
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Karl Petter E. Aubert
Vidar Michaelsen

Viability of progressive decryption of
large media files using chunk-based
storage

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2023

Karl Petter E. Aubert
Vidar Michaelsen

Viability of progressive decryption of
large media files using chunk-based
storage

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis aims to find out whether or not a document-oriented database employ-

ing a chunk-based storage strategy has satisfactory read performance compared to

traditional NTFS file server-based approaches when accessing encrypted data. The

identified benefits of using chunk-based storage is that random read access decryption

could be sped up significantly, and this would allow for media streaming of encrypted

content. We implemented three solutions, two of which were solely on the disk, while

the last used a proprietary document-oriented database. The first method decrypts

entire files at a time from the disk. The second splits files into chunks such that they

can be decrypted regardless of each other. The third is similar to the chunk-based

approach but stores the chunks in a document database. The first solution performs

well for smaller file sizes but degrades as files eat up the main memory. The latter

two solutions use less memory and execute faster for most file sizes. The database

approach is somewhat slower due to the overhead associated with data fetching, but

benefits such as support for transactions and having a single source of truth make it

a competitive and viable option.

I

Oppsummering

Denne oppgaven har som mål å finne ut om en dokumentorientert database som

bruker en lagringsstrategi basert p̊a filoppdeling vil ha tilfredsstillende leseytelse sam-

menlignet med tradisjonelle NTFS-filserverbaserte løsninger ved tilgang av krypterte

data. Det ble observert fordeler ved bruk av filoppdeling under lesing, blant annet

raskere lesehastighet og lavere minnebruk. Vi implementerte tre løsninger for å sam-

menlikne ytelsen. De to første tok kun i bruk lagring p̊a disk, og den siste tok i

bruk en proprietær dokumentorientert database. Den første løsningen krypterer og

dekrypterer hele filer fra disk. Den andre tar i bruk filoppdeling som gjør at deler

av filen kan dekrypteres uavhengig av andre deler. Den siste løsningen tar i bruk en

dokumentorientert database for å lagre delene av filen, i stedet for å lagre rett p̊a

disk. Den første, naive løsningen, har god ytelse for sm̊a filer, men blir verre n̊ar

filstørrelsen øker og RAM-en blir brukt opp. De to siste løsningene bruker mindre

minne, og gjennomstrømningen er nesten lineær, uavhengig av filstørrelse. De er ogs̊a

raskere for de fleste filstørrelser. Databasetilnærmingen g̊ar noe saktere p̊a grunn av

ekstra arbeid relatert til å hente ut data fra databasen framfor fra disk. Den kan

likevel ha fordeler i forbindelse med databasetransaksjoner og at den har én enkelt

sannhetskilde.

II

Contents

1 Introduction 1

1.1 Research question . 2

1.2 Structure . 2

2 Background 4

2.1 Cryptography . 4

2.1.1 Encryption overview . 4

2.1.2 Encryption modes . 7

2.1.3 Cipher block chaining . 9

2.1.4 Encryption performance . 9

2.2 Progressive video download . 11

2.2.1 Requirements . 12

2.2.2 Bitrate . 12

2.3 State of file storage . 13

2.3.1 File system . 14

2.3.2 File server . 14

2.3.3 Relational database management system 15

2.3.4 Chunk storage . 15

2.3.5 External solutions . 16

3 Methodology 18

3.1 Defining solutions . 18

3.1.1 Disk solution . 18

3.1.2 Chunk solution . 19

3.1.3 DBC solution . 20

3.2 Performance indicators . 21

3.2.1 Time to first byte . 21

III

3.2.2 Throughput . 21

3.2.3 Memory usage . 22

3.2.4 Other performance indicators 22

3.3 Test bed . 24

3.3.1 Choice of programming language 24

3.3.2 Software breakdown . 25

3.3.3 Hardware breakdown . 27

3.3.4 Test parameters . 28

3.4 Benchmarking solutions . 29

3.4.1 Ensuring validity of the tests 29

3.4.2 Benchmarking application . 31

4 Results and Analysis 36

4.1 Encryption . 36

4.2 Decryption . 40

4.2.1 Dry run . 43

4.2.2 Time to first byte . 44

4.3 Analysis . 45

5 Conclusion 47

5.1 Future work . 48

5.1.1 Measurement of CPU times 48

5.1.2 Chunk storage in RDBMS . 48

5.1.3 Break-even points for chunk sizes 48

IV

List of Figures

2.1 Diagram of symmetric encryption [11]. 6

2.2 Diagrams depicting CBC encryption and decryption [21][22]. 10

2.3 Structure of index file . 16

2.4 Structure of chunk . 16

3.1 Relationship diagram of the application, highlighting the most impor-

tant aspects. 32

3.2 Flow of the chunk-wise encryption algorithm. 34

4.1 Average encryption time (logarithmic scale) 38

4.2 Average encryption throughput . 38

4.3 Memory peak during encryption (logarithmic scale) 39

4.4 Average decryption time (logarithmic scale) 41

4.5 Average decryption throughput . 41

4.6 Memory peak during decryption (logarithmic scale) 42

4.7 DBC dry run compared to average (seconds) 43

4.8 Time to first byte . 44

V

List of Tables

2.1 Modes of operation and their support for random read access 9

3.1 Software and libraries used. 27

3.2 Hardware components of test bench. 28

4.1 Encryption time in seconds . 37

4.2 MB/s encrypted . 37

4.3 Encryption memory peak . 39

4.4 Decryption time in seconds . 40

4.5 MB/s decrypted . 40

4.6 Memory peak during decryption . 42

4.7 DBC dry run time compared to average (percentage) 43

4.8 Time to first byte . 44

VI

Chapter 1

Introduction

Multimedia streaming plays a big role in internet traffic. While many streaming

services are centered around public content, which requires few security measures,

others are centered around content that should be kept more private. For example,

a company may wish to keep records of their online meetings as video so that em-

ployees can review them later through video on demand (VOD), skipping to relevant

parts of the video as they wish. To ensure that their content is not accessed by unau-

thorized entities and that privacy laws are upheld, they can encrypt their videos at

rest using private key encryption. The issue with this method is the latency incurred

by having to decrypt these potentially large media files when requesting to view a

video, especially when multiple users are requesting different videos and overtaxing

the system.

One approach to mitigate this issue is to stream the files from disk, partially decrypt-

ing them on the fly. This approach is usually combined with some form of a relational

database that holds metadata associated with the files. Since the metadata and the

actual files are separated, this approach could introduce problems with consistency

as there is no single source of truth if files were to be deleted on one end and not the

other.

We identified a potential solution to such cases in which metadata and file contents are

stored within the same part of the system. The proposed solution uses a proprietary

document-oriented database with built-in support for subdividing files into smaller

pieces (chunks). To assess the feasibility of such a system, it needs to be able to

handle large files while being highly performant in terms of execution speed and

resource usage.

1

1.1 Research question

Using the document-oriented solution, we present the following research question:

How might a chunk-based document database assist with the process of streaming of

data that is encrypted at rest?

To cater to this, we need to do the following:

1. Implement a simple encryption method that works on entire files on disk.

2. Develop a method to encrypt and decrypt files in chunks.

3. Implement this method both for disk and for a document database.

4. Benchmark and compare the two disk approaches against the database ap-

proach.

5. Identify the benefits and shortcomings of using the database chunk method

compared to the other tested methods.

After going through these steps, we will discuss the results, possible points of im-

provement, and how the research can be furthered.

1.2 Structure

The report is structured to give a rough overview of components surrounding file

storage before explaining the specific domain more thoroughly. It is divided into the

following sections:

• Chapter 2 — Background: In this chapter, we provide a concise overview

of encryption, video streaming, and common file storage methods as they relate

to our research question. We aim to cover the fundamental principles of these

topics without compromising clarity and understanding.

• Chapter 3 — Methodology: Here, we cover the inner workings of the so-

lutions and how they differ from each other. We also present performance

indicators to evaluate their effectiveness and provide a clear explanation of the

test bed used for assessment.

2

• Chapter 4 — Results and Analysis: The testing results are presented,

visually representing the data through informative graphs. We then analyze

these results, aiming to decipher their implications and gain valuable insights

into their significance.

• Chapter 5 — Conclusion: The last chapter recaps the thesis and aims to

draw conclusions from the findings and how research on the topic can proceed.

The Introduction, Background, and Methodology chapters are based on our prepara-

tory thesis.

3

Chapter 2

Background

This chapter provides an overview of the relevant fields which are required to detail the

methods and their implementation discussed in later sections. Guided by the research

question, we will focus discussion only on the parts which are deemed relevant.

2.1 Cryptography

Cryptography is the field of secrets, dedicated to exploring how data can be kept

private both in storage and in messages through the use of complex mathematics and

secret keys. This section will outline relevant terms and algorithms. Our main con-

cerns are performance, confidentiality, and random access decryption. Confidentiality

means that data can only be accessed by authorized parties [1], while random ac-

cess decryption means being able to decrypt any section of an encrypted file without

having to decrypt the entire file.

2.1.1 Encryption overview

In modern terms, cryptography is often used to obfuscate files such that they are

confidential [2]. Obfuscating a file is known as encryption, turning plaintext into

ciphertext [3]. Plaintext is simply a regular file which can be opened and read as

normal. The ciphertext is meaningless unless it is turned back into plaintext through

decryption, the inverse process of encryption [4]. Encryption is also sometimes used

to refer to the entire process of securing data, including the decryption process. A

common example of this is the term encryption algorithm.

4

An encryption algorithm is the central component of encryption, and each algorithm

is a specific set of mathematical steps to take in order to encrypt and decrypt files

[5]. Encryption algorithms use keys to ensure data is kept secure. A key is sim-

ply a randomly generated alphanumeric text of a certain length which is used as a

parameter when encrypting files [6]. To decrypt files encrypted with such a key, a

corresponding key is required. The exception to this is cryptanalysis, which is the

process of exploiting the weaknesses of encryption algorithms, allowing access to the

underlying data without the key [7]. This is also known as cracking.

In contrast to many other fields, which do not always concern themselves with poten-

tial adversarial efforts to attack their creations, the concept of confidentiality inher-

ently assumes the existence of unauthorized parties who must not access encrypted

data. While cracking an encryption algorithm takes a lot of work, there is much to

gain by being able to access someone else’s confidential data. Some algorithms have

been cracked due to a mathematical weakness, while others have been left unusable

due to advances in computing power and how easy brute-force attacks have become

on algorithms using shorter keys. Encryption algorithms are designed with crypt-

analysis in mind and are designed such that cracking them should ideally require a

level of time and effort that is, in practice, infeasible. Measuring the security of an

algorithm is a complex task, as new exploits can be found at any time. A few of

the more objective measures of security are how resistant the algorithm is to known

attacks, and the length of the key.

The main encryption schemes are either asymmetric or symmetric [8] [9]. Asym-

metric encryption uses a public key for encryption and a private key for decryption.

This allows users to encrypt messages that only the recipient can access using their

private key without exchanging any private information beforehand. In symmetric

encryption, a single key is used for both operations. Asymmetric encryption gener-

ally requires more complicated mathematical operations than symmetric encryption,

making it less performant and less straightforward to implement [10]. As all encryp-

tion and decryption in our solutions will occur on the same system, only symmetric

encryption is relevant to our thesis. An illustration of how symmetric encryption

functions can be seen in Figure 2.1.

5

Figure 2.1: Diagram of symmetric encryption [11].

Symmetric key encryption can be done using either a block cipher or a stream cipher

[12] [13]. A block cipher splits input plaintext into the eponymous fixed-size blocks

before encrypting them, adding padding to the last block to ensure the blocks are

all the same size. Many different encryption modes or modes of operation exist for

block ciphers, which differ in safety, performance, resource utilization, and some other

key attributes. A stream cipher uses a key to generate a keystream, a pseudorandom

string that is equal in size to a target plaintext to encrypt [14]. Keystreams do not

have to be fully generated at once, but they do have to be sequentially generated. As

such, decrypting the last half of a file requires generating the entire keystream. This

means that although stream ciphers can be faster than block ciphers while requiring

less memory and complexity, our constraint of requiring constant-time random access

decryption requires the use of a block cipher.

The relevant block cipher encryption algorithms and a short explanation of each

follow:

• Advanced Encryption Standard [15] : Known as AES, based on Rijndael. It is

the industry standard for encryption, chosen and supported by the National

Institute for Standards and Technology (NIST). Many modern processors have

6

hardware support for this algorithm with the AES New Instructions (AES-NI)

instruction set, which provides an inherent performance boost to this type of

encryption. Supports key lengths of 128, 192 and 256 bits.

• Data Encryption Standard [16] : DES, for short, was the predecessor of AES.

It is known to be insecure due to its short key length, which is why 3DES was

invented. 3DES is a variant of DES that applies the same algorithm to each

block three times in total instead of just once. This can effectively triple the

key length without modifying the underlying DES algorithm. Has a key length

of 56 bits, with 112 or 168 bits for 3DES.

• Twofish [17] : One of the other finalists in the selection to become AES, Twofish

was passed over due to the winning algorithm, Rijndael, possessing what was

deemed to be a superior balance of performance, security, and simplicity. As

it was designed for the same purpose as Rijndael, it also supports keys with

lengths 128, 192, and 256 bits.

Due to AES’s position as the industry standard, it was chosen as the basis for our

development.

2.1.2 Encryption modes

A block cipher only does work on single blocks at a time, which AES defines as 16

bytes in length. When combined with a mode of operation, the cipher can encrypt

files of arbitrary size. Although modern modes include integrity guarantees, they

are out of the scope of this thesis. Integrity means ensuring that encrypted data

has not been altered in an unauthorized manner [18]. This is mostly a concern in

data communication and might be a viable expansion of scope for future work. We

will only consider the simpler, confidentiality-only modes described by NIST in 2001

[19].

The five classic modes of operation, according to NIST, are Electronic Codebook

(ECB), Cipher Block-chaining (CBC), Cipher Feedback (CFB), Output Feedback

(OFB), and Counter (CTR). Whether or not a mode of operation allows for random

read access can be seen by what each block requires as input to be decrypted. Com-

7

mon for all modes of operation is that each block requires both the ciphertext of the

relevant block and the key, and several also require a pseudorandom initialization

vector (IV) as a seed [20]. Any mode which requires input from the decryption pro-

cess of a preceding block, such as its plaintext or any result of its decryption step, is

locked to linear decryption and is, as such, not relevant for our purposes.

ECB is a highly simplistic mode that requires no additional information to decrypt

any block. This means all blocks can be decrypted independently, but it also means

that any block with identical plaintext is encrypted identically if using the same key.

This allows attackers to sense patterns in the ciphertext which match patterns in the

plaintext. Due to this, ECB is widely considered insecure for most purposes despite

otherwise passing the criteria for our solution.

Both CBC and CFB only require the ciphertext of the preceding block, meaning it is

possible to start decrypting at any block. Retrieving a single block will still require

reading the ciphertext of another block, meaning this method is not the most memory

efficient, but this is negligible as blocks are often retrieved in large batches.

OFB requires each block’s input to come from the decryption process of the preced-

ing block, making it ineligible for random read access and thus not relevant to our

solution.

CTR is very similar to OFB, but where the input to OFB comes from the IV being

encrypted once for each block, the input to CTR is simply a unique number for each

block, commonly a simple incrementing counter and a nonce. Nonce is short for

“number used once” and is similar to the IV of other modes. This means each block

can be decrypted independently of all others as long as the initial counter value and

the sequence number of the block are known.

A summary of the modes supporting random read access can be seen in Table 2.1.

The viable modes for this thesis are CBC, CFB, and CTR. Due to prior experience

with CBC and the relative ease of implementing it, it was deemed the most suitable

for our requirements despite CTR being slightly more memory efficient.

8

Mode Additional input for each block Random read access
ECB None Yes
CBC Preceding ciphertext Yes
CFB Preceding ciphertext Yes
OFB Preceding encrypted IV No
CTR Nonce and counter Yes

Table 2.1: Modes of operation and their support for random read access

2.1.3 Cipher block chaining

Cipher block chaining works by splitting the input plaintext into 16-byte blocks.

Each block of plaintext is XORed1 with a vector before being encrypted with the

key. For the first block, this vector is the randomly generated initialization vector.

For every subsequent block, the preceding block’s ciphertext is used as the vector.

The decryption process is similar but in reverse. The key is first used to decrypt the

ciphertext, and the result of this operation is then XORed with the same vector the

block was initially encrypted with.

A diagram of the process of cipher block chaining encryption and decryption can be

seen in Figure 2.2.

2.1.4 Encryption performance

It is worth noting the factors which impact the speed at which encryption and de-

cryption can take place, as performance is an important aspect of this study. The

information collected here informs the analysis and conclusions drawn from the re-

sults.

As stated earlier, symmetric encryption vastly outperforms asymmetric encryption

due to the added mathematical complexity secure asymmetric encryption requires.

Commonly, a hybrid approach is used to transfer large encrypted files. This approach

involves using asymmetric encryption to exchange a symmetric key which is then used

for the actual data to be transferred [23]. This method can give the benefits of both

1Exclusive or (⊕). A logical operation on two sets, resulting in a “truthy” value only for differing
values. For example, 0011 ⊕ 0101 gives 0110.

9

Figure 2.2: Diagrams depicting CBC encryption and decryption [21][22].

asymmetric and symmetric encryption when communicating through unsafe networks

and could be relevant to the solution we propose in the future.

The first and perhaps most obvious factor impacting the encryption performance of

a certain file is the size of the file itself. As each block cipher encryption algorithm

has to do its work on every block of data, it stands to reason that multiplying the

number of blocks also multiplies the processor cycles required to complete the task.

This relationship is typically linear, meaning doubling the number of blocks means

doubling the amount of time taken. To speed a given algorithm up, processors have to

start becoming meaningfully faster again, or parallel computation has to be utilized.

All three viable modes of operation for this thesis allow for parallel decryption, but

10

only CTR allows for parallel encryption.

The length of the key is also an important factor. Longer keys may impact encryption

and decryption time, but certain algorithms are designed such that increasing key

length does not dramatically increase encryption time. For AES, increasing the key

increases the time spent per block somewhat, but this will not be measured in our

thesis.

2.2 Progressive video download

The concept of progressive download is simple, although the execution can at times

be complex. A common use case for progressive download is websites with large, high-

resolution images. With this technique, images can start being rendered before being

fully downloaded [24]. This allows users to start interacting with and viewing images

in a more seamless manner. Progressive download can work for a broad selection of

media types, including text, images, audio, and video, among others. An important

caveat is that not all file formats support progressive download, such as formats that

include metadata at the end of their files.

Progressive video download is mostly used for streaming. Streaming of video mainly

refers to receiving and displaying video linearly, with a very limited (if any) buffer to

hold the next frames. This can be likened to a TV receiving a live signal, with no

ability to move forwards or backwards in the stream. Many modern streaming services

offer video on demand and make use of progressive downloads. Progressive video

download is a method of storing downloaded stream data in a temporary directory,

allowing users to jump to previously downloaded sections of video. These services

also often implement seeking, letting users skip to a point in the video they wish to

download or view. When discussing video streaming in this thesis, we are referring

to progressive download with seeking.

11

2.2.1 Requirements

In order for a file format to support progressive download, it has to be streamable.

A streamable format has to play without issue even if the file is only partially down-

loaded. Not every video file format is streamable due to the requirements being very

specific. The requirements are the following three criteria:

• Metadata at the beginning : Metadata means information about information.

For a video file, this entails critical information needed for video playback such

as duration, video resolution, and which codec is used [25]. The codec is used to

encode video to reduce file size, and different codecs have different requirements

for their playback environment.

• Interleaved data: The video format has to put the video and audio on the same

track, interleaving them in small chunks so that video playback can begin as

soon as possible. If these chunks are one second of video and audio, then each

pair is a self-contained second. If the tracks were separate, it could be possible

to desynchronize the downloads such that one track is waiting for the other,

causing stuttering.

• Data loss resilience: For streaming, playback of an incomplete file is the de-

fault. If any segment of the video is missing. it should either be skipped or

automatically paused until the next chunk is downloaded.

Many video file formats, especially those created specifically for web content and

video streaming, such as MP4 and WebM, are streamable. While other file formats

support streaming, finding, testing, and listing each of them is out of the scope of

this thesis.

Another important concept in progressive video download is bitrate.

2.2.2 Bitrate

Bitrate is a measure of how many bits are required to convey a second of a continuous

medium, such as audio or video. It is expressed as bit/s or bps, always in decimal

units. While bitrate is a common measure of quality, two video files with equal

12

size, complexity, and bitrate could have vastly different qualities depending on the

compression technique used. Better encoding can lead to higher quality at equal

bitrates, so it is not a perfect measure.

A media file consisting of 10 seconds at a bitrate of 10Kbps would equal 100Kb

of content. A typical uncompressed video with 8 bits per color channel, a full HD

resolution (1920 ∗ 1080) delivering 30 frames per second would have a bitrate of

24 ∗ 1920 ∗ 1080 ∗ 30 = 1.49Gbps. This can be massively reduced by encoding without

reducing video quality much, if at all, so raw video is seldom transferred over the

internet.

The number of bits needed to convey a frame or a series of frames can differ widely

when encoded. Fewer bits are needed when the color of the frame is uniform or when

a frame is similar to the previous frame, and more bits are needed if a frame is hard

to simplify or the changes from frame to frame are drastic or unpredictable. This is

sometimes referred to as entropy2.

Encoding an entire video to the same bitrate would be using constant bitrate. In

contrast, a variable bitrate entails compressing less complex frames into fewer bits

and using more bits for frames of higher complexity. Constant bitrate allows for

more predictable network load and buffer sizes while using a variable bitrate lets the

file be encoded to a smaller size, with more detail in ‘noisy’ frames. Live streaming

benefits greatly from the network advantages provided by a constant bitrate. Our

solution does not require a specific encoding type, but variable bitrate might impact

the system’s perceived performance due to buffering. Video bitrates can vary wildly,

but common bitrates for video streaming lie between 1Mbps and 300Mbps [26].

2.3 State of file storage

There are several approaches to storing media files, both in terms of how and where

they are stored. Considerations must be made in order to know what solutions are

best suited for a given application. Here we will discuss some of the different types

2Mostly relevant for finding lower bound of lossless compression and not relevant for our case.

13

of file storage.

2.3.1 File system

The term file system can be described in many ways [27][28], and their implemen-

tations can differ heavily. The Linux System Administrators Guide explains the

following: “A filesystem is the methods and data structures that an operating system

uses to keep track of files on a disk or partition; that is, the way the files are organized

on the disk.” An operating system (OS), like the Linux distribution Ubuntu, can use

one of many file systems; ext3, ext4, and XFS, to name a few.

Popular file systems include New Technology File System (NTFS), which comes as

default for machines running modern Windows versions, and ext4, which is the de-

fault for most Linux distributions. Variations between them include the method of

indexing files and the metadata associated with the files [29]. Using different file

systems for the same application can cause compatibility issues. This can be caused

by different naming conventions (e.g., not allowing backslashes), file size limitations,

and more.

Even though the file system is responsible for the connection of files between the hard-

ware and OS, the choice of OS is mainly what governs what file system is used. We do

not consider the choice of a file system to be particularly relevant for this study, but

it can affect performance; the same goes for OS. It is worth noting that applications

(including database software) may use the underlying OS’ implementation to store

files. An example is the Filestream data type found in SQL Server, which uses the

file system to store unstructured data [30].

2.3.2 File server

A file server is a network-attached computer used to store files [31]. Corporations

can use file servers to store documents, host media files for websites, and more. This

usually allows easy access through remote desktop software, shared directories, and

a secure shell.

One approach to using file servers for hosting media data is to use it with a relational

14

database. The database stores metadata (such as the file path) related to the files

stored on the file server, and the file server contains the actual files. This approach

allows clients to easily access file information without needing to retrieve the entire

file. A drawback, however, is that it is not necessarily easy to ensure consistency

between the database and the file server.

2.3.3 Relational database management system

Relational database management systems (RDBMS) are applications that provide

functionality for storing relational data using SQL [32]. A relational database con-

tains tables, which in turn contain rows of data. Each row consists of one or more

attributes. A data type is connected to each attribute, for instance, int for integers,

or nvarchar(n) for characters of max length n. The data types may vary between

different systems.

Most RDBMSs include attribute types that support unstructured data. The most

well-known is the binary large object (BLOB). A BLOB is not restricted to certain

file types and accepts any form of binary data so long as it conforms to the column

definition (e.g., max size). Using an RDBMS can negate the problem of ensuring

consistency between the two platforms. As mentioned in Subsection 2.3.1, there may

also be file types that adhere to the underlying file system.

2.3.4 Chunk storage

A commonly used document-oriented database supports what we have termed chunk

storage. Document-oriented databases store documents in collections, where docu-

ments (often in a JSON3 structure) are stored in collections [33]. Documents inserted

into a collection can be schemaless, meaning there are no restrictions on fields or types

associated with the collection. A file uploaded to this database can be subdivided

into smaller pieces known as chunks. Retrieving these chunks individually can allow

for efficient arbitrary decryption of very large files without having to load much of

the file into memory at once.

3JavaScript Object Notation.

15

The chunks related to a file are uniformly sized except for the last chunk, which is

only as large as necessary to contain the data. Each file will also have a small index

file that keeps track of the number of chunks, their size, and the name of the original

file. The chunks themselves will have a sequence number and the ID of the index file.

The structure of the index file can be seen in Figure 2.3, while the structure of the

chunks themselves is presented in Figure 2.4.

Placing indexes on the relevant attributes, like index id and n, can speed up the time

it takes to fetch the correct documents.

{

"id" : UID ,

"file_name": string ,

"chunk_size": number , // bytes of data per chunk

"length": number , // number of chunks in file

"upload_date" : datetime ,

"metadata" : any ,

}

Figure 2.3: Structure of index file

{

"id": UID ,

"index_id": UID // foreign key to index file id

"n" : number , // sequence number , starting at 0

"data" : binary ,

}

Figure 2.4: Structure of chunk

2.3.5 External solutions

A common way of dealing with both media files and applications themselves is to host

them externally. Cloud storage services like Google Cloud [34] and content delivery

networks (CDNs) like Amazon CloudFront [35] have become popular and can provide

many benefits to clients hosting a service. There are usually guarantees on uptime

and storage redundancy, as well as geographically spaced servers to reduce latency,

without compromising the ease of configuration. Providers like these offer cloud-based

16

file storage, RDBMS, and NoSQL services that can be configured according to the

client’s wishes.

Although solutions like these are popular, their underlying implementations are often

proprietary. One can not necessarily know what file systems and storage solutions

are used4 in the underlying system. It is also worth noting that external solutions

are not always applicable for systems storing sensitive information [36], depending on

the solution itself and the geographical origin of the system.

4Some cloud solutions offer configurable virtual machines where the client can choose operating
system etc.

17

Chapter 3

Methodology

This chapter explores the different methods chosen to access encrypted data. While all

three methods will be used with AES in CBC mode, they have meaningful differences,

which will be shown in the benchmarking.

The three methods we want to discuss are as follows:

• Reading and decrypting entire files from disk (NTFS)

• Reading chunks from the disk and decrypting them separately

• Using a document-oriented database with a chunk-based approach to file storage

3.1 Defining solutions

We aim to compare the baseline encryption and decryption methods with a document-

oriented approach. Thus, we find it essential to define them properly.

3.1.1 Disk solution

The Disk method involves reading entire files from the disk and encrypting/decrypting

them in one go and is considered the baseline approach. This is quick and efficient

for smaller files, and very simple to implement. It is expected that the execution time

of this approach should scale linearly with the size of the input files — unless the

system needs to use secondary memory (i.e., not RAM) during execution. One can

therefore assume that for very large files, delays will be incurred due to higher data

fetch latency.

18

The size of an encrypted file will be almost identical to its unencrypted counterpart,

except for the additional initialization vector of 16 bytes and the padding schema

employed by the AES cipher, ranging between 1 and 16 bytes. Encrypted file size

using this method is seen in Equation 3.1, where IV denotes the initialization vector

for the first block (16 bytes), and Padding fills the remainder of the last block as seen

in Equation 3.2.

FileSizeencrypted = IV + FileSizeunencrypted + Padding (3.1)

Padding = 16− (FileSizeunencrypted mod 16) (3.2)

3.1.2 Chunk solution

In this solution, the files are stored in a slightly different manner. As explained in

Subsection 2.1.3, the AES encryption algorithm CBC mode encrypts files by dividing

them into 16-byte ciphertext blocks. Due to the nature of cipher-block chaining, each

of these blocks is reliant on the ciphertext from the previous block. The first block is

an exception, as it uses an initialization vector instead.

During encryption, the files are divided into chunks of specific sizes. Assume in this

example that we are using 256KB chunks. The initial chunk will have an initialization

vector of 16 bytes, as well as 256KB−16B of encrypted data. The next chunk of the

file (256KB−16B) will be encrypted using the last 16 bytes of the first chunk as the

initialization vector. Those 16 bytes will be prepended to the current chunk (making

it 256KB), and the process is repeated until the whole file is encrypted. The chunks

are still stored as a single file on the file system but are interpreted differently by

the software running the tests. Files encrypted in this way will be slightly larger, as

each chunk stores 16 duplicate bytes. The encrypted file size is given by Equation

3.3, where 16 signifies the block size of the AES cipher, and Padding is described in

19

Equation 3.2.

FileSizeencrypted = IV + FileSizeunencrypted + ⌈FileSizeunencrypted
ChunkSize

⌉ ∗ 16 + Padding

(3.3)

Since each chunk is stored alongside its IV, it is not required to fetch the preceding

chunk to decrypt a random chunk. Therefore, an assumption is made that this so-

lution will have improved performance in terms of time to first byte (TTFB), and

hopefully hardware utilization since there is no need to store the entire file in mem-

ory.

3.1.3 DBC solution

This solution is comparable to Chunk, except the files will be stored and retrieved

through a database. Due to this, we have named the solution Database Chunk, or

DBC for short.

After a file has been encrypted it is uploaded to a document-oriented database which

handles files by subdividing them into chunks. To fit the previous solution, the

database will be configured to store files in chunks of the same sizes as Chunk during

testing.

For each chunk to be fully decryptable without reading the prior chunk, this solution

requires the encryption method from the Chunk solution. Therefore, this solution does

not have its own encryption method and will instead inherit it from Chunk.

The system running the tests will host both the code and the database, meaning

network latency will have the least possible impact. It may be expected that this

solution takes somewhat longer to fetch data due to the software overhead. The first

read of a session might also take longer than average due to the database being “cold”,

i.e., not having any data in the cache.

20

3.2 Performance indicators

Given that our solutions are meant to compare the aforementioned strategies of ac-

cessing encrypted files, we need a list of established metrics (performance indicators).

These lay the foundation for the tests and show how well the solutions perform against

each other. The performance indicators are listed here in no particular order.

3.2.1 Time to first byte

Time to first byte (TTFB) is a metric most associated with web development and

signifies the time it takes to receive the first byte of a resource after requesting it

from a server [37]. Several factors can cause the TTFB to vary significantly. These

include the physical distance between the client (the requestor) and the server, server

load at a particular time, signal hindrances (e.g., bad weather), and the ISP1 being

overloaded. Since we are testing only what happens on the server, we are unaffected

by these factors.

In the case of this project, TTFB will be a valuable performance indicator. This

indicator will essentially give a measure of how much time it takes between a request

being sent and a decrypted response being ready.

3.2.2 Throughput

Throughput measures the amount of data being transferred over a given time span and

is a good measure of the performance of a given system. Each solution’s throughput

is measured and compared for readable relative comparisons. For media streaming

purposes, the throughput of a given decryption algorithm should be higher than the

bitrate to avoid users having the decryption process bottlenecking the service.

Throughput is also related to the next performance indicators: lower throughput may

adversely affect system resources.

1Internet service provider, often a telecommunications company, that provides internet access to
clients.

21

3.2.3 Memory usage

All servers are limited by their physical resources, which include their main memory.

This is a physical component called random access memory (RAM). Being one of the

fastest memory components on the computer, it is vital that memory consumption

stays below that of the RAM capacity. If an application requires more memory than

what is available on the system, the operating system may use paging in order to

allow the application to use more storage [38]. Paging refers to the use of secondary

memory (e.g., the HDD or the SSD) as if it were main memory. The secondary

memory will, in almost all cases, have lower bandwidth, suffer from worse read and

write speeds, and be placed physically further away than the main memory, slowing

down the system altogether.

While an algorithm could achieve a speed-up over another, it might be sacrificing

memory space in a space-time tradeoff. This tradeoff could cause problems on systems

with limited RAM, making it important to monitor the memory utilization of our

solutions.

The benefits of having a lower memory footprint during decryption can therefore

be:

• System performance: higher decryption speed due to “correct” memory uti-

lization

• System stability: background tasks and processes are less affected

• Scalability: if the memory usage is low, it facilitates a more scalable system,

and perhaps more concurrent decryption processes at once

3.2.4 Other performance indicators

Several other performance indicators could be valuable to analyze in the context of

encrypted video streaming. Some of them are named here, but they will not be

discussed in the analysis.

22

CPU usage

The central processing unit (CPU) is the physical component that takes care of most,

if not all, computations on a system. The process of encryption and decryption are

often CPU heavy and require it to do altercations to the data. In the case of AES

encryption, these are primarily bitwise operations. A bitwise operation is normally

easy for a CPU to handle and can be as simple as a negation (e.g., the binary value

0101 → 1010). However, due to the amount of these operations needed for larger

files, the CPU could become a bottleneck.

Parallelism

In multicore systems, it is possible to utilize the processing cores in parallel, speeding

up tasks by dividing the labor. The performance gained depends on the implemen-

tation and the degree of parallelization of the program [39]. This is an important

indicator since most modern processors have two or more processing cores. However,

we decided to omit it from the project due to the increased complexity of the test

framework, overhead associated with thread initialization, and not being as important

as the previously mentioned performance indicators.

Storage medium degradation

When files on a system are created, altered, and deleted, the underlying file system

must decide where the new data should be placed. When hard disk drives (HDDs) are

used, these files typically align sequentially, so the seek times on the disk platter are

kept to a minimum. However, when a file is appended with new data after another

file is already stored after it (physically, not necessarily temporally), the appendix

may be placed after the last file. This phenomenon is called fragmentation [40].

When the drive is fragmented, HDDs, in particular, can suffer from worse read per-

formance. This is because of the physical limitations of the moving parts that must

traverse the spinning platters [41]. Since the contents of a file are not necessarily

stored sequentially on the disk, the hard disk head takes more time to read out the

whole file. Fragmentation can occur in SSDs as well, but they are not as affected due

to them not having moving parts and faster read times in general.

23

A note on solid state drives (SSDs) is that they can suffer from write amplification

(WA). WA is an undesirable side effect because SSDs must rewrite entire blocks

on deletes [42]. This can happen when updating or writing to the drive (and when

garbage collection occurs) and requires the entire block to be read and updated before

being written to another block.

An example is when an SSD chooses to write new data to a block that already has

data written to it. The previous data of the block must then be rewritten into a

new block before the new data is written to the “current” block. The user only

intended one write operation, but two writes were needed to accomplish the single

write. Although most SSDs use wear leveling to increase the life span of the drive,

write amplification can cause the drive to be shorter-lived.

Even though these hardware-specific degradation metrics are measurable, it is hard

to give a fair evaluation without more knowledge on the topics of operating systems

and drive firmware interoperability. It does also stray out of the scope of the research

question.

3.3 Test bed

The test bed is an application written in Python. It is designed to analyze the different

solutions, focusing on the aforementioned performance indicators. The application

will also need to be profiled, a process from which we can extract information on

parts that need to be optimized. By doing this, we can remove rudimentary function

calls that are not part of the actual benchmarking.

3.3.1 Choice of programming language

Several programming languages were considered for creating the test bed. In order

to make a suitable choice, we looked at ways the different languages could help with

giving good results without compromising efficiency. The language would also need

support for relevant libraries2 (e.g., the AES-CBC algorithm).

2Pieces of external code that can be implemented into a codebase. Examples include algorithms
in cryptography, mathematics, and tools for visualization.

24

We first looked at Rust, a relatively new programming language praised for its run-

time performance and memory efficiency [43]. Having been one of the most favored

programming languages by developers, according to a yearly survey by StackOver-

flow [44], it has generated a community creating libraries that support most use cases.

Rust had everything needed in order to create a test bed, and seemed like a great

choice. There was, however, one caveat: lack of experience using the language. This

created a barrier since the scope of the application was somewhat large, and the time

given to develop it was limited.

We also looked into C++. Although we were more experienced with C++ than

Rust, choosing it could compromise time spent on data analysis by spending too

much developing and squashing bugs along the way.

Python was the programming language we had the most experience with, having

used it in several projects earlier. The package manager had support for all relevant

functionality. Contrary to Rust and C++, Python seemed like the language that

would give the fastest progress in terms of testing and benchmarking.

There were concerns as to the runtime performance of Python as opposed to the

other languages. Programs that rely heavily on arithmetic operations may suffer due

to the Python interpreter’s way of dealing with the boxing of operands and containers

[45]. This is relevant since the AES cipher uses block ciphers in order to encrypt and

decrypt data, leveraging many bitwise operations [46].

To leverage the speed of implementation using Python, and the performance benefits

of C++, we found Python libraries that utilize C3 for functions that are critical for

performance (see Subsection 3.3.2). Hence, Python was the language of choice for

the test bed.

3.3.2 Software breakdown

To make the benchmarking reproducible, we noted down different software versions

used in the test bed. This includes Python itself, and libraries that were used to speed

3The language C++ is based on. Although more primitive, it is known for being highly perfor-
mant.

25

up development and ensure correct implementations. Vetting of the implemented

libraries was also an important point since the usage of external pieces of code can

introduce bugs and security issues. Table 3.1 shows a compacted view of the software

used in the program. slib denotes the standard library, meaning the version is the

same as the Python version.

The time module4 was used in order to achieve high-resolution timing inside function

calls [47]. This was needed both to gather results when timing different operations

and to extrapolate the time needed to perform larger test batches. The perf counter()

function was used to measure the time differences.

cProfile and pstats both deal with the profiling of the application [48]. The cProfile

code is wrapped around parts of the existing code base, and executed simultaneously

as the benchmarking runs. While running, it gathers statistics and writes them to

a file. pstats is used to extract and analyze the data provided by cProfile, and is

used in scripts running after the benchmark is complete. As mentioned, analyzing

the statistics from these packages helps find function calls that should be disregarded

in the results. Examples include printing to the standard output, the function call

to the cProfile executor itself, and arbitrary functions deemed unnecessary for the

application.

We chose to use PyCryptodome for functions related to the AES cipher [49]. It is

a fork5 of a no longer maintained package called PyCrypto. The package contains

many encryption methods, and leverages code written in C for performance-critical

operations as mentioned in Subsection 3.3.1. There are several reasons why the C

code runs faster, some of them being:

• The C code is compiled, whereas Python code is interpreted. Compilation is the

process of turning the code into machine code through a compiler, leaving an

executable. Compiled programs tend to run faster than interpreted programs

[50].

4Essentially the same as a library. Module, package, and library are used interchangeably in this
thesis.

5In relation to software version control, a fork is a copy of an existing repository.

26

Software Version When used

Python 3.10.6 During execution

time slib During execution
cProfile slib During execution
pstats slib Post-processing

PyCryptodome 3.17 During execution
unittest slib Prior to execution

tracemalloc slib During execution

Table 3.1: Software and libraries used.

• C does not have a garbage collector (GC) contrary to Python. Garbage collec-

tion is a process of proactively deallocating memory during runtime. It can eat

resources, and it’s hard for developers to evaluate performance degradation due

to the GC.

• Python dynamically allocates memory on the heap, a process that tends to be

less efficient than using the stack. C code more often makes use of the stack, a

more efficient, yet smaller, memory component.

The unittest library was used in order to simplify making unit tests, a topic that will

be discussed later [51].

Lastly, tracemalloc was used to gather statistics on memory usage during runtime

[52]. After importing the library, we start tracing the relevant pieces of code and

log it after it has finished. The most pertinent information tracemalloc gives is the

current memory allocated and the peak memory allocated during execution.

3.3.3 Hardware breakdown

Testing was further standardized by using the same hardware for all benchmarking.

The tests were run on a computer with the specifications listed in Table 3.2.

The machine was running on Windows 11 Home, version 22H1. The file system

associated with the operating system was NTFS.

64 performance cores, 8 efficiency cores.

27

Component Specifications

CPU 12 cores6, 4.5GHz max frequency
Main memory (RAM) LPDDR5, 16GB, 4800MHz frequency

Secondary memory (SSD) M.2, 512GB storage

Table 3.2: Hardware components of test bench.

3.3.4 Test parameters

For testing, we are using different file and chunk sizes to identify differences properly.

This can also help find break-even points for the solutions as they might have strengths

and weaknesses depending on the sizes.

Different file sizes

According to a technical report by Microsoft [53], performance differences exist when

storing files on NTFS directly versus as BLOBs on SQL Server. In the report, they

mention that for files smaller than 256KB, SQL Server handles them more efficiently

as BLOBs. For files larger than 1MB, storing them directly on NTFS is more efficient.

When discussing efficiency in the report, they focus on read/write throughput and

disk fragmentation — HDDs were used for testing. They also mention that the break-

even point will vary depending on several factors.

For the purposes of this study, the file sizes mentioned in the report are considered

too small. Since the main goal is discovering efficient solutions to read and decrypt

large media files, we set the lower limit to 16MB. From this, the sizes increased

exponentially to 32MB, 64MB, 128MB, etc. The upper limit was set to 4GB.

Varying chunk sizes

For the Chunk and DBC solutions, we have chosen to try two different chunk sizes.

We have chosen to go for 256KB and 4MB. These will both be tested for all the

different file sizes.

The reason for testing different chunk sizes is that it may affect runtime performance

and resource usage. In terms of runtime performance, certain chunk sizes may out-

28

perform others by utilizing the underlying file system more efficiently. Smaller chunks

will likely lead to less memory expenditure but require more reads from the disk or

database. It could also help close in on a potential break-even point for the most

efficient chunk size per file.

3.4 Benchmarking solutions

To assess the different solutions, we will run extensive tests. These will produce

valuable insights regarding the performance indicators we have chosen to focus on;

see Section 3.2. The test bed, as mentioned, is written in Python and uses the

packages mentioned for profiling, timing, and measuring resource usage.

3.4.1 Ensuring validity of the tests

Since the thesis largely depends on the results from the benchmarking, it is important

to ensure that the results can be trusted. There are several measures to look at

when trying to provide this validity. Examples include ensuring that functions in the

application return the correct results and that the machine running the tests is not

running heavy background tasks while performing benchmarks. Here we will present

measures taken to have a reliable test environment.

Data integrity and determinism

Tests were written to ensure data integrity after encrypting and decrypting data.

Since AES-CBC makes use of an initialization vector (see Subsection 2.1.3), a pseu-

dorandom value generated during runtime, encrypting the same data will twice result

in different ciphertexts. This is known as a non-deterministic function, where the

same input does not necessarily give the same output. However, upon decryption,

the plaintext will still be the same. The data integrity tests were implemented to

validate that no two ciphertexts were identical and that the plaintext provided by the

decryption functions matched the original plaintext exactly.

Manual tests to ensure data integrity were also employed. This was done by using me-

dia files — sound, image, and video — checking for corruption and visually assessing

29

the decrypted ciphertext.

Profiling the test bed

As was noted in Subsection 3.3.2, the cProfile and pstats libraries were to be used in

the benchmarking. In addition to this, they were used to identify pieces of code that

were especially time-consuming. Using this data, we were able to improve certain

parts of our code base.

It should be noted that running a program with a software profiler attached negatively

affects performance. This is because the profiling software (at least cProfile) works

as a wrapper around the existing software. It then has to probe and log information

regarding the software being executed, increasing the computational effort. We found

that cProfile did not have a too big footprint, contrary to the profile library, which

is implemented solely in Python.

Unit tests

Unit tests are essentially a way of testing a “unit of code”. In most cases, this

includes methods and functions but differs from larger-scale system tests where the

entire life cycle is tested. These tests were implemented by asserting that the output of

functions with specific inputs was of certain values. For encryption-related functions,

predetermined initialization vectors were used so the non-deterministic nature would

not interfere.

Resource surveillance

Another important point for getting accurate test results was to monitor the machine

running the benchmarks. Operating systems like Windows 11 have automated ways

of performing background tasks and updates that can affect performance. Although

these tasks are not necessarily resource intensive, it is worth aiming to have as little

interference as possible during testing. Therefore, measures were taken to mitigate the

impact: all non-critical system tasks were ended, automatic updates were deactivated,

and internet access was turned off.

30

During testing, only PowerShell (version 5.1) was open and used to run the tests,

except Task Manager, which was used during some runs to validate resource usage

in accordance with benchmarking results. PowerShell is a pre-installed command-

line shell that comes with most new Windows installations, from which scripts and

programs can be run [54]. Task Manager also comes built-in with Windows and

provides statistics associated with hardware, like the CPU.

Repeated tests

Even with the aforementioned measures in place, running a single test per solution is

not enough. Coincidences happen, and one good result may not resemble the actual

performance. We chose to do at least 300 run-throughs for each combination (e.g.,

DBC with 64MB file and 256KB chunks). With this, it’s easier to see trends and

accurately depict their respective performance.

3.4.2 Benchmarking application

The benchmarking application is meant to give accurate measurements of runtime

performance and resource expenditure. The main components of the application and

how they are connected are detailed in Figure 3.1. Although there are more files

associated with the application, the ones of interest are:

• Encryption and decryption: aes cipher.py

• I/O handler: binary file handler.py (and file handler.py)

• Configuration: config.py

• Executables: benchmark.py, profiler.py, and resource profiler.py

• Document-oriented database driver

Encryption and decryption

The file aes cipher.py contains a class called AESCipher. Its job is to encrypt and

decrypt binary data. Although one can encode data with Base64 to make the output

more legible, it was deemed unnecessary. This is because the process in itself takes

31

Figure 3.1: Relationship diagram of the application, highlighting the most
important aspects.

32

time, and files become larger (an increase of at least 33% [55]) and therefore require

more processing to be done.

AESCipher is instantiated with a key, namely the symmetric key used for encryption

and decryption. The block size is given by the algorithm — 16 bytes — and the

initialization vector is created pseudo-randomly when using encryption methods and

inferred when using decryption methods.

Its methods for regular encryption and decryption (encrypt and decrypt) use a stan-

dard implementation provided by the pycryptodome library. The encryption method

is provided with a raw byte string (plaintext), which is promptly padded to be a mul-

tiple of the block size (16). An IV is generated and used together with the key and

mode of operation to create an instance of pycryptodome AES. It is then used to en-

crypt7 the raw data into ciphertext before prepending the plaintext IV and returning

the result.

The decryption process is similar. It is also fed with a byte string (ciphertext) as the

parameter. First, the first 16 bytes are extracted, which is the IV for the ciphertext.

The pycryptodome AES is then instantiated in the same manner as encryption. The

rest of the byte string (excluding the IV) is then decrypted8, before un-padding the

resulting plaintext.

Our implementation of chunk-wise cryptography is solved similarly and is touched on

in Subsection 3.1.2. Figure 3.2 shows the iterative nature of the chunk-wise encryption

method. The overhead in terms of memory usage as seen in the figure is explained

by Equation 3.3, and is stored in the last chunk. The decryption method can then

be used on individual chunks, as their respective IV is stored in the chunk.

I/O Handler

The files binary file handler.py and file handler.py each contain methods for read-

ing and writing data to files; in binary mode and text mode respectively. The binary

mode was preferred for benchmarking (as explained in Subsection 3.4.2: Encryption

7Using the pycryptodome encrypt method.
8Using the pycryptodome decrypt method.

33

Figure 3.2: Flow of the chunk-wise encryption algorithm.

and decryption), while the text mode was used during testing.

A class named BinaryFileHandler exists in binary file handler.py, which contains

all methods related to I/O. It is instantiated with a filename and associates this

filename with relevant paths, such as the path it should be stored at when after

encryption. The BinaryFileHandler creates an instance of the AESCipher for all

methods requiring either encryption or decryption and uses AESCiphers methods

according to the specified solution (whole file or chunk-wise).

The built-in open function in Python is used, alongside context managers to close

files when reads/writes are finished and to deallocate memory.

Configuration

config.py contains mostly all configuration variables and is read by the executa-

bles at runtime. It specifies important values, namely what chunk size should be

used, encryption keys for the files, and several paths. Although these variables could

be hard-coded in different places, it could have led to bugs and unnecessary time

waste.

34

Executables

There are three main entry points in the application, each providing statistics on dif-

ferent performance indicators. They are the following: benchmark.py, profiler.py,

and resource profiler.py. Each of them is run through the terminal with specific

command line arguments, such as file name9 and the number of iterations. An exam-

ple of how benchmark.py could be run 100 times on a 1GB file can be seen below.

After running this command, the process asks which solution should be benchmarked

and runs the chosen solution.

> py .\ benchmark.py 1GB 100

For timing the different solutions, benchmark.py was used. It only relies on the

time library and logs the relevant timings to a file. profiler.py is almost identical to

benchmark.py, but the timings are removed and it uses the cProfile run function to

wrap the executing functions for profiling. pstats was then used to collect the data

provided by the profiling.

To accurately get information regarding resource usage, we also created the file

resource profiler.py. Although similar to the previous two, it was made to run

with tracemalloc.

Document-oriented database driver

Using a popular document-oriented database, we implemented a solution for storing

binary file data and metadata, as mentioned in Subsection 2.3.4. The driver needed

to support file uploads and partial file downloads.

Uploads were made possible using a library provided by the document-oriented database

creators. Partial file downloads used seeking, which also came with the library.

9For the benchmarking, our file names coincide with their size.

35

Chapter 4

Results and Analysis

The data presented in this chapter are the results of the benchmarking process out-

lined in Section 3.4. Each solution was tested sequentially on the same system,

ensuring an environment with an adequate level of consistency. We ran our tests

with a range of differently sized inputs as described in Subsection 3.3.4. As described

in Section 3.1, we will refer to the solutions by their shortened aliases: Disk, Chunk,

and DBC. We will specify chunk sizes used with Chunk and DBC in the format

name-chunksize.

Results will be split by category, with encryption first and decryption second. The

analysis will be in the last section.

4.1 Encryption

As mentioned in Subsection 3.1.3, DBC is not eligible for encryption, instead inher-

iting its results from Chunk. The average amount of time it took to encrypt the

differently sized files can be seen in Table 4.1 and Figure 4.1, while the throughput

measured in megabytes per second is presented in Table 4.2 and Figure 4.2. Encryp-

tion memory utilization is shown in Table 4.3 and Figure 4.3.

36

Filesize Disk Chunk-256KB Chunk-4MB
16MB 0.04531 0.05776 0.04695
32MB 0.11183 0.12547 0.10053
64MB 0.25408 0.22865 0.1992
128MB 0.4528 0.48101 0.39269
256MB 0.9463 0.69397 0.78947
512MB 1.98176 1.7599 1.60428
1GB 3.93614 3.80621 3.42833
2GB 8.24366 7.81832 6.7826
4GB 49.98934 16.8439 17.08196

Table 4.1: Encryption time in seconds

Filesize Disk Chunk-256KB Chunk-4MB
16MB 353.122931 277.00831 340.78807
32MB 286.148618 255.04105 318.31294
64MB 251.889169 279.90378 321.28514
128MB 282.685512 266.10673 325.95686
256MB 270.527317 368.89203 324.26818
512MB 258.356209 290.92562 319.14628
1GB 260.153348 269.03403 298.6877
2GB 248.433342 261.94886 301.94911
4GB 81.937469 243.17409 239.78513

Table 4.2: MB/s encrypted

37

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

0.1

1

10

100

Filesize

T
im

e
to

en
cr
y
p
t
(s
ec
on

d
s)

Disk
Chunk-256KB
Chunk-4MB

Figure 4.1: Average encryption time (logarithmic scale)

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

0

100

200

300

400

500

Filesize

M
B

en
cr
y
p
te
d
p
er

se
co
n
d

Disk
Chunk-256KB
Chunk-4MB

Figure 4.2: Average encryption throughput

38

Filesize Disk Chunk-256KB Chunk-4MB
16MB 64.017MB 1.0096MB 15.957MB
32MB 128.017MB 1.0096MB 15.958MB
64MB 256.017MB 1.0104MB 15.959MB
128MB 512.017MB 1.0105MB 15.959MB
256MB 1024.017MB 1.0105MB 15.959MB
512MB 2.0GB 1.0105MB 15.959MB
1GB 4.0GB 1.0107MB 15.960MB
2GB 8.0GB 1.0108MB 15.960MB
4GB 16.0GB 1.0108MB 15.960MB

Table 4.3: Encryption memory peak

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

1MB

4MB

16MB

64MB

256MB

1GB

4GB

16GB

Filesize

M
em

or
y
p
ea
k

Disk
Chunk-256KB
Chunk-4MB

Figure 4.3: Memory peak during encryption (logarithmic scale)

39

4.2 Decryption

Average decryption time is shown in Table 4.4 and Figure 4.4. Average decryption

throughput can be seen in Table 4.5 and Figure 4.5. Decryption memory utilization

is shown in Table 4.6 and Figure 4.6.

Filesize Disk Chunk-256KB Chunk-4MB DBC-256KB DBC-4MB
16MB 0.04454 0.11638 0.04202 0.13299 0.07398
32MB 0.12013 0.1213 0.08846 0.13786 0.13223
64MB 0.24299 0.22399 0.17624 0.2576 0.26542
128MB 0.46079 0.46687 0.34986 0.48636 0.54158
256MB 0.95609 0.62864 0.71325 0.87164 1.19868
512MB 2.01201 1.71314 1.39712 1.81103 2.19617
1GB 4.13394 3.48021 2.87999 3.51681 4.1094
2GB 8.15399 6.89489 5.87454 7.29861 8.3328
4GB 62.45584 14.78916 11.90777 14.86481 17.16025

Table 4.4: Decryption time in seconds

Filesize Disk Chunk-256KB Chunk-4MB DBC-256KB DBC-4MB
16MB 359.228 137.481 380.771 120.310 216.275
32MB 266.378 263.809 361.745 232.120 242.003
64MB 263.385 285.727 363.141 248.447 241.127
128MB 277.784 274.166 365.861 263.180 236.346
256MB 267.757 407.228 358.920 293.699 213.568
512MB 254.47 298.866 366.468 282.712 233.133
1GB 247.706 294.235 355.557 291.173 249.185
2GB 251.165 297.032 348.623 280.601 245.776
4GB 65.582 276.960 343.977 275.550 238.691

Table 4.5: MB/s decrypted

40

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

0.1

1

10

100

Filesize

S
ec
on

d
s
to

d
ec
ry
p
t

Disk
Chunk-256KB
Chunk-4MB
DBC-256KB
DBC-4MB

Figure 4.4: Average decryption time (logarithmic scale)

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

0

100

200

300

400

Filesize

M
B

d
ec
ry
p
te
d
p
er

se
co
n
d

Disk
Chunk-256KB
Chunk-4MB
DBC-256KB
DBC-4MB

Figure 4.5: Average decryption throughput

41

Filesize Disk Chunk-256KB Chunk-4MB DBC-256KB DBC-4MB
16MB 48.0186MB 0.766MB 11.972MB 32.076MB 32.049MB
32MB 96.0186MB 0.766MB 11.972MB 32.585MB 40.019MB
64MB 192.019MB 0.766MB 11.972MB 32.586MB 40.019MB
128MB 384.019MB 0.766MB 11.972MB 32.592MB 40.020MB
256MB 768.019MB 0.766MB 11.972MB 32.599MB 40.026MB
512MB 1.500GB 0.766MB 11.973MB 32.608MB 40.033MB
1GB 3.000GB 0.766MB 11.973MB 32.626MB 40.047MB
2GB 6.000GB 0.766MB 11.973MB 32.634MB 40.058MB
4GB 12.000GB 0.766MB 11.973MB 32.650MB 40.079MB

Table 4.6: Memory peak during decryption

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

1MB

4MB

16MB

64MB

256MB

1GB

4GB

16GB

Filesize

M
em

or
y
p
ea
k

Disk
Chunk-256KB
Chunk-4MB
DBC-256KB
DBC-4MB

Figure 4.6: Memory peak during decryption (logarithmic scale)

42

4.2.1 Dry run

A relevant dry run pattern was observed solely in DBC. When the database was

initialized, the first run of each benchmark was considerably slower than the average.

The decryption time of the first run of each benchmark is displayed in Table 4.7 as

a percentage of the average decryption time shown in Table 4.4. Both dry run times

and average run times were averaged and are displayed in Figure 4.7.

Filesize DBC-256KB DBC-4MB

16MB 349% 136%
32MB 235% 213%
64MB 172% 219%
128MB 179% 198%
256MB 122% 303%
512MB 144% 195%
1GB 155% 164%
2GB 167% 231%
4GB 207% 230%

Table 4.7: DBC dry run time compared to average (percentage)

16
M
B

32
M
B

64
M
B

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

0

10

20

30

Filesize

S
ec
on

d
s
to

d
ec
ry
p
t

Dry run
Average

Figure 4.7: DBC dry run compared to average (seconds)

43

4.2.2 Time to first byte

The chunk-based solutions can deliver any amount of data from any part of a chosen

encrypted file on demand. We queried for a single chunk and measured the time

between sending the request and receiving the entire decrypted chunk. This data is

shown in Table 4.8 and visualized in Figure 4.8.

Method Milliseconds
Chunk-256KB 0.99
Chunk-4MB 14.08
DBC-256KB 46.33
DBC-4MB 49.11

Dry run DBC-256KB 73.48
Dry run DBC-4MB 75.97

Table 4.8: Time to first byte

Ch
un
k-
25
6K
B

Ch
un
k-
4M
B

D
BC
-2
56
K
B

D
BC
-4
M
B

D
ry
ru
n
D
BC
-2
56
K
B

D
ry
ru
n
D
BC
-4
M
B

20ms

40ms

60ms

80ms

T
im

e
to

fi
rs
t
b
y
te

(m
s)

Figure 4.8: Time to first byte

44

4.3 Analysis

Each solution seems to roughly follow the expected linear trend between file size and

decryption time. While Disk performs well at small file sizes, it gets progressively

beaten out by Chunk. At the largest file size tested, Disk struggles with performance

in a manner that both Chunk and DBC avoid. The exact reason for this is unclear,

although there is a likely culprit. Main memory could be overly taxed due to the

entirety of both plaintext and ciphertext existing in memory at the same time in

the Disk-solution. As Chunk and DBC are more memory-efficient, they do not hold

massive amounts of data in main memory at a time. They read a chunk, encrypt/de-

crypt it, then immediately write the processed chunk to a file before dropping it from

memory and moving on to the next chunk.

Brief testing on a different system with 32GB RAM (twice as much as the bench-

marking system) saw the linear trend for Disk encryption time upheld at 4GB. The

trend was broken once again at 8GB, lending credence to our hypothesis that lack of

main memory space is the issue for Disk at higher file sizes. This means Chunk and

DBC provide massive performance gains in environments that are starved of main

memory when compared to the more naive Disk.

DBC performs consistently worse than Chunk, which is to be expected as they use the

same mechanisms for decryption, but DBC has to retrieve chunks from the database

instead of finding them directly in the file system. This difference seems to be the

main factor causing DBC to spend approximately 25% more time than Chunk in

our testing. DBC has the additional drawback of its first run being considerably

slower than subsequent runs, likely due to the database being cold. This pattern can

clearly be seen in Table 4.7, and was not observed in the other solutions. This was

also demonstrated by restarting the database after some runs to see if this pattern

persisted, which it did. Although the internals of the proprietary document-database

is unknown, it is most likely due to an empty cache.

Chunk seems to outperform Disk for both encryption and decryption quite rapidly

as file size increases, even before considering Disk’s increasing memory requirement.

Before hitting the memory wall, Disk outperforms DBC for decryption at any file

45

size. DBC weighs up for this by being better suited for progressive download while

still performing at an adequate level.

Chunk’s TTFB varied wildly with chunk size, with the time for 4MB being roughly

14x the time for 256KB, which roughly matches their size difference. For DBC, there

was an increase in TTFB when chunk size increased, but it was much less significant.

This means that if the ideal chunk size for decryption is on the larger side, TTFB

will in all likelihood not suffer much.

As mentioned in Subsection 2.2.2, the roof for common bitrates is 300Mbps. As

bitrate is specified in decimal, the corresponding binary value is 35.76MB/s. As

DBC’s throughput generally ranges from 200MB/s to 300MB/s, it is safe to say

that the decryption process should not be a bottleneck for the delivery of most media

through a document database. This means that DBC is viable for use in VOD-systems

working on encrypted files up to a very high bitrate, as a decryption throughput of

200MB/s translates to a bitrate of 1677Mbps.

46

Chapter 5

Conclusion

This thesis has compared different ways of storing and serving encrypted files, focusing

on the utilization of chunks. It used a simple approach that read files from disk in

one uninterrupted operation (Disk), an approach allowing random access decryption

from disk using chunks (Chunk), and a variant of the chunk method using a document

database (DBC). We hypothesized that these chunk-based methods would have a

comparable decryption throughput to Disk, while also having additional benefits such

as progressive decryption and random access decryption.

We have shown that for files that range from 16MB to 4GB, the chunk-based de-

cryption methods have a comparable and at times superior throughput compared to

Disk. While Disk runs into issues when encrypting file sizes of approximately 1/4 of

main memory capacity, the memory requirements of both Chunk and DBC hardly

scale with file size at all. While Chunk outperforms DBC, the difference is not very

pronounced. As many systems require a database solution, DBC can be a viable

option

Storing encrypted media files in chunks in a document database and decrypting on

the fly is a promising approach, allowing systems to combine at-rest-encryption with

services such as video on demand without the heavy latency incurred by using a

simpler method.

47

5.1 Future work

The research provided in this thesis gives indications as to how the different solutions

perform. Still, there are points of research that could be investigated in order to get

a better overview.

5.1.1 Measurement of CPU times

While the Chunk method seems to outperform DBC, there were indications from

the profiling pointing to fetch latency from the database to the application. As we

established earlier, a file server will usually be run with some form of database to

keep metadata. It would therefore be interesting to see if the Chunk approach would

see more similar results to DBC. This could also be done by measuring the CPU time

of the application when running the solutions, which preempts time spent waiting for

other processes.

5.1.2 Chunk storage in RDBMS

Our approach using a document-oriented database is replicable using a relational

database. It could be interesting to see whether relational databases saw improved

runtime performance and memory utilization compared to document-oriented ones.

5.1.3 Break-even points for chunk sizes

As was seen in the results, varying the size of chunks does impact performance. This

may relate to what hardware is used, the file system of the operating system, or

(for the DBC approach) the DBMS. Although the performance differences were not

particularly large, only two chunk sizes were tested. Testing a broader span of chunk

sizes could lead to further decreases in execution times.

48

Bibliography

[1] “Glossary: Confidentiality.” (2023), [Online]. Available: https://csrc.nist.

gov/glossary/term/confidentiality (visited on 06/01/2023).

[2] “Glossary: Cryptography.” (2023), [Online]. Available: https://csrc.nist.

gov/glossary/term/cryptography (visited on 06/01/2023).

[3] “Glossary: Encryption.” (2023), [Online]. Available: https://csrc.nist.gov/

glossary/term/encryption (visited on 06/01/2023).

[4] “Glossary: Decryption.” (2023), [Online]. Available: https://csrc.nist.gov/

glossary/term/decryption (visited on 06/01/2023).

[5] “Glossary: Encryption algorithm.” (2023), [Online]. Available: https://csrc.

nist.gov/glossary/term/encryption_algorithm (visited on 06/01/2023).

[6] “Glossary: Cryptographic key.” (2023), [Online]. Available: https://csrc.

nist.gov/glossary/term/cryptographic_key (visited on 06/01/2023).

[7] “Glossary: Cryptanalysis.” (2020), [Online]. Available: https://csrc.nist.

gov/glossary/term/cryptanalysis (visited on 06/01/2023).

[8] “Glossary: Asymmetric cryptography.” (2020), [Online]. Available: https://

csrc . nist . gov / glossary / term / asymmetric _ cryptography (visited on

06/01/2023).

[9] “Glossary: Symmetric cryptography.” (2020), [Online]. Available: https://

csrc.nist.gov/glossary/term/symmetric_cryptography (visited on 06/01/2023).

[10] B. Kaliski, “The mathematics of the rsa cryptosystem,” 2006. [Online]. Avail-

able: https://www.nku.edu/~christensen/the%5C%20mathematics%5C%

20of%5C%20the%5C%20RSA%5C%20cryptosystem.pdf.

A

https://csrc.nist.gov/glossary/term/confidentiality
https://csrc.nist.gov/glossary/term/confidentiality
https://csrc.nist.gov/glossary/term/cryptography
https://csrc.nist.gov/glossary/term/cryptography
https://csrc.nist.gov/glossary/term/encryption
https://csrc.nist.gov/glossary/term/encryption
https://csrc.nist.gov/glossary/term/decryption
https://csrc.nist.gov/glossary/term/decryption
https://csrc.nist.gov/glossary/term/encryption_algorithm
https://csrc.nist.gov/glossary/term/encryption_algorithm
https://csrc.nist.gov/glossary/term/cryptographic_key
https://csrc.nist.gov/glossary/term/cryptographic_key
https://csrc.nist.gov/glossary/term/cryptanalysis
https://csrc.nist.gov/glossary/term/cryptanalysis
https://csrc.nist.gov/glossary/term/asymmetric_cryptography
https://csrc.nist.gov/glossary/term/asymmetric_cryptography
https://csrc.nist.gov/glossary/term/symmetric_cryptography
https://csrc.nist.gov/glossary/term/symmetric_cryptography
https://www.nku.edu/~christensen/the%5C%20mathematics%5C%20of%5C%20the%5C%20RSA%5C%20cryptosystem.pdf
https://www.nku.edu/~christensen/the%5C%20mathematics%5C%20of%5C%20the%5C%20RSA%5C%20cryptosystem.pdf

[11] W. Commons, File:simple symmetric encryption.png — wikimedia commons,

the free media repository, [Online; accessed 13-March-2023], 2023. [Online].

Available: https://commons.wikimedia.org/w/index.php?title=File:

Simple_symmetric_encryption.png&oldid=738050725.

[12] “Glossary: Block cipher.” (2020), [Online]. Available: https://csrc.nist.

gov/glossary/term/block_cipher (visited on 06/01/2023).

[13] “What is a stream cipher?” (1998), [Online]. Available: http://security.

nknu.edu.tw/crypto/faq/html/2-1-5.html (visited on 06/01/2023).

[14] “Glossary: Key stream.” (2022), [Online]. Available: https://csrc.nist.gov/

glossary/term/key_stream (visited on 06/01/2023).

[15] M. Dworkin, E. Barker, J. Nechvatal, et al., “Advanced encryption standard

(aes),” en, National Institute of Standards and Technology, Tech. Rep., 2001.

doi: https://doi.org/10.6028/NIST.FIPS.197.

[16] “Data encryption standard (des),” National Institute of Standards and Tech-

nology, Tech. Rep., 1999. doi: hhttps : / / csrc . nist . gov / csrc / media /

publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf.

[17] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,

Twofish: A 128-bit block cipher, 1998. doi: https://www.schneier.com/wp-

content/uploads/2016/02/paper-twofish-paper.pdf.

[18] “Glossary: Integriry.” (2022), [Online]. Available: https://csrc.nist.gov/

glossary/term/integrity (visited on 06/01/2023).

[19] M. Dworkin, “Recommendation for block cipher modes of operation,” National

Institute of Standards and Technology, Tech. Rep., 2001. doi: https://doi.

org/10.6028/NIST.FIPS.197.

[20] “Glossary: Initialization vector.” (2022), [Online]. Available: https://csrc.

nist.gov/glossary/term/initialization_vector (visited on 06/01/2023).

[21] W. Commons, File:cbc encryption.svg — wikimedia commons, the free media

repository, 2020. [Online]. Available: https://commons.wikimedia.org/w/

index.php?title=File:CBC_encryption.svg&oldid=411984531 (visited on

04/2023).

B

https://commons.wikimedia.org/w/index.php?title=File:Simple_symmetric_encryption.png&oldid=738050725
https://commons.wikimedia.org/w/index.php?title=File:Simple_symmetric_encryption.png&oldid=738050725
https://csrc.nist.gov/glossary/term/block_cipher
https://csrc.nist.gov/glossary/term/block_cipher
http://security.nknu.edu.tw/crypto/faq/html/2-1-5.html
http://security.nknu.edu.tw/crypto/faq/html/2-1-5.html
https://csrc.nist.gov/glossary/term/key_stream
https://csrc.nist.gov/glossary/term/key_stream
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/hhttps://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://doi.org/hhttps://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://doi.org/https://www.schneier.com/wp-content/uploads/2016/02/paper-twofish-paper.pdf
https://doi.org/https://www.schneier.com/wp-content/uploads/2016/02/paper-twofish-paper.pdf
https://csrc.nist.gov/glossary/term/integrity
https://csrc.nist.gov/glossary/term/integrity
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/glossary/term/initialization_vector
https://csrc.nist.gov/glossary/term/initialization_vector
https://commons.wikimedia.org/w/index.php?title=File:CBC_encryption.svg&oldid=411984531
https://commons.wikimedia.org/w/index.php?title=File:CBC_encryption.svg&oldid=411984531

[22] W. Commons, File:cbc decryption.svg — wikimedia commons, the free media

repository, 2020. [Online]. Available: https://commons.wikimedia.org/w/

index.php?title=File:CBC_decryption.svg&oldid=411984685 (visited on

04/2023).

[23] G. J. Simmons, “Symmetric and asymmetric encryption,” ACM Comput. Surv.,

vol. 11, no. 4, pp. 305–330, 1979, issn: 0360-0300. doi: 10.1145/356789.

356793. [Online]. Available: https://doi.org/10.1145/356789.356793.

[24] J. M. Pérez. “Progressive image rendering.” (), [Online]. Available: https :

//jmperezperez.com/blog/render-conf-oxford-2017/.

[25] Mozilla. “Web video codec guide.” (), [Online]. Available: https://developer.

mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs.

[26] “Youtube recommended upload encoding settings.” (), [Online]. Available: https:

//support.google.com/youtube/answer/1722171?hl=en#zippy=%5C%

2Ccolor-space%5C%2Cvideo-resolution-and-aspect-ratio%5C%2Cbitrate

(visited on 03/23/2023).

[27] A. e. a. Weeks. “Linux system administrators guide.” (2004), [Online]. Available:

https://tldp.org/LDP/sag/html/filesystems.html.

[28] “File systems driver design guide.” (Sep. 2022), [Online]. Available: https:

//learn.microsoft.com/en-us/windows-hardware/drivers/ifs/.

[29] R. Nordvik, K. Porter, F. Toolan, S. Axelsson, and K. Franke, “Generic meta-

data time carving,” Forensic Science International: Digital Investigation, vol. 33,

p. 301 005, 2020, issn: 2666-2817. doi: https : / / doi . org / 10 . 1016 / j .

fsidi.2020.301005. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S266628%201720302547.

[30] M. Ray et al. “Filestream (sql server).” (Feb. 2023), [Online]. Available: https:

/ / learn . microsoft . com / en - us / sql / relational - databases / blob /

filestream-sql-server?view=sql-server-ver16.

[31] “File server: Definition and basics.” (2023), [Online]. Available: https://www.

ionos.com/digitalguide/server/know- how/file- server/ (visited on

03/23/2023).

C

https://commons.wikimedia.org/w/index.php?title=File:CBC_decryption.svg&oldid=411984685
https://commons.wikimedia.org/w/index.php?title=File:CBC_decryption.svg&oldid=411984685
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://jmperezperez.com/blog/render-conf-oxford-2017/
https://jmperezperez.com/blog/render-conf-oxford-2017/
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%5C%2Ccolor-space%5C%2Cvideo-resolution-and-aspect-ratio%5C%2Cbitrate
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%5C%2Ccolor-space%5C%2Cvideo-resolution-and-aspect-ratio%5C%2Cbitrate
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%5C%2Ccolor-space%5C%2Cvideo-resolution-and-aspect-ratio%5C%2Cbitrate
https://tldp.org/LDP/sag/html/filesystems.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
https://doi.org/https://doi.org/10.1016/j.fsidi.2020.301005
https://doi.org/https://doi.org/10.1016/j.fsidi.2020.301005
https://www.sciencedirect.com/science/article/pii/S266628%201720302547
https://www.sciencedirect.com/science/article/pii/S266628%201720302547
https://learn.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server?view=sql-server-ver16
https://www.ionos.com/digitalguide/server/know-how/file-server/
https://www.ionos.com/digitalguide/server/know-how/file-server/

[32] “What is a relational database (rdbms)?” (2023), [Online]. Available: https:

/ / www . oracle . com / in / database / what - is - a - relational - database/

(visited on 04/20/2023).

[33] H. Vera, W. Boaventura, M. Holanda, V. Guimaraes, and F. Hondo, “Data mod-

eling for nosql document-oriented databases,” in CEUR Workshop Proceedings,

vol. 1478, 2015, pp. 129–135.

[34] E. Bisong and E. Bisong, “An overview of google cloud platform services,” Build-

ing Machine Learning and Deep Learning Models on Google Cloud Platform: A

Comprehensive Guide for Beginners, pp. 7–10, 2019.

[35] J. Varia, S. Mathew, et al., “Overview of amazon web services,” Amazon Web

Services, vol. 105, 2014.

[36] Personopplysningsloven, Lov om behandling av personopplysninger (personop-

plysningsloven). Lovdata, 2018, vol. LOV-2018-06-15-38. [Online]. Available:

https://lovdata.no/dokument/NL/lov/2018-06-15-38.

[37] Mozilla. “Time to first byte.” (2023), [Online]. Available: https://developer.

mozilla.org/en-US/docs/Glossary/Time_to_first_byte.

[38] J. Anderson. “Memory paging.” (Jan. 2023), [Online]. Available: https://www.

techtarget.com/searchitoperations/definition/memory-paging (visited

on 05/04/2023).

[39] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM, vol. 31, no. 5,

pp. 532–533, May 1988, issn: 0001-0782. doi: 10.1145/42411.42415. [Online].

Available: https://doi.org/10.1145/42411.42415.

[40] L. Null and J. Lobur, The essentials of computer organization and architecture

(2. ed.). Jan. 2006, p. 315, isbn: 978-0-7637-3769-6.

[41] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three

Easy Pieces. CreateSpace Independent Publishing Platform, 2018, isbn: 198508659X.

[42] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write amplification

analysis in flash-based solid state drives,” New York, NY, USA: Association for

Computing Machinery, 2009, isbn: 9781605586236. doi: 10.1145/1534530.

1534544. [Online]. Available: https://doi.org/10.1145/1534530.1534544.

D

https://www.oracle.com/in/database/what-is-a-relational-database/
https://www.oracle.com/in/database/what-is-a-relational-database/
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://developer.mozilla.org/en-US/docs/Glossary/Time_to_first_byte
https://developer.mozilla.org/en-US/docs/Glossary/Time_to_first_byte
https://www.techtarget.com/searchitoperations/definition/memory-paging
https://www.techtarget.com/searchitoperations/definition/memory-paging
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/1534530.1534544

[43] W. Bugden and A. Alahmar, “Rust: The programming language for safety and

performance,” Jun. 2022. doi: 10.48550/arXiv.2206.05503.

[44] E. Yepis, “Comparing tag trends with our most loved programming languages,”

Jan. 2023. [Online]. Available: https://stackoverflow.blog/2023/01/26/

comparing-tag-trends-with-our-most-loved-programming-languages/.

[45] G. Barany, “Python interpreter performance deconstructed,” Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI), Jun. 2014. doi: 10.1145/2617548.2617552.

[46] M. Vaidehi and B. J. Rabi, “Design and analysis of aes-cbc mode for high

security applications,” in Second International Conference on Current Trends

In Engineering and Technology - ICCTET 2014, 2014, pp. 499–502. doi: 10.

1109/ICCTET.2014.6966347.

[47] “Time — time access and conversions.” (Aug. 2022), [Online]. Available: https:

//docs.python.org/3.10/library/time.html (visited on 02/25/2023).

[48] “The python profilers.” (Aug. 2022), [Online]. Available: https : / / docs .

python.org/3.10/library/profile.html (visited on 02/16/2023).

[49] “Pycryptodome.” (Jan. 2023), [Online]. Available: https://pycryptodome.

readthedocs.io/ (visited on 02/14/2023).

[50] J. Aycock, “A brief history of just-in-time,” ACM Comput. Surv., vol. 35,

pp. 97–113, Jun. 2003. doi: 10.1145/857076.857077.

[51] “Unittest — unit testing framework.” (Aug. 2022), [Online]. Available: https:

//docs.python.org/3.10/library/unittest.html (visited on 02/16/2023).

[52] “Tracemalloc — trace memory allocations.” (Aug. 2022), [Online]. Available:

https://docs.python.org/3.10/library/tracemalloc.html (visited on

04/20/2023).

[53] R. Sears, C. Ingen, and J. Gray, “To blob or not to blob: Large object storage

in a database or a filesystem?” Computing Research Repository - CORR, Jan.

2007.

E

https://doi.org/10.48550/arXiv.2206.05503
https://stackoverflow.blog/2023/01/26/comparing-tag-trends-with-our-most-loved-programming-languages/
https://stackoverflow.blog/2023/01/26/comparing-tag-trends-with-our-most-loved-programming-languages/
https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1109/ICCTET.2014.6966347
https://doi.org/10.1109/ICCTET.2014.6966347
https://docs.python.org/3.10/library/time.html
https://docs.python.org/3.10/library/time.html
https://docs.python.org/3.10/library/profile.html
https://docs.python.org/3.10/library/profile.html
https://pycryptodome.readthedocs.io/
https://pycryptodome.readthedocs.io/
https://doi.org/10.1145/857076.857077
https://docs.python.org/3.10/library/unittest.html
https://docs.python.org/3.10/library/unittest.html
https://docs.python.org/3.10/library/tracemalloc.html

[54] “What is powershell?” (Oct. 2022), [Online]. Available: https : / / learn .

microsoft.com/en-us/powershell/scripting/overview?view=powershell-

5.1.

[55] S. Josefsson. “The base16, base32, and base64 data encodings.” (Oct. 2006),

[Online]. Available: https://www.rfc-editor.org/rfc/rfc4648.

F

https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-5.1
https://www.rfc-editor.org/rfc/rfc4648

	Introduction
	Research question
	Structure

	Background
	Cryptography
	Encryption overview
	Encryption modes
	Cipher block chaining
	Encryption performance

	Progressive video download
	Requirements
	Bitrate

	State of file storage
	File system
	File server
	Relational database management system
	Chunk storage
	External solutions

	Methodology
	Defining solutions
	Disk solution
	Chunk solution
	DBC solution

	Performance indicators
	Time to first byte
	Throughput
	Memory usage
	Other performance indicators

	Test bed
	Choice of programming language
	Software breakdown
	Hardware breakdown
	Test parameters

	Benchmarking solutions
	Ensuring validity of the tests
	Benchmarking application

	Results and Analysis
	Encryption
	Decryption
	Dry run
	Time to first byte

	Analysis

	Conclusion
	Future work
	Measurement of CPU times
	Chunk storage in RDBMS
	Break-even points for chunk sizes

