating a linked directional

property to each trajectory. We will also not focus on spatial data with more than two

dimensions or look into implementations in specific databases.

2.2.1 Existing Data Structures for Spatial Data

Spatial data has been around for many decades. As early as the 1960’s research began on

studying geographic information systems (GIS) [17]. However, as the amount of spatial

data has increased significantly over the past few years, due to the rise of smartphones

and the Internet of Things (IoT), spatial data has become more relevant than ever [18].

6



Figure 2.1: A screenshot from the Garmin Connect app on iOS of the same trajectory as
in Figure 1.1. The different colors show the speed at the given part of the trajectory.
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The most common way to store and work with spatial data is through spatial databases.

These are databases that are specifically designed to store and perform queries on spatial

data. For a spatial database to store and query spatial data, some properties need to be

present. The most important one is the spatial indexing method, as that is essential for

querying spatial data effectively. Normal databases use indexes such as B+-trees, which

provide efficient queries on ordered data, but these are not efficient for querying spatial

data [9, p. 652]. Most spatial database systems allow for using different indexing methods

based on what the user needs, but the most common indexing method is R-trees or any

of its variants. The different indexing methods all take different approaches and prioritize

differently to accommodate different use cases. Some prioritize dynamic data, data that

will change during usage, and some prioritize static data. When prioritizing dynamic

data, an index method must easily be recreated or updated to accommodate the changes.

If it takes a long time to adapt to the changes, the queries to the data will be outdated

or the service will experience much downtime. If one knows that there are not going to

be any changes to the data, one can go for an indexing method that might use more time

to generate the index but has a faster time for querying the data after the index has been

generated.

There are two main categories for the data structures used by spatial indexing meth-

ods: space-driven and data-driven structures. Space-driven structures divide the entire

space into zones based on the data present. Some examples of this include quadtrees and

kd-trees. Data-driven structures, on the other hand, do not divide the entire space, but

rather use the data to only create zones that are encompassing the data, using only the

minimum amount of space required. This category contains R-trees and all their variants.

Different indexing methods can also be faster for some types of queries and slower for

others. The Open Geospatial Consortium has defined some predicates which indicate how

geometries interact with each other [19]. These and others are often built into the spatial

databases such that database managers do not have to write custom functionalities for

them.

2.2.2 Quadtrees

Quadtrees are a space-driven data structure used for indexing two-dimensional spatial

data. They work by dividing the space into four squares, and then dividing those again

until you only encompass a set amount of points in each square. There are several vari-

ations of quadtrees as they are used for different use cases such as image compression,

storing polygons and several others. The different variations include but are not limited

to, point-, region, point-region-, PMR- and XBR quadtrees [20]. In Figure 2.2 you can

8



Figure 2.2: A PR quadtree with seven points and a maximum of one point per cell
represented as both a grid and a tree.

see a point-region (PR) quadtree represented as both a grid based on the position of

the points as well as a tree. For connected directional spatial data, the most relevant

quadtrees to look at would be the PMR- and XBR quadtrees as they are specifically

designed to store and query trajectory data [21].

Variants of this data structure are used by companies such as Strava, where they

use quadtrees to aggregate data such as a heatmap of each user’s activities [22]. Their

quadtrees have several layers of granularity which update as the user zooms on the map.

This is quite similar to the functionality of the drill-down operation in an OLAP cube.

In their blog post, they do not specify why they went with a space-driven data structure

instead of a data-driven data structure, but it is probably a culmination of the factors

Oracle found in their testing which will be discussed shortly.

2.2.3 R-trees

R-tree is a data-driven structure invented in 1984 by Antonin Guttman that is used for

indexing multi-dimensional spatial data [6]. The concept is closely related to B+-trees,

but the data is grouped by its spatial properties. It works by grouping items by using

minimum bounding rectangles (MBR). MBRs are the smallest possible rectangles one can

create for a set of objects whilst enveloping their spatial properties. These are created

or updated whenever data is inserted into the tree. Each leaf node can contain a set

amount of data, usually denoted as its maxFill property, and require a minimum amount

of data known as its minFill property. Non-leaf nodes have a property named fanout

which determines how many sub-regions it can contain before overflowing. Whenever

9



a leaf node is overflowing, the node will be split. Different variations often use different

splitting algorithms, but the most common ones in the default R-tree are linear, quadratic

and exponential splitting [10]. Each has a distinct prioritization of either speed or better

splits, with linear being the fastest with the worst splits and exponential being the slowest

with optimal splitting. The choice of splitting algorithm is often dependent on if the tree

is to be often updated (dynamic) or if it is only to be built once (static). Whenever a

leaf node is split, the split is propagated upwards and each parent node will be split if

the number of sub-regions exceeds the limit set by the fanout. If the root exceeds the

fanout it will be split, setting a new root node as its parent and the tree has increased its

depth by one. Because the splits result in two new nodes the tree is self-balancing which

is beneficial in maintaining its query efficiency.

Throughout time there have been many proposed variations of R-trees, with a few of

them being used commercially. R*-trees were first proposed in 1990 and improved on the

original concept [23]. In essence, the R*-tree uses more computational power to create

trees with less overlap and smaller MBRs. This allows for better query performance than

the original R-tree. The R+-tree does not allow overlapping MBRs on the same level,

causing greater performance for point queries, but worse performance for window queries

due to storing duplicates rather than overlapping MBRs. In addition to these variants,

several others do their optimizations and concessions to improve the performance in some

regard. A more detailed and comprehensive list of R-tree variations can be found in [7].

There exist other R-trees designed especially for trajectories. One of these includes

the Trajectory Bundling Tree, also known as a TB-tree, which was first proposed alongside

the STR-tree in the article ”Novel Approaches to the Indexing of Moving Object Trajec-

tories” released in 2001 [3]. The TB-tree seeks to improve the performance of queries that

retrieve trajectories as it stores segments of each trajectory bundled together in each leaf

node. This sacrifices some query performance for the normal range and point searches,

as MBRs of trajectory segments will not necessarily be as small as possible, in favor of

making trajectory queries faster through the locality of the data. In addition to this, each

leaf node containing a trajectory segment will have a pointer to the previous segment as

well as the next segment. This creates a doubly linked list of trajectory segments, making

retrieval of entire segments trivial. These links are not without their caveats, one of them

being that whenever a node is split, all pointers pointing to it would need to be updated.

Figure 2.3 visualizes the structure of the TB-tree and Table 2.1 shows the strength and

weaknesses of the different R-tree variations.

A study done by Oracle in 2002 found that R-trees are faster than quadtrees for almost

10



Figure 2.3: The TB-tree structure [3].

Table 2.1: Comparison of various R-tree variations.
Name Dynamic

/ Static
Index
Size

Overlap Disk Us-
age

Query
Effi-
ciency

Topological
Queries

R-tree Dynamic Medium High Medium Good
(Range,
NN)

Fair

R*-tree Dynamic Medium Low Medium Very
Good
(Range,
NN)

Fair

R+-tree Dynamic Low None Low Fair
(Range,
NN)

Fair

Hilbert R-
tree

Dynamic Medium Low Medium Very
Good
(Range,
NN)

Fair

TB-tree Dynamic High Low High Excellent
(Trajec-
tory)

Excellent
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Figure 2.4: An example of an R-tree for two-dimensional rectangles by Stefan de Konink
[24].
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all spatial queries. R-trees were faster for anyinteract, inside, contains, touch, coveredby,

covers, equals, overlapbydisjoint, and overlapbyintersect queries. However, quadtrees were

better for touch, overlapby, disjoint, and overlapbyintersect queries only when using larger

query windows. They also found update times to be better for R-trees and storage re-

quirements similar for both structures, but only when using points. For everything else

R-trees outperform quadtrees. Essentially, they recommend using R-trees unless you are

creating “[...] update-intensive applications using simple polygon geometries, high con-

currency update databases, or when specialized masks such as touch are frequently used

in queries” [25, p. 555].

They also found that using quadtrees required a lot of fine-tuning to reach optimal

performance. This is not required for R-trees and provides R-trees with another advan-

tage.

Quadtrees are usually preferred for evenly distributed data where updates are frequent

due to the nature of how changes do not need to propagate as far up the data structure

as with R-trees.

2.2.4 Space-filling Curves

Space-filling curves (SFCs) are mathematical functions used to map multi-dimensional

data points to a single dimension whilst preserving the spatial relationships of the data

points. They only access each location once, and never cross themselves [26]. SFCs have

several applications including image compression, computer graphics and spatial index-

ing. There are several different variations of SFCs, with the most well-known being the

Hilbert curve which was described in 1891 by David Hilbert [27]. It is preferred over other

curves, such as the Morton curve, as it better preserves the spatial relationships between

points [4].

Space-filling curves can be utilized in spatial indexing either alone or accompanied by

either space-driven or data-driven structures such as the ones introduced previously. The

Hilbert R-tree is a known variation of the R-tree that utilizes the Hilbert space-filling

curve to better preserve the locality of the data points than the original R-tree in case

of splits, making I/O faster. Space-filling curves can also be used in conjunction with

quadtrees as can be seen in Figure 2.5. Table 2.2 shows the strengths and weaknesses of

the different spatial partitioning methods.
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Figure 2.5: Hilbert space-filling curve used with a quadtree. Note how the depth of the
quadtree affects the order of the curve.

Table 2.2: Some of the strengths and weaknesses of different spatial partitioning tech-
niques.
Partitioning Type Strengths Weaknesses
Space-Driven Partitioning
(e.g., Quadtrees)

1. Simple and easy to im-
plement.
2. Very efficient for dy-
namic data.
3. Many levels of granular-
ity.

1. Not suitable for highly
clustered data.
2. Requires tweaking to be
efficient.
3. Not self-balancing.

Data-Driven Partitioning
(e.g., R-Trees)

1. Efficient for multi-
dimensional range and
nearest neighbor queries.
2. Self-balancing (most of
them).
3. Highly adaptable.

1. High complexity of im-
plementing and maintain-
ing the data structures.
2. Deletions can be ineffi-
cient.
3. May require rebalanc-
ing or rebuilding for effi-
cient queries.

Space-Filling Curves (e.g.,
Z-Order, Hilbert Curves)

1. Efficiently maps multi-
dimensional data to one di-
mension.
2. Preserves the locality of
the data.
3. Simplifies handling of
multi-dimensional data.

1. Some queries can be
complex to execute.
2. Handling non-uniform
data can be inefficient.
3. Mapping can lead to the
loss of multi-dimensional
characteristics.
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2.3 Linked Lists

Linked lists are a fundamental data structure in computer science [28, p. 25]. It consists

of nodes linked together with pointers pointing from one node to the next. Nodes cannot

be accessed through indexes as the nodes can be stored anywhere in memory, with only

the pointers from the previous node telling where the data is stored in memory. Because

of this you rather have to traverse the list from start to finish to read items. Linked direc-

tional data is, depending on the implementation, essentially just linked lists consisting of

nodes with spatial properties. Some nodes are logically connected to other nodes through

some kind of order. This ordering can be either explicit, by having them stored with

references to each other, or implicit by having them either stored in a specific order or by

fields such as timestamps. Utilizing linked lists for spatial data is not a novel thought and

has been used in MX-CIF quadtrees previously in 1982 as well as in TB-trees in 2001 [4; 3].

Linked lists can either be single or doubly linked. In a standard linked list, each

node has a reference to the next node in the list. In doubly linked lists each node has a

reference to the next node as well as the previous node. This allows for the traversal of

the nodes in both directions, making the data structure more flexible at the cost of more

space required per node.

In addition, linked lists can have multiple links between nodes allowing for traversal

in different orderings. These are commonly known as multiply linked lists and can be

used for improving performance in certain conditions where it would be beneficial to have

alternative traversals, at the cost of the space required for the extra pointers.

Linked lists can also be circularly linked where the tail points to the head making

traversal circular. This allows for using it in instances where all nodes would be con-

nected, for instance in describing polygons as linked polygonal chains. Having circularly

linked lists poses a new set of problems as one could easily be stuck in an endless loop if

not careful when traversing the list. This can be mitigated by adding a second pointer

when traversing or making the head of the list unique and identifiable.

Some would argue that sentinel nodes should be used to determine when to terminate

a search instead of using null values [29]. Sentinel nodes are nodes that do not contain

any data relevant to the list, but rather are just used to make sure that a list always

contains data. They can be used both as the head and tail of a list but are not recom-

mended to use whenever you have many lists of small size as it increases the size overhead.
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Table 2.3: Different types of spatiotemporal queries [3].
Query Type Operation Signature

Coordinate-based Queries overlap, inside, etc. range ×
{segments} →
{segments}

Trajectory-based
Queries

Topological Queries enter, leave, cross,
bypass, etc.

range ×
{segments} →
{segments}

Navigational
Queries

traveled distance,
covered area (top
or average), speed,
heading, parked

{segments} → int
{segments} →
real {segments} →
bool

2.4 Querying Spatial Data

The previously mentioned predicates defined by The Open Geospatial Consortium are

called The Dimensionally Extended 9-Intersection Model, or DE-9IM, and include inter-

sects, disjoint, equals, touches, crosses, overlaps, contains and within. These predicates

can be used to create queries that can be used to extract data from objects’ positions.

In Novel Approaches to the Indexing of Moving Object Trajectories they group these into

coordinate-based queries and trajectory-based queries [3]. The former includes common

queries such as point, range and nearest-neighbor queries, and the latter includes topo-

logical queries such enters, leave, cross and bypass as well as navigational queries such

as speed, heading, parked, etc. Here the authors describe the trajectory-based queries as

“[...] very important, but also rather expensive [3, p. 397].” An overview of the different

categorizations of queries can be seen in Table 2.3.

Topological queries do not only look at the spatial information of each data point

but rather look at the spatial information that can be derived from looking at it in the

context of a trajectory. The name comes from geospatial topology which is the study

of the relationship between geographic objects. What makes topological queries so ex-

pensive to perform is that a spatial index such as an R-tree only indexes the spatial

properties of each data point as a separate entity and not part of a topology. For in-

stance, if one were to find all trajectories that start within a region one could perform

a range search in the R-tree, but with the resulting points, one would be unable to tell

just from their spatial properties whether or not they are the start of a trajectory as that

is not a spatial property. This results in either having to use a separate index to do a

lookup of each of the resulting data points to check whether or not it is the head of the

trajectory, or performing a full table scan if no index is present. Performing an index

scan is a more cost-effective option than conducting a full table scan, but it does require
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additional storage space and still represents a non-trivial task in terms of processing time.

TB-trees solve this by making each leaf node only contain data points from one tra-

jectory and then having pointers between all leaf nodes that contain data points from

the same trajectory. This makes the spatial index also work as a trajectory index as one

can traverse the leaf nodes that are relevant and answer queries such as whether or not

the given trajectory started within the given region. The downside of this is that spatial

queries that do not need topological information suffer as a result of worse splits causing

larger MBRs and more overlap. This could be solved by having a traditional spatial

indexing data structure alongside the TB-tree, but that would require more space and

complexity.

2.5 Combining R-trees with linked lists

By combining R-trees with linked lists between nodes of the same trajectory, we can keep

the benefits of high performance for range searches while still getting a performance boost

for topological queries.

For instance, for the trajectory-based query, ”Find all trajectories that start within

region A and end outside region A”, utilizing linked lists in the R-tree can improve the

number of reads required to satisfy the query. When using either an iterative or indexed

approach the only difference between them is how one identifies the heads and tails. The

initial points are found by performing a range search on the tree with region A as the

query window, resulting in a set of data points with potential trajectories. The data points

are then filtered to remove any superfluous data points that have the same trajectory ID

as any other candidate. In the iterative method, one would have to iterate over all the

points in the dataset until one finds the first point with the correct trajectory ID. Then

one would have to find the last point with the same ID and then check that the head is

within the region and the tail is not. Worst case scenario the given trajectory is far down

the list and one would have to iterate over almost the entire dataset before one finds a

match for every single potential trajectory found in the range search. The index improves

on this by allowing the iterating to start at the start of each potential trajectory reducing

the search space down from the length of the dataset to, at maximum, the length of the

longest trajectory.

If one instead uses links between the nodes of the same trajectory, there would be no

need to access either the entire dataset or the index. Instead, in the initial filtering one

starts by filtering out all data points that do not have their prev field set to null. This

17



removes any non-head data points, making sure that potential candidates that would not

qualify in a later stage are removed early on. Then, one can traverse each trajectory di-

rectly until the current data point has the next field set to null to get the tails. Then, by

filtering out all trajectories where the tail is not outside the region the process is finished.

This significantly reduces the amount of data points that have to be checked both for

their trajectory ID and spatial properties. This also translates into fewer pages read into

memory, causing less IO overhead and better performance.

For storing the data on disk, using linked block allocation with data clustered on

specific fields can yield benefits as opposed to contiguous allocation. For instance, if

the average trajectory length is longer than the average number of unique trajectories

located within a normal region, it would be beneficial to physically cluster the data

on the trajectory ID as this would reduce the number of pages read during traversal.

Conversely, if the number of unique trajectories within an average region is larger, it

would be beneficial to store the data clustered on its spatial properties with data points

close in physical space also being close on disk. These parameters are contingent on the

dataset in addition to how the data is to be used. Another approach would be to use

mmap which delegates the data retrieval to the operating system. However, this approach

has been criticized in recent research papers for its hidden pitfalls. This, alongside several

DBMSs stopping to use it in preference for traditional block buffer pools in recent years,

may point to it not being the best solution [30].

2.5.1 Advantages

Creating explicit links between the nodes removes the need for an external index for effec-

tively accessing all nodes in a given trajectory. Generating indexes takes both time and

space with the index for the entire dataset used in this project taking up 326MB
2440MB

≈ 13.3%

of the space of the original data when using PostgreSQL. Assuming that each reference

to objects on the JVM takes up 4 bytes [31], and each node has two references each, the

footprint of adding the links is approximately 267MB. The footprint when implemented

in a database would be dependent on both the implementation and DBMS.

The most obvious advantage is the performance increase for topological queries. All

queries that do not only require knowledge about the spatial properties but also the tra-

jectory properties of the data should be able to see improvements to the query response

time. As mentioned previously this is due to the amount of data points that have to be

iterated over.

With a tree such as the TB-tree where the links are between leaf-nodes nodes, insert-
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ing new data into the tree will require updating pointers whenever the leaf nodes are split.

By having the links between the data points themselves inserting new nodes would not

require updating pointers except for the previous and next node in case of inserting a node

into an existing trajectory. As the links are not attached to the tree, no changes would

need to be reflected in the tree itself. This also translates into that the implementation is

agnostic to the underlying data structure. With pointers on the data directly, the spatial

index can be swapped at any time depending on if the tree needs to be static or dynamic.

2.5.2 Disadvantages

Adding pointers between nodes in the dataset does require a migration of the existing

tables to allow for using the pointers. However, as long as the ordering can be deduced

by the DBMS it should be possible to automate this task. It would still require a lot of

time to migrate large tables.

The method is not optimal when it comes to dynamic data as whenever new data is

added to a trajectory, it would require updating the corresponding links. Insertion into

linked lists has a constant time complexity, but that is not accounting for finding where

the data should be inserted, which makes it linear. Most likely a trajectory will have data

appended to the end, but there are use cases where it would be applicable to add a data

point in the middle. Updating the trajectories is not something we have looked at in this

project, but could be considered for future work.

As opposed to TB-trees, splitting based on the data’s spatial properties instead of its

trajectory segments does remove the benefit of having segments close together on physical

storage. This can lead to decreased query performance on trajectory-based queries when

implemented in a database as the data points may be unfavorably distributed across sev-

eral pages. How this impacts performance could be another thesis in the future. Although

not as effective as having each leaf node be a separate block, the physical storage can be

configured in ways that benefit the data structure as previously mentioned above.

2.6 Related Work

In addition to the TB-trees mentioned earlier, other researchers are proposing data struc-

tures that seek to solve the same issues. One of these is the Riso-Tree, which “[...] par-

titions the graph into sub-graphs based on their connectivity to the spatial sub-regions”
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[32]. This data structure leverages the power of graph databases to improve graph queries

with spatial predicates (GraSp queries). The researchers are focusing on social graphs

with spatial properties in the paper, but the data structure can be applied to the problems

mentioned in this paper as well. The paper mentions SpaIndex and describes its approach

in very brief words, which seems to somewhat match the method we are proposing. They

describe the performance of this approach as “[...] exhibit unacceptable performance for

applications that need to query the graph in real-time or near real-time” [32, p. 3]. A

review of the literature on this topic indicates that, apart from papers authored by the

same researchers, no other studies have mentioned SpaIndex. Despite being published

in ACM Transactions on Spatial Algorithms and Systems in 2021, this paper has not

gained much attention. This suggests that further investigation is necessary to evaluate

the effectiveness of Riso-Tree and similar data structures in addressing the challenges of

spatial graph querying.
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Chapter 3
Method

Figure 3.1 shows the three different approaches to a topological query we will benchmark

against each other. The query aims to find the tail of the trajectory T5, which it obtained

from a node as a result of a range search in the R-tree. This example is equivalent to

a leaves region query, which we will discuss in more detail later. The topmost blocks

show the iterative approach, which would be comparable to doing a full table scan in

a database. Notice that, to find the tail, we first have to iterate through all the nodes

that are not relevant to the T5 trajectory. This results in having to iterate over 543 data

points before it even checks the head of the trajectory. It also requires looking at one

more node when the tail is reached, as it does not know that it is the tail before it has

checked that the next data point has a different trajectory ID. The middle block shows

an indexed approach, which would be equivalent to using an index in a database. The

index here is an unclustered index that contains pointers to the heads of each trajectory.

One could also have an index on the tails, making this query faster, but it would require

twice the amount of space. In this example, we are using an index on the heads to assume

the worst-case possible. Similar to the previous approach, we have to check the first node

of the next trajectory to confirm that we have reached the tail of the trajectory, but in

this case, we started the traversal at the head of the right trajectory. The bottommost

blocks show an approach using linked lists. Here, the data points are modified to hold

a pointer to the next and previous node in the trajectory. This allows for traversing the

links until the next field is set to null to find the tail, or the prev field is set to null to find

the head. As seen in the middle block, the head of T5 is n543, but the node found in our

range search is n550. This means that when looking for the tail, in the worst case, we are

as close to the target node as the indexed method, but for all other cases, we are closer.

In the example from the figure, we start seven nodes closer than the indexed method and

we do not have to traverse beyond the desired trajectory to determine the tail.
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Figure 3.1: A visualization of the different approaches to finding the tail of a trajectory.
The top shows an iterative approach, the middle shows a method with an index and the
bottom shows a method with linked lists. Note how the different approaches have vastly
different amounts of nodes visited.
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3.1 Benchmarking Performance

To evaluate the performance of linked lists in topological queries, it is essential to ensure

that the fewest possible factors are changed between methods. To ensure a fair compari-

son, the methods’ implementations should be similar, with the only difference being the

specific aspect under evaluation. Therefore, we chose to use an R-tree as the underlying

data structure for the initial range search, which is easy to test if implemented prop-

erly. While it would be interesting to explore other underlying structures up against data

structures that aim to improve topological queries, such investigation is beyond the scope

of this thesis.

To test the performance of the algorithm, an implementation has been written in

Kotlin, a language targeting the Java Virtual Machine (JVM) in the same way as Java

does. Kotlin was chosen as the language of choice because it offers decent performance

compared to languages like Python while being faster to develop in and more high-level

than languages like C++. The reason for choosing Kotlin over Java is that the former

offers faster development through less boilerplate and verbosity and an increase of syn-

tactic sugar. The author’s proficiency in the language was also a determining factor.

Implementing the algorithm in a higher-level programming language does present some

drawbacks. Mainly, the speed of the searches will not match real-world usage, primarily

due to how a real DBMS optimizes queries in advanced ways, but also the larger overhead

caused by the virtual machine used by Kotlin. It should be noted that there are databases,

such as Cassandra1, that are written in Java which targets the JVM. This shows that the

data generated in this project could somewhat mimic real-life performance in some cases,

keeping in mind that these databases are highly optimized.

Frameworks such as ELKI 2 were considered due to their existing data structures,

benchmarking, and visualization capabilities, but were discarded due to the amount of

work that would be needed to become proficient in the framework. Instead, an R-tree

implementation was written from the ground up, including a benchmarking tool that

allows for timing query response time. The R-tree has some key features missing from

being complete, with the main one being that removing nodes are not supported after the

initial tree has been built. This was done to improve development speed and was deemed

unnecessary due to the scope of this project.

1https://cassandra.apache.org/ /index.html
2https://elki-project.github.io/
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Figure 3.2: Number of nodes and leaf nodes in the R-tree for all data points up to 500
000.

3.2 R-tree Parameters

The choice of parameters affects how the tree performs. When benchmarking, it is im-

portant to set these parameters to reasonable values that ensure the tree functions as

intended. While good tree performance is essential in real-world scenarios, for bench-

marking topological queries, the tree only needs to function sufficiently, not optimally.

This led to the adjustment of several parameters to enhance tree build performance and

development speed.

The max filling factor, which is the maximum amount of data points a leaf node can

contain, was set to nine as it was found to give decent performance. For reference, for

500 000 data points, the average trajectory contains ≈ 49 nodes, meaning the average

trajectory would have to be split across at least five leaf nodes without taking the average

fill grade into account.

The minimum filling grade in an R-tree is usually recommended to be around 40%

of the maximum filling factor. 9 × 0.4 = 3.6 and to make it a round number seeing as

data points cannot be split, it was floored, making the minimum filling factor three. This

means that any leaf node cannot contain less than three data points. Whenever a split,

resulting in leaf nodes l1 and l2, has distributed x data points such that the remaining
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points to be distributed, y, is equal to minFill−{l2}, meaning that n2 needs the remain-

ing points to reach the minimum filling grade, they will be assigned to l2 disregarding if

it is the optimal solution as described in [10]. The average fill grade stays consistent at

around 62% for all different values of points, making the average leaf node have 5.62 data

points within it. This is a lower average value than what a normal R-tree has, which is

around 70% of the capacity [10]. There can be several factors that contribute to this,

such as using a linear splitting algorithm or how the data points are distributed.

The fanout of the tree determines how many children each non-leaf node can contain.

Whenever the fanout is exceeded, the node would have to be split. For instance, with a

fanout of one, each node can only contain one child, making the tree linear. With a fanout

of two, the tree would be a binary tree. Some developers recommended using 2d for the

fanout of R-trees where d is the number of dimensions of the data. For instance, a two-

dimensional R-tree would, in this case, have a fanout of 22 = 4, and a three-dimensional

R-tree would have a fanout of 23 = 8. This formula has not been scientifically proven

efficient but has some developers swearing by it as long as the tree is only in memory.

For this reason, as the data is only in two dimensions, a fanout of four was selected.

As the goal of this benchmark is not to test how well the tree performs, but rather

how topological queries perform with and without links, the splitting algorithm is not

crucial. As we use the same splitting algorithm for both the queries with and without

links, it does not matter what algorithm is used. Because of this, it was decided to use a

linear splitting algorithm as opposed to quadratic, exponential or other algorithms. This

does result in worse query performance on the tree, but it speeds up development time

and the time it takes for the tree to build. In Figure 3.2 there is a graph depicting the

number of leaf nodes compared to the total amount of nodes and the corresponding tree

depth.

3.2.1 Special considerations

During development, there were some special considerations taken into account to ensure

that the tree is working as intended. These result in the R-tree behaving slightly differ-

ently from other implementations, but the core principle is the same, and the performance

should be minimally affected.

Early implementations of the tree had the MBR size calculated using the area of the

MBR. The size is used in the splitting algorithm to determine which region each node

should be added to ensure the smallest enlargement possible. When using the area, the

size is calculated using the formula A = width × length. This would be fine if it were
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Table 3.1: Summary of R-tree Parameters
Parameter Value Explanation
Max Filling Factor 9 Maximum number of data points a leaf node can con-

tain. Decided upon as it provides decent performance.
Min Filling Grade 3 Set to around 40% of the max filling factor. Any

leaf node cannot contain less than this number of data
points.

Average Fill Grade 62% Average percentage of a leaf node’s capacity that is
filled. This is lower than the typical average for an R-
tree, which is around 70%.

Fanout 4 Number of children each non-leaf node can contain. Set
to 2d, where d is the number of dimensions of the data
(in this case, 2).

Splitting Algorithm Linear Chosen as it speeds up development time and tree build
time, even though it may result in worse query perfor-
mance.

not for the fact that each node is a single point, meaning that they have an effective

width and height of zero. This means that if two points were at the same X or Y value,

you would get a width or height value of zero, meaning that the calculated area would

be zero. This led to some interesting rectangles spanning a large area horizontally with

zero height. To mitigate this, the formula was exchanged for the circumference formula

C = 2 × length + 2 × width to ensure that the nodes would be placed in the appropri-

ate regions. After testing, it seems as though this does not pose any unintended side

effects when splitting. For real-world data using GPS coordinates, this is quite unlikely

to happen, but having the edge case removed is always beneficial. An example of how this

affects the splits can be seen in Figure 3.3. Another way to remedy this could be to add

padding to the initial MBR for each point, making the MBR height and width non-zero.

In Kotlin, there is a pre-defined class called LinkedList3 which it inherits from Java.

This provides an implementation of a doubly linked list that can be used out of the

box. It allows for accessing and manipulating the list in several different ways. For this

project, it was deemed unnecessary to use this class, as the list would always be accessed

through the nodes instead of through a reference to the list. The linked lists are instead

created by having links between the data points without any overlying class that provides

functionality.

3https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
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Figure 3.3: Example of how using area vs circumference affects the splitting when calcu-
lating the MBR when C and D have the same Y-value and their height is zero.

3.3 Choice of Dataset

There are quite a few different datasets publicly available that would be suitable for this

project. To determine which datasets were relevant, we needed to consider various aspects

to ensure they met our requirements. These aspects include:

• Spatial properties. For the dataset to be relevant, it must have spatial properties.

Either GPS coordinates or something similar that will distribute the data points in

an (X, Y) grid.

• Be based on real-world data. Real-world data makes the data points more

genuine and realistic. Generating a new dataset could also be used, but that might

not take into account the unexpected factors one would encounter with real-world

data.

• Some kind of order. This can either be through having links between data points,

implicit ordering through references such as IDs, or inductive ordering through the

ordering of the rows or timestamps.

• Sufficient data. A dataset with only a few data points would not be sufficient, as

the search times would be indistinguishable from each other if they take too short
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a time to complete. Ensuring that there are enough data points to get an accurate

representation of the performance differences is important.

Many large tech companies depend on spatial data. Companies such as Strava have

built empires using, aggregating, manipulating, and mining spatial data. Initially, Strava

was considered in case they had any anonymized datasets available. Being the largest

fitness tracking app in the world, one would assume that they have a lot of publicly avail-

able data. Unfortunately, not in a way that was suitable for generating a large dataset.

To access their data, one would have to use their open API, but it would require explicit

consent from all users who have generated the data. In addition, Strava does impose quite

a few restrictions on how the dataset is used and distributed. These restrictions posed

too much of a hassle to make it a viable option.

Kaggle is a community for data science and machine learning. They regularly host

competitions where users are provided a dataset and compete to create the best algo-

rithm to solve a problem. These datasets are not created by Kaggle themselves, but

rather provided by companies, users, or researchers. Throughout Kaggle’s history, there

have been several competitions, and as a result, there are many datasets publicly available

for download. As these are used for different competitions, they consist of all types of

data and sizes. Some datasets are only a few kilobytes in size, while others are several

gigabytes. Fortunately, they have a search functionality that allows users to filter datasets

based on several different factors, including size, date, data type, and others. Section 3.3

shows some of the datasets that were considered, both from Kaggle and other sources. In

the end, the Taxi Trajectory Prediction dataset was chosen, which consists of taxi trips

taken in the city of Porto, Portugal within a timeframe. It fulfilled all the requirements

while also being descriptive and easy to understand. This dataset was also recommended

by Svein Erik Bratsberg, as it has been used in previous research projects surrounding

spatial data and trajectories.

The dataset was modified to be more suitable for insertion into both the program and

a database. In its initial state, the dataset would require unnecessary complex parsing

to be used in the program. This was due to each trajectory being a row with each data

point being defined in a polyline field which was stored as a string. A script was written

to convert the dataset into a more easily parsed format where each data point has its

own row with LATITUDE and LONGITUDE fields in place of the POLYLINE field.

This does increase the file size, but this is not an issue. The order of the data points was

maintained by making sure that each row was inserted in the original order of the data

points. Each row was also assigned its corresponding trajectory ID to make sure that

that information is preserved. To make sure that there were no parsing errors the script
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Table 3.2: Datasets that were considered, both from Kaggle and other sources.
Name Spatial Prop-

erties
Real-World
Data

Ordering Sufficient
Data

Microsoft Geo-
life GPS Tra-
jectory Dataset

Yes Yes Timestamped Yes - 1.67 GB

T-Drive Tra-
jectory Dataset

Yes Yes Timestamped Yes - 803 MB

GPS data from
Rio de Janeiro
buses

Yes Yes Timestamped Yes - 6 GB

Wroc law public
transport

Yes Yes Timestamped Yes - 3.56 GB

ECML /PKDD
15: Taxi Tra-
jectory Predic-
tion

Yes Yes Polyline Yes - 533.7 MB
(compressed)

Figure 3.4: The streets of Porto as visualized by 50 000 data points from the Porto Taxi
Trajectory Prediction dataset overlaid a screenshot of Google Maps.

also made sure to remove any trajectories that were empty or had vital data missing. It

also removed redundant fields such as MISSING DATA, CALL TYPE, ORIGIN CALL,

ORIGIN STAND, DAY TYPE, and TIMESTAMP. The code for this script is available

in Appendix B.

3.4 Benchmarking

To determine whether or not the links improve performance on topological queries, they

need to be benchmarked against each other to evaluate their performance. It was decided

to compare against both an iterative method as well as an indexed version to give more

perspective on how big of an impact this can have. When someone stores data in a

29



Figure 3.5: The index used in benchmarking visualized. The index on the left contains
pointers to the position of the first data point of each trajectory within the list of points.

database, it is uncommon not to utilize an index to ensure that queries are sped up. To

simulate this, an index has been created using a hashmap that links the trajectory ID to

the index of the first data point in each trajectory within the list of points, functioning

as an unclustered index.

3.4.1 Number of data points

Having a large number of data points allows for obtaining an accurate representation of

the performance differences between utilizing linked lists and not. During testing, it was

found that using fewer than ten thousand data points would make the performance differ-

ence almost indiscernible, as expected. By creating a range of data points to benchmark,

we can ensure that the trends will be highlighted, and the performance can be compared

at several levels. It was decided to use a range from 10 000 data points up to 500 000

with an increment of 10 000 per benchmark. This range was chosen as it provides a large

range of data points while still ensuring that the process does not consume too much time.

3.5 Queries

Based on the topological queries mentioned in Section 2.4, the following queries are to

be used in the benchmark: Start and End Search, Crosses Search, Enters Search, and

Leaves Search. A visualization of some trajectories that satisfy these queries can be seen
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Figure 3.6: The different topological queries. Figure A shows three different trajectories
that will satisfy three different queries. The red (top) satisfies the crosses query, the blue
(middle) trajectory satisfies the enters query and the green (bottom) satisfies the leaves
query. Note that each of the trajectories only satisfies one of the queries. Figure B shows
one trajectory (red) satisfies the start and end query while the others do not.

in Figure 3.6.

3.5.1 Start and End Query

The Start and End query accepts two query windows W1 and W2 and returns all tra-

jectories in which the head of the trajectory is located within W1 and the tail is located

within W2. Figure 3.7 depicts W1 and W2 as red and blue rectangles respectively.

For all approaches, the first step to this query involves performing a range search on

the tree for one of the two regions. From the resulting data points, one can filter out

any superfluous nodes characterized by duplicate trajectory IDs. As briefly mentioned

in Section 2.5 in the iterative approach, a full table scan is required for each node to

ascertain if the given node is the head of the trajectory. This process is repeated for the

second region, but in this instance, the tails are identified. Finally, an intersection of the

resulting trajectory IDs from the first and second regions is returned. The costly parts of

the iterative approach for this query are:

• Range search the tree for both W1 and W2: O(2 × log(N + k)) where n is the total

number of data points and k is the number of data points within the given region.

• Filtering nodes with unique trajectory ID: O(k).

• Iterating over all points to find the head of each trajectory ID: O(N × k).
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• Iterating over all the points to find the tail of each trajectory ID: O(N × k).

• Returning the intersection of the heads and tails: O(k2).

This results in a worst-case time complexity of O(log(N)+k)+O(k)+O(N ×k)+O(n×
k) +O(k2). However, as they are all dominated by O(N × k) the time complexity can be

simplified to O(N × k).

When using an index approach instead of performing the full table scans one can

instead perform an index scan, a performance increase over using table scans. Assum-

ing the same as above this comes out with a worst-case time complexity of O(k ×N) as

the time complexity of the index scan is O(k×N) when the entire dataset is one trajectory.

With a linked list approach the query can be optimized further. Instead of performing

two range searches, only one has to be performed due to the tails being given by traversing

the links. This leads to a worst-case time complexity of O(N+k)+O(k)+O(N×k)+O(1)

which is dominated by O(N × k). When simplified this is equal to the other methods.

However, this is assuming the absolute worst-case scenario where the entire dataset is

one long trajectory, making the method have to traverse the entire dataset. Using real-

life data this should not be the case and the approach should be significantly faster. It

should also be noted that when simplifying, although a common practice, one does lose

information on time complexity as very large factors can be dominated, making several

algorithms look equally performant on paper when the real-life performance is vastly

different. Assuming that the average node is halfway through a trajectory this would re-

quire only traversing half the trajectory in each direction for both finding the head and the

tail. Comparing this to when using an index, finding the tail does not necessarily require

traversing the entire trajectory. The linked list approach also ignores the intersection step

that the two other approaches require, which should further improve relative performance.

3.5.2 Crosses Query

This query finds all trajectories where either the head or tail is located within the query

window W but does have at least one data point contained within it. Although this

search uses one range search less than the previous query it is still quite computationally

expensive when dealing with large amounts of data. When using an iterative implemen-

tation this requires first doing a range search on the tree for all data points within region

W , filtering out duplicate trajectory IDs, then iterating over all points to check that their

heads and tails are not contained within the region. This requires at least one full table

scan for each data point, assuming that there is no temporary storage of heads and tails
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Figure 3.7: W1 and W2 used in the benchmarks visualized. The start region (W1) is
highlighted in red (bottom right), and the end region (W2) is highlighted in blue (top
left).

between nodes. The indexed method replaces the table scans with index scans, making

identifying heads constant and finding the tails only requires iterating over each respec-

tive trajectory. When using the linked list approach one can traverse the links to find the

heads and tails and then do a check against the query window’s constraints in constant

time. As with the previous method, the simplified worst-time complexities are the same

for all methods, but the performance difference should be noticeable.

3.5.3 Enters and Leaves Query

The queries for trajectories entering and leaving regions both take a region W and find

all trajectories either going into the region and not exiting or all trajectories that start

in a region and end outside the region respectively. This gives them both the same time

complexity and number of data points visited. It should be noted that these are not

strictly enters or strictly leaves, which would take into account that the trajectories that

satisfy the queries should not be able to re-enter or leave a region multiple times.

For an iterative implementation, this would entail a range search on region W , filtering

out all duplicate trajectory IDs, traversing all the points to filter out all the data points

that are not a start or an end to a trajectory, and then finding the opposing end making
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sure that it is outside the query window. When using an index the only change is that

the table scans are replaced by index lookups. For the linked list method the lookup is

replaced by traversing the links until one end and then to the other end, making sure that

the respective ends are either within the region or outside the region, depending on the

query.

3.6 Environment

The benchmarks were conducted on a 16-inch MacBook Pro 2019 edition with a 2.6GHz

6-core Intel Core i7 processor with 32 GB of 2667 MHz DDR4 RAM running macOS

Monterey 12.6. The benchmarks were run with no other applications open and the com-

puter was left alone for the entirety of each benchmark. Each query was run 10 times

concurrently using coroutines. The use of coroutines to run queries concurrently may

affect query times, but from testing, this does not seem to be a problem. Running each

query ten times was meant to reduce outliers, but as we can see below it was not the case.

3.7 Preventing Anomalies

Early benchmarks contained outliers in terms of runtime for the different queries. When

running several times it was obvious that the outliers were unrelated to the number of data

points, meaning that they were not dependent on the code or dataset, but rather anomalies

that were outside our control. The JVM is a complicated system with many moving parts

that can impact performance. Features such as garbage collection can impact the runtime

without warning. To combat this, each run, containing ten concurrent runs of all the data

points, was run ten times to remove the outliers. Although a few outliers remain in the

graphs, they are much fewer and less severe than the previous ones which were up to ten

times slower than expected. In addition to these spikes in performance, the first few runs,

from 1000 to 10 000 data points, were slower than the later runs with more data points.

This can be potentially be attributed to the fact that the JVM uses Just-in-Time (JIT)

compilation to optimize the code. This does take some time, and starting benchmarking

from the very start of the program can cause a cold-start problem where the optimization

is done yet, making the performance worse for the first few results. By having the program

first run for the first 50 000 points before starting benchmarking the performance of the

first few fell in line with expected values.

34



3.8 Reducing Search Space

Early implementations showed that the benchmarks took way too long, making getting

enough data unfeasible. This was largely caused by the regions being too big, making

the search space contain several thousand data points. To mitigate this, the regions were

made smaller, improving the performance while still containing enough data. In addition,

queries such as start and end query proved to be significantly faster than others. This

was caused by the two regions not having any overlap in trajectories, making the most

costly operations get skipped as there were no points to iterate over. By moving the end

region to another place where it is guaranteed to have trajectories in common with the

start region for all used number of data points this was mitigated.

As the queries return a list containing the IDs of the trajectories that match the pred-

icate, a way to reduce the search space earlier was to only consider one data point for each

trajectory within the region. This way, if there are several data points from the same

trajectory being returned by the range search, one can safely only check one of them.

This was done using the built-in array function find which returns the first element that

satisfies the query. The safety is dependent on the result list from the range search being

in the correct order, which it should be if the initial dataset is in the correct order and

the tree is balanced, which the R-tree is.

All of these measures combined proved to be an effective way to improve query per-

formances. The first benchmarks took around 27 hours to complete each time, but after

reducing the search space it only took around one hour to complete them all.
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Chapter 4
Results

From the benchmarks, it is clear that utilizing linked lists is more effective than iterating

through every data point, and even more effective than using a traditional index. Look-

ing at Figure 4.1 we can see that every query using linked lists outperforms the other

methods by a significant margin. Our charts present the response time of the queries

instead of the throughput of the system when using this method. This is because the

iterative approach has such a slow response time that presenting them as throughput

would be counter-intuitive. The iterative approach is slowest for all queries, as expected,

but the fact that using linked lists is consistently faster than using an index is interesting.

This can potentially be attributed to the fact that the index always starts at the start of

the trajectory, but the linked list approach can start wherever making the search space

smaller whenever the initial data point is not the head of the trajectory. There can be

other factors such as how the compiler compiles linked lists and arrays differently.

Interestingly, looking at Figure 4.3 we can see that when using an index the start and

end search underperforms compared to the other queries, which is the opposite of what

can be seen for the linked list and iterative methods. The higher query time when using

an index can be attributed to the larger search space as a result of having two regions,

causing more index scans. What is weird is that this should also be the case for the other

methods. At first, one missing filtration of duplicate trajectories in one of the regions

was thought to be the case for this result, but after fixing that error the search is still

slower than the other indexed queries. Although the start and end search is the slowest

of the indexed queries, if the approach were to be doubly indexed we could potentially

see speeds faster than the other searches, potentially matching or bypassing the speeds

of the linked list approach. This would, however, require another index of the same size

as the first one, making it take up even more space.

When looking at the different figures it is important to keep in mind the scale of each
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Figure 4.1: Median time spent on each query for all queries with a logarithmic scale.

Figure 4.2: Median time spent on each query in milliseconds for queries with links.

38



Figure 4.3: Median time spent on each query in milliseconds for queries with an index.

Figure 4.4: Median query times using iterative search.
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one. Figure 4.2 may look like the approach is very unpredictable with high variability,

but when working with times less than ten milliseconds it is expected that the graph will

be more unstable than a graph with a ten times larger scale. A few milliseconds to or

fro can be attributed to background processes or operating system factors that cannot be

controlled in the testing environment.

Additional graphs alongside the full dataset are located in the appendices.

4.1 Reproducability

The complete codebase for this research project is publicly available via GitHub1 and the

dataset is available at Kaggle2. All the data produced is publically available on Google

Sheets3 The code itself should be usable without any configuration, assuming one has

Java installed, but the dataset does require some pre-processing to be compatible with

the program. The code for converting the dataset, as well as a description of how it was

manipulated, is in Section 3.3. By sharing our work through this platform, we hope that

this will allow others to try the method out themselves and improve on it if possible.

With our codebase, it is possible to reproduce the results of our study rigorously, al-

lowing other researchers to validate and extend our findings. The instructions provided

in the documentation should facilitate a straightforward setup, and we encourage other

researchers to explore our work and develop new implementations to suit their specific

needs. However, we must again note that the query speeds obtained through our imple-

mentation are dependent on several factors, including hardware, operating system, and

programming language, which can affect the results of benchmarking. Thus, it is essen-

tial to exercise caution when interpreting our findings, and we encourage researchers to

consider these factors when conducting their experiments.

Hopefully, the availability of our open-source codebase will be a useful resource for

the academic community, enabling other researchers to build upon and extend our work

to advance the field of spatial data further.

1https://github.com/erikskaar/master
2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
3https://docs.google.com/spreadsheets/d/1uQ8rgErHMeXFl59MyxhLdcDMau2iGkOQXdjrnHVskZY/

edit?usp=sharing
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Chapter 5
Discussion

Even though the results show that using linked lists outperforms using an index for topo-

logical queries, it is important to note that these results are mainly theoretical, meaning

that if this were to be implemented in a database management system the results would

look quite different. In all database management systems, the query optimizer and plan-

ner have a lot of ways to improve queries as much as possible, making them faster than

one would expect. Therefore, a naive implementation of this approach would potentially

lead to disappointing results without the proper implementation into the DBMS.

For this dataset the average trajectory contains around 49 data points, meaning that

the trajectories are quite short. The length of the trajectories can affect performance

significantly, but based on the results here it should be safe to assume that using linked

lists should perform better independent of the trajectory length due to how it limits the

search space.

The reason why the start and end query performs worse than other queries when using

the indexed approach as opposed to the other approaches remains a mystery. The most

likely candidate is that there has been an implementation error that the tests written do

not cover. In addition to this, the iterative approach is still unstable for a low amount

of data points, which is most likely caused by too little warm-up for the JVM. However,

during testing, no matter how much warm-up provided the graph would not smooth out

without kinks. Testing with other datasets or different amounts of data points could

provide insight if this is an implementation problem or a data problem.

The work for this thesis has been based on the topological queries listed in the TB-

trees proposal paper in addition to the start and end search [3]. These are only a few

queries that use some of the nine intersection predicates in DE-9IM. Because of this, for

other queries using different predicates, the results can give other outcomes. Queries such
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as bypasses are more complex and will use much larger search spaces than the queries that

have been used here. This can alter the relative performance of our method compared to

established methods.

As mentioned in Section 2.6, the researchers of the Riso-Tree paper say that SpaIndex

(read: similar method) does not exhibit the performance needed to perform queries in

real-time or near real-time. However, looking at our results this can be disputed. Al-

though our implementation is implemented in a language and ecosystem which is known

to not be the fastest, the data shows that performing a complex query only takes as long

as performing a simple R-tree range search (by deducting the range search time from

the query response time) [33]. It should be noted that the R-tree implementation is not

perfect and could be improved, but having a topological query on 500 000 data points

takes less than 10 milliseconds when performed in a JVM language points to there being

potential for near real-time query performance possible with the right implementation

and programming language.

Looking at the comparison methods there are ways to optimize them to improve per-

formance. For instance, when iterating over all the data points in the dataset in the

iterative approach one could cache all the heads and tails during the first iteration. This

would save the remaining results from the range search from having to do the same thing

repeatedly. The start and end query can be optimized more for the three different meth-

ods, assuming that the dataset is large enough that the range search is trivial compared

to iterating over the relevant data using the respective method. This can be done by

performing two range searches, one for each region, and using the region with the small-

est number of unique trajectories as the base for traversing. How big the dataset needs

to be depends on the method used. Looking at Figure 5.1, for 500 000 data points the

range search will take approximately 5 milliseconds, which is a significant amount when

using the linked list method, but for the iterative method, this is insignificant making it a

worthwhile trade. For the indexed approach, one could add a secondary index, for instance

indexing the tails. This would speed up queries that need to find the tail of the trajectory.

For the queries used in these experiments when using linked lists, one could improve

the query speed by changing the pointers from pointing to the next and previous nodes

and instead only pointing them to the head and tails. This is due to how our queries only

take into account the positions of the heads and tails, instead of looking at intermittent

nodes. This would not work for other queries such as strictly enters or strictly leaving, as

they require checking all the nodes in the trajectories. This shows that there are further

optimizations possible for the linked list approach as well, depending on the dataset and
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Figure 5.1: Max and median time spent on each range search for all points in milliseconds.

queries.
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Chapter 6
Conclusion

Throughout this paper, we have undertaken an extensive investigation of improving topo-

logical queries by leveraging the power of linked lists. Our empirical results have demon-

strated that this approach can be a viable and effective alternative to the existing solutions

in use today. While our analysis is purely theoretical, limited only to a specific dataset

with particular queries, our findings are undoubtedly promising, suggesting that linked

lists can indeed offer a compelling solution to enhance topological query speeds without

compromising spatial query performance.

6.1 Future Work

Looking toward the future, further testing of the proposed method with different datasets

and larger amounts of data could prove valuable in assessing its scalability and applica-

bility. A comparative study with related data structures, such as TB-trees, would also

be insightful in understanding the relative strengths and limitations of each approach.

The ultimate factor determining the superiority of the linked list approach over existing

alternatives would depend on the range search improvement achieved by the underlying

structure as they could offset the performance gained from bundling trajectory segments

together in leaf nodes and storing trajectories physically close on disk.

Moreover, exploring the optimal implementation of the linked list approach into a

database management system could be a fascinating avenue for further research. One

possible approach could involve leveraging recursive queries and utilizing the next and

prev fields to traverse the trajectory, as implemented in this project. An alternative im-

plementation could involve using graph databases to traverse the trajectories. This could

be achieved by creating the underlying data structure as a clustered ad-hoc tree using the

45



graph functionality or by having the underlying structure remain unclustered in the same

manner as a relational database system. Regardless of the approach taken, traversing the

trajectories using a graph database management system could potentially lead to even

faster performance than when using a traditional relational database management sys-

tem. Further research in this direction could prove valuable in the development of more

efficient and scalable approaches for managing large datasets. This would require finding

an efficient and suitable way to organize the data on disk to reduce the number of pages

required to read when traversing the trajectories.

In Chapter 4 we mentioned how all the methods could be further improved. In the fu-

ture, adapting the linked list approach to different datasets of different types and sizes, as

well as different queries can further uncover the strengths and weaknesses of the approach.

As briefly mentioned in Subsection 2.5.2, looking into how the implementation handles

the insertion of data connected to established trajectories could be something to look

into. In theory, it is only as complex as inserting into the linked list and inserting into

the underlying data structure, but there could be some additional factors to consider,

such as the order of the dataset and how it affects the implementation of the queries.

The performance of insertion can be the determining factor if the method is suitable for

handling data in real-time, which is a common use case when dealing with trajectories

and spatial data.

6.2 Conclusion

In conclusion, our thorough benchmarking has revealed that linked lists outperform both

iterative and indexed approaches across the four topological queries, including enters,

leaves, crosses, and start and end search, for both small and somewhat medium-sized

datasets. As we observe the rate of increase to be faster for the non-linked list tech-

niques, it indicates that linked lists could outperform them for larger datasets as well.

Consequently, we are confident that linked lists have the potential to improve topological

queries and overcome the limitations of the conventional approaches in use today. Hence,

we can confidently answer the research question with yes, linked lists can be utilized for

improving topological query performance. As we have seen in this project this method

has a lot of potential, although only theoretical thus far. A lot of further work is required

to use this method efficiently in a DBMS, but hopefully, this thesis shows that further

research is worth pursuing.
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Appendix A
Additional Figures
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Figure A.1: Median time spent on each query for start and end queries with a logarithmic
scale.

Figure A.2: Median time spent on each query for the crosses queries with a logarithmic
scale.
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Figure A.3: Median time spent on each query for enters queries with a logarithmic scale.

Figure A.4: Median time spent on each query for leaves queries with a logarithmic scale.
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Appendix B
Scripts

import pandas as pd

import json

# Read data from CSV

df = pd.read_csv('train.csv')
# Remove all rows with missing data

df = df.drop(df[df.MISSING_DATA == True].index)

# Remove all unnecessary columns

df = df.drop(['MISSING_DATA ', 'CALL_TYPE ', 'ORIGIN_CALL ', '
ORIGIN_STAND ', 'DAY_TYPE ', '
TIMESTAMP '], axis=1)

# Parse the string of coordinates

df.POLYLINE = df.POLYLINE.apply(json.loads)

# Create new rows with each pair of coordinates

df = df.explode('POLYLINE ')
# Remove lines with missing coordinates

df = df[df['POLYLINE '].notnull ()]
# Create new columns with the latitude and longitude split up

df[['LATITUDE ', 'LONGITUDE ']] = pd.DataFrame(df.POLYLINE.to_list (),

index=df.index)

# Remove the old column with the lat ,long pair

df = df.drop('POLYLINE ', axis=1)

# Write to CSV

df.to_csv('converted.csv')

Code Listing B.1: Python script for manipulating the dataset and removing unnecessary

data fields.

55



56



Appendix C
Data

57



T
ab

le
C

.1
:

M
ed

ia
n

s
fo

r
ea

ch
q
u

er
y.

A
ll

ti
m

es
ar

e
gi

ve
n

in

m
il

li
se

co
n

d
s.

A
n

ex
p

la
n

at
io

n
fo

r
th

e
ab

b
re

v
ia

ti
on

s
ca

n

b
e

fo
u

n
d

in
T

ab
le

1.
1.

P
oi

n
ts

S
E

-L
L

S
E

-I
T

S
E

-I
N

C
-L

L
C

-I
T

C
-I

N
E

-L
L

E
-I

T
E

-I
N

L
-L

L
L

-I
T

L
-I

N

10
00

0
0

12
0

0
15

0
0

14
0

0
13

0

20
00

0
0

52
0

0
62

0
0

60
0

0
58

0

30
00

0
0

15
3

1
0

17
6

1
0

17
7

1
0

17
8

1

40
00

0
0

12
3

2
0

16
0

1
0

90
1

0
83

0

50
00

0
0

37
4

1
0

13
8

1
0

14
4

1
0

14
3

1

60
00

0
0

17
5

2
0

18
9

2
0

19
3

1
0

18
8

1

70
00

0
0

25
4

2
0

28
2

2
0

27
8

2
0

28
3

2

80
00

0
0

36
0

4
0

41
6

3
0

42
3

3
0

42
0

3

90
00

0
0

50
4

5
1

59
4

3
1

58
5

3
1

57
6

3

10
00

00
1

66
0

6
1

76
1

4
1

77
8

4
1

75
9

4

11
00

00
1

84
5

8
1

98
5

5
1

10
10

5
1

10
08

5

12
00

00
1

10
52

9
1

12
34

6
1

12
39

6
1

12
32

6

13
00

00
1

13
25

10
1

15
05

8
1

15
14

7
1

15
51

7

14
00

00
1

15
94

12
1

18
78

9
1

18
47

8
1

19
12

9

15
00

00
1

20
22

15
2

23
03

11
2

22
78

10
2

22
87

10

16
00

00
1

24
05

17
2

27
07

12
2

26
80

12
2

26
79

12

17
00

00
2

27
46

20
2

31
04

14
2

30
60

14
2

31
72

13

18
00

00
2

31
40

21
2

36
24

15
2

35
10

15
2

35
60

15

19
00

00
2

34
79

23
2

39
16

16
2

41
05

17
3

40
46

17

C
on

ti
n
u

ed
on

n
ex

t
p

ag
e

58



T
ab

le
C

.1
–

co
n
ti

n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e

P
oi

n
ts

S
E

-L
L

S
E

-I
T

S
E

-I
N

C
-L

L
C

-I
T

C
-I

N
E

-L
L

E
-I

T
E

-I
N

L
-L

L
L

-I
T

L
-I

N

20
00

00
2

40
45

25
3

45
20

19
3

44
96

20
3

45
59

19

21
00

00
2

47
43

27
3

55
66

22
3

53
40

22
3

55
97

22

22
00

00
3

55
71

32
3

64
03

26
3

61
58

26
3

62
57

26

23
00

00
3

63
51

35
4

73
41

30
3

72
75

30
4

72
63

29

24
00

00
3

69
13

39
4

82
14

33
4

80
44

32
4

80
57

32

25
00

00
3

74
89

40
4

86
64

34
4

87
48

33
5

87
99

35

26
00

00
3

79
94

43
4

95
87

37
4

95
97

37
4

98
01

36

27
00

00
3

85
80

45
4

10
21

4
38

4
10

16
0

38
5

10
16

9
38

28
00

00
3

92
76

49
4

11
19

5
40

5
11

10
4

39
5

11
49

2
40

29
00

00
3

99
89

53
4

12
00

0
41

4
12

03
4

41
5

12
32

0
42

30
00

00
3

11
08

3
56

5
12

73
1

45
5

13
38

0
42

5
12

69
8

43

31
00

00
4

11
93

4
58

5
13

53
9

46
5

13
75

5
46

5
14

04
3

49

32
00

00
4

12
58

2
63

6
14

73
5

49
5

15
28

9
48

5
15

44
5

49

33
00

00
4

13
72

4
66

6
16

27
9

51
5

16
11

6
50

6
16

25
8

49

34
00

00
4

14
15

6
71

6
17

33
5

54
6

17
50

6
53

6
17

53
3

53

35
00

00
4

15
46

4
74

6
19

03
3

55
6

18
70

5
56

6
18

40
2

56

36
00

00
4

17
38

8
79

6
20

35
7

60
6

19
92

6
58

6
19

95
2

58

37
00

00
4

17
87

5
84

7
21

12
0

60
6

20
29

2
62

7
20

78
2

60

38
00

00
5

19
38

2
92

7
22

74
9

64
7

23
18

3
64

7
22

15
3

62

39
00

00
5

19
78

7
91

7
23

04
3

66
7

24
06

6
65

8
24

55
7

66

40
00

00
5

20
62

8
95

7
24

60
5

66
7

25
16

3
67

8
24

08
0

72

41
00

00
5

22
04

3
99

8
27

09
6

70
7

26
46

2
71

8
25

97
5

71

C
on

ti
n
u

ed
on

n
ex

t
p

ag
e

59



T
ab

le
C

.1
–

co
n
ti

n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e

P
oi

n
ts

S
E

-L
L

S
E

-I
T

S
E

-I
N

C
-L

L
C

-I
T

C
-I

N
E

-L
L

E
-I

T
E

-I
N

L
-L

L
L

-I
T

L
-I

N

42
00

00
5

24
86

4
10

8
7

29
88

6
76

8
28

32
5

78
8

30
12

8
77

43
00

00
5

26
60

4
11

3
7

31
52

3
84

8
30

44
7

89
8

31
41

4
83

44
00

00
6

28
36

5
11

9
7

32
44

9
91

8
32

77
1

89
8

32
56

6
90

45
00

00
6

30
27

4
12

3
8

34
33

6
91

7
35

71
9

91
8

34
23

6
91

46
00

00
7

31
71

1
13

6
8

37
36

0
10

1
8

35
37

1
10

0
8

38
33

6
95

47
00

00
5

33
17

6
14

0
7

37
42

1
10

7
8

36
71

7
10

7
7

38
19

2
10

5

48
00

00
6

34
42

4
13

5
9

41
00

1
10

6
9

41
20

1
10

4
9

41
21

1
10

4

49
00

00
6

33
42

7
14

7
8

42
00

9
11

1
8

42
22

9
11

1
9

43
12

3
11

0

50
00

00
7

38
44

3
15

2
10

44
88

6
11

4
8

44
38

9
11

5
9

45
91

1
11

2

60



Table C.2: Data from R-tree implementation.

Points Time Depth Regions Leaf Nodes Points per Leaf Node

10000 81.89853 7 2827 1807 5.534034311

20000 109.725696 8 5546 3551 5.632216277

30000 43.343771 9 8300 5328 5.630630631

40000 101.09047 9 11050 7095 5.63777308

50000 64.116653 9 14037 8971 5.573514658

60000 100.784615 9 16850 10780 5.565862709

70000 84.396346 9 19608 12558 5.574136009

80000 137.814328 10 22476 14373 5.56599179

90000 179.535872 10 25225 16123 5.582087701

100000 130.151428 10 27966 17871 5.59565777

110000 288.66225 10 30864 19709 5.581206555

120000 227.888707 10 33691 21505 5.580097652

130000 200.825123 10 36517 23324 5.573658035

140000 221.3416 10 39326 25112 5.575023893

150000 193.660454 10 42083 26874 5.581603036

160000 291.633109 10 44801 28626 5.58932439

170000 287.561288 10 47580 30403 5.591553465

180000 369.477911 10 50348 32164 5.596318866

190000 251.250956 10 53101 33930 5.59976422

200000 416.517202 11 55795 35658 5.608839531

210000 313.928302 11 58518 37393 5.61602439

220000 303.729293 11 61274 39159 5.618120994

230000 459.296052 11 63936 40876 5.626773657

240000 493.955362 11 66657 42617 5.631555483

250000 458.031746 11 69344 44358 5.635961946

260000 513.890283 11 72023 46070 5.643585848

270000 383.687745 11 74876 47885 5.638508928

280000 614.832013 11 77629 49631 5.641635268

290000 616.964954 11 80353 51369 5.645428177

300000 548.911425 11 83086 53105 5.649185576

310000 588.037176 11 85847 54864 5.650335375

320000 642.549443 11 88702 56670 5.646726663

330000 468.703217 11 91471 58454 5.64546481

340000 517.222202 11 94322 60270 5.641280903

Continued on next page
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Table C.2 – continued from previous page

Points Time Depth Regions Leaf Nodes Points per Leaf Node

350000 601.022285 11 97106 62057 5.639976151

360000 528.475469 11 99929 63828 5.640157924

370000 584.263606 11 102676 65586 5.64144787

380000 629.133591 11 105448 67356 5.641665182

390000 655.959803 11 108189 69127 5.641789749

400000 684.399556 11 110965 70914 5.640635136

410000 674.439799 11 113660 72644 5.643962337

420000 857.665603 11 116470 74425 5.643265032

430000 689.957683 11 119189 76163 5.645786012

440000 768.716947 11 121853 77890 5.648992168

450000 734.741901 11 124473 79574 5.655113479

460000 780.622617 11 127198 81321 5.656595467

470000 773.581576 11 129995 83110 5.655155818

480000 780.468687 11 132737 84874 5.655442185

490000 732.066564 11 135462 86627 5.656435061

500000 723.619389 11 138205 88398 5.656236566

Table C.3: Range search response times in milliseconds

for the different amounts of data points.

Points Median Max Min

10000 0 0 0

20000 0 0 0

30000 0 0 0

40000 0 0 0

50000 0 0 0

60000 0 0 0

70000 0 0 0

80000 0 0 0

90000 0 1 0

100000 0 1 0

110000 0 1 0

120000 0 1 0

130000 0 0 0

140000 0 1 0

Continued on next page
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Table C.3 – continued from previous page

Points Median Max Min

150000 0 1 0

160000 0.5 2 0

170000 0 1 0

180000 0 1 0

190000 1 2 1

200000 1 1 1

210000 1 2 1

220000 1 2 1

230000 1 2 1

240000 2 2 1

250000 1 1 1

260000 2 3 2

270000 1 2 1

280000 2 3 2

290000 2 3 2

300000 1 2 1

310000 1 3 1

320000 2 3 2

330000 2 3 2

340000 2 3 2

350000 2 2 2

360000 2 2 2

370000 3 4 3

380000 2 2 2

390000 3 4 2

400000 2 3 2

410000 3 3 2

420000 2 3 2

430000 2 3 2

440000 4 4 4

450000 4 4 3

460000 4 4 3

470000 4 4 4

480000 4 4 4

490000 4 4 4

Continued on next page
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Table C.3 – continued from previous page

Points Median Max Min

500000 4 5 4
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