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Abstract

Floating offshore wind is essential in transitioning towards renewable energy and

reaching net zero emissions. As these turbines can be placed in the deeper ocean,

they also can provide more power from the higher and consistent wind speed. How-

ever, this also comes with the challenges of the harsh environment, making the struc-

tures more expensive as they need to withstand these large forces. In order to make

the offshore wind industry competitive, cost reduction and safe design innovation are

crucial. Numerical simulations with CFD play a significant role under these circum-

stances due to the possibility of accurate prediction of the physical loads, making the

optimization of the structure better. Still, to make the CFD model reliable, validation

is required by comparing the numerical simulation to experimental data.

This thesis aims to validate floating bodies, particularly focusing on a floating off-

shore wind turbine, using the numerical model REEF3D with the implemented al-

gorithm of six degrees of freedom (6DOF), including a new fluid-structure interac-

tion(FSI) method. REEF3D is an open-source numerical CFD solver developed at

the Department of Civil and Environmental Engineering at NTNU, which solves the

three-dimensional Reynolds-Average Navier-Stokes (RANS) equation. The domain is

discretized using a finite difference method and level set method to obtain the float-

ing body and the free surface within water and air. This is executed on a cartesian

staggered grid with a direct forcing immersed boundary method. The convective

term in the RANS equation is discretized by applying a fifth-order WENO scheme,

while the term of pressure is obtained by Chorin’s Projection resulting in a Poisson

equation that is solved with the Bi-Conjugate Gradient Stabilized method. The To-

tal Variation Diminishing Runge-Kutta scheme of third-order is utilized for both the

free surface’s time scheme and the momentum equations. For validation, the waves

are simulated in a numerical wave tank with second-order Stokes theory, where the

numerical wave tank is divided into three parts: a generation zone, a working zone,

and a numerical beach, explained in the chapter on the numerical model.

Two 2D cases of simple geometry are first investigated before a more complex 3D

case of a floating offshore wind turbine with mooring lines developed by SINTEF is
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studied under the influence of three different regular waves. These simulations are

then compared to experimental data, which involves heave, roll, and surge motions

in 2D, and heave, pitch, and surge in 3D. Also, the simulated wave elevation is com-

pared with the measurements. Simplified spring mooring lines are used for the floating

platform, which is investigated in conjunction with the motions. A grid convergence

study is performed on the cases to optimize the grid size, combining accuracy and

computational efficiency. Further, a parameter analysis of the least favorable cases is

conducted to improve the outcomes. Considering all the validation cases, the results

show good agreement with the measurements.
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Chapter 1

Introduction

1.1 Background

The rapid climate changes in recent years have increased the demand for renewable

technologies to fulfill the Paris Agreement’s objectives and reach net-zero emissions[47].

In this regard, the wind industry is a great contributor, whereas the offshore wind

industry’s interest has grown rapidly[125][76][32]. Removing water depth constraints

for Offshore Wind opens access to the best sites for wind energy production, as nearly

80% of the world’s offshore wind resource potential is located at water depths exceed-

ing 60 meters[31]. In addition, the floating offshore wind is capable of supplying

large-scale energy production directly to global markets, as 2.4 billion of the popu-

lation are settled within 100km of the coastal zone[31]. However, deeper water also

comes with challenges with harsher metocean conditions and more extreme loads,

leading to higher costs to make reliable structures[81]. In order to make this indus-

try competitive, a cost reduction is needed, which can be obtained by high facility

resources, like Computational Fluid Dynamics (CFD)[77][134][133].

Today bottom-fixed wind farms are competitive with other sources of energy[77].

However, suitable shallow areas for bottom-fixed wind farms are scarce and often al-

ready used by others[67]. Hence, the potential for larger wind farms is better offshore

with the advantage of explication the stronger and more consistent winds[91][67].

However, deeper water stops bottom-fixed developments, as fixed-bottom turbines

are inefficient at a depth of more than 60m[81][124][76]. A floating offshore wind

turbine with mooring lines is then required[134][133][81].

For a long time, analytical methods using potential theory have dominated the

calculations of hydrodynamic loads when designing in marine environments[3][68].

However, this has a disadvantage due to its difficulties in calculating the effects of
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non-linearity and viscosity of the fluid[34][3]. The complex free surface surrounding

floating structures in the ocean consists of high non-linearity and phenomena such

as wave breaking and turbulence, giving an intense fluid-structure interaction[68].

Therefore, an accurate hydrodynamic load prediction is essential to design safe and

lower costs, especially for small-scale structures like offshore floating wind[27]. A

powerful tool for understanding these phenomena is Computational Fluid Dynam-

ics (CFD)[77]. This numerical method is very computationally demanding, but in

return, it can determine the majority of the fluid physics with just a small number

of assumptions using the Navier-Stokes equation[12]. With these accurate results

of the hydrodynamic forces, a deeper understanding and new innovative design solu-

tions can be evolved to further development of floating offshore wind[7]. Traditionally

these studies were done by physical experiments, but with increasing computational

power, numerical simulations can obtain more accurate results and save costs[39].

However, the numerical simulations must be validated against experimental data to

obtain reliable results[13][27][39].

1.2 State-of-the-Art

1.2.1 Numerical wave tanks based on CFD

Within the area of CFD, several models are developed based on the Navier-Stokes

equations to simulate waves with proper assumptions[70][12], and various methods

are available to represent this[35]. The free surface can be obtained by discretiza-

tion methods, like finite difference, finite volume, or finite difference methods, and

techniques like the Level Set Method (LSM)[75] or Volume Of Fluid (VOF)[43]. Fur-

thermore, the calculations can be performed in different ways based on the inclusion

of air, where a single-flow calculation does not include the air[108], while the two-

phase includes it[12]. For the approach of fluid-structure interactions, the Arbitrary

Lagrangian-Eulerian (ALE) methods, which is a one-phase solver, have earlier been

used[87][117][107][68]. These methods follow the body’s movement by modifying the

underlying mesh when the floating body moves[13]. However, when the free surface

gets complex, as it often does in the deep ocean, this approach will have limitations

in usability[68]. With an overlapping mesh implementation, where the fluid and the

object have two different meshes, re-meshing is avoided[17]. Peskin[84] presented

another technique for fluid-structure interactions, named The Immersed Boundary

(IB) method, that can have different applications of boundary conditions[68]. These

boundary conditions can either take form as an extension of the momentum equation,

with an extra source term[33], or with an approach of direct forcing[113], which has a

fictive force field that illustrates the boundary effects in the solution of the flow equa-
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tions. Combining this with the level set function introduced by Sanders et al.[94],

the boundary can be represented as a zero-contour at the water and air interface.

The level-set immersed boundary method is a two-phase solver and is a good ap-

proach to investigating complex geometries[7][13][135], such as in Kan et al.[57], and

Calderer et al.[16]. Moreover, also the Volume of Fluid method (VOF) has been used

to implement different CFD codes, like the toolboxes of OpenFOAM from Jacobsen

et al.[50] and Higuere et al.[42] and ReFRESCO[115]. For turbulence modeling, two

models of RANS models are developed, one and two-equations models[98]. Examples

of one-equation models that use the average time transport equation are SA (spalrat-

Allmaras)[129], Baldwin-Barth[5], and Prandtl’s[109][60], where the SA-model is the

most frequently used[98]. For CFD modeling of wind turbines, the two-equation

model of turbulence, k − w, and k − ϵ, is commonly applied[30]. Also, k − ω SST is

an accurate and popular submodel of k − ω [127][92][98].

This thesis utilizes the CFDmodule in the open-source hydrodynamics solver REEF3D

[12], which uses the level set method for the representation of both the boundary

around the structure and the free surface with the direct forcing immersed boundary

method for fluid-structure interactions[12][70]. The application shown by Martin et

al.(2021) [70] is used for the mooring systems and for the 6DOF algorithm with the

direct immersed boundary method. REEF3D also has more implemented modules

than the CFD module, based on the different flow and wave conditions[119]. The

SFLOW[120] module can be used for shallow conditions, and for large-scale phase

resolving, the fully nonlinear potential flow solver, FNPF[14], is considered as ben-

eficial. All of these have been used for diverse scenarios in the oceanic environment

with good results, for instance, investigation of the breaking wave concept using Large

eddy simulation for turbulence modeling[1], a quasistatic mooring model for floating

structures[71], wave propagation over a sloping bed with breaking waves[120], and

transformation and propagation of waves over complex topography[123].

A coupling technique for REEF3D is also presented in [122]. Here, a combination of

the fully nonlinear potential flow solver (FNPF) and the model of computational fluid

dynamic (CFD) is possible. This combination is valuable when conducting simula-

tions over a large area, requiring precise values of a particular location. The CFD can

provide accurate results. However, this requires a high computational effort, making

it unfavorable for a larger scale. Coupling between these two modules leads to an

optimization between productivity and accuracy, which could be an advantage for

upscaling wind turbines and wind farms[79].
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1.2.2 Numerical simulations of Wind Turbines using CFD

Multiple numerical simulation approaches on Wind Turbines are utilized in diverse

fields with the advantages of high accuracy and turbulence simulation[77][98]. One

of the first to use CFD models on Wind Turbines was Sorensen and Hansen [101][23],

which used the incompressible RANS equation together with the turbulence model

k − ω SST in two different models[98]. However, the unpredicted flow separation of

wind speed higher than 10 m/s limited the usage. Therefore, Bazilevs et al. [101]

established a model of FSI that was invented to predict the torque accurately. An-

other CFD performance was done in order to determine an appropriate shape for the

airfoil, Maizi et al.[69], that used a solver influenced by the compressible URANS

of 25 different airfoils. This study pointed out that k − ω SST had the maximum

exactitude of all the turbulence models[98].

For turbines placed on the ocean, Stevenes et al.[103] have used CFD modeling to

optimize the arrangement of Wind Turbines in an offshore wind farm with Large

eddy simulations[98]. Focusing on how the inflow orientation of the water affects the

turbines. In another case, a flow motion above two floating wind turbines was studied

by Yu and Agel[128], using Reynolds Averaged Navier Stokes equations (RANS) in

the CFD estimation with k − ω SST and SA as turbulence models. The outcome

was that k − ω SST was the most suitable model for accurate turbulence modeling.

The simulation also showed a good match with measurements in the model and full

scale[98].

Under the conditions of yaw settings, this has also been investigated to optimize

and build a new numerical model[90]. This model can give the yaw settings good

estimations of the power output when it is both conventional and optimized. The

alignment angles were examined by a simulation performed by Gebrad et al.[38] us-

ing an LES model, which showed promising results when compared with measured

data[98].
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1.3 Objectives of the Study

This thesis aims to validate the implemented algorithm of 6DOF with a particular

focus on a floating offshore wind platform using REEF3D with its new approach of

fluid-structure interaction(FSI) and mooring model[70]. First, there are studied two

2D cases for validations purpose. This is of a heaving cylinder and a floating box

in waves. For the heaving cylinder, the heave motion is investigated in a simulation

from a release of an initial position to the water and compared to experimental data.

For the following case, a rectangular box is simulated in regular waves, where heave,

roll, and surge motions are studied and compared to measurements.

The third and primary investigation is of a floating offshore wind platform, WIND-

MOOR, from SINTEF. Three cases of different regular waves are simulated and com-

pared to measurements carried out of SINTEF in the SINTEF’s oceans basin. Heave,

pitch, and surge motions are investigated to validate the 6DOF algorithm and moor-

ing lines. Mooring lines are simplified with springs, holding the platform stable.

The CFD module of the open-source code REEF3D is used in all cases. This code

is developed at the Norwegian University of Science and Technology (NTNU) in the

Department of Civil and Environmental Engineering[9][12]. The structure of this

thesis starts with an explanation of the governing equations and the framework of

the model as a methodology and theory chapter. Next, the validation cases are in-

troduced and discussed. The WINDMOOR experiment is then explained, and the

simulation results are examined and discussed. Finally, a conclusion and outlook are

given at the end of the document.
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1.4 Definition of the movements of a floating body

The movement of a floating body is represented by 6 degrees of freedom (6DOF)[34].

These motions consist of three displacements and rotations, making up all the move-

ments necessary to present the body in three dimensions. Along the x, y, and z-axis,

the three translations are defined as surge, sway, and heave. The three rotations are

defined as roll, pitch, and yaw around the x, y, and z-axis, respectively[52][68]. These

movements are illustrated in Fig. 1.1.

Figure 1.1: The six degrees of freedom[64]
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Chapter 2

Numerical Model

This chapter represents the numerical solution methods used in this thesis, where the

open-source hydrodynamics framework software, REEF3D[12], is utilized. The CFD

module of REEF3D is applied to simulate the floating structure. This module solves

the three-dimensional Navier-Stokes equations [12]. Furthermore, it will give detailed

information on the flow process, which makes it an appropriate model for the complex

case of floating structures[12].

2.1 Governing equations

The three-dimensional, incompressible Navier-Stokes equations are the governing

equation[12]. These equations describe the incompressible fluid flow with the base of

mass conservation and linear momentum conservation[12]. The continuity equation

represents the conservation of mass:

∂ui
∂xi

= 0, (2.1)

Navier Stokes equation is established from the conservation of linear momentum[116].

∂ui
∂t

+
∂uiuj
∂xj

=
∂

∂xj
(µ
∂ui
∂uj

)− 1

ρ

∂p

∂xi
(2.2)

If Eq. (2.1) and (2.2) are put together, it will then express the Reynolds-averaged

Navier-Stokes equations (RANS equations)[68]:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ gi, (2.3)

with ui the velocity vector, ρ the fluid density, p the pressure, ν and νt the kinematic

and turbulent viscosity, and gi the gravity acceleration vector[12].
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The first term in Eq. (2.3) is a velocity variation over time, and the second is a

convection term[68]. These two terms constitute the equation’s left side and the in-

ertial forces[68]. The right side consists of three terms, where the first is a pressure

force, the second is a viscous force, and the third is an external force[68][35].

2.1.1 Discretization Approaches

An appropriate discretization method must be selected to solve the Navier-stokes

equations[35]. The goal is to replace the continuous problem with a discrete domain

with nodes of a finite number so that the differential equation can be described as

equations of an algebraic system[39][35]. This method will thus approximate the dif-

ferential equations[39][35].

The three main approaches are: Finite Element Method, Finite Volume Method

and Finite Differences Method[68].

Finite Volume Mehod

The starting point of the finite volume method is the integral form of the conservation

equations, where the grid of the solution domain is divided into control volumes of a

finite number[35]. First, the conservation equation is calculated at the computational

node in the centroid. Then, the algebraic equation for each control volume is obtained

by interpolation and integral approximations. An interpolation is performed to get

the values from the centroid to the surface. Then approximation integrals of the

surface and volume are done using suitable quadrature formulas[35]. This method

fits any grid and is thus appropriate for complex geometries, making it a preferred

choice for a CFD simulation[35]. One disadvantage of the finite volume method is

that using higher-order schemes can cause trouble in 3D[35]. In such cases, another

method should be used.

Finite Element Method

The finite element method is divided into unstructured discrete volumes or finite

elements[35]. These volumes and elements are often formed as triangles or quadri-

laterals in 2D and tetrahedra and hexahedra in 3D. A weight function makes this

method different from the finite difference method because the integration over the

domain is now with other weighted values of the equation[35].

8



Finite Difference Method

The Finite Difference Method was established in the 18th century by Euler, making

it the oldest numerical method for solving PDEs[35]. This is also the easiest method

to use with simple geometries[35]. The method is based on the differential form of

the conservation equation, where a grid covers the solution domain with many grid

points[35]. This makes it possible to create algebraic equations that replace the differ-

ential equation at each grid point by approximations using Taylor series expansions[8].

The structural grid is preferable when using the Finite Difference Method, but other

grids can also be used.

Figure 2.1: Spatial discretization approaches showing the approximation of the deriva-
tives definition[35]

In REEF3D, the Finite difference approach is used[12]. In this approach, the geomet-

ric domain must be discretized by defining a numerical grid, often locally structured[68].

Nodes with a selected approximation of the derivatives form this structured grid[35][68].

The differential form of the generic scalar conservation equation is a linear equa-

tion and the starting point for each node’s approximation, which is also uniquely

identified[35]. This approximation of all the grid nodes entails a system of linear

equations where the unknowns is defined as the variable values and gives the approx-

imated solution to the partial differential equation[35].

As the solution to the differential equation is an approximation, this also involves

an error at each step[68][35]. The truncation error is an example of this, which occurs

from the truncation of the Taylor series[35]. Therefore, specific properties must be

fulfilled to determine the solution’s quality[35][68].
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The most important ones are:

• Consistency: Consistency is obtained when the discretized equation and the

exact one become the same as the grid size, and the time step tends toward

zero[35].

• Stability: The solution is stable if errors do not increase as the grid size reduces

[35].

• Convergence: The solution is convergent by fulfilling the consistency and sta-

bility properties[35]. In other words, a solution is convergent if the discretized

differential equation is approaching the exact solution, as the grid size is made

smaller and smaller towards zero[35].

2.2 Convection discretization

Eq. (2.3) contains a convection term that needs to be discretized before it can be

solved numerically[68][35]. There are multiple ways to do this. In REEF3D, the

finite difference method is used to trait the convection discretization[12][68]. The

number of nodes used for approximation is also called a stencil and is used to check

the accuracy[12][68]. A wider stencil presents a higher order of the schemes and, thus,

higher accuracy[35][55][68][12].

Some of the schemes that are implemented in the code are:

– First-Order Upwind (FOU)

– Central Difference Scheme (CDS)

– Sharp and Monotonic Algorithm for Realistic Transport (SMART) scheme

– Quadratic Upwind Interpolation of Convective Kinetics (QUICK) scheme

– Weighted Essentially Non-Oscillatory (WENO) scheme

First-Order Upwind (FOU)

Courant et al.[25] introduced this scheme in 1952 [68]. It is a first-order scheme that

calculates the first derivative from the values of the cells upstream of the flow relative

to the cell considered in the center[35][68][55].

∂Φ

∂xj
=

Φi − Φi−1

∆xj
(2.4)
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Central Difference Scheme (CDS)

The Central Difference Scheme uses two points to calculate the cell with the central

node and is, therefore, of second order[35]. Furthermore, the two points are taken

from both sides of the cell, one upstream and one downstream, making the implemen-

tation of this scheme easy compared to other upwind schemes due to the advantage

of not having to check the flow direction[35][68][55].

The second-order scheme is given by:

∂Φ

∂x
=

Φi+1 − Φi−1

2∆x
(2.5)

CDS can also be implemented with two points at each side and will then be a fourth-

order scheme[68][35].

∂Φ

∂x
=

−Φi+2 + 8Φi+1 − 8Φi−1 + Φi−2

12∆x
(2.6)

Sharp and Monotonic Algorithm for Realistic Transport (SMART) scheme

This scheme was developed in 1988 by Gaskell and Lau [37] and is used on the steady-

state transport equation for the convection term approximation[55]. The technique

used is a curvature-compensated convective transport equation[55][37].

Quadratic Upwind Interpolation of Convective Kinetics (QUICK) scheme

This high-order scheme was developed by Leonard in 1975 [66]. It is based on an

approximation considering three points for calculating the cell value[68]. Depending

on where the flux arrives, the scheme can vary on which side it takes its values[68].

This results in a parabola shape from either two points taken from the upstream or

downstream[68].

Weighted Essentially Non-Oscillatory (WENO) scheme

In 1996 Jiang and Shu[51] introduced theWeighted Essentially Non-Oscillatory (WENO)

Scheme, which is also used in this thesis. It is of a higher order, making it computa-

tionally demanding. However, it will be a good choice for extensive gradient calcula-

tion because of its high accuracy. Three weighted ENO stencils make the base of this

scheme with a local smoothness, where the highest weighted stencil is assigned with

the highest smoothness and will thus count the most in the scheme[12][68].

For the implementation of the scheme for the level-set function, the equation below

can be utilized[75].
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Φx =


Φ−

x if U1 > 0

Φ+
x if U1 < 0

0 if U1 = 0

(2.7)

In the x-direction, the discretization is formulated as the following:

Φ±
x = ω±

1 Φ
1±
x + ω±

2 Φ
2±
x + ω±

3 Φ
3±
x . (2.8)

The three stencils are defined as:

Φ±
x =

1

3
q±1 − 7

6
q±2 +

11

6
q±3 ,

Φ±
x = −1

6
q±2 +

5

6
q±3 +

1

3
q±4 ,

Φ±
x =

1

3
q±3 +

5

6
q±4 − 1

6
q±5 .

(2.9)

with,

q−1 =
Φi−2 − Φi−3

∆x
, q−2 =

Φi−1 − Φi−2

∆x
, q−3 =

Φi − Φi−1

∆x
,

q−4 =
Φi+1 − Φi

∆x
, q−5 =

Φi+2 − Φi+1

∆x

(2.10)

and,

q+1 =
Φi+3 − Φi+2

∆x
, q+2 =

Φi+2 − Φi+1

∆x
, q+3 =

Φi+1 − Φi

∆x
,

q+4 =
Φi − Φi−1

∆x
, q+5 =

Φi−1 − Φi−2

∆x

(2.11)

The weights are written as:

ω±
1 =

α±
1

α±
1 + α±

2 + α±
3

, ω±
2 =

α±
2

α±
1 + α±

2 + α±
3

, ω±
3 =

α±
3

α±
1 + α±

2 + α±
3

(2.12)

and

α±
1 =

1

10

1(
ẽ+ IS±

1

)2 , α±
2 =

6

10

1(
ẽ+ IS±

2

)2 , α±
3 =

3

10

1(
ẽ+ IS±

3

)2 (2.13)
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with the regularisation parameter ẽ = 10−6 and the following smoothness indicators:

IS±
1 =

13

12
(q1 − 2q2 + q3)

2 +
1

4
(q1 − 4q2 + 3q3)

2 ,

IS±
2 =

13

12
(q2 − 2q3 + q4)

2 +
1

4
(q2 − q4)

2 ,

IS±
3 =

13

12
(q3 − 2q4 + q5)

2 +
1

4
(3q3 − 4q4 + q5)

2 ,

(2.14)

2.3 Turbulence treatment

Turbulence is a phenomenon that occurs in almost all hydraulic flows and causes

difficulty in obtaining reliable predictions of numerical methods[93]. The difficulty is

related to the motion of the eddies, which are unsteady and irregular, leading to an

increase in momentum[93]. This motion influences both the friction of the boundary

and flow development, which results in flow losses (dissipation) through pipes and

around structures, together with an impact on the velocity and pressure distribution,

thus, the forces on the structure[93]. Therefore, getting a realistic simulation of the

turbulence effect is very important[93]. One example of a turbulence scenario is wave

breaking[12], which can occur when the wave steepness gets too high[121]. There

are three main approaches for calculating the turbulence flow in a numerical model:

Direct numerical simulation (DNS), Large eddy simulation (LES), and Reynolds-

Average Navier-Stokes (RANS)[93].

2.3.1 Direct numerical simulation (DNS)

Direct numerical simulation (DNS) is the most computationally demanding method

because it resolves all the scales of the turbulence motion[86]. This means that all

the sizes of the eddies are calculated without any model. The limitation of the appli-

cability of this approach is given by low or moderate Reynold number flow because

of the rapidly increasing computational cost with increasing Reynolds number[86].

2.3.2 Large eddy simulation (LES)

Large Eddy Simulation proposed from Smagorinsky[100] is a method where the small

scale of turbulence is approximated while the largest scales are resolved, making this

method faster on the computer than the DNS[68][93].
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2.3.3 Reynolds-Average Navier-Stokes method (RANS)

The RANS method is based on average quantities of the flow where the turbulence’s

fluctuation is average out and will hence have less computational time than DNS

and LES[35][68]. This reduction of computational time is an advantage for many

engineering perspectives because of the need for simulation on a large scale. It has

therefore been the primary approach in this industry for years[136][68].

When the average velocity field is used to solve the Reynolds equations, some un-

known parameters appear, called the Reynolds stresses[86]. These unknowns need a

turbulence model to be solved, which can be a turbulent viscosity hypothesis or from

Reynold-stress transport equations[86]. In the code of REEF3D, there are imple-

mented multiple turbulent models[68][12]: Explicit Algebraic Reynold Stress Models

(EARSM) [118], k− ϵ [63], Unsteady Reynold-Averaged Navier-Stokes (URANS)[68],

LES and k − ω model [62].

2.3.4 Turbulence model k-w model

A popular and often used turbulence model is the k − ω, and it will therefore be

explained in more detail. This is a two-equation model of turbulence[126], which en-

tails that both convection and diffusion effects can be accounted for in the turbulent

flow[22]. The turbulent kinetic energy, k, is the first transported variable, and the

specific turbulent dissipation ω is the second transported equation[22].

The Boussinesq-approximation [15] of the Reynolds stress replaces the term in Eq.

(2.3)[68]:

uiuj = νt

(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
kδij (2.15)

and a new RANS equation is obtained:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ
+
∂p

∂xi
+

∂

∂xj

[
ν + νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij

]
+ gi (2.16)

the eddy viscosity νt from Eq. (2.15) can be calculated from the subsequent equation:

νt = cµ
k

ω
(2.17)
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which includes two unknown variables, the specific turbulent dissipation ω and the

turbulent kinetic energy k. These variables can be obtained by:

∂ω

∂t
+ uj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+
ω

k
αPk − βω2 (2.18)

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − βkkω (2.19)

Here, the values of the coefficient is σw = 2, β = 3
40
, σk = 2, βk = 9

100
and α = 5

9
and

the turbulent production rate is Pk[68].

The mean rate of strain S can be significant in the wave flow field, characterized

by the oscillatory flow motion[68]. Wall laws are used in the turbulence model to

account for the large stain in the boundary layers because the model does not resolve

these layers explicitly[35][68]. A limited formulation restricts the eddy viscosity νt
to avoid the overproduction of turbulence outside the boundary layer in the highly

strained flow[68]. This formulation is obtained after Durbin [29][68], presented in Eq.

(2.20):

νt = min(
k

ω
,

√
2

3

k

|S|
) (2.20)

Additional turbulent damping is added to avoid inaccurate results of the strain S near

the boundary between air and water[68]. The free surface effects on the turbulence

will then get a more realistic representation[74]. The dissipation of specific turbulent

at the free surface is determined[68] by Eq. (2.21):

ωs =
c

−1
4

µ

κ
k

1
2 · ( 1

y′ +
1

y∗
) (2.21)

where κ = 0.4 and cµ = 0.07. The turbulent length scale has a virtual origin y
′
at 0.07

times the mean water depth, which was found empirically[46][68]. y∗ is the distance

from the nearest wall, and when including this variable, a smooth transition from the

free surface value to the boundary value of w is obtained[68].
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The Dirac delta function δ(ϕ) is used for the damping, which is only carried out

around the interface[54][68].

δ(ϕ)

{
1
2ϵ
(1 + cos(πϕ

ϵ
)) if ∥ϕ| < ϵ

0 else
(2.22)

2.4 Pressure treatment

In the Navier-Stokes equation of an incompressible flow, the pressure-velocity coupling

makes it difficult to obtain the pressure value directly[12][68]. Furthermore, the non-

linearity also makes the process very computationally demanding[35][68]. So when

solving this equation, a guess for the pressure is needed to give a velocity, where the

velocity also depends on satisfying the continuity equation[35][68]. To ensure this

requirement, a pressure velocity coupling algorithm must be used[55]. In REEF3D,

there are different methods of such an algorithm, which are[12][68]: Semi Implicit

Method for Pressure Linked Equation (SIMPLE)[82], Pressure Implicit with Split

Operator (PISO)[48], and the Projection Method (PJM)[24].

2.4.1 Semi Implicit Method for Pressure Linked Equation

(SIMPLE)

Patankar and Spalding developed Simple[82] in 1972[68]. This method is an iterative

algorithm that takes the pressure into the continuity equation[68]. Then, the solution

of the pressure field is used to correct the velocities[68]. The goal is to achieve con-

vergence, so this step needs to be repeated until this is accomplished[68]. An implicit

calculation is done to obtain the discretized momentum and pressure correction equa-

tions, and an explicit calculation is done for the velocity correction[21]. Therefore this

method is called the ”Semi-Implicit Method”[21].

2.4.2 Pressure Implicit with Split Operator (PISO)

PISO is an extension of the SIMPLE algorithm and was proposed in 1986 by ISSA[48][68].

This algorithm has lesser computing effort and is without iterations and with large

time steps[68]. It uses predictor-corrector steps to satisfy mass conservation, with

one predictor step and two corrector steps[20][68].
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2.4.3 Projection Method (PJM)

Chorin’s Projection Method[24] was developed in 1968 and is utilized in this thesis.

This method is also the most used of these three methods presented[68]. It uses an

intermediate velocity u∗i to compute the momentum equation, neglecting the pressure

term[68]:

∂u∗i
∂t

+ unj
∂uni
∂xj

= +
∂

∂xj

[
(ν + νt)

(
∂uni
∂xj

+
∂unj
∂xi

)]
+ gi (2.23)

The intermediate velocity u∗i is then corrected when taking the projection step, and

the solution of the time-step un+1
i is obtained together with the pressure term[68]:

∂(un+1
i − u∗i )

∂t
= − 1

ρ(ϕn)

∂ρn+1

∂xi
(2.24)

The pressure term p should be known at time-step n + 1 for calculating the terms

on the right side of Eq. (2.24)[68]. Following the fact that the divergence of the

continuity equation of an incompressible flow is zero, and therefore also un+1
i should

be zero, this is obtained and results in a Poisson equation[68]:

∂

∂xi

(
1

ρ(ϕn)

∂ρn+1

∂xi

)
=

1

∆t

∂u∗i
∂xi

(2.25)

2.5 Iterative solver

Direct methods, iterations, and multi-grid methods are all methods that can be used

to solve the Poisson equation in Eq. (2.25)[68][35]. However, the computational

costs of direct methods are quite high, so in CFD problems, iterative methods are a

good alternative, which is used for non-linear problems and sparse linear systems[55].

Furthermore, with an iterative method, the equation can be used to systematically

improve a made guess for the solution[55]. In REEF3D, multi-grid and iterative

solvers are implemented with pre-conditioners, and the library of HYPRE (Parallel

High-Performance Pre-conditioners) makes it possible to solve large linear systems on

parallel computers[12][68]. Some of the implemented systems are explained below[68]:

PFMG

Ashby and Falgout[4] introduced the semi-coarsening multigrid method PFMG in

1996. This method uses 9 and 27-point stencils, in 2D and 3D, respectively, to solve

scalar diffusion equations discretized on rectangular grids[68].
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SMG

In 1968, Stone[105] introduced SMG. This method is very similar to the PFMG

but is more robust, which also leads to more computational costs per iteration[68].

The advantage is for anisotropies that vary across the domain, either in direction or

strength[68].

AMG(BoomerAMG)

Henson and Tang[132] developed AMG(BoomerAMG) in 2002. This is an unstruc-

tured Algebraic Multi-Grid (AMG) that doesn’t need explicit grid geometry, and the

system can therefore solve more types of problems[68]. The disadvantage is that this

method is a complex algorithm, and low memory, computational requirements, and

good convergence become harder to achieve[68].

Bi-Conjugate Gradient Stabilized (BiCGSTAB)

In this thesis, the Bi-Conjugate Gradient Stabilized (BiCGSTAB)[41] method is used

with preconditioning to get faster convergence[114]. The BiCGSTAB is an improve-

ment of the Conjugate Gradient (CG) solver and the Bi-Conjugate Gradient method

(BiCG) solver, which are all global solvers used for non-linear equations[114][55]. The

CG was first developed by Hestenes and Stiefel in 1952[41], with the advantage of

searching for the minimum in one direction while minimizing a function in many

directions[55]. This method made the convergence faster but was limited to symmet-

ric systems. Van der Vorst then developed the BiCG method in 1992[36], where a

transpose matrix converted the non-symmetric system to a symmetric one[55]. How-

ever, this conversion required more computational cost and did not converge faster[55].

Therefore, the BiCGSTAB method was made to improve the solutions and increase

the convergence[55][68].

2.6 Time treatment

In an unsteady flow, time-dependent terms play an essential role. In such cases, an

accurate discretization scheme is essential[55][35]. The main difference between the

time and space coordinates is that the force will influence the future flow for the time

step and not backward as it will in space[35]. There are both explicit and implicit

methods for the time treatment[35].

In REEF3D there are implemented several explicit methods of discretization schemes

for time treatment, which are advantageous for using higher-order schemes due to
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their easy construction and application[12]. The schemes in REEF3D are Adams-

Bashforth, second, third, and fourth-order Total Variation Diminishing (TVD) Runge-

Kutta[55][12].

Adam-Baschforth scheme

The Adams-Bashforth method is of second order[10] and, therefore, second-order

accuracy[56]. It uses values of the solution of the two earlier time steps to approximate

a solution of the next[55]. The equation below, Eq. (2.26), is an example of how the

method can be applicated to the level set function[55]:

ϕ(n+1) = ϕn +
∆tn
2

(
∆tn + 2∆tn−1

∆tn−1

L(ϕn)− ∆tn
∆tn−1

L(ϕn)

)
(2.26)

Total Variation Diminishing (TVD) Runge-Kutta

Robustness, monotonicity preserving, and high-order accuracy are highly interesting

when discretizing spatial terms[28]. Total variation diminishing (TVD) schemes have

the strength of preventing violating monotonicity in the solution that might occur if

the differencing schemes cause oscillations in the solutions, which is often the case

when using high-order differencing schemes[28]. Therefore a TVD scheme developed

by Harten[40] is a good solution to this problem[28]. Runge-Kutta methods use points

between tn and tn+1 rather than earlier points to overcome the starting multipoint

method that can occur in non-physical solutions[35]. The method of Runge-Kutta

consists of different orders of accuracy, where the computational cost increases with

the higher order[68].

This thesis uses a third-order TVD Runge-Kutta for momentum equations and the

free surface level set method. A Runge-Kutta scheme after Schu, C. W., and Osher in

1988[99] with three Euler steps is shown below in Eq. (2.27). This scheme uses three

steps for calculation and is more computationally demanding than the second-order

Runge Kutta and Adam-Baschforth schemes[12][55].

ϕ(1) = ϕn +∆tL(ϕn)

ϕ(2) =
3

4
ϕn +

1

4
ϕ(1) +

1

4
∆tL

(
ϕ(1)

)
ϕn+1 =

1

3
ϕn +

2

3
ϕ(2) +

2

3
∆tL

(
ϕ(2)

) (2.27)
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2.6.1 Adaptive Time Stepping

The Courant-Friedrichs-Lewy[80] (CFL) condition holds stability in the simulation,

which is important for time discretization[68]. This condition entails that the time

step is sufficiently small and is within the computational grid size[27][68]. An example

of a CFL can be:

C =
u∆t

∆x
≤ Cmax (2.28)

where the dimensionless Courant number is C, ∆t is the time-step, u is the velcoity

magnitude and ∆x is the length of the interval. Cmax can vary but often has the value

of 1[68]. Adaptive time stepping is used to make sure the limit of the Courant number

is held[68]. With this adjustable time step, the CFD code will automatically reduce

the time step if it exceeds the limit so that the Courant number gets lower than the

limit for the next iteration[55]. This method is based on the diffusion D, velocity u

and the source term S, where the time-step size ∆t is calculated as follows[68][55]:

∆t ≤ 2

(
|u|max

dx
+D

)
+

√(
|u|max

dx
+D

)2

+
4|Smax|
dx

−1

(2.29)

with

D = max(ν + νt) ·
(

2

(dx)2
+

2

(dy)2
+

2

(dz)2

)
(2.30)

2.7 Numerical grid

A Cartesian grid is used in the numerical model to employ high-order discretization

schemes[35][68]. This grid is one of the most straightforward systems[18]. It is built

of bricks or cubes with a cartesian axis system, making it easy to implement numer-

ical algorithms and define coordinates to geometries[39][18]. In this model, the grid

is staggered, meaning that the velocity and pressure scalar variables are placed at

different cell locations[39][68]. Fig. 2.2 shows the setup of the staggered cartesian

grid, with the dots illustrating the pressure and the dash the velocity. The velocity

or momentum is located at the cell faces, and the pressure is stored in the cell centers

of the control volumes, preventing error in the discretization [68][35][19].

20



Figure 2.2: Illustration of the Staggered Cartesian grid[9].

High accuracy can be provided if all the solid geometry consists of orthogonal surfaces[18].

The disadvantage of this grid happens when the geometry of the solid boundary is

irregular and non-orthogonal[18][35]. Then, higher meshing is needed to ensure accu-

racy, which also entails higher computational effort[18][65]. Floating bodies can also

be challenging to generate a high-quality grid because of their irregularities and sharp

edges[68]. An immersed boundary method is used to overcome the problem of irreg-

ularities and non-orthogonality where the boundary crosses the underlying Cartesian

grid[68][55]. Hence, this cut creates a new boundary of the grid cells[68][55]. The

ghost cell immersed boundary method (GCIBM)[6] is used in REEF3D and was

developed by Berthelsen and Faltinsen[6] in 2008[68]. Here, fictitious ghost cells

are updated by extrapolation near the solid boundary to update the solution, and

the boundary conditions are then enforced implicitly instead of accounting for them

explicitly[6][12][68]. An illustration of the complications with sharp geometry and the

ghost cell approach is shown in Fig. (2.3).

Figure 2.3: Pictures of the difficulties with irregularly shaped geometries and the
ghost cells approach[9].
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REEF3D can generate grids of several types[12]. For the easiest geometries, it can

generate grids based on geometric primitives, like cylinders, wedges, and boxes[12].

With more complex geometry, a strategy presented in [131] is followed, where a .STL

format can be read and immersed into the Cartesian grid[12].

2.8 Numerical Wave Tank

A numerical wave tank (NWT) is used to simulate waves, built up by a Cartesian

grid to make an effortless definition of the geometry[12][68]. This tank is an imita-

tion of a physical laboratory wave flume[68]. The purpose is to use the numerical

wave tank to simulate waves that can mimic physical experiments from the wave

flume[68][35]. A Numerical wave tank can be a good alternative to experiments as

the CFD advances and computational power have increased[35][68]. With a vali-

dated CFD code, the costs, space, and time can be reduced compared to a laboratory

experiment[12][27][68].

Figure 2.4: The numerical wave tank with zones.

The numerical wave tank comprises three zones: wave generation, a working zone

(the wave tank)[9][68], and a numerical beach as illustrated in Fig. 2.4. The wave

generation zone is of a length of one wavelength and will gradually generate the waves

up to the input parameters before it goes over to the working zone[12]. In the working

zone, the waves propagate over the defined length[12]. At the end of the tank, the

numerical beach is placed with a length of two wavelengths[12]. Here the waves will

gradually dissipate so that no wave reflections will occur in the tank[12][68][58].

2.8.1 Boundary treatment

Boundary conditions are needed to solve the partial differential equations with a

unique solution[35]. Several types of boundary conditions are available. It can be

treated as a solid boundary, inflow, outflow, wave generation, numerical or active

beach[35][68]. The inflow and outflow can be a constant or hydrograph; if the bound-

ary is solid, it is characterized as a wall[68]. There are also some conditions just

for the flow velocity, where the two main types are: slip and non-slip[68]. These

conditions are also illustrated in Fig. 2.5.
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The non-slip conditions have zero velocity at the wall, so the fluid and boundary will

have the same velocity[35][68]. For the non-slip condition, a relative moment exists

between the fluid and the boundary. It then arises a discontinuity of the velocity

function that provides a slip[88]. For this thesis, the non-slip condition is used.

Figure 2.5: Illustration of the non-slip and slip conditions of the velocity flow[88]. a)
is non-slip and b) is slip

In many cases, the boundary is not totally smooth but has some roughness[27]. There-

fore, a roughness value and wall law should also be counted for this in the input[68].

Schlichting’s formula[96] is used for the wall roughness and is calculated as shown

below:

u+ =
1

κ
ln

(
30y

ks

)
(2.31)

where u+ is the dimensionless wall velocity, κ is the Kàrmàn constant which is set

to 0.4 based on experiments, y is the water depth, and ks is the equivalent sand

roughness. ks is also the value used in REEF3D for the wall roughness[68]. The

turbulent production near the wall is assumed to be the same as the dissipation of

k[68]. Then the specific turbulent dissipation w wall function for a bed cell is obtained

with the distance ∆yp from the wall to the center of the cell[68]:

ϵwall = −c
3
4
µk

1
2
wU+

w

∆yp
(2.32)

Here, the value for the turbulent dissipation ϵ is given directly[68]. To treat the

turbulent kinetic energy k at the wall, an integrating of the source terms of Eq.

(2.18) over the bed cell must be done[68]:

∫
(Pk − ϵwall)ρ =

[
τwuw
∆yp

−−c
3
4
µk

1
2
wU+

w

∆yp

]
(2.33)

The shear stress τw and the dimensionless u+ can then be determined from the rough

wall law[68]. The transport equation for k discretizes the terms in Eq. (2.33) as

source terms[68].
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2.8.2 Wave generation and absoption

The numerical wave tank consists of three zones, a wave generator, a working zone,

and a numerical beach[12]. The waves are generated in the wave generator zone, which

is also the first zone of the tank. Further, the waves move to the next zone, a working

zone or the wave tank, where the problem is solved, and the waves propagate[12][68].

Finally, a numerical beach will gradually dissipate the waves for the outlet and the

last zone[12][68].

The wave generator can be of Dirichlet type or relaxation methods[12][68]. With

a Dirichlet type, the generated waves are in constant motion, and the flow motion

will periodically change, leading to waves of less quality[12]. In REEF3D, the relax-

ation method is used to generate waves and for wave dissipation[61], presented in [72]

and extended for CFD models in [50][12]. The velocities and the free surface will then

be ramped up over one wavelength to the values obtained from wave theory[12]. As

a result, there will not be any disturbance in the interface, and reflected waves are

absorbed, leading to higher-quality waves[12].

At the outlet, one crucial factor is to avoid reflecting waves that can be negative

for the numerical results[12]. A relaxation method is a good option to avoid this

and ensure effective wave energy absorption in the numerical beach[12][55]. It must

be of two wavelengths, which, together with the length requirement of the relaxation

method in the generation zone, can be a disadvantage due to the need for an extension

of the numerical wave tank[68]. With the use of this method in the numerical beach

relaxation zone, a smooth reduction of the computational values for the horizontal

and vertical velocities to zero can be made[12]. Also, the free surface can be reduced

smoothly to the still water level and the pressure to hydrostatic distribution for the

still water level[12].

u(x̃) = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational

w(x̃) = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational

p(x̃) = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational

ϕ(x̃) = Γ(x̃)ϕanalytical + (1− Γ(x̃))ϕcomputational

(2.34)

The location of the relaxation zone is a variable of in Γ(x̃) and will transform the

values in the generation zone and the numerical beach[68]. In the generation zone,

the analytical values are transformed into computational ones, and in the numerical

beach, the computational values are transformed into the analytical ones, dissipating

the waves[68].
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An active absorption method can be employed for the numerical beach zone to avoid

the need for an extension of the tank[12][68]. This method will cancel out the incom-

ing wave by producing opposite waves[68]. The velocity needed to match and absorb

the waves can be obtained using linear long-wave theory[95][53].

U(t) = −
√
g

h
ξ(t) (2.35)

where ξ(t) represent the free surface elevation from:

ξ(t) = η(t)− d (2.36)

where η(t) is the actual free surface location along the downstream boundary, and d

is the water depth.

2.8.3 Wave theories

In order to understand the impact of the ocean on structures, an understanding of

waves and their properties is essential[55][34]. Waves are made up of wind or gravity,

and the water depth and slope of the seabed will influence the shape and size[68][44].

By using wave theories, it is possible to get a simplified representation of the waves

and obtain their characteristic properties[68]. These theories are divided into different

categories of linear and non-linear[55][44]. This thesis uses the non-linear theory of

second-order Stokes wave theory. Still, a short introduction to linear wave theory will

be presented as the Stokes theory is based on this.

2.8.4 Linear wave theory

Linear wave theory is also often known as Airy wave theory[2][45]. This theory

describes linearized gravity wave propagation and implies that the wave is unaffected

by each other while moving across the water’s surface[45]. The linear wave theory

is also characterized as waves with small amplitudes and can not be used on waves

other than those called the small-amplitude approximation[45]. The horizontal and

vertical velocity of an arbitrary depth given by Krogstad and Arntsen [59] are:

u(x, z, t) = aq
cosh(k(d+ z))

sinh(kd)
sin(wt− kx) (2.37)

w(x, z, t) = aw
cosh(k(d+ z))

sinh(kd)
cos(wt− kx) (2.38)
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Here, a is the wave amplitude, w = 2π
T

is the observed wave angular frequency, k = 2π
λ

is wave number with λ wavelength, d is the waterdepth, t is time and x is the direction

of propagation[12][68].

2.8.5 Non-linear Wave Theories

To get a complete statistical and physical description of the spectrum when the water

depth becomes shallow or when there are steep waves, a non-linear wave theory must

be used[45]. This is due to the limits of the linear theory that entails that this theory

will no longer be valid under these conditions[45].

Second-order Stokes theory

In 1847, the second-order Stokes theory was developed by Stokes[104][45]. This theory

improves the linear wave theory by adding an extra harmonic wave to the fundamental

harmonic[45]. The wave velocities of the second-order Stoke theory after Dean and

Dalrymple[26] are:

u = −∂ρ
∂x

=
H

2

gk

w

cosh(k(d+ z))

cosh(kd)
cos(kx− wt)

+
3

16

H2wkcosh(2k(d+ z))

sinh4(kd)
cos(2(kx− wt))

(2.39)

w = −∂ρ
∂z

=
H

2

gk

w

sinh(k(d+ z))

cosh(kd)
cos(kx− wt)

+
3

16

H2wksinh(2k(d+ z))

sinh4(kd)
sin(2(kx− wt))

(2.40)

Compared to the linear wave, the second-order Stokes wave has a sharper crest and

flatter trough, resulting in a higher velocity at the crest and a reduced velocity at the

trough[45][68]. This change in velocity will produce a drift, pointed out by Stokes,

and named Stokes drift[104]:

ū =
wka2cosh(2k(d+ z))

2sinh2(kd)
(2.41)
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2.9 Free surface treatment

The free surface is modeled by the Level Set Method, which uses a signed distance

function ϕ(x⃗, t) called the level set function to capture the free surface[68]. The

output from this function gives the closest distance to the interface Γ, and the zero

level set is the location of the free water surface[12][55]. A change in the sign of the

level set function distinguishes the two phases of water and air[75], which results in

the following[83]:

ϕ(x⃗, t)


> 0 if x⃗ ϵ phase 1

= 0 if x⃗ ϵ Γ

< 0 if x⃗ ϵ phase 2

(2.42)

Figure 2.6: Illustration of the signed distance function, with the distance from the
interface at zero level set, and an illustration of just the interface and the two phases
[9].

The level set function is obtained from a convection equation when the interface is

moving[68].
∂ϕ

∂t
+ uj

∂ϕ

∂xj
= 0 (2.43)

After each time step, the level set function is reinitialized to ensure that the signed

distance property holds when the interface starts to move, which is based on a PDF

equation[83][68]:
∂ϕ

∂t
+ S(ϕ)

(∣∣∣∣ ∂ϕ∂xj
∣∣∣∣− 1

)
= 0 (2.44)

Here, the S(ϕ) is the smoothed signed distance function[83]:

S(ϕ) =
ϕ√

ϕ2 + | ∂ϕ
∂xj

|2∆x2
(2.45)
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Figure 2.7: The coupling with the flow solver when the interface starts moving[9].

After the reinitialization, the density and viscosity are calculated[70].

ρ(Φ) = ρwH(Φ) + ρa(1−H(Φ)),

ν(Φ) = νwH(Φ) + νa(1−H(Φ)),
(2.46)

where w indicating water and a indicating air. H is the smoothed Heaviside step

function, which is defined as:

H(Φ)


0 if Φ < −ϵ
1
2

(
1 + Φ

ϵ
+ 1

π
sin(πΦ

ϵ
)
)

if Φ ≤ ϵ

1 if Φ > ϵ

(2.47)

Close to the interface, there is a jump in the values, which leads to numerical

instability[55]. The smoothed Heaviside step function calculates the density at the

cell face of a transition zone, ϵ is defined as 2.1∆x that smoothes out these properties

to solve this problem, where ∆x is the length between the grid points in the vicinity

of each evaluation point[70][12]. For the fluid-structure interactions, an incremental

pressure-correction algorithm[112] is used. This algorithm also solves the continuity

Eq. (2.1) together with the momentum Eq. (2.3), where the previous step of the

pressure gradients from the momentum equation in each k-th Runge-Kutta sub-step

predicts the velocity field[70]:

u(∗) − βku
(n)

αk∆t
=

1

∆t
u(k−1) − u(k−1) · ∇u(k−1) − ∇p(k−1)

ρ
+

1

αk

∇ · (ν[∇u+∇uT ])(∗) + g,

(2.48)
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with αk = 1.0, 1/4, 2/3, βk = 0.0, 3/4, 1/3 and k = 1, 2, 3

Then the Poisson equation can be solved for the pressure correction term pcorr

∇
(
1

ρ
∇pcorr

)
=

1

αk∆t
∇ · u(∗), (2.49)

Finally, the pressure and divergence-free velocity fields are calculated:

p(k) = p(k−1) + pcorr − ρν∇(∗),

u(k) = u(∗) − αk∆t

ρ
∇p(k).

(2.50)

2.10 6 DOF algorithm

A continuous, direct forcing immersed boundary method is used for the floating body

in the fluid solver and is presented in [70], which also is followed in the further

summary presentation of the 6 DOF algorithm below. First, a STL geometry rep-

resenting the floating body, made by many non-connected triangles, is transferred

to the solver[70]. Further, it is necessary to represent the geometry in the Eulerian

fluid domain. This representation is possible by creating a signed distance field from

the STL geometry, where a ray casting algorithm[11] ensures that the inside-outside

information close to the object and Sussman et al.[106] reinitialization algorithm is

obtained[70]. The generated level set function Φs is then utilized to differentiate the

fluid and solid[70]. For this, an extension of the Eq. (2.46) is done:

ρ(Φ,Φs) = ρsH(Φs) + (1−H(Φs)) · (ρwH(Φ) + ρa(1−H(Φ))),

ν(Φ,Φs) = (1−H(Φs) · (νwH(Φ) + νa(1−H(Φ))).
(2.51)

Examining the conservation law, a guarantee of the continuity of the forcing field can

be completed[70].

∆ · u = 0,

∂u

∂t
+ u ·∆u = −1

ρ
∆ρ+ g + f,

(2.52)

with the forcing term

f =
∂P (u)

∂t
+ P (u) +

1

ρ
∆ρ− g, (2.53)

Where P (u) is the operator predicting the velocity field into an incompressible rigid

body velocity field[70].
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With Eq. (2.51) and the additional term f , equations of a single set throughout the

entire domain can be determined, ensuring that the three phases’ material properties

are distinguished and that the interface boundary conditions are exact[70].

A new discrete time step prediction n+ 1, f is found to be[70]:

fn+1 = H(Φ(n+1)
s ) ·

(
P (u(n+1) − P (u(n))

∆t
+ P (u(n)) ·∆P (u(n)) + 1

ρ
∆p(n+1) − g

)
.

(2.54)

A satisfactory approximation of P (uu) = u(n) is made to find the unknown velocity at

the new time step and avoid implicit calculations that are very expensive[70]. Further,

an approximation for the pressure is obtained from the earlier time step[70]. So, f at

the new time step becomes:

fn+1 = H(Φ(n+1)
s ) ·

(
P (u(n+1) − u(n)

∆t
+ u(n) ·∆u(n) + 1

ρ
∆p(n) − g

)
. (2.55)

By evaluating this with Eq. (2.48), f (n+1) can be represented as:

f (n+1) = H(Φ(n+1)
s ) ·

(
P (u(n+1))− u(∗)

∆t

)
. (2.56)

The updated velocity field can be represented as u(∗), which entails that the predictor

step in Eq. (2.48) is first carried out without the forcing term f (∗). Before the Poisson

equation can be determined, this forcing term must be calculated and included in the

estimated velocity field[70]. The calculation of f (∗) is done from:

f (∗) = H(Φ(∗)
s ) ·

(
P (u(∗))− u(∗)

αk∆t

)
, (2.57)

Calculation of the rigid body velocity field

The rigid body’s position after moving xi and rotational motion must be described to

determine its velocity field[70]. The motion position xi is accounted for in the inertia

system. A coordinate system attached to the body describes the rotational motion,

where the Euler parameter vector e = (e0, e1, e2, e3)
T is utilized, with eT e = 1. A

more appropriate way to describe these parameters is with the Tait-Bryan physical

angles ϕ, θ, ψ, and their relation are given as[85]:
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e0 = c(
ϕ

2
) · c(θ

2
) · c(ψ

2
) + s(

ϕ

2
) · s(θ

2
) · s(ψ

2
),

e1 = s(
ϕ

2
) · c(θ

2
) · c(ψ

2
)− c(

ϕ

2
) · s(θ

2
) · s(ψ

2
),

e2 = c(
ϕ

2
) · s(θ

2
) · c(ψ

2
) + s(

ϕ

2
) · s(θ

2
) · s(ψ

2
),

e3 = c(
ϕ

2
) · c(θ

2
) · s(ψ

2
)− s(

ϕ

2
) · s(θ

2
) · s(ψ

2
),

(2.58)

Here, c is cos, and s is sin.

The definition of the back-transformations are[70]:

ψ = arctan2(2 · (e1 · e2 + e3 · e0), 1− 2 · (e2 · e2 + e3 · e3)),
θ = arcsin(2 · (e0 · e2 − e1 · e3)),
ϕ = arctan2(2 · (e2 · e3 + e1 · e0), 1− 2 · (e1 · e1 + e2 · e2)).

(2.59)

An orthogonal rotation matrix presents the vector transformation in the body-fixed

coordinate system to a comparable vector within the inertial system[70].

R = 2


e20+e21−e22−e23

2
e1e2 − e0e3 e0e2 − e1e3

e0e3 + e1e2
e20+e21−e22−e23

2
e2e3 − e0e1

e1e3 − e0e2 e0e1 + e2e3
e20+e21−e22−e23

2

 (2.60)

In relation to the Euler parameters, the body’s rotational kinematic equations are

provided as[70]:

ė =
1

2
GTw, (2.61)

This equation consists of the factors of the angular velocity ω in the body-fixed

coordinate system and G, which is defined as:

G =

−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

 (2.62)

With the momentum vector h = Iw, where I is the moment of inertia tensor, Eq.

(2.61) can be defined as:

ė =
1

2
GT I−1h, (2.63)
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A first-order ODE for ḣ is then calculated by applying the development of Shivarama

and Fahrenthold[97] and a system Hamiltonian[70].

ḣ = −2GĠTh+Mb (2.64)

with assuming that Mb are presenting imposed moments in the body-fixed system,

together with a zero-assumption for the potential energy function, an automatical

fulfillment of the Euler parameters is provided[70].

On the triangulated surface of N triangles, the body forces and momenta are cal-

culated by integration of the fluid properties over the structure surface Ω together

with a trilinear interpolation[70][27]:

Fi =

∫
Ω

(−np+ ρνnτ)dΩ(x) =
N∑
i=1

(−np+ ρνnτ)i ·∆Ωi,

Mi =

∫
Ω

r × (−np+ ρνnτ)dΩ(x) =
N∑
i=1

ri × (−np+ ρνnτ)i ·∆Ωi,

(2.65)

where, n is the surface normal vector, τ is the viscous stress tensor and r represent the

distance vector to the centre of gravity[70]. The projection can first be calculated after

the transformation matrix in Eq. (2.60) has transferred the moments to the body-

fixed coordinate system and the body velocities are found[70]. Then the calculation

can be carried out from:

P (u(∗)) = ẋi + ωi × r, (2.66)

here, ẋi is the translational, and ωi is the rotational rigid body velocity vector in the

inertial reference frame[70].

2.11 Mooring model

The mooring forces are found in the mooring dynamic solver, following the work

presented in [70]. The overview and explanation of the mooring model below are also

following this study [70]. First, the bending stiffness is neglected[78] in the dynamics

of a mooring line explained as:

γ
∂2r

∂t2
=
∂FTf

∂s
+ Fe, (2.67)

here, γ is the material-specific weight, r is the line coordinates in the inertial system,

FT is the tension force magnitude where f pointing the direction of this force as a

unit vector, s is the coordinate along the line and Fe is the external force, which
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includes the effect of hydrodynamic (FH) and gravitation (FG)[70]. A simplification

of the Eq. (2.67) can be done by assuming that the line motion in time is small and

the fluid is of steady-state flow, then the equation can be presented as[70]:

∂FTf

∂s
= −Fe (2.68)

Each mooring line has to be divided into N bars with the same distance of length lt and

knots P in between to determine this force equilibrium[27][70]. This discretization

is shown in Fig. 2.8, also illustrating the connection to the bottom by the first knot

P (0) and to the floater by the last knot P (N).

Figure 2.8: Discretization of mooring lines[70]
Figure 2.9: Force equilib-
rium [70]

The contribution of the gravity force at any knot P (j) is given as:

F j
G = γg · ρm − ρ

ρ
· l

(j)
t + l

(j+1)
t

2
, j = 1, ..., N − 1, (2.69)

Morison’s formula[73] is used to calculate the hydrodynamic forces FH as drag forces

at each bar[70].

F
(j)
H = l

(j)
t d

(j)
t

ρ

2
· [ct(u ·f)|u ·f | ·f + cn(u− (u ·f)f |u− (u ·f)f |](j), j = 1, ..., N, (2.70)

Then, the force equilibrium can finally be solved at each inner knot P (j) with a

discretized expression[27][70], as shown in Fig. 2.9.

f (j+1)F
(j+1)
T − f (j)F

(j)
T = −

(
F

(j)
H + F

(j)
G

)
, j = 1, ..., N − 1. (2.71)

In this thesis, a simplified mooring system is used to hold the floating object in

place[7]. It is a horizontal mooring system based on the spring Eq. (2.72).

F = F0 + k · δl, (2.72)

For the application in the simulation, a comparison must be made with the experiment

to match the force-displacement of the actual mooring, which then determines the

stiffness of the spring[7].
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2.12 Parallelization

Domain decomposition is how REEF3D achieves parallelization, which splits the sim-

ulation domain into smaller parts that use ghost cells, implemented by the message-

passing interface (MPI), to communicate and exchange values[12]. This paralleliza-

tion process improves the code performance because it can simultaneously solve the

smaller problems instead of just solving one large problem[12][55]. Fig. 2.10 shows

how this parallelization can be done.

Figure 2.10: Illustration of how the domain is decomposite and the exchange of values
using ghost cells[9].
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Chapter 3

Verification and Validation of the

Numerical Tank

In this chapter, the verification and validation of two different 2D cases are presented

and discussed to ensure the accuracy and reliability of further simulations. The

6DOFs algorithm will first be verified and validated by a simulation of a heaving

cylinder, considering the damping heave motion. Then, a free-floating box in waves

will be examined and discussed, looking at the motions of the box; heave, roll, and

surge in different wave conditions[13].

3.1 Heaving cylinder

A cylinder is simulated considering only the vertical motion and then compared to

experimental data from Ito [49]. Another study of this case is also done in [13], where

numerical simulations are performed by Yang[130]. In this study, the numerical setup

and simulation are followed by Ito [49] and [13], leading to a domain of a numerical

wave tank with an initial water depth of d = 1.22m and water density ρ = 1000kg/m3.

The tank’s geometry has a length of 10m and a height of 1.8m, also shown in Fig.

3.1.

Figure 3.1: The domain and dimensions of the numerical wave tank with the cylinder.
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In the middle of the tank, partly submerged, the horizontally circular cylinder is

placed, equal to Ito’s[49], with a radius of r = 0.0762m, centroid position at h1 =

0.02454m above the free surface, and density ρ = 500kg/m3. Three grid sizes, dx =

0.025m, dx = 0.01m, and dx = 0.005m, are used for investigating this case, where a

free fall from the initial position makes the starting point of the simulation[13]. The

cylinder is then attached to the water[13].

Figure 3.2: Cylinder heave motion compared to the experimental data using three
different meshes.

The plot in Fig. 3.2 shows the results of the heave motion of three different grid sizes

and the experimental data. The x-axis represents time, and the z-axis is a normalized

position calculated from Eq. (3.1).

Normalization =
Z − d

hi
(3.1)

The grid size of dx = 0.025m is the coarsest and the one with the most deviation,

showing a good match for the first 0.5 seconds but tends to diverge after the first

period[13]. The simulation has a better approximation for the grid sizes of dx = 0.01m

and dx = 0.005m compared to the experimental data. However, as mentioned in [13],

the reflection of the waves from the side walls makes the simulation more out of

position after t = 1.5s. The grid sizes dx = 0.01m and dx = 0.005m are relatively

similar, with dx = 0.005m showing a slightly more precise approximation. Due to

the increasing computational time using dx = 0.005m, the grid size of dx = 0.01m

should be used in further simulations[13].
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(a) t = 0.0s (b) t = 0.5s (c) t = 1.0s

(d) t = 1.5s (e) t = 2.0s (f) t = 2.5s

(g) t = 3.0s (h) t = 3.5s (i) t = 4.0s

Figure 3.3: Illustration of the vertical motion and velocity of the cylinder entering
the water.

Fig. 3.3 shows the vertical velocity and motion of the cylinder when it is released

and enters the water at different timesteps of t = 0.5s. The cylinder gets its highest

velocity in the first period of breaking the water at t = 0.5s, similar to the case

of the heaving cylinder simulated in [13]. As the cylinder enters the water, it also

creates waves at each side[13], starting to dissipate after approximately t = 2.5s.

At the time step of t = 3.0s, these waves are totally spread out, and no motion is

no longer observed around the cylinder. Since the cylinder is only released from its

initial position, without an additional height, it will thus not have enough power to

be immersed, which also is the case in [13].
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3.2 Free Floating Box in Waves

A simulation of a floating box in 2D under wave conditions is done to validate the

6DOF algorithm, looking at the motion of heave, roll, and surge. These movements

are similar to the degrees of freedom of rotation around the Y axis and movement

along the X and Z axis[13]. The experiment from Dalian University by Ren et al.[89]

is used for the dimensions of the box and the comparison data. The numerical setup

follows the dimensions from the investigation in [13]. The box is rectangular with

a height of h = 0.20m, length of l = 0.30m, and density of ρ = 500kg/m3. The

numerical tank used in the simulation is 1.5m high and 20m long, where the position

of the floating box is 7.0m from in from the start of the tank, which is illustrated in

Fig. 3.4. Also, in [71] and [68], a similar simulation of the floating box is performed

to validate a new quasi-static mooring model and the 6DOF algorithm.

Figure 3.4: The spatial domain of the numerical wave tank with the box

For wave generation and absorption, the tank has three zones: a generation zone, a

working zone, and a numerical beach, where the first zone is of one wavelength and

the last of two wavelengths. In the simulation, the 2nd-order Stokes theory is used

for the waves. These waves are generated in the generation zone. It often takes some

time before the waves are stabilized[13]. Therefore, the comparison is made after this

is achieved and when the box is in motion. The 2nd-order Stokes waves consist of a

wave height of H = 0.04m, wave period T = 1.2s, a wavelength of L = 1.936, and

a wavenumber of k = 3.245m−1[13]. The total modeling time of the simulation is 20

seconds. All the variables from the results are normalized:

time =
t

T

heave and surge =
result− d

d

roll =
θ

k · d
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A grid convergence test is done with three different grid sizes and compared with the

experimental data. These are dx = 0.025m, dx = 0.01m, and dx = 0.005m.

Figure 3.5: Grid convergence study of the wave elevation

Figure 3.6: Wave elevation of dx=0.005m compared with experimental data

In Fig. 3.5, the wave elevation is plotted with the three grid sizes and compared to

the experimental data. All of the grid sizes have a good match with the experimental

data. However, the finer the grid size of dx = 0.005m is a slightly better result,

illustrated in Fig. 3.6. For all grid sizes, the crest has a minor overestimation through

the simulation, with the most significant deviation at about t/T = 8. At this time,

there is also an overestimation of the trough. Otherwise, throughout the simulation,

the trough perfectly matches the experiment.
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The motions of heave, roll, and surge are plotted against the experimental data in

Fig. 3.7 with a grid convergence study with the grid sizes dx = 0.025m, dx = 0.01m,

and dx = 0.005m.

(a) Heave motion comparing three different

grid sizes between t/T = 0 and t/T = 12

(b) Heave motion comparing three different

grid sizes between t/T = 6 and t/T = 12

(c) Roll motion comparing three different

grid sizes between t/T = 0 and t/T = 12

(d) Roll motion comparing three different

grid sizes between t/T = 6 and t/T = 12

(e) Surge motion comparing three different

grid sizes between t/T = 0 and t/T = 12

(f) Surge motion comparing three different

grid sizes between t/T = 6 and t/T = 12

Figure 3.7: Grid convergence study of heave, roll and surge motion.
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Fig. 3.7 a) and b) show the heave motion. This is in excellent agreement with the

experimental data. All the grid sizes show approximately the same results, so this

parameter is not decisive. The first crest has an overestimation but decreases for the

following oscillations and gives a good match. The second trough is slightly underes-

timated, while the rest is the same value as the experiment.

The roll motion is illustrated in Fig. 3.7 c) and d). Here, the simulation depends on

the grid size, as they show different results with higher grid resolution. The coarsest

grid size of dx = 0.025m is nonfunctional, with an overestimation of each oscillation

of the crest and trough. The grid sizes of dx = 0.01m and dx = 0.005m are in better

agreement with the experimental data and show very similar results. For the grid size

of dx = 0.01m, the result starts to better agree with the experimental data gradually

over time. However, the first crests have an underestimation. After about t/T = 8,

the crest decreases to the experimental crest and gives good results. The trough has

a perfect match throughout the whole simulation. The grid size of dx = 0.005m

switches between overestimation and underestimation every other of the top. The

bottom is slightly overestimated for the three first troughs, stabilizing with a good

match with the experimental data. Overall, a very good match for dx = 0.01m and

dx = 0.005m.

In Fig. 3.7 e) and f), the surge motion is shown. The result from the grid sizes

has very different results, where the coarsest of dx = 0.005m has the most deviation

from the experiment, while the grid size of dx = 0.01m shows the best result. This

indicates that the simulation is independent of the grid size. The motion of the surge

shows that the box is moving through the numerical tank, which is obvious, as the

box is not held in place. The grid size of dx = 0.025m starts following the other grid

sizes, but after about t/T = 6m, it has a sudden increase and continues to increase

at a much higher rate than the others, which gives the floating box a more significant

movement in the x-direction. The grid size of dx = 0.01m and dx = 0.005m is closer

to the experimental data, but none match perfectly. Both start to deviate after the

first oscillation, but dx = 0.005m deviates with a higher slope than dx = 0.01m,

resulting in a better match with the latter.

In response to unsatisfactory results obtained from the surge-motion simulation, a

parameter exploration was undertaken to gain deeper insights into the factors in-

fluencing the surge-motion simulation and identify optimal parameter settings that

could potentially enhance the overall outcomes. Particular attention was given to the

direct forcing and the CFL number to investigate the 6DOF and the time treatment.

The tangential velocity and the floating body density treatment were activated for

direct forcing. The tangential velocity can be standard or reduced force, and the
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floating body density can be either discontinuous solid or continuous fluid density.

Four combinations of these were investigated to assess the impact comprehensively.

However, none of these showed any change in the result.

Continuing the investigation, the CFL number was studied by modifying this num-

ber while the other parameters remained constant. For the original simulation, this

number was 0.3. A change to lower and higher values was conducted but showed no

significant improvement.

(a) t/T = 5.0 (b) t/T = 5.2

(c) t/T = 5.4 (d) t/T = 5.6

Figure 3.8: The motion of the floating box in waves, showing the vertical velocity in
t/T = 0.2 intervals

Fig. 3.8 shows the motion of the floating box in waves from t/T = 5.0 to t/T = 5.6,

with values of the wave’s vertical velocity. This illustration also demonstrates how

the changes in velocity vary during the wave formation and interaction with the box.
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Chapter 4

Windmoor

In this chapter, a case study of a floating offshore wind turbine is done using SINTEF’s

INO WINDMOOR semisubmersible floating[102] wind turbine, where the purpose is

to simulate the response to hydrodynamics loads and motion with REEF3D::CFD,

which has also been explored in [7]. Furthermore, from the WINDMOOR project,

there are carried out experimental data that is used for comparison with the numeri-

cal simulations for validation of the results[111]. Three regular waves are investigated

with different steepness, wave height, and wave period, where the response motion

for heave, pitch, and surge are studied.

Figure 4.1: The floater in the test facilities at SINTEF Ocean[110]
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4.1 Geometry

The geometry description of the INO WINDMOOR semisubmersible floating wind

turbine follows the presentation in [7]. Three columns with pontoons and a deck

beam in between create the platform’s framework, forming it into a triangle[7]. On

top of the triangular-shaped platform, there is a wind turbine tower. This tower is

not included in the numerical simulation, so the simulation is performed with only

the platform, similar to the study in [7]. Therefore, the loads on the tower and rotor

from the wind are not considered. A dimension overview of the geometry is shown

below in Tab. 4.1.

Parameter Unit Value

Column diameter m 15.0
Column height m 31.0
Pontoon width m 10.0
Pontoon height m 4.0

Column centre-centre distance m 61.0
Deck-Beam width m 3.5
Deck-Beam height m 3.5

Draft m 15.5
Table 4.1: An overview of the INO WINDMOOR platforms geometry and main
dimensions[102][7]
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4.2 Experimental Data

The experimental data were carried out by the WINDMOOR KPN project (NFR

grant 294573) [111] in SINTEF Ocean’s Ocean Basin on a 1:40 froude scale in 2020

[110]. The basin has dimensions of 80m by 50m with a full-scale water depth of

150m[7]. However, during the experiment, this water depth was 3.75m[7]. This the-

sis uses only the wave experimental data without aerodynamic loads to compare the

numerical simulations.

The floater was held in place with mooring lines of a simplified horizontal system

above the water, consisting of three wire-chain spring lines connected to the floater’s

columns and anchored at the end of the basin[7], as shown in Fig. 4.1. Based on

as-built data[110], Tab. 4.2 gives the floating wind turbine’s mass properties in full

scale, where the still water level is the basis of the center of gravity (COG) location[7].

Parameter Unit Value

Mass t 14124.0
rxx m 43.62
ryy m 44.01
rzz m 29.87

COGx m 0.00
COGy m 0.00
COGz m 3.94

Table 4.2: Mass properties of the floating platform, WINDMOOR[7]
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4.3 Numerical Setup

The numerical wave tank

The numerical simulations for the regular waves are explored in a rectangular nu-

merical wave tank, following the setup from [7], performed with a model scale (1:40).

However, the results are scaled up and presented in a prototype scale[7]. For the

numerical wave tank, a simplification was done to reduce the computational time by

decreasing the dimensions compared to the experiment[7]. This resulted in a domain

length of 18.2m and width of 7.6m with a height of 5.0m and a water depth of 3.75m.

In addition, there are added wall boundaries and two wave relaxation zones for the

inlet and outlet[7]. At the inlet, there is a wave generation zone of 3.0m, and at the

outlet, there is a numerical beach that absorbs the waves at a distance of 6.0m[7].

The position of the floater is 9.078m from the inlet, shown in Fig. 4.2, together with

the mooring lines and dimensions[7]. WAVE1 and WAVE2 from this figure represent

where the experimental data are measured[7]. WAVE1 is experimental data carried

out at the beginning of the tank, and WAVE2 is experimental data carried out at the

position of the floating platform[7].

Figure 4.2: The numerical wave tank[7]

Wave gauges

In the numerical setup, three different wave gauges are placed to measure the numer-

ical results at the same places as the experimental measurements[7]. The first wave

gauge is placed at the inlet of the numerical wave tank, the same place as WAVE1,

while wave gauges 2 and 3 are placed at the same place as WAVE2, at the floating
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platform[7]. Wave gauge 2 has the position of x = 9.09227m and y = 4.13636m, and

wave gauge 3 of x = 909227m and y = −0.86364m, so both are placed where the

floating platform is but at different hight.

Mooring lines

The spring equation from Eq. (2.72) is used as horizontal mooring lines in the numer-

ical model as a simplification. To get this simplification to be similar to the actual

mooring lines, the measured force-displacement of the mooring in the experiment de-

termines the value of the equivalent linear spring stiffness to match this[7], which is

also shown in Fig. 4.3. In the numerical setup, there is also defined a pretension-

ing value of the three mooring lines with the values of 36.8902kN , 37.1951kN , and

36.8902kN , in all cases.

Figure 4.3: Force-displacement of the mooring[7]

Grid resolution

As the computational fluid dynamic simulation requires that the domain is discretized

to solve the governing equation[35][39], also the domain of this numerical wave tank

needs to be discretized into a grid or mesh. A cell size-based grid stretching approach

is used to reduce the computational effort, allowing the discretized domain to have

different cell sizes throughout the domain[7]. This technique works so that a high-

resolution mesh is applied within a certain area, defined by a chosen center point

and a distance in the x, y, and z directions, making up a small domain. Then, out-

side this boundary, a stretching factor is utilized, leading to coarser grid sizes further

away from the high-resolution domain until it reaches a defined coarse grid cell size[7].
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In this particular case, the center point of the high-resolution domain is set to

x = 9.2981m, y = 3.7825m, and z = 3.75m with a distance of 2.0m in the x and

y directions and 1.4m in the z-direction[7]. This results in a high-resolution domain

around the floating platform[7].

This method of high grid resolution around the platform and coarser away will ensure

that the propagation and generation of the waves will be good in the area around the

platform, which also is the most important area to capture accurate values[7]. The

mesh around the platform is illustrated in Fig. 4.4.

Figure 4.4: Illustration of the grid resolution around the platform.

Simulation time

For the regular wave cases, an adaptive time step is chosen as the time step, ∆t of

the simulation, to fulfill the criterion of CFL = 0.1 in the whole simulation[7].
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4.4 Regular Waves

Three regular waves of different steepness, wave height, and wave period are simu-

lated in a numerical wave tank with the floating platform and compared with the

experiments of the regular waves from SINTEF. The non-linear wave theory, 2nd-

order Stokes theory, is used in all cases with the same numerical tank dimensions, as

explained before. The maximum modeling time is set to 150 seconds for the three

investigated cases, 2030, 2050, and 2080. The case of 2030 is the mildest wave, and

2080 is the steepest. Water density is set to ρ = 1000kg/m3 and the gravity acceler-

ation of the z-component is g = 9.81m/s2. For all the cases, the simulation is done

with different grid sizes. This aims to look at the grid sensitivity and ensure accurate

and reliable results for an optimized computational effort[65]. An illustration of the

numerical wave tank with the floating platform is shown in Fig. 4.5.

Figure 4.5: Illustration of the numerical wave tank and the floating platform.
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4.4.1 Case 2030

The first case is 2030. This is the mildest wave with a steepness of 1:120. It has

a wave height of H = 2.55m and a wave period of T = 14.0s in full scale. As the

experimental model is scaled, the numerical simulation also is scaled with the model

values of the wave height equal to H = 0.06375m and wave period T = 2.213594s.

These values are also shown in an overview in Tab. 4.3.

Steepness: 1:120 Full scale Model scale

H[m] 2.55m 0.06375m
T[s] 14.0s 2.213594s

Table 4.3: Overview of the wave parameter values in case 2030[7]

Three different grid sizes are used to investigate the case, dx = 0.025m, dx = 0.02m,

and dx = 0.015m. The analyses include wave elevation, heave, pitch, and surge

motion.

Figure 4.6: Wave elevation of 2030

The wave elevation in Fig. 4.6 shows a good agreement with the slope and period.

However, it has some deviation from the experimental data at the crest and trough,

with about the same value of overestimation in both, implying that the wave simulated

is higher than the experimental. The grid size looks to be independent, meaning that

the convergence of the simulation is not dependent on the grid size[65]. Therefore,

a coarser grid size can be chosen, reducing the computational effort compared to a

finer one.
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Figure 4.7: Heave motion of 2030

Fig. 4.7 presents the heave motion against the experimental data. This result agrees

well with the slope and period but has significant symmetrical deviations at the top

and bottom throughout the simulation. In addition, it can be observed that resizing

the grid cells exhibits a nearly identical outcome. Consequently, the final result, sim-

ilar to the wave elevation, is not affected by a specific grid size, allowing for a coarser

grid size selection[65].

Figure 4.8: Pitch motion of 2030

The pitch motion from Fig. 4.8 shows a good agreement with the value of the troughs,

but the crest is higher than the experimental data. As the values of the pitch motion

are very small, it can be sensitive to changes. Just a slight irregularity in an external

factor could result in significant variations, making accurate results challenging to
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obtain. Another aspect to consider is that only one side of the simulation is overes-

timated, indicating that there may be some unequal distribution of the mass of the

floating platform that causes it to tilt more over to one side. This can, for example,

be that the tower’s mass is not neglected in the simulation. Like the previous mo-

tions, the grid sizes for the pitch motion show roughly the same results and can be

considered grid independent.

Figure 4.9: Surge motion of 2030

Fig. 4.9 represents the surge motion. Here, the numerical simulation shows an

acceptable agreement with the experimental data. However, the simulation of the

different grid sizes shows minor differences. The coarsest grid size of dx = 0.025m

has a smaller crest than the experiment and an overestimation of the trough, the same

is for the finest grid size of dx = 0.015m, but here the deviation is slightly smaller. In

comparison, the grid size in between has a small underestimation of the trough and

matches the crest very well. Thus, the best match is for the grid size of dx = 0.02m,

which is also a very good match. Furthermore, it oscillates constantly around 0 me-

ters, meaning that the floating fundament is not drifting away but standing still in

the water with help from the mooring lines.
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(a) t = 125s (b) t = 130s

(c) t = 135s (d) t = 140s

(e) t = 145s (f) t = 150s

Figure 4.10: Wave propagation of 2030 and interactions with the floating platform at
different timesteps

In Fig. 4.10, the wave propagation of 2030 at different time steps, from t = 125s to

t = 150s, can be seen, together with the interaction of the floating platform, showing

the values of the horizontal velocity and tension in the mooring lines. When the waves

hit the platform, forces are exposed on the structure and the mooring lines. It can be

observed that the highest horizontal velocity occurs at the wave crest. The mooring

line closest to the absorption zone gets high tension before the wave hits, while the

mooring lines on the other side get high tension after the wave has interacted.
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4.4.2 Case 2050

The second case with regular waves is 2050. This case has steeper waves than 2030

with a steepness of 1:30. The waves are of wave height H = 6.30m and wave period

T = 11s in full scale, and H = 0.1575m and T = 1.739252s in model scale, also

shown in Tab. 4.4.

Steepness: 1:30 Full scale Model scale

H[m] 6.30m 0.1575m
T[s] 11.0s 1.739252s

Table 4.4: Overview of the values in case 2050[7]

To analyze the wave elevation, heave, pitch, and surge motion, the same three grid

sizes as in 2030 are used for simulation, dx = 0.025m, dx = 0.02m, and dx = 0.015m.

Figure 4.11: Wave elevation of 2050

The wave elevation of case 2050 from Fig. 4.11 agrees well with the trough and slope.

Compared to 2030, it is clear that this case has a steeper slope. However, the crest

is overestimated by about 1 meter, leading to more considerable wave heights in the

numerical simulation compared to the experiment.
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Figure 4.12: Heave motion of 2050

The heave elevation in Fig. 4.12 has a perfect match with all grid sizes compared

with the experimental data. This level of agreement between the simulated heave

elevation and the experimental measurements can suggest a high degree of fidelity in

the model’s representation of the physical phenomenon.

Figure 4.13: Pitch motion of 2050

The pitch motion in Fig. 4.13 is almost a perfect match but with a deviation of the

crest of about 0.2 degrees. Overall, the rotation of the platform is minimal, so it is

difficult to get the exact values of a simulation because of the significant effects of

small changes, alike the pitch motion in 2030.
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Figure 4.14: Surge motion of 2050

Fig. 4.14 represents the surge motion. This is the only of the analyzed motions in the

case of 2050 that is not grid independent. Here it is clear that the result varies with

different grid sizes. Strangely, the simulation does not converge to the experimental

result with a higher resolution but with a coarser grid size. The best match is with

the coarsest grid size of dx = 0.025m, while the worst is with the finest grid size

of dx = 0.015m. In the simulation with dx = 0.025m, the result is very good. The

trough is almost a perfect match but with a slight crest deviation. Compared to 2030,

there are higher values of the surge motion, which can indicate that larger forces are

leading to more significant motions in the x-direction, coming from the steeper and

higher regular waves.
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(a) t = 125s (b) t = 130s

(c) t = 135s (d) t = 140s

(e) t = 145s (f) t = 150s

Figure 4.15: Wave propagation of 2050 and interaction with the floating platform

Fig. 4.15 shows the wave propagation of 2050 and its interaction with the floating

platform. Compared to 2030, horizontal velocity and tension values are higher, which

can align with the steeper wave of this case.
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Adjustment of the wave height of 2030 and 2050

The results from 2030 and 2050 are relatively good but have some deviations in the

wave elevations and the motions. As an inaccurate wave elevation can greatly im-

pact the motions, the incoming waves are investigated[7]. By comparing with the

experimental data, it indicates that the wave height should be decreased to achieve a

sufficient alignment. For 2030, the wave height is then set to H = 0.05025m, and for

2050 the wave height is set to H = 0.1375m in model scale. A new simulation with

these values is carried out with the grid size of dx = 0.025m. The results are shown

below in Fig. 4.16 and 4.17 for wave elevation and heave, pitch, and surge motion.

Significant enhancements are exhibited in the outcome through the adjustment of

wave height. The first perspective for consideration is that the simulation of the wave

elevation now accurately replicates the wave from the experiment in both 2030 and

2050, which appear as a crucial factor with the goal of recreating comparable plat-

form motion responses[7]. This is reflected in the new result in Fig. 4.16 and 4.17,

especially the heave, pitch, and surge motion of 2030, and the pitch and surge motion

for 2050 showed significant improvements.
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(a) Wave elevation of 2030 with decreased wave height

(b) Heave motion of 2030 with decreased wave height

(c) Pitch motion of 2030 with decreased wave height

(d) Surge motion of 2030 with decreased wave height

Figure 4.16: Wave elevation and motions of 2030 with a new wave height
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(a) Wave elevation of 2050 with decreased wave height

(b) Heave motion of 2050 with decreased wave height

(c) Pitch motion of 2050 with decreased wave height

(d) Surge motion of 2050 with decreased wave height

Figure 4.17: Wave elevation and motions of 2050 with a new wave height
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4.4.3 Case 2080

The last case is 2080. This is also the case with the highest wave steepness of 1 : 15.

The wave height H = 12.59m and wave period T = 11.0s in full scale. In the model

scale, the wave heightH = 0.31475m and period T = 1.739252s. A complete overview

is given in Tab. 4.5.

Steepness: 1:15 Full scale Model scale

H[m] 12.59m 0.31475m
T[s] 11.0s 1.739252s

Table 4.5: Overview of the values in case 2080[7]

Three different grid sizes are used for a grid convergence study of the wave elevation,

heave, pitch, and surge motion, dx = 0.035m, dx = 0.03m, and dx = 0.025m.

Figure 4.18: Wave elevation of 2080

Fig. 4.18 shows the simulated wave elevation compared with the measurements. The

simulation has a good agreement with the measurements. Some deviation occurs at

the crest and bottom. From t = 300s to about t = 400s, the simulated waves are

underpredicted, but after about 400 seconds to 500 seconds, the simulation almost

matches the measurements. The different grid sizes show almost the same results, so

the grid size does not significantly impact the result.
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Figure 4.19: Heave motion of 2080

The heave motion of the floating platform is shown in Fig. 4.19. The result has a

good match with the experimental data. From t = 300s to t = 400s, the simulation

has a slight overprediction of the motion and an underprediction of the trough. After

t = 400s, there is a better match with the trough but slightly more overestimating of

the crest. It also appears to be a small shift in the period.

Figure 4.20: Pitch motion of 2080

In Fig. 4.20, the pitch motion is plotted. This has a relatively good agreement with

the measurement but with some deviations, mainly overestimations. The pitch mo-

tion oscillates around 0 degrees and with an amplitude of approximately 1 degree.

Similar to the heave motion, the pitch motion also gets a small offset in the period

after about t = 400s. The grid sizes show small variations, but there is no apparent
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convergence of the higher-resolution grid size.

Figure 4.21: Surge motion of 2080

Fig. 4.21 shows the surge motion. This result presents a considerable deviation com-

pared to the measurements. The simulated values of the surge motion are overpre-

dicted during the whole simulation, independent of the grid size, consistently yielding

approximately 20 meters above the experimental data. Moreover, no clear conver-

gence pattern emerges from the analysis, as the coarsest grid size generates results

relatively closer to the experimental measurements than the finest one. A possibility

for this outcome could be that the grid sizes studied are too narrow in size, so there

will not be a clear distinction between them. Another factor contributing to this

result could be the uncertainty related to the pretension of the mooring lines. If this

value does not align with the real one, this could lead to a significant difference in

surge motion.

As this case is of a steep wave, it is also the most challenging case to get good results.

This comes from the fact that a steeper wave has a flow field that consists of more

significant gradients, which also require greater demand from the CFD simulation[58].

A consequence is that the numerical simulation can dissipate energy, for example, in

the form of turbulence or breaking, leading to underestimated wave forces, which also

affect the response and motion of the floating platform. This could also explain the

results of the wave elevation. In addition, steeper waves are also more exposed to

reflected waves from the boundary[58].

The surge motion shows an unsatisfactory outcome, so an investigation of different

parameters is undertaken to improve the result.
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Mooring

The first parameter to investigate is the mooring lines, which are supposed to prevent

the platform from moving horizontally. In Fig. 4.22, mooring lines 0, 1, and 2 are

plotted to look at their forces and how they act compared to each other.

Figure 4.22: Mooring lines of 2080

Fig. 4.22 shows how the mooring lines are acting compared to each other. The

distribution of the forces is plotted, starting from the pretension. Mooring 0 and 2

have the highest values and are in tension, while mooring line 1 has the smallest value,

which can be seen as reasonably as the wave gives different forces to those mooring

lines in front and behind the platform.

Wave forces

The next parameter to investigate are the wave forces acting on the platform in the x,

y, and z directions. In order to get a clearer picture of what is influencing the mooring

lines and the surge motion, there is done a simulation with no mooring (no springs)

and a simulation with no waves to look at how that affects the resulting forces.
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Figure 4.23: Wave force of 2080 in x-direction

Figure 4.24: Wave force of 2080 in y-direction

Figure 4.25: Wave force of 2080 in z-direction
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The wave force in Fig. 4.23 shows the wave force in the x-direction, where the

original simulated wave force has the most significant values, and the force on the

mooring without waves has a relatively large force in the first 60 seconds. After 60

seconds, this force gets smaller. When there is no mooring (springs), there is no force.

From Fig. 4.24, the wave force in the y-direction is presented. When there are

no waves, the forces on the mooring lines are large in the first 60 seconds, while the

wave force of the regular wave has more significant forces after about 100 seconds.

Similar to the x-direction forces, there are no wave forces in this direction when there

are no mooring lines(springs).

The wave force of the z-direction is shown in Fig. 4.25, showing the largest wave

force in the original simulation.

Immersed boundary method

A comparison between the force results obtained by the direct forcing immersed

boundary method and the ghost cell immersed boundary method was done to check

if the error in surge motion was affected. This did not show any interesting results.
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Extention of the numerical wave tank

An extension of the numerical wave tank was conducted to check if reflected waves

caused the surge error. The tank was then extended from 18.2m to 34.7m. In addition,

the wave generation and absorption zones were also extended from 3.0m to 4.72m

and from 6.0m to 9.44m, respectively. The length in the y-direction and the height

of the tank were the same as before. The heave, pitch, and surge motions were then

simulated again with the grid size dx = 0.02m in this wave tank. The results are

presented from t = 300s to t = 500s.

Figure 4.26: Heave motion of 2080 with extended tank

Figure 4.27: Pitch motion of 2080 with extended tank

Figure 4.28: Surge motion of 2080 with extended tank
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Fig. 4.26 shows the heave motion, which has a good match with the experimental

data. It oscillates around 0 meters with an amplitude of about 3.0m. From t = 300s

to about t = 400s, the heave motion has some overprediction of the crest and under-

estimation of the bottom. After about 400 seconds, the crest is still overestimated,

but the bottom is now almost a perfect match.

The pitch motion is represented in Fig. 4.27. This is also a relatively good match but

has some deviations in the crest and trough. The pitch motion oscillates around 0

degrees, with an amplitude varying between about 0.5 degrees to 1.0 degrees. Up to

400 seconds, the trough has relatively good agreement with the measurements, while

after 400 seconds, the trough is significantly underestimated. The crest has a slight

overestimation throughout the whole time series.

The surge motion from Fig. 4.28 shows a much better result than the surge motion

in the small tank in Fig. 4.21. Now the simulation is near the measurements, with

a slight overestimation initially. However, after about 450 seconds, the simulation

is starting to get good agreement with the experimental data. This result indicates

that the reflected waves are the problem with the surge error from the smaller tank.

Looking at the mooring forces from this simulation Fig. 4.29, it is also clear that the

mooring lines now have smaller forces in the larger tank than in the smaller tank.

This result shows that when the waves are reflected on the platform, there will also

be a more significant impact on the mooring lines due to the higher and stronger

waves.

Figure 4.29: Mooring lines of 2080 after extending the tank
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Figure 4.30: Illustration of the extended wave tank of 2080 with the floating platform
and mooring lines.

An illustration of the floating platform in the regular waves of 2080 with an extended

tank is shown in Fig. 4.30. The steep wave from 2080 will lead to high horizontal

velocities and mooring tension, giving larger forces interacting with the platform.

This can be observed with the free surface being split and deformed significantly

after the interaction.
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Chapter 5

Conclusion and Outlook

In the floating offshore wind industry, the challenging environment surrounding the

platforms is of significant importance when designing the structures. By validating

numerical methods, like CFD, floating offshore wind turbines can be cost-effectively

optimized with safe design, an essential element for this industry to be competitive

and actively contribute to the transition towards renewable energy. This thesis uses

the numerical model REEF3D to validate the 6DOF algorithm. The first two cases

for validation were in 2D with easy geometries to provide good results of simple cases

before approaching the more complex geometry of a floating offshore wind turbine.

The first case was of a cylinder, realized from an initial position and to the wa-

ter, where the heave motion was studied and compared with experimental data. A

good agreement with the two finest grid sizes of dx = 0.01m and dx=0.005m was

obtained, while the coarsest grid size of dx = 0.025m showed a significant deviation

after the first oscillation. This observation indicated the most appropriate grid size,

dx=0.01m, for further investigation, as it provides accurate results with an optimized

need for computational effort.

The following case of the 2D investigation was of a rectangular box. In contrast

to the cylinder, this case was investigated with a generation of waves, where a regular

wave of second-order Stokes theory was used. A generation zone and absorption zone

were activated at the start and end, respectively, for this purpose of study, dividing

the numerical tank into three parts. As an external force affected the floating box

due to the generated waves, this also included more possible movement of the floating

box. Therefore, the three motions of heave, roll, and surge, together with the wave

elevation, were studied and compared with measurements with three different grid

sizes for a grid convergence study. The first simulation was of the wave elevation,

a fundamental component that should be accurate for the rest of the simulations to

be of good quality. This simulation had the best match with the measurements of
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the finest grid size of dx=0.005m, with just a small overestimation at the crest and

trough. Also, the heave, roll, and surge motion matched the experimental data at

this grid size. However, some problems with larger overestimations occurred with

the coarser grid sizes for roll and surge motion, implying a grid dependence of the

simulations.

The primary investigation of SINTEF’s WINDMOOR, the floating offshore wind

turbine, was done as the last case. As this was a 3D case, the motion of heave, pitch,

and surge were studied in three cases of different regular waves, 2030, 2050 and 2080.

The simulations were compared to measurements, which were carried out by SINTEF.

The cases of 2030 and 2050 showed very good agreement with measurements but with

slight overestimations in some of the motions. Both cases marginally overestimated

the crest and trough of wave elevation and pitch motion. The deviation in the pitch

motion could be caused by its small value, leading to a great impact on the result

with small changes, making it difficult for accurate simulations. Another uncertainty

could be unequal mass distribution due to the neglected tower in the simulations.

For the heave motion result, 2030 had larger overestimations than 2050, which nearly

matched the experimental data, while the surge motion in 2030 had a slightly bet-

ter result than 2050. However, also 2050 matched well with measurements in this

motion. As the wave elevation, pitch, and surge for 2030 and 2050, in addition to

heave in 2030, had a slight deviation from the experimental data, the wave height

was decreased in order to match the measured waves better. This produced favorable

results for all motions, indicating that calibrating the incoming waves is essential to

receive a good agreement with the experimental data. In total, both cases had good

results, but 2050 was somewhat better.

The wave of 2080 was the most difficult case to simulate due to the high wave steep-

ness. However, a good match of the wave elevation and the motions were obtained,

except for the surge motion, which had a significant overestimation and did not show

any convergence in the grid size study. A reason for the non-convergence was dis-

cussed, and it was noted that the narrow grid investigation and the uncertainty of the

pretension of the mooring lines could be a problem. For future investigations, a grid

convergence study of dx = 0.025m, dx = 0.05m, and dx = 0.1m can be suggested to

see if this could change the convergence result. Further investigation was then done

for improvement, with a parameter study of the mooring lines, wave forces, immersed

boundary method, and extension of the tank. The decisive parameter was the length

of the tank, which was too short, so the waves were reflected, giving more significant

movements. An extension of the tank then gave a better result of the surge motion.
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Overall, all cases showed a relatively acceptable agreement with the experimental

data. For steeper waves, the free surface is observed to be of higher separation than

the less steep waves behind the structure, so an extension must be considered in

such cases to avoid reflecting waves. The validation of the 2D and 3D cases in this

thesis has shown REEF3D is suitable for floating body simulation similar to this. The

validation has considered the heave, roll, and surge motion for 2D cases and the heave,

pitch, and surge motion for three regular waves in 3D. However, further research on

irregular wave simulation should give a more realistic picture of the ocean. Also, a

deeper investigation of the mooring lines and comparing them to experimental data

could be of interest, as this is an essential parameter for the platform’s safety and

to be cost-efficient. Coupling with the CFD and FNPF modules of REEF3D could

also be of high interest to increase efficiency combined with high fidelity of large-scale

simulations, such as a wind farm. This could then contribute to lowering the cost

and getting one step closer to a competitive floating offshore wind industry.
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