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ABSTRACT

Modern CPUs are released with more and more computational units. To take
advantage of the increasing number of cores on modern CPUs, programs should
be created to support concurrent and multithreaded workloads. With this starting
point, a multidimensional structure called a Balanced Kd-tree(Bkd-tree) have been
taken as a study subject. This thesis covers the creation and benchmarking of
a serial Bkd-tree, a multidimensional index. The findings is further used as a
general blueprint for modernizing the data structure and improving the solution
by utilizing multithreading and concurrency.
Multiple tests and configurations of the Concurrent Bkd-tree have been profiled
and benchmarked. The overall results indicate that synchronization overhead
should be avoided were possible and that multithreaded performance is largely
dependent on reducing communication between threads. The Concurrent Bkd-
tree is tested in both a laptop and server environment and the results conclude
the importance of utilizing configurations which benefit the hardware of the given
machine. Findings indicate the importance of tuning the workload based on the
system and that utilizing all threads may slow down performance in data intensive
application due to multiple threads sharing the cache. The configuration should
also reflect the the expected workload, either creating large structures to support
read performance or smaller structures to increase Inserts per Second(IPS).

The final result is a Concurrent Bkd-tree which demonstrates an average thread
efficiency of 34.8% during inserts in data intensive workloads with 4228 Inserts per
Second(IPS), in a close to optimal configuration.
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SAMMENDRAG

Moderne CPUer utgis med fler og fler beregningsenheter. For å utnytte det øk-
ende antallet kjerner på moderne CPUer, bør programmer utvikles for å håndtere
samkjørende og flertrådede arbeidsbelastninger. Med dette utgangspunktet har en
flerdimensjonal datastruktur kalt Balansert Kd-tre(Bkd-tre) blitt utvalgt som et
studieobjekt. Fokuset på denne masteren omhandler utviklingen og ytelsestesting
av et serielt Bkd-tre, en flerdimensjonalt indeks. Funnene blir deretter brukt som
en generell mal for å modernisere datastrukturen og tilpasse løsningen til å kunne
utnytte flere tråder og samkjøring.
Flere tester og konfigurasjoner av det Samkjørende Bkd-treet har blitt profilert og
ytelsestestet. De overordnede resultatene indikerer at tidsbruk på kommunikasjon
burde reduseres hvor det er mulig og at flertrådet ytelse i stor grad avhenger av
å redusere kommunikasjonen mellom tråder. Det Samkjørende Bkd-treet er testet
både på en bærbar datamaskin og på en større server. Resultatene konkluderer
med viktigheten av å utnytte konfigurasjoner som drar nytte av maskinvaren til
den gitte maskinen. Funnene indikerer viktigheten av å tilpasse arbeidsmengden
basert på systemet og at bruk av alle tråder kan redusere ytelsen i dataintensive
applikasjoner, da flere tråder må dele hurtigbufferen. Konfigurasjonen bør også
gjenspeile den forventede arbeidsmengden, enten ved å opprette store strukturer
for å støtte leseytelse eller mindre strukturer for å øke antall innsettinger per
sekund(IPS).

Sluttresultatet er et Samkjørende Bkd-tre som oppnår en gjennomsnittlig tråd-
effektivitet på 34,8% under innsettinger i datatunge arbeidsmengder med 4228
innsettinger per sekund(IPS), i en nær optimal konfigurasjon.

ii





PREFACE

This thesis was written for the Department of Computer Science (IDI) at NTNU,
with supervision from Svein Erik Bratsberg. The theory and groundwork of the
thesis are primarily based on research conducted during a specialization project
for the course IT3915 in the fall 2022, with certain modifications.

I want to thank my supervisor Svein Erik Bratsberg for his expertise and guidance.
I am also grateful to my friends for our companionship and memorable moments.
Thanks to my family for their support, comfort and for never being longer than
a phone call away. Thanks to my girlfriend Elisabeth for her love and encourage-
ment. Her support and encouragement made the writing of this thesis way more
pleasant and I look forward to our future together.

iii





CONTENTS

Abstract i

Preface iii

Contents vi

List of Figures vi

List of Tables viii

1 Introduction 2
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Brief overview of the Bkd-tree . . . . . . . . . . . . . . . . . . . . . 3

2 Related work and Background 5
2.1 RCU-HTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Log-Structured Merge-Tree . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Plush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Process, multithreading and concurrency . . . . . . . . . . . . . . . 6
2.5 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.1 Parallelism, concurrency and distributed computing . . . . . 6
2.6 Amdahl’s law, Gustafson’s law and Thread pooling . . . . . . . . . 7

2.6.1 Correctness in concurrent data structures . . . . . . . . . . . 8
2.6.2 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 Atomic operations . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.4 Read-Copy-Update . . . . . . . . . . . . . . . . . . . . . . . 10

3 Serial Implementation 11
3.1 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Solution structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Bkd-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Kdb-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Binary bulkloading . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Serial Results 15
4.1 Experimental platform . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Deletions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



CONTENTS v

4.2.1 Deleting single tree . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Deleting multiple trees . . . . . . . . . . . . . . . . . . . . . 16

4.3 Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Bulkloading trees . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Average insert performance . . . . . . . . . . . . . . . . . . . 18

5 Serial Discussion 21
5.1 Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Bulkloading algorithm . . . . . . . . . . . . . . . . . . . . . 21
5.2 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Flaws with the current solution . . . . . . . . . . . . . . . . 23
5.3 Tombstone strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 General structure strategy . . . . . . . . . . . . . . . . . . . . . . . 23

5.4.1 Local or global structure . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Reusing tree structures . . . . . . . . . . . . . . . . . . . . . 25
5.4.3 Concurrent search trees performance . . . . . . . . . . . . . 25

5.5 Designing a concurrent solution . . . . . . . . . . . . . . . . . . . . 27
5.5.1 Deletion strategy . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.2 Reusing tree structures . . . . . . . . . . . . . . . . . . . . . 28
5.5.3 Bulkloading scheduling . . . . . . . . . . . . . . . . . . . . . 28
5.5.4 Memory structure . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.5 Thread manager . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5.6 Suggested design of Concurrent Bkd-tree . . . . . . . . . . . 31

6 Concurrent Implementation 33
6.1 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Solution structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Kdb-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Bkd-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 MockAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.7 Tombstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.8 Thread functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.8.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.8.2 Large bulkloader . . . . . . . . . . . . . . . . . . . . . . . . 38
6.8.3 Inserter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.8.4 Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.9 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Concurrent Results 43
7.1 Experimental platform . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Insertions in Concurrent Bkd-tree . . . . . . . . . . . . . . . . . . . 43

7.2.1 Insertions without global structures . . . . . . . . . . . . . . 44
7.2.2 Inserting trees with global structures . . . . . . . . . . . . . 52

7.3 Fetching data from Concurrent Bkd-tree . . . . . . . . . . . . . . . 54
7.3.1 Average window query time . . . . . . . . . . . . . . . . . . 54

7.4 Thread performance . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4.1 Insertion without global structures . . . . . . . . . . . . . . 56
7.4.2 Insertion with global structures . . . . . . . . . . . . . . . . 58



vi CONTENTS

7.4.3 Active thread time . . . . . . . . . . . . . . . . . . . . . . . 59
7.4.4 Server insert performance . . . . . . . . . . . . . . . . . . . 60

8 Concurrent Discussion 63
8.1 Global memory and disk . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Inserter performance . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Reader performance and bulkloading . . . . . . . . . . . . . . . . . 65
8.4 Scheduler’s role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.5 Readable trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.6 Syncronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.7 Tombstone list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.8 Futher work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9 Conclusion 69

References 71

Appendices: 73

A - Github repository 73



LIST OF FIGURES

1.2.1 Bkd-tree dynamic structure . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Window query example . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4.1 Kdb-tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Delete time single serial tree . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Delete time multiple serial trees . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Bulkloading timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4.1 RCU-HTM paper performance results . . . . . . . . . . . . . . . . . 27
5.5.1 Concurrent Bkd-tree design . . . . . . . . . . . . . . . . . . . . . . 31

6.8.1 Concurrent Bkd-tree memory structure . . . . . . . . . . . . . . . . 39
6.9.1 Data flow of the Concurrent Bkd-tree . . . . . . . . . . . . . . . . . 41

7.2.1 Inserting 64 trees of size 16384 without global structures . . . . . . 45
7.2.2 Inserting 64 trees of size 65536 without global structures . . . . . . 46
7.2.3 Inserting 64 trees of size 262144 without global structures . . . . . . 47
7.2.4 Inserting 128 trees of size 16384 without global structures . . . . . . 48
7.2.5 Inserting 128 trees of size 65536 without global structures . . . . . . 49
7.2.6 Inserting 128 trees of size 262144 without global structures . . . . . 50
7.2.7 Inserting 128 trees of varying sizes on a server . . . . . . . . . . . . 52
7.2.8 Inserting 64 trees using global structures of size 64 with a thread

buffer size of 4096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.9 Inserting 64 trees using global structures of size 16 with a thread

buffer size of 16384 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.1 Read test with varying window query sizes . . . . . . . . . . . . . . 55
7.3.2 Read test with varying windows query sizes normalized . . . . . . . 56
7.4.1 Performance of 1 inserter thread . . . . . . . . . . . . . . . . . . . . 57
7.4.2 Performance 7 inserter threads . . . . . . . . . . . . . . . . . . . . . 57
7.4.3 Thread performance of smaller insert workload . . . . . . . . . . . . 57
7.4.4 Performance of 1 inserter thread . . . . . . . . . . . . . . . . . . . . 58
7.4.5 Performance 7 inserter threads . . . . . . . . . . . . . . . . . . . . . 58
7.4.6 Thread performance of larger insert workload . . . . . . . . . . . . 58
7.4.7 Performance of 1 inserter thread . . . . . . . . . . . . . . . . . . . . 59
7.4.8 Performance 7 inserter threads . . . . . . . . . . . . . . . . . . . . . 59
7.4.9 Thread performance of inserts with global structures . . . . . . . . 59

vii



viii LIST OF FIGURES

7.4.10Performance of 1 inserter test with global structures . . . . . . . . . 59
7.4.11Performance of 7 inserter test with global structures . . . . . . . . . 59
7.4.12Performance of 7 inserter test without global structures . . . . . . . 60
7.4.13Top 10 most expensive function calls utilizing 16 inserter threads . . 61
7.4.14Top 10 most expensive function calls utilizing 128 inserter threads . 61



LIST OF TABLES

4.1.1 Serial configuration values . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Worst insert timings . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.2.1 Inserts per Second (IPS) for Different Configurations . . . . . . . . 50

1



CHAPTER

ONE

INTRODUCTION

Computer hardware manufacturers have gotten closer and closer to a power wall
determining how much power can be sustained by a single chip without over-
heating. This has led to a larger focus on computational units with more chips
rather than a single powerful chip. To fully take advantage of modern CPUs,
modern programs should therefore be able to take advantage of multiple cores
by creating multithreaded and concurrent applications. This paper will cover the
research of how multithreading can be used to increase performance of the Bkd-
tree data structure. The rest of this section will present the Bkd-tree and give a
brief overview of the Bkd-tree’s structure. The rest of the paper is structured as:
Background, Serial implementation, Serial results, Serial discussion, Concurrent
implementation, Concurrent results, Concurrent discussion and Conclusion. The
serial sections from chapter 3-5 covers the implementation, results and discussion
related to a serial Bkd-tree solution. The knowledge and findings from this section
is used to suggest a concurrent Bkd-tree architecture, which will be further built
upon in the concurrent section in chapter 6-8. This section uses the findings from
the serial Bkd-tree to create a concurrent Bkd-tree closely based on the suggested
Bkd-tree architecture presented at the end of the serial section.

1.1 Problem definition
The Bkd-tree was first introduced in a paper in 2003 and was created as a solu-
tion to handle large amounts of inserts while sustaining great space utilization.
The experiments from the authors shows great insert performance compared to
other multidimensional indexes such as HB-trees and Kdb-trees. As the Bkd-tree
structure consists of multiple balanced kd-trees, a query needs to be performed
on all the trees in the structure. This results in a larger computational overhead
when performing deletes or window queries as multiple trees needs to be traversed.
Results from range queries shows that despite having similar or less I/O opera-
tions compared to the Kdb-tree, the Bkd-tree’s querying is still slower due to the
computational overhead[1]. This inspired the research area of this paper which
will look into possibilities to overcome this overhead with multithreaded process-
ing. This thesis will use the Bkd-tree structure as a starting point to first look
into possible solutions and limitations of the structure, using them to attempt to
improve performance by creating a concurrent Bkd-tree solution. The focus of

2



CHAPTER 1. INTRODUCTION 3

this master thesis is therefore to attempt to create a concurrent Bkd-tree which
benefits from increasing the number of computational units.

1.2 Brief overview of the Bkd-tree

A Bkd-tree is a data structure for storing multidimensional data in a fast manner.
The Bkd-tree is similar to the structure of LSM-trees in that it is a structure
consisting of multiple structures. Like the LSM-tree, the Bkd-tree is dynamic and
the size of each of its structures increase in size lower down in the tree. The Bkd-
tree is made to have fast inserts and few updates to the structure per insert. This
is achieved by inserting data to memory until full and then flush the data to disk
in a balanced tree structure. Data is always added in the smallest available tree
which then get merged into larger structures as more data is inserted. As data
is always inserted in the smallest available tree, changes to the largest structures
containing the oldest data will happen the least frequently. The dynamic basic
structure can be seen in figure 1.2.1. All trees on disk will consist of a number of
nodes which is a power of the memory structure size. When TM

0 becomes full in
figure 1.2.1, All the trees to the left of the first empty tree will be merged into a
larger tree. So TM

0 , T0 and T1 will be merged together to the new tree T2.[1]

Figure 1.2.1: The forest of trees that makes up the data structure. In this
instance, T2 is empty

[1]

To merge the trees together to a new tree the authors present two kinds of
bulkloading, binary and grid loading. The binary version includes a top down
approach where the tree is built and filled with nodes in the same section. The
grid bulkloading splits the tasks. It works by keeping track of the distribution of
nodes in a matrix which is then used to generate a tree structure. As a final step
the data is inserted after the tree structure is built. In this thesis, the focus will
be on the binary bulkloading strategy. The Bkd-tree structure is primarily built
to store multi dimensional data and access it efficiently. The primary query for
accessing data in multi dimensional structures is using a window query. A window
query works by asking for all points within a given area. This means that for each
dimension, the structure should return all nodes within the given coordinates. An
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example of a window query on a two dimensional data set can be seen in figure
1.2.2. Here all nodes where 3 < x < 9 and 2 < y < 8 are selected. The result of
the window query is therefore all the nodes within the selected area. So the query
would return the values of A, D and F from the data set.

Figure 1.2.2: 2D window query example.
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TWO

RELATED WORK AND BACKGROUND

Related work
The focus of this thesis, is to take a multidimensional data structure and look
into solutions for achieving speedup. The primary focus will be on achieving
speedup with the use of extra computing power, by sharing the workload between
multiple computing units. This section will therefore cover papers presenting data
structures which has been improved by multiple compute units and also structures
similar to the Bkd-tree.

2.1 RCU-HTM
The RCU-HTM is a generic synchronization technique for highly efficient concur-
rent search trees. The paper covers a synchronization technique which takes ad-
vantage of two synchronization mechanisms, Read-Copy-Update(RCU) and Hard-
ware Transactional Memory(HTM). The solution is generic as it can be applied
to any structure which can take advantage of the RCU technique. RCU allows
for asynchronous reads meaning all concurrent readers have no overhead and each
thread perform as a serial solution. The downside to RCU is that it can only have
one computational unit writing to the structure at once. This tanks performance
in workloads with any significant amount of updates. HTM allows for optimistic
concurrent execution, meaning threads can write and read data and if a collision
between threads occur, the colliding operations are aborted and restarted. To-
gether RCU-HTM allows for a RCU solution which can have multiple updaters
with a HTM implementation which restarts and eventually serialize colliding op-
erations. The paper further compares the RCU-HTM implementations against
multiple state of the art binary search trees that use different kinds of synchro-
nization mechanisms[2].

2.2 Log-Structured Merge-Tree
The Log-structured Merge-tree(LSM-tree) is a tree which was created as a solution
for applications with high amounts of updates. The B-tree effectively doubled the
I/O cost of inserts due to real time restructuring of the tree and keeping the tree

5



6 CHAPTER 2. RELATED WORK AND BACKGROUND

balanced. The LSM-tree set out to be an alternative and works by adding new
indexes in a memory resident structure and merging it together with larger trees on
disk. This is created in such a way that the larger the trees become and the older
data they store, the fewer updates is made to the structure. This is done in the
same way as seen in figure ??. The LSM-tree achieve this by always putting new
data nodes in the memory structure and merging the data nodes into the smallest
possible structures. The LSM-tree is a key value store with a one dimensional
index[3].

2.3 Plush

Plush is a write-optimized persistent log-structured hash-table. Plush is similar to
the Bkd-tree in that it is a log structured data structure. Plush therefore uses the
same technique as the LSM-tree where it has a memory buffer which gets flushed
to a lower level storage unit and dynamically merged into bigger collections of
data lower down in the tree. Plush is created to be efficient on systems using
Persistent memory. When Plush deletes a record, it adds the deleted record to a
list and removes it when it shows up at a later migration[4].

Background

2.4 Process, multithreading and concurrency

When a program is executed the underlying operating system will spawn a process
which runs the program code. The process is run by a main thread, which in turn
may spawn new threads. A multithreaded program is therefore a program which
runs on multiple threads. Multithreaded programs can increase performance as the
workload can be split among multiple threads[5]. This may increase performance
in computational heavy workloads, but also result in new problems regarding data
sharing between threads and asserting data correctness.

2.5 Parallelism

Moore’s law states that due to shrinking size of transistors, every two years the
number of transistors which can fit on a chip will double and hardware will become
exponentially more powerful. This law was true until the size and amount of tran-
sistors no longer was the determining factor, but how much power a single chip
can sustain. To overcome this, chip manufacturers focus shifted to create proces-
sors with multiple cores and chips. Therefore, to fully take advantage of modern
hardware, highly efficient software should utilize multiple cores and threads and
support parallelism or concurrency.

2.5.1 Parallelism, concurrency and distributed computing

Parallel, concurrent and distributed computing are all ways to take serial code and
achieve speedup by sharing the workload with multiple kinds of computational



CHAPTER 2. RELATED WORK AND BACKGROUND 7

units.
In parallel computing, a program solve multiple tasks cooperating closely with

other threads to solve a problem. An example of a parallelizable task is matrix
multiplication as multiple threads can each solve a small fraction of the problem
while working in parallel. Parallel computing is highly efficient at large scale
calculations, but is less generalizable and is not suitable for complex workloads
with branching and nodes with different tasks.

In concurrent computing a program may have multiple different tasks running
at a given instant. There may be multiple threads working within one program,
all having different responsibilities. A suitable program to make concurrent could
be a queue where you both have producers and consumers. Concurrent computing
is suitable for complex workloads with workers being able to work independently
from one-another. Concurrent code is run on an CPU, which have fewer threads
available compared to parallel solutions running on an GPU.

Distributed computing is a program which communicates with other programs.
This can for example be done over a network and can be beneficially to distribute
a workload over multiple machines. Hardware for distributed computing can be
cheaper compared to one powerful concurrent solution. Instead of having an ex-
pensive machine with a CPU with multiple powerful cores, a distributed program
can run on multiple cheaper machines, each having a few powerful cores. Dis-
tributed computing do however often have a larger communication overhead as it
could be expensive to communicate with other machines over a network compared
to communication between cores in a single CPU.

In this thesis, the goal is to lay the groundwork for solutions which can be used
to achieve a speedup of a Bkd-tree. As a starting point, concurrent computing
will be looked into as a base as it is most fitting for the problem. Concurrent pro-
gramming gives the flexibility needed for designing a Concurrent Bkd-tree which
can have multiple worker threads which all can work independently and share
memory. Distributed computing could also be a suitable solution which would be
worth looking into. However, when assuming the final solution will require more
communication between units than raw computing power, concurrent computing
where deemed the best fit.

2.6 Amdahl’s law, Gustafson’s law and Thread pool-
ing

Amdahl’s law states that the maximum speedup of a concurrent or parallel system
is limited to the serial overhead of the solution. The formula for Amdahl’s law
can be seen in equation 2.1. Consider a parallel solution where 10% of the code is
serial and the final 90% is parralelizable. Using Amdahl’s equation shows that the
greatest speedup which can be achieved is 10x the speed of the serial solution. This
is a result of when the number of processing units reaches infinity, the solution
performance is still limited to the serial section of the code[6, p. 58]. Amdahl’s
law assumes that the workload is a set size. Meaning that it shows the maximum
speedup of a given program without considering the workload. However, when the
amount of computational resources increases, the problem size can also increase
to take advantage of the new resources. This is better encapsulated in Gustafson’s
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law, which has a more optimistic look on the scaling of high-computational com-
puting. Gustafson’s law states that with the increase in computational units, the
parallel or concurrent workload tend to increase at a similar rate as programmers
increase the problem size to fully take advantage of the processing power. While
the parallelizable section tend to increase as the program size grows, the serial
section do not tend to increase significantly[7]. Using Amdahl’s law, each com-
putational unit added will have a exponentially downwards speedup effect on the
runtime. Using principles from Gustafson’s law, the workload can be scaled at a
similar rate as the computational units are added. By doing this, the performance
increase from added computational units can be closer to linearly scalable.

Speeduptotal =
1

(1− P ) + P
N

(2.1)

Scaling up the workload size could work to get more performance out of each
added core. Each computational unit can be assigned a significant amount of
work instead of only being assigned a small fraction, this increases the usefulness
of each individual thread. The critique from Amdahl’s law is still valid as the
serial section of a parallel or concurrent solution can be a bottleneck when the
workload is small compared to the computational power of the system. When a
concurrent program starts, a single thread usually starts the program, assigns work
and spawns new threads to perform the work. This is the primary critique. No
matter the number of cores of the system, a main thread still needs to partition
data and spawn the new threads. In some cases, using multiple compute units
may be slower than a serial solution. This happens when the work performed
by the spawned threads uses less time than the time it took for the thread to
spawn. For this reason, it is important that spawned threads perform a significant
amount of work to overcome this overhead. One solution to assert that each
thread performs more work than the cost of the overhead is to use thread pooling.
Thread pooling is the technique of having multiple threads on standby which all
can be assigned work. With this technique, the overhead of spawning the thread
is minimized by spawning a thread once and then having it wait to be assigned
more work instead of exiting[8, pp. 274-288]. Thread pooling is useful when
the process do not need to share resources. In systems where a process do not
share resources, having threads idle and on standby makes them fast to initiate
while also not taking away resources from other processes. The Concurrent Bkd-
tree implementation will utilize multiple threads to increase performance. Thread
pooling could therefore be a useful strategy to overcome the bottleneck related
to spawning new threads. With the combination of thread pooling and the high
workload which will be handled by the Concurrent Bkd-tree, the serial section
of the program will be a small amount of the total runtime. The program will
therefore likely scale closer to linearly as predicted in Gustafson’s law rather than
exponentially downwards as predicted by Amdahl’s law.

2.6.1 Correctness in concurrent data structures

In concurrent data structures there might be several threads working on the same
data or the same structure. If threads are not working together, the data structure
and the data can become inconsistent. To achieve correctness in concurrent data
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structures, synchronization mechanisms are needed for the threads to be able to
work on the same structure concurrently[2]. Synchronization mechanisms offers
correctness by letting the threads work on the data structure as if it was a serial
solution. Some of the more common synchronization mechanisms used to achieve
correctness are locks and atomic operations.

2.6.2 Locks

There are different kinds of locks such as spin locks, semaphores and barriers.
Different kinds have different locking conditions, but the general concepts still
apply. Locks achieve correctness by locking resources asserting that other threads
do not reach them while a set amount of threads are working on the resource or
that other threads reach the resource before intended.
The most basic lock is a spin lock. Spin locks work by locking a thread in a loop
where it "spins" until the resource is freed and the thread is able to obtain the
lock. A lock could also be made non-blocking, allowing the thread to work on
other problems and periodically checking if the resource has been released.
Semaphores work by having a given number of threads which can reach a resource
and locks new threads from accessing the resource when the threshold is met.
Semaphores could help reduce strain on a shared resource by asserting only a
specified number of threads can access it at once.
Barriers are a lock variant which works opposite to the semaphore. Barriers are
used to accomplish synchronization between threads. The barrier will lock all
threads and only release them when the specified number of threads has entered the
barrier. Barriers are therefore useful to achieve synchronization between threads
asserting no thread continue on their work before the other threads are finished
with their work. Barriers are therefore useful in cases where all threads needs to
finish before continuing, but could affect performance as the fastest threads needs
to wait for the slowest[9].

2.6.3 Atomic operations

Atomic operations are instructions which are guaranteed to run in full without
interference from other threads in a multithreaded environment. Atomic oper-
ations work by making a small change which is done without interference from
other threads. An atomic instruction is uninterruptible, as the whole instruction
is performed before other threads can interfere. Atomic functions are not possible
to divide into smaller parts, meaning that the whole instruction will be performed
or it will not be performed before another thread is scheduled. Atomic functions
can be implemented on software and hardware level. The most well known atomic
operations are compare and swap(CAS). Compare and swap works by comparing
a value with a shared resource, and if the values are the same, the shared resource
is updated. CAS can therefore be used to assert that a shared resource have not
been altered by another thread and is safe to update. CAS instructions are more
expensive when compared to other machine instructions. However CAS instruc-
tions are still faster when compared to the overhead involved in using a lock to
protect a shared variable[9].
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2.6.4 Read-Copy-Update

As mentioned in section 2.1, Read-Copy-Update(RCU) is an synchronization mech-
anism which allows for asynchronous reads of data structures, but the generic
implementation is limited to a single updater. RCU support autonomous reads
by having the updater always work on a copy of the data and atomically updat-
ing the structure therefore avoiding collisions. This is achieved by the updater
first reading or traversing down to the area which will be changed, then copying
the parent node of all the affected nodes, performing the update and atomically
inserting the updated memory address as a parent node. With this strategy, a
reader will either read from the old replaced nodes, which can be deleted after all
readers are done reading from the outdated structure or if accessing the node after
the atomic update, will read the updated value. As the RCU only support one
updater at a time, it should be combined with other synchronization mechanisms
for any structure with a significant amount of inserts.



CHAPTER

THREE

SERIAL IMPLEMENTATION

This section will cover some technical details of the Bkd-tree implementation. To
lay the ground work for a Concurrent Bkd-tree, a serial solution of the Bkd-tree
were implemented in C++. This sections will cover how the tree was implemented,
technical details and how the solution differs from the implementation presented by
the original authors. The structure will later be benchmarked to spot bottlenecks
and high computational areas which then can be optimized and improved with
multithreading.

3.1 Programming language

For implementing the Bkd-tree C++ was chosen as the programming language.
C++ extends C with functionality and offers a larger set of standard library
functions. C++ is known for being efficient and gives the programmer access to
low level memory allocation giving the programmer more control[10].

3.2 Solution structure

The project is structured to increase readability and to abstract away code. The
project is split into 3 sections. The main components of the implementation
was the Bkd-tree, Kdb-tree and the configuration file. The Bkd-tree contains
everything related to the Bkd-tree’s memory buffer implementation. The Bkd-
tree’s memory buffer structure mostly handles the unstructured Memory and Disk
arrays and makes calls to the Kdb-trees which is used to store the trees lower down
in the structure. The Kdb-trees are the Balanced kd-trees which makes up the
bulk storage of the structure. Finally, the configuration file is used to configure
global variables used by the implementation such as the structure size of the
memory storage and leaf node sizes. The Bkd-tree itself is implemented to be
configurable and able to support multiple dimensions. As the primary focus is
on studying improvements gained by concurrency, the tree was implemented as a
proof of concept memory structure. This was done based on the assumption that
making a disk based storage system would not give any additional insight on the
subject of concurrency or multithreading compared to a proof of concept memory
implementation.

11
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3.3 Bkd-tree

The Bkd-tree itself is the primary structure which manages all structures, includ-
ing creating new Kdb-trees when needed. Both the memory and disk buffer is
located in memory. When the Memory buffer fills up, it is flushed to the disk
buffer if it is not full. If the disk buffer is full, the arrays will be merged together
into the first Kdb-tree. This is the general structure of all operations, both up-
dates and reads. Reads work by either searching up a single value or performing a
window query. The search start with the most recent added data in the memory
and disk arrays and gradually move downward into the Kdb-trees. In the case of
a window query, all the structures needs to be scanned. When inserting a new
value into the structure, the most common operation is to write the value into
the memory array. However if the memory array is full, the inserter will first
need to bulkload all previous structures into the first empty structure. This can
be as simple as turning the memory array into a disk array and allocating a new
memory array. In the worse case, the inserter will need to merge all full structures
located to the left of the first free tree, into the new tree. Such as turning memory
array(TM

0 ), disk array(T0) and T1 into the new tree T2 as would be necessary in
figure 1.2.1.

3.4 Kdb-tree

The Kdb-tree is a bare bones Kdb-tree implementation with no auto-balancing.
This is a design decision made as the structure only changes during deletions.
Instead of restructuring the tree during deletion, the idea is that the tree will
be replaced with a completely balanced tree during its next restructure. The
difference between the normal Kdb-tree and the Kdb-tree presented in the Bkd-
tree paper, is that it is not self balancing and each leaf node in the Bkd-tree
version stores multiple values. The Kdb-tree from the Bkd-tree stores enough
values in its leaf node to completely fill a disk block. With this design, it is
possible to achieve perfect space utilization on the disk based structures. In the
implemented solution, the Kdb-leaf size can be configured to an arbitrary value
as the solution currently is not disk based. However, the Kdb-leaf value should be
compatible with the memory array size in such a way that one memory array can
fill a set amount of kdb-leafs without empty space to keep perfect space utilization.
The Kdb-tree implementation differs from the one used in the Bkd-tree paper as
pointers between leaf nodes has been added to support faster fetching of data
when bulkloading trees. As mentioned, the Kdb-leaf nodes should be able to
perfectly fill a disk block, so to make sure a single pointer did not come in the
way of that, the pointer is stored by the branch which points at the leaf node.
The pointers can also be reached by the root node of the tree. All these changes
allows for fast access of all the leaf nodes. This is beneficially when bulkloading
as during bulkloading, all nodes should be fetched from the tree. The structure of
the implemented Kdb-tree can be seen in figure 3.4.1.
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Figure 3.4.1: The structure of a 2 dimensional Kdb-tree, each traversal change
the dimension value that split the tree.

3.5 Binary bulkloading
The binary bulkloading strategy is a solution for taking a list of inputs and build-
ing a balanced tree based on the data rather than inserting the values one by one.
Bulkloading is often used as a mean of setting up a data structure and refilling it
with values that should be stored in the data structure. In the case of log struc-
tured merge trees such as the Bkd-tree, the bulkloading algorithms are constantly
used to merge trees into larger structures. The values are first fetched form all the
structures that will be merged together. Both the memory array and disk array
are added to a file together with all nodes from the trees which also should be
merged together. The values from the trees are fetched using the Kdb-trees linked
leaf node list mentioned in the previous section. To create a balanced Kdb-tree,
all the values needs to be sorted on each dimension, so the values are stored once
for each dimension and then sorted on each of them. The trees first left and right
branches are then created by splitting the values on the first dimension and split-
ting the other nodes such that the values sorted on the other dimension ends up
with their matching nodes. The Kdb-tree is then created recursively in a similar
manner with the branches being split on the middle value of the revolving dimen-
sions which is iterated between as seen in the traversal of the tree in figure 3.4.1.
This happens recursively until the number of values is less or equal to the Kdb-leaf
size. The bottom of the recursion is then reached and the remaining values are
inserted into a Kdb-leaf node and the linked leaf list is updated to later allow for
fast access to all nodes of the tree.
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CHAPTER

FOUR

SERIAL RESULTS

4.1 Experimental platform

The Bkd-tree was implemented in C++ and the solution have been tested and
benchmarked using Chrono, a C++ library for tracking time[11]. In the experi-
ments, it is used to time sections of the Bkd-tree implementation. Chrono support
accuracy down to 100s of a nanosecond so in some of the fastest operations, the
time is measured to 0 nanoseconds. The solution were run on a System with a
Intel(R) Core(TM) i5-6600 3.30GHz processor, 16 Gb of 1600MHz RAM and a
Windows 10 Home operating system. The code was run and compiled on g++
(GCC) 10.2.0 with the −g flag for debug support. Each presented data point is the
result of the average from 10 individual runs. Each value used in the experiment
were a generated pseudo random integer. Each data node had a key as a multidi-
mensional index consisting of integers and each node stored an unique integer as
its data. Experiments were conducted with the tree configurations listed in table
4.1.1. And the experiments were performed with different amount of inserts to see
how tree load affected performance.

Value Description
Array size 32768 Size of memory and disk array in number of nodes.
Kdb-leaf size 128 Number of nodes in each Kdb-leaf nodes.
Dimensions 2 Number of dimensions of multidimensional index.

Table 4.1.1: Configuration used in serial experiments.

4.2 Deletions

As mentioned in the previous section, deletions were implemented as suggested in
the Bkd-tree paper and works by iterating over all structures, finding the specified
node and removing it. The tests in this section test the worst case scenario dele-
tions by deleting the 100 first nodes inserted in the tree. This is the worst case
scenario as it means the nodes will be stored in the bottom of the last structure
and that all other structures will be traversed before locating the node. The 100
values are deleted and timed one by one.

15
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4.2.1 Deleting single tree

The purpose of this test is to see how increasing tree sizes affect the deletion time
of a node. The results of the experiment can be seen in figure 4.2.1. The trees are
first filled by inserting the nodes into the tree normally until a size of Tn + 1 is
reached. The final insert fills the previous structures and the tree is then created
by bulkloading. As the trees are completely balanced with 32768×Treesize, data
nodes, all leaf nodes reside on the same level in a given tree. In T2, accessing
the leaf nodes therefore requires 9 traversals to reach the bottom branch which
points to the data. With the set configuration the number of traversals can be
expressed as traversals(x) = log2

(
32768x
128

)
where x is a tree size to the power of

two. The graph shows the deletion time increasing with the tree sizes. This is
most likely caused by the increasing numbers of traversals as the trees grows and
might be a result of increasing data sizes which may cause reduced performance
either because of virtual memory written to disk or reduced cache hits due to an
increased data load.

Figure 4.2.1: Delete instruction single tree time in milliseconds.

4.2.2 Deleting multiple trees

To see how searching through multiple structures affected the delete performance,
this tests performs the same test as when deleting a single tree. The only difference
is the tree size which is now set to Tn − 1. This tree size makes it so all previous
trees will be filled. So for T8−1 the structures T4,T2, T0 and TM

0 are filled while T8

is empty. The hypothesis before performing the experiment were to see the graph
have a growth similar to the results in figure 4.2.1. As seen in figure 4.2.2 the
results instead seem to be more sporadic. The slowest run, though by a fraction is
made by the smallest structure. What this figure really shows is the weight of the
overhead added by traversing the unsorted memory and disk arrays. Consider the
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deletion traversal of structure T8 − 1. As mentioned, it consists of the structures
T4,T2, T0 and TM

0 , which all needs to be traversed. The cost of traversal of each tree
then becomes traversal(4)+traversal(2) = 19. Combining that with the iteration
over the 2 leaf nodes we get 19 traversals and 256 leaf nodes. This is only 0.4% of
the total traversals compared with the disk and memory array structures which
combined has 65536 nodes. As both T0 and TM

0 are full in every trees in the
test, this becomes the most expensive part of the operation and makes the tree
traversals insignificant. This also adds into the reason for why the smallest trees
have the worst performance. When deleting a node from the trees larger than
T2 − 1, first all nodes in the unsorted arrays are traversed, then traversing down
every tree until the node is found. When the node is found the node can be deleted
by copying the last leaf into the removed nodes place and decreasing the leaf size.
As the leaf is only 128 nodes, the values needed for the replacement might be
higher up in the memory hierarchy resulting in a faster operation. This may not
be the same case as T2 − 1. This is because T2 − 1 needs to perform the delete on
the disk array which seem to be a more expensive operation compared to deleting
nodes from trees. This is likely a result of the disk array size of 32768 nodes which
might result in slower performance due to working on a larger structure.

Figure 4.2.2: Delete instruction multiple tree. Each test is -1 the tree size.

4.3 Inserts

The insert implementation works by placing nodes in the memory buffer and
further bulkloading them into larger and larger structures. This section covers the
insert performance with an emphasis on the performance hit experienced when
the bulkloading operation is necessary. The results are based on inserting a T256

tree worth of data so T256+1 is inserted to cause the final bulkloading. This results
in the insertion of almost 8.4 million data points (256× 32768). The data is again
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pseudo randomly generated integers with the timing result being an average of 10
runs.

4.3.1 Bulkloading trees

Figure 4.3.1 shows the bulkloading performance of all the primary bulkloading op-
erations. For example, bulkloading T8, the structures T4,T2, T0 and TM

0 are com-
bined together to create T8. This happens when the previous mentioned structures
are full and the tree must be bulkloaded into a larger structure. So the measured
time on the graph, is the time it takes one insert to combine the previous oc-
curring structures into one and then inserting its own data into the new memory
array. Figure 4.3.1 shows how the time spent bulkloading, starts slow but grows
exponentially as the amount of data managed per bulkload doubles per newly in-
troduced tree size. It should be noted that the pictured results are the case where
all previous data is combined into one large new structure. There are however
other cases such as between the step of T8 and T16, there are multiple smaller
restructures while T2, T4 gets filled up, so smaller bulkloads happens every time
T0 and TM

0 gets filled.

Figure 4.3.1: Timing of the leaf node which causes bulkloading.

4.3.2 Average insert performance

Due to the design of log structured merge trees, most inserts are cheap. The insert
that are the slowest are the cause of needing to restructure the tree. In 99% of
cases, the inserts are close to instant, as seen in table 4.3.1. This is because the
most common scenario is to just write the inserted node into the memory buffer.
The final 1% is where things get more problematic. The worst insert completed
in over 18 minutes. This is a result of the tree growing large and all previous tree
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Percentage Nanoseconds Times slower than 1%
1% 20 1x
10% 40 2x
20% 50 2.5x
50% 60 3x
80% 70 3.5x
90% 80 4x
99% 100 5x
99.9% 1850 92.5x
99.99% 5070 253.5x
99.999% 100423710 5021185.5x
99.9999% 4576106470 228805323.5x
100% 1093112409220 54655620461x

Table 4.3.1: Percentage worst inserts.

structures gets combined into one. As the test was performed on two dimensions,
the data will first need to be fetched into a central unit, create a copy of all nodes
and then sort each on their own dimension. Even though the time for each insert
is close to instant, the average insert performance is 194362 nanoseconds. This
means that the top slowest 1% is so slow that the average time is also in the
99.99%. It should however be noted that the average without the final bulkload is
on 64052 nanoseconds, which is a decrease of 67%. So though the final, bulkload
is very slow, there would not be another as large operation until the inserted data
doubles what it currently is.
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CHAPTER

FIVE

SERIAL DISCUSSION

This section will discuss the serial results and together with the background serve
as tools to discuss which parts of the implementation could be worth further
exploring with concurrent computing. At the end of the chapter, the findings will
be combined to create a Concurrent Bkd-tree architecture which further will be
built upon in the final sections.

5.1 Inserts
The insertion test proved that insertions can be quite expensive and is definitely an
area which should receive more attention when attempting to create a more opti-
mized solution. The insert show that bulkloading is very expensive and should be
sped up either with the help of concurrent computing, using another bulkloading
algorithm or improve the current one.

5.1.1 Bulkloading algorithm

In the Bkd-tree paper two bulkloading algorithms were presented. In the demo im-
plemented in this paper the binary bulkloading algorithm were used. The binary
bulkloading algorithm were simpler as it requires no additional structures and can
be implemented as a straight forward recursion function. The grid bulkloading
presented were an algorithm that splits the data into grids based on where the
data will be partitioned in the structure. The distribution of counts of points are
stored in a matrix which further can be read and used to make the tree struc-
ture before inserting the data. The problem with the grid bulkloading strategy is
that it requires an additional data structure to partition the data as it requires a
matrix which might vary in size depending on the size of the data. The matrix
structure also need to be modified if it should support more than 2 dimensions.
The implementation presented in the paper present a grid bulkloading strategy
for a 2 dimensional tree. To use grid bulkloading on a structure with more di-
mensions a matrix supporting multiple dimensions would need to be created or
imported. However if the results of the Bkd-tree bulkloading experiments applies
to structures with more than 2 dimensions it could still be beneficial due to the
grid bulkloading algorithms faster bulkloading speed.
So the strength of the binary bulkloading strategy is it versatility. As it works

21



22 CHAPTER 5. SERIAL DISCUSSION

recursively and do not rely on other structures, the same algorithm can be applied
to any data set with any number of dimensions. However this strength might
not overcome the fact that it is slower than its grid loading counterpart. In most
use cases it will be beneficial to have a specialized solution made for one specific
problem instead of a solution which is one size fits all.
The binary bulk algorithm also seem to have been designed primarily with two
dimensions in mind. What makes it seem like it is designed for a two dimensional
structure is an oversight in the original algorithm. The algorithm suggests starting
by sorting the values on all dimensions. However the first split in the tree will
only split the data on one dimension meaning that the rest of the dimensions could
rather be sorted after the first recursion. By not sorting the data right before its
needed could effectively cut the number of nodes needing to be sorted down to
log2(N) nodes. To prove this, consider the following thought experiment.
An D dimensional data set will be bulkloaded. First all the N nodes are sorted,
costing D ×N × log2(N). The data is split based on the first dimension and the
array sorted on the first dimension is halved. As the final D−1 dimensions are not
sorted on the first dimension, they require to be iterated over to check if their data
or coordinate belongs in the left or right branch. In the worst case scenario, the
whole of the sorted dimension will need to be iterated through to determine where
each of the nodes belongs causing an additional D×N of overhead. So for sorting
the data first, extra overhead is added as iteration slows down the algorithm giving
the split an unnecessary overhead of O(N) = (D− 1)×N . An improved solution
would be to only sort when it is needed. Then the unnecessary overhead would
be avoided and would only need to sort the first array for the split. It should be
noted that the next left and right split would still need to sort and split their data
so the overhead from sorting is unavoidable, but iteration over the data can be
evaded. However, after the data has gone down D recursive calls, the data would
either need to be sorted again on the first dimension or iterate over the sorted
data. For this reason it would be beneficial to still send the data already sorted
down in the recursion as it is cheaper to iterate over the sorted data which would
be O(N) = N instead of sorting it in O(N) = N × log2(N).

5.2 Deletion

In the results section the main focus has been on insertion and deletion. The
reason for going in dept on the deletion functionality instead of range queries is
that they both work quite similar. Both algorithms go down in the tree searching
for a node in a given range. The primary difference is that the range query will
often have to go down multiple branches while the deletion only searches for one
node. The deletion were therefore chosen as the timings and results would be easier
to verify because of the way the tree is traversed and not the way the random data
were structured on a particular run. For this reason, general similarities can be
drawn between the result of the deletion and how a range query test would have
performed.
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5.2.1 Flaws with the current solution

In the suggested solution, each structure are searched until the deleted node is
found. This means that in the case of false positives, where a non existent node
is attempted deleted, all the trees needs to be scanned through to assert the node
does not exist. This becomes quite expensive as the structure grows and more
and more trees needs to be iterated through. A possible solution to this used by
other log structured merge trees, is to use bloomfilters. Bloomfilter could help
reduce the cost of iterating through trees by asserting some trees definitely do not
store the given index. However, this solution is better suited for single indexes as
their use case are more aimed at single updates and fetches, while Bkd-trees use
case aims more towards range queries. From the results it were shown that when
deleting a node, the most significant bottleneck were the traversal of the unsorted
memory and disk arrays. This bottleneck would also be the same for the range
queries and other operations which requires to scan the tree for data. To keep
these operations fast, the memory and disk array could be replaced with a more
sophisticated structure with faster lookup time.

5.3 Tombstone strategy

One strategy used by Plush is to use tombstones instead of deleting nodes[4].
Tombstones work by instead of iterating thorough structures and deleting nodes,
the delete order is placed in a tombstone list. Then when a restructure happens,
each node is compared against the tombstone values and if a match is found, the
node will be deleted. This could be a good alternative to needing to traverse
all nodes and would make restructuring less expensive. It would however require
more monitoring of the structures to assert correctness when considering operation
order. If not considered, it could happen that a delete instruction is sent for a
node not in the system, then the node gets added and will be deleted the next
restructure. This could be resolved by having extensive checks that the data
and coordinates match, but this would not resolve the issue if the nodes were
completely alike. A better solution could be to have a timestamp stored with
each tombstone entry and have a timestamp of every data node. This could then
be used to compare and assert if a node was inserted before or after the deletion
operation were called on the given node.

5.4 General structure strategy

To determine how the Concurrent Bkd-tree could be implemented and improved,
it is important to roughly define the imagined use case for the final structure. By
defining the use case, the structure can be further improved based on the kind
of operation and workload the tree will need to handle. For example, if the tree
should support multiple range queries, but other operations were less important,
this changes the scope of the project as the range query performance should be
the determining factor when it comes to what the structure should be optimized
for. There is also a possibility that recycling structures is a viable strategy and
question of how to achieve a good memory structure performance in a Concurrent
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Bkd-tree.

5.4.1 Local or global structure

As stated in the introduction, the reason for implementing a concurrent data
structure is to expand on the serial Bkd-tree solution to create a solution that
can better utilize the multiprocessing and multithreading capabilities of modern
processors. The scope of this task is narrowed down to being a concurrent system
instead of a distributed system scattered over a network of multiple machines.
There is however still a question if the final structure should have the use case of
being part of a larger system on a single machine or be made to support transac-
tions sent from other machines.
If the system is made to support local processes, the system resources would need
to be shared with other potential resource intensive applications. This would af-
fect what size the memory buffer could sustain before taking a performance hit
from the operating system writing memory to disk as virtual memory. This could
drastically increase the cost of reading data from the structure. Another problem
is not knowing the amount of computational resources used by other processes.
This is a problem as if the system supports for example 8 threads, but the threads
is overworked by other processes. This could result in multiple concurrent nodes
being scheduled to the same processing unit and needs to share its power while
getting the overhead caused by concurrency such as communication and synchro-
nization mechanisms. If other local systems calls the structure directly, the are
also some fair concern related to potential stalling. Consider a thread from an-
other program inserting a value into the Bkd-tree structure. The thread might
be unlucky and become responsible for a bulkloading sequence. This would result
in massive stalling and the calling program could become unresponsive for a vast
amount of time, depending on the size of the bulkload. This could be resolved
by having the local nodes offload the insert to another thread dedicated to an-
swer Bkd-tree calls. However this would require to have available computational
resources on standby or at the very least not fully utilizing the system resources
to have available resources in reserve.
The other possibility is to implement the solution as a standalone storage system
supporting external processes while having its own resources. This could be bene-
ficial as it would be easier to monitor and best use system resources knowing that
all resources are dedicated to the Bkd-tree structure. This would make the system
work as a singular unit which receives data and queries over a network. This opens
for some interesting possibilities as the load of the tree could be better monitored.
Operations that are scheduled on the tree could be used to adapt which tasks
are prioritized depending on the current workload and what kind of operations
are called. If similar queries becomes common or performed often, it could be
possible to cache the result of queries, particularly in the case of range queries
and normal data fetching. Another possibility would be to avoid bulkloadings of
a certain size during peek hours and rather schedule the expensive bulkloaings for
when less operations are called on the structure. Knowing that all resources is
free to the system could also improve management of system resources. By know-
ing the resources is available for the structure at any given time, all resources
could be used without fear of putting a to big of a strain on the system lowering
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performance due to high workloads from the combined toll of multiple processes.

5.4.2 Reusing tree structures

In the current implementation, new trees are created by bulkloading. When the
bulkloading is complete, the trees previously storing the bulkloaded data will get
deleted. As trees will have the same or close to the same structure each creation,
it could be a viable strategy to reuse the structures instead of deleting them. This
could work by storing deleted trees in a list and fetching them when they should
be reused. In a typical scenario, the trees should have the same size as its previous
counterpart as both trees would be sized to the power of 2 of the memory buffer.
This means that when a T4 tree is created from TM

0 , T0 and T2, the T2 could be
kept in a list and later reused. When the tree should be reused, the bulkloading
algorithm would not need to create a new structure, but could rather update
the data and replace the leaf blocks with updated values. This could be viable
especially for the smallest trees. The smallest trees are the ones that are created
and deleted the most. For example before one T16 tree is created, 4 T2 trees will
be created and deleted. If it proves to be faster to reuse old structures rather than
create new trees, it could be beneficial to recycle the trees considering how many
times they are used.
The benefit would be the largest for the smaller trees. As mentioned this is
because the smaller the trees, the more the structure is created and deleted. The
other reason is due to how larger structures might slightly mutate over time due
to deletions. Deletions might change the shape of the larger trees given enough
removals. This might cause the structure to require more modification if more
than a leaf node worth of data nodes are removed. Another reason for not storing
the larger trees is that their less used than the smaller structures as the bigger
the structure, the rarer it gets updated and changed. It might not be beneficial
to use storage space to store an outdated structure which will be rarely used. For
this reason it could be beneficial to store smaller structures, but only structures
up to a given size may be beneficial to store and reuse.

5.4.3 Concurrent search trees performance

This section will go over and cover some of the results found in the RCU-HTM pa-
per[2]. The results will be taken into consideration on how different synchroniza-
tion mechanisms can affect performance. The RCU-HTM benchmarks multiple
state of the art search trees using different synchronization mechanisms and these
results will be generalized and used as a basis for a discussion on when different
structures perform their best. The results this section is based on can be seen
in figure 5.4.1 which is a snippet of the results from the RCU-HTM paper. The
performance of the tests show how different state of the art binary search trees
compare to the RCU-HTM solution presented in the paper. The discussion in the
paper were more centered around how each implementation compared against the
RCU-HTM, but in this section the general trend of the results will be the main
focus. The results are based on testing different amounts of updates and look-ups
on 3 different key ranges 200 keys, 20K keys and 20M keys. The 100% look-ups
results are usually of the faster variant as most trees manage to avoid using to
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many synchronization techniques on data during look-ups as there will not be any
collisions. However the lock based solutions still requires checking if the variables
are locked before reading adding a small overhead compared to some of the other
structures. The interesting thing about the result for the purpose of a potential
improved Bkd-tree is how the structures perform on different workloads during
mixed workloads.
The trend of the data is that the more data nodes there is, the better the solu-
tions perform. There are however some outliers such as the RCU implementation
as the performance is overrun by the fact that the basic RCU implementation
only allow for one thread performing updates, therefore not being able to fully
take advantage of the other cores. For the rest of the implementations, the trend
shows how increased workload and structure size increases performance. On the
different implementations this is largely because of the same reason. There is
more data, which mean the threads are generally more spread out and work on
different memory locations and values, which result in less collisions and generally
less needs for synchronization between threads. This lets threads work on their
own memory area without being disrupted. In the case of lock based synchroniza-
tion mechanisms, this means that fewer threads are locked up due to the threads
working on separate memory locations. This phenomenon can especially be seen
in the base HTM implementation where the performance skyrockets when working
on 20M keys. This again is a result of HTM beeing an optimistic strategy which
assumes no writes to memory collide and rather aborts instructions if two threads
collide. As the threads work on such a large memory area, there are few collisions
and the tree can have asynchronous like performance.
Where this becomes important for the Bkd-tree implementation, is in the mem-
ory buffer. If the concurrent structure were to use a simple array such as in the
implementation and the one presented in the paper, inserts would end up being
close to serial performance. The serial performance would be the result of multiple
threads working on the same memory area. Multiple threads would try to fetch
the current size of the array to know where it should insert a new data node, and
this collision would lead to high overhead as multiple insert attempts would need
to be rerun due to aborting or would be serialized if a lock were to lock the entirety
of the memory structure. To overcome this obstacle and still have good memory
performance, threads should optimally be made to work on their own memory
area to avoid as many collisions as possible.
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Figure 5.4.1: This is a snippet of results from the RCU-HTM paper. The results
of each structure is normalized on the performance of the tree’s RCU-HTM variant.

[2]

5.5 Designing a concurrent solution

This section will take the results and observations from the serial results and serial
discussion into consideration to suggest possible design and solution principles and
how a Concurrent Bkd-tree best could be implemented. The goal of this section
is to lay the ground work for designing a concurrent solution which can be the
starting point for implementing a Concurrent Bkd-tree solution. The section will
first cover some of the smaller hacks which can be used to boost performance.
Then the most important challenge will be covered which is the memory buffer
structure. The reason for the importance of the memory buffer, is that it is
the area with the most density considering both threads working together and
the most density of the data making it one of the most important sections for
synchronization mechanisms and potential overhead.

5.5.1 Deletion strategy

The deletion strategy should use a tombstone strategy. This would greatly in-
crease individual deletions while slightly increasing the cost of bulkloading as each
value in the bulkloading file would need to be compared against the entries in
the tombstone list. This could however be beneficial to a concurrent solution.
The computational load of a single deletion instruction and gathering more of
the highly computational tasks in one section allows for reducing toil on a single
thread performing a operation. This is good as the highly computational task
becomes a good subject for achieving speedup with concurrency. The tombstone
list or structure is also a good area to take advantage of bloomfilters to speedup
look ups.
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5.5.2 Reusing tree structures

Small trees at the start of the structure are currently created and deleted multi-
ple times. Instead the first structures could be stored in storage instead of being
deleted. The structures could then be reused by updating their meta data, split
values and leaf nodes. What tree sizes that are beneficial to store would vary based
on the configuration of the given Bkd-tree. For example if the memory buffer is
very large in a configuration there might be less benefit in storing larger trees as
they would be less used and take up more storage space. On a configuration with
a smaller memory buffer it could be more beneficial to store trees to a larger power
of 2 as they would store less data as their size is dependent on the memory buffer
size. To reduce the cost of storing used trees, their leaf nodes could be deleted
as they are not needed. This would reduce the amount of storage needed by a
given tree as it is the largest part of the structure. However, this might reduce
the benefit as then new leaf blocks would need to be allocated instead of reusing
the old ones.
One issue which could be problematic is when a tree is safe to overwrite. This
would depend on the design of the whole tree and which synchronization mecha-
nisms are used. For example when using an RCU like strategy, some threads might
be reading old data that are no longer part of the updated tree. To overcome this a
mechanism for keeping track of if a structure is safe to remove or overwrite should
be used.

5.5.3 Bulkloading scheduling

From the testing, bulkloading proved to be the most expensive operation. Dele-
tions, lockups and range search will in the worst case require to iterate through
each tree structure. This might be expensive as each traversed tree would add a
cost of log2( N

LeafSize
) where N is the number of nodes in a given tree. bulkloading

data on the other hand requires fetching all data from potentially multiple struc-
tures, sorting them and iterating through the data in multiple occasions to send
data sorted on different dimensions down the correct recursive call.
This makes the bulkloading algorithm a prime target to speed up with optimiza-
tions and more computational power with the use of multithreading. As the bulk-
loading algorithm have potential to take up so much of computational power, it
might be beneficial to schedule larger bulkloads when the strain and workload on
the structure is low. This could be done by implementing a scheduler overlooking
the system. The scheduler could use live numbers such as number of operations
performed by the system to determine if system resources should be allocated to
larger bulkloading operations. A scheduler only reacting to live data could be
problematic as there might be an unexpected increase in data inserts or other op-
erations. It could therefore be beneficial to look at other factors such as history of
previous operations over time. Then if it emerges a pattern of when there are peek
hours. In those peek hours the scheduler could be less aggressive with bulkloading
and rather save them for when the operation intensity is lower.
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5.5.4 Memory structure

As mentioned the memory buffer structure where all nodes first get imported, is
the most important structure to achieve good insert performance and utilize the
threads the best way possible. When looking at inserts, all values will first be
written to the memory buffer and without a proper synchronization mechanism
adapted for the structure’s purpose, the structure will not gain much speedup
with the help of multithreading. An example of an improper solution would be a
global lock over the whole memory buffer. This would mean that only one thread
could work on the structure at once and effectively achieving serial performance
as all other inserting threads would be locked and do no work. As the locked node
might be in the middle of changing data, the structure would not be safe to read
either meaning that readers would also be locked. Generally the more threads
would need to work on the same memory location, the more overhead would be
caused by requiring synchronization mechanisms.

5.5.4.1 Concurrency and thread cooperation

For this reason, it could be beneficial for each thread to insert data into its own
memory location before further merging it into a global memory buffer shared with
all threads. This would work as a intermediate merging step resulting in most in-
serts requiring little write synchronization as they would be written to a memory
location only accessed by the inserting node. When the memory location is filled
up, it could be turned into a shared resource by atomically placing the pointer to
the structure into the global memory structure. The inserting node could then
generate a new private structure. With this implementation the amount of syn-
chronization and communication between nodes could be greatly reduced as the
most common scenario would be to insert data in a private memory location, re-
sulting in less synchronisation overhead. This implementation would work similar
to RCU as each thread would work on their own private memory and then atom-
ically update and share the resource with the other nodes. However, this solution
would not have the problem of only being able to have one updater as this is
overcome by having multiple private memory locations where nodes work. When
the memory buffer eventually gets filled, the node which updated the final pointer
could perform the first bulkload by taking the structure and making it into a disk
array.

5.5.4.2 Lookup operation challenges

This solution would prioritize insert performance over lookup performance as some
choices would need to be made to support lookup of all values. It might be
problematic for a lookup thread to read values from a private area as it would
have little guarantee that the area is not being changed by the inserting node.
Depending on the use case of the structure and the necessity of updated data,
one solution could be to have the solution be an eventually consistent structure
where data is not considered fully inserted before it is placed in the global memory
buffer. Another solution could be to have the lookup node first read the number
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of nodes in the private structure and then only read over the confirmed written
nodes. However if a lookup node are first going over the private memory areas and
the the global memory buffer, it could happen that it read the same data twice.
This could happen if the private data pointer is placed into the memory buffer
during the lookup operation. A fix for this could be that each private memory
structure could have an id and the lookup could assert if the structure had been
read. This would however add more overhead to the lookup operation, so going
with an eventually consistency approach could be easier and cheaper.

5.5.4.3 Deletion operation challenges

With the suggested architecture of the memory buffer, some questions regarding
the deletion of nodes needs to be considered. The tombstone method for deleting
nodes has been chosen as a good candidate for the deletion operation. The tomb-
stone strategy takes the responsibility of the delete itself from the thread calling
the operation over to the thread which ends up performing bulkloading. As this
is the case, if a data node is attempted deleted while it is in the private mem-
ory location of a given thread, it becomes that threads responsibility to read the
tombstone log and remove the data node. The thread should therefore assert that
none of its inserted nodes is located in the tombstone log. The thread could do
this by checking its values once the private memory buffer is full and if a node is
deleted, the thread could fit a new node into the array. This makes it so nodes can
be deleted before inserted into the global memory buffer resulting in less empty
spaces in the tree.

5.5.4.4 Incoming operation queue

So far the general structure of how a Concurrent Bkd-tree could be implemented
has been presented. However, there still is the question of how the structure
should handle incoming operation calls and how operations should be split amongst
threads. As the use case which will be looked into are operations received over
a network from other machines, other computers would need a reliable and re-
sponsive API that can handle multiple operations. To achieve this, the incoming
data management should optimally be scalable with more threads as to not be a
bottleneck throttling the rest of the application. To create this the API should be
able to use multiple threads which could answer calls and increase and decrease
system resources to managing API calls depending on the load. If possible the
threads answering the request should be the ones to perform the operation in the
structure. This would make it so the thread would be able to answer the request
as soon as the result is ready. The alternative would achieve the added overhead
of returning the data to another communication thread which may be busy with
another request. This could slow down the system due to the computational over-
head. One solution could be to have a communication thread which schedules
work depending on which threads are available, then the thread performing the
computation or lookup could reply with the result of the request rather than the
primary communication thread.
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5.5.5 Thread manager

As mentioned through out this section, there are multiple areas of the solution
where multiple threads can be beneficial to speed up performance. This includes
everything from creating and bulkloading the structure, to receiving and answering
API calls or operation requests. These parts of the implementation all might
have a need for spawning new threads as workload increases. However a system
for knowing how many threads a given section can spawn needs to be created.
Each sections needs to know what resources are available and how many of those
resources can be used. If this is not monitored the system resources could spawn
more threads than the system supports causing crashes or throttle performance.
To avoid this, there should be a central thread manager which can keep track
of system resources and distribute the system resources to different parts of the
application. For example, when there are a high operation workload the thread
manager could dedicate more threads to handling these request. A given unit
of the application could have a count of how many threads is given to the unit
and the unit could check the count before spawning more threads. This way the
solution could have a central resource manager which could be used to prioritize
tasks based on the available resources.

5.5.6 Suggested design of Concurrent Bkd-tree

Based on the previous section, a general design for a Concurrent Bkd-tree has
been created. The design can be used as a starting point for implementing a Con-
current Bkd-tree with focus on effective use of synchronization mechanisms with
little overhead and sharing computational resources depending on the workload.
This section will present the design seen in figure 5.5.1.

Figure 5.5.1: Suggested Concurrent Bkd-tree design

The API requests can be sent by other machines over a network and their
request will be handled by a thread. The thread is responsible for communica-
tion with the API and for performing the operation specified by the caller. If a
request for inserting is received, the thread will insert the data node in its own
private memory buffer. If the buffer gets filled, the thread must first iterate over
its values and assert none of them are located in the tombstone list. If a values
is located in the tombstone list it gets deleted from the private memory buffer,
which then has room for more nodes. When the private buffer eventually gets
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filled, the pointer gets atomically inserted into the first available pointer in the
global memory buffer. The thread creates a new private memory buffer as the old
one now is part of the global memory buffer.
When the memory buffer eventually gets filled, it will be written to T0 which is
the first tree and is the disk buffer. This operation should be performed by the
thread which filled the memory buffer. If the disk buffer is filled, a bulkload would
be necessary. The calling thread then first look in the unused tree storage to look
for a tree which can be reused of the correct size. If the tree is found, it is used,
otherwise a new tree is created. The data in the old tree gets overwritten if the
structure is reused, otherwise the tree is created based on the data.
Trees which got bulkloaded and are no longer in use should be placed in the un-
used trees list. If the new tree is of a set large size, it should be inserted into the
tree storage list. The reason for this implementation is to avoid the calling nodes
to be locked up in too large operations. So the trees will only be bulkloaded up to
a certain size before being placed in storage. The trees in storage can be further
bulkloaded by the thread manager scheduling larger bulkloads when there are sys-
tem resources available. The larger trees gets merged together in the background
when there is available resources.
When a delete operation is performed, the deleted value gets added into the tomb-
stone list. This requires that each bulkload asserts that each data node to be
bulkloaded is not located in the tombstone list. To be safe, other operations such
as look ups an window queries should also assert that the return values do not
occur in the tombstone list. It might be necessary to have writers and bulkloaders
to work on a copy of the data to assert that the data read by look ups always is
safe to read.
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SIX

CONCURRENT IMPLEMENTATION

In this section the design and implementation of a Concurrent Bkd-tree will be
presented. The Concurrent Bkd-tree were designed based on findings and the
suggested architecture in figure ??. The concurrent implementation reuses code
from the serial section and modifies it to suit a concurrent implementation. This
chapter provides an overview of the modifications made to the different parts of the
serial implementation as well as presenting the new components added to better
suit a concurrent solution.

6.1 Programming language

The programming language used for the Concurrent Bkd-tree is C++. To im-
plement concurrent C++ code, POSIX threads, also known as pthreads were
used. Pthreads is a C library for creating and managing threads in multithreaded
programs[12]. It allows the main thread to spawn new pthreads for concurrent
execution within a single process. The pthread library also provides synchroniza-
tion mechanisms such as different kinds of locks which will be utilized to keep the
Concurrent Bkd-tree threadsafe. The C++ atomics library is used to make atomic
updates and is used as an alternative to locks in critical sections throughout the
application.

6.2 Solution structure

The project structure have been kept relatively similar to the serial implementa-
tion. Structures have been modified slightly to better suit the concurrent solution
and some new building blocks have been added to support the new concurrency
criteria. In the Concurrent Bkd-tree solution, the main sections are the Bkd-
tree, Kdb-tree, MockAPI and the Scheduler. To support faster deletions, a simple
tombstone has also been implemented. The structures are run and used by thread
functions which work together asynchronously. The structure can still be config-
ured through a configuration file which have been updated to fine tune the new
structures and the communication between them. The Kdb-tree still works the
same as in the serial version. The code of the Kdb-tree has been refactored and
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each tree now include meta data to give the threads more control over the struc-
tures in the concurrent system. The Bkd-tree also works with the same general
principles as presented in the serial implementation. However, the concurrent
structure is more complex and therefore uses more underlying structures to both
support synchronization and thread efficiency. The MockAPI is the API request
block from figure ??. Its primary function is to imitate an inserter API and is
used by inserter threads to fetch data. The Scheduler is responsible for managing
threads and to free old structures. The main thread runs the Scheduler function
which then spawn other threads such as as inserter, reader and the large bulkloader
threads. Together the mentioned sections make up the Concurrent Bkd-tree.

6.3 Kdb-tree

In the Concurrent Bkd-tree implementation, the Kdb-tree has been close to un-
changed. The primary parts of the Kdb-tree structure is the same as in the serial
solution. To keep track of which variation a Kdb-tree has, more meta data fields
have been added. The fields include level and id. Level is used to Easily find
out the approximate size of a given tree. When generating a Kdb-tree, the tree
will be marked with a level which corresponds with the size and bulkload stage it
were created at. This data point is primarily used by the thread handling larger
bulkloads to match up trees of similar sizes. The id field is used for identification
and each tree should have a unique id. This is used throughout the solution when
a specific tree needs to be found.

6.4 Bkd-tree

The actual Bkd-tree structure of the Concurrent Bkd-tree is responsible for storing
and supplying the data of the tree while protecting the resources with synchronisa-
tion mechanisms to keep the structure threadsafe. The Bkd-tree has four primary
structures for storing and managing data. After being added to the tree by the
inserter threads, the data gets stored in the global memory structure. The global
memory structure is still an array of data points, but the way data gets added to
the array has changed. The global memory structure is a multiple of the thread
buffer size. This allows inserter threads to insert data in different sections of the
array without colliding. To keep the structure threadsafe, threads will load the
current global memory size and attempt to update it with a CAS operation. This
lets the thread update the size and then copy its added nodes into the structure.
Same as the serial version, the global memory gets pushed to the disk array when
full. To avoid bottlenecks related to both array performance and synchroniza-
tion mechanism overhead, the Concurrent Bkd-tree is designed as an eventually
consistent structure. To elaborate further on this design choice, it means that
the data points stored from the private thread buffers, global memory and global
disk, will not be visible to readers. This means that the result of queries will be
less accurate, but the overhead from synchronization mechanisms is lowered for
inserters and readers.
Readers are however guaranteed to access all the tree structures generated at the
point their query is called. This is implemented through a readable trees hash-
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table. The readable trees structure is atomically updated with RCU to guarantee
no need for blocking of reader threads. The readable trees structure works by
being a collection of all the trees in the system which gets updated whenever a
new tree is added or trees gets merged into larger trees. The readable tree gets
updated by creating a copy of the old structure, updating it by deleting old and
adding new trees, then replacing the original. As readers might still be reading
deleted trees, the data will be reclaimed at a later time by the Scheduler.
When the global memory and disk is full, the inserter thread will bulkload them
into the first tree structure. The tree will be inserted into the small tree storage
which keep a small preconfigured number of trees. The small tree structure is an
array of tree pointers. When an inserter thread performs the small bulkload, the
thread will take all previous trees and combine them into a larger tree. This is
the same strategy as seen in figure 1.2.1. The bulkloading inserter thread will use
a small tree structure lock to assert that its the only thread inserting trees into
the small tree structure. Another solution would be to use more fine grained syn-
chronization mechanisms, this were not prioritized, but would allow multiple small
bulkloaders. If multiple threads were waiting to bulkload, it would mean that the
bulkload makes up most of the computational time of the inserter threads. This
is undesirable as it would mean that inserter threads use more time restructuring
data than working on the insertions. The small tree structure should therefore
only perform bulkloads up to a level which will not throttle insertions.
When the new tree has been inserted into the small tree structure, it also needs to
be inserted into the readable trees structure so reader threads can access the data.
The readable tree structure then gets locked from writers to assert that there is
only one updater of the structure. To update the structure in a read safe manner,
a RCU update is performed. This works by taking a copy of the Readable tree
structure, deleting maps which have been merged into the new tree and inserting
the new tree. The readable map is then given an epoch value to mark which
iteration the structure is on. When the updates are performed, the readable tree
structure replaces the old pointer in the Bkd-tree and sends the old structure to
the Scheduler.
As mentioned the small tree structure should be of such a size that bulkloads can
be performed without throttling inserts. The structure therefore gets filled swiftly.
When trees gets bulkloaded to a size the structure should not room, the tree will
instead be inserted into a medium tree structure. The medium tree structure is a
simple lock protected list which stores the largest trees bulkloaded by the insertion
threads. The medium tree list is protected by a lock as it can be accessed by both
an inserter thread inserting trees and by the large bulkload thread. The inserters
and large bulkload thread therefore has a producer consumer relationship, where
inserters produce trees which are further merged together by the larger bulkload
thread. The trees pushed to the medium tree list are also added to the readable
trees structure in the same manner as trees in the small trees list.
The final structure containing trees is the large trees structure. The large trees
structure consist of trees merged together by the large bulkloader thread. It con-
tains both trees merged together from trees from the medium tree list and the
large tree structure. The structure itself is a list containing Kdb-tree pointers
and is not locked as in the current solution its only accessed by the bulkloading
thread.
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As a proof of concept the Bkd-tree also has a tombstone structure for storing
deleted nodes. This strategy could be an improvement over the implementation
presented by the original Bkd-tree authors and the one presented in section 3.4.
This outlines the primary components which together form the Bkd-tree structure
of the concurrent implementation. The data flow of the structure will be presented
in more detail in section 6.8.

6.5 MockAPI

The Concurrent Bkd-tree is implemented as a standalone structure which answer
queries through an API. To simulate both inserts and window queries, a MockAPI
structure were created. Depending on the test, the MockAPI may either generate
random uniform data or data points with normal distribution. In order to make
the data pseudo random, a thread local number generator were used. This avoids
similar generated values which may occur in some timing-based random generators
when using multiple threads.
The time it takes to access data nodes from the MockAPI is not representative
of the time it would take to answer a request over a network, but serves as a
tool to test the application. The MockAPI can be configured to add a delay to
answering queries. This can be used to simulate network overhead. The MockAPI
is a module which will be called directly by inserter and reader threads and offer
functionality through function calls without its own Mock thread supplying data.
This in turn lowers communication overhead, but may be less accurate to a real
systems application flow as no communication is needed when fetching new data
nodes or window queries.

6.6 Scheduler

The Scheduler structure oversees the entire system and is responsible for handling
and communicating with threads. In the current implementation, the Scheduler
is responsible for starting up threads, assigning tasks, reclaiming memory and
shutting down the application. The Scheduler is a structure used by the Scheduler
thread to communicate with other threads. It creates structures for the inserter
and reader threads and can shut down the application by atomically updating
an integer to set a given threads running status. After starting up the threads
and the program, the Scheduler structure gives the Scheduler thread the needed
tools to reclaim memory. The memory being reclaimed, is the memory of deleted
Kdb-trees. As mentioned, the Concurrent Bkd-tree supplies reader threads with
data through a RCU updated readable trees structure. At any given point, a
reader thread may be reading the old version of the readable trees structure,
which makes them unsafe to delete even after the readable tree in the Bkd-tree
structure has been updated. When a bulkloading thread has updated the readable
tree structure, the old readable tree together with the list of deleted Kdb-trees gets
placed in a struct and the pointer gets atomically inserted into an array in the
Scheduler structure. To check if a given structure is safe to delete, an epoch
value is checked to assert threadsafety. The epoch value is a numerical value
which is incremented each time the readable trees structure gets updated. The
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epoch is stored in the readable tree structure, and when a reader thread access the
readable tree, it stores the epoch value in that given tree. The Scheduler structure
can then be used to compare a deleted structure’s epoch against all readers to
assert the thread is safe to delete. For example, if the smallest epoch stored
by any read thread is 32, then no readable trees will be deleted with the epoch
larger than 31. The current implementation the Scheduler is only responsible for
memory reclamation during runtime. Since this task is small and dependent on
waiting for reader threads reading updated memory, the process is set to yield
while waiting. The thread will yield until the global epoch value has increased for
a given amount, then attempt to delete old structures. The Scheduler is still an
important component in an expanded solution where it would have responsibilities
as dynamically allocating resources depending on the current system load.

6.7 Tombstone

The deletion strategy of the Concurrent Bkd-tree is a tombstone strategy. The
tombstone consist of two sections. Each deleted node will be used to update the
bloomfilter such that the deleted value can be searched for in the bloomfilter before
searching the next structure. The tombstone itself is a hash table storing the data
of the deleted data node. The tombstone is currently only a proof of concept
solution and will not be the main focus. To be efficient, the tombstone should also
be used with an eventual consistent strategy. This would mean the only thread
checking and filtering out deleted nodes would be the large bulkloader thread. Not
being eventually consistent would require checking each data node in every reader
query against the bloomfilter which would significantly impact performance. The
current tombstone implementation is made threadsafe using a read write lock.
This means that readers may be blocked every time the bloomfilter or hash table
is updated by a deleted node which would also affect performance greatly.

6.8 Thread functions

This section will cover the threads and the data flow. The threads uses the dif-
ferent data structures to together perform the tasks necessary for running the
Concurrent Bkd-tree. The design of the structures lets the threads work together
while attempting to minimize overhead related to synchronization mechanisms.

6.8.1 Scheduler

The Scheduler thread is primarily focused on tasks related to program startup,
garbage collection through memory reclamation and shutting down the program.
In the current solution the Scheduler thread starts by creating the Scheduler com-
ponent, which again creates the other components such as Bkd-tree and the Mock-
API. Based on the configured amount of threads specified in the configuration file,
the Scheduler threads spawn the other worker threads. When program execution
starts, the Scheduler thread will yield until the readable trees epoch reaches a set
amount. At that point, its assumed that there is old data ready to be reclaimed.
Garbage collection works by deleting all old Kdb-trees supplied in a list by the
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thread which performed the bulkload. Another possibility would be to iterate over
the old readable tree structure and deleting the trees marked as deleted. However,
this adds overhead as each tree would be iterated through and each deleted tree is
most likely not from the epoch currently being deleted. If these trees were deleted
it could result in deleting structures still accessed by readers. It is important that
the old trees gets deleted regularly as to not fill the array storing the deleted struc-
tures. This would cause bulkloaders to have to wait and cause the program to slow
down while bulkloading threads waits for available slots. The Scheduler thread
is also responsible for shutting down the program. To shut down, the Scheduler
first signals all threads to stop operation. This is done by updating each threads’
running integer which holds them in an infinity loop. This causes the loop to exit
and the thread cleans up memory used during operation and exits. Before exiting,
the thread again updates its running integer, signaling to the Scheduler that its
no longer running. When all other threads has seized operation and signaled so
to the Scheduler, the Scheduler can safely delete memory without crashing the
program. Each structure can then be safely deleted before the Scheduler exits as
well.

6.8.2 Large bulkloader

The large bulkloader thread is responsible for performing large bulkloads, allow-
ing the inserter threads to have focus on inserting data. Trees which are inserted
into the medium tree structure by the inserter thread gets combined into larger
trees which are stored in the large trees structure. These trees will again be com-
bined into larger trees by the bulkloader thread. In the current implementation,
the medium tree structure only requires locking while inserter threads insert large
trees and when the large bulkloader fetches trees from the structure. In an imple-
mentation with multiple bulkloader threads, the large bulkloader structure would
also need to be protected. However, in the current solution there is only one large
bulkloader accessing the large tree structure, therefore requiring no synchroniza-
tion mechanism protecting the structure. The bulkloads work by selecting a set
amount of trees from a given structure, then combining them into a larger tree.
Each generated tree gets assigned a bulkloading level to indicate the approximate
size of any given tree. This can again be used to match up trees of similar sizes
when new bulkloads shall be performed. In the current solution the bulkloading
level is iterated through in a loop were a bulkload of each level is attempted. If
there are enough trees of a given size to meet the criteria set by the configura-
tion, a bulkload will be performed. The current large bulkloading strategy do not
consider the age of any given tree when performing a bulkload. This could be
implemented, but it is assumed it would add no benefits. The original Bkd-tree
is log structured where the oldest data nodes are stored in the largest structure.
However as window queries require to look through all structures, its assumed
that the age of data nodes is not of importance. If the primary focus was fetching
singular data points, the age of a given data node may be more crucial to per-
formance, assuming users usually access new data nodes. The bulkloading data
structure is currently the only structure responsible for removing deleted nodes.
Before creating a new tree, the bulkloader will need to iterate through all data
nodes to look for deleted nodes, assuming deletions are enabled.
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6.8.3 Inserter

As discussed in section 5.5.4, threads should optimally work on their own memory
locations to avoid the need for synchronization mechanisms when possible. To
avoid synchronization mechamism overhead, each inserter thread works on filling
its own private thread buffer. When the thread buffer is filled, the thread atom-
ically updates the global memory data node count. When the count is updated,
the thread has reserved this memory space, and can safely insert its data by copy-
ing its thread buffer into global memory. This is a similar strategy as visualized
and suggested in figure ??. The data flow of the inserting node before generating
trees can be seen in figure 6.8.1. Each individual inserter thread works on its pri-
vate thread buffer. The threads insert data fetched from the MockAPI. When the
global memory gets filled, it becomes the global disk if it is free and a new global
memory is allocated. If both structures are full, the thread will store them both
locally, updating the global memory to a new allocated structure and removing
the global disk pointer. The thread can then safely work on performing a small
bulkload while the other inserter threads can continue inserting data into the new
global memory. The inserter thread could also be modified to skip global memory
and global disk and instead go straight to creating tree structures. This modi-
fication lowers the communication between inserter threads. Each thread would
then create a Kdb-tree structure based on their thread buffer, then insert it into
readable trees and either the small or medium tree structure depending on the
configuration.

Figure 6.8.1: The data flow of the memory structure TM
0 and disk structure T0

of the Concurrent Bkd-tree.

6.8.4 Reader

The reader threads are responsible for accessing data from the structure to sim-
ulate a typical workload. The reader threads works by calling the MockAPI,
requesting a window size and then performing the query. The MockAPI will sup-
ply a window query specifying the range of data nodes in each dimension which
should be extracted. The reader thread will then fetch the readable tree from the
Bkd-tree and update its own epoch value. This will signal to Scheduler which old
structures are safe to delete. The reader thread can then safely iterate through
all the trees in the structure and perform the window query on each tree. In the
current solution the reader thread adds the data to a list. The data nodes are
only fetched for testing and benchmarking purposes, so the fetched data in the list



40 CHAPTER 6. CONCURRENT IMPLEMENTATION

gets deleted before a new query is called. The reader threads will keep performing
such queries until the Scheduler thread shuts them down. The reader threads
are primarily created for testing and benchmarking, so singular data node queries
have not been prioritized. The reader threads will fetch all data nodes matching
their query from their current version of the readable tree structure. Kdb-tree
structures which are added after the query has fetched the readable tree structure
will not be part of the query. To assert data nodes fetched in the query are not
deleted, all nodes would need to be checked against the Tombstone. This would be
a viable solution, but the downside is the impact this would have on performance.
The cost would come from iteration over all fetched nodes and synchronization
mechanism calls needed to access the shared structure.

6.9 Data flow

The overall data flow of the structure can be seen illustrated in figure 6.9.1. It
highlights how all tree structures in the trees insert their entries into the readable
trees structure. As the small tree structure is protected as multiple writer thread
may attempt to access it at once. Its protected by a small bulkloading lock
asserting only one writer thread performs small bulkloads at a given time. The
medium tree list creates a consumer producer relationship where writer threads
will insert their largest trees and the bulkloading thread will take the trees and
combining them into larger trees. The larger tree list do not have a lock as its only
accessed by the single large bulkloader thread. It does however having the added
computational overhead of checking for deleted nodes. The tree size will grow
going from left to right in the structure. Small trees only go up to a set size as to
not throttle inserts. Medium trees will only contain trees with a certain size. They
will be merged into large trees and stored in the large tree list. The large tree list
can have trees in a range of different sizes depending on the current bulkloading
situation. All the tree storage structures will need to update the readable trees
structures. This guarantees that all generated trees can be accessed by the readers
of the structure. Reader threads can answer queries supplied from the reader API.
The reader threads grab the most updated readable tree structure currently stored
in the Bkd-tree and iterates through all trees performing a read query on every
tree.



CHAPTER 6. CONCURRENT IMPLEMENTATION 41

Figure 6.9.1: The data flow of the Kdb-trees in the Concurrent Bkd-tree
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CHAPTER

SEVEN

CONCURRENT RESULTS

This chapter will cover the results and benchmark of the Concurrent Bkd-tree.
Each data point in the graph figures is based on the average result of 10 indepen-
dent runs. Each test may have a different configuration, with changes outlined
for each test. A common aspect of each test is the use of a two-dimensional float
array used as keys. Each data node stores a pseudo random string of 16 characters
and each key is generated as a pseudo random uniform data float value ranging
from 0 to 10000. In order to measure the performance of different parts of the
solution, the code may have been altered to tests different sections of the imple-
mentation. The specific code used for each test can be accessed in the project’s
Github repository found in Appendix A.

7.1 Experimental platform

Similarly to the serial test, the Concurrent Bkd-tree was benchmarked with Chrono[11].
Performance tests were ran on a laptop with an Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz processor with 4 cores and support for 8 threads. The system had 8GB
of 2400 MHz RAM. The Fedora Linux 36 (Workstation Edition) operating sys-
tem were utilized for the tests. The code were compiled with the -O2 flag for
optimization and -lpthreads for pthread support. The compiler used were g++
(GCC) 12.2.1 20221121. To see how the Concurrent Bkd-tree scales on a server
environment, some tests were also tested on a server leveraging multiple CPUs.
The server used for testing had 16 Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
processors. Each physical processors has 8 cores, for a total of 128 available cores
adding up to a possible 256 threads using hyper-threading. The server had 131.9
GB of RAM and the tests ran on a Ubuntu 22.04.2 LTS operating system.

7.2 Insertions in Concurrent Bkd-tree

This section covers results related to inserting data nodes into the Concurrent Bkd-
tree. Two primary solutions have been benchmarked, one utilizing global memory
and global disk and another without. In the first solution, inserter threads insert
their nodes into a global structure which will later be bulkloaded into a tree. The
latter works by having a larger thread buffer, which the inserter thread bulkloads

43
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into a tree when full. Each solution works by fetching pseudo random uniform
data from the MockAPI generated between 0 and 10000. Common for each test
configuration is the Kdb-leaf size of 128 data nodes and two-dimensional structure.
The insert tests vary between inserting 64 and 128 trees of a set size. In each test
the main thread is responsible for scheduling the inserter threads. After starting
the threads, the scheduler thread yields until all trees are created, at which point
an inserter thread shuts the program off as the test is completed.

7.2.1 Insertions without global structures

This section will focus on tests benchmarking the time it takes to create trees
without global structures such as global memory and global disk. In this imple-
mentation, each thread fills its private thread buffer and bulkloads it into a Kdb-
tree of a given size. The trees are then inserted into a copy of the global readable
tree structure which then replaces the global one and completes the RCU. The
tests are performed with different tree sizes and switches between 64 and 128 trees
per test. Smaller tests are benchmarked by measuring the time used in millisec-
onds(ms) and larger tests are measured in seconds(s). The timings in these tests
are the time between when the first inserter thread starts running the insertion
thread function and until all the 64 or 128 trees have been created. As inserter
threads are spawned one after another, this means that when the first inserter
thread starts, not all of the other inserter threads have been initialized. This may
result in a slight favour for tests with few threads.

7.2.1.1 Inserting 64 trees of size 16384

The graph in figure 7.2.1 show the performance of inserting 64 trees with 16384
data nodes into the Concurrent Bkd-tree with increasing number of writer threads.
The results show a massive improvement from going from a single inserter thread
to utilizing 2 inserter threads. This improvement comes from having 2 threads
which can work on inserting trees with data nodes with little communication
overhead. Adding more inserter threads past the two first is still beneficial, but
the performance gained is less compared to the initial increase from two threads
instead of one. The reason for this is likely the small tree size. Since the tree size
is only 16384 data nodes, each thread may have a smaller workload meaning each
individual thread have less work to contribute. With the given workload, a single
inserter thread completed the task in 136ms and 7 inserter threads completed it
in 45ms. This is a speedup of 66.9%. However, it should be noted that on smaller
tasks the overhead of spawning threads may be greater than the performance
gained.
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Figure 7.2.1: Inserting 64 trees of size 16384 without global structures

7.2.1.2 Inserting 64 trees of size 65536

As noted in the previous section, there is a large performance gain by having two
inserter threads instead of one. In figure 7.2.2, the tree size is set to 65536, 4x
larger than in the previous test. Due to the larger workload, the runtime of the
program has increased, but the trajectory of the graph has improved. There is still
a larger gap between one and two inserter threads, but the improvement of each
added thread makes a more significant difference than in the previous test. This
is a result of having more work, so the improvement from going from 1 inserter
thread to 7 inserter threads has increased. Even though trajectory of the graph
in figure 7.2.2 is similar to the trajectory seen in figure 7.2.1, the runtime has
decreased from 576ms to 192ms. This is a speedup of 197.2%. These results point
to the fact that the benefit of adding more threads is dependent on the work size.
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Figure 7.2.2: Inserting 64 trees of size 65536 without global structures

7.2.1.3 Inserting 64 trees of size 262144

When increasing the tree size to 262144 data nodes, the workload is again increased
which increase the benefit of using more threads. In figure 7.2.3, there is a larger
performance gain than seen in the previous figures. This is a result of scaling
the workload 8x higher than in figure 7.2.1. As each individual thread has more
computationally heavy work, the runtime increases, but the benefit of each added
inserter thread is greater. A single inserter thread spend 26.31s on creating the 64
trees. While 7 inserter threads only spend 8.53s. This is equivalent to a speedup
of approximately 207.9%, which again shows the increasing benefit of adding more
threads as the workload grows.
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Figure 7.2.3: Inserting 64 trees of size 262144 without global structures

7.2.1.4 Inserting 128 trees of size 16384

So far, the workload has been increased by increasing the Kdb-tree size. Another
way to increase the workload for each inserter thread, is to increase the amount
of trees which needs to be created. In the previous tests, the workload has been
increased by increasing the tree sizes. The next sections will focus on increasing
the number of trees created to see how it affects scaling. In figure 7.2.4, 128 trees
each with 16384 data nodes are created. The performance gained is similar to
figure 7.2.1, but due to a larger workload, the performance gain by each inserter
thread is larger as the program runs for longer meaning more inserter threads are
beneficial. A single inserter thread spend 273ms creating the 128 trees, while 7
inserter threads only spend 85ms. This is equivalent to a speedup of approximately
221.7%. Even though the workload is only doubled, this improvement is over 3x
larger than seen in the equivalent test with 64 trees in figure 7.2.1. This may point
to the solution scaling better when increasing the number of trees compared to
increasing the tree size.
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Figure 7.2.4: Inserting 128 trees of size 16384 without global structures

7.2.1.5 Inserting 128 trees of size 65536

When inserting 128 trees of size 65536 data nodes, the graph trajectory in figure
7.2.5 is similar to previous runs. Having just one extra inserter is greatly beneficial,
but each inserter thread added after, gradually make less of an impact for a set
workload. For this workload, a single inserter thread completes the task in 595ms,
while 7 inserter threads uses 193ms. This is equivalent to a speedup of 308.8%,
which continues the trend of greatly increasing performance as both the workload
and number of threads scale together.
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Figure 7.2.5: Inserting 128 trees of size 65536 without global structures

7.2.1.6 Inserting 128 trees of size 262144

Creating 128 trees each with 262144 data nodes, scales similarly to the other large
workload inserts. As performance is gained by increasing the amount of inserter
threads, scaling the problem size larger seem to always be beneficial to multiple
inserter threads. Figure 7.2.6 continues this trend. It does however prove that for
a given workload, the Concurrent Bkd-tree scales in accordance to Amdahl’s law.
However, as the communication overhead stay relatively the same when increasing
the workload, the application can still benefit from more threads by increasing the
workload to scale in accordance to Gustafson’s law. This is again seen in this
test were a single inserter thread spends 52.53s on the given tasks while 7 inserter
threads only spend 16.27s. This resulted in a speedup of 222.1%. This is a smaller
increase than seen in other tests, which may insinuate that when the individual
workload grows too large, the benefit of concurrency decreases. This may be a
result of creating larger tree structures which causes more cache misses as each
individual thread sorts and store more data nodes during bulkloading. This could
explain why 1 inserter thread is less affected as it has more of the cache to itself
causing fewer cache misses.
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Figure 7.2.6: Inserting 128 trees of size 262144 without global structures

7.2.1.7 Inserts per Second

This chapter has so far covered the performance of inserts without global structures
by comparing runtime of different configurations. To get a better understanding of
the results, the approximate Inserts per Second(IPS) have been calculated. The
table of all the IPS for every run performed in the laptop environment can be
seen in table 7.2.1. The result is an approximate calculated with the formula
IPS = (treeSize ∗numberOfTrees)/timeSpent. From the results it is clear that
for the laptop environment, increasing the number of inserter threads is always
beneficial. The results do also show that there is a trade off between increasing
tree size and IPS. The sweet spot for achieving the most inserts is 64 trees each
with 65536 data nodes.

Table 7.2.1: Inserts per Second (IPS) for Different Configurations

Number of Trees
and Tree Size

Inserter Threads

1 2 3 4 5 6 7

64x16384 1191.71 2073.73 2742.15 3072.68 3287.72 3545.89 3590.03
64x65536 1134.38 2350.13 3122.89 3498.57 3786.91 3985.81 4228.15
64x262144 997.68 1736.97 2273.83 2567.69 2791.03 2970.01 3083.26
128x16384 598.40 1041.36 1387.68 1577.63 1710.33 1833.83 1896.46
128x65536 1093.44 1894.83 2524.44 2827.86 3050.37 3246.88 3381.19
128x262144 497.47 858.06 1147.46 1295.32 1411.75 1510.23 1598.69
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7.2.1.8 Inserting 128 trees of varying sizes on server

To further test the scalability of the Concurrent Bkd-tree, the structure were tested
in a server environment. To test how different workloads affect performance, trees
with 16384, 65536 and 262144 data nodes were tested. Each test monitored the
time it took to generate 128 trees of the given size. The results from the tests can
be seen in figure 7.2.7. The results show that increasing the workload by having
each thread creating larger trees, increase the performance gain. Comparing the
graphs, creating 262144 data node Kdb-trees, yields a much larger performance
gain than smaller trees. This is likely due to the powerful server CPUs require a
higher workload to fully utilize the computational power. An interesting observa-
tion from the server tests is how adding more threads than required for a given
workload, ends up decreasing performance. In all three tests, the computational
time spent decreases and reach its lowest point when using 16 threads. After that
the computational time increases. The reason may be that creating 128 trees is
too small of a workload for more than 16 threads and that more trees should be
created. However, if this were the case, creating larger trees should also help to in-
crease the workload. The tree sizes 16384, 65536 and 262144 experience a decrease
in their performance of -216.2%, -315.1% and -171.4% between 16 and 128 threads.
As the largest tree size comparatively looses less performance, the tree size might
be a small contributing factor, but likely not the main bottleneck. Another likely
factor for the reduced performance is the server’s hardware infrastructure. The
server has 16 physical CPUs. Considering each physical processor has 8 cores for a
total of 16 threads in the server environment, the decrease in performance may be
a result of communication between physical CPUs being expensive. Even though
communication between threads is limited in the Concurrent Bkd-tree solution,
threads still need to share data by updating the readable tree structure. This may
be more expensive in an environment were threads need to communicate across
CPUs. This is not an issue when utilizing 16 threads or less. Then the task can be
performed on a single CPU, when going over that threshold, more communication
cross CPUs are required, which may significantly decrease performance.
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Figure 7.2.7: Inserting 128 trees of varying sizes on a server

7.2.2 Inserting trees with global structures

This section will cover the performance of the Concurrent Bkd-tree using global
structures. The original Bkd-tree structure used an array of data nodes as a
memory structure, when the array got filled up, it would be flushed to disk. To
optimize this approach for a multithreaded environment, the Concurrent Bkd-tree
were created with a global memory structure shared between inserter threads.
Figure 7.2.8 shows how the performance of creating trees with the global structure.
The global memory is set to store 64 thread buffers, each with 4096 data nodes
which then creates a Kdb-tree of 524288 data nodes. As seen from the trajectory
of the graph, it is beneficial to use two inserters instead of one, each inserter
thread added after that, gradually slows down the performance. This make it
seem like the synchronization overhead related to keeping the global structures
threadsafe slows the program down. This would also explain why the performance
slightly decrease when adding more threads, as more inserter threads access shared
resources. In an attempt to increase the individual work of each thread, the
global structures were set to store 16 thread buffers and the thread buffer size
were set to 16384. This change in the configuration still kept the same workload
of creating trees of 524288 data nodes, but each thread would in theory spend
more time inserting data into its own thread buffer and less time inserting data
into the global structure. The results of this modification can be seen in figure
7.2.9. From the result, it is clear that the solution is bottlenecked by the global
structure which slows down the application. The primary bottleneck is the fact
that only one thread is configured to bulkload at once. In theory this should let all
threads work on the global structures while a single thread bulkloads data. This
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approach may work if inserting data nodes were more computational expensive
than bulkloading. In the current solution, it manifests on inserter threads waiting
on global resources. To avoid this communication overhead, global structures
should rather be avoided where possible and only use the necessary amount of
communication between threads.

Figure 7.2.8: Inserting 64 trees using global structures of size 64 with a thread
buffer size of 4096
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Figure 7.2.9: Inserting 64 trees using global structures of size 16 with a thread
buffer size of 16384

7.3 Fetching data from Concurrent Bkd-tree

This section will cover the benchmarking of reader threads fetching data nodes
from the Concurrent Bkd-tree. These tests will benchmark performing window
queries on the Concurrent Bkd-tree configured with different tree sizes. A large
data pool were used for the tests, so the tests were performed on the server en-
vironment to supply the program with enough RAM. The Concurrent Bkd-tree
were first filled with 16777216 data nodes, in different configurations. After the
tree was filled with a given amount of Kdb-trees of a set size, a reader thread
was spawned and given a window query of a set range. Data nodes were pseudo
randomly generated in the key range 0 - 10000 of each dimension with a uniform
distribution. To fetch approximately 10%, 25% and 100% of data nodes, window
queries of the size (0-3162), (0-5000) and (0-10000) were selected. New data were
generated for each test. To test how distribution of the data affected the query
results, the 16777216 data nodes were distributed between 1,2,4,8, ... and up to
16384 Kdb-trees.

7.3.1 Average window query time

Figure 7.3.1 shows the time it takes to perform a window query and fetch differ-
ent percentages of the data. The x-axis show the number of trees the 16777216
data nodes were distributed across and the y-axis show the query time in millisec-
onds(ms). The results show a slight improvement when accessing data from a few
larger trees rather then multiple small ones. The trend of the data seem to skew
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towards that window query time is slightly improved as data nodes are distributed
across fewer larger trees. The performance gain seem to be similar between query
ranges, though accessing a larger percentage of data takes more time. There is
however only a 11-18ms improvement of having larger trees in the tests compared
to multiple smaller trees. This may suggest that frequent bulkloading may not
be necessary due to the small improvement gained. When normalizing each data
point between 0 and 1 as seen in figure 7.3.2, there is a clear correlation between
the results. The mean Pearson correlation coefficient between the data sets is 0.93,
which points to a strong correlation between the results. This indicates that the
overhead of fetching higher percentages of the data, primarily comes from fetching
larger sections of the tree structure and that the overhead is consistent across the
query sizes.

Figure 7.3.1: Window query times when fetching 10%, 25% and 100% of data.
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Figure 7.3.2: Window query times when fetching 10%, 25% and 100% of data,
with the results normalized.

7.4 Thread performance

This section will take a closer look at the thread performance through different
tests. To profile the thread performance, Intel® VTune™ Profiler(Vtune)[13]
were used. Vtune can be used to benchmark many performance metrics and look
at many aspects of a solution. This thesis looks at the performance benefit of
multithreading. Therefore, the focus area has been put on performance related
to threading. To gain the most insight, insertion tests with and without global
structures have been analyzed to look at differences related to communication
overhead. Due to limitations related to system access, GNU gprof(gprof)[14] were
used to perform a flat profile of code executed on the server. Gprof version 2.37-
37.fc36 were utilized.

7.4.1 Insertion without global structures

To get a deeper understanding of how the execution time is used, Vtune were
used to benchmark the application. Figure 7.4.3 shows the top down view of the
execution time given in percentages for each function call. The figures display
an overview of resource usage, but not all functions have been included in the
figure. Such as the recursive function calls of ‘KdbCreateBranch´ and the un-
derlying functions of ‘fetchRandom‘. The full analyses of each benchmark can be
found in the test branches of the project’s GitHub repository found in Appendix
A. The program executed in this profile, is the same program as tested in figure
7.2.1. However, this section only profiles the program using 1 inserter thread and
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another run utilizing 7 inserter threads. Figure 7.4.1 shows the execution time
when running with 1 insertion thread. As seen in the figure, the effective run-
time is 49.8% while the total spin time is 50.2%. The spin time comes from the
scheduler, which only responsibility is to spawn the thread in the test. The same
can be seen in figure 7.4.2, were the spin time is 12.8% due to utilizing 7 inserter
threads instead of 1. Normalizing the results gives a better indication of how the
results compare with each other. After normalizing the effective time percentage
to 100%, the two runs becomes more comparable. The normalized results shows
that a single inserter thread spend approximately 50.8% fetching data nodes and
48.7% bulkloading. The bulkload time is distributed between 35.1% sorting data
nodes and 13.4% building Kdb-trees. The 7 thread inserters spend 60% fetching
data nodes and 48.7% bulkloading. Of that time, 34.9% is spent sorting and only
4.8% of the total run time is spent building tree structures. This shows that the
7 inserter threads spend approximately 9.5% more time on creating and fetching
values compared to the single thread on the same workload. This may be caused
by an initial cost of the ‘fetchRandom‘ function. To keep the data random and
avoid shared resources, each thread needs to initialize its own random generator
which may be an expensive cost which is reflected in the results. This cost is extra
apparent due to the short runtime of the given test as seen in figure 7.2.1 to be
between 136-45ms.

Figure 7.4.1: Performance of 1 in-
serter thread

Figure 7.4.2: Performance 7 in-
serter threads

Figure 7.4.3: Thread performance of smaller insert workload

Figure 7.4.6 shows the profile of creating 128 trees of size 262144, the same
workload as seen in figure 7.2.6. Running the program with both 1 and 7 inserter
threads yield similar results as seen in the previous section. After normalizing the
results to not include the spin time, 1 inserter thread spend approximately 41.4%
fetching data nodes and 57.7% on bulkloading. Utilizing 7 inserter threads gives
similar results with 43.5% spent fetching data nodes and 55.9% spent bulkloading
as seen after normalizing the results. An interesting observation is how a single
inserter thread spend 39% sorting and only 18.4% building Kdb-trees. Seven
inserters spend 35.6% sorting and 20% building trees. This may be caused by
added expense of creating and managing large structures when multiple threads
share the same cache and memory, making data handling slightly more expensive.
In this test, time spent fetching values is significantly reduced. A single inserter
thread spend 9.4% less time and 7 inserter threads spend 16.75% less time on
the fetching random values, compared to the smaller test in figure 7.4.3. The
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gap between percentage spent generating data has also drastically reduced with
1 inserter thread using 41.4% and 7 inserter threads using 43.5% of the runtime
generating data nodes. This seem to support the previous assumption of the
startup cost of the ‘fetchRandom‘ function being expensive and the percentage of
the runtime is therefore reduced as the workload grows. Comparing the time spent
building trees with the larger workload, shows that a higher percentage is spent
creating Kdb-trees in both runs in figure 7.4.6. A single inserter thread spends
approximately 18.7% creating Kdb-trees. This is an increase of 5.3% compared to
the results from the smaller workload. Seven inserter threads have a even larger
increase, now spending 20%, an increase in 15.2%. This is a result of increasing
the workload by creating more and larger trees. Another observation is the lack of
the ‘updateReadTrees‘ function in the results. The ‘updateReadTrees´ function
is responsible for updating the readable trees structure and is assumed to be the
most expensive communication call in the current solution. This points to the
synchronization mechanisms causing less overhead than initially expected. This
means that a significant amount of runtime is spend computing and that the
inserter threads likely have a smaller communication overhead than expected.

Figure 7.4.4: Performance of 1 in-
serter thread

Figure 7.4.5: Performance 7 in-
serter threads

Figure 7.4.6: Thread performance of larger insert workload

7.4.2 Insertion with global structures

From the previous sections, it is clear that insertion with global structures greatly
increase runtime and the added synchronization mechanisms increase overhead.
To take a closer look on why and how performance takes a hit, insertions with
global structures have been profiled. The configuration used for the test is the
same as used in figure 7.2.9 with a thread buffer size of 16384 data nodes, a global
structure size of 16 and creating 64 trees. Figure 7.4.8 shows the total runtime
of the program to be 64.7%. In the profiles without global structures, the total
runtime is set to 87.2%. The yielding scheduler thread accounts for the remaining
12.8% of the runtime. Figure 7.4.8 only has 64.7% instead of 87.2% because about
20% of the total runtime is lost due to synchronization overhead. Most of the time
is spent waiting for the bulkloading lock. The time spent fetching and generating
data nodes is also reduced from 38% as seen in figure 7.4.5, to only 25.9% in figure
7.4.8. This points to global structures causing synchronization overhead which
greatly reduce the insert speed of the solution compared to the insertion strategy
without global structures.
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Figure 7.4.7: Performance of 1 in-
serter thread

Figure 7.4.8: Performance 7 in-
serter threads

Figure 7.4.9: Thread performance of inserts with global structures

7.4.3 Active thread time

To give a better look into the global structure overhead, this section will look at
the thread runtime of different solutions. Figure 7.4.10 shows the performance
of running the program with a single inserter thread. The main thread is only
responsible for spawning the inserter thread and then yields. The single inserter
thread is still affected by synchronization overhead, but it runs constantly. The
same can not be said for figure 7.4.11. Figure 7.4.11 shows the thread performance
of running 7 inserter threads with global structures. The white area marked during
each threads’ run, is time spent locked and waiting for resources to unlock. Most
of this time is spent waiting for the bulkload lock to unlock. It is still faster than
using a single inserter thread, but a lot of computational power is lost waiting for
locks. Figure 7.4.12 shows the performance of an inserter test run without using
global structures, the run has some pitfalls, likely related to other tasks being
prioritized by the system, but no significant amount of computational time seem
to be wasted.

Figure 7.4.10: Performance of 1 inserter test with global structures

Figure 7.4.11: Performance of 7 inserter test with global structures
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Figure 7.4.12: Performance of 7 inserter test without global structures

7.4.4 Server insert performance

Figure 7.2.7 clearly show that increasing the thread count is initially beneficial
for thread performance under large workloads. As the number of inserter thread
outgrows the size of the task, adding more threads reduce performance instead
of increase it. To further investigate how more threads slows down the applica-
tion, the code were benchmarked with gprof. A flat profile were created from
running a executable compiled with the -pg and -pthreads flags which were used
for testing and multithreading support. Gprof were not created for benchmark-
ing multithreaded programs, therefore it can only generate a flat profile. The
flat profile shows the total time spent in each function, but no information re-
lated to how time is spent by each thread. To get a overview of the largest
time spenders, the top 10 most expensive function calls were included from a 16
and 128 inserter threads run. The complete profile can be found in the project’s
Github repository linked in Appendix A. The largest workload from figure 7.2.7
were analyzed, with a configuration with 128 trees each of a size of 262144 data
nodes. The results of the two runs can be seen in figure 7.4.13 and figure 7.4.14.
The 16 inserter thread run shows that much of the computational time is spent
on functions related to generating pseudo random uniform values for the data
nodes, sorting data nodes and creating the tree structure. Functions related to
‘mersenne_twister_engine‘ and ‘uniform_int_distribution‘ is typically related to
the threadsafe random generator. Functions like ‘dataNodeCmp::operator()‘ and
‘std::__unguarded_partition‘ is related to sorting as its calling the comparing
function used to sort the data nodes and the partitioning function used to parti-
tion values in the sorting functions. When increasing the inserter thread amount
to 128, the time usage changes. Time spent in the sorting sections increases signif-
icantly. The percentage spent on generating data nodes comparatively decreases.
This points to increasing the thread count beyond a certain point increases the
sorting cost and therefore more time is spent sorting and less is spent on creating
data nodes. Having to many threads at once may cause reduced performance as
threads needs to share the cache with more threads. This may cause more cache
misses, increasing the overall cost of fetching and comparing data as more values
need to be read from memory instead of the cache.
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Figure 7.4.13: Top 10 most expensive function calls utilizing 16 inserter threads
in a server environment

Figure 7.4.14: Top 10 most expensive function calls utilizing 128 inserter threads
in a server environment
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CHAPTER

EIGHT

CONCURRENT DISCUSSION

This chapter cover the discussion of the Concurrent Bkd-tree. The Concurrent
Bkd-tree is a proof of concept data structure prioritizing inserter performance.
Gained knowledge from concurrent results, insights and other findings will be
used to further discuss and refine the Concurrent Bkd-tree.

8.1 Global memory and disk

Using the global memory and disk greatly increase the cost of insertion due to
the added communication overhead. It should therefore not be used and each
inserter thread should rather work on its own structure. With the eventually
consistency approach of the concurrent Bkd-tree, it is unnecessary to store data
nodes in a global structure. Data nodes are not available for readers before being
placed in trees which then need to be inserted into the readable trees structure.
As readers currently are not implemented to access the the global memory and
disk structures, using them only add overhead and serve little purpose. Based on
the findings in figure 4.2.2, it is also clear that iterating over many data nodes is
expensive and should be avoided. With these points in mind, each inserter thread
should rather work on its own tree instead of inserting values to global structures.
This way communication between threads are reduced which lower overhead and
speedup inserts.

8.2 Inserter performance

This section covers the performance of inserts in the Concurrent Bkd-tree. The
performance of the Concurrent Bkd-tree is not directly comparable to a fully
utilized solution, but serve as a proof of concept of how a data structure can be
modified to better take advantage of modern hardware. As seen in the concurrent
results, a lot of the CPU time is spend generating data nodes. In a real life
scenario the Concurrent Bkd-tree would likely perform differently. In the current
solution, a significant part of the computational time is spent generating pseudo
random data nodes. In a complete solution, the data would likely be received
over a network. This may be less computational expensive, but it could also take
longer time due to added latency and communication overhead.
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The performance of the Concurrent Bkd-tree would also be better if data nodes
were generated before execution, but this would also require an approach were each
inserter had its own data pool to avoid the need of syncronization. It would also
require close to double the amount of memory for each test as each data node
would be stored twice, once in the MockAPI and once in the Concurrent Bkd-
tree structure. One of the strengths of the Concurrent Bkd-tree is the use of
the eventual consistency approach. Eventual consistency allows writer threads to
create and manage their own thread buffers without the additional overhead of
synchronization. This helps the insert performance as each writer can fill and
bulkload its buffer into Kdb-tree without being slowed down by readers. This
gives the writer thread the freedom to only focus on managing its own data which
is beneficial to insert performance. This approach is great for applications were
readers only require an estimate or a snapshot of the data and not an exact
snapshot of all current data nodes. This approach may not be suitable for all
workloads, especially not workloads which needs precise and timely results.

The Concurrent Bkd-tree were tested with different workloads to see how per-
formance scaled with different configurations. One of the more surprising findings
were how well the solution scales when increasing the number of inserted Kdb-
trees. Comparing figure 7.2.1 and figure 7.2.4 showed that doubling the amount
of trees for the same configuration caused a speedup of more than three times as
large when comparing the 7 inserter threads results of both figures. The startup
cost related to creating the local thread random generator may be partially re-
sponsible, but it is still surprising to see the performance increase. The initial
hypothesis were that more trees would slow down the performance due to the cost
related to updating the readable tree structure. This cost may grow larger over
time as the readable tree structure grows, but in all the inserter tests, increasing
the workload by creating more trees were beneficial. Another important factor for
the results may be the overhead of using a single thread. As the single inserter
thread still updates the structures in a threadsafe manner, it is slower than a
thread implemented to work without interference from other writers. From the
Inserts per Second(IPS) test it is clear that the performance is not only related to
runtime, but there is also a question of overhead related to creating larger struc-
tures. The larger structures may increase the speedup compared to a single node,
but more time is spent creating large structures than multiple small ones. For this
reason a trade off needs to be made between Kdb-tree size and IPS.

A reason for the low synchronization overhead seem to be the low cost of the
‘updateReadTrees‘ function. The function did not show up in the Vtune profiles
due to its low overhead. This overhead may grow over time as the readable trees
structure grows and becomes more expensive to update, which is why the structure
should be replaced with a data structure with more fine grained synchronization.

Even though increasing the workload by creating more trees is beneficial, in-
creasing the tree size affect the performance in a different manner. This can be
seen in the tests of inserting 128 trees of size 16384, 65536 and 262144. In these
tests the performance increases 221.7%, 308.8% and 221.1% comparatively from
1 to 7 inserter threads. These results may vary on different computers, but it
may indicate that there is a sweet spot tree size which is most beneficial for a
given workload. The smallest tree test may have a smaller performance increase
as smaller trees are less computationally expensive, causing them to be more man-
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ageable for a single thread. Trees with 65536 data nodes may be a good middle
ground were the workload is to high for a single thread, but not to high to over-
work the CPU. The largest tree size may be to large for the laptop to handle.
The workload may be to large causing less of the values used in bulkloadings to
fit in the cache which causes more expensive calls fetching of data from memory.
This would explain why fewer threads are not affected in the same way, as they
have fewer threads to share the cache with. This is also supported by the server
performance profile which showed an increase in sorting related functions when
going from 16 to 128 inserter threads.

When running the same tests on the server environment compared to the lap-
top, the results clearly show that the workload needs to scale in accordance to the
capacity of the hardware. Running tests with 16384 and 65536 data nodes on the
server gained significantly less performance compared to the larger 262144 data
node test. This is a result of the more powerful server CPUs requires a larger
workload to fully utilize their capability. The result from figure 7.2.7 also showed
that even though a server may have multiple threads, they may not be suitable
for data intensive applications as multiple threads may slow down the execution
time due to poor cache utilization.

In an optimal scenario, each thread added to an application would increase
the performance in accordance to the number of threads. This would mean that
2 threads ran twice as fast as a serial solution, 3 threads would run three times
as fast and so on. In the Concurrent Bkd-tree, the highest improvement seen in
any test is 308.8% which is equivalent to around 3.1 times as fast as the serial
solution. This were achieved with 7 inserter threads with a workload of 128 trees
each with 65536 data nodes. This is equivalent of a thread efficiency average
of 34.8% per added thread. Out of this the highest increase is seen when going
from 1 to 2 inserter threads. This increase is equivalent to a thread efficiency of
41.6%. Each thread added after that point gradually decreases in usefulness with
the difference between 6 and 7 inserter threads only being 4.02% speedup. From
these results, it is clear that for a set workload, the usefulness of each individual
thread will eventually be insignificant. For a set workload the application will
scale in accordance to Amdahl’s law, meaning the performance will never increase
past the initial startup overhead. This is why it’s important to scale the workload
together with the number of threads to fully utilize the computational power of
a given system. Using this approach the application will scale in accordance to
Gustafson’s law and each added thread will be able to make a more significant
impact on the performance.

8.3 Reader performance and bulkloading

Reader performance is currently decent. It is clear that readers are less affected
by the number of trees than first assumed. Therefore, frequent bulkloadings are
not as beneficial. Instead larger and fewer bulkloadings should be performed.
From the reader results, it is also clear that reader performance scales at a similar
rate with different tree sizes. There is a small overhead to reading data from
multiple smaller trees, this overhead may be manageable, but it depends on what
a typical workload is. If readers are prioritized, larger trees should be created
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as this will over time improve window query performance. This would require
inserter threads to spend more time sorting data nodes to create larger structures
which would negatively affect the IPS. If a typical workload for the system were to
perform 90% window queries and 10% write or insert queries, reader performance
would be more important and bulkloading may be a higher priority. In a system
were 90% of queries are inserts and only 10% are window queries, it may be
more important to maintain high insertion performance and therefore creating
smaller trees may be sufficient. This is something which could be preconfigured
in a complete solution, or may be a task for the Scheduler thread to dynamically
adapt bulkloadings and Kdb-tree sizes based on the current workload.

8.4 Scheduler’s role

In the current solution the Scheduler’s role is primarily to start threads and re-
allocate memory to the application. As these responsibilities are relatively small,
the Scheduler thread is under utilized in the current implementation. Given a
complete program there may be more tasks such as load balancing and adapting
system resources to the current workload. In that case, a dedicated Scheduler
thread may be more necessary than in the current implementation.
In the current implementation, readers slows down the Scheduler thread from re-
allocating data. The Scheduler cannot delete old structures before all readers have
exited. As writer threads currently create a new readable tree structure for ev-
ery new tree, readable trees structures become outdated quick. Each structure is
pushed to the Scheduler which is made responsible for clearing the old structures.
The Scheduler then has a lot of structures to reclaim, while at the same time the
structures are held up by readers which access them. This could be improved by
creating a fine grained synchronization readable tree structure. This would mean
that readers would only lock a small part of the readable tree structure instead of
an entire copy. This could let the Scheduler clear data faster as there would be
smaller structures needed to be reallocated and fewer readers per section.

8.5 Readable trees

In the current solution the readable trees are updated each time a new tree is
created. The structure is both updated by inserter threads and potential bulk-
loader threads. The readable trees structure is currently being updated with a
RCU approach. For the thread performing the update this entails that the global
structure first needs to be copied, the new Kdb-tree can be inserted and if the new
tree is built with values from old trees, the old trees needs to be removed from the
structure. The updated readable tree structure copy can then be pushed globally
were it can be accessed by all threads. This may become expensive over time,
especially when synchronization with RCU only allow for one thread to modify
the structure at once. For this reason, it might be reasonable to use a different,
more fine grained structure for the RCU update.
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8.6 Syncronization
The current readable tree structure uses coarse grained synchronization with a sin-
gle lock protecting the structure. To make a RCU update in the current solution,
a inserter or bulkloader thread must lock the entire structure to keep the structure
thread safe. The structure itself is not locked as readers can still access it, but
only a single updater thread can access it at once. This is to avoid race conditions
which could cause trees to be lost due to multiple simultaneous updaters. A more
fine grained synchronization structure could be created by having more locks. This
could help performance as each inserter would only need to lock a small part of
the structure. In turn this would let multiple inserters work at different sections
of the solution at once, further reducing the communication overhead. Having fine
grained locking combined with an RCU approach, would also make it possible to
create a RCU-HTM readable tree. Fine grained locking could let one inserter lock
a single branch of a readable tree structure and let other writers work on different
branches.
Comparing how inserter threads scales when using global structures and not using
them, it is clear that communication should be kept to a minimum. Performance
gained from multithreading comes from having multiple compute units which each
can perform individual tasks. The more communication between the compute
units, the more time is spent on synchronization and waiting on other computa-
tional units. Adding structures with more locks would increase communication as
each lock adds some synchronization overhead. However, as the alternative is to
have a singular lock which would lock all but one updater, the performance gained
from having multiple updaters, being able to update the structure at once, would
likely overcome the overhead.

8.7 Tombstone list
The tombstone list have not been fully tested and remain as a proof of concept
deletion approach in the Concurrent Bkd-tree implementation. The current solu-
tion is not sustainable for a large scale workload as it currently is a shared global
resource with a coarse grained synchronization mechanism. With the current syn-
chronization approach, the tombstone strategy would add a significant overhead
if it were used as a global shared resource. In this scenario the bulkloader thread
could iterate over all its data nodes and assert none were deleted. This would
be a possible approach, but to ensure no deleted values were accessed in window
queries, each read thread would have to check each data node against the tomb-
stone bloomfilter. This would cause a significant overhead as the structure would
both be accessed by readers and updaters which both would block each other and
cause delay. Another approach would be to only have the bulkloader thread ac-
cess the tombstone structure and having the lone responsibility of managing and
deleting nodes. This would make the deletions eventually consistent as deleted
nodes would be deleted by the bulkloader after the structure gets merged. This
still leaves some problems due to the current primitive solution of the tombstone
list. The list currently has no meta data about a given node’s age. This means
that a deletion request could be sent before the actual node were inserted and
cause the new node to be deleted by an old delete request. Currently there is not
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implemented any update of the bloomfilter. This would be required to periodically
update the filter after deleted nodes have been removed to decrease the amount
of false positives. The tombstone list has potential to be a good addition to the
Concurrent Bkd-tree structure, but may be to primitive in its current state and
require further work to be a suitable deletion strategy.

8.8 Futher work
The Concurrent Bkd-tree is a proof of concept multithreaded data structure, which
have multiple sections which needs more improvements and future work. As men-
tioned further work should go into improving the readable tree structure. Using a
more light weight solution would both allow for more fine grained synchronization
mechanisms and make inserter threads spend less time on the RCU update and
allow the Scheduler thread to spend less time on the reallocation of the old struc-
tures. In its current form the tombstone strategy needs improvement. Its a proof
of concept which may be usable with an eventually deleted approach, but should
be improved. The focus of this paper has been on creating a proof of concept
structure and improving it with concurrency. The current solution show potential
on the concurrency front, but the code should still be improved by other means.
The program could be made faster with a grid bulkloading approach as suggested
in the original Bkd-tree paper. The solution should also be improved and adapted
to a specific use case, by tailoring it to a set number of dimensions and create a
tailored solution for a more predefined workload.
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CONCLUSION

This thesis has covered the implementation and benchmark of a Bkd-tree struc-
ture. The findings have further been used as starting point for implementing a
Concurrent Bkd-tree. The final implementation is a concurrent solution with the
highest average thread utilization of approximately 34.8% when using 7 inserter
threads, compared to a single thread. The same workload achieves 4228 IPS. From
the results it is clear that synchronization overhead should be kept to a minimum
to increase performance when utilizing multiple threads. To fully utilize the CPUs
of a given system, solutions should be tuned to best utilize the hardware. Even if
lots of computational power is available, it may not be beneficial to utilize every
thread, especially in data intensive workloads. The impact of multiple threads
sharing a cache may negatively impact performance as each thread fetches more
values from memory. When it comes to which workload should be given to a sys-
tem, it is important to adapt the program to the requirements set by the particular
workload. If the workload primarily requires good read performance, then larger
trees should be created to lower window query cost. If the application is insertion
heavy, smaller trees best suited for the given system, should be utilized to keep a
high IPS. The focus on this thesis has been on improving a data structure with
concurrency and multithreading. The Concurrent Bkd-tree has achieved this, but
it should be noted that the solution would still benefit from other means. The
structure is still a proof of concept and requires further work to be utilized and
reach its fullest potential. The Concurrent Bkd-tree shows that performance can
be gained by utilizing multiple threads in a data intensive application.
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APPENDIX A - GITHUB REPOSITORY

All code, tests and scripts to generate figures in this paper can be found in the
Github repository linked below.

Github repository links

• https://github.com/sandertoresen/Concurrent-Bkd

• https://github.com/sandertoresen/BKD-SERIAL-PREPARATORY-PROJECT
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