
Department of Electronic Systems

TFE4940 - Electronic Systems Design and Innovation,
Master’s Thesis

FPGA Accelerated Convolution Layer
Implementation for Semantic

Segmentation of Hyperspectral Images

Author:
Magnus Ramsfjell

May 2023

Abstract

Remote sensing using satellites has become an important step in environmental mon-
itoring. The HYPSO Mission aims to detect harmful algal bloom from space using
the HYPSO-1 satellite. It is equipped with a hyperspectral imager capable of cap-
turing images with incredible spectral detail. These images are large — too large to
mindlessly transmit to earth every time they are taken. Thus, the use of machine
learning on the satellites internal instruments is motivated. Convolutional Neural
Networks (CNNs) are have been shown to be excellent at performing image segment-
ation. Using such a network on a hyperspectral imager in orbit can classify the images
at minimum energy utilisation. This thesis aims to develop an efficient and fast con-
volutional layer to be used in neural networks for semantic image segmentation of
hyperspectral images on the satellite’s on-board FPGA. High-Level Synthesis was
used for development. The implementation gave satisfactory performance numbers,
with a full convolution layer taking approximately 1.8ms to compute for a 512 × 512
image with 10 spectral bands.

i

Sammendrag

Avstandsobservering med satellitter har vært et viktig steg i miljøoverv̊akning. HYPSO-
oppdraget forsøker å detektere skadelig algevekst fra verdensrommet med hjelp av
satellitten HYPSO-1. Den er utstyrt med et hyperspektral kamera med egenskaper til
å ta bilder med rikt spektralt innhold. Disse bildene er store — for store til å overføre
til basestasjoner hver gang de blir tatt. Derfor er det ønskelig å bruke maskinlæring
for prosessering av bildene med satellittens interne prosesseringssystemer. Konvolus-
jonelle nevrale nettverk har vist seg nyttige til segmentering av bilder. Satellitten
kan bruke slike nettverk til å klassifisere informasjon i hyperspektrale bilder med lavt
strømforbruk. Denne oppgaven utvikler et rask og energieffektiv konvolusjonelt lag for
bruk i segmentering av hyperspektrale bilder direkte p̊a satellittens innebygde FPGA.
High-Level Synthesis blir brukt til utvikling. Implementasjonen ga tilfredsstillende
ytelse, med om lag 1.8ms for å utføre konvolusjon p̊a et 512×512×10 stort hyperspek-
tralt bilde.

ii

Table of Contents

List of Figures v

1 Introduction 1

2 Background 2

2.1 The HYPSO Mission . 2

2.2 Hyperspectral Imaging . 3

2.2.1 Remote Sensing . 3

2.2.2 Hyperspectral Images . 3

2.3 Machine Learning . 4

2.3.1 Semantic Image Segmentation . 4

2.3.2 Artificial Neural Networks . 5

2.4 Convolutional Neural Networks . 6

2.4.1 2D Convolutional Layers . 6

2.4.2 Depthwise Separable Convolution Layers . 7

2.4.3 Pooling Layers . 7

2.4.4 Transposed 2D Convolution Layers . 8

2.4.5 Concatenation Layers and Skip Connections 8

2.4.6 Dimensionality Reduction . 8

2.4.7 3D Convolution . 9

2.5 FPGA Acceleration . 9

2.5.1 FPGA Performance . 9

2.5.2 Hardware-software co-design . 9

2.6 High-Level Synthesis . 10

2.6.1 Vitis HLS . 10

2.6.2 Pragma directives . 10

3 Implementation 12

3.1 Semantic Image Segmentation of Hyperspectral Images 12

3.1.1 UNet CNN . 12

3.2 Convolution Layer . 13

3.2.1 Requirements . 13

3.2.2 Layer Design . 13

3.2.3 Line Buffer . 13

3.2.4 Handling Higher Dimensionality . 15

iii

3.2.5 HLS Implementation . 15

3.2.6 Performance Estimation . 20

3.2.7 Evaluation . 20

3.3 Full Network . 21

4 Results and Discussion 22

4.1 Line Buffer Results . 22

4.2 Various Configuration of the Convolution Layer . 22

Bibliography 25

iv

List of Figures

1 HYPSO CONOPS, where 1) uplinked configuration from ground station is received,
2) hyperspectral imaging is performed, 3) onboard processing occurs, 4) downlink
is performed to nearby ground station, and 5) close-by assets can be deployed to
gather additional data[1]. 2

2 RGB and hyperspectral images of minerals showcasing the latter’s ability to ability
to distinguish different materials[3]. 3

3 BIL format visualisation, showing how a 5× 5× 5 hyperspectral cube is ordered. . 4

4 Kernel of size 3× 3 visualised . 6

5 One iteration of a convolution operation without padding between an image I and
kernel K of sizes 7× 7 and 3× 3, respectively. The output is a 5× 5 feature map S. 7

6 Transposed convolution between a 2×2 kernel and input, producing a 3×3 output.
Visualisation inspired by [13]. 8

7 Area and performance gaps between FPGA and ASIC implementations of vision
kernels. Obtained from [23]. 10

8 A descriptive model of the proposed UNet from [28]. Each layer is labelled with a
name and has arrows representing the network operations. 12

9 Visualisation of a naive implementation of the moving kernel window. 14

10 Line buffer visualisation. 14

11 Visualisation of the colselect buffering technique. 14

12 Report from synthesising the convolution layer with the colselect buffering technique. 23

13 Report from synthesising the convolution layer with the line buffer buffering technique. 23

14 Synthesis report for synthesising the 2D design configuration. 23

15 Synthesis report estimate for synthesising the 2D design configuration 23

16 Synthesis report for synthesising the minimum configuration. 24

17 Synthesis report estimates for synthesising the minimum configuration. 24

18 Synthesis report for synthesising the maximum configuration (oversized) 24

19 Synthesis report estimates for synthesising the maximum configuration (oversized) 24

v

Acronyms

ANN Artificial Neural Network. 5, 6

ASIC Application-Specific Integrated Circuit. 9

BIL Band Interleaved by Line. 4, 13, 15

BIP Band Interleaved by Pixel. 4

BSQ Band SeQuential. 4

CNN Convolutional Neural Network. 6–9, 12, 21

CONOPS Consept of Operation. v, 2

DR Dynamic Reconfiguration. 3

FPGA Field-Programmable Gate Array. 9, 13, 21

GDA Generalised Discriminant Analysis. 8

HAB Harmful Algeal Bloom. 2

HDL Hardware Definition Language. 15

HLS High-Level Synthesis. 10, 11, 15

HSI Hyperspectral Imaging. 3

HYPSO Hyper-Spectral Small Satellite for Ocean Observation. 2

IC Integrated Circuit. 9

II Initiation Interval. 15, 20

LDA Linear Discriminant Analysis. 8

LWIR Long-wave Infrared. 3

ML Machine Learning. 4–6

PCA Principal Component Analysis. 8

PL Programmable Logic. 10, 13

PS Processing System. 9, 10, 13, 15, 21

RTL Register-Transfer Level. 10, 11, 16

vi

1 Introduction

Satellites in orbit provide an invaluable opportunity to perform observations of the earth’s surface.
With advances in low-power reconfigurable computational devices, performing in-orbit complex
processing has become more and more common. Combine these technological advances and you
get the HYPSO Mission. Launched in 2022, HYPSO-1 currently captures valuable hyperspectral
images of among other things the North Sea’s oceans, which can be used to detect harmful oceanic
growth. Several great hurdles have been overcome on the journey to where HYPSO-1 is currently,
and the next will be tackled in this thesis.

Semantic image segmentation is the task of assigning a semantic label to each pixel in an image,
such as sky, road, tree, etc. Hyperspectral images are images that capture a large number of
spectral bands, ranging from visible to infrared wavelengths, and provide rich information about
the scene. However, hyperspectral images also pose challenges for semantic segmentation, such
as high dimensionality, noise, and spectral variability. Convolutional neural networks (CNNs)
are powerful models that can learn hierarchical features from images and achieve state-of-the-art
results in semantic segmentation. However, CNNs also require high computational and memory
resources, which are limited on-board a satellite. Field-programmable gate arrays (FPGAs) are
reconfigurable hardware devices that can offer high performance and low power consumption for
CNNs. However, designing and optimising CNNs for FPGAs is not trivial and requires specialised
skills and tools. This thesis implements an efficient convolution layer for use in CNNs on an
FPGA. The main contributions of this thesis are: (1) a multi-core convolution design tailored
for hyperspectral image segmentation and can handle variable number of bands; (2) a method of
efficiently importing network weights into a convolutional layer for high reusability of hardware;
and (3) discussion on future work for the design. The motivation for this thesis is to enable the
detection and classification of certain patterns in the hyperspectral images on-board a satellite
with an on-board FPGA and hyperspectral imager to efficiently pick out what data to spend a
tight downlink transmission budget on.

1

2 Background

This chapter gives an insight into various topics related to semantic image segmentation of hyper-
spectral images. They are presented to explain the design choices taken during implementation.
The HYPSO Mission is briefly explained first to motivate further theory. Secondly, the principles
of hyperspectral imaging is explained, followed by machine learning theory. The machine learning
theory includes an overview of general artificial neural networks before diving deeper into con-
volutional neural networks. Afterwards follows a brief explanation of Field-Programmable Gate
Arrays. The section is concluded by an overview of High-Level Synthesis.

2.1 The HYPSO Mission

The HYPSO (Hyper-Spectral Small Satellite for Ocean Observation) mission aims to observe ocean
colour and detect Harmful Algeal Bloom (HAB). This is currently achieved by the HYPSO-1
nanosatellite operated by the SmallSat team at NTNU. The CubeSat includes a hyperspectral
imaging payload to perform earth observation and a processing system to perform in-orbit pro-
cessing. Since its launch with the SpaceX Transporter-3 mission in January 2022 HYPSO-1 has
been in a low-Earth orbit of around 500km. HYPSO-2 is a planned nanosattelite with various
upgrades from HYPSO-1. It will operate in addition to it’s older sibling. The HYPSO-1 CONOPS
(Consept of Operation) is visualised in figure 1, and includes five main operations:

• Receive telecommands and other updates from nearby ground station. Orient the hyperspec-
tral imager to start scan of a pre-defined area.

• Execute slew manoeuvre to orient the imager correctly while imaging.

• Processing of images after imaging. Reduce data size for downlink.

• Downlink to nearby ground station.

• Additional supporting assets (e.g. NTNU operated UAVs) may collect additional data if they
are in the area.

Figure 1: HYPSO CONOPS, where 1) uplinked configuration from ground station is received, 2)
hyperspectral imaging is performed, 3) onboard processing occurs, 4) downlink is performed to
nearby ground station, and 5) close-by assets can be deployed to gather additional data[1].

While most components and operations of the satellite are finalised, over-the-air updates are still
possible for its software components. In particular, processing of images to reduce the data size

2

for downlink is an active area of development. Using machine learning to perform semantic image
segmentation (explained in Section 2.3.1) of hyperspectral images can aid in highlighting interesting
regions, drastically reducing data downlink size. Downlink is often one of the bottlenecks of small
low-earth orbit satellites, and as such it is ideal to reduce the data size. The HYPSO-1 satellite
is equipped with a Zynq-7030 FPGA from Xilinx, capable of Dynamic Reconfiguration (DR) This
enables the processing system of the satellite to receive functional upgrades, such as improved
HAB-detection though semantic image segmentation.

2.2 Hyperspectral Imaging

2.2.1 Remote Sensing

Remote sensing is the acquisition of information about an object without coming into physical
contact with it [2]. It typically deals with acquisition, processing, and interpretation of data
obtained from sensing a remote object using an image sensor. Hyperspectral Imaging (HSI) is an
advanced form of remote sensing utilising many narrow bands of the electromagnetic spectrum.

While mainstream consumer cameras normally capture a scene with three wide spectral bands for
red, green, and blue, additional information can be extracted from the scene by using a higher
amount of thinner bands. These bands can be contained within the human-visible spectrum, or
extend beyond, depending on the electromagnetic characteristics of the scene and the sensing
requirements. It may seem intuitive to a human that all visual information about an object is
retrievable entirely with their eyesight, but what a human perceives is simply a representation
of the human-visible spectrum in their mind. In reality, the interaction between matter and
electromagnetic radiation is more complex, showcased in Figure 2 by hyperspectral remote sensing’s
ability to distinguish between different materials.

Figure 2: RGB and hyperspectral images of minerals showcasing the latter’s ability to ability to
distinguish different materials[3].

Figure 2 shows a set of stones which are scanned in the Long-wave Infrared (LWIR) range from
7.7 µm to 12.4 µm. Quartz and feldspar can easily be distinguished by their spectral profiles. This
remote sensing capability extends far beyond geology, though, and HSI is often used in conjunction
with aerial photography. This can enable an aeroplane or satellite, such as the HYPSO-1, to capture
rich information about large areas of land and sea.

2.2.2 Hyperspectral Images

Hyperspectral imaging captures many spectral bands, often hundreds to even thousands. The
hyperspectral image is often referred to as an image cube. The height and width of the cube
is relatable to a regular image, but the depth is determined by the number of bands. Where

3

regular RGB images consist of three colour bands (red, green, and blue) and overlay its three
monochromatic colour bands on top of each other to create a single polychromatic image suitable
for human vision, hyperspectral image cubes have too much data to be observed sufficiently in the
same manner (altough they can be visualised as RBG images by joining multiple contiguous bands
to ”recreate” the primary colours of an RBG image). The cubes are usually processed digitally
before interesting data emerge.

20 21 22 23

124

99

74

49

24

24

15 16 17 18

119

94

69

44

19

19

10 11 12 13

114

89

64

39

14

14

5 6 7 8

109

84

59

34

9

9

100

75

50

25

0

0

101

76

51

26

1

1

102

77

52

27

2

2

103

78

53

28

3

3

104
104

79
79

54
54

29
29

4
4

4

Figure 3: BIL format visualisation,
showing how a 5×5×5 hyperspectral
cube is ordered.

The most common methods for encoding multiband ras-
ter images in the geospacial domain such as hyperspectral
images are Band Interleaved by Pixel (BIP), Band Inter-
leaved by Line (BIP), and Band SeQuential (BSQ). The
difference between the encoding formats is how the spec-
tral information is stored. BIP will interleave the spectral
bands with each spatial pixel, effectively giving all data for
one location of the scene at a time. This is similar to how a
bitmap raster image would store an RGB-image, giving all
colour data for one pixel at a time. BIL differs by first stor-
ing one line —one full length in the spatial dimension— of
a single band before interleaving the next spectral dimen-
sion’s data of the same spatial line. After all the spectral
band data is stored for the one line, the next is stored, and
so on. BSQ encodes multiband images one spectral band
at a time. It encodes data in the entire spatial region for
one band, line by line, before encoding the next band. The
BIL image format is visualised by a 5-by-5-by-5 cube in
Figure 3. The numbers on the cells indicate the indices of
the corresponding cell after image encoding. The front face represents the data for the first band of
the entire 5-by-5 spatial region. In isolation, it could create a monochromatic image of the spatial
region. As seen in the figure, the ”top” line of the cube is encoded first, followed by the second
spectral band of the same spatial line. This continues until all spectral information about the first
line is encoded, after which the second line follows.

The BIL encoding format is favourable for pushbroom-scanning hyperspectral imagers, such as
the imager on the HYPSO-1. The pushbroom technique scans one spatial line for all spectral
bands before moving on to the next. This is an advantageous technique for a scanner with velocity
oriented the same way as the scan direction, as the scanner itself only has to capture spectral
information for one spatial dimension at a time. Tilting the scanner in a slew manoeuvre as
displayed in 1 results in better spatial resolution, as explained in [4].

2.3 Machine Learning

Machine Learning (ML) is a subset of artificial intelligence that enables computers to learn from
data and apply that knowledge in various ways. Machine learning is used to develop programs that
can perform a task by the means of learning rather than explicit directives. Image recognition is
a common application of machine learning, where neural networks are often used.

2.3.1 Semantic Image Segmentation

Semantic image segmentation is a method that analyses the data of its input, usually an image,
and outputs labels corresponding to specific spatial locations of the input. It has the ability to
recognise shapes from groups of pixels in an image. It uses machine learning constructs to analyse
collections of labelled images, creating a semantic segmentation network used to classify parts of
images into categories.

4

2.3.2 Artificial Neural Networks

An Artificial Neural Network (ANN), or just a neural network, is a type of machine learning
algorithm that is inspired by the structure and function of the human brain. It consists of inter-
connected nodes or neurons that process information and learn from data. The goal of an ANN
is to learn a function that maps inputs to outputs by adjusting the weights of the connections
between neurons. In the context of image recognition, neural networks can take in a set of input
pixels representing an image, and output a probability distribution over a set of possible labels,
indicating which object or category the image, or parts of the image, belongs to.

The processing that takes place within a neuron involves summing up the weighted inputs and
passing the result through an activation function. The activation function introduces non-linearity
into the network, allowing it to model complex relationships between inputs and outputs[5]. The
output of a neuron is determined by its activation level, which represents how strongly it is triggered
by the input pattern. Neural networks can be trained under supervised learning by being presented
with large datasets of labelled data, with which it adjusts its weights to minimise the difference
between its predicted outputs and the true outputs. One method of adjusting parameters is known
as backpropagation and involves calculating the gradient of the loss function with respect to the
weights and updating them accordingly. Unsupervised learning is when the network is trained on
unlabelled data. The training process typically involves the following steps: Initialisation, forward
propagation, error calculation, backward propagation and adjustment of weights and biases. This
process is normally repeated many times to achieve high accuracy when making predictions on
new, unseen examples.

A disadvantage of ANNs is that they can be computationally expensive for large datasets. Pro-
cessing of a 2D-image has every pixel contributing one node in each layer of the network. This
means that a relatively small, greyscale image of dimensions 64x64 will require 64×64×n+textlayers

weights for nlayers amount of layers, adding up to over 8000 weights for a tiny network of two lay-
ers. This is a compounding problem for ANNs when subjected to multidimensional inputs (such
as hyperspectral images), as each dimension increase will induce a proportionally large increase in
the amount of weights.

In a neural network, a node is activated when the output of that node is above a specified threshold
value. The output of a node is computed by applying an activation function to the weighted sum
of its inputs. The inputs to a node are the outputs of other nodes in the previous layer of the
network, and the weights associated with these inputs determine the strength of their influence on
the node’s output. If the output of a node is above its threshold value, it sends data to the next
layer of the network. Otherwise, no data is passed along to the next layer. The activation function
used by a node can be linear or non-linear and determines how the node responds to its inputs.
The process can be modelled by Equation 1.

y = f(
∑
i

wixi − T) (1)

For the above equation, y represents node activation, f() is the activation function, wi is the weight
of input xi, and T is the threshold value[5]. One example of an activation function is the step
function, which activates y only if ∑

i

wixi > T

and otherwise stays inactive. Non-linear transfer function are often more useful for ML applications
than linear ones[6][5], and two particularly useful activation functions are the Sigmoid (Equation
2) and ReLU (Equation 3) functions.

f(x) =
1

1 + e−x
(2)

f(x) =

{
x, if x > 0
0, otherwise

(3)

5

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of neural networks that utilise the mathematical
operation of convolution in an attempt to achieve greater network performance at lower computa-
tional costs compared to other neural networks for certain ML workloads[7][8][9]. They retain the
advantages of ANNs through self-optimising and self-learning neurons. The neurons are activated
in a similar way to ANN neurons by performing operations on its inputs followed by some activa-
tion function. Thus, it retains the strengths of ANNs and the classification techniques developed
for ANNs apply to CNNs as well.

Convolutional neural networks are defined by having one or more convolutional layers. These layers
perform feature detection by convolving matrices of small kernels with the input. They enable
CNNs to operate on datasets with large dimensionality without an inhibitably large set of trainable
parameters. The relatively small kernel is applied to the entire spacial area of the input, benefitting
from reusability where traditional ANNs would require individual neurons for every datapoint of
the input. Convolution layers output feature maps which are used by subsequent layers. CNNs
typically also have pooling and fully-connected layers[9]. Pooling reduces the spatial dimensions of
the feature maps, resulting in fewer trainable parameters, which helps combat overfitting[10]. Fully-
connected layers perform classification of the dimensionally reduced feature maps, and produce the
final output. Classification is analogous to the fully connected layers of an ANN as explained in
Section 2.3.2.

2.4.1 2D Convolutional Layers

Convolution in the field of machine learning refers to the mathematical expression of cross-correlation.
The operations involved in the mathematical definition of convolution and cross-correlation are
the same, but the kernel is flipped for the former. For the sake of clarity, the operation of cross-
correlation is used form this point on, and is simply referred to as convolution, in accordance with
the field. The definition for discrete 2D convolution is shown in 4.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, k + n)K(m,n) (4)

k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

Ks

Ks

Figure 4: Kernel of size 3× 3
visualised

The resulting feature map S(i, j) is obtained by convolving the 2D
matrices representing the kernel K(i, j) and image I(i, j). An ex-
ample kernel of size Ks = 3 is shown in Figure 4. The kernel cells
are labelled with their corresponding indices ki,j . The convolution
operation can be visualised by imagining a window of the same di-
mensions as the kernel overlaid on the image centred at one spatial
location at a time. The window and kernel is point-wise multiplied
and accumulated to produce one value to the feature map with a
location matching the centre pixel of the window. The size of the
output feature map is determined by (Is + 2p−Ks/s) + 1, where
Is is the image size, Ks is the kernel size, s is the stride, and p is
padding. The stride is how far the window moves across the win-
dow per iteration. A stride of one will produce the largest output,
as the kernel will be convolved with every possible window of the
image. The situation when the window encounters an edge of the image can be treated in various
ways. The window can slide across the image while remaining completely confined within it, caus-
ing a reduction in size of the output equal to half the kernel size, rounded down. Dimensionality
can be preserved by extending the image outside of its original borders, known as padding. The
padded numbers are typically zeroes, but nearest-neighbour or wrapping values from the opposite
side can also be added.

One step of convolution between a 7×7 input image and a 3×3 kernel is shown in Figure 5. There
is no padding in the visualisation, and with a stride of one the output feature map is of size 5× 5.
A sliding window is shown centred over the second row and column of the input image, which is

6

the starting point when there is no padding. The nine selected pixels are point-wise multiplied
with their corresponding kernel values, which are then accumulated and stored to the indicated
output location. The next step of the convolution operation would be to slide the window across
the input image and perform the same arithmetic operation on the newly selected set of values.

The kernel weights are optimised for pattern recognition during training. Multiple kernels are used
to detect different patterns in the input data. One convolutional layer of a CNN thus consists of
several kernels, effectively adding a dimension of depth to the kernel. Each kernel is convolved
with the input image to create an associated feature map.

The output of the first set of kernel convolutions and corresponding activation functions can be
used as input to another convolution layer. Adding multiple convolution layers like this can increase
the network’s ability to recognise complex shapes and patterns[7][9].

s
1,1Pointw

ise multiplic
ation

i1,1 i1,2

i2,2

i3,2

i2,1

i3,1

i3,1

i3,2

i3,3

∑
3,3
1,1(i · k)

k
1,1 k

1,2 k
1,3

k
2,1 k

2,2 k
2,3

k
3,1 k

3,2 k
3,3

S(i, j)
=

∑
m

∑
n
I(i+m, k + n)K(m,n)

Figure 5: One iteration of a convolution operation without padding between an image I and kernel
K of sizes 7× 7 and 3× 3, respectively. The output is a 5× 5 feature map S.

2.4.2 Depthwise Separable Convolution Layers

A depthwise separable convolution layer in a CNN is a type of convolution operation that is
composed of two separate operations: depthwise convolution and pointwise convolution. Depthwise
convolution applies a single convolutional kernel per input channel, while pointwise convolution
uses a 1× 1 convolution to combine the output of the depthwise convolution across channels[11].

Depthwise separable convolution layers are widely used in CNNs because they have two main
advantages over standard convolution layers. Firstly, they have fewer parameters to adjust, which
reduces overfitting. Secondly, they are computationally cheaper due to fewer computations[11].

2.4.3 Pooling Layers

Pooling layers are a common type of layer that is typically added after convolutional layers in
a CNN. The purpose of a pooling layer is to reduce the spatial dimensions of the feature maps
while preserving the spectral depth. This downsampling of feature maps makes the resulting
downsampled feature maps more robust to changes in the position of the feature in the image,
referred to as local translation invariance[12].

7

Two common pooling methods are average pooling and max pooling. Average pooling computes
the average of the current view of the feature map, while max pooling selects the maximum value of
the view, thus propagating the most activated presence of a feature within patches of the feature
map. Pooling layers provide an approach to downsampling feature maps by summarising the
presence of features in patches of the feature map.

There are two groups of pooling layers commonly used in CNNs. Local pooling performs pooling on
small regions of the input image to downsample the feature maps[12]. A pooling layer is generally
local unless explicitly stated otherwise. The other group is global pooling, where the entire input
is pooled to create scalar values of a feature vector.

2.4.4 Transposed 2D Convolution Layers

Network layers like 2D convolutional and pooling layers can only reduce the spatial dimensions of
an input or keep them unchanged. It is favourable to produce an output of the same dimensions
as the input, as semantic segmentation usually classifies patterns at a pixel-level. This is where
transposed convolution layers come in. They reverse the downsampling incurred by previous layers.
The operation is visualised for a 2 × 2 kernel and input in Figure 6. The kernel is sliding with a
stride of one over the two-element wide input, for each of the two rows, producing 2 × 2 × 2 × 2
intermediary results in a 3 × 3 wide space. The intermediary results are added to produce the
output of higher dimensionality than the original input.

0 1

2 3

Input

Transposed

convolution

0 1

2 3

Kernel

0 0

0 0

0 1

2 3 0 2

4 6

0 3

6 9

0 0 1

0 4 6

4 12 9

Output

Figure 6: Transposed convolution between a 2 × 2 kernel and input, producing a 3 × 3 output.
Visualisation inspired by [13].

2.4.5 Concatenation Layers and Skip Connections

Skip connections are used in CNN architectures to connect the output of one layer to the input of
another that does not immediately follow it. This allows the network to bypass layers, which can
be particularly useful in retaining spatial information when spacial dimensions are reduced though
non-padded convolution or pooling layers.

Concatenation layers have the ability to combine multiple input layers into a single output feature
map. Used in conjunction with skip connections, concatenation layers are useful to mitigate certain
training problems such as vanishing training gradients[14].

2.4.6 Dimensionality Reduction

Hyperspectral images pose a challenge to neural networks due to the computational complexity
caused by their high dimensionality. Dimensionality reduction methods can be used to reduce
spectral redundancy, which can result in less processing time and enhanced classification accur-
acy[15][16]. Some of the most commonly used include Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Generalised Discriminant Analysis (GDA)[17]. These

8

techniques project the data onto a lower-dimensional space while preserving important information.
Dimension reduction is usually performed prior to feeding the input to the neural network, though
methods for combining dimension reduction with neural networks has shown to be competitive[18].

2.4.7 3D Convolution

In a Convolutional Neural Network designed for hyperspectral images, a 3D convolution layer can
utilise the spectral-spatial characteristics of the input data[19] by convolving a 3D kernel with the
hyperspectral input data. These layers see the network learn features from the hyperspectral inputs
autonomously, in contrast to the more manual traditional process of dimensionality reduction[20].
CNN architectures incorporating 3D convolution layers have demonstrated performance superior
to other state-of-the-art networks using dimension reduction[19].

2.5 FPGA Acceleration

An Field-Programmable Gate Array (FPGA) is an Integrated Circuit (IC) equipped with Con-
figurable Logic Blocks (CLBs) and other features that can be programmed by the user. ”Field-
Programmable” refers to the capability of being reconfigured after being manufactured. This
uniquely separates FPGAs from fixed-hardware components like CPUs, GPUs, and DPSs by being
highly customisable. This ability grants the FPGA superior performance[21] and/or greater effi-
ciency[22] compared to its aforementioned fixed-hardware counterparts. An Application-Specific
Integrated Circuit (ASIC) is effectively the lowest level of implementation for a specific task, and
will outperform an FPGA in practically every measurable metric[23]. These, however, are practic-
ally impossible to reconfigure after production, thus requiring extensive pre-manufacturing testing.

2.5.1 FPGA Performance

FPGAs are shown to outperform CPUs and GPUs in compute intensive workloads. In [21], the
authors obtain a 10x reduction in cycles required to compute Gaussian Elimination when comparing
FPGA to CPU solutions. They also obtain a 3x reduction in cycles required compared to the
GPU implementation. While this does not account for the clock periods difference between the
technologies, it highlights the architectural advantages of having highly customisable hardware.

Comparing performance and energy efficiency of an FPGA implementation of vision kernels to an
ASIC implementation, the FPGA falls short [23]. Their results show an average 8.7x increase in
area and a 2.8 to 6.3 times reduction in raw computational performance when comparing their
FPGA to ASIC implementations of this specific workload. Their performance and area results are
shown in Figure 7.

2.5.2 Hardware-software co-design

Hardware-software co-design is a design methodology that enables the optimisation of system
performance by jointly designing hardware and software components. In the context of FPGAs,
hardware-software co-design can be leveraged to accelerate workloads by partitioning the computa-
tion between custom hardware circuits implemented on the FPGA fabric and software running on
an embedded processor or an external host processor. This approach allows the design to exploit
the parallelism and flexibility of FPGAs to implement application-specific hardware accelerators
that can significantly improve the performance of compute-intensive tasks. By carefully partition-
ing the computation and optimising data transfer between hardware and software components,
designers can achieve a high degree of performance and energy efficiency for accelerated workloads.

FPGAs such as the Zynq-7030 on board the HYPSO-1 has a host processor and a reconfigurable
FPGA. The host processor typically handle general operational tasks and leaving computationally
heavy tasks to be performed on the FPGA. The host machine is referred to as the Processing

9

Figure 7: Area and performance gaps between FPGA and ASIC implementations of vision kernels.
Obtained from [23].

System (PS), while the FPGA is referred to as the Programmable Logic (PL) or kernel. To avoid
confusion with the kernel related to the convolution operation, the FPGA will be referred to as a
hardware kernel.

2.6 High-Level Synthesis

High-Level Synthesis (HLS) is a process that enables designers to create hardware designs at a
high level of abstraction, typically in high-level languages such as C or C++. It achieves this by
translating the behavioural specification of the high-level code into appropriate Register-Transfer
Level (RTL) structures, which can then be verified and refined using traditional design tools. The
main benefits of using HLS include increased productivity, faster time-to-market, improved design
quality and easier design optimisation [24].

While HLS usually enables rapid and comparatively easy development, the design process is not
without its faults or shortcomings. Multiple industry standard HLS tools have been shown to
provide erroneous results or fail to produce designs for valid programs outright [25]. While the
performance of hardware developed using HLS are shown to greatly benefit from the speed-ups
associated with running on ASIC circuits or FPGA platforms, it will not necessarily be comparable
in performance to a highly optimised design developed in traditional RTL languages [26].

2.6.1 Vitis HLS

Vitis HLS is Xilinx’ high-level synthesis tool, which translates C/C++ kernel code to RTL struc-
tures using their v++-compiler. It is a part of the Vitis unified software platform, which also
includes the tools necessary for development of hardware accelerated applications. The Vitis tools
allow for portability and reusability of such applications, by offloading the hardware-specific details
from the design code. While a traditional accelerated application work flow is targeted at a single
fixed platform, this approach allows portability between multiple devices [27].

2.6.2 Pragma directives

Pragmas are used in the C/C++ source code of the accelerated applications to apply certain
optimisation techniques upon compiling and synthesising the selected hardware structures. They
enable optimisations without changing the source code itself. Another technique to customise the
synthesis process in Xilinx’ Vitis tools is to specify optimisation directives. These are implemented
in separate .tcl-files, and apply optimisations to their specified target solutions for quick design

10

exploration. Certain pragmas are particularly useful in the development of CNNs on accelerated
Xilinx platforms are listed below. Note that this list is not exhaustive. Documentation of HLS
pragmas can be found in the Vitis HLS User Guide[24].

• HLS stream: Used to specify that a variable should be implemented as a FIFO. This pragma
can be used to define the depth of the FIFO and its implementation type.

• HLS inline: Used to specify that a function should be inlined. It is useful to define whether
a function should always be inlined, never be inlined, or whether it should be left up to the
tool to decide.

• HLS pipeline: Used to specify that a loop should be pipelined. Defines the initiation
interval of the pipeline and whether or not it should be rewound.

• HLS dataflow: Enables task-level pipelining, allowing functions and loops to overlap in
their operation, increasing the concurrency of the RTL implementation, and increasing the
overall throughput of the design. When the dataflow pragma is specified, Vivado HLS
analyzes the dataflow between sequential functions or loops and creates channels (based on
pingpong RAMs or FIFOs) that allow consumer functions or loops to start operation before
the producer functions or loops have completed.

• HLS array partition: Used to partition an array into individual elements or smaller arrays.
Has the benefits of using RTL with multiple smaller memories and increasing the effective
read and write ports for storage allowing potentially higher throughput, but requires more
memory instances or registers.

11

3 Implementation

The implementation chapter presents the implemented convolution layer for semantic image seg-
mentation of hyperspectral images. The use of High-Level Synthesis is motivated, and an overview
of the convolution layer is presented.

3.1 Semantic Image Segmentation of Hyperspectral Images

The HYPSO mission aims to perform semantic image segmentation on its hyperspectral images.
The hardware model motivated in [28] is used as a starting point. The proposed model was selected
specifically for the HYPSO model and is based on a UNet network architecture, first proposed in
[29].

3.1.1 UNet CNN

The architecture of the proposed UNet Convolutional Neural Network is shown in Figure 8. It
includes 2D convolution, max-pooling, and 2D transposed convolution layers, with skip connec-
tions. The naming of the layers follows a convention of letters associated with the type of layer
(’c’ for convolution, ’p’ for max-pooling, and ’u’ for transposed convolution) with their positioning
indicated by two numbers incrementing from left-to-right in the figure, which corresponds to how
deep within the network they reside.

Figure 8: A descriptive model of the proposed UNet from [28]. Each layer is labelled with a name
and has arrows representing the network operations.

Two slightly different models are proposed in [28]. They are based on the same UNet architecture,
but differs in the bit-depth of the network parameters. The initial model, based on 32-bit weights
and biases, will be referred to as UNet, while the quantised model using 16-bit weights and biases
is referred to as the quantised UNet. The non-quantised is shown to have higher accuracy, and the
32-bit parameter size is used for implementation.

For the purposes of a hardware implementation, verifying the correctness of operation means the
training of the network can be done separately. Thus, training is completely left out of this work.
The results obtained in [28] could be used to showcase a full network demonstration by using the
trained parameters. For testing and verification, however, arbitrary values can be used as long as
they don’t violate design constraints (i.e. by having large kernel and input values yielding products
larger than what a 32-but integer can hold).

12

3.2 Convolution Layer

The convolution layers of the UNet will be prioritised for implementation, as their operations are
shown to constitute a vast majority of total network computations[30][31]. Several techniques are
used to improve throughput and resource utilisation of the convolution layer, such as a line buffer
to reduce memory requirements of holding the input data, and extensive pipelining to minimise
(among other things) the performance penalty of continuously fetching data from memory.

3.2.1 Requirements

The convolution layer is required to perform the convolution operation explained in Sections 2.4.1
on the fabric of the FPGA. A throughput proportional to one spatial pixel outputted to the feature
map for each spectral band per clock cycle is desirable. Since the spectral data is mathematically
uncorrelated in the convolutional layers of the UNet, i.e. the result of one spectral band does not
depend on another, they can be processed in parallel. This equates to a performance requirement
of W ×H +Tsetup(H,K) clock cycles to compute the convolution between an arbitrary kernel and
the input image of W width and H height. Tsetup(H,K) is the setup time for the convolution
hardware kernel. If the time required exhibits a limiting behaviour proportional to W ×H with
growing dimension values W and H, the setup time Tsetup(H,K) will diminish in relation to the
total cycle cost, causing the performance requirement to be met. The convolution layer should
accept inputs of up to 512×512 pixels in the spacial dimensions. The input and kernel weights
must be imported from the PS into the PL, after which the result is stored for later use. The bias
and activation functions can be added to the layer, but the performance and area requirements of
these are insignificant to the convolution layer itself, so they can be omitted until multiple layers
of the network is implemented simultaneously. Enabling the use of different strides is preferable,
but not a hard requirement. Having a stride would only decrease the total workload, and adding
it at a later stage should not contribute significantly toward area requirements. The UNet uses
zero-padding and a kernel size of 3× 3 and these configurations should be implemented.

3.2.2 Layer Design

The PL-implementation of the convolution layer is based on a load-compute-store pipeline that
handles one convolution between the kernel and a window of the input image at the same time.
The hardware kernel begins by loading the inputs, namely the image and kernel weights. It then
creates a 3× 3 window of the input image, which is zero-padded if required, which is passed to the
block responsible for convolution. The matrices are convolved, and the output data is stored back
to memory.

As one pixel of the output feature map is computed and stored, the next is already in the pipeline.
The load function will import new pixels of the input image while the windowing function prepares
a new 3×3 window at the same time as the convolution block convolves. Efficient pipelining should
enable the hardware kernel to output one spatial pixel of information per cycle.

3.2.3 Line Buffer

A line buffer is used to create the sliding window that selects the 3× 3 set of data to be convolved.
A naive approach might load the entire input image into PL, as shown in Figure 9. This would lead
to unnecessary use of logic area, as the majority of the data would be sitting idle while irrelevant to
the current calculation, or already be used completely. Instead, the line buffer is used to hold only
the input values in close temporally proximity to the target pixel. The input image is sequentially
loaded in the BIL-format explained in Section 2.2.2. For the explanation of the line buffer, assume
a spectral depth of one, which effectively makes the input a 2D image. The hardware kernel must
load an entire line of horizontal data before the next column becomes available. Two full lines plus
three additional cells of the input image is stored at a time in the line buffer, which is visualised
in Figure 10. Importing a new pixel at the beginning of the line buffer and shifting the other

13

values by one every cycle will automatically create a new window. When a pixel reaches the end
of the line buffer it will no longer be required and is discarded. The blue 3× 3 square in Figure 10
indicates the window, while the labels A and B signify that the pixels flow over to the next row.
The values are shift to the left in the figure, as indicated by the arrow.

Shift

Figure 9: Visualisation of a naive implementation of the moving kernel window.

Shift

New pixel

A

B A

B

Figure 10: Line buffer visualisation.

An additional buffering technique is also implemented. This technique is similar in design to the
line buffer, but avoids shifting every element in the long line buffer array. To differentiate between
the buffering techniques this new technique is referred to as a column select line buffer, or simply
colselect. It uses the same principle of shifting one new pixel in and discarding one old pixel every
cycle, but instead of shifting the entire array it selects a column of its Wi × (Wk − 1) array and
updates only those elements every cycle. The window holding the currently active pixels is shifted
every cycle, with one new pixel imported from the input stream, and the two other being imported
from the selected column. When pixels get shifted out of the 3 × 3 window they get discarded.
These pixels do not need to be re-stored because the buffering array is wide enough to hold two
entire lines of the input image. A visualisation of the colselect buffer is shown in Figure 11.

Figure 11: Visualisation of the colselect buffering technique.

The blue rectangle indicate the currently selected column and the arrows indicate the flow of data.

14

The column selector slides one column across every clock cycle, eventually wrapping around. When
the selector moves, the arrows of the figure move with it, effetcively enabling and disabling one
row at a time. A new pixel is imported every cycle, labelled in the figure as ’P’. The cells in the
figure are not electrically transparent. In other words, data does not propagate though multiple
arrows in on cycle, instead replacing the old data that was there after it has propagated. They
can be thought of as implemented with D flip flops.

The colselect buffer design should allow the HLS tool to optimise the design more than the line
buffer approach. This is because the line buffer has to update every value in its array every cycle,
which forces more operations on a larger set of data. The colselect buffer only needs access to its
3× 3 window and two storage cells every cycle, meaning a clever tool could store the temporarily
inactive values in the FPGA’s block RAM or other deep storage until they are needed.

Both buffering schemes have an Initiation Interval (II) equivalent to the input image width plus
two. This is because both buffers need to fill their windows before they can be served to the
convolution block. One line of data plus two more pixels is also the lowest possible number of
inputs one needs to read to start convolution of images served in row-major order for a 3 × 3
kernel.

3.2.4 Handling Higher Dimensionality

So far the convolution hardware kernel has only concerned itself with 2D inputs. A mechanism to
enable multidimensional convolution is to distribute the multidimensional input to many parallel
execution cores. As explained in Section 3.2.1, there is no dependence between spectral bands in
the convolution layer, and they can be computed separately. Thus, a mechanism for distributing
the input data across multiple convolution cores is used.

The block that loads the input data is responsible for distributing the input data to the correct
spectral core. The BIL format encodes one line of one spectral band at a time, before moving
on to the next spectral dimension. After all the spectral information contained in the first line is
encoded, the next spatial line is up. The block that loads data from memory knows the spatial
dimensions of the input image W and H, and will serve the first W values to one core’s buffer
before it starts serving the next. This way every spectral dimension receives one line of data before
the first spectral band starts receiving its second line where it can start computing the convolution.

Storing the data is performed in a similar way. The outputs from the convolution cores are
interleaved by spectral band and stored back to the PS. The cores should have constant execution
cycle time and each core starts sequentially when they receive enough inputs from the input block.
Thus, the storage block should always receive data in the correct BIL-formatted order.

3.2.5 HLS Implementation

HLS is used for implementation over Hardware Definition Language (HDL) because of its relative
ease of development. Vitis HLS is chosen as the platform as it is compatible with the target FPGA,
and the chosen programming language is C++. The target clock frequency set for the Vitis tool
is 150MHz, but this can be adjusted depending on the latency of the kernel’s critical path.

The hardware kernel source code starts with several define statements, shown in Listing 1. The
function of most of these should be self-explanatory. pixel t is the type used for practically
all numbers in the dataflow and is set to a 32-bit integer. NUM CHANNELS defines the spectral
depth of the input data, and this must match the spectral dimension set in the host code.
LINE BUFFER COSELECT is defined such that a conditional compilation can select between the two
buffering techniques described in Section 3.2.3. The different implementations can be switched
between by defining either LINE BUFFER COLSELECT or LINE BUFFER SHIFTREG.

1 #define KERNEL_WIDTH 3

2 #define KERNEL_HEIGHT 3

3 #define KERNEL_SIZE (KERNEL_WIDTH * KERNEL_HEIGHT)

4 #define pixel_t int32_t

15

5 #define MAX_IMG_WIDTH 512

6 #define MAX_IMG_HEIGHT 512

7 #define MAX_IMG_SIZE (MAX_IMG_WIDTH*MAX_IMG_HEIGHT)

8 #define NUM_CHANNELS 10 // Must match NUM_CHANNELS in host code

9 #define LINE_BUFFER_COLSELECT // Line buffer type selector: "COLSELECT" or "

SHIFTREG"

Listing 1: Source code #define statements

The dataflow of the hardware kernel becomes apparent by looking at the ”main” function of the
source code shown in Listing 2. The entire main function has to be defined as extern "C" to
avoid name mangling issues within Vitis. The arguments to the main function are explained in
the code listing. The HLS INTERFACE pragma is used to specify how RTL ports are infered from
the function arguments during synthesis. It is only supported in the top-level function.

The hardware kernel source code passes around data using the hls::stream object. It synthesises
into FIFOs, and can be viewed as data channels between functions. hls::stream accepts most
C++ types, including user-defined types, with the exception of user-defined classes and structures
that contain member functions. The streams used in the main function are defined in arrays of
streams. This is because each spectral dimension of the input uses its own core with a unique
stream.

1 extern "C" {

2

3 /*

4 Convolution Kernel

5

6 Arguments:

7 in1 (input) --> Input kernel coefficients

8 in2 (input) --> Input image

9 out (output) --> Output image

10 width (input) --> Width of input image

11 height(input) --> Height of input image

12 */

13

14 void conv(pixel_t* in1 , pixel_t* in2 , pixel_t* out , int width , int height) {

15

16 #pragma HLS INTERFACE m_axi port = in1 bundle = gmem0

17 #pragma HLS INTERFACE m_axi port = in2 bundle = gmem1

18 #pragma HLS INTERFACE m_axi port = out bundle = gmem1

19 #pragma HLS INTERFACE s_axilite port=width

20 #pragma HLS INTERFACE s_axilite port=height

21

22 static hls::stream <conv_window_t > window_stream[NUM_CHANNELS];

23 static hls::stream <pixel_t > krnl_stream[NUM_CHANNELS];

24 static hls::stream <pixel_t > img_stream[NUM_CHANNELS];

25 static hls::stream <pixel_t > out_stream[NUM_CHANNELS];

26

27 #pragma HLS DATAFLOW

28 load_inputs(in1 , krnl_stream , in2 , img_stream , width , height);

29 multidimensional_conv <NUM_CHANNELS >(window_stream , krnl_stream , img_stream ,

out_stream , width , height);

30 store_result(out , out_stream , width , height);

31 }

32 }

Listing 2: Source code main function

The dataflow of the hardware kernel is as follows:

1. load inputs() loads the input image and kernel weights and produces data for streams to
be consumed by the create conv window() and compute conv() functions.

2. multidimensional conv() initiates the spectral cores. It calls create conv window() and
compute conv() for every channel and passes the correct streams as arguments.

3. create conv window() uses a line buffer to create a window that is passed to compute conv()

for convolution.

16

4. compute conv() initialises by reading the kernel weights from its associated kernel stream.
After initialisation the function performs convolution with the kernel and window received
from create conv window(). The result is passed to store results().

5. store results() saves the computed output data back to memory.

The load/compute/store coding style is used for the HLS hardware kernel source code. The load
and store operation handle memory access, and are designed to move data in and out of the
hardware kernel efficiently. They are shown in Listings 3 and 4 respectively.

1 static void load_inputs(

2 pixel_t* kernel_src ,

3 hls::stream <pixel_t > kernel_stream[NUM_CHANNELS],

4 pixel_t* image_src ,

5 hls::stream <pixel_t > image_stream[NUM_CHANNELS],

6 int image_width ,

7 int image_height)

8 {

9

10 int i=0;

11 kernel_load:

12 for(int y=0; y<KERNEL_HEIGHT; y++) {

13 for(int c=0; c<NUM_CHANNELS; c++) {

14 for(int x=0; x<KERNEL_WIDTH; x++) {

15 #pragma HLS LOOP_TRIPCOUNT max=KERNEL_SIZE*NUM_CHANNELS

16 kernel_stream[c] << kernel_src[i];

17 i++;

18 }

19 }

20 }

21

22 int j=0;

23 image_load:

24 for(int y=0; y<image_height; y++) {

25 for(int c=0; c<NUM_CHANNELS; c++) {

26 for(int x=0; x<image_width; x++) {

27 #pragma HLS LOOP_TRIPCOUNT max=MAX_IMG_SIZE*NUM_CHANNELS

28 image_stream[c] << image_src[j];

29 j++;

30 }

31 }

32 }

33 }

Listing 3: load inputs() function

1 static void store_result(

2 pixel_t* out ,

3 hls::stream <pixel_t > output_stream[NUM_CHANNELS],

4 int image_width ,

5 int image_height)

6 {

7 int i=0;

8 output_store:

9 for(int y=0; y<image_height; y++) {

10 for(int c=0; c<NUM_CHANNELS; c++) {

11 for(int x=0; x<image_width; x++) {

12 #pragma HLS LOOP_TRIPCOUNT max=MAX_IMG_SIZE*NUM_CHANNELS

13 out[i] = output_stream[c].read();

14 i++;

15 }

16 }

17 }

18 }

Listing 4: load inputs() function

The load and store function in Listing 3 and 4 use for-loops to iterate over the input and output
data as described in Section 3.2.4. The inclusion of pragma HLS LOOP TRIPCOUNT is for analysis
only, and does not impact synthesis. They report the tripcount to the analysis tool.

17

The function responsible for implementing the line buffers is create conv window(). There are
two implementations for this function. The line buffer implementation is shown in Listing 5 and
the colselect implementation is shown in Listing 6.

1 static void create_conv_window(

2 hls::stream <pixel_t >& image_stream ,

3 hls::stream <conv_window_t >& window_stream ,

4 int image_width ,

5 int image_height) {

6 // Shift register requires 2 rows of image plus 1 row of kernel

7 const int line_buffer_size = MAX_IMG_WIDTH *2 + KERNEL_WIDTH;

8 // Limit size for when image width < MAX WIDTH (hw can't be dynamically allocated

)

9 const int line_buffer_actual_size = image_width *2 + KERNEL_WIDTH;

10 // Create line buffer

11 pixel_t line_buffer[line_buffer_size];

12 // Pragmas for access partitioning and loop dependencies

13 #pragma HLS ARRAY_PARTITION variable=line_buffer complete dim=0

14

15 // Create sliding window matching the kernel dimensions

16 conv_window_t Window;

17

18 int init_iterations = (KERNEL_WIDTH -1)/2 + image_width;

19 int num_pixels = image_width*image_height;

20 int total_iterations = init_iterations + num_pixels;

21

22 const int max_iterations = (KERNEL_WIDTH -1)/2 + MAX_IMG_WIDTH + MAX_IMG_SIZE;

23

24 update_conv_window_1:

25 for(int n=0; n<total_iterations; n++) {

26 #pragma HLS LOOP_TRIPCOUNT max=total_iterations

27 #pragma HLS PIPELINE II=1

28

29 pixel_t new_pixel = (n<num_pixels) ? image_stream.read() : 0;

30

31 // Shift line buffer array

32 for(int i=0; i<line_buffer_actual_size -1; i++) {

33 line_buffer[i] = line_buffer[i+1];

34 }

35 line_buffer[line_buffer_actual_size -1] = new_pixel;

36

37 // Create window

38 read_window_from_lb:

39 for(int y=0; y<KERNEL_HEIGHT; y++){

40 for(int x=0; x<KERNEL_WIDTH; x++) {

41 Window.pixel[y][x] = line_buffer[y * image_width + x];

42 }

43 }

44

45 // Write out the updated window to stream if finished initializing

46 if (n >= init_iterations) window_stream.write(Window);

47 }

48 }

Listing 5: Line buffer implementation of the create conv window() function

1 static void create_conv_window(

2 hls::stream <pixel_t >& image_stream ,

3 hls::stream <conv_window_t >& window_stream ,

4 int image_width ,

5 int image_height)

6 {

7 // Create line buffer

8 pixel_t line_buffer[KERNEL_HEIGHT -1][MAX_IMG_WIDTH];

9 // Pragmas for access partitioning and loop dependencies

10 #pragma HLS ARRAY_PARTITION variable=line_buffer dim=1 complete

11 #pragma HLS DEPENDENCE variable=line_buffer inter false

12 #pragma HLS DEPENDENCE variable=line_buffer intra false

13

14 // Create sliding window matching the kernel dimensions

15 conv_window_t Window;

16

18

17 // int to track coloumn of sliding window

18 int col = 0;

19 // Number of additional iterations to populate line and window buffers

20 int init_iterations = (KERNEL_WIDTH -1)/2 + image_width *((KERNEL_WIDTH -1)/2 + (

KERNEL_HEIGHT -1)/2) /2;

21 int num_pixels = image_width*image_height;

22 int total_iterations = num_pixels + init_iterations;

23

24 const int MAX_ITERATIONS = MAX_IMG_WIDTH*MAX_IMG_HEIGHT + MAX_IMG_WIDTH *((

KERNEL_WIDTH -1) /2+(KERNEL_HEIGHT -1)/2) /2;

25

26 update_conv_window_0:

27 for (int n=0; n<total_iterations; n++) {

28 #pragma HLS LOOP_TRIPCOUNT max=MAX_ITERATIONS

29 #pragma HLS PIPELINE II=1

30

31 // Read new pixel from image

32 pixel_t next_pixel = (n<num_pixels) ? image_stream.read() : 0;

33

34 // Shift window

35 shift_window:

36 for (int i = 0; i < KERNEL_HEIGHT; i++) {

37 for (int j = 0; j < KERNEL_WIDTH -1; j++) {

38 Window.pixel[i][j] = Window.pixel[i][j+1];

39 }

40 // At final coloumn get new values from line_buffer or the next pixel

41 Window.pixel[i][KERNEL_WIDTH -1] = (i < KERNEL_HEIGHT -1) ? line_buffer[i][col]

: next_pixel;

42 }

43 shift_linebuffer_col:

44 // Shift line_buffer and add new pixel

45 for (int i = 0; i < KERNEL_HEIGHT -2; i++) {

46 line_buffer[i][col] = line_buffer[i+1][col];

47 }

48 line_buffer[KERNEL_HEIGHT -2][col] = next_pixel;

49

50 // Update coloumn tracker

51 if (col == (image_width -1)) {

52 col = 0;

53 } else {

54 col ++;

55 }

56

57 // Write out the updated window to stream if finished initializing

58 if (n >= init_iterations) window_stream.write(Window);

59 }

60 }

Listing 6: Colselect implementation of the create conv window() function

The function responsible for computing the convolution between the kernel and image window is
compute conv(). It is shown in Listing 7. It reads the kernel weights from load inputs() and
start the main loop called full image conv (the name refers to a full 2D image, not the entire cube
for hyperspectral inputs). This function is also responsible for zero-padding when the convolution
being performed is at the image border.

1 static void compute_conv(

2 hls::stream <pixel_t >& output_stream ,

3 hls::stream <pixel_t >& kernel_stream ,

4 hls::stream <conv_window_t >& window_stream ,

5 int image_width ,

6 int image_height)

7 {

8 pixel_t kernel[KERNEL_HEIGHT][KERNEL_WIDTH];

9 #pragma HLS ARRAY_PARTITION variable=kernel complete dim=0

10

11 // Load kernel coefficients

12 load_coeffs_to_compute:

13 for (int i = 0; i < KERNEL_HEIGHT; i++) {

14 for (int j = 0; j < KERNEL_WIDTH; j++) {

15 #pragma HLS LOOP_FLATTEN

16 #pragma HLS PIPELINE II=1

19

17 kernel[i][j] = kernel_stream.read();

18 }

19 }

20

21 // Compute convolution

22 full_image_conv:

23 for (int y = 0; y < image_height; y++) {

24 #pragma HLS LOOP_TRIPCOUNT max=MAX_IMG_HEIGHT

25 for (int x = 0; x < image_width; x++) {

26 #pragma HLS LOOP_TRIPCOUNT max=MAX_IMG_WIDTH

27 #pragma HLS PIPELINE II=1

28 conv_window_t Window = window_stream.read();

29

30 // Compute cross -correlation between window and kernel

31 pixel_t sum = 0;

32 pixel_conv:

33 for(int row = 0; row < KERNEL_HEIGHT; row++) {

34 for (int col=0; col < KERNEL_WIDTH; col++) {

35 pixel_t new_pixel;

36

37 int x_offset = (x+col -(KERNEL_WIDTH /2));

38 int y_offset = (y+row -(KERNEL_HEIGHT /2));

39

40 // Boundary conditions: Set to 0 outside image frame

41 if ((x_offset <0) || (x_offset >= image_width) || (y_offset <0) || (y_offset

>= image_height)) {

42 new_pixel = 0;

43 } else {

44 new_pixel = Window.pixel[row][col];

45 }

46 sum += new_pixel * kernel[row][col];

47 }

48 }

49

50 output_stream.write(sum);

51 }

52 }

53 }

Listing 7: Colselect implementation of the create conv window() function

3.2.6 Performance Estimation

The ideal performance of the convolutional layer can be estimated from the requirements. The
spatial dimensions of the input image are 512 × 512 which equals 262 144 pixels. Throughput of
one pixel per clock cycle and a target clock frequency of 150MHZ yields the following runtime:

Total pixels

1px/cycle× 150MHz
=

262144

150
µs ≈ 1.75ms

This includes convolution of the entire hyperspectral input, as the layers are processed in parallel. It
does not include the overhead of initialising the hardware kernel. As discussed earlier, some blocks
need to initialise internal structures before they can start pipelined operation. As mentioned in
Section 3.2.3, the input buffering techniques require at least 514 cycles to initialise for a 2D image.
This, however only amount to a minuscule 512/262144 ≈ 0.2% of total estimated cycles. The
computation of the deepest spectral band will begin last, and will have a much greater Initiation
Interval. Using 10 channels, it will have to wait for 512× 19 + 2 = 9730 cycles before it can start
convolution. The 19 comes from waiting for the input to read 19 spatial lines before it receives
data from its second spatial line. This II amounts to 9730/262144 ≈ 3.7% of the total cycles and
bumps the estimated completion time to 1.81ms.

3.2.7 Evaluation

Evaluation of the convolution layer is performed by comparing the estimated performance in Section
3.2.6 to the numbers reported by the Vitis tools. Vitis is able to run software simulations and

20

hardware emulations of the design. Software simulations are useful for quickly getting an indication
of design correctness, but can have inaccuracies. Hardware emulation use QEMU for the host and
RTL and System-C-based emulation to co-simulate the design and provide a complete execution
model. Upon building the design for hardware emulation various reports are generated. These can
be inspected to see resource usage and timing estimates for the design.

The two line buffer implementations will be synthesised and compared using a 512 × 512 × 1
dimension configuration. The line buffers are duplicated for extra dimensions, so having one
dimension should yield similar results to a configuration of high spectral depth.

The design is synthesised for various dimension configurations. The maximum input image dimen-
sions as well as the spectral depth is configurable. A set of configuration will be synthesised with
the buffering technique that shows the best results:

1. 2D: A 512× 512× 1 configuration. Shows the resource usage when the design is synthesised
to a regular 2D convolution layer.

2. Minimum size: A 64 × 64 × 1 configuration. Shows the resource utilisation for a network
configured for very small, monochromatic image inputs.

3. Maximum size: A 512× 512×D configuration. D is the highest depth where the FPGA can
still fit an entire convolution layer, and is found though incrementally increasing D until the
layer no longer fits. Shows how deep of an image the design can handle while retaining a
large spatial resolution of 512× 512.

4. Realistic: A 512 × 512 × 10 configuration. Shows the resource utilisation and performance
for a realistic convolution layer where some dimension reduction has been performed on the
hyperspectral images to reduce it to 10 spectral dimensions.

3.3 Full Network

Multiple types of network layers were not implemented. Future work could add bias and activation
functions to the convolution layer, as well as implementing the other network layers mentioned in
Section 2.4. A fully realised CNN can then be run on the Zynq platform.

It is unrealistic to expect that an entire CNN the size of UNet can fit inside the FPGA. A work-
around for this is to implement different layer types in the FPGA fabric and scheduling them to
run from from PS when required. This would require significant memory bandwidth, but it could
be a realistic way to implement arbitrarily deep neural networks (as long as data stored by skip
connections don’t surpass the memory constraints of the platform).

21

4 Results and Discussion

This chapter presents and discusses the result from the convolution layer implementation as well
as discussing possible improvements and future work. The results from synthesising various layer
configurations are presented first, followed by validating the performance of the convolution layer.
The implications of these are discussed, before discussion on future work and possible improvements
conclude the chapter

4.1 Line Buffer Results

The two buffering techniques, line buffer and colselect were synthesised for a 512× 512× 1 design
configuration. The reports generated after synthesis are shown in Figures 12 and 13.

The reports estimate that the latency of the techniques are very similar, only differing by 359
cycles amounting to 0.03ms of latency, but they differ wildly in resource utilisation. The line
buffer implementation used 37711 flip-flops, a full 8% for a relatively small layer configuration of
only one spectral dimension. Meanwhile, the colselect implementation utilises 5217 flip-flops and
two BRAM blocks (out of the total 312 blocks on the target FPGA). The colselect scheme uses
slightly more LUTs as well. Because of these results, the colselect is used for the remaining tests.
The reason for this discrepancy is most likely for the reasons explained in Section 3.2.3.

4.2 Various Configuration of the Convolution Layer

The results from synthesising the various system configurations listed Section 3.2.7 in are shown
in Figures 141516171819.

For maximum depth, a value of 70 was reached before the tool crashed upon synthesis. At this
point, DSP utilisation is above 100%. This is obviously not satisfactory, but a depth of 64 layers
was synthesised and confirmed to fit on the FPGA.

The minimum configuration had a very low resource utilisation, as expected. The 2D-configuration
represents single core performance and utilisation.

It can be observed from all the reports that the worst (absolute) latency was just over 1.75ms.
This represents the run time for convolving an image of spatial resolution 512× 512.

Time did unfortunately not allow a deep discussion beyond what has been noted earlier in the
thesis.

22

Figure 12: Report from synthesising the convolution layer with the colselect buffering technique.

Figure 13: Report from synthesising the convolution layer with the line buffer buffering technique.

Figure 14: Synthesis report for synthesising the 2D design configuration.

Figure 15: Synthesis report estimate for synthesising the 2D design configuration

23

Figure 16: Synthesis report for synthesising the minimum configuration.

Figure 17: Synthesis report estimates for synthesising the minimum configuration.

Figure 18: Synthesis report for synthesising the maximum configuration (oversized)

Figure 19: Synthesis report estimates for synthesising the maximum configuration (oversized)

24

Bibliography

[1] T. A. Johansen, ‘Development of a small satellite with a hyperspectral imaging payload
and onboard processing for ocean color’, Available at https://folk.ntnu.no/torarnj/V1.2.
0 Sivert PhD thesis.pdf, PhD Thesis, NTNU, 2022.

[2] J. Schott, Remote Sensing: The Image Chain Approach (Oxford Series on Optical and Ima-
ging Sciences Series). Oxford University Press, 1997, isbn: 9780195087260. [Online]. Avail-
able: https://books.google.no/books?id=DAh5bca5iYIC.

[3] Aappo Roos, Hsi lwir stones, This work is licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported License. To view a copy of this license, visit https://creativecommons.
org/licenses/by-sa/3.0/deed.en., 2011. [Online]. Available: https://commons.wikimedia.org/
wiki/File:HSI LWIR stones.png.

[4] M. E. Grøtte, R. Birkeland, E. Honoré-Livermore et al., ‘Ocean color hyperspectral remote
sensing with high resolution and low latency—the hypso-1 cubesat mission’, IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 60, pp. 1–19, 2022. doi: 10.1109/TGRS.2021.
3080175.

[5] J. Zou, Y. Han and S.-S. So, ‘Overview of artificial neural networks’, in Artificial Neural
Networks: Methods and Applications, D. J. Livingstone, Ed. Totowa, NJ: Humana Press,
2009, pp. 14–22, isbn: 978-1-60327-101-1. doi: 10 .1007/978 - 1 - 60327 - 101 - 1 2. [Online].
Available: https://doi.org/10.1007/978-1-60327-101-1 2.

[6] I. El Naqa and M. J. Murphy, ‘What is machine learning?’, in Machine Learning in Radiation
Oncology: Theory and Applications, I. El Naqa, R. Li and M. J. Murphy, Eds. Cham: Springer
International Publishing, 2015, pp. 3–11, isbn: 978-3-319-18305-3. doi: 10.1007/978-3-319-
18305-3 1. [Online]. Available: https://doi.org/10.1007/978-3-319-18305-3 1.

[7] S. Albawi, T. A. Mohammed and S. Al-Zawi, ‘Understanding of a convolutional neural net-
work’, in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1–
6. doi: 10.1109/ICEngTechnol.2017.8308186.

[8] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli and J. Sohl-Dickstein, ‘On the expressive power
of deep neural networks’, in Proceedings of the 34th International Conference on Machine
Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine Learning Research,
vol. 70, PMLR, 2017, pp. 2847–2854. [Online]. Available: https://proceedings.mlr.press/v70/
raghu17a.html.

[9] K. O’Shea and R. Nash, An introduction to convolutional neural networks, 2015. arXiv:
1511.08458 [cs.NE].

[10] A. Ajit, K. Acharya and A. Samanta, ‘A review of convolutional neural networks’, in 2020
International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE), 2020, pp. 1–5. doi: 10.1109/ic-ETITE47903.2020.049.

[11] H. Srivastava and K. Sarawadekar, ‘A depthwise separable convolution architecture for cnn
accelerator’, in 2020 IEEE Applied Signal Processing Conference (ASPCON), 2020, pp. 1–5.
doi: 10.1109/ASPCON49795.2020.9276672.

[12] R. Nirthika, S. Manivannan, A. Ramanan and R. Wang, ‘Pooling in convolutional neural
networks for medical image analysis: A survey and an empirical study’, Neural Computing and
Applications, vol. 34, no. 7, pp. 5321–5347, Apr. 2022, issn: 1433-3058. doi: 10.1007/s00521-
022-06953-8. [Online]. Available: https://doi.org/10.1007/s00521-022-06953-8.

[13] A. Zhang, Z. C. Lipton, M. Li and A. J. Smola, ‘Dive into deep learning’, arXiv preprint
arXiv:2106.11342, 2021.

[14] H. Ahn and C. Yim, ‘Convolutional neural networks using skip connections with layer groups
for super-resolution image reconstruction based on deep learning’, Applied Sciences, vol. 10,
no. 6, 2020, issn: 2076-3417. doi: 10.3390/app10061959. [Online]. Available: https://www.
mdpi.com/2076-3417/10/6/1959.

25

https://folk.ntnu.no/torarnj/V1.2.0_Sivert_PhD_thesis.pdf
https://folk.ntnu.no/torarnj/V1.2.0_Sivert_PhD_thesis.pdf
https://books.google.no/books?id=DAh5bca5iYIC
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:HSI_LWIR_stones.png
https://commons.wikimedia.org/wiki/File:HSI_LWIR_stones.png
https://doi.org/10.1109/TGRS.2021.3080175
https://doi.org/10.1109/TGRS.2021.3080175
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
https://arxiv.org/abs/1511.08458
https://doi.org/10.1109/ic-ETITE47903.2020.049
https://doi.org/10.1109/ASPCON49795.2020.9276672
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.3390/app10061959
https://www.mdpi.com/2076-3417/10/6/1959
https://www.mdpi.com/2076-3417/10/6/1959

[15] Z. Wang, S. Liang, L. Xu, W. Song, D. Wang and D. Huang, ‘Dimensionality reduction
method for hyperspectral image analysis based on rough set theory’, European Journal of
Remote Sensing, vol. 53, no. 1, pp. 192–200, 2020. doi: 10.1080/22797254.2020.1785949.
eprint: https://doi.org/10.1080/22797254.2020.1785949. [Online]. Available: https://doi.org/
10.1080/22797254.2020.1785949.

[16] H. Tulapurkar, B. Banerjee and B. K. Mohan, ‘Effective and efficient dimensionality reduction
of hyperspectral image using cnn and lstm network’, in 2020 IEEE India Geoscience and
Remote Sensing Symposium (InGARSS), 2020, pp. 213–216. doi: 10.1109/InGARSS48198.
2020.9358957.

[17] A. Uberoi, Introduction to dimensionality reduction, May 2023. [Online]. Available: https:
//www.geeksforgeeks.org/dimensionality-reduction/.

[18] D. Kapla, L. Fertl and E. Bura, ‘Fusing sufficient dimension reduction with neural networks’,
Computational Statistics & Data Analysis, vol. 168, p. 107 390, 2022, issn: 0167-9473. doi:
https://doi.org/10.1016/j.csda.2021.107390. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167947321002243.

[19] X. Zhang, Y. Guo and X. Zhang, ‘Hyperspectral image classification based on optimized
convolutional neural networks with 3d stacked blocks’, Earth Science Informatics, vol. 15,
no. 1, pp. 383–395, Mar. 2022, issn: 1865-0481. doi: 10.1007/s12145-021-00731-1. [Online].
Available: https://doi.org/10.1007/s12145-021-00731-1.

[20] J. Cao and X. Li, A 3d 2d convolutional neural network model for hyperspectral image clas-
sification, 2021. arXiv: 2111.10293 [cs.CV]. [Online]. Available: https://doi.org/10.48550/
arXiv.2111.10293.

[21] S. Che, J. Li, J. W. Sheaffer, K. Skadron and J. Lach, ‘Accelerating compute-intensive ap-
plications with gpus and fpgas’, in 2008 Symposium on Application Specific Processors, 2008,
pp. 101–107. doi: 10.1109/SASP.2008.4570793.

[22] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno and P. H. Jones, ‘Comparing en-
ergy efficiency of cpu, gpu and fpga implementations for vision kernels’, in 2019 IEEE In-
ternational Conference on Embedded Software and Systems (ICESS), 2019, pp. 1–8. doi:
10.1109/ICESS.2019.8782524.

[23] A. Boutros, S. Yazdanshenas and V. Betz, ‘You cannot improve what you do not measure:
Fpga vs. asic efficiency gaps for convolutional neural network inference’, ACM Trans. Re-
configurable Technol. Syst., vol. 11, no. 3, Dec. 2018, issn: 1936-7406. doi: 10.1145/3242898.
[Online]. Available: https://doi.org/10.1145/3242898.

[24] X. Advanced Micro Devices. ‘Vitis high-level synthesis user guide (ug1399)’. (), [Online].
Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls (visited on 14th Feb. 2023).

[25] Y. Herklotz, Z. Du, N. Ramanathan and J. Wickerson, ‘An empirical study of the reliability
of high-level synthesis tools’, in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2021, pp. 219–223. doi: 10 .1109/
FCCM51124.2021.00034.

[26] I. Skliarova, ‘Analysis and comparison of different approaches to implementing a network-
based parallel data processing algorithm’, Journal of Low Power Electronics and Applica-
tions, vol. 12, no. 3, 2022, issn: 2079-9268. doi: 10.3390/jlpea12030038. [Online]. Available:
https://www.mdpi.com/2079-9268/12/3/38.

[27] X. Advanced Micro Devices. ‘Vitis unified software platform documentation: Application
acceleration development (ug1393)’. (), [Online]. Available: https://docs.xilinx.com/r/en-
US/ug1393-vitis-application-acceleration (visited on 16th Feb. 2023).

[28] S. Netteland, ‘Exploration and implementation of large cnn models for image segmentation in
hyperspectral cubesat missions’, Available at https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/3020478, Master’s Thesis, NTNU, 2022.

[29] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image
segmentation, 2015. arXiv: 1505.04597 [cs.CV].

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with deep convolu-
tional neural networks’, Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, issn: 0001-0782.
doi: 10.1145/3065386. [Online]. Available: https://doi.org/10.1145/3065386.

26

https://doi.org/10.1080/22797254.2020.1785949
https://doi.org/10.1080/22797254.2020.1785949
https://doi.org/10.1080/22797254.2020.1785949
https://doi.org/10.1080/22797254.2020.1785949
https://doi.org/10.1109/InGARSS48198.2020.9358957
https://doi.org/10.1109/InGARSS48198.2020.9358957
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://doi.org/https://doi.org/10.1016/j.csda.2021.107390
https://www.sciencedirect.com/science/article/pii/S0167947321002243
https://www.sciencedirect.com/science/article/pii/S0167947321002243
https://doi.org/10.1007/s12145-021-00731-1
https://doi.org/10.1007/s12145-021-00731-1
https://arxiv.org/abs/2111.10293
https://doi.org/10.48550/arXiv.2111.10293
https://doi.org/10.48550/arXiv.2111.10293
https://doi.org/10.1109/SASP.2008.4570793
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1145/3242898
https://doi.org/10.1145/3242898
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://doi.org/10.1109/FCCM51124.2021.00034
https://doi.org/10.1109/FCCM51124.2021.00034
https://doi.org/10.3390/jlpea12030038
https://www.mdpi.com/2079-9268/12/3/38
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3020478
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3020478
https://arxiv.org/abs/1505.04597
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

[31] X. Yu, Y. Wang, J. Miao et al., ‘A data-center fpga acceleration platform for convolutional
neural networks’, in 2019 29th International Conference on Field Programmable Logic and
Applications (FPL), 2019, pp. 151–158. doi: 10.1109/FPL.2019.00032.

27

https://doi.org/10.1109/FPL.2019.00032

	List of Figures
	Introduction
	Background
	The HYPSO Mission
	Hyperspectral Imaging
	Remote Sensing
	Hyperspectral Images

	Machine Learning
	Semantic Image Segmentation
	Artificial Neural Networks

	Convolutional Neural Networks
	2D Convolutional Layers
	Depthwise Separable Convolution Layers
	Pooling Layers
	Transposed 2D Convolution Layers
	Concatenation Layers and Skip Connections
	Dimensionality Reduction
	3D Convolution

	FPGA Acceleration
	FPGA Performance
	Hardware-software co-design

	High-Level Synthesis
	Vitis HLS
	Pragma directives

	Implementation
	Semantic Image Segmentation of Hyperspectral Images
	UNet CNN

	Convolution Layer
	Requirements
	Layer Design
	Line Buffer
	Handling Higher Dimensionality
	HLS Implementation
	Performance Estimation
	Evaluation

	Full Network

	Results and Discussion
	Line Buffer Results
	Various Configuration of the Convolution Layer

	Bibliography

