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Abstract

This thesis explores the development and evaluation of a flattened R-tree indexing structure
for MongoDB. MongoDB, a leading NoSQL database, has been extensively used for big
data applications, but its limitations in handling spatial data provoked the idea of imple-

menting an R-tree index that could enhance performance in spatial querying.

The research began with a comprehensive literature review to gain a profound understand-
ing of MongoDB’s current indexing capabilities, R-tree structures, and the potential ad-
vantages of integrating the latter within the MongoDB environment. A previous attempt at
implementing an R-tree alongside MongoDB was found and it served as the base for the
implementation presented in this thesis. The implemented R-tree index’s query operations
were tested with four different data sets. Tests were primarily designed to measure and
compare the performance of the newly implemented index against MongoDB’s existing

geospatial indexing structure.

Results show that the implemented R-tree does not outperform the existing indexing struc-
ture in MongoDB. However, the R-tree showed promise under certain query conditions,
indicating that an R-tree index can perform better than the current 2dsphere index in Mon-
goDB if implemented properly. The study emphasizes that the implementation of the R-tree
is the most significant cause of the results and that with an improved implementation, the
R-tree could be an enriching addition to MongoDB. While the implementation has several
shortcomings, it improves MongoDB’s handling of Cartesian coordinates. This could po-
tentially improve big data processing and applications that demand high-performance spa-
tial querying. The thesis concludes with propositions for further work aiming to improve

the R-tree implementation.




Sammendrag

Denne oppgaven utforsker utviklingen og evalueringen av en flat R-tre-indeksstruktur for
MongoDB. MongoDB, en ledende NoSQL-database, har blitt mye brukt for stordataapp-
likasjoner, men dens begrensninger nar det gjelder handtering av flerdimensjonal data ga
ideen om & implementere en R-tre-indeks som kunne forbedre ytelsen ved flerdimensjonale

spgrringer.

Forskningen startet med en omfattende litteraturgjennomgang for a fa en dyp forstaelse
av MongoDBs navarende indekser, R-tre-strukturer, og de potensielle fordelene ved a in-
tegrere sistnevnte i MongoDB-miljget. Et tidligere forsgk pa a implementere et R-tre i
MongoDB ble funnet og det ble brukt som et grunnlag for implementeringen presentert i
denne oppgaven. Spgrringene til den implementerte R-tre-indeksen ble testet med fire for-
skjellige datasett. Testene var primert utformet for & male og sammenligne ytelsen til den

nylig implementerte indeksen mot MongoDBs eksisterende indekseringsstruktur.

Resultatene viser at det implementerte R-treet ikke utkonkurrerer den eksisterende indek-
seringsstrukturen i MongoDB. Imidlertid viste R-treet lovende resultater under visse forhold,
noe som indikerer at en R-tre-indeks kan prestere bedre enn den naverende 2dsphere indek-
sen til MongoDB, hvis den blir implementert riktig. Studien understreker at implementas-
jonen av R-treet er den viktigste arsaken til resultatene, og at med en forbedret imple-
mentasjon kunne R-treet vert et gunstig tillegg til MongoDB. Selv om implementasjonen
er mangelfull, sa forbedrer den MongoDB sin handtering av kartesiske koordinater Dette
kan potensielt forbedre stordataprosessering og applikasjoner som har hgye krav til proses-
seringstid av romlige sprgrringer. Oppgaven avslutter med forslag til videre arbeid som har

som mal & forbedre R-tre-implementasjon.
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1 Introduction

The recent decades have seen a rise of massive spatial data sets from different sources [1]. With
the rise of big spatial data, the need for spatial processing tools capable of handling massive
data sets has become clear. Multiple surveys highlight the increase of research on big spatial
data processing as traditional systems are not designed for handling big data [1]-[3]. There have
been various research attempts aimed at improving the popular big data framework, Hadoop [4],
to better handle spatial queries and analysis [5]-[7]. Other research attempts extend NoSQL
databases such as MongoDB [8] and HBase [9] with spatial indexing structures to improve the
processing of spatial data [10], [11]. Despite progress in using NoSQL databases for spatial
data, the PostGIS [12] extension for PostgreSQL [13] still remains on top in usage according to
a ranking by DBEngine [14].

PostGIS offers more spatial queries than available in the NoSQL databases and provides a multi-
dimensional index for spatial data, the R-tree [15]. The R-tree was introduced by Guttman in
1984 [16]. It has received much attention in research and multiple variants have been proposed
that improve the original version, such as the R+-tree [17] and the R*-tree [18]. A survey
by Guo and Onstein on geospatial information processing in NoSQL shows that only Neo4j
utilizes the R-tree index among the most popular NoSQL databases [19]. However, comparis-
ons between PostGIS and MongoDB show that MongoDB can deliver better performance than
PostGIS despite the lack of a multi-dimensional index [20]-[22]. MongoDB’s spatial indexes
transform multi-dimensional spatial data into one dimension and thus perform well on simple
spatial data such as lines or points. On more advanced structures such as polygons, the cal-
culations become more of a bottleneck as the complexity of the data increases. Another issue
with spatial data in MongoDB is the lack of functionality when compared to the many queries
available in PostGIS. Also, the support for Cartesian coordinates is lacking with even fewer

functions and spatial data types available than for geodetic coordinates.

Despite the current challenges with spatial data in MongoDB, it has been shown capable of
delivering better performance on larger data sets than the current state of the art [22]. The
promising performance motivates further research in spatial processing improvements to the
database system. In this thesis, we therefore aim to analyze the performance of the flattened
R-tree implemented by Xiang et al. [10] in order to see how MongoDB can be improved
with a multi-dimensional indexing structure. To see how the R-tree structure can extend the
functionality of MongoDB, it will be tested with Cartesian data sets of both complex and simple

geometries.




1.1 Purpose

Traditional relational databases are not designed for big data processing and thus NoSQL fits the
task better. However, current NoSQL databases are not able to provide support for spatial data
at the same level as their relational counterparts. The purpose of this thesis is thus to analyze
how MongoDB, a NoSQL database, can be improved with a flattened R-tree implementation to

provide better support for spatial data.

1.2 Research Goals

The following goals are obtained from the purpose of this thesis:

* Implement a flattened R-tree in MongoDB version 6
* Compare the performance of the index to MongoDB’s current 2dsphere index

* Evaluate the results and the potential of an R-tree index in MongoDB

1.3 Structure of the Thesis

The rest of the thesis is divided into five sections. Section 2 covers the theoretical background
required for the implementation. Section 3 gives an overview of the implementation and the
development process. Section 4 presents the results achieved with the Flattened R-tree and
MongoDB’s 2dsphere index. This section also discusses the possible reasons for the processing
times reached. Section 5 gives an overview of the main findings of the research, limitations of
the study, implications, and final remarks. Lastly, Section 6 suggests further work that can be

done to improve the implementation.




2 Background

This section will serve as an introduction to the theoretical aspects related to multi-dimensional
index structures, NoSQL databases, and Geographical Information Systems. It will also cover

a selection of related works.

2.1 Multi-Dimensional Index Structures

In order to understand what a multi-dimensional index structure is, one must first understand
what an index is. An index in the view of a database system is a supportive data structure
providing faster look-ups with given search conditions [23]. When data is written to a database,
it will store the data in blocks on the computer’s disk. In order to avoid looking through the
records linearly to find a database record, which is a slow process, an index is necessary, al-
though it adds overhead when writing data as an index record must be written along with the
object. The B-tree is the most known index for databases and it has received much attention in
research papers. It is a one-dimensional index where the leaf nodes of the tree contain pointers
to objects on the disk. As the B-tree is one-dimensional, it cannot properly index on multiple
dimensions unless the data is converted to one dimension for indexing. Employing hash func-
tions on multi-dimensional data to retain a single hash value for indexing serves as an example
of this. However, there are separate index structures designed for retaining the dimensions of
the data as the next sections will show.

2.1.1 R-tree

The R-tree was introduced in 1984 by Guttman [16]. It is a height-balanced tree and each leaf
node contains index records with pointers to data objects just like the B-tree. The non-leaf
nodes of the tree contain entries that point to a child. Each non-leaf node entry is of the form (1,
child-node) whereas each child node contains entries of the form (I, tuple-identifier). A tuple-
identifier is an identifier for a matching tuple in the database. The I represents the n-dimensional

minimum bounding rectangle (MBR) of the entry, which is of the form:
I = 107117 -~-71n71

Each I represents a close-bounded interval [a, b] telling the extent of the object along axis i.
If either a, b, or both equal infinity, this means that the object stretches out indefinitely in the
given direction. An entry in a leaf node holds the MBR for the object it refers to, and an entry

in a non-leaf node contains the MBR enclosing all MBRs of its children.




An R-tree, where M is the maximum number of entries that fit in one node and m < %’1 specifies
the minimum number of entries in a node, must satisfy the properties formalized by Guttman
[16]:

1. Every leaf node contains between m and M index records unless it is the root.

2. For each index record (I, tuple-identifier) in a leaf node, I is the smallest rectangle that

spatially contains the n-dimensional data object represented by the indicated tuple.
3. Every non-leaf node has between m and M children unless it is the root.

4. For each entry (I, child-pointer) in a non-leaf node, / is the smallest rectangle that spatially

contains the rectangles in the child node.
5. The root node has at least two children unless it is a leaf.

6. All leaves appear on the same level.

An important point to be noted from the properties above is the maintenance of the 4th property
when a node-split occurs. Upon inserting new records, a node-split will happen at some point,
which will incur the creation of two new MBRs in non-leaf nodes. The R-tree performs splits
differently than the B-tree as it considers different criteria. The main goal of the split is to
minimize the probability that both of the new nodes will be invoked by the same query. Three
different algorithms for splitting are proposed in [16] with differing run times. The fastest one
is the linear split which selects two objects as initial seeds for the new nodes and then assigns
the remaining objects to the nodes based on how much the nodes need to expand their MBR
to include the new object. The smallest possible increase in size is desired when assigning the
objects. The exponential split is the slowest one as it uses brute force to find the best possible
grouping of the objects with regard to the minimization of the enlargement of the MBR. The
suggested algorithm to use is the quadratic split which also selects two nodes as the seed, but
differs in how it selects the two seed nodes. The seeds are selected by checking which two
objects create the most dead space in their MBR if put together where dead space is the space in
an MBR not occupied by the objects in the MBR. After the seeds have been selected, the next
object to be inserted in a node is the one maximizing the difference in dead space if assigned to
both nodes given that the object is assigned to the node requiring the least MBR enlargement.
The quadratic split was suggested as it still achieves reasonable performance while providing a

better split than the linear split.

The deletion algorithm is straightforward, but should a node contain less than m entries, where
m is the minimum number of entries in a node, the node is removed and all of its entries are

reinserted into the tree. In a B-tree, the node would be merged with a sibling due to the nature




of one-dimensional data, but the same property does not hold for multi-dimensional data and
thus the reinsertion strategy is applied to distribute the remaining entries. After removing the
node, the update is propagated up in the tree towards the root with some MBRs potentially being

resized as some entries have been removed.

Figure 1 shows an example of a constructed R-tree. In Figure 1b multiple objects are shown
along with their constructed MBR. To simplify the example, there are no overlapping MBRs,
but note that it is possible for MBRs to overlap each other. In such a case where a user queries
for overlap and the MBRs overlap, but not the objects themselves, they will still be returned
as candidates to the user who must then verify if the objects truly overlap. The reason for this
false alarm can also be seen in the figure since the MBR is not a perfect representation of the

polygons and thus create some dead space around the polygons.

Numerous versions of the R-tree have appeared over the years with improvements to the ori-
ginal. We briefly present the R+ and the R* tree here, but refer the interested reader to Man-
olopoulos et al. [24] to learn more about other variants. The proposal of R+-trees [17] was
motivated by the overlap problems in the original R-tree. A point location query in the original
version could visit several paths from the root to leaves as the MBRs could be overlapping and
the likeliness of multiple paths being visited increases with the amount of overlap found. The
R-+-tree does not allow MBRs at the same level to overlap and uses clipping to prevent overlap.
Clipping introduces redundancy to the tree because the same MBR might be stored under two
paths. Both insertion and deletion are affected by this change since multiple copies may be

inserted and all of these copies must be deleted when delete is called on the object.

Another variant considered more performant is R*-trees [18]. The R*-tree utilizes an engineer-

ing approach to combine the following criteria in the best possible way [24]:

Minimize the area covered by each MBR
* Minimize overlap between MBRs
* Minimize MBR margins

* Maximize storage utilization

The criteria are conflicting as reducing the area and overlap reduce storage utilization, but
through extensive testing Beckmann et al. [18] found the optimal combination. When insert-
ing a new entry, a branch must be selected. The R*-tree algorithm for selecting this branch is
ChooseSubtree and it uses different criteria for selecting non-leaf nodes. The minimum MBR
area enlargement is considered when selecting non-leaf nodes whereas the minimize overlap-

ping criterion is examined for leaf-nodes as the extensive testing showed a better performance




R1 | R2

R3 R4 | RS

R6 | R7 | R8 R11 | R12 R9 | R10

(a) An R-tree with M = 3.

(b) Polygons with their corresponding MBRs.

Figure 1: A 2-dimensional R-tree along with its objects and constructed MBRs.




with these settings. The B+- and B*-tree are both dynamic R-trees, but there are variants of the
R-tree made specifically for static data. Manolopoulos et al. [24] goes into more detail on the

static versions of the R-tree and the interested reader is recommended to take a look there.

2.1.2 KD-tree

The kd-tree was introduced by Bentley [25] in 1975 as a generic tree structure for multidimen-
sional data. It is a multidimensional binary search tree with the same space and time complex-
ities as a regular binary search tree. Each record is considered a point in a k-dimensional space
and the tree is built by partitioning the space along the k different axes. Every level of the tree is
associated with an axis. The discriminator can be selected by cycling through the axes. To build
the kd-tree, each record is inserted into the tree. The first record will become the root and the
rest of the records will be put in either the left or right subtree of the first record. By finding the
dimension with the highest spread and finding the median of this dimension, a more balanced
split can be produced than using a randomly selected record. An algorithm to build the tree
using the median is briefly explained by Skrodzki [26] in his thesis. A detailed explanation of a
2-dimensional tree can be found in chapter 2.3 of [27].

Performing range search on a kd-tree is straightforward. Consider the root to contain the entire
search area. The root partitions the search space into two partitions, its left and right subtree.
A query rectangle intersecting with the partitioning line of the root may contain points at both
sides of the space and thus both subtrees must be searched. If the query rectangle is wholly
contained on either side, one branch may be disregarded and the search continues in the other
branch. Nodes with a search space that intersect the query rectangle are checked to see if they
intersect with the query and added if they do. The search process applied at the root level is
applied for the candidate subtrees. If a subtree is completely contained in the query rectangle,

the entire subtree is added to the result.

2.2 NoSQL

In recent years, the prices of storage have decreased drastically [28], leading to the emergence
of NoSQL (non-SQL or not only SQL) databases. This term covers a wide variety of databases
that stores data differently from the traditional relational database. Since storing data became
cheaper, there was no longer a need to create complex data models in order to avoid duplica-
tion. Developers were also becoming the primary expense of software development, rather than

storage, so creating a database that was optimized for developer productivity was favorable.

Another reason for the emergence of NoSQL databases is that the “one size fits all”’-thinking




concerning databases has been questioned by both science and web companies [29]. There are
many application scenarios that cannot be addressed with a traditional database approach as the
amount of data is increasing and the nature of it is unstructured. Hence, creating a relational
database schema is nearly impossible. This is what the different NoSQL databases try to solve,
allowing the storage of huge amounts of unstructured data, and giving the developers a lot of

flexibility.

As mentioned, there are a wide variety of NoSQL databases and each of them has its own

features, but at a high level, many of the databases have the features listed in Table 1.

Table 1: Features of NoSQL Databases [30].

Feature Feature Description

Since NoSQL does not require the developer to store data in a
defined schema, making changes is easily done. This feature sup-
ports the Agile Manifesto [31], as it allows the developers to rap-
idly adapt the database to changing requirements.

Flexible schemas

Most NoSQL databases scale out horizontally, meaning that de-
velopers can spread the data to different servers when the amount
is too large to be handled by one server. This is different from
most relational databases that require scaling vertically, which im-
plies moving the data to a bigger server. Hence, scaling vertically
is more expensive than scaling horizontally.

Horizontal scaling

Data in NoSQL databases are typically stored with regard to op-
timizing queries. So data that is accessed together is usually stored
Fast queries due to | together. Consequentially, queries do not have to perform join op-
the data model erations, leading to faster queries. This is different from relational
databases that usually are normalized, so queries may require per-
forming join operations on data from multiple tables.

Some NoSQL databases maps their data structures to those of pop-
Ease of use for de- | ular programming languages. This allows developers to store data
velopers in the same way as they use it in their code, which may lead to less
code, more effective development, and fewer bugs.

The different NoSQL databases have different ways of storing data. The four major types of
databases today are: document databases, key-value stores, wide column stores, and graph
databases [32]. Each of these suits different applications, so the choice of database to use
depends on what type of data the developer wants to store. A document database stores data in
JSON, BSON, or XML documents. Each document is a self-contained unit of data that contains
all the information about an object. These are flexible, meaning that fields can be added or
removed without affecting other documents in the database. This allows the objects to be in a

form close to the ones used in applications, leading to less translation when using the data in an




application compared to relational databases that often have to assemble and disassemble data
when retrieving and storing it. Typical use cases for document databases are e-commerce, web
applications, and content management. The second type, key-value stores, is the simplest type
of NoSQL database. It is similar to a relational database table with only two columns. Data
is stored in key-value pairs, where the key represents the attribute name. Use cases for this
type of database are shopping carts, user settings, and user profiles. Further, the wide column
stores store information in columns, enabling users to access only the specific columns they
need. It allows for a flexible and scalable data model, meaning that each row in the database
can have a different set of columns, and each column can contain multiple values. This type is
commonly used in applications that require fast and scalable data storage and retrieval, such as
real-time analytics and time series data. Finally, the graph databases store data in nodes, and the
relationship between nodes are stored in elements called links or relationships. As opposed to
relational databases which imply these relationships through data, a graph database stores these
directly. Hence, the database is optimized for searching and capturing the connections between
data elements. Some use cases for this type are fraud detection, social networks, and knowledge

graphs.

2.2.1 MongoDB

MongoDB is a widely used, open-source NoSQL database. It is used by companies in a broad
range of industries, and as of now, it is around 35,000 that have used MongoDB to build their
application [33]. MongoDB stores data as BSON documents composed of field and value pairs.
BSON is a binary representation of JSON, however, it contains more data types. A value can
have any of the BSON data types [34], but it can also be other documents, arrays, and arrays
of documents. Therefore, a lot of different types of data can be stored. These documents are
stored together in collections, and a database contains one or more collections. Collections are
analogous to tables in relational databases, however, they do not require that the documents
within a collection have the same schema by default. This makes it possible to modify the
structure of a single document easily, and it does not affect the rest of the documents in the
collection. Also, documents map directly to code so it correspond to native data types in many
programming languages, giving the opportunity to have the same objects in both the application

code and in the database.

Querying data in MongoDB is done through the Query API which consists of CRUD opera-
tions and Aggregation pipelines. CRUD stands for Create, Read, Update, and Delete, and the
operations are self-explanatory. Aggregation pipelines on the other hand consist of one or more
stages that process documents. It works like a pipeline with different stages where each stage

performs operations on the input document before sending it through the pipeline to the next




stage. Examples of operations that can be performed are filter documents, group documents
and calculate values. Examples of the results from the aggregation pipeline are total, average,
maximum, and minimum values. The Query API also supports queries such as document join,
graph and geospatial queries, full-text search, on-demand materialized views, and time series
analysis. To support efficient query operations, MongoDB uses indexes. The database offers a
wide variety of indexes that can be used on any field or sub-field in a document, all of which
use the B-tree data structure. There is one default index, the _id index that creates a unique
index on the _id field during the creation of a collection. This prevents the creation of multiple
documents with the same _id. The different indexes that MongoDB provides, support different
types of data and queries. Following is a short description of each index [35].

* Single Field Index: Besides the default _id index, MongoDB allows users and applications
to create an ascending/descending index on any single field in a document. Listing 1
shows the command for creating a single field index on the field ifem. The number says

if the sort order is ascending (1) or descending (-1).

db.collection.createIndex({item: 1})

Listing 1: Command for creating an index.

* Compound Index: A compound index is a single index structure that holds a reference
to two or more fields in the documents. The order of the fields in the compound index
is of significance as MongoDB will first sort on the first field, then within the first, it
will sort on the second. The sort order (i.e. ascending or descending) of the index key
can determine whether the index can support certain sort operations. Consider the index

depicted in Listing 2. With the sort order on these index keys it will be possible for a

{"item": 1, "amount": -1}
Listing 2: Compound index.

query to return results that are sorted by ascending ifem, and then descending amount,

and vice versa. However, the index cannot sort on ascending item and ascending amount.

{"item": 1, "amount": 1, "order_number": 1}

Listing 3: Compound index with three fields.

* Multikey Index: A multikey index is automatically created if the field the index is created
on contains an array of values. MongoDB creates separate index entries for every element
in the array, allowing queries that match an element or elements in the arrays. The array

can contain both scalar values (i.e. strings, numbers) and nested documents.
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* Geospatial Index: MongoDB provides two indexes to support efficient queries on geospa-
tial data: the 2d index which uses planar geometry, and the 2dsphere which uses spherical

geometry. These will be covered more in-depth in Section 2.6.1.

» Text Index: Text indexes support text search queries on string content. This can either be
a single string or an array of strings, and the index can be a single field or compound. In
addition, if the index is compound, it is possible to specify weights for each field. This
is used to denote the significance of one field compared to others. MongoDB then uses
this weight when calculating a score for each document by multiplying the number of

matches with the weight. The index is also case-insensitive.

* Hashed Index: This index is used to support hash-based sharding. It indexes the hash
of the field’s value. A hash index has a more random distribution of values compared to
other indexes, but because of the hashing, the index can only support equality matches

and not range-based queries. More on hash-based sharding later in this section.

At its core, MongoDB is a distributed database with high availability, horizontal scaling, and
geographic distribution built in. For high availability, MongoDB uses a replica set which is
the replication of a group of MongoDB servers that hold copies of the same data. Under high
workloads, this makes it possible for the database to route requests to the replications, spreading
the workload over multiple machines. Further, MongoDB utilizes sharding to achieve horizontal
scaling, which is a method for distributing data across multiple servers. Such a deployment of

MongoDB is called a sharded cluster. The sharded cluster consists of three components:

* Shard — contains a subset of the data. A shard must be deployed as a replica set to provide

redundancy and high availability
» Config servers — stores metadata and configuration settings for the cluster

* Mongos — acts as a query router, providing an interface between client applications and

the sharded cluster

A shard consists of multiple servers since it must be deployed as a replica set. Together, the
shards in a cluster hold the entire data set for that cluster. Further, the config server contains
metadata that is required for the cluster’s operation and maintains a mapping between the shard
key and the corresponding shards. The information about the mapping is cached in mongos
where it is used to direct the queries from the client application to the appropriate shard. The

interaction between the different components is described in Figure 2.

MongoDB shards the data at the collection level using shard keys to distribute the documents

within a collection across shards. A shard key is either a single indexed field or multiple

11



Config Servers

-
-
-
-
-
-
-
-
-
- ity
- ~o
- ~
-
-
-
-

<« T A
/\/(\/—\ /\_/)\/\
1 or more Mongos 2 or more Shards

Shard

(replica set)

Mongos

Figure 2: Shard components interaction.

fields covered by a compound index. MongoDB divides the values of the shard keys into
non-overlapping ranges. Each range is associated with a chunk, a continuous range of shard
key values, and MongoDB tries to distribute these evenly among the shards in the cluster. In
addition, it is required that a sharded collection have an index that supports the shard key. If the
collection that is to be sharded is empty, MongoDB creates the supporting index if the collection

does not already have an index for the specified shard key.

Further, MongoDB supports two sharding strategies. The first is hashed sharding, which in-
volves computing a hash for the shard key field’s value. Then, each chunk is assigned a range
of hashed shard key values. A visual representation can be seen in Figure 3. This strategy
facilitates a more even distribution of the data. However, range-based queries are less likely to
target a single shard since data that may have non-hashed shard key values close together most

likely is spread over multiple shards.

The second strategy is ranged sharding. This involves dividing data into non-overlapping ranges
based on the shard key values, as seen in Figure 4. This means that shard key values that are
close are more likely to be in the same chunk, and range-based queries are more likely to target
one shard. The efficiency of this sharding strategy depends on the shard key chosen. If the shard
keys are poorly considered, it can lead to an uneven distribution, negating some of the benefits

of sharding.
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Figure 3: Hashed sharding.
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Figure 4: Ranged sharding.

2.2.2 Neodj

Another NoSQL database that is worth mentioning is Neo4j. The content in this section is re-

trieved from Neo4j’s documentation [36]. It is an open-source, highly scalable graph database.

This means that it stores data as nodes, relationships, and properties instead of tables or doc-
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uments. Since the relations are already represented in the graph, the database does not have
to calculate them at runtime like other types of databases. This allows it to handle complex

connections between data very fast.

Each node in the graph represents an entity in the domain, and a node can contain labels and
properties. A label is a way of grouping nodes into sets where all nodes with a certain label
belong in the same set. A label can for example be Person. This allows Neo4j to perform
operations only on nodes with a certain label. Furthermore, a node can have zero to many
labels, and these can be added and removed during runtime. Since labels can be modified
during runtime, they can be used to indicate temporary states for nodes. Connections between
nodes are described as relationships. These are unidirectional, so they tell how a source node
is connected to the target node. To describe the relationship between the source node and
the target node Neo4j uses types. An example of a type can be :OWNS. It is required that a
relationship has one and only one type. To store data on nodes and relationships, Neo4j uses
properties. These are key-value pairs that can hold different data types such as number, string
and boolean, and homogeneous lists. Figure 5 shows an example of a simple graph, containing

nodes, relationships, and properties.

Relationship

Employee

name:‘John Doe’
born: 1995
salary: 50

Labels

. name: ‘Ola Nordmann’
Propertles born: 1960
salary: 100

name:‘Corp’
established: 2020
employees: 43

Figure 5: Nodes, relationships and properties in Neo4;.

Querying data is done by traversing the graph, following the relationships between the nodes.
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The query language used to retrieve data is called Cypher. It is inspired by SQL in the sense
that it lets the user focus on what data to retrieve from the graph and not how. The syntax
was inspired by an ASCII-art type of syntax using rounded brackets for nodes and arrows for
relationships as seen in Listing 4. This makes writing queries very visual. Cypher is also heavily
based on patterns and uses this to match desired graph structures. Since pattern recognition is
a fundamental way of how the brain works, the query language is said to be simple and logical
for users to learn. A simple example of a pattern is: a Person LIVES_IN a City. This only
consists of one relationship, but patterns can be composed of numerous relationships, expressing

arbitrarily complex concepts.

(p:Person {name: 'John Doe'})-[rel:WORKS_FOR]->(c:Company {name:
~ 'Corp'})

Listing 4: Neo4j syntax. This shows the relation: John Doe works for Corp.

Neo4;j is schema optional, meaning it does not require the user to define a schema for the data-
base. A schema in Neo4j refers to indexes and constraints, meaning that it is not necessary to
define these before data is stored in the database. However, in can be beneficial for performance
and consistency in the data. The main reason for using indexes in a graph database is to find the

starting point of graph traversal.

2.3 Relational Databases

The relational data model was introduced in 1970 by Codd [37]. It has proven to be an ad-
aptable model capable of representing many different types of data and has managed to stay
relevant for 50 years, an impressive feat in the field of computer science considering the rapid
pace of development seen in the field. Four years after Codd’s paper [37], the SQL (originally
named SEQUEL) query language was released by IBM researchers Chamberlin and Boyce [38]
and it is today used in all modern relational database management systems (RDMBS). We as-
sume readers are familiar with both SQL and the relational data model and thus only a brief

introduction of a popular open-source relational database, PostgreSQL, will be presented.

2.3.1 PostgreSQL

PostgreSQL is an open-source object-relational database management system. The POSTGRES
project began in 1986 at Berkeley and is the ancestor of Postgres95 which today is known as
PostgreSQL. PostgreSQL has been actively developed over two decades and is now one of the

most advanced open-source databases out there with documentation spanning over 2000 pages
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[39]. Data is stored in heap files with a page size of 8§ kB and indexed with the B-tree by default.
There are other indexes available and a full list of them is available in the documentation [39].
The database has support for a rich set of data types and is also capable of storing JSON and
XML. It offers partitioning of tables which can be combined with remote server functionality to
create shards. Thus it can also be scaled horizontally, although it is not able to provide the same

performance as systems specifically designed to be scaled horizontally, such as MongoDB.

2.4 Geographical Information Systems

Geographical information systems (GIS) are systems that store, retrieve, manipulate, analyze,
and map geographical data. It can store a multitude of different types of data as long as they
contain location data. GIS is able to compare and overlay all the different types of information
on a single map, allowing for analysis of the relationships between information. This section

will cover the more general GIS.

There are many ways to store geographic data in GIS, but the two most prominent ones are
to store geographic information as raster or vector representation [40]. Raster data are often
images where each pixel represents a cell in the grid. Every cell has an implied location based
on its relationship to a single known location on the image. Vector data stores the geographic
features using points that are connected by lines. Hence, an area is stored as a string of vectors
where each vector starts where the last one ends. A visual representation of the two forms can
be seen in Figure 6. The figures contain the same area, but as seen in Figure 6a, it looks like
the B area is split in two. However, as seen in Figure 6b the B area is a single area. A finer
raster grid with more cells would be able to depict the vector figure more accurately, but that
requires more storage. So storing data in the vector format is more efficient than raster, as it is
only necessary to store points and lines as opposed to raster where usually all the cells need to
be stored. GIS can typically handle both vector and raster data, including switching between
the formats. One can for example give a GIS a raster image and it can identify point features
like buildings and line features such as streets, and save the information in vector format for

further analysis.

Geographic data elements are those elements that one would recognize in the real world or on
a map, and although GIS can utilize both raster and vector information, raster data are not truly
geographic data. There are three elements of spatial objects that GIS uses to represent any

geographic entity or the attributes of a geographic entity. These are:

* Points — The location of a point is represented by x, y coordinates, and the points are
considered to have zero dimensions. Points are used for representing many different

objects, such as buildings, crime locations, wells, trees, and so on. The scale and the
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(a) Raster. (b) Vector.

Figure 6: Representation of geographic information.

resolution play an important role in how an object is to be represented.

* Lines — Lines are represented by points that are connected by an arc, and they have one
dimension. They can be used to represent roads, and the thickness of the line can represent

the type of road.

* Polygons — Areas in GIS are represented by polygons of any shape. They consist of a
closed set of lines that encloses the area. Polygons can be stacked on top of each other to
form a three-dimensional representation. This can be useful for showing the elevation of

a hill or a mountain.

An important aspect of GIS is that it retains the topological relationships between the geographic
data elements. Topology is the study of the properties of a geometric object that remains un-
changed by deformations such as bending, stretching, or squeezing but not breaking [41]. In
GIS, this retention of information is used to represent that lines have direction and a starting
and end point. The topology includes information as to which areas/polygons are on the left
and which are on the right side of the line. Wieczorek and Delmerico [42] state that a system
that does not retain topology is not truly a GIS, but is a collection of various lines and points

that are unrelated.

Another important aspect of GIS is georeferencing, also called geocoding. Georeferencing
is a type of coordinate transformation that binds raster or vector data to a Spatial Reference
System (SRS). SRS, also called a Coordinate Reference System (CRS) defines how geometry

is referenced to locations on the Earth’s surface. There are three types of SRS [43]:

* A geodetic SRS - this uses longitude and latitude which map directly to the surface of the

earth.

* A projected SRS — this flattens the spherical surface of the Earth onto a plane using a

mathematical projection transformation. The result of this transformation is a Cartesian
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coordinate system where location coordinates are assigned in a way that allows direct

measurements of quantities such as distance, area, and angle.

* Alocal SRS - this is a Cartesian coordinate system which is not referenced to the Earth’s

surface.

GIS provides the ability to overlay multiple layers of information on top of each other and
access these layers simultaneously. This can be used to combine different data about an area
and analyze the relations between the data. An example of this is combining a map of the police
districts in a city and a map of the locations of crimes and then GIS can be used to count the
number of crimes within a given district. GIS also has spatial buffers that are used to specify
an area around a geographic object, for example, a radius of 500 meters from a given point.
This combined with other layers of information can be useful for decision making. A simple
example of this is figuring out how many people live within a given distance from a potential
new location for a hospital. All these features make GIS a powerful and important tool when

analyzing spatial data.

2.5 GeoJSON

A way of storing geographical data is with GeoJSON. GeoJSON is a proposed standard (RFC7946)
that describes a format specifically designed for encoding different geographic data structures
using JSON [44]. The format is stricter than JSON and requires that objects contain certain
fields and values. It requires that a GeoJSON object contain a field called zype. This field must
contain one of the geometry object types listed in Table 2, Feature or FeatureList. A Feature is
a spatially bound entity and a FeatureList is a list of Features. Furthermore, a Feature contains a
Geometry object, that represents points, curves, and surfaces in a coordinate space. A Geometry
object is also a GeoJSON object, meaning that it must contain a field named fype. However, this
field can only take the value of one of the seven geometry object types in Table 2. In addition,
a Geometry object of any other type than GeometryCollection contains a field named coordin-
ates. The value of this field is an array and it is the type of the Geometry object that determines

the structure of this array.

Furthermore, the GeoJSON standard specifies position as the fundamental geometry construct.
A position is an array of two or more elements, where the first is the longitude and the second is
the latitude. An optional third element, the altitude or elevation, can be added, but going beyond
three elements is not recommended by the standard because the semantics of extra elements are

unspecified and ambiguous.
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Table 2: Geometry object types and description [44].

GeoJSON object type Description
Point The coordinates member is a single position
. . The coordinates member is an array of two or
LineString o
more positions
The coordinates member must be an array of
Polygon . . .
linear ring coordinate arrays
MultiPoint The coordinates member is an array of positions
o . The coordinates member is an array of LineS-
MultiLineString . . y
tring coordinates arrays
. The coordinate member is an array of Polygon
MultiPolygon . Y e
coordinate arrays
. A Geometry object that can be a heterogeneous
GeometryCollection ey 07 102
composition of smaller Geometry objects

2.6 Geospatial Objects in NoSQL

In recent years, NoSQL databases have started implementing support for geospatial objects,
picking up the competition with relational databases. This section will cover how MongoDB
and Neo4j handle geospatial objects.

2.6.1 MongoDB

Geospatial data in MongoDB is stored as GeoJSON objects (see Table 2 for details on the differ-
ent objects) or as legacy coordinate pairs. GeoJSON objects are used for calculating geometries
over an Earth-like sphere and are stored as an embedded document with a field for type and
a field for coordinates. The type field specifies the GeoJSON object type and the coordinates
field stores the coordinates as an array. On the other hand, legacy coordinate pairs are used to
calculate distances on a Euclidean plane, and the data is stored in either an array or an embed-
ded document. The format the data is stored in also decides what type of index will be used
for queries. MongoDB provides two different geospatial indexes, 2d and 2dsphere. 2d indexes
support queries that calculate geometries on a two-dimensional plane. The index is intended for
data stored in legacy coordinate pairs used in MongoDB 2.2 and earlier. The 2dsphere supports
data stored as both GeoJSON objects and legacy coordinate pairs. For legacy coordinate pairs,
the index converts the data into GeoJSON points. The index supports all queries that calculate

geometries on an earth-like sphere. MongoDB has a limited number of geospatial operations,
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listed in Table 3, and not all operations are available on both indexes. The 2dsphere only sup-
ports spherical queries, while the 2d index supports flat queries and some spherical queries. As
with the other indexes in MongoDB, both the 2d and the 2dsphere index use a B-tree structure,
known for handling large amounts of data and fast inserts and deletions.

In the 2d index it is the geohashed value of the coordinates that are used for indexing. A geo-
hash is a binary representation of the coordinates. It is calculated by recursively dividing a
two-dimensional map into quadrants and assigning each quadrant a two-bit value. The value
represents the quadrant and all the points within that quadrant. This process is continued to add
precision, so each quadrant is divided into sub-quadrants that are represented by the concaten-

ated bit value of the sub-quadrant and all parent quadrants.

The 2dsphere index utilizes a form of geohashing, based on the S2 library developed by Google
[45]. The library works with spherical projections, mapping points on the Earth’s surface to a
perfect mathematical sphere. It then decomposes this sphere into a hierarchy of cells, where
the cells are quadrilaterals bounded by four geodesics. The top level of the hierarchy contains
6 cells, and each of the cells can be divided into four sub-cells, which again can be divided into
four. The levels range from O to 30, where level 30 covers about 0.74 cm? [46]. Each cell has a
unique cell id, represented by a 64-bit integer. These cell ids are used when MongoDB indexes
different GeoJSON objects. For example, for indexing a Polygon, MongoDB calculates a set of
cells that cover the polygon and add the cell ids to the index.

2.6.2 Neodj

Another NoSQL database that has support for geospatial data is Neo4j. It has a library called
Neo4j Spatial that has utilities that enable spatial operations on data. It is currently in version
0.28.1. The key features of the library include [48]:

* Utilities for importing from ESRI Shapefile as well as Open Street Map files.

* Support for all common geometry types: Point, LineString, Polygon, etc.

An R-tree index for fast searches on geometries.

Support for topology operations during search (contains, within, intersects, covers, dis-

joint, etc.).

* The possibility to enable spatial operations on any graph of data, regardless of the way the

spatial data is stored, as long as an adapter is provided to map the graph to the geometries.

* Ability to split a single layer or dataset into multiple sub-layers or views with pre-configured
filters.
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Table 3: MongoDB geospatial operation [47].

Operation Spherical/Flat
Query
$near (GeoJSON centroid point in this line and the fol- .
lowing line, 2dsphere index) Spherical
$near (legacy coordinates, 2d index) Flat
$nearSpehere (GeoJSON point, 2dsphere index) Spherical
$nearSphere (legacy coordinates, 2d index) Spherical
$geoWithin: {$geometry: ...} Spherical
$geoWithin: {$box: ...} Flat
$geoWithin: {$polygon: ...} Flat
$geoWithin: {S$center: ...} Flat
$geoWithin: {S$centerSphere: ...} Spherical
$geolntersects: {$geometry: ...} Spherical
$geoNear aggregation stage (2dsphere index) Spherical
$geoNear aggregation stage (2d index) Flat

Neo4j’s primary type that defines a collection of geometries is called Layer. These are pre-
defined in the library, so depending on the data that is being stored, one can choose the Layer
that suits the data the best. For example, if there are only point data that is being stored, one can
use the SimplePointLayer which only allows storing Points in the database, and it has methods
specifically for this type of data, Layers can also be editable, which means that it is possible to

modify the data in the Layer. It is also the Layer that contains the R-tree index.

Neo4j Spatial contains the Java Topology Suite, a library that provides an object model for
planar geometry and a set of fundamental geometric functions. This enables the usage of all
the capabilities of Java Topology Suite to operate on Geometry (Point, LineString, Polygon,
etc.) instances obtained from the database. This allows for a wide variety of operations on the
returned data from a query. Neo4j Spatial has implemented a larger amount of spatial queries
than MongoDB. The queries that are implemented are: Contain, Cover, Covered By, Cross,

Disjoint, Intersect, Intersect Window, Overlap, Touch, Within, and Within Distance.
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2.7 Geospatial Objects in PostgreSQL

The extension PostGIS allows working with spatial data in PostgreSQL and it is a mature ex-
tension for working with GIS objects in the database. According to DBEngine, it is the most
popular database for use as a spatial database [14]. The PostGIS extension uses an R-tree
index implemented over a Generalized Search Tree (GiST) [15], [49]. Multiple geometries
are available such as Point, LineString, Polygon, MultiPolygon, Triangles, and more. Three-
dimensional data is supported and a measured value (e.g. time) as a fourth dimension is also
accepted. Well-Known Text (WKT) [50] and Well-Known Binary (WKB) is used to represent
geometries [15]. PostGIS offers both a Cartesian coordinate system and geodetic coordinates
following the WGS 84 spatial reference system. The spatial reference system of a collection of
geometries must be defined when creating the collection. Many functions for processing spatial

data are offered and a complete list of functions can be found in the documentation [15].

2.8 Related Work

MongoDB has received attention from multiple papers in the GIS domain in recent years [19].
It has been compared to one of the most advanced spatial databases available, PostGIS, on
performance in spatial processing [20]-[22]. Researchers have implemented multidimensional

indexing structures in MongoDB to use the database for spatial data management [10], [51].

2.8.1 Performance Comparisons

Bartoszewski et al. [22] compared the performance of MongoDB versus PostGIS on different
spatial queries. The test data was generated with a random sampling of points in a square
containing the territory of Alaska. Their tests show MongoDB performs better than PostGIS
on simple geometries and larger datasets for most queries. PostGIS performs better in the case
of more complex shapes on nearest neighbor queries with a large area to check [22]. Agarwal
and Rajan [21] tested point-within-polygon queries and found MongoDB to be on average ten
times faster than PostGIS, with the performance difference increasing with the size of the data
increasing. Both papers highlight the difference in functions available as PostGIS offers way
more advanced spatial analysis with over 1000 spatial functions [21], [22]. Schmid et al. [20]
ran geo-within tests simulating multiple concurrent user requests with the same results as the
papers above. MongoDBs performance does not degrade as the size of the data grows, but
performs slower on more complex geometry types. PostGIS performs better on small data sets
where the geometries are more complex, but does not scale well [20]. MongoDB may be more

performant with sharded collections as it is designed for scaling well horizontally, but none of
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the above-mentioned papers ran tests on sharded collections.

2.8.2 Multidimensional Indexes in MongoDB

Lietal. [51] proposes an R-tree solution in MongoDB to store the position of patients providing
hospitals with health data. NoSQL was proposed as a solution to handle the large amount of
live stream data from medical devices. They used the R-tree as a global spatial index with local
nodes containing hashed coordinate values and patient data. The results show their spatial index
outperforms MySQL, but inserts slower than MongoDB without their spatial index by a small
margin due to the overhead of building their global tree [51]. Xiang et al. [10] implements a
flattened R-tree in MongoDB. The R-tree is written as an independent module and connected
with MongoDB through an I/O layer using native MongoDB commands to build the R-tree as
a collection. The 2dsphere index outperforms the solution in terms of speed for most cases, but
performs worse on complex polygons of varying sizes. The R-tree implementation performs
competitively in processing time for calculations, but suffers from I/O overhead of needing

more /O calls to perform each operation as seen in their results [10].
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3 Design and Implementation

This section describes the development and implementation of the R-tree module for MongoDB
version 6.3.0. The implementation uses the work of Xiang et al. [10] as a base for the code. The
decision to reuse the R-tree implementation was made to save time given the short time frame
of the project and it allowed for the development to be more focused on the I/O commands
necessary for a working implementation in MongoDB. The main changes implemented are
modifications to how the R-tree module communicates with MongoDB’s source code as there
have been changes to how internal command execution works from MongoDB version 3.2.0 to
version 6.3.0. Minor alterations to the R-tree module were necessary to use a newer version of
the GEOS library, but these changes do not affect the implementation. The code project consists

of three parts: MongoDB source code, the R-tree module, and the I/O implementation.

3.1 MongoDB Rational

The reasons for implementing the R-tree in MongoDB are numerous. As mentioned in Sec-
tion 2, the database is a widely used, open-source, NoSQL database. Since it is open source, it
is easy to clone the database project from Github and modify it, and because it is widely used,
one could assume there are many online resources that could aid in the implementation. The
implementation described in this section is based on Xiang et al. [10] and the implementation
they describe in their paper. This is also a reason why the choice fell on implementing the R-
Tree in MongoDB. Due to the scope and the time limit of this project, it made more sense to
build on previous work than implement the R-tree from scratch. However, their implementation
of the R-tree was done in MongoDB version 3.2, which is three major releases behind the cur-
rent version of the database. Therefore, it is reasonable to assume that the code has seen major
changes and that parts of the implementation done by Xiang et al. [10] would no longer work
in the current version of MongoDB. Lastly, MongoDB does have indexes for handling spatial
data as mentioned in Section 2. However, these indexes contain a limited number of spatial
operations. By implementing an R-tree, one could facilitate more operations and potentially

more efficient querying.

3.2 Planning

There were several important challenges to consider when making the plan for the project.
Firstly, C++ was an unfamiliar language at the time starting and thus the initial part of the de-
velopment phase had to be dedicated to learning more C++. This introduced an initial delay

which was important when deciding on the scope of the development project. Secondly, the
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source code for the R-tree module had only been briefly scanned through and was of unknown
quality and size. Finally, the inner workings of MongoDB were unfamiliar and required time
to understand. These factors contributed to the decision to restrict the functionality to bring
into the upgraded version. To be able to analyze the performance of the module, there must
be at least two functions implemented; it must be possible to insert data and a query function
must exist to test how well the index performs on the data. Preferably multiple query func-
tions to have a stronger foundation for comparison against MongoDB and see how the results
of the upgraded module compare against the results found by Xiang et al. [10]. Following the
reasoning presented, it was decided to implement the insert operation along with three query
functions: $geoIntersects, $geoWithin, $near. It was assumed the underlying R-tree mod-
ule would work out of the box provided the correct data. The assumption includes the R-tree
query algorithms, meaning no extra time was allocated to handle problems with the queries in

the underlying module if they were to be discovered.

3.3 Development Methodology

The goal of the development was to upgrade a previously made R-tree implementation from
MongoDB version 3.2.0 to version 6.3.0. C++ was selected to develop the implementation as
MongoDB and the R-tree module are written in C++. Python scripts cleaned and formatted the
data for the testing phase. GitHub was selected as the version control system for the project
to make collaboration simple. The repository of the project was initialized as a copy of the
MongoDB version 6.3.0 branch in the MongoDB repository. The R-tree module created by
Xiang et al. [10] was then integrated into the repository. In order to upgrade the R-tree module
within a short time frame, it was necessary to use an efficient method to port the code over
to the newer version of MongoDB. An incremental strategy was applied, the commits in the
GitHub repository of the previous R-tree module were added one by one. For each commit the
compiler errors were fixed and MongoDB functions no longer available were removed. The
goal of the first part of the development was to be able to compile the code into a working build
without focusing on R-tree functionality. Skipping tests of individual components in the R-tree
module saved time on porting the code and allowed for a test-ready build in a short amount of
time. When the project could be built successfully with the source code from the R-tree module

imported, the next part of replacing I/O operations began.

A significant challenge during the development of the I/O operations was dependencies between
the operations. Therefore it was important to discover the relationships between the operations
to allow for development to be executed efficiently. The R-tree implementation is structured
around two meta collections which will be described in the sections below. The higher-level

operations such as inserting data and running e.g. $geoIntersects require updating or query-
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ing metadata. The metadata collections, however, are isolated from regular collections and
therefore have no dependencies on other data. Since metadata operations are the base of other
operations, they must be implemented first to handle the first dependency relationship. The next
dependency occurs between the insert operation and the query operations. The query operations
rely on the R-tree structure to fetch data, but the R-tree cannot be built without the insert oper-
ation in place. From this follows a natural order of development; the metadata operations are
implemented first, then the insert operation, and finally the queries are implemented. Figure 7

shows how the implementation order is related to the commands in the R-tree module.

Depends on Depends on

Meta-collections

— &

{id: ..} ||| [{id: ...} AN

insert({...}) $geolntersects({...})
$geoWithin({...})
$near({..})

registerGeometry()
createlndex({fieldName: “rtree”})

Figure 7: Implementation order.

3.4 The Flattened R-tree

The flattened R-tree is an implementation of the structure described in Section 2.1.1. To index
a spatial collection (SC) in MongoDB, the R-tree structure has been flattened into a single
collection, the R-tree collection (RC). There are two metadata collections, Spatial Metadata
Collection (SMC) and R-tree Metadata Collection (RMC), to keep track of which index belongs

to which spatial collection and maintain pointers to the root nodes of each R-tree.

3.4.1 The R-tree Collection

To flatten a tree structure into a collection, there are some important points to keep in mind. It
must be possible to know which level each node resides in for parsing the R-tree. Also, storing
each MBR in a separate document requires more I/O operations and will cause the solution to
be slow. Therefore it is desirable to store child nodes as sub-documents within a node to fetch

a node and its children with one read. As the number of children is preset to determine the fan
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factor of the tree, the list of child nodes in a node can be pre-allocated to save more time. Since
the list initially will be filled with empty nodes, a field to keep track of how many children
contain data allows for simpler iteration. In addition, the sub-document of a child node contains
a boolean to indicate whether or not it contains data allowing for quick filtering. Figure 8 shows
how the level is kept as an integer to maintain the tree structure where level = 0 is the leaf node

level. Each entry in the branches list is a sub-document as described above:

{ hasData: bool, mbr: MBR, childID: O0ID }

where childID points to an object in the SC if it is a leaf node, another R-tree node if not. The

RC does not need to know its own root, as the RMC will keep track of the root node.

name_RTreelndex
id MongoOID
level integer
count integer
branches NodelList

Figure 8: A document in the R-tree collection.

3.4.2 The Metadata Collections

The SMC keeps track of the connections between an R-tree index and the corresponding indexed
collection. As seen in Figure 9, information about the contents of the spatial collection is stored
in addition to a pointer to the R-tree metadata. For each spatial collection (SC), there will be
one corresponding SMC document and RMC document. The fields gtype, srid, crs_type, and
tolerance are intended for application usage and are not used to keep track of the R-tree index.
The first two string fields identify the spatial collection and which field to index in the spatial
collection. A datanamespace is on the format dbname.collection_name following the MongoDB
format. The index type is set to 1 if the spatial collection is indexed by an R-tree, O otherwise.
Each document in the SMC has a foreign key, index_info referencing an RMC document, which
is only set after the R-tree index has been initialized. The index_root in the RMC document

points to the root node in the R-tree collection and is updated whenever the root changes due
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to splits. The max_node field refers to the M described in Section 2.1.1. max_node can also be
considered as the branching factor of the three as it decides the length of the branches in the
R-tree collection documents. max_leaf allows the user to increase the number of child nodes

possible at the leaf level of the tree. Both values are set when creating the index.

SMC
id MongoOID
datanamespace integer
RMC

column_name integer

id MongoOID
index_type NodelList

11 index_root MongoOID

index_info MongoOQID : :

max_node integer
gtype integer

max_leaf integer
srid integer
crs_type integer
tolerance double

Figure 9: Document structure in the metadata collections.

3.5 System Architecture

A sharded cluster in MongoDB depends on three types of servers: a config server, a database
server, and a routing server. The config and database servers are mongod processes whereas the
routing server is a mongos process. Figure 10 shows how the processes are connected with the
shell being the interface for user interaction. The user writes commands through the mongosh
process which are received at the routing server. The routing server is responsible for running
the commands on the correct shards and keeping the config database updated. To keep the
architecture as simple as possible, only one shard and one config server is set up in the cluster
for this project. In a real production setup there will be multiple shards and config servers.

Additionally, there may be multiple routing servers to safeguard against hardware and software
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faults. More details on how to deploy a sharded cluster for production environments can be
found on MongoDB’s guide for deploying shared clusters [52].

To communicate with both the config server and the database server, the R-tree module lies
within the routing server. The R-tree module consists of the R-tree algorithms and an LRU
cache. Additionally, there is an I/O interface between MongoDB and the module to separate the
write operations from the R-tree algorithm. The R-tree utilize the I/O interface when parsing the
tree by fetching one node at a time. The most recently used nodes will be stored in the cache for
faster performance. Since the R-tree algorithms are separated from the DBMS they operate on,
the module could in theory be ported to other systems as Xiang et al. argues in their paper [10].
However, much of the code relies on the object structure provided by MongoDB documents,

meaning the code would require a significant refactoring to function in another system.

8 ( mongod ]
(mongod \

mongoshell

User: ~$ oo D —

eoe —}C

7\

Figure 10: A sharded cluster with shell interaction.

3.6 Commands in MongoDB

The routing server, a mongos process, is responsible for routing the commands from the shell
to be run on the different shard servers. Thus, the process must parse the command sent over
the network to an internal command object and invoke the command object. To implement
custom commands, it is necessary to understand parts of MongoDB’s internal command pro-
cess, and the parts relevant to the project will be covered here. A command is implemented as
a C++ file and extend the base class Command. Each command created is added to a global
command registry which can be queried. All commands in the R-tree module except one,

registerGeometry, do not need to be registered as a separate command as they modify ex-
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isting commands. To add the custom command registerGeometry to MongoDB and make it
usable through the shell interface, there are two steps. First, the C++ file for the command must
be created with functions informing MongoDB on how to run the command. Second, the com-
mand must be made available in the shell by adding it as a function on collections in the shell.

By implementing the function in Listing 5, MongoDB will know how to run the command:

bool run(OperationContext *opCtx,
const DatabaseName &dbName,
const BSONObj &cmdObj,
BSONObjBuilder &result

) {}

Listing 5: Run function in a MongoDB command.

Inside the run function, the R-tree module is used to register a spatial collection through R-tree
function calls. The other commands which modify existing commands have their implementa-
tions inside of the run function in the appropriate command, e.g. R-tree inserts are handled in
the MongoDB insert command. The key parameter to consider in the function is the cmdObj
as it contains all parameters passed from the shell. By adding custom fields or values, specific
branches of code can be targeted. This approach is used to trigger the R-tree module in modi-
fied MongoDB commands by looking for R-tree specific custom values and running the R-tree
module only if the specific fields are present in the cmdObj. Note that the MongoDB command
process presented here may differ greatly from how a MongoDB engineer would describe the
process and does not serve as an accurate depiction of MongoDB command processing. It is
presented in the simplified manner above to show how the R-tree module has been integrated

into MongoDB from the perspective of the authors.

3.7 I/O Implementation

The implementation of I/O commands for the r-tree is supported by the native MongoDB com-
mands createIndex, insert, update, and find. Using native commands allowed for ignor-
ing the underlying data structure and focusing on the logic of the new commands. Table 4 lists

the four available R-tree module operations.

Table 4: Available commands.

Command Mode
registerGeometry | new
createlndex extend
insert override
find extend
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A full example of how the commands are executed can be found towards the end of this section.

Since there was no previous functionality for creating customized metadata for a collection,
registerGeometry had to be made as a new command. A spatial collection must exist prior
to running the command as it is run on the spatial collection. Running the command creates
a document in the SMC registering the spatial collection but does not create an R-tree meta-
document. After registering the geometry, it is possible to run createIndex to set up the
R-tree index. The command call must specify if it should create an R-tree index and on which
field to create the index. A check is performed upon creating the index and, if an R-tree index is
not requested, the command executes as normal. As createIndex executes as normal without

the R-tree specification, the method is denoted as extended and not overridden.

3.7.1 Create

After a spatial collection has been registered and the index has been created, the next step is to
insert data. The operation has a high I/O overhead as multiple operations are required against
both the metadata and the R-tree collection. A document insertion creates a new entry in the
RC. Adding a new entry to the RC requires maintaining the R-tree structure and handling splits.
If a split causes a new root to be made, the RMC must be updated to point at the new root.
In addition to both inserts and updates to the RC, metadata is fetched at the beginning of each
insert incurring read costs. With the amount of I/O operations required for each insert being
high, a cache is necessary to reduce the overhead. To keep the scope of the project reasonable
the LRU cache from the older R-tree module is employed. It stores recently used nodes in

memory and improves performance by reducing the number of I/O operations needed.

3.7.2 Search

A common use case for the R-tree is range queries. The upgraded R-tree module provides both
intersect and within searches. Searching a collection will first trigger a check to see if an R-tree
exists for the collection queried. If the R-tree exists, the root will be fetched and the search
begins. First, an MBR is constructed from the query object. Then the R-tree is traversed from
the root, excluding branches that do not intersect with the query MBR. The R-tree traversal
returns a set of candidates that need to be confirmed as matches. GEOS is used to refine the
candidate set into true matches and the result is returned to the user. In modern databases,
cursors are a common way to serve the user partial responses. Cursors are practical when the
result set is large and it is time-consuming to provide the entire result in one batch. To provide
cursor support for R-tree range queries, the tree is traversed with depth-first traversal. Each

potential leaf-node candidate is verified as a match with GEOS and added to the return queue.
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The queue is flushed to the user when a size threshold is reached and the traversal is paused

until the user requests another result.

Xiang et al. [10] describe a novel algorithm for a cursor-based near query, which is also imple-
mented in their R-tree module. The approach is to incrementally increase the distance of the
search until it matches the max distance provided in the query, incrementally adding results as
the distance increases. The upgraded module reuses the implementation but does not achieve
correct results and is therefore not included in Section 4. The task of correcting the near query

is added to the list of future improvements.

3.7.3 Update, Delete and Drop

Update, delete and drop operations were not implemented to reduce the scope of the project.
The foundation for the operations exists in the R-tree module and the metadata operations for
these operations are implemented. While the full commands have not been implemented, the
approach to implement them will be described here for future development of the module. If an
update to a spatial object in the SC changes the object’s MBR, the corresponding index entry
must be found and its index entry deleted. Then it must be reinserted into the tree with the
updated MBR. Update is therefore even more I/O heavy than insert and requires the cache to
increase performance. Deleting a spatial object requires removing the object from the spatial
collection and maintaining the R-tree. A deletion may propagate changes all the way to the root
as MBRs have to be adjusted along the way as described in [16]. To drop a spatial collection
requires interaction with all the collections. The corresponding RC must be dropped, index_type
and index_info must be reset to zero, and the RMC document for the collection must be deleted.
The same operations are required if the user only wishes to drop the R-tree index but retain the

spatial data.

3.7.4 Example

The following section provides an example of creating an R-tree index on a database called
geodb and working with data in the database. All commands are run in the shell interface for
MongoDB, mongosh. First, a spatial collection with the name parispoi is created with the two

fields: name and location. The index will be created on location.

1. db.createCollection("parispoi")

creates the spatial collection

2. db.parispoi.registerGeometry({field: "location"})
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creates a document in the SMC with datanamespace as geodb.parispoi and columnName

as location

3. db.parispoi.createIndex({location: "rtree"})

creates a document in the RMC and updates the index type and info in the SMC document

After running steps 1.-3. the spatial collection will have an R-tree index on the field location.

The next step is to insert data:

db.parispoi.insert(
{name: "Louvre", location: {type "Point", coordinates: [35, 65]}}
)
db.parispoi.insert(
{name: "Eiffel Tower", location: {type "Point", coordinates: [25, 25]}}
)

Listing 6: Inserting two points.

With data available, it is possible to check if any of the points are within the area [[20, 20], [20,
26], [26, 26], [26, 20], [20, 20]]. The query for $geoWithin is shown in Listing 7. Queries for
intersects are the same, only the keyword geoWithin needs to be replaced. The query will return

the second point inserted into the collection.

db.parispoi.find({"position": {"geoWithin": {"geometry": {"type":

—~ "Polygon", "coordinates": [[
[20, 20],
[20, 26],
[26, 26],
[26, 20],
[20, 20]
1]
D

Listing 7: geoWithin query.

3.8 Known Issues

A brief description of known system issues and bugs will be presented here. The most important

issue is the near query not working as intended. Since the query executes, but does not return
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correct results, the query is omitted from the test phase. It does not correctly calculate which
objects to return and during testing it would return more results despite decreasing the search
area. Since the query is important, it has been set to a high priority in further work. Another
issue caused when a user tries to issue an R-tree query without an available R-tree index. This
results in a segmentation fault, crashing the routing server. While a system crash is critical, the
fault does not occur often as the user must forget to create the index before running the query
or run the query on the wrong database. The error can be fixed by adding a check to see if
an R-tree exists when the query is being processed. Since the error was discovered after the
development had stopped, no fix was implemented. There is also a trivial bug when running the
insert commando the first time after creating the R-tree index. A casting error occurs because
of how the types for the fields in the meta-collections are handled. The current work-around is
to attempt the insert a second time, which will work as the types are corrected during the first

attempt to insert.
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4 Results and Discussion

The goal of the implementation was to see how it fared up against MongoDB’s current way of
handling spatial data. Therefore, the testing of the R-tree’s operations described in Section 3
are done against the equivalent operations of MongoDB. Data sets used for testing and the test

setup will be covered in the following sub-sections.

4.1 Setup

All tests were run on a MacBook Air 2020 with an M1 CPU chip and 8GB memory. The
operating system was MacOS Ventura 13.2.1. The project was built with Apple clang version
14.0.0 and python version 3.11. To only build the mongos, mongod, and mongosh binaries, the

following command was run from the root directory of the project:

python3 buildscripts/scons.py install-devcore -j6
--disable-warnings-as—-errors MONGO_VERSION=6.3.0

The flag install-devcore specifies which binaries to build. An instruction on how to build
the project along with a description of different flags can be found in Appendix A. A mock of
a sharded cluster was set up on the local network with different ports to simulate different IP
addresses. However, only one shard was used, which means all data resided on the same shard.
The setup was simple with one config database, one shard, and one routing server. MongoDB
offers a tutorial for setting up a sharded cluster: Deploy a Sharded Cluster [52]. With the servers
up, a connection was established between the routing server and the mongosh. mongosh was
utilized for registering the spatial collections and creating an R-tree index for each of the spatial

collections.

The MongoDB tools were used to test the build speed of the index. With each data set in a separ-
ate JSON file, the mongoimport command inserted the full files into collections. Each data set
was inserted five times to achieve an average build time. Different branching factors were tested
on the Hong Kong data set to find the optimal branching factor for build time. The CPU and
memory usage was measured during a subset of the insertion tests with the ps aum command to
see the load on the system. After the insertion tests the data was re-inserted with the most effi-
cient branching factor for the query tests. MongoDB offers a method, .explain(), to measure
query execution time, but the R-tree module cannot use it as it triggers a different command
execution flow. A Python script per query was therefore used to test the time of fetching data.
As a cursor object is returned upon initially calling the query, the script must iterate through the

entire cursor with a loop to fetch all results. A single run of the test script runs the query five
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times and returns the timing result of each query. The script for the $geoIntersects query
can be found in Appendix B. The tests measure the round-trip time of a query, but in the next
sections, it will be referred to as processing time because the network delay is considered to be
equally low for both MongoDB and the R-tree module when both are run locally. The tables
and figures in the next sections use the averages obtained from the iterations, see Appendix D

for the results from all the iterations.

4.2 Data Sets

For testing, four data sets were used with various sizes and features. The data sets were chosen
based on the data sets used for testing in Xiang et. al. [10]. For their testing, they used four data
sets, where one contained Points, another LineStrings and the last two contained Polygons. The
data sets used for testing the R-tree implementation in this thesis are of the same type, but the
sets are different in size and cover different areas of the world. General information about the
data sets can be found in Table 5. Each data set aims to test how the implementation handles

the respective type of GeoJSON feature.

Table 5: Data sets.

Data set | GeoJSON Type | Num of features Area covered
Paris Point 96846 25.9km X 19.8km
New York LineString 119005 18.6km X 21.6km
Barcelona Polygon 66650 11.9km X 10.9km
Hong Kong Polygon 21096 8.6km X 12.2km

The data sets were downloaded from overpass turbo, a software where the user can choose an
area of the world map and query various features in that area [53]. The result of the query
can be downloaded as GeoJSON files, which are JSON files with stricter rules on formatting.
The coordinates retrieved from overpass turbo are on the WSG84 format, i.e. spherical data

represented by latitude and longitude.

The Paris data set contains points of interest throughout the city center. A thumbnail of the data
set can be seen in Figure 11a. Each point corresponds to a single entry GeoJSON Point, and it
is represented by one coordinate on the format [latitude, longitude]. Next, the New York data
set contains the roads in the city. Each line contains two or more coordinates, representing the
starting point, end point, and possibly various points where the road changes direction slightly.
Figure 11b depicts the thumbnail for the New York data set. Most of the roads are built up by
several lines, meaning that they are represented by multiple points in the GeoJSON file. Further,
the Barcelona data set is built up by polygons, represented as an array of lines, where the first

and the last line meet and enclose the polygon. As seen in Figure 11c, the polygons are small,
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in similar size, and they are clustered together. Lastly, the Hong Kong data set, similar to the
Barcelona set, contains Polygons. However, the polygons in this data set are more scattered and

they vary more in size. A thumbnail of the data set can be seen in Figure 11d.

The data sets were processed with a python script that sanitized the set by iterating over all the
features and removing any fields that did not contain information about the GeoJSON type or
the coordinates. This was done so that there would not be any unnecessary data stored about
the features that could affect the performance of the different operations in an inexplicable way.

The script can be found in Appendix C.

Some problems arose when trying to insert the data sets with polygons into MongoDB’s 2dsphere.
This is due to restrictions that MongoDB enforces on polygons, namely that the outer ring of
a polygon cannot self-intersect, the inner rings (holes) cannot intersect with the outer ring, and
an inner ring cannot intersect with another inner ring. These are restrictions that the GeoJSON
format does not contain, meaning that the R-tree implementation did not get these problems. To
handle this, the script used data types and functions from the Shapely library for Python [54].
First, if the polygon contained any inner rings, the script transformed the coordinates into the
datatype Polygon from Shapely. Then it ran a union function on the inner rings, creating a new
Polygon or a MultiPolygon containing all the areas that the inner rings covered, merging any
inner rings that intersected with each other. Then, it checked each of the new inner rings up
against the outer ring’s boundary to see if any of them intersected. If so, the inner ring would be
subtracted from the outer ring resulting in a change in the outer ring’s shape. This subtraction
could lead to the outer ring being split into two outer rings. To deal with this the method for
handling polygons returned a list of polygons that contained one if the subtraction did not lead
to the outer ring being split, and more if it caused a split. Lastly, it checked whether or not the
polygon was simple, meaning that the outer ring does not self-intersect. If it was not simple,
the polygon was removed from the data set. When this was done, there were still some issues
with a small number of polygons. The problem was that the insert in MongoDB failed due to
self-intersection in the outer ring. The script had already checked for this and it was manually
verified in the data set that this was actually not the case. But the coordinates were very close
together, which may indicate that there is an inaccuracy in MongoDB’s calculations that caused

the failure. The polygons that caused these errors were removed from the data sets.

For the R-Tree, it was desirable to transform the coordinates from WSG84 format to a planar
format. The script handles this as well, by using the transform function of the Python library
pyproj [55]. To transform the coordinates, it was necessary to find the appropriate coordinate
reference system to use. These were found using epsg.io, a website designed specifically for
this purpose [56]. The mappings between the data sets and the coordinate reference systems

can be seen in Table 6.
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(c) Barcelona. (d) Hong Kong.

Figure 11: Data set thumbnails.
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Table 6: Datasets with corresponding EPSG codes.

Data set | Grid system (EPSG)
Paris 27571
New York 2263
Barcelona 2062
Hong Kong 2326

The resulting data sets, now only containing fields with the GeoJSON type and coordinates,
were considered ready for being inserted into the R-tree. Information about the size, middle
coordinates, and the number of features per kilometer is listed in Table 7. Note that the co-
ordinates in the New York data set are in feet, while the others are in meters. This is due to the

coordinate referencing system used.

Table 7: Additional information about the data sets.

Data set | Size (megabyte) Middle coordinates Feature density
Paris 11.5 [601797.78, 1128578.58] | 188.85 fea‘[ures/km2
New York 525 [995114.33, 211032.65] | 293.72 features,/km?
Barcelona 71,5 [1088352.63, 771624.53] | 513.84 features/km2
Hong Kong 21.5 [817296.83, 836973.61] | 201.07 features/km2

4.3 Insert Performance

The build speed of the R-tree was compared to the build speed of the 2dsphere index on the dif-
ferent types of geometries. The 2dsphere index is expected to be faster as it resides on the same
server as the data and is a built-in index in MongoDB. The results in Table 8 show MongoDB’s
index outperforms the R-tree by orders of magnitude. The R-tree does not differ much in build
speed on different types of geometries whereas MongoDB performs slower on more advanced
geometries such as polygons. All data sets were fully inserted in less than five seconds on Mon-
goDB while the R-tree version spent several minutes building for each collection. Since the
R-tree does not differ much between the different geometries, it is plausible that most of the
time spent is waiting for disk operations as each insert requires multiple I/O operations. The
results from testing the branching factor, seen in Figure 12, support this theory as the build time
decreases with a higher branching factor. A higher branching factor requires fewer 1/0O oper-
ations as there are fewer node splits caused by full nodes. Also, fewer documents are created

as the number of internal nodes is reduced. Xiang et al. argued a branching factor of 96 was
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the most performant due to the R-tree node document matching the block size of the database
engine [10], but the results found here cannot be fully explained by block size. An R-tree with
a branching factor of 32 will have a node document size of 3056 bytes which fits inside one
block. It does not fully utilize the space on the block, but a branching factor of 64 produces a
node document of 6064 bytes, bigger than the block size of MongoDB. Since a higher branch-
ing factor does not match a single block, but still builds faster, the block size is not likely to be
an important factor. A node document’s block size may have changed in the upgraded imple-
mentation as MongoDB may have changed how they store documents. Differences in the file
system used for the database engine may also be related to the node document size and might

be a part of the reason for the different node document sizes reported.

Table 8: Insert performance.

R-tree MongoDB

Data set
Insert time (seconds) | Docs/sec | Insert time (seconds) | Docs/sec

Paris 2382.3 40.7 1.7 57800.4
New York 2823.7 42.2 2.7 43085.0
Barcelona 1474.9 45.2 3.6 18724.3

Hong Kong 451.1 46.8 1.2 17878.8
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Figure 12: Hong Kong insert performance with different branching factors.

Table 9 displays key statistics for the R-tree constructed with different branching factors. The
node entries display how many children a node has where each child counted contains data.

All of the different branching factors achieve a high fill degree, but only a branching factor
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of 64 achieves a satisfactory minimum count. The average storage utilization is acceptable,
but node documents only containing two or three entries with data reduce performance. From
the median value of the node count, it can be seen that more than half of the nodes achieve
a minimum fill of at least 50%. Storage utilization is especially important for the MongoDB
implementation as I/O operations are slow and in-memory processing is preferred. Currently,
there is no parameter controlling the minimum fill degree for nodes, but such a variable could
be introduced to improve the minimum node count and thus improve the storage utilization.
However, a minimum fill degree has a significant effect on deletes as under full nodes require
their entries to be re-inserted [16]. Therefore the minimum constraint cannot be too strict for
applications where deletions are expected to occur frequently. An adjustable parameter would

be preferable as it allows users to achieve better performance for their specific use case.

Table 9: Hong Kong key values with different branching factors.

Branching Node entries Number of | Fill degree
Factor Avg | Min | Max | Med Documents (%)
32 10 2 32 19 1072 64.55
64 41 13 64 38 538 62.64
96 61 5 96 58 346 64.35
128 82 3 128 74 259 64.09
160 100 2 158 93 212 62.74

The timing results were obtained with the time command, which also displays CPU usage. The
CPU usage provides further insight into the performance of the indexes as the mongoimport
command only utilizes 1 % of the CPU when inserting into the R-tree. Insertion with 2dsphere
utilizes over 230 % of the CPU which means a parallel process is utilized to boost performance.
CPU usage for the MongoDB processes, mongod and mongos, increase to between 20 %—30 %
on building the R-tree index. The low CPU usage of mongoimport during R-tree building
can be explained by the insert process in the R-tree module. Each document is processed one
by one without optimizations for batch processing. The import process can therefore only
send documents for processing and has to wait for each document to be processed by the R-
tree module, making CPU utilization low. 2dsphere allows for the import command to do
the batch insertion in parallel and is able to utilize multiple cores to work faster. This is an
advantage of 2dsphere being a built-in index optimized for work with MongoDB tools and

parallel processing.

Xiang et al. achieved an insertion speed of more than 400 documents per second for each of

their data sets [10], but Table 8 shows the upgraded implementation is unable to achieve more
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than 50 documents per second. A different approach may have been used to insert the data,
such as looping over all the documents in a script and inserting them one by one, resulting in
a different build time. This is more likely to affect the build time of 2dsphere than the R-tree
as the R-tree does all the work sequentially and in a single process. The work will be moved
from the import process to the routing server which then has to build the 2dsphere index, which
is likely to result in a slower insert time as the documents are not batch processed. Problems
with the LRU cache are seen as more likely because it has not been verified to work with the
upgraded implementation. If the cache does not work as intended, the insert operation will be
slower as R-tree nodes cannot be kept in memory, leading to a sharp increase in I/O operations.
This is likely to cause a significant slowdown of the insert process, which matches the results

obtained compared to Xiang et al. [10].

The MBRs constructed from the Hong Kong data set are shown in Figure 13a. The overlap
is significant in the center area where there is a high density of buildings (marked with blue).
Another issue is caused by the geography of Hong Kong. The selected map of Hong Kong
is split in two by the ocean, which is observable as a large white segment in the middle of
Figure 13a. However, the R-tree in the module is unable to recognize the large split and has thus
produced many MBRs spanning across the water. Some queries will therefore have to consider
candidate polygons which are across the ocean and therefore likely to be irrelevant to a user
query from one side of the city. The R-tree implementation thus performs worse on segmented
data sets such as Hong Kong where it generates unfavorable MBRs for queries. In Figure 13b,
Figure 13c, and Figure 13d the overlap is caused by the high density of data. The densely
colored areas indicate a high overlap between the lines of the MBRs which shows how the
implementation introduces many overlapping MBRs when faced with high-density geographic
data sets such as large cities. Overlapping can be reduced by swapping to an R*-tree [18].

4.4 Query Performance

For query performance, the goal was to test the implemented queries presented in Section 3,
against the equivalent query operations of MongoDB. Due to the way the R-tree is implemented,
it is expected that it will be outperformed by the 2dsphere index. However, it is interesting to
see how close the processing times are, as this will give an indication of whether or not an R-tree

index is a valuable addition to MongoDB for handling geospatial data.

4.4.1 Intersect Query

The first queries to be tested is the $geoIntersect query. These return the GeoJSON objects

that intersect with a specified object. Meaning any object that is fully or partially contained
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Figure 13: Plot of each collection’s constructed MBRs.

within a given object. The object used for the $geoIntersect query can either be a Polygon
or a MultiPolygon. The results from the test queries are presented in Figure 14, Figure 15 and
Figure 16. The figures depict the results from the R-tree implementation and from MongoDB’s
2dsphere index. The horizontal axis on the graphs represents the query window. A query
window describes how much of the data set is being queried. The windows range from 0.5 % to
5.0 %, with intervals of 0.5 %. This is the same range and step size as Xiang et al. [10] used in
their testing. However, the queries are not randomized but focused around a coordinate close to
the center point of the data. A square was constructed around the point and gradually increased
to fetch more documents. The vertical axis depicts the processing time in milliseconds. Each
query with the given query window was performed 5 times and the average was used to create

the graphs.

As seen in the results, the R-tree implementation follows a similar pattern in all of the data
sets, except the Hong Kong set. It grows linearly when increasing the query window, drops
at a certain point, and then keeps growing linearly. A possible reason is that the query MBR
encloses most of the sub-trees and fewer Cartesian calculations are required. If the query MBR
matches up with a full sub-tree, the entire sub-tree can be marked as a candidate and returned
immediately, leading to fewer I/O operations. Also, if the query window does not include any

overlapping MBRs, the query will be faster due to fewer path traversals and I/O operations.
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Figure 14: Intersect comparison — Point — Paris.
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Figure 15: Intersect comparison — LineString — New York.

Furthermore, if the query window size matches well with the distribution of MBRs, the tree
can more easily ignore the paths that do not intersect with the query window, leading to more
efficient queries. For the Hong Kong data set, it can be seen that many MBRs stretch across
the water where there are no buildings. Therefore it may require a larger query window to

encapsulate sub-trees as the starting coordinate is not centered around the water area.

The R-tree is also significantly slower than the 2dsphere on all queries. Some of the processing
delays can be attributed to I/O operations causing overhead. Furthermore, MongoDB stores

the index on the same server as the data, while the R-tree implementation stores the index
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Figure 16: Intersect comparison.
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in a collection on the config server. This means the mongos server first has to contact the
config server and then the shard where the data is stored to retrieve the results from a query.
Since the 2dsphere index resides on the same server as the data, it has an advantage over the
R-tree module. The R-tree module is constructed to be portable to other database solutions
(I/0 independent), and therefore it does not have any optimizations with regard to storage or
MongoDB-specific implementation details. The portability may lead to inefficient solutions for
data retrieval as it must reconstruct a user query to query the R-tree index. All of these factors
contribute to a longer processing time, but the R-tree is still able to produce results within a
reasonable amount of time. When the query window is 3 % in the Paris intersect comparison in
Figure 14, the processing time is only separated by 40ms. Similar results are found in Figure 16a
and Figure 15 for specific query windows, meaning the R-tree can perform almost equally fast

as the 2dsphere given the right conditions.

The drop in query time under given conditions may show that R-tree can scale well to larger
data sets in the case where the R-tree produced has few overlapping MBRs. If the query time
does not increase linearly with the size of the query window, it may perform well on larger
queries whereas 2dsphere will have an increased processing time. A drawback of the unstable
processing time is the lack of consistency. The processing time may be short, but Figure 16b
shows it could also keep increasing linearly for a growing query window. In web applications
where a user is awaiting a response, significant variation in the processing time may have a

negative effect on the user experience as the app will have inconsistent response times.

The results presented differ from the ones presented by Xiang et al. [10] as they experienced
a linearly increasing processing time on their queries. The speed is also significantly slower
in the upgraded implementation, which may be caused by a faulty cache implementation as
mentioned previously in Section 4.3. The I/O operations implemented in the previous version
of the module may also use faster internal commands than the ones utilized in the upgraded
version of this thesis, resulting in a smaller I/O overhead. The differences in test setup must also
be considered as a different operating system has been used to run the tests for the upgraded
version. Also, the test approach was different as Xiang et al. did not specify how they generated
the queries [10]. The aforementioned factors may explain why the upgraded version produces
slower results, but none of them explain the drop pattern seen in the processing time. Further
testing is required to explain why some queries execute ten times faster while retrieving more
data.

4.4.2 Within Query

The second query operation tested was the $geoWithin query. It was tested with the same query

window range and the same step size as the $geoIntersects queries. This query returns the
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GeoJSON objects that are fully within a specified object. The specified object is, as with the
$geoIntersects queries, a Polygon or a MultiPolygon. Figure 17, Figure 18, and Figure 19

depict the average results of five iterations with each query window.
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Figure 17: Within comparison — Point — Paris.
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Figure 18: Within comparison — LineString — New York.

The results were expected to be similar to the intersect results as the queries are similar. All
of the results from these queries follow a similar pattern as the ones for the $geoIntersects
query. Since both of these queries retrieve GeoJSON objects that are within a given object,
they have to do most of the same operations to retrieve the results. The $geoWithin is slightly

slower than the $geoIntersects query. The reason is that within queries have to calculate
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whether or not an object is fully within the specified object, while intersect queries do not have
to do these calculations. Cartesian calculations are expensive and therefore a small increase in
processing time is experienced. However, the difference between the processing times is small,
which means that these calculations are not too expensive. Compared to the processing times
of the $geoWithin query in MongoDB, the R-tree’s processing times are slower. The reasons

for this are the same as discussed with the $geoIntersects query.

4.4.3 Outliers

There are some outliers in the test results that are not visible in the graphs as they only affect the
average result slightly. The R-tree occasionally produces results that are significantly faster than
the average. As seen in Table 10, the first iteration with the R-tree is over 35 times faster than
the rest of the iterations. The first iteration was performed right after the tests with the 3.5 %
query window. It might be that the result from this query was cached in the LRU cache so the
results were returned almost immediately with no additional processing required. However, the
cache should then have been able to deliver the same processing time to the subsequent queries,
but that was not the case. The built-in cache in the routing server is not able to drastically
boost performance by a factor of more than 10. In fact, the impact from the built-in caching
corresponds to a decrease in the processing time of around 50ms £ 10ms for most queries as
seen in Table 11. The only satisfactory explanation found is that the LRU cache sometimes
works when certain conditions are met. If all nodes retrieved in the query reside in the cache it
is possible to achieve times as low as 28.2 ms. More testing is required to discover the cause of
this anomaly. Discovering why and how this happens is important as achieving this processing
time consistently would make the performance of the R-tree index equal to that of the 2dsphere
index on repeated queries. Of course, caching will not do all the work required as large queries
will not fit in memory, but it is an important step towards better performance for the flattened
R-tree in MongoDB.

Table 10: Barcelona within query with query window 4.0 %.

Iteration | R-tree | MongoDB
1 28.2s 97.2s

2 994.5s 49.5s

3 999.0s 45.8s

4 998.4s 40.1s

5 989.3s 42.6s
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Table 11: Barcelona within query with query window 1.0 %.

Iteration | R-tree | MongoDB
1 314.5s 31.5s
261.9s 11.4s

2

3 260.3s 11.5s
4 259.6s 16.6s
5 257.6s 14.9s

4.5 1/0O Speed

The Paris and New York data sets were also tested on a desktop machine running Ubuntu 22.04
OS with different hardware than the MacBook Air used for testing otherwise. The results can be
seen in Table 12. The desktop machine is approximately twice as fast as the MacBook Air. The
CPU and memory usage was found to be similar when testing, meaning the difference is not
likely to be caused by CPU or memory differences. However, the desktop was equipped with
a Samsung 980 Pro SSD which, according to Samsung, can deliver a sequential read speed of
7000 MB /s and a sequential write speed of 5100 MB /s [57]. The desktop computer is assumed
to come close to those speeds as it is equipped with similar parts to those used by Samsung. To
compare the read and write capabilities of the MacBook Air to the Samsung SSD, a benchmark
test was executed. The MacBook Air delivered a read speed of 2976 MB /s and a write speed
2527 MB/s, which indicates the results are caused by a difference in I/O speed. The effect of
write and read speed on secondary storage was expected to be significant since, as explained
in Section 3, the bottleneck of the implementation is the insertion and retrieval of index nodes.

Thus, the results are as expected with faster secondary storage.

Table 12: Desktop vs. MacBook Air insert speed.

MacBook Air Desktop Ubuntu
Data set
Insert time (seconds) | Docs/sec | Insert time (seconds) | Docs/sec
Paris 2382.3 40.7 1100.0 85.6
New York 2823.7 42.2 1390.7 88.0
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5 Conclusion

This thesis aimed to implement and evaluate a flattened R-tree index for geospatial data in
MongoDB version 6.3.0, and compare it to MongoDB’s 2dsphere index. The implementation
presented is a modified version of Xiang et al.’s [10] flattened R-tree module for MongoDB
version 3.2. The integration between the R-tree module and MongoDB required considerable

adaptation due to significant upgrades in MongoDB since their work.

The performance of the implemented R-tree proved to be slower than the 2dsphere index for all
query operations tested. The reason for this was found to most likely be the implementation of
the R-tree rather than the R-tree structure itself. However, the R-tree showed promising results
when the query window was of an optimal size. This was likely due to fewer I/O operations.
Additionally, the build time of the R-tree index was way higher than that of the 2dsphere index,
showing that there is still work to be done on improving the build speed before the implement-

ation is usable.

In the broad field of NoSQL databases, this research aimed to test if an R-tree could be used
as an indexing structure akin to SQL systems like PostgreSQL. Since R-trees are known to
handle multidimensional data better than B-trees, an optimally implemented R-tree for Mon-
goDB could improve the performance of geospatial queries. The current study, however, does
not verify this presumption, emphasizing the need to improve the implementation strategy. The
most significant contribution from the implementation is the possibility of inserting Cartesian
coordinates as GeoJSON objects, which is currently not possible in MongoDB. This is an im-
portant step in providing better support for spatial data in MongoDB as it should be able to
support multiple spatial reference systems for different use cases.

The study faced several constraints, including the complexity of MongoDB’s system, the use of
relatively small data sets, the limited number of query operations implemented, and the reliance
on a single prior implementation. All these factors may have influenced the results achieved

and are important considerations for further research.

To summarize, the findings in this thesis show that an R-tree index implemented as a module on
the side of MongoDB does not match the performance of the 2dsphere. Yet, its potential was
clear under certain query conditions which can indicate that with an optimized implementation,
the R-tree could improve MongoDB’s geospatial query performance. This study emphasizes
not just the choice of index structure, but also its optimal implementation, thus paving the way
for future research on this subject. This underlines the potential of the R-tree structure and the
compelling need for a specialized implementation in MongoDB for harnessing this potential
fully.
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To see the source code for the implementation, see the GitHub link in Appendix E.
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6 Further Work

This section will cover some proposals for further work that can be done to improve the R-tree

implementation in MongoDB.

6.1 Near Query

Due to the limited scope of the project, the broken $near query was not fixed. However, finding
the nearest neighbors of a geometry is an important spatial query, e.g. finding restaurants near
you. The underlying operations have been implemented so a client can execute the $near query,
but the results returned are not entirely correct and contain some invalid results. Thus, the future
work will be to implement an efficient, functioning algorithm for returning the query results in
batches such as the algorithm proposed by Hjaltason et al. [58]. Fixing the query has a high
priority compared to other suggested future work as the implementation is not complete without
it.

6.2 Optimize Implementation for MongoDB

As mentioned in Section 4, the current implementation leads to a lot of I/O overhead. The over-
head is a significant factor in the slow processing times experienced compared to the 2dsphere.
With more time and research, it could be possible to implement the R-tree index directly in
MongoDB alongside the other indexes provided. This will eliminate the extra communication
between the servers required in the implementation presented here. Since R-trees are designed
for handling spatial data, it is reasonable to assume that a proper implementation would outper-
form the 2dsphere on more advanced spatial calculations, since the 2dsphere is a B-tree and has

been shown to perform better on simpler geometries.

6.3 Caching

As mentioned in Section 4, the cache is inconsistent and does not function correctly. To provide
stable performance on repeated queries and improve build time, the cache must be updated to
work consistently with the newer version. Different caching techniques should be tested to find
the best-performing cache as the LRU cache presented by Xiang et al. [10] may not be the most
optimal solution. A different caching approach is presented by Jensen et al. where operations

are buffered in main memory and flushed to the disk [59]. An adaption of their cache for the
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flattened R-tree could be interesting to test as their benchmarks show the cache performs better
than an LRU-cache.

6.4 Improving Build Speed

The current process of building the R-tree index is painfully slow, with over 40 minutes for the
larger data sets used in the tests. Considering these data sets are on the smaller side, the build
speed renders the R-tree unusable for applications with big data sets. Reducing I/O operations
required to build the tree will improve the build time, but will not solve the problem of low
CPU usage mentioned in Section 4. A parallelized approach is necessary to utilize more of
the CPU and thus boost build speed. A parallel bulk-loading algorithm based on the Map-
Reduce framework is presented by Achakeev et al. [60]. Luo et al. proposes another parallel
approach utilizing the GPU to achieve fast parallelism [61]. Implementing such parallel bulk-
loading algorithms could drastically improve the build speed of the R-tree and be utilized in

combination with the mongoimport command.
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Appendix

A Building MongoDB

Following is the building.md file from the MongoDB repository on GitHub. A slightly modified

command had to be run instead of the ones listed under SCons, namely:

$ python3 buildscripts/scons.py install-devcore -j6
—~ —-disable-warnings-as—errors MONGO_VERSION=6.3.0

Building MongoDB

Please note that prebuilt binaries are available on
[mongodb.org] (http://www.mongodb.org/downloads) and may be the easiest

way to get started, rather than building from source.

To build MongoDB, you will need:

* A modern C++ compiler capable of compiling C++20. One of the following
— 1s required:
* GCC 11.3 or newer
* Clang 12.0 (or Apple XCode 13.0 Clang) or newer
* Visual Studio 2022 version 17.0 or newer (See Windows section below
—~ for details)
* On Linux and mac(0S, the libcurl library and header is required. MacO0S
-~ 1includes libcurl.
* Fedora/RHEL - “dnf install libcurl-devel"
* Ubuntu/Debian - “libcurl-dev” is provided by three packages.
—~ Install one of them:
* “libcurl4-openssl-dev"”
* “libcurl4-nss-dev’
* "libcurl4-gnutls-dev”
* On Ubuntu, the lzma library is required. Install "“liblzma-dev"
* On Amazon Linux, the xz-devel library is required. “yum install
~ xz-devel”

* Python 3.7.x and Pip modules:
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* See the section "Python Prerequisites" below.
* About 13 GB of free disk space for the core binaries (“mongod”,

“mongos™, and “mongo ) and about 600 GB for the install-all target.

MongoDB supports the following architectures: arm64, ppc64le, s390x,

and x86-64. More detailed platform instructions can be found below.

MongoDB Tools

The MongoDB command line tools (“mongodump”™, “mongorestore-,
“mongoimport”, “mongoexport, etc) have been rewritten in
[Go] (http://golang.org/) and are no longer included in this

repository.

The source for the tools is now available at

[mongodb/mongo-tools] (https://github.com/mongodb/mongo-tools).

Python Prerequisites

In order to build MongoDB, Python 3.7+ is required, and several Python
modules must be installed. Python 3 is included in mac0S 10.15 and later.
For earlier macOS versions, Python 3 can be installed using Homebrew or

MacPorts or similar.

To install the required Python modules, run:

$ python3 -m pip install -r etc/pip/compile-requirements.txt

Installing the requirements inside a python3 based virtualenv

dedicated to building MongoDB is recommended.

Note: In order to compile C-based Python modules, you'll also need the
Python and OpenSSL C headers. Run:
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* Fedora/RHEL - “dnf install python3-devel openssl-devel”

* Ubuntu (20.04 and newer)/Debian (Bullseye and newer) - “apt install
~ python-dev-is-python3d libssl-dev"

* Ubuntu (18.04 and older)/Debian (Buster and older) - “apt install
-~ python3.7-dev libssl-dev"

If you only want to build the database server "mongod:

$ python3 buildscripts/scons.py install-mongod

xx*xNotex**: For C++ compilers that are newer than the supported
version, the compiler may issue new warnings that cause MongoDB to
fail to build since the build system treats compiler warnings as
errors. To ignore the warnings, pass the switch

"—-disable-warnings—-as—-errors’ to scons.

$ python3 buildscripts/scons.py install-mongod

— --disable-warnings-as-errors
xxxNote***: On memory-constrained systems, you may run into an error such
~ as “g++: fatal error: Killed signal terminated program cclplus™. To
— use less memory during building, pass the parameter "-jl° to scomns.
— This can be incremented to "-j2°, "-j3°, and higher as appropriate to
— find the fastest working option on your system.

$ python3 buildscripts/scons.py install-mongod -j1
To install “mongod™ directly to ~/opt/mongo”

$ python3 buildscripts/scons.py DESTDIR=/opt/mongo install-mongod

To create an installation tree of the servers in ~/tmp/unpriv’ that

can later be copied to ~/usr/priv"
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$ python3 buildscripts/scons.py DESTDIR=/tmp/unpriv PREFIX=/usr/priv

< 1nstall-servers

If you want to build absolutely everything (“mongod™, “mongo™, unit

tests, etc):

$ python3 buildscripts/scons.py install-all-meta

SCons Targets

The following targets can be named on the scons command line to build and

install a subset of components:

* “install-mongod”

*

“install-mongos”

*

“install-core” (includes *only* “mongod™ and “mongos™)

*

“install-servers™ (includes all server components)

*

“install-devcore™ (includes “mongod™, “mongos”, and " jstestshell”
- (formerly “mongo”~ shell))
* “install-all” (includes a complete end-user distribution and tests)
* “install-all-meta” (absolutely everything that can be built and
~ 1installed)

*x*xNOTE+**: The “install-core” and “install-servers  targets are *notx*
guaranteed to be identical. The “install-core” target will only ever

— 1include a

minimal set of "core" server components, while “install-servers™ is

— 1intended

for a functional end-user installation. If you are testing, you should
-~ use the

“install-core™ or "install-devcore” targets instead.

Where to find Binaries

The build system will produce an installation tree into
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“$DESTDIR/$PREFIX" . "DESTDIR by default is “build/install” while
"PREFIX" is by default empty. This means that with all of the listed
targets all built binaries will be in “build/install/bin~ by default.

Windows

Build requirements:
* Visual Studio 2022 version 17.0 or newer

* Python 3.7

Or download a prebuilt binary for Windows at www.mongodb.org.

Debian/Ubuntu

To install dependencies on Debian or Ubuntu systems:

# apt-get install build-essential

Install Xcode 13.0 or newer.

FreeBSD

Install the following ports:
* “devel/libexecinfo”
* “lang/11vm70°

* ~lang/python’

Add "CC=clangl2 CXX=clang++12" to the “scons” options, when building.
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Install the following ports:

* “devel/libexecinfo”
* “lang/gcc’
* ~lang/python’
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B Intersect Query

A python script to run a $geoIntersects query.

from datetime import datetime, time
from pymongo.mongo_client import MongoClient

from pymongo.server_api import ServerApi

# Local connection

uri = "localhost:27019"

# Set the Stable API wersion when creating a new client
client = MongoClient(uri, server_api=ServerApi('1'))
db = client.geodb

collection = db.paris

def main():
count = 0
maxCount = 97846

try:
centerX, centerY = 600511, 1128382
size = 1010
lowX, highX = centerX - size, centerX + size
lowY, highY = centerY - size, centerY + size

for i in range(5):

results = []

startDate = datetime.now()
cursor = collection.find({"position": {"geoIntersects":

{"geometry": {"type": "Polygon", "coordinates": [[

[
lowX,
lowY
1,
[
highX,
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lowY

1,
[
highX,
highY
1,
[
lowX,
highY
1,
[
lowX,
lowY
]
1133:D

for doc in cursor:
results.append(doc)
endDate = datetime.now()
difference = endDate - startDate
if count ==
count = len(results)
resultNumber = str(difference.microseconds/1000) .replace(".",
B

print (resultNumber, end=" ")

except Exception as e:
print(e)
print ()
print (count)
print (count/maxCount)
if __name__ == "__main__":

main()
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C Format data script

Python script for sanitizing data sets so they could be used for the mongoimport method

import argparse
import json
import multiprocessing

from functools import partial

import geojson
from pyproj import CRS, Transformer
from shapely.geometry import MultiPolygon, Polygon, shape

from shapely.ops import orient, unary_union

EPSG = {
"Paris": 27571,
"NewYork": 2263,
"Barcelona": 2062,
"HongKong": 2326}

geojson_types = ["Point", "LineString", "Polygon"]

field_name = ["geometry", "position"]

def create_argument_parser():
parser = argparse.ArgumentParser(
prog="'FormatData',
description="Formats geodata to suit the mongodb import script",
)
parser.add_argument ('filename', help="Path of the input file")
parser.add_argument('-t', '--type', choices=geojson_types,
required=True, help="GeoJSON of the input data.
- REQUIRED")
parser.add_argument('-m', '--mongo', action='store_true',
help="Flag to set if the data is gonna be used by
— original MongoDB, if so the geometry field is

~ replaced with 'location'")
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parser.add_argument('-e',
'--epsg', choices=['Paris', 'NewYork',
— 'Barcelona', 'HongKong'], required=False,
- help="Specifies the EPSG to convert to")

return parser.parse_args()

def format(filename, type, mongo, epsg):
with open(filename, 'r') as openfile:

input_file = json.load(openfile)

pool = multiprocessing.Pool(6)

modify_objects_partial = partial(
modify_objects, type=type, mongo=mongo, epsg=epsg)

new_objects = []
if (type == geojson_types[2]):
result = pool.map(
modify_objects_partial, input_file["features"])
for obj in result:
if obj is not None:

new_objects.extend(obj)

else:
new_objects = pool.map(

modify_objects_partial, input_file["features"])

new_objects = [obj for obj in new_objects if obj is not None]

pool.close()
pool.join()

with open('formatted_'+('mongo_' if mongo else
~ 'epsg'+str(EPSG[epsgl)+'_')+filename, 'w') as outfile:

json.dump (new_objects, outfile, indent=2)
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def modify_objects(object, type, mongo, epsg):
for field in object:
if field == 'geometry' and object[field] ["type"] == type:
if type == geojson_types[0]:
return handle_points(
field, object, type, mongo, epsg)
elif type == geojson_types[1]:
return handle_line_string(field, object, type, mongo,
- epsg)
elif type == geojson_types[2]:
return handle_polygon(
field, object, type, mongo, epsg)

return None

def geodetic_to_cartesian(lon, lat, epsg):
lonlat = CRS.from_user_input(4326)
geocent = CRS.from_user_input (EPSG[epsg])
transformer = Transformer.from_crs(
crs_from=lonlat, crs_to=geocent)
X, y = transformer.transform(lat, lon)

return [round(x, 2), round(y, 2)]

def handle_points(field, object, type, mongo, epsg):
coordinates = object[field] ["coordinates"]
if mongo:
new_coordinates = coordinates

else:

new_coordinates = geodetic_to_cartesian(
coordinates[0], coordinates[1], epsg)
return {"type": "Feature", field_name[0] if mongo else field_name[1]:

—~ {"type": type, "coordinates'": new_coordinates}}

def handle_line_string(field, object, type, mongo, epsg):
new_coordinates = []

for coordinate in object[field] ["coordinates"]:
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if mongo:
new_coordinates.append(coordinate)
else:
cartesian_coordinate = geodetic_to_cartesian(
coordinate[0], coordinatel[l], epsg)
new_coordinates.append(cartesian_coordinate)
return {"type": "Feature", field_name[0] if mongo else field_name[1]:

{"type": type, "coordinates": new_coordinates}}

# Only use the outer polygon as inner polygons may overlap and that
- causes errors in MongoDB
def handle_polygon(field, object, type, mongo, epsg):
polygons = []
sanitized_polygons = process_polygons(object[field] ["coordinates"])
for sanitized_polygon in sanitized_polygons:
new_coordinates = []
for coordinates in sanitized_polygon:
coordinates_to_add = []
for coordinate in coordinates:
if mongo:
coordinates_to_add.append(coordinate)
else:
cartesian_coordinate = geodetic_to_cartesian(
coordinate[0], coordinate[1], epsg)
coordinates_to_add.append(cartesian_coordinate)
new_coordinates.append(coordinates_to_add)
outer_ring, *inner_ring = new_coordinates
polygon = Polygon(outer_ring, inner_ring)
if not polygon.is_simple:
print ("Polygon is not simple")
return None
if (not polygon.is_valid):
print ("something went wrong with this polygon", polygon,
- "\n")

return None

polygon = geojson.Polygon(new_coordinates)
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def

def

def

new_polygon = {"type": "Feature",
field_name[0] if mongo else field_name[1]:
— polygon}

polygons.append (new_polygon)

return polygons

process_polygons (polygon) :
if len(polygon) == 1:
return [polygon]

outer_ring, *inner_ring = polygon

# Make outer and inner ring polygons

outer_polygon = Polygon(outer_ring)

inner_polygons = [Polygon(x) for x in inner_ring]

inner_polygons = handle_inner_polygons(inner_polygons)
new_polygons = handle_outer_ring(

outer_polygon, inner_polygons)

return [format_polygons(x, [*y]) for x, *y in new_polygons]

format_polygons(outer_polygon, inner_polygons):
outer_polygon = [[x, y] for x, y in outer_polygon.boundary.coords]
new_inner_polygons = []
for poly in inner_polygons:
new_inner_polygons.append(list([x, y]

for x, y in poly.boundary.coords))

return [outer_polygon, *new_inner_polygons]

handle_outer_ring(outer_polygon, inner_polygons):
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outer_polygon = orient(outer_polygon, sign=1.0)
inner_indexes_to_remove = []
for i, poly in enumerate(inner_polygons) :
orient(poly, sign=-1.0)
if not outer_polygon.contains_properly(poly):
outer_polygon = outer_polygon.difference(poly)
if isinstance(outer_polygon, Polygon):
outer_polygon = Polygon(outer_polygon.exterior)

inner_indexes_to_remove.append (i)

new_inner_polygons = [poly for index, poly in enumerate(

inner_polygons) if index not in inner_indexes_to_remove]

result = []

if isinstance(outer_polygon, MultiPolygon) :

result = result + \
[handle_outer_ring_v1(outer, new_inner_polygons)

for outer in outer_polygon.geoms if outer is not Nonel

elif isinstance(outer_polygon, Polygon):

result.append([outer_polygon, *new_inner_polygons])

return result

def handle_outer_ring_vl(outer, inner):
outer_polygon = orient(outer, sign=1.0)
inner_indexes_to_remove = []
for i, poly in enumerate(inner):
orient(poly, sign=-1.0)
if not outer_polygon.contains_properly(poly):
outer_polygon = outer_polygon.difference(poly)

inner_indexes_to_remove.append (i)

new_inner_polygons = [poly for index, poly in enumerate(

inner) if index not in inner_indexes_to_remove]
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if isinstance(outer_polygon, MultiPolygon):

return None

elif isinstance(outer_polygon, Polygon):

return [outer_polygon, *new_inner_polygons]

def handle_inner_polygons(inner_polygons):

combined_inner_polygons = unary_union(inner_polygons)

if isinstance(combined_inner_polygons, MultiPolygon) :
inner_ring = list(combined_inner_polygons.geoms)
elif isinstance(combined_inner_polygons, Polygon):

inner_ring = [combined_inner_polygons]

return inner_ring

_ == "__main__":

if __name_

args = create_argument_parser ()

format(args.filename, args.type, args.mongo, args.epsg)
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D Results

Iterations Data sets (seconds)
R-tree Paris | New York | Barcelona | Hong Kong
1 2377.1 2822.5 1538.7 461.3
2 2460.7 2864.7 1450.0 450.3
3 2349.1 2838.6 1463.8 455.1
4 24243 2710.1 1444.6 453.7
5 2300.4 2882.6 1477.2 435.1
MongoDB | Paris | New York | Barcelona | Hong Kong
1 2.1 2.8 3.6 1.2
2 1.6 2.7 35 1.3
3 1.6 2.8 3.5 1.1
4 1.6 2.7 3.6 1.2
5 1.6 2.7 3.5 1.2

Table 13: Raw insert results

Table 14: GeoWithin query Paris (results in milliseconds).

Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
1 261.8 | 438.7 | 614.2 | 767.9 | 944.0 | 133.1 | 265.6 | 437.7 | 613.0 | 786.7
2 208.5 | 361.1 | 524.6 | 711.9 | 885.0 | 43.2 | 202.3 | 370.2 | 559.9 | 698.8
3 209.6 | 364.3 | 523.5 | 706.0 | 879.4 | 47.3 | 208.3 | 377.2 | 552.3 | 693.1
4 207.7 | 364.3 | 576.3 | 695.9 | 887.6 | 46.6 | 204.6 | 462.9 | 644.2 | 670.8
5 207.9 | 366.0 | 524.8 | 714.3 | 880.7 | 41.0 | 211.2 | 377.8 | 526.5 | 736.0
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 20.6 | 306 | 339 | 413 | 384 | 445 | 585 | 574 | 51.6 | 499
2 9.8 12.6 | 200 | 11.3 | 16.7 | 165 | 183 | 228 | 27.7 | 342
3 7.2 7.1 8.6 100 | 134 | 16,6 | 186 | 22.8 | 259 | 233
4 7.3 5.8 8.5 9.7 126 | 16.1 | 235 | 264 | 282 | 243
5 6.2 5.6 8.8 9.7 15.1 | 19.1 | 185 | 20.7 | 23.7 | 24.1
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Table 15: GeoWithin query New York (results in milliseconds).

Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 310.7 | 572.1 | 737.6 | 940.8 | 140.5 | 331.1 | 558.8 | 759.4 | 966.7 | 206.7
2 239.0 | 509.6 | 675.5 | 900.9 | 89.1 | 282.5| 503.5 | 690.4 | 897.4 | 110.6
3 236.5 | 510.5 | 670.7 | 872.0 | 779 | 273.5 | 497.3 | 685.4 | 901.0 | 115.6
4 273.8 | 516.8 | 668.7 | 870.9 | 81.1 | 310.7 | 503.1 | 695.1 | 870.0 | 106.5
5 235.5 | 510.7 | 677.8 | 883.7 | 63.4 | 270.9 | 489.0 | 692.5 | 904.8 | 75.1
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 276 | 52.8 | 419 | 67.7 | 632 | 834 | 787 | 959 | 854 | 105.6
2 160 | 247 | 253 | 379 | 41.8 | 48.1 | 556 | 52.7 | 59.4 | 59.2
3 8.8 229 | 265 | 35.0 | 393 | 358 | 434 | 446 | 49.1 | 58.8
4 87 | 21.1 | 29.1 | 25.8 | 309 | 33.6 | 42.7 | 47.5 | 50.7 | 539
5 8.4 179 | 23.1 | 238 | 299 | 38.8 | 534 | 448 | 48.7 | 66.8
Table 16: GeoWithin query Barcelona (results in milliseconds).
Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 198.7 | 314.5 | 439.1 | 571.6 | 747.7 | 800.2 | 908.2 | 28.2 | 158.1 | 293.9
2 147.3 | 261.9 | 392.5 | 527.1 | 621.1 | 753.5 | 882.4 | 994.5 | 112.1 | 234.7
3 146.6 | 260.3 | 386.0 | 512.4 | 625.5 | 750.6 | 870.9 | 999.0 | 94.3 | 238.9
4 145.9 | 259.6 | 387.2 | 503.3 | 632.4 | 748.2 | 872.6 | 998.4 | 108.0 | 223.9
5 155.5 | 257.6 | 387.3 | 511.2 | 628.4 | 742.8 | 863.6 | 989.3 | 100.5 | 234.0
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 31.7 | 31.5 | 528 | 78.7 | 49.7 | 578 | 67.0 | 97.2 | 969 | 84.8
2 13.0 | 114 | 248 | 40.0 | 35.8 | 40.8 | 54.6 | 495 | 51.1 | 65.0
3 11.8 | 11.5 | 30.6 | 28.8 | 33.6 | 31.7 | 53.7 | 45.8 | 458 | 519
4 105 | 16.6 | 242 | 242 | 309 | 334 | 37.7 | 40.1 | 465 | 47.7
5 10.0 | 149 | 205 | 209 | 29.0 | 33.7 | 39.0 | 42.6 | 424 | 493
Table 17: GeoWithin query Hong Kong (results in milliseconds).
Iterations Query Window Size (%)
R-tree 05 | 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 93.0 | 132.7 | 171.4 | 256.9 | 251.8 | 284.8 | 329.1 | 362.8 | 402.5 | 430.4
2 454 | 83.8 | 124.6 | 134.2 | 194.8 | 238.9 | 273.7 | 312.8 | 349.6 | 414.7
3 45.0 | 79.2 | 121.0 | 176.5 | 196.2 | 234.5 | 271.9 | 314.7 | 351.8 | 396.0
4 45.0 | 855 | 121.3 | 168.4 | 195.8 | 242.6 | 271.2 | 310.7 | 350.0 | 386.8
5 449 | 83.4 | 120.8 | 167.0 | 206.3 | 235.9 | 271.2 | 307.5 | 346.9 | 424.5
MongoDB | 0.5 | 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 209 | 285 | 31.6 | 432 | 329 | 373 | 352 | 435 | 458 | 464
2 10.5| 109 | 102 | 245 | 10.8 | 16.6 | 179 | 169 | 232 | 247
3 172 | 83 9.3 228 | 102 | 162 | 16.0 | 163 | 29.7 | 30.1
4 55 | 10.7 | 183 9.3 10.6 | 169 | 21.5 | 22.0 | 24.6 | 25.7
5 6.1 7.7 11.5 9.3 11.6 | 22.7 | 20.8 | 19.1 | 22.3 | 22.1
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Table 18: Geolntersect query Paris (results in milliseconds).

Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 2709 | 439.7 | 570.0 | 753.2 | 943.1 | 109.7 | 265.6 | 437.7 | 613.0 | 786.7
2 217.8 | 360.3 | 531.3 | 708.0 | 954.0 | 72.1 | 202.3 | 370.2 | 559.9 | 698.8
3 216.4 | 366.2 | 633.1 | 744.4 | 885.1 | 78.3 | 208.3 | 377.2 | 552.3 | 693.1
4 217.1 | 366.8 | 576.9 | 716.1 | 890.3 | 45.7 | 204.6 | 462.9 | 644.2 | 670.8
5 217.6 | 359.4 | 537.9 | 702.4 | 919.7 | 37.8 | 211.2 | 377.8 | 526.5 | 736.0
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 170 | 25.8 | 64.1 | 404 | 439 | 56.1 | 483 | 57.8 | 484 | 62.2
2 116 | 184 | 133 | 162 | 16.1 | 235 | 26.7 | 294 | 283 | 295
3 100 | 155 | 11.3 | 142 | 183 | 223 | 248 | 28.1 | 274 | 285
4 8.1 6.8 120 | 149 | 189 | 194 | 273 | 264 | 304 | 243
5 4.6 5.9 10.8 | 152 | 182 | 204 | 20.8 | 20.6 | 26.0 | 23.6
Table 19: Geolntersect query New York (results in milliseconds).
Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 339.3 | 512.7 | 769.3 | 930.6 | 146.3 | 354.7 | 568.6 | 797.4 | 999.0 | 191.1
2 286.0 | 462.7 | 671.6 | 882.0 | 82.8 | 305.9 | 494.0 | 788.9 | 900.1 | 150.4
3 282.4 | 463.1 | 670.2 | 867.5 | 73.6 | 280.6 | 475.3 | 703.3 | 908.9 | 376.8
4 282.5 | 452.6 | 663.0 | 872.5 | 77.9 | 279.3 | 489.2 | 716.5 | 897.0 | 137.3
5 289.1 | 453.0 | 663.6 | 869.2 | 88.3 | 286.2 | 486.2 | 711.2 | 130.9 | 143.8
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 282 | 29.7 | 422 | 440 | 498 | 596 | 70.8 | 60.2 | 674 | 914
2 14.1 | 150 | 193 | 18.1 | 32.7 | 47.6 | 46.3 | 50.5 | 49.5 | 53.1
3 9.6 8.5 19.0 | 22.0 | 29.7 | 36.0 | 34.7 | 394 | 43.0 | 45.0
4 8.1 8.1 272 | 177 | 225 | 314 | 30.3 | 37.3 | 40.0 | 40.3
5 8.7 8.4 215 | 182 | 21.7 | 30.3 | 309 | 332 | 369 | 444
Table 20: Geolntersect query Barcelona (results in milliseconds).
Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 195.6 | 308.4 | 434.3 | 560.1 | 714.9 | 808.9 | 922.6 | 72.3 | 177.2 | 308.8
2 144.7 | 2549 | 377.4 | 516.2 | 623.4 | 755.5 | 868.9 | 986.3 | 119.8 | 235.6
3 143.3 | 261.5 | 379.8 | 493.9 | 633.1 | 761.1 | 882.7 | 980.2 | 116.2 | 228.2
4 144.2 | 254.7 | 376.2 | 507.9 | 633.9 | 750.8 | 864.6 | 998.0 | 121.6 | 228.1
5 152.5 | 254.5 | 374.8 | 503.7 | 626.1 | 759.2 | 895.4 | 980.8 | 121.7 | 233.1
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 24.6 | 370 | 428 | 539 | 523 | 532 | 893 | 995 | 111.9 | 989
2 194 | 245 | 23.6 | 350 | 285 | 457 | 525 | 489 | 51.2 | 60.8
3 9.0 11.0 | 264 | 257 | 344 | 349 | 426 | 463 | 460 | 452
4 8.4 145 | 192 | 250 | 319 | 329 | 360 | 446 | 464 | 482
5 8.5 125 | 16.8 | 233 | 31.7 | 27.3 | 39.2 | 38.3 | 484 | 50.7
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Table 21: Geolntersect query Hong Kong (results in milliseconds).

Iterations Query Window Size (%)
R-tree 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
1 938 | 134.1 | 170.2 | 202.3 | 275.9 | 287.7 | 342.6 | 346.2 | 401.7 | 437.2
2 44.4 | 85.3 | 120.5 | 159.3 | 200.9 | 234.8 | 276.2 | 305.2 | 349.6 | 385.9
3 439 | 84.4 | 120.6 | 157.8 | 208.9 | 232.5 | 274.4 | 318.6 | 256.9 | 395.8
4 44.0 | 82.8 | 1185 | 157.3 | 191.0 | 239.6 | 271.5 | 309.7 | 331.9 | 381.9
5 44.0 | 83.2 | 120.7 | 156.5 | 201.6 | 234.5 | 273.6 | 310.0 | 346.4 | 385.0
MongoDB | 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
1 17.1 | 286 | 339 | 37.7 | 338 | 374 | 392 | 37.6 | 39.0 | 47.7
2 10.7 | 140 | 189 | 11.8 | 12.6 | 11.7 | 159 | 152 | 20.0 | 234
3 112 7.9 10.1 11.1 | 114 | 155 | 167 | 17.2 | 253 | 26.9
4 4.5 7.3 10.1 11.6 | 11.6 | 164 | 23.0 | 20.5 | 219 | 23.7
5 4.4 7.9 10.8 | 12.0 | 139 | 175 | 183 | 17.7 | 21.5 | 23.2
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E GitHub repository

For interested readers, the source code for this thesis can be found on https://github.com/CSynnestvedt/r-

tree-mongodb
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