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Abstract

The growing amount of GPS-compatible electronic devices capable of recording
and storing users’ position and movement data, has led to an increased interest in
the analysis of this type of data. Fundamental in the analysis of observational data
is the need for quantification of similarity between the observations. Several sim-
ilarity measures exist for this purpose, but their time complexity limit the analysis
of larger amounts of data.

In this thesis, we examine whether locality sensitive hashing functions can be
utilised as an alternative to traditional similarity measures, with the aim of im-
proving computation time when computing similarities between GPS-trajectories.
As a starting point, we adapt and implement two techniques originally developed
for top-k queries. We examine aspects such as accuracy and efficiency, in addition
to evaluating how well the generated similarities performs in terms of clustering.
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Sammendrag

Den stadig voksende mengden av GPS-kompatible elektroniske enheter i stand
til å registrere og lagre brukernes posisjons- og bevegelsesdata, har medført en
økende interesse for analyse av denne type data. Fundamentalt i analyse av ob-
servasjondata er behovet for kvantifisering av similaritet mellom observasjonene.
Det eksisterer flere similaritetsmål for dette formålet, men deres tidskompleksitet
legger begrensninger for analyse av større mengder data.

I denne avhandlingen undersøker vi hvorvidt lokalitets-sensitive hashefunks-
joner kan benyttes som alternativ til tradisjonelle similaritetsmål, med formål å
forbedre tidsforbruket ved similaritetsberegning av GPS-spor. Vi tar utgangspunkt
i to teknikker opprinnelig designet for topp-k spørringer, adapterer og imple-
menterer disse, og analyserer aspekter som nøyaktighet og effektivitet, samt eval-
uerer de genererte similaritetenes ytelse under clustering.
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Chapter 1

Introduction

1.1 Motivation

The last decade’s technological advancements have led to an enormous increase in
the number of devices and gadgets with location-aware tracking, such as phones,
smartwatches and navigation equipment to name some. The combined magnitude
of these devices have further led to a huge acquisition of large volumes of move-
ment data, including recordings of objects’ locations over time, so-called traject-
ories [1]. With the rising availability of trajectory data, the need to analyse and
gather valuable and meaningful insights of objects’ movements also rises.

A common way of analysing trajectory data is to compute how similar tra-
jectories are, i.e. their similarity [2]. This computation lays the foundation for
many different applications, and is often the first step for more complicated ana-
lysis tasks. For instance, applications of trajectory analysis include the prediction
of hurricanes’ movements for disaster alert [3], finding where cyclists’ routes are
similar to plan for the construction of bicycle paths in cities, military surveillance
and security or sports analysis to name some [4].

Even though trajectories have a rigid data-format, similar trajectories can be
very different, which complicates the process of computing their similarity. As a
result of this, algorithms designed for this purpose are resource-intensive, and
the computation cost increases drastically with the number of trajectories to be
analysed, making it a time-consuming process. In fact, most similarity distance
algorithms today have quadratic computation time, which have become a bottle-
neck for analysis of the ever-growing volumes of trajectories [5]. With the rising
amount of available trajectory data combined with the shortcomings of classic
similarity algorithms in terms of efficiency, there is a need for techniques that can
compute similarities for larger volumes of trajectories more efficiently.

A fundamental aspect of computer science is the art of approximation to reduce
computation time for resource-intensive operations. A classic and well-known
technique developed for the purpose of efficiently retrieving similar items in large

1



2 B.A.F: Trajectory similarity computation using LSH

and complex data-sets is called locality sensitive hashing (LSH)[6]. With this re-
search we want to explore whether locality sensitive hashing can be applied for
more efficient computation of trajectories’ similarities, to accommodate the grow-
ing amount of data. The overall aim of this thesis is to research whether LSH can
be utilised for similarity computation to cope with the problem of scalability, and
still function as a proper alternative to traditional similarity measures in terms of
accuracy.

1.2 Research Questions

In this thesis, we wish to explore the potential of LSH to cope with the problem
of scalability when computing similarities for larger volumes of trajectories. More
specific, we want to explore whether two LSH-schemes designed for top-k search
among trajectories can be adapted to compute similarities. We want to understand
how the LSH-generated similarities perform in terms of accuracy and computation
time, and whether they can be used for practical data analysis tasks like cluster-
ing. An important factor in our research is to understand whether LSH-generated
similarities can be used as an alternative to traditional similarity measures. From
these objectives, we have defined the following research questions that we seek
to explore and answer in this thesis:

RQ1 Are the LSH-schemes provided by Driemel and Silvestri [7] and Astefanoaei
et al. [8] adaptable to similarity computation?

RQ2 How well do the approximated similarities based on these schemes perform
compared to traditional similarity measures for various data sizes?

RQ3 How suited are the LSH-generated similarities for creating clusters?

1.3 Outline

This thesis is a continuation of the preliminary work [9] that was conducted in the
course TDT4501 - Computer Science, Specialization Project. We do not assume that
the reader of this thesis is familiar with the content of the report from TDT4501,
and its content is therefore restated in the early chapters of this thesis. This thesis
is structured the following way:

Chapter 2 is largely based on the above-mentioned report and introduces the
theoretical background of trajectories and the art of traditional similarity compu-
tation. We also present the theory behind locality sensitive hashing and clustering
analysis.

In chapter 3, which is also largely based on [9], we present the existing LSH
work that our research is based upon. We also describe and discuss other existing
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approaches to solving the problem of scalability when computing similarities for
larger volumes of trajectories.

Chapter 4 presents the data-sets, methodology, implementation details, eval-
uation and analysis methods of the LSH-schemes. The chapter also describes in
detail how we proceeded to answer the defined research questions.

In chapter 5, the results and findings from the research are presented. First,
we present general findings from a variety of configurations of the LSH-schemes,
before more specific results for a given configuration are presented.

Chapter 6 discusses the presented results. We consider different aspects of the
LSH-schemes and discuss the results against theoretical expectations and practical
significance.

Finally, in Chapter 7, the conclusions based on the discussed aspects are sum-
marised. The conclusions are presented and linked up to the research questions
of this thesis.

For the written code and further implementation details of the conducted ex-
periments in this research, we refer to our code-repository, which can be found in
https://github.com/bjorafla/master.





Chapter 2

Theory

This chapter will largely present some preliminary theory and background inform-
ation related to trajectories and the art of computing their similarity using distance
measures. The locality sensitive hashing technique will also be presented. In ad-
dition, this chapter will also elaborate on data clustering and cluster evaluation
measures.

2.1 Trajectory

Collection of movement data and the analysis of such data is a major application
in a variety of fields and domains, like sports, finance, medicine, city planning and
navigation to name some [10]. The movement of an object is often represented
as a trajectory, which can be viewed as a series of recorded datapoints ordered
by time, where each datapoint is a position or a value. Phrased differently, tra-
jectories are traces containing data of a moving objects’ positions, and in simple
turns a trajectory can be seen as an ordered list of position-aware datapoints. This
could be the share price value of a stock, traces of shipments, or the geographical
movement of taxis in a city environment.

For the purpose of this thesis we will address trajectories that contain points
of spatial location, so-called spatial trajectories. A precise and formal definition
of a spatial trajectory was given by Zheng [11]: "A spatial trajectory is a trace
generated by a moving object in geographical spaces, usually represented by a
series of chronologically ordered points, for example, p1 −→ p2 −→ ... −→ pn ,
where each point consist of a geospatial coordinate set and a time stamp such
as p = x , y, t". Throughout this thesis, we will use a similar definition, where
the timestamp is omited and the datapoints are ordered chronologically by their
sequence in their trajectory as shown in Definition 1:

Definition 1 (Trajectory) A trajectory T = [[x0, y0] , [xk, yk] , ... , [xn, yn]]where
xk, yk ∈ R, and k is a strictly increasing sequence number ∈ [1, ... , n] where n is the
length of the trajectory.

5



6 B.A.F: Trajectory similarity computation using LSH

(a) Higher sampling (b) Lower sampling

Figure 2.1: Two different trajectory representations of the same movement from
one location to another. The beginning and endpoint of both trajectories are
marked in red, as well as the the points in (a) that are likely to correspond with
the inner vertices of the trajectory in (b).

Despite the rigid definition of a trajectory, similar trajectories may be signi-
ficantly different when comparing them point-wise. The sampling rate of data-
points may vary, as well as the collection method. For instance, datapoints may
be registered every second, favouring data quality, or they could be registered
only when the moving object makes a significant turn to save storage space on
the recording device. Naturally, the quality of the equipment used for collection
may also differ, as well as the local quality of GPS-signals. These are just a se-
lection of factors influencing the recorded trajectory representation of an object’s
movement. This implies that similar movements can be represented by relatively
different, yet similar trajectories. This effect is visualised in Figure 2.1.

2.1.1 Notations

Throughout this thesis we will use some notations describing trajectories and their
properties. We have provided the notations in Table 2.1 together with a description
explaining the notation.

Table 2.1: Notations used throughout this thesis.

Notation Description
T The set of trajectories.
Ti The i-th trajectory of set T .
pi

j Point j of trajectory Ti . Consisting of coordinates x , y and a timestamp t.
dis(X , Y ) A distance (similarity) function between Xand Y ∈ T .

2.2 Similarity of trajectories

When analysing trajectory data, there is often a need to understand how equal or
similar pairs of trajectories are to each other, i.e. a need of computing their so-
called similarity. In fact, the computation of these similarity-values (similarities)
lays the foundation for many important trajectory mining tasks. The similarities
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are computed using what we call similarity measures, which is a function that
takes two trajectories T1 and T2 as input, and quantifies their similarity to a non-
negative numerical value. Due to the diverse nature of trajectories as described
in section 2.1, similar trajectories may have significant variations, which must be
taken into account and get captured by the similarity measures.

When computing the similarity between two trajectories, we are interested
in the relationship between them, and it is therefore important that the distance
measures is symmetric. We will use the definition of a distance function for tra-
jectories given by Besse et al. [12] in our thesis.

Definition 2 (Distance function) Let T be a set of trajectories. A distance function
dis(X , Y ) −→ R is called a dissimilarity on T if all Ti , T j ∈ T | Ti ̸= T j:

1. dis(Ti , T j)≥ 0
2. dis(Ti , T j) = dis(T j , Ti)
3. dis(Ti , Ti) = 0

When condition 3. is satisfied for Ti and T j , it implies that Ti = T j . We say that
dis(X , Y ) is symmetric if all of the above conditions are satisfied. If the following
condition is fulfilled, the distance function is considered to be a metric:

4. dis(Ti , Tk)≤ dis(Ti , T j) + dis(T j , Tk)

As stated in Definition 2, a distance function is formally a dissimilarity meas-
ure, meaning that the greater the quantified value produced by the distance func-
tion, the less similar the input trajectories are. We still use the term similarity
measure, but one should be aware of this formality. There are different aspects
that can be emphasised when computing similarities among trajectories, such as
speed, directions or spatio-temporal to name some. For this thesis we will focus
on the spatial similarity of trajectories, i.e how equal trajectories are in shape
and location.

There have been proposed many different distance measures in the literat-
ure which have been thoroughly described and discussed in several studies [12–
15]. Some of the most popular distance measures for computing spatial similar-
ity of trajectories from these studies are Dynamic Time Warping, Frèchet Distance
and Edit distance. These measures have shown to be both robust and accurate for
trajectory similarity computation. However, as we shall see next, computing simil-
arities between trajectories using these measures is a resource-intensive task with
poor time-complexity.

2.2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is one of the most common discrete symmetric
distance measures for trajectories, and as the name might imply it is designed to
align items by warping the time dimension, meaning that trajectories are getting
"stretched" and "shrunk" to find an optimal alignment. DTW computes the sim-
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(a) Cost matrix (b) Accumulated cost matrix

Figure 2.2: Dynamic Time Warping. The computed cost matrix (a) and accumu-
lated cost matrix (b) for two vectors. The red-coloured path in (b) is the warped
path and the accumulated cost is 3. A darker background colour indicates a lar-
ger distance in (a) and a more expensive path in (b). The cost function is the
absolute value of their natural distance. Start-point is the upper left corner and
the end-point is the lower right corner.

ilarity of trajectories, T1 and T2 ∈ T , by creating a m × n-matrix, C , where m
and n is the length of T1 and T2, and each point in T1 corresponds to a row in
C and each point in T2 corresponds to a column. For each cell ci, j ∈ C , the pair-
wise cost between p1

i and p2
j is computed and inserted [16]. The cost function

may vary based on implementation, but a Lp-norm such as euclidean distance
is often used. Next, the lowest accumulated cost to each cell is computed and
the values in C are updated so that it now represents the accumulated costs. By
traversing C from the end-point, cm,n, to the start-point, c0,0, an optimal warped
path between T1 and T2 can be found by always choosing the previous point in C
such that cprev = min(ci−1, j−1, ci−1, j , ci, j−1). The path generated by repeating this
process is the optimal warped path between the trajectories, and the correspond-
ing accumulated cost of this path represents their similarity. Figure 2.2 illustrates
the generation of the accumulated cost matrix and the optimal path between two
one-dimensional vectors.

A great advantage of DTW is that it can align trajectories with different speed
and sampling. Even though DTW is widely common to use, it is not robust to noise
as that may affect the cost matrix and thus also the optimal path. In addition, and
more important for this thesis, DTW computes the pairwise cost between every
pair of points in the trajectories, resulting in a run-time of O(n2), where n is the
average length of the trajectories. This makes the algorithm scale poorly, and less
suited for efficient computation of similarities in large data-sets.
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2.2.2 Fréchet Distance

Another common and well-documented distance measure for trajectories is the
Fréchet distance (FD), which also takes into account both the ordering of the
points and their location. This similarity measure is a shape-based measure that
aims to find the geometrical similarity between trajectories, and is often referred
to as the "walking-dog distance". The reason for this is that the Fréchet distance
can be seen as the minimum distance a dog leash can be when walking a dog,
where the dog and owner have slightly different paths. Unlike DTW, the Fréchet
distance is a continuous measure as it aligns interpolated representations of the
trajectories, which enables it to align non-uniform sampled trajectories [15]. How-
ever, this complicates the algorithm and adds another factor to the time-complexity
compared to DTW, resulting in a run-time of O(n2log(n2)) where n is the average
length of the two input trajectories.

The Fréchet distance can be computed by calculating a so-called free-space
diagram between the two trajectories [17]. A free-space diagram can be seen as
a spatial area between two trajectories where the area hold all pairs of points
between the two trajectories that are within a given distance, ε, from each other.
The free-space diagram between two trajectories, f and g, can be visualised by
aligning the trajectories along each axis in a plane as shown in Figure 2.3, and
mark the area where f and g are within ε of each other. If there exists a path from
the lower left corner to the top right corner that is monotone in both dimensions,
we have a valid free-space path. The Fréchet distance is the smallest possible ε
that has a valid free-space path.

As stated, computing the Fréchet distance is a costly process with a run-time
of O(n2log(n2), where n denotes the average length of the input trajectories. The
construction of the free-space diagram and the search of a valid path have a com-
bined run-time of O(n2) alone, and the algorithm must also find the optimal path.
Furthermore, due to the high computation cost, computing the Fréchet distance
quickly gets expensive for analysis of larger volumes of trajectory data. The ad-
vantage of using Fréchet distance is that it fulfils the fourth condition from Defini-
tion 2, meaning that the triangle inequality is preserved, which could be preferable
during further analysis.

A simpler version of the Fréchet distance is the discrete Fréchet distance (DFD),
which is a discrete and symmetric version of Fréchet distance. It was introduced by
Eiter and Mannila [19] in 1994, and is fairly similar to DTW. Like DTW, DFD cre-
ates a pairwise cost-matrix, C , between every point in the two trajectories, using a
domain-appropriate cost-measure which could be the euclidean distance for two-
dimensional spaces. DFD finds the optimal lowest cost path by traversing the cost
matrix from the start-point c0,0 to the end-point cn,m. When traversing, the path is
constructed by adding the next point such that cnex t = min(ci+1, j+1, ci+1, j , ci, j+1),
until the end-point is reached. The maximum value of the costs in the computed
optimal path is the discrete Fréchet distance between the two input trajectories.
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Figure 2.3: Visualisation of a free-space diagram between trajectories f and g.
The red line represents a valid free-space path from bottom left corner to top right
corner. Figure reprinted from [18].

Like DTW, the creation of a full n×m-matrix is necessary for the optimal path
to be found, thus resulting in a run-time of O(n2) where n is the average length
of the input trajectories. The presented run-time is for one comparison between
a set of two trajectories, which result in poor performance when using DFD for
large data-sets.

2.2.3 Edit distance

Another well-known similarity measure is the edit distance (EDR). It was origin-
ally created for comparing the similarity of strings by doing so-called edits, and is
a common algorithm present in the literature [13]. EDR distance is the number
of edits needed to change one object into another, where an edit could be either
insertion, deletion or substitution of a point [10]. To exemplify, the edit distance
between the strings s1 = ”abc” and s2 = ”ac” are 1, since only the deletion of ”b”
in s2 is necessary to change s1 into s2.

To compute the symmetric EDR distance between trajectories, a threshold
value, ε, and a sub-cost function is needed to evaluate whether two points are
considered equal. Two points are considered equal if they are within ε from each
other. EDR differs from other similarity measures by the fact that it counts edits,
thus making a binary decision whether to include points or not. This approach
makes the algorithm robust to noise, but as with both DTW and DFD the time-
complexity of EDR is O(n2), where n is the average length of the compared objects.

2.3 Locality-sensitive hashing

Understanding data is the driving force behind the field of data-mining, and the
problem of finding similar items in data-sets is a fundamental aspect of this field
[20]. A naive approach to solve this particular problem is to compute and com-
pare the similarity of every possible pair of items in the data-set using a suitable
similarity measure. For large data-sets, this approach is simply not feasible, as the
computation cost of generating the similarities would be too expensive and time
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consuming. Instead, we can utilise a technique called locality sensitive hashing
(LSH), which allows us to find and compare items that are likely to be similar,
without comparing the entire data-set.

Locality sensitive hashing was first introduced in 1999, and was designed as an
approximation technique developed for efficiently finding similar items in large
data volumes in sub-linear time [6]. As the name might suggests, the technique
is based on hashing the data-items and then comparing their hashes. The basic
idea behind LSH is that items that are similar or close to each other are likely
to have similar hashes. This is an essential property of LSH, and is achieved by
carefully choosing hashing functions that preserve the locality and characteristics
of the data. It is this property that have made the technique one of the most
popular approaches to solve problems related to finding similar items or so called
near-neighbour problems [21]. However, the preservation of data-locality through
hashing also makes it possible to use the hashes to approximate similarities among
the data-items since the hashes can be seen as rough compressions of the original
data-entities. It is this idea that lays the foundation for this research and thesis.

The traditional locality sensitive hashing technique used to find similar items,
takes as input a matrix M , where each column, c, represents an item in the data-
set. The matrix are then divided into b bands, where each band consists of r rows.
Next, each band hashes its columns, which represent a piece of the original data-
item, to one of k buckets depending on the hash value. Items that are hashed to
the same bucket is considered to be a candidate pair, i.e similar items.

In contrast to normal hash function applications, locality sensitive hashing
functions does not seek to transform the input data into random output values. In-
stead, since the preservation of data locality is a most crucial property, the choice
of hash functions deeply affects the quality of the hashes and the technique’s abil-
ity to achieve the desired result. Despite choosing a reasonable hash functions,
there is no guarantee that two similar items’ hashes are likely to be similar, be-
cause there is a significant information loss during hashing. However, the hashing
process can be repeated multiple times with different hashing functions to increase
the probability of hashes being hashed to the same bucket.

There are usually several hash-functions involved when performing LSH, and
together they create a hash-family. As stated in Definition 3, the hash-family must
preserve the locality of the original data in order to be suitable for the task. The
definition formalises the already stated fact that two similar data-points in the
original data-set should also be similar in the projected result set after hashing.

Definition 3 (Locality-sensitive hash family) A hash family H, is said to be
(R, cR, p1, p2)-sensitive, if all hash functions h ∈ H satisfies:

1. if dis(x , y)≤ R,−→ Pr[h(x) = h(y)]≥ p1
2. if dis(x , y)> cR,−→ Pr[h(x) = h(y)]≤ p2

Where x, y are datapoints in a d-dimensional data-set D in Rd . p1 and p2 are
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probabilities where p1 > p2, c is an approximation ratio > 1, r is a distance > 0
and dis is a distance function for similarity.

LSH consist of a broad spectre of algorithms and different methods, having
in common that the chosen hash family preserves the locality of the data. As we
shall see in the coming parts of this thesis, there are different ways to build LSH-
schemes of trajectories by abstracting the concepts of bands and buckets, which
enables us to efficiently do more complex approximations on the data, including
approximating similarities of data.

2.4 Clustering techniques

Clustering is a technique in data mining for grouping similar objects in a data-set
into so-called clusters (groups). It allows us to characterise object into groups so
that patterns in the data can become more evident. Since clustering is a well-
known technique for data-mining, we will utilise Hierarchical Cluster Analysis
(HCA) to evaluate the performance of the approximated similarities from the LSH
schemes.

2.4.1 Hierarchical Cluster Analysis

Hierarchical Cluster Analysis (HCA) is a family of clustering algorithms which
are designed to create clusters based on a hierarchical approach. The HCA family
consists of divisive and agglomerative algorithms, where the former has a top-down
approach and the latter having a bottom-up approach [22]. For this thesis, we will
utilise the agglomerative linkage approach.

In agglomerative linkage HCA, every object start as a single cluster, and for
each step of the algorithm two clusters are merged in a bottom-up approach.
The selection of which clusters to be merged are decided by a linkage-method,
which serves as a distance measure between clusters. Common linkage meth-
ods are single, complete and ward, where single denotes the minimum distance
between any two points in two respective clusters, complete denotes the maximum
distance between any two points in the two respective clusters, and ward denotes
how much the total distance for all points to the clusters’ centroids will change if
merged. Independent of linkage-method, the two clusters with the shortest link-
age will be merged at each step of the algorithm. If no end-parameter is given,
HCA will merge clusters until there is only one cluster left [23]. The HCA process
and especially the distances between clusters can be visualised using a dendo-
gram, as shown in Figure 2.4.

2.4.2 Evaluating clusters

When creating clusters, and especially clusters based on approximations, we need
a way to determine how well the clusters perform. A good clustering method
creates clusters of objects that truly are similar and the created clusters should
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(a) Nested clusters (b) Dendogram of the clusters

Figure 2.4: Agglomerative single-linkage HCA of five points shown in a. By look-
ing at the dendogram in b we see that the first cluster is created by merging A
and B, meaning they are the most similar. The colour in the dendogram indicates
the clusters.

be clearly distinct from another. There are several methods to evaluate clusters,
both ground-truth based and methods based on internal performance. The first
type of methods can be utilised to evaluate how well a clustering technique works
when there is a known ground truth, thus being a good suit for evaluating how
clusters based on approximations performs. The latter type, based on internal
performance, usually evaluates clusters based on intra- and inter-cluster distance
[24].

Introduced back in 1971, the rand index is a ground-truth based method that
evaluates how well a cluster algorithm performs by looking at the content of the
clusters [25]. Let C = C1, ..., Cr be the output of a clustering algorithm containing
r clusters and T = T1, ..., Tq be the ground truth containing q clusters. The Rand
index is a measure that is based on how many times two pairs of objects appear in
the same cluster in C and in the same cluster in T , as well as the number of times
two pairs of objects belong in different clusters in C and T . The rand index are the
sum of these factors divided by the total number of object pairs in the data-set,
where a score of 1 indicates a clustering output identical to the the ground truth.
It is important to be aware that the rand index is sensitive to chance, meaning
that an agreement between two clustering outputs can be the result of chance.

Despite being a good algorithm for comparing two clustering algorithms, the
rand index does not give other information than a score presenting how close the
two outputs are. A good result could potentially hide the fact that some clusters
could be overlapping. As mentioned at the beginning of this section, there are
measures that internally evaluate the output of a clustering algorithm by looking
at intra- and inter-cluster distances, thus being suitable methods for evaluating
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cluster sharpness. The Davies-Bouldin index (DBI) is one of these measures [26],
and it utilises two distances, within-cluster- and between-cluster distance to calcu-
late its score. The within-cluster distance (WCD) is simply the average distance
from each cluster’s centroid to the corresponding objects, and the between-cluster
distance (BCD) describes the distance between the centroids of two clusters. For
every pair of clusters in the clustering a difference measure is calculated by di-
viding the sum of the clusters WCD’s by their BCD. The Davies Bouldin index can
then be computed by finding the average of the maximum difference measure for
each cluster.

The main drawback with using this index is the need to compute centroids for
every cluster. This is usually done by computing the average data-point of each
cluster, which could be infeasible when the clusters contain complicated data-
items. Furthermore, the method was designed to evaluate clustering methods,
and in order to compare DBI scores from different clusters, the similarities used
for clustering must be the same. However, the fact that the Davies-Bouldin index
is a composition of both WCD and BCD means that we can use them individually
when analysing the performance of a clustering output. The formal definition of
within-cluster-distance, between-cluster-distance and the Davies Bouldin index
can be found respectively in Definition 4, Definition 5 and Definition 6:

Definition 4 (Within-cluster distance) The within-cluster-distance of a cluster Ck
is defined as:

W C DCk
= 1

nk

∑

ai∈Ck
dis(ai , ck)

Where nk is the number of objects in cluster k, ck is the centroid of Ck and dis is a
distance function.

Definition 5 (Between-cluster distance) The between-cluster-distance of cluster
Ck and Cl is defined as:

BC DCkCl
= dis(ck, cl)

Where ck and cl are the centroids of Ck and Cl and dis is a distance function.

Definition 6 (Davies-Bouldin index) The Davies Bouldin index of a clustering out-
put C with K clusters is defined as:

DBIC =
1
K

∑K
k=1 maxCl ̸=Ck

W C DCk
+W C DCl

BC DCkCl

Where ck and cl are the centroids of Ck and Cl and dis is a distance function.

We wrap up this section by looking at the definition of the Davies-Bouldin
index and the description of rand index. For the Davies-Bouldin index we observe
that a smaller output value indicates that the output clusters are compact and well
separated. For the rand-index a higher score indicates a better result, meaning that
a greater portion of the items can be found in the same cluster as the benchmark.
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Existing work

In this chapter, we cover some of the existing work where locality sensitive hash-
ing have been proposed and used for efficient retrieval of similar trajectories. We
first present the two articles that this research are built upon, before other ap-
proaches for efficient trajectory similarity computation are presented. Generally
in the literature, to the best of our knowledge, the utilisation of LSH for efficient
similarity computation of trajectories is a relatively unexplored field.

3.1 LSH of curves

In 2017, Driemel and Silvestri published a theoretical article [7]where they presen-
ted LSH schemes for the purpose of solving the (c, r)-near-neighbor problem of
polygonal curves. Their work elaborated on how one can retrieve similar curves
to a given query curve efficiently, using an approximation of the classic Fréchet
distance as a similarity measure. They developed a data structure which allowed
them to store curves and efficiently retrieve similar curves. They also presented
some variations of the data structure to cope with different constraints, such as
speed and anchored distances. Their work improved what was long considered as
the state of the art from 2002 by Indyk [27] for solving the (c, r)-near-neighbor
problems.

The basic LSH scheme presented in this paper is constructed by displaying
curves over a randomly shifted grid and snapping the vertices of the curves to the
corresponding underlying grid-cell. This creates a new representation of the curve,
consisting of a series of grid cells where consecutive duplicate cells are removed.
The process of snapping a curve to the underlying grid in this LSH scheme, defines
a hash-function on the curves, where their locality are preserved through hashing.
The grid is shifted in both dimensions by a random parameter t ∈ [0,δ), where
δ denotes the resolution of the grid, and thus, by generating more grids with a
random t, they are able to construct a family of hash functions.

Driemel and Silvestri also presented another, fairly similar scheme. Instead of

15
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a shifting grid, the vertices of curves are distorted by a parameter, t, randomly
and independently chosen from a sequence of variables, tp, that are uniformly
distributed on the interval [−δ/2,δ/2]. Trajectories vertices’ are then snapped
to a fixed grid, and consecutive duplicates of grid points are removed. The hash
function for this approach is defined by the sequence tp. A family of hash functions
is constructed by varying this sequence, which will distort the points in the curves
differently.

For both schemes, the computation of the curves’ hash values are stored in hash
tables, where each hash function corresponds to a unique hash table. A similarity
search is done by applying the hash functions to the query curve, and compare the
resulting hash to the already existing hashes in the tables for matches. Compared
to the state of art, the LSH structure reduced both query time and the needed
space to store the structure for the problem. As mentioned in the early parts of
this section, the presented LSH-schemes were originally created for solving the (c,
r)-near-neighbor problem, however, we believe that it can be adapted and utilised
for approximating similarities as well. It is the basic scheme from this article that
this research is built upon, and our adaption is further described in chapter 4.

3.1.1 FRESH

A year later, in 2018, the creators of the grid-based LSH scheme contributed to the
creation of a framework, FRESH, that were constructed to approximate answers
to the r-range search problem under the Fréchet distance [28]. The r-range search
problem is the problem of returning all entries in a data-set, given a distance r
and a query object q, that are within distance r from q.

To address this problem, the authors constructed a framework based on the
described LSH schemes, and adapted it by applying multiply-shift hashing to in-
crease the probability of collision for close trajectories, and decrease it for distant
trajectories. For a query curve, the framework returns all curves that collides with
the query curve in at least one hash function, and the number collisions between
two trajectories is used as an approximation. This scheme are likely to return
some false positives, and thus several verification heuristics are applied to elim-
inate curves that are further away than r.

The FRESH framework cannot be directly adapted to similarity computation,
since the key concept of FRESH is to prune computation of distant pairs. However,
the LSH-scheme that lays the foundation for FRESH is similar to the one that we
will utilise, such that the article itself and its results are valuable to us. An import-
ant result from the paper was that that LSH is considered to be the most effective
heuristic to prune distant trajectory pairs. Furthermore, it is also considered being
the cheapest to compute.
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3.2 LSH with randomly deployed disks

The same year, in 2018, Astefanoaei et al. [8] published a study where they de-
veloped a disk-based LSH scheme specifically designer for trajectories. Compared
to Driemel and Silvestri, Astefanoaei et al. developed a slightly simpler ground
scheme, by randomly deploying a number of disks in a plane which covers the
span of the trajectories. Their scheme allowed them to compute a variety of tasks,
including both (c-r)-near and c-approximate-nearest neighbor queries, as well as
distance estimation between trajectories and classification in an efficient manner.

In the article, the authors presented two LSH hashing schemes designed to
approximate DTW and the Fréchet distance. The schemes are constructed by de-
ploying n random disks with radius r in several layers l that cover a plane that
spans all the trajectories. The first structure, referred to as binary sketches, is con-
structed by snapping trajectories to their intersecting disks. The idea is that close
trajectories should intersect common disks, and thus distant trajectories should
not intersect common disks. A bit vector is created for each trajectory, represent-
ing the disks that intersected with the original trajectory at one layer. The hash
function of this LSH scheme is the process of converting a trajectory to a bit vector,
and thus a hash family consisting of i hash functions is created by repeating the
bit-vector computation of trajectories for each layer li in l.

As described in 2.2, the Fréchet distance and DTW maintains the ordering of
trajectories points (vertices), which is not supported by the binary sketches. To
cope with this problem, the authors presented a second scheme, ordered sketches.
This scheme is fairly similar, but converts the trajectories into the sequence of the
disks it intersects, such that a trajectory is represented sequentially by the disks it
moves through. As with the binary sketches, Astefanoaei et al. constructed a family
of hashes for the ordered sketches by repeating the creation of ordered sketches
for multiple layers, l. The authors described multiple operations that could be
performed on the ordered sketches, including approximation of the similarities
between the original trajectories. They proposed edit distance on the output of the
ordered sketches to be a good measure for this purpose.

The article included an experimental part where the performance in terms of
accuracy and approximation was found to be increasing with the number of disks
and the number of layers. However, for every extra disk and layer added, the
run-time of the algorithm increases. The authors also compared their approach
to the grid-based LSH-scheme provided by Driemel and Silvestri, and found that
the disk-based approach scores slightly better on accuracy. They also conclude that
the presented sketches is effective for trajectory processing, leading to us adapting
their concept of ordered sketches for our research.
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3.3 Other existing work

In the literature, there exists several research articles which explore and dis-
cuss how trajectory analysis can be accelerated. Different approaches and tech-
niques have been proposed for this case, and we can roughly categorise them into
approximation-based approaches and pruning-based approaches. The first aims at
reducing time complexity through approximation, and the latter seeks to reduce
the total number of computations to speed up the computation time.

Approximation-based work

In 2016, Aye et al. [29] explored the effect of implementing LSH and distance-
based hashing (DBH) to accelerate similarity computations among trajectories.
They implemented simple versions of LSH and DBH, that transform trajectories
into binary representations where each bit represents one of the possible buck-
ets that trajectories can be hashed to. A similarity score between the trajectories
can then be calculated based on the euclidean distance between their binary rep-
resentations; an approach close to the binary sketches in [8]. The approximated
similarities were then evaluated by how well they formed clusters under different
clustering algorithms. The approximations performed well for LSH, both in terms
of speed and accuracy, however DBH did not show sufficient accuracy.

Their approach with LSH did not include any way to maintain the ordering
of points and movement direction of the tracked object, thus creating big simpli-
fications as the ordering of points often are interesting. Furthermore, two of the
three data-sets used are considered simple and include few complex trajectories.
The results also show a drastic reduction in accuracy for the last more complex
data-set.

Another approximation-based approach is the well-known Fast-DTW algorithm,
which reduces the similarity computation time for DTW from quadratic to linear
time-complexity [30]. The algorithm utilises multiple layers of the cost matrix de-
scribed in subsection 2.2.1 with increasing resolution, such that the top-layer is a
coarse representation of the cost matrix and the bottom layer is a full representa-
tion. The algorithm iterates through the layers, beginning with the computation of
an initial path at the top level, and for each underlying layer, the path is projected
and a more correct path is searched for within a given distance from the previ-
ous path. This process goes on until the original bottom layer is reached. Despite
reducing the time complexity to a linear factor and showing a generally good ap-
proximation factor, the true potential of fast-DTW is limited to longer trajectories
as the amount of overhead for shorter trajectories are relatively larger than for
longer trajectories. In addition, as shown by Wu and Keogh [31], fast-DTW also
fails to find good approximations under certain conditions.

Other recent work apply a more modern approach by using artificial intel-
ligence to accelerate the computation of similarity among trajectories. In 2019,
Yao et al. [5] introduced a neural metric learning method called NeuTraj, which
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supports several trajectory similarity measures. Simplified, NeuTraj calculates the
similarity between a number of seed trajectories from the database using a desired
distance measure, and uses these similarities to train a neural network that can
approximate similarities between all trajectories in the database. By utilising ar-
tificial intelligence, the authors achieved significant acceleration of computation
of similarities, with a factor of minimum 3 times better than other approximation
methods. However, the time cost for training NeuTraj is not reflected by that factor.
Furthermore, the approach is dependent on seed samples and the computation of
their pair-wise true distances, which is also another training-related factor.

A similar approach to solving the problem of efficient computation was pub-
lished the same year by Ruobing et al. [32]. They developed a deep network
structure, DTSM, to calculate similarities between trajectories. The network was
trained by providing pair-wise trajectory samples with their pre-computed corres-
ponding DTW similarity as labels. DTSM calculates geohashes of the trajectories
points, and use these hashes as input to the deep network to compute the sim-
ilarities. Their model showed over 90% accuracy with a tolerance of 2.5% from
their true similarities, and a computation speed significantly faster than the Fast-
DTW algorithm. However, like [5], the network requires training and thus also the
computation of DTW similarities of the samples. In addition, it is crucial that the
training-data reflects the characteristics of the entire data-set, so that the networks
computations will approximate the true similarity values.

Pruning-based work

Within the field of distance-based data analysis of trajectories, there have been
several approaches that seeks to reduce the total number of trajectory comparisons
to achieve faster computation time. Strategies seeking this approach often include
pruning and indexing, and are generally adapted to trajectory problems related
to top-k similarity search.

Xie et al. [33] created a distributed index to be used for trajectory similar-
ity search for a large trajectory data-set. The distributed index was created so
that distributed computing could be applied to the problem, thus creating a high-
performance distributed framework. The index was constructed so that several
techniques could be applied to prune the search area and accelerate the search
process, which performed well in terms of scalability.

Another study that utilised indexing for accelerating similarity search among
trajectories was conducted by Gowanlock and Casanova [34]. They developed dif-
ferent indexes that could be utilised by GPUs to compute top-k similarity searches,
and compared them to a classic CPU-implementation of a R-tree index. Their work
achieved significantly shorter response-times than classic CPU-implementation,
and especially relatively shorter times for larger volumes of trajectories.

Even though these strategies achieved good scalability for the top-k search
problems, they remain unfit for efficiently computing distances of all trajectory
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pairs, since the similarity between every pair of trajectories in the data-set must
be computed, thus comparing all trajectories pair-wise.

3.4 Contribution

With this thesis, we seek to explore whether the LSH can be utilised for more
efficient computation of similarities to cope with the problem of scalability when
dealing with larger volumes of trajectories. To the best of our knowledge, utilising
LSH schemes for this purpose is a relatively unknown field with only a few existing
studies presented earlier in this chapter. We seek to explore the usability of LSH
techniques that preserve the direction of trajectory movement directly related to
the problem of computing trajectory similarities. We take the schemes and some
of the results from [7] and [8] as a starting point, and further explore the potential
of these LSH schemes.

Additionally, as this research is exploratory, both the methods and the results is
valuable and minor contributions itself, since they might inspire and guide other
future work within this field.



Chapter 4

Methodology

This chapter describes the working methodology used to answer the research
questions provided in section 1.2. In short terms, we adapted the LSH schemes
provided by Driemel and Silvestri [7] and Astefanoaei et al. [8] to approxim-
ate trajectory similarities of two data-sets. We evaluated performance of the LSH
schemes in terms of accuracy and efficiency by comparing against their true val-
ues. Lastly, we generated clusters from the approximated trajectories to under-
stand the similarities performance of a practical usecase.

4.1 Setup

The experiments carried out in this thesis were all conducted on a personal com-
puter with a generation 12 Intel Core i7 processor and 16 GB of RAM, running
Microsoft Windows 11 Home. All experiments were set up and ran in local Jupyter
Notebook instances using Python 3.10 as programming language. A Python en-
vironment was chosen due to the availability of modules and research packages,
and we have chosen to utilise traj-dist [35] for trajectory similarity algorithms and
sklearn [36] for data analysis.

4.1.1 Data-sets

To answer the research objectives presented in section 1.2, we have chosen to
utilise two rich publicly available data-sets containing real-life movement data.
Both data-sets contain trajectories over taxis’ movements in two major European
cities. As elaborated in section 2.3, one of the key features of LSH is the ability to
reduce time complexity when comparing complex objects, which is why taxi-data
was chosen for this research. We chose to utilise two data-sets for this research in
order to get a deeper understanding of the schemes and strengthen the results.

In order to fully evaluate the schemes according to the research questions,
especially RQ2, we generated ten data-sets from both data-sources with varying
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sizes that were used in the experiments. The smallest sets contained 100 traject-
ories, and the largest set contained 1000 trajectories, where the sets between in-
creased with an interval of 100 trajectories. All data-sets were constructed so that
a larger data-set is a superset of all smaller data-sets. Additionally, We also gener-
ated a test set for both data-sources (Porto and Rome) containing 50 trajectories
that was utilised to find the scheme configurations for this research as shown in
section 5.1.

Rome Taxi data-set

The Rome taxi data-set, available at CRAWDAD [37], contains movement data
from 320 taxis collected over a time period of 30 days in 2014. The data were
collected with a sampling frequency approximately every seventh second, result-
ing in relatively fine-coarse data and a total of 21.8 million individual data-points.
The data-set are not divided into natural trajectories representing trips etc., but
contains rows with a driver id, a timestamp and a geographical location. The data
was collected as long as the taxis were active, both with and without passengers.

To be able to utilise the data-set, we extracted smaller trajectories with a min-
imum size of 40 data-points and a distance between four and six kilometres in
an effort to mimic taxi-trips. With inspiration from Astefanoaei et al. [8], we only
extracted trajectories that had a minimum total distance of 2.5 times the distance
between the start and end point. Furthermore, to reduce the possible geographical
extent of the trajectories, we only extracted trajectories that lied entirely within a
bounding rectangle of approximately 6 x 8 km over Rome’s city centre. An over-
view of the total 1000 extracted trajectories are shown in Figure 4.1.

Porto Taxi data-set

The Porto data-set, which can be publicly found at Kaggle [38], consists of tra-
jectories collected from 442 taxis in Porto. Opposite to the Rome data-set, this set
is already structured and divided into trajectories representing a single trip with
a customer. The datapoints were sampled roughly every 15 seconds, and were
collected from July 2013 to June 2014. The set was published as a part of taxi
trajectory prediction competition and contains over 1.7 million trips. Each tra-
jectory contains some metadata fields, including timestamp and a field indicating
if the trajectory has missing data. Since the data-set was already split into trips,
we extracted 1000 trajectories with a length of 40 datapoints, bounded by a 6 x
8 km rectangle over Porto city centre. The extent of the extracted trajectories are
visualised in Figure 4.2. As can be seen in this figure and Figure 4.1, the underly-
ing road-network in Porto seems to be slightly more coarse-grained than in Porto,
resulting in a slightly less complicated data-set than the Rome set.
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Figure 4.1: Overview of the extracted trajectories from the city centre of Rome.

4.1.2 Data cleaning and preparation

The data-sets that we used are gathered from vehicles in an urban environment
where GPS-signals and the collected data-points are likely to be distorted by noise.
It was therefore essential to filter out noisy data when we extracted the traject-
ories from the data-sets. To prevent possible noise- and outlier-datapoints in the
extracted trajectories from both data-sets, we removed all trajectories where the
distance between two consecutive points were greater than a threshold. To ensure
overall good quality of the extracted trajectories, we did not extract trajectories
that was marked with missing data from the Porto set. During data extraction from
the Rome set, we removed trajectories where two consecutive points had a time
difference of more than 32 seconds; indicating that data were missing between
the points.

4.2 Creation of benchmarks

One of the key element of this thesis was to evaluate whether the grid-based and
disk-based LSH-schemes are adaptable and suitable for similarity computation
(RQ1), and to understand their performance (RQ2 & RQ3). To fully answer the
research questions, we generated benchmarks that was used as a basis for com-
parison.

We computed the similarity values between the trajectories in both data-sets.



24 B.A.F: Trajectory similarity computation using LSH

Figure 4.2: Overview of the extracted trajectories from the city centre of Porto.

Since trajectory similarity measures emphasise different properties of the tra-
jectories, we computed similarity values using both Dynamic Time Warping and
Fréchet distance as distance measures. These similarities were stored to be used as
benchmarks, and we will later in this thesis refer to them as the true similarities of
the data-sets. Additionally, we measured the computation time required for com-
puting the true DTW similarities for the different sized data-sets. This was done
by running 10 independent parallel processes and measured the process time of
each process.

We used the true similarities (DTW and Fréchet) from both Porto and Rome
to generate benchmarks clusters to be used when answering RQ3. We utilised the
hierarchical agglomerative clustering algorithm provided by sklearn [36], using
ward as the linking method for this task. As described in section 2.4, HCA will
merge clusters until it reaches the stop criterion, which is given by the number
of desired output clusters. We chose to set this number to be 30 clusters, without
any knowledge of possible underlying patterns in the data-sets. The number was
chosen with hope that it could provide clusters that are likely to be clear, but still
few enough for proper visual inspection.

The usage of these benchmarks are further elaborated on later in this chapter.
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(a) Grid-based LSH scheme with a grid-tile
resolution of 2.

(b) Disk-based LSH scheme with 4 disks
and a diameter of 2.

Figure 4.3: Visualisation of a hash family of four hash functions for the grid-
based and disk-based LSH techniques. A trajectory is represented by by the orange
line, and can be seen intersecting with grid tiles and disks in the layers for the
respective approaches.

4.3 Implementation of LSH-schemes

First, we implemented the basic grid scheme from [7], where the grid is randomly
shifted with a parameter t ∈ [0,δ). As elaborated in section 3.1, δ represents the
resolution (grid tile width) of the grid, i.e. the granularity of the hashing functions,
and was set individually for both data-sources. Layers were implemented in the
scheme, such that the layers constructed a family of hashes. We implemented the
hash functions to return the set of grids that the trajectories’ points are located in,
ordered chronologically and with consecutive duplicates removed. Furthermore,
the grid scheme was constructed so that a complete trajectory hash consisted of
a list of hashes where each list element corresponded to a layer in the scheme. A
visualisation of the implemented grid scheme are shown in Figure 4.3a.

The disk-based scheme from [8] was also implemented and slightly adapted.
We constructed the disk-based scheme by deploying n random disks of a given
size s in a plane which span the trajectories. We repeated this process for l layers,
resulting in l different hashing functions. In the paper, the hashing functions were
originally designed to return the sequence of deployed disks trajectories moved
through, leaving us with no context indicating the relative distance between any
two disks. Therefore, an option for the disk-based scheme was implemented where
the hash output are similar, but now represented by the intersecting disks’ geo-
coordinate. Like the grid-based scheme, the disk-based scheme was implemented
so that the output of hashed trajectories consisted of a list of hashes where each
element corresponds to a layer (hash function) in the scheme. A visual represent-
ation of this scheme can be seen in Figure 4.3b.

Compared to the grid-based scheme, the process of hashing trajectories are
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slightly more complicated. For every trajectory, each point could possibly intersect
multiple disks, meaning that every point in the trajectory must be controlled for
intersecting each disk. This is far more comprehensive than snapping points to
a fixed grid, where simple arithmetic are applied. To prevent unnecessary time
spent computing the hashes, we experimented with two different approaches. A
simple quad-structure and a KD-tree were implemented as alternatives to more
efficiently finding points laying within disks.

4.3.1 Choice of parameters

Both the grid-based and the disk-based schemes required parameters to be set.
The first required the grid-tile width (resolution) and the numbers of layers to
be set, and the latter required the number of disk and their diameter, as well as
the number of layers to be set. The ideal configuration of the schemes’ parameter
values are dependent on the underlying data and its’ granularity. Additionally,
as we shall see, setting the parameter values was a trade-off between precision
and efficiency, since a fine-grained grid and large disks will produce longer hashes
containing more information about the hashed trajectories. To find a working con-
figuration of the parameters for our experiments, we ran 20 parallel jobs with
different combinations of the parameters using the test-data-set from both cities
and for both schemes. From the output hashes, we computed their similarities and
compared them to their true similarities, as presented in Section 5.1.

From these observations, the grid-based scheme over Porto and Rome was
configured respectively with 5 layers with a grid tile width of 1.6 km and 4 layers
with a tile width of 1.2 km. The disk-based scheme over Porto was configured
using 4 layers with 60 disks with a diameter of 2.2km, and the configuration
over Rome was set to 5 layers with 50 disks with a diameter of 1.6 km. These
values was chosen for the remaining experiments, and was used for all subsets of
a data-set. The justification of the configurations, along with the effects of different
parameter values are further discussed in chapter 6.

4.3.2 Choice of hash similarity measure

The computation of similarities between the disk hashes was originally proposed
by [8] to be computed using edit distance for strings, since the hashes were se-
quences of disks. However, this approach will treat two trajectories that are close
but with no common disks as equal as two trajectories that are distant from each
other. Dynamic Time Warping was therefore implemented on the location-aware
optional hashes, using euclidean distance as cost function. For the grid-based
hashing scheme, DTW was also implemented as similarity measure where the
Manhattan-distance between the grid tiles was used as cost function. In the early
phases of this research, we compared the original edit-distance against the op-
tional DTW, and then decided to focus this research on the optional DTW for both
schemes, since it achieved better results. The choice of hash similarity measure is
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further elaborated on in chapter 6. Which similarity measures that best suits the
schemes is an interesting study in itself, but no further measures were tested in
our research as it falls outside the scope of this thesis.

4.3.3 Creation of LSH-similarities

The hash-similarities was computed by applying the above-mentioned similarity
measure to the hashes generated by both the grid-based and disk-based scheme
with the specified parameter-configurations. For the grid-based approach, simil-
arities was computed using DTW with Manhattan-distance between grid tiles. For
the disk-based approach, similarities were computed using DTW with euclidean-
distance. The similarities between trajectories were generated by the sum of the
trajectories’ layers pair-wise DTW similarity. With two different data-sets and two
different LSH-schemes, a total of four unique hash-similarity matrices was gener-
ated in total.

4.4 Analysis of LSH-similarities

The performance of the LSH generated similarities was evaluated according to
their efficiency and accuracy. In terms of efficiency, the time needed to generate
the hashes was measured, and more importantly the time needed to compute the
hashes. The accuracy was evaluated by computing the correlation against the true
similarities.

We utilised the python core module timeit to measure the efficiency of the
LSH schemes. Timeit is a library created with the purpose of timing minor bits of
python code. To prevent distortions and the timing of being affected by other run-
ning processes, we configured timeit to measure the process time, which is the total
elapsed CPU time of a process. To understand the efficiency of the LSH schemes
under various data-size inputs (RQ2), the time required for computing the sim-
ilarities was measured for all subsets, with sizes from 100 trajectories to 1000.
Additionally, the time needed to generate the trajectory hashes for the largest
data-set was also measured. This process was repeated for both schemes and for
both cities/data-sets. Each timing-experiment was conducted by running a total
of 10 individual parallel processes and computing the average run-time.

As mentioned at the beginning of this section, the accuracy and effectiveness of
the LSH hashes was evaluated by computing the correlation between the hashed
similarities and the true similarities. As an opposite from the true similarities,
the computed hash similarities are not symmetric, since the hashes they are com-
puted from are based on random variables. However, we believe that the simil-
arities in most cases are symmetric-like, and that pearson correlation coefficient
gives a good indication of the linear accuracy between the LSH-similarities and
the true similarities. Furthermore, to get a deeper understanding of the effect-
iveness of the LSH-schemes, we generated 2d-histograms over the similarities. A
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2d-histogram helps visualise the relationship between two numerical variables,
and visualises the distribution of the values for both variables. We generated 2d-
histograms between the hashed similarities from both schemes and both cities,
and the true similarities from DTW and Fréchet distance.

4.5 Practical analysis using clusters

To answer RQ3 and understand the practical performance of the similarities, we
utilised sklearn [36], a library which contains, among other things, functionality
for clustering and methods for clustering analysis. Based on the generated simil-
arities, we generated clusters using sklearn’s hierarchical cluster model.

4.5.1 Cluster creation

For both data-sets and both LSH schemes, we generated clusters using the ag-
glomerative model. As elaborated in subsection 2.4.1, agglomerative clustering
continues to merge clusters until the provided number of clusters is given, and
for this research we configured the final number of clusters to be 30. We had no
knowledge of underlying patterns in the data-sets and with the data being un-
labeled as well, the number was chosen arbitrary primarily due to fact it being
small enough for easy analysis and visual inspection, but still large enough to
capture peculiarities in the different clustering outputs.

The agglomerative clusters was created using ward as the linking method
between the clusters, which minimises the variance between the merging clusters.
The clustering model was configured to use "euclidean" distance as measure when
deciding which clusters to merge. The model was given the similarities generated
by the LSH-schemes as input, and generated the clusters based on these similar-
ities.

4.5.2 Cluster evaluation

We mainly evaluated the clustering performance of the LSH-similarities after three
measures: rand index, Davies-Bouldin index and visual inspection. Both indexes,
described in subsection 2.4.2, was used as basis for the evaluation, in addition to
a visual inspection of the generated clusters for performance evaluation.

The rand index was computed to quantify the resemblance between the clus-
tering output of the benchmarks and the clustering output where the LSH-similarities
was used. We utilised sklearn’s metrics module in our work to compute the rand
index between the clustering outputs. Rand index is a comparison-based measure,
and can only indicate how close two clustering outputs are. In order to understand
the internal performance of the clustering outputs, we implemented an alternative
trajectory version of the Davies-Bouldin index.

As elaborated in subsection 2.4.2, Davies Bouldin index computes the centroids
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of clusters. This is usually done by computing the average value of the objects in
a cluster, but with complex cluster-objects like trajectories, computing an average
value is infeasible. Instead, a cluster’s centroid was implemented to be represented
by the trajectory with the smallest combined distance to every other trajectory in
a cluster. The within-cluster distance, between-cluster distance and the final DBI
was then implemented and later computed using this representation of a cluster’s
centroid. Since DBI is an internal evaluation measure, we cannot compare the DBI
of clusters from true similarities and hashed similarities. Therefore, we repeated
this process using the hashed clustering outputs in combination with the true sim-
ilarities, so that direct comparisons can be made independent of the similarities
used for clustering.

When evaluating clustering outputs, indexes and measures provide a good un-
derstanding. However, with the complex structures of trajectory data, a visual in-
spection of the clustering outputs can reveal other interesting aspects hidden from
the indexes. The clustering outputs was therefore visually examined to evaluate
the generated clusters properly.

4.6 Simplifications

We wrap up this chapter by mentioning the simplifications that was made through
the implementation and experimental phase of this thesis. Most of the simplifica-
tions were done because of implementation reasons, with only minor effects.

During the computation of disk-based similarities and the computation of the
true similarities, euclidean distance was used as measure between trajectory points.
Since the data-sets contain coordinates on a sphere, the correct measure would
have been the Haversine distance, which provides the surface distance between
the points. However, since the trajectories were constrained to a relatively small
areal extent, we chose to use euclidean distance since the difference between eu-
clidean and Haversine distance are tiny in small geographical areas.

Furthermore, the disks in the disk-bases LSH scheme were implemented using
geographical coordinates with a fixed radius. Due to the fact that the distance
covered by one longitudinal degree changes depending on the current latitude,
means that the implemented disks were slightly more spherical than round.

A tiny number of the trajectories did not intersect with any disk in a layer.
When the similarity score between two hashes that had at least one empty layer
was computed, the distance between the two layers was arbitrary set to be 0.5.

Lastly, the experiments measuring the time needed to compute the true sim-
ilarities was extremely time consuming, and we therefore chose to discard the
measurements of process time for the largest sub-sets. Instead, we interpolated
the run-times for the largest sub-sets based on the measured time for the smaller
sub-sets.





Chapter 5

Results

In this chapter, we present the observations and results from the conducted ex-
periments. First, the results regarding parameter choice are presented, before the
findings related to the understanding of the schemes’ performance are given. At
the end of this chapter, we present the results from the clustering processes along
with the belonging index scores results.

5.1 Parameter configuration

Figures 5.1 to 5.5 shows how the LSH schemes’ approximated similarities cor-
relate with the true similarities (DTW and Fréchet) under different parameter
configurations. The figures display the average correlation from 20 parallel jobs
for both schemes and both test-data-sets, and the standard deviation from the jobs
are presented with dashed lines in the figures. In Appendix A, we have included
corresponding figures where the originally proposed edit-distance was used as
similarity measure.

Even though the figures were generated to determine the parameter values
to be used in further analysis of the LSH schemes, we remark some general ob-
servations on parameter choice. For both schemes and cities we observe greater
correlation with the true similarities when the number of layers increase, as well
as a lower standard deviation which indicates a more predictable configuration.
From Figures 5.1 and 5.2, we notice that the grid-similarities correlation with the
true similarities drop as the grid tile width increases (lower grid resolution), and
that the standard deviation also increases. Additionally, we observe peak correl-
ation values slightly above 0.7 for the grid schemes, except for the Rome-test-set
having a peak correlation of 0.5 with the true DTW similarities.

In Figures 5.3 and 5.4, we observe a similar phenomenon for the disk schemes,
where a greater disk diameter corresponds to higher correlation with the true
similarities, and a lower standard deviation. We remark that the peak correla-
tion values for the disk schemes vary between 0.6 and 0.8 for the test-sets. In
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(a) Correlation with DTW (b) Correlation with Fréchet

Figure 5.1: Correlation with the true similarities for the grid similarities with
varying grid resolution and number of layers. Results from the test-set of Porto.
Standard deviation marked with dashed lines.

(a) Correlation with DTW (b) Correlation with Fréchet

Figure 5.2: Correlation with the true similarities for the grid similarities with
varying grid resolution and number of layers. Results from the test-set of Rome.
Standard deviation marked with dashed lines.

Figure 5.5, we observe that an increased number of disks corresponds to higher
correlation with true similarities and a lower standard deviation. We also observed
a relatively high standard deviation for the Porto set for all diameters up to ap-
proximately 2.25 km, and a similar observation for the Rome set up to 1.5 km
disk diameter. We also note that the number of layers in the disk Porto set have
no clear connection to correlation until the diameter reaches 2.25 km.

From these results, we chose the values presented in subsection 4.3.1 to be
used for further analysis. For readability of this thesis, we restate the values here.
The grid configuration of Porto was set to 5 layers with a grid tile width of 1.6
km, and the grid over Rome consisted of 4 layers with a tile width of 1.2km. The
disk configuration over Porto consisted of 4 layers with 60 disks with a diameter
of 2.2 km, and the disk scheme over Rome consisted of 5 layers of 50 disks with a
diameter of 1.6km. The values were chosen from the observation of having good
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(a) Correlation with DTW (b) Correlation against Fréchet

Figure 5.3: Correlation with the true similarities for the disk similarities with
varying disk diameter and number of layers, computed with 50 disks. Results
from the test-set of Porto. Standard deviation marked with dashed lines.

(a) Correlation with DTW (b) Correlation against Fréchet

Figure 5.4: Correlation with the true similarities for the disk similarities with
varying disk diameter and number of layers, computed with 50 disks. Results
from the test-set of Rome. Standard deviation marked with dashed lines.

correlation with both true similarities and low standard deviation. We remark that
these chosen values not necessarily corresponds to the parameter configurations
with the best correlation. The choice of parameter values are therefore further
discussed in chapter 6.

5.2 Performance analysis

In this section, we present the findings related to RQ2, where the schemes have
been configured with the chosen parameters derived from section 5.1.
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(a) Porto - Computed with 4 layers with disk
diameter of 2.2 km.

(b) Rome - Computed with 5 layers with
disk diameter of 1.6 km

Figure 5.5: Correlation with the true DTW similarities for the disk similarities
with varying number of disks. Results from the test-sets of Porto and Rome. Stand-
ard deviation marked with dashed lines.

5.2.1 Efficiency

In figure Figure 5.6, we have presented the computation-times required to com-
pute the similarity-values using the grid-hash and the disk-hash schemes for vary-
ing trajectory input loads, in addition to DTW as reference. The run-times of
Fréchet have not been computed due to immense computational load. Even though
both the grid and the disk schemes computation times are presented in the the
same figures, we remark that a comparison of the different schemes’ similarity
computation-times must take into account that the times are directly influenced
by the configuration parameters.

There are mainly three significant observations that are prominent in this fig-
ure. Firstly, we observe that the run-time for grid similarity computation over both
Porto and Rome are roughly 100 times faster than computing the true DTW sim-
ilarity for all data-sizes. Secondly, we observe a similar slightly weaker, but still
strong trend for the disk-based similarity computation-times, where the respect-
ive speed-up of the Porto and Rome data-sets are approximately 13 and 21 times
faster than the true DTW similarity computation times. Lastly we observe that the
disk-scheme over Porto has the worst computation time of the all the schemes,
even worse than the disk-scheme over Rome. This is contra-intuitive since the ref-
erence similarity computation time of Rome is much greater than the reference
of Porto, and is further discussed in chapter 6. By implication from the first two
observations, we note that both hashing schemes scale far better with increasing
input-load of trajectories than true DTW does. We remark that the exact run-time
measurement of the highest trajectory loads for DTW was omitted due to exhaust-
ive computation. Fréchet distance was omitted as benchmark for the same reason.

In order to compute the similarities between trajectory hashes, the hashes it-
self must be generated. We have presented the run-times required to compute
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(a) Porto (b) Rome

Figure 5.6: Comparison between the computation time required to generate the
hashed similarities and the true DTW similarities. The red dots and crosses are
the average value measured from 10 parallel runs, and the plotted lines are in-
terpolated from these values.

1000 trajectory hashes over Porto and Rome in Table 5.1. We observe extremely
low overhead when generating the grid hashes, where the average computation
time for both data-sets being less than half a second which is significantly less
than 1% of the schemes’ required time for similarity computation. We observe a
slightly higher computation time for the disc-scheme, where the naive approach
on average takes vaguely less than 5 seconds for the Porto-set, and approximately
12 seconds for the Rome-set. These values correspond to around 1% and 3% of
the schemes’ similarity computation time. We observe that by applying either a
quad-structure or a KD-tree to the disk schemes, the time spent generating the
hashes can be reduced significantly.

Table 5.1: The measured computation time from the generation of 1000 traject-
ories’ hashes. Measurements from 10 parallel computations.

Hash generation times in seconds (s)
LSH Scheme and data-set (Al-
ternative generation)

Minimum Maximum Average

Grid Porto 0.09375 0.265625 0.167187
Grid Rome 0.18750 0.468750 0.371875
Disk Porto 4.562500 5.390625 4.812500
Disk Porto (Quadrants) 2.109375 2.703125 2.384375
Disk Porto (KD-tree) 1.250000 1.609375 1.471875
Disk Rome 11.218750 12.312500 11.834375
Disk Rome (Quadrants) 5.250000 6.125000 5.771875
Disk Rome (KD-Tree) 2.015625 2.703125 2.370312
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5.2.2 Effectiveness

In Figures 5.7 to 5.10, we have presented 2d-histograms visualising how the
hashed similarities are distributed in relation to their true similarities. For the
hashed similarities from both data-sets and both schemes, we have presented
their relation to both reference similarities (DTW and Fréchet) alongside each
other. The correlation between the hashed similarities and the true similarities
are shown in the lower right corner of each figure. Note that the 2d-histograms
are visualisations of single runs. In Table 5.2 we have provided the minimum,
maximum and average correlation values from 10 independent runs.

From the 2d-histograms there are some interesting general observations that
are important to us. We remark that 2d-histograms essentially visualises correla-
tion, where a dense increasing line-shape indicates a strong relationship between
the two variables. Firstly, from all 2d-histograms, we observe that both schemes
have a significantly denser line-shape when compared to Fréchet distance than
DTW, which naturally entails higher correlation with Fréchet distance.

Furthermore, we observe that the disk-based similarities tend to outperform
the grid-based similarities with narrower 2d-shapes. As stated earlier, the different
schemes have different configurations, and a direct comparison is not necessarily
meaningful. However, this observation is further supported by the consistent ob-
servation that larger true similarity values have a wider spread of corresponding
grid-similarities (Figures 5.7 and 5.8) than their corresponding disk-similarities
(Figures 5.9 and 5.10).

A final interesting observation which stands out from the 2d-histograms is
the higher spread of the schemes similarities’ corresponding DTW distance. Clear
examples of this are visible in Figures 5.8a and 5.10a, where the distribution of a
grid-similarity of 4, and the distribution of a disk-similarity of 1 are spread over
almost the entire y-axis. This observation becomes evident when looking at the
corresponding histograms with Fréchet distance in Figures 5.8b and 5.10b.

In Table 5.2, we have presented both schemes correlation with the true sim-
ilarities for the largest data-set of Porto and Rome. We observe stable correlation
values with relatively low standard deviation values. Even though the standard
deviation values are low, we note that the difference in correlation between the
minimum and maximum values are still not insignificant.

5.3 Analysis of clusters

In this section, we present the results and index measures related to RQ3. We
emphasise that the interest for this specific analysis is to evaluate whether the
hashed similarities are suited for a practical task, and not strive to generate the
most optimal clustering of the underlying data. We have combined the clustering
outputs using HCA based on the hashed and true similarities for each data-set
in two respective figures for easier visual comparisons. A full-size figure of each
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(a) DTW (b) Fréchet

Figure 5.7: Relationship distribution of trajectory similarity between grid- and
true similarities over Porto. Trajectories are grouped into tiles by their similarities.
A tile’s colour intensity indicates the number of trajectories present in the tile.

(a) DTW (b) Fréchet

Figure 5.8: Relationship distribution of trajectory similarity between grid- and
true similarities over Rome. Trajectories are grouped into tiles by their similarities.
A tile’s colour intensity indicates the number of trajectories present in the tile.

clustering output are included in Appendix B.

5.3.1 Clustering output

From the visual inspection of Figures 5.11 and 5.12, respectively Porto and Rome
clustering outputs, we observe that the two reference outputs from DTW and
Fréchet distance are slightly different for both data-sets. Both reference cluster-
ing outputs appear approximately equal in terms of density and cluster sizes, but
Fréchet distance tends to maintain the trajectories’ direction of movement slightly
better, which are shown by the gradient colour.

We remark that this is simply an interesting observation of the benchmarks,
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(a) DTW (b) Fréchet

Figure 5.9: Relationship distribution of trajectory similarity between disk- and
true similarities over Porto. Trajectories are grouped into tiles by their similarities.
A tile’s colour intensity indicates the number of trajectories present in the tile.

(a) DTW (b) Fréchet

Figure 5.10: Relationship distribution of trajectory similarity between disk- and
true similarities over Rome. Trajectories are grouped into tiles by their similarities.
A tile’s colour intensity indicates the number of trajectories present in the tile.

and must not be seen as a result in this thesis. However, our subjective visual
observation is that both the grid and disk hash similarities tends to maintain the
trajectories direction of movement slightly better than DTW, having more in com-
mon with the Fréchet distance. We also note that the disk-based clustering output
tends to preserve this property better than the grid-based clustering, especially for
the Rome data-set (Figure 5.12b).

Furthermore, we see that the grid-based clusters for both Porto and Rome
(Figures 5.11c and 5.12c) appear slightly more spread and less compact than
both the true clustering outputs. On the other hand, we observe that the disk-
based clusters (Figures 5.11d and 5.12d) are hardly distinguishable from the true
clustering outputs in terms of density and size.
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Table 5.2: Minimum, maximum and average correlation values between the
hashed similarities and the true similarities for both Porto and Rome. The val-
ues including standard deviation are the results from 10 independent runs.

Correlation with true similarities for 10 parallel runs
Similarity type / Reference Minimum Maximum Average Std. Deviation
Grid Porto / DTW 0.440 0.472 0.457 0.010
Grid Porto / Fréchet 0.619 0.654 0.640 0.010
Disk Porto / DTW 0.638 0.694 0.666 0.017
Disk Porto / Fréchet 0.829 0.859 0.843 0.012
Grid Rome / DTW 0.447 0.468 0.456 0.007
Grid Rome / Fréchet 0.687 0.712 0.702 0.010
Disk Rome / DTW 0.570 0.616 0.601 0.012
Disk Rome / Fréchet 0.764 0.798 0.777 0.009

5.3.2 Clustering index analysis

In Table 5.3, we have presented the internal Davies-Bouldin index for each clus-
tering output, decomposed into within-like and between-like distance. From sub-
section 4.5.2, we remark that there is no meaningful way of directly compar-
ing the values in this table, and that they should be emphasised in combination
with the clusters they are representing. In this table, and Table 5.4, the computed
Davies-Bouldin indexes are presented, along with the decomposed within-like and
between-like values for the schemes’ clustering outputs.

Table 5.3: Davies-Bouldin and the decomposed within-like and between-like
scores over the generated clusters.

Decomposed Davies Bouldin index

Similarity type and data-set WL (W L∗100
W L+BL ) BL ( BL∗100

W L+BL ) DB

DTW Porto (reference) 23.0316 76.9684 0.00997

Fréchet Porto (reference) 31.7614 68.2386 0.01551

Grid Porto 44.8063 55.1937 0.02706

Disk Porto 29.2465 70.7535 0.01378

DTW Rome (reference) 30.1179 69.8821 0.01437

Fréchet Rome (reference) 32.7586 67.2413 0.01624

Grid Rome 29.8108 70.1892 0.01416

Disk Rome 38.4741 61.5259 0.02084

The relative Davies-Bouldin index scores of the schemes cluster, where the true
similarities have been laid as basis for computation, are presented in Table 5.4.
The schemes’ adjusted DB scores relative to its reference have been included in
the rightmost column. Again, we remark that these values are a direct result of
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(a) True similarities - DTW (b) True similarities - Fréchet

(c) Grid hash similarities (d) Disk hash similarities

Figure 5.11: Trajectory clustering outputs over Porto generated from different
similarities. The upper two outputs are generated using the trajectories’ true sim-
ilarities, and the lower two outputs are generated using the similarities from the
Grid LSH scheme and the Disk LSH scheme.

the schemes configurations, which must not be forgotten when comparing the
schemes. One of the observations that stands out in this table is the schemes closer
proximity to the Fréchet clusters than the DTW clusters. The disk-scheme over
Porto using Fréchet as reference scored the best with a relative score of 1.1315
to the Fréchet DB index, having both WL and BL distances close to the reference
values. The good clustering performance of Disk Porto is further substantiated
when the DTW reference is also laid as basis.

From the Rome data-set, we observe slightly better index scores for the grid-
schemes. Despite the slightly better performance of the grid scheme with a relative
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(a) True similarities - DTW (b) True similarities - Fréchet

(c) Grid hash similarities (d) Disk hash similarities

Figure 5.12: Trajectory clustering outputs over Rome generated from different
similarities. The upper two outputs are generated using the trajectories’ true sim-
ilarities, and the lower two outputs are generated using the similarities from the
Grid LSH scheme and the Disk LSH scheme.

DBI score of 1.2826 to Fréchet distance, the grid performance in Rome is still not
as good as the disk performance in Porto. Another stand-out observation is the
grid- and disk-schemes scores when DTW is used as reference, having the two
worst relative DBI scores.

In Table 5.5, we have presented the rand index scores from the clustering
outputs. There are two observations that we emphasise from this table. Firstly,
both the clusters from the disk-based schemes over Porto and Rome have a slightly
higher rand index score than the grid-based schemes. This result means that the
composition of disk-clusters are more similar to the true clustering outputs based
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Table 5.4: The relative Davies-Bouldin scores decomposed into within-like and
between-like factors over the generated clusters. Computed using the hash simil-
arities clusterings with the true similarities output.

Decomposed Relative Davies Bouldin index

Similarity type and data-set /
reference

WL (W L∗100
W L+BL ) BL ( BL∗100

W L+BL ) DB DB/DBre f

DTW Porto (reference) 23.0316 76.9684 0.00997 -

Grid Porto / DTW 36.9071 63.0929 0.01950 1.9559

Disk Porto / DTW 26.6860 73.3140 0.01213 1.2166

Fréchet Porto (reference) 31.7614 68.2386 0.01551 -

Grid Porto / Fréchet 41.7700 58.2300 0.02391 1.5416

Disk Porto / Fréchet 34.4870 65.5129 0.01755 1.1315

DTW Rome (reference) 30.1179 69.8821 0.01437 -

Grid Rome / DTW 45.8131 54.1869 0.02818 1.9610

Disk Rome / DTW 46.2353 53.7647 0.02867 1.9951

Fréchet Rome (reference) 32.7586 67.2413 0.01624 -

Grid Rome / Fréchet 38.4629 61.5371 0.02083 1.2826

Disk Rome / Fréchet 40.2960 59.7040 0.02250 1.3855

on DTW and Fréchet than the grid-based clusters. The second observation that
we remark is that both schemes in both cities have a higher rand index score for
Fréchet-distance than DTW-distance. The rand index score results in addition to
the Davies-Bouldin index results will be discussed in chapter 6.

Table 5.5: Rand index scores computed from the generated clustering outputs.

Rand index
Similarity type / Reference DTW Fréchet
Grid Porto 0.9143 0.9324
Disk Porto 0.9262 0.9482
Grid Rome 0.9145 0.9391
Disk Rome 0.9202 0.9439
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Discussion

In this chapter, we will discuss the results and observations from the conducted
experiments in the context of the expected behaviour of the schemes. We also
discuss some of the choices made through this research and evaluate the schemes
holistically. At the end of this chapter, we present some reflections and discuss the
impact of the simplifications made in this research.

6.1 Effect of Parameter configuration

In this section, we first generally discuss the theoretical expectations we had for
parameter configuration against the presented results, and include some discus-
sions related to computation times. Then, with the general discussions in mind,
we argue and reflect on the parameter values that was chosen for the remaining
experiments of this thesis. Finally, we include some minor reflections on the choice
of similarity measure for the adapted schemes.

We remark that the hashes from both the grid-based and the disk-based schemes
can be seen as compressions of the original trajectories, where the compression
ratio depends on the number of layers and the granularity of the grids and disks.
From a theoretical perspective, a higher grid resolution (smaller tile width) will
preserve more information through hashing, since trajectories’ vertices will be
snapped to a greater number of grid tiles, resulting in longer hashes and likely bet-
ter correlation. The same theoretical perspective can be applied to the disk-based
scheme, where we expected that a greater disk diameter are likely to decrease the
hash compression ratio, since a trajectory will travel through a larger amount of
disks, resulting in longer hashes and likely higher correlation. We note that the
general observations presented in section 5.1 reflect these expectations, and that
an increased amount of layers in both schemes have the expected effect on the
correlation.

Following this derivation, we find it interesting that the grid-based scheme
over Porto (Figure 5.1) has an apparent maximum correlation peak with a resolu-
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tion value of 1.6 km for 5 layers and more. We expected the correlation to gradu-
ally decrease with poorer resolution, and for resolutions greater than 1.6km we
note that the scheme follows this expected behaviour. Since we did not observe
a similar prominent peak in the grid over Rome, we presume that the peak could
potentially be explained by underlying patterns in the data-set in combination
with a fixed grid size, but this still remains an open question to us. However, as
a rule of thumb, we state that a higher resolution and a higher number of layers
result in better correlation for the grid scheme.

We remark that the grid-based scheme are distorted by a random parameter t
derived from the resolution. This is reflected by the standard deviation, which
grows in line with the grid tile width. As the tile width increases (resolution
lowers), the potential values t can take will also be larger. Larger values of t
affects the similarities to a greater extent than smaller values of t, which results
in varying similarities and higher deviations from one computation to another.

We also note that the expectation that a greater disk diameter and a larger
number of disks in general results in higher correlation for the disk-based scheme,
are reflected in the results given in section 5.1. However, as shown in the results,
there is no clear connection between the number of layers in the disk-scheme over
Porto until the disk diameter reaches 2.25 km. We presume that this could be ex-
plained by the unnatural high standard deviation for the same disk diameters,
which we assume indicates that the disks are too small to cover and hash all tra-
jectories in this data-set properly. This is further justified by the fact that for disk
diameter values greater than 2.25 km, we observe significantly lower standard de-
viation values and a clear connection between the number of layers and the high
correlation. In addition, the fact that diameters less than 1.5 km in Porto corres-
ponds to extremely poor correlation values further justifies that the diameters less
than 1.5 km is too small to cover the trajectories properly. We observe a similar,
yet lighter, phenomenon for the Rome set, where the standard deviation drops
significantly when the disk diameter is larger than 1.5 km. This phenomenon un-
derpins the importance of choosing sufficient diameters, to ensure consistent and
accurate correlation with the true similarities.

We remark that the disk scheme computes similarities by using the coordinates
of the disks’ centres. This implies that for a given number of disks, the correlation
will converge when the disks’ diameters increases. Trajectories at one point will
begin to intersect disks that are too far away, meaning that the added disks no
longer include valuable information to the hashes. This effect is reflected in the
Figures 5.3 and 5.4, where the correlation curves flatten at 2.5 km diameter for
Porto and 1.75 km for Rome.

By increasing the number of disks in the disk-based scheme, a greater geo-
graphical area can be covered by disks without increasing the diameter of the
original disks. In theory, with a higher number of disks covering a greater area,
the high standard deviation shown for disk diameters up to a certain size should
be shifted towards lower diameters. In addition, a higher number of disks should
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also raise the convergence value slightly, since a denser disk-scheme means that
trajectories have a higher probability of being snapped to disks that are closer
to them, thus making the disk hashes more precise. We presume that this will
have a positive effect on the correlation with the true values, and remark that
our assumption is based on the results reflected in Figure 5.5, showing a higher
correlation and lower standard deviation with an increasing number of disks.

From chapter 2, we restate that the time-complexity of DTW is O(n2), where
n is the average length of the input hashes. Since DTW is the similarity measure
used to compute the similarities between the schemes’ hashes, the configuration
of the schemes initially becomes a trade-off between accuracy and efficiency. As
discussed in general, both a more fine-grained grid- and disk-scheme will increase
the hash lengths, which inevitably entails higher similarity computation times. We
remark that the extra information added to the hashes with a finer grid- or disk-
scheme are multiplied for every layer, meaning that adding a layer is likely to
have a higher run-time cost than tuning the granularity of grids and disks at one
layer. Furthermore, with the quadratic computation time of DTW, longer and more
detailed hashes quickly become costly. Finding the optimal configurations for one
particular data-set with respect to accuracy and time-consumption would have
been an interesting addition to this thesis, but was omitted due to time-constraints
for this research.

Choice of parameters

The experiments related to evaluate the performance of the LSH-schemes (RQ2
and RQ3), required the parameter values to be set. As stated, the configuration of
the schemes is initially a trade-off between accuracy and efficiency, where every
extra added layer increases the accuracy of the scheme, but also raises the com-
putation time. For the grid-based scheme over Porto, we chose a configuration of
5 layers with a tile width of 1.6 km, since 5 layers provided a significantly better
correlation than 4 layers at the described correlation peak of Porto. We considered
the possible correlation gain by adding more layers, but concluded that a correl-
ation gain of barely a few hundredths (Figure 5.1) would be to small considering
the additional computation time.

We applied the same argument to the choice of using 4 layers for the grid
over Rome. Since the grid-scheme over Rome (Figure 5.2) did not have a distinct
peak correlation value, we opted for a til width of 1.2 km, since the correlation
with Fréchet distance had a hint of a peak at this resolution, which then dropped
gradually after. Again, we remark that finding the optimal configurations would
be an interesting addition to this thesis and for the rest of this work. Instead we
opted for a close-to-optimal configuration for the rest of this research, which in
general happened to be the largest grid tile width and the smallest number of
layers with correlation close to the maximum correlation configuration.

For the disk-based scheme over Porto, we opted with 4 layers with 60 disks
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having 2.2 km in diameter, as the correlation was relatively high for this config-
uration. With respect to computation time, we chose 2.2 km despite the fairly
high deviation for the chosen diameter. Instead of increasing the diameter, which
would only give a small correlation gain due to the correlation being close to the
converge value, we chose 60 disks, which would slightly increase the correlation
but more importantly, as discussed, reduce the standard deviation (Figure 5.5a).
We remark that a higher correlation and a greater reduction in standard deviation
could be achieved by choosing a higher number of disks, but 60 was chosen as a
trade-off with respect to computation time.

The same argument was applied to the disk-scheme over Rome, which was
configured with 5 layers with 50 disks with a diameter of 1.6 km. We emphas-
ised the correlation with Fréchet distance when choosing 5 layers, as it had sig-
nificantly higher correlation than any lower number for the given diameter (Fig-
ure 5.4). In general for the disk-based schemes, we opted to use what we presume
is the close-to-optimal configuration which happened to be the smallest disk dia-
meter, the lowest number of disks and the lowest number of layers that were close
to the correlation converge value.

By choosing the close-to-optimal, "working", configurations for both schemes
and both cities, we presume that the remaining experiments and results related to
performance are representative for the schemes. We still remark that by choosing
other values, the results could be slightly different. However, our presumption is
still that the results will be representative for the understanding of the schemes,
which will be further discussed later in this chapter.

Choice of similarity measure

As a closing remark for this section, we remark that the originally proposed sim-
ilarity measure, edit distance for strings, was opted out in favour of DTW, which
is a more accurate distance measure for quantifying the similarity between the
information stored in the hashes. This is reflected in the figures shown in Ap-
pendix A, where the correlation is significantly poorer than the corresponding
hash-scheme figures in section 5.1. where DTW was used as similarity measure.
Due to the shortcomings of edit distance for strings, this result correlated well
with our expectations.

6.2 Performance analysis

In this section, we first discuss the run-time performance in order to compute the
similarities from the schemes’ hashes, as well as the time required to hash the tra-
jectories. Then, the accuracy and effectiveness of the schemes will be discussed
in detail, before we wrap this section off with some reflections regarding the con-
sistency of the schemes.
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6.2.1 Efficiency

Again, we remark that the run-times are a direct result of the schemes’ para-
meter configuration, which must be kept in mind during this discussion. Since the
schemes’ hashes are compressions of the trajectories, we expected the schemes’
similarity computation time to be significantly faster than the reference bench-
mark of DTW. However, the magnitude of speed-up was a bit surprising, but can
be explained from a theoretical point of view. Due to the run-time of DTW of
O(n2), two hashes with lengths of 1/10th of the original trajectories, should be
computed 100 times faster than the original trajectories. Thus, the run-times also
tell something about the compression ratio of the schemes, i.e. the information
held by the hashes. In general, the speed-up of the schemes must be said to be
more than satisfying for the purpose of similarity computation.

As noted in the chapter 5, the grid-based schemes have significantly lower
computation times for both data-sets. This result must however be seen in con-
text of the parameter configurations and the accuracy of the schemes, and will be
further discussed under effectiveness below. With the current analysis and para-
meter configuration, it is not possible to directly compare the run-times of grid
and disk similarity computation. However, an interesting possible future analysis
would be to re-configure the schemes to have approximately the same correlation
for a more fair comparison of run-times.

We assume that the contra-intuitive observation that the computation time of
the disk-based Porto similarities is significantly slower than the disk-based simil-
arity computation over Rome, could reveal a potential weakness in the disk-based
scheme. By intuition, the Porto-disk-scheme should have faster computation time,
since the Rome-disk-scheme is more complicated which is shown by the run-times
of the true similarities. However, the high computation-time is explained by its
configuration of 60 large disks of 2.2 km, which we observed was necessary to
achieve an acceptable correlation score. Therefore, we state that a possible weak-
ness of the disk-based scheme is that there is no guarantee that the schemes main-
tain the complexity of data-sets through hashing. We note that there are too many
varying parameters for this observation to be conclusive, but it is still an interest-
ing aspect. Nevertheless, the reduction in run-time is still extremely large.

Understanding the time consumption of the schemes is a vital part of RQ2.
Since both schemes are based on the idea of generating compressed hashes from
the trajectories, we expected them to scale better for larger data-set sizes. Again,
we remark that both the true and hashed similarities are computed using the
same algorithm with a time-complexity of O(n2). From a theoretical perspective,
we therefore expect both schemes’ time-reduction (compared to the benchmark)
to follow an approximately constant value for the different data-set-sizes. This
presumption is reflected in the results, where the grid and disk similarities of
Porto are computed approximately 100 and 13 times faster than the benchmark
values of the true similarities for the different data-set sizes. As a clarification, the
presented approximated magnitudes of time reduction are derived from Figure 5.6
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and not necessarily exactly accurate. However, the constant time-reduction factor
is still clearly reflected in the figures, where the graphs have the same relationship
for the different data-set sizes.

To finish the topic of similarity computation times, we remark that the the
computation times of the true similarities for the largest sub-sets over both Porto
and Rome have been interpolated and not measured. The reason was the exhaust-
ive computation times of 10 parallel runs, which was practically very difficult to
measure on a personal computer without influence from the OS. With the known
time-complexity of DTW and roughly equal trajectory sizes, we believe that the
interpolated graph displays timing values that are close to the correct values. The
run-times of Fréchet distance was not computed for the same reason due to the
higher time complexity of 0(n2log(n2)), meaning that the gain is theoretically
significantly larger for this measure.

Hash generation efficiency

As expected, the overhead related to generating the grid hashes is very low for
both data-sets and significantly faster than generating the disk hashes. The ex-
planation lies in the fact that the generation of the grid hashes are solely based
on pure arithmetic operations, while the generation of disk hashes involves find-
ing which disks the trajectories travel through, which is a far more comprehens-
ive task. From Table 5.1, we observed that by applying a KD-tree during hash-
generation, the computation time can be reduced significantly. This was also the
case when the quad-structure was applied, however with poorer time reduction
than the KD-tree. We remark that strategies for faster hash generation does not
really fall under the scope of this thesis, but have been included as a curiosity that
was discovered during our research. Since KD-trees are designed for this type of
problem, we believe that the gain from implementing the structure will be higher
for larger number of disks, but we will not discuss the effect of the structures fur-
ther. We remark that the hash generation times are influenced by the complexity
of the data-sets, which is why see more exhaustive generation times for the Rome-
set. All in all, there is still very low overhead in generating both the grid and disk
hashes compared to their similarity computation time.

6.2.2 Effectiveness

An important aspect of this thesis is to understand how well the similarities com-
puted from the schemes perform in terms of accuracy. This was measured in cor-
relation with DTW and Fréchet distance, where DTW was chosen due to its pop-
ularity and Fréchet distance was chosen for its known precision as a metric. We
remark that DTW is only a symmetric, and not a metric. The observation in sub-
section 5.2.2 that both the grid- and disk-based schemes had better visibly denser
line-shapes and significantly better correlation with Fréchet distance than DTW,
was therefore interesting but still expected with background in the results presen-
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ted during parameter configuration. We note that this can be explained by the
observed higher vertical spread of the shape in the 2d-histograms for DTW, which
indicates that the same scheme distances can correspond to a greater interval of
true similarity values. As stated, this is an interesting observation, but we will not
discuss it further as it is not directly related to our research questions.

More importantly, we will discuss the observation that the disk-based similarit-
ies presented in Figures 5.9 and 5.10 tend to outperform the grid-based similarit-
ies. We restate that the histograms over the disk-based similarities are both visibly
narrower and denser than the grid-based histograms, which is further reflected
by the correlation values presented in the lower right corner of the histograms.
We observe that the disk-based correlation values are clearly higher than the grid-
based. By looking at the wider horizontal shape of the grid-based 2d-histograms,
it becomes evident that this is the reason the disk-based schemes have higher cor-
relations with the true similarities, since the true similarity values have a wider
spread of corresponding grid-distances.

A potential explanation to the poorer accuracy that we see in Figures 5.7
and 5.8 could be the configuration of the schemes’ parameters. We remark that
the computation time of both the grid similarities were significantly faster than
than the computation of the disk similarities for both data-sets. As stated earlier, a
direct comparison between the schemes can not be justified, but as future work, it
would be interesting to study the schemes accuracy by adjusting for computation
time. However, since we chose parameters that apparently seemed to have relat-
ively high correlation with the true similarities, the gain from this adjustment is
likely limited without increasing the computation time drastically.

Another possible explanation to the wider horizontal spread in the grid-based
histograms can be the different cost functions used by DTW in the grid-scheme
and the disk-scheme. We remark that the grid-based schemes uses Manhattan
distance and that the disk-based schemes uses euclidean distance. The fact that
Manhattan distance is computed by the combined horizontal and vertical distance
between two points, and not the shortest diagonal distance like the euclidean
distance, implicates that different Manhattan distance values can correspond to
the same euclidean value. Since both DTW and Fréchet distance are computed
with euclidean distance, we find it likely that this effect could partially explain
the wider spread.

All in all, by looking at the colour intensity of the 2d-histograms, we observe
that the lsh generated similarities follow a clear correlation-pattern with the true
similarities. Despite the grid similarities’ generally weaker correlation pattern, the
correlation with Fréchet is still at an acceptable level of around 0.65 and 0.67 for
Porto and Rome which is still fairly high considering the reduction in computa-
tion time. In general, we presume that both the grid- and disk-based schemes are
having sufficiently high accuracy for their similarities.

We restate that both the grid-based and disk-based schemes are based on
random variables for hashing. In order to perform well, it is important that the
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schemes have sufficient correlation with the true similarity values, but also that
they are capable of generating consistent similarity values. We have already dis-
cussed that the schemes are capable of delivering sufficient accuracy, and the res-
ults presented in Table 5.2 substantiates that the schemes are capable of produ-
cing similarities with a fairly consistent correlation with the true similarities. Even
though the standard deviation mostly have a relatively low value around 0.01, we
note that the relative difference between the maximum and minimum correlation
values lie between 3.5% and 8.4% as shown in Table 6.1. Despite the fact that the
values are small, they are still not insignificant for the accuracy of both schemes,
which must therefore be said to be slightly fluid. We wrap up this section by stat-
ing that the schemes’ standard deviation is a result of their configuration, and
that the impact of the effect discussed in this paragraph can be lowered by a more
detailed configuration.

Table 6.1: The relative difference between the maximum and minimum correl-
ation values with the true similarities for both schemes over Porto and Rome.
Computed with the formula: Maximum−Minimum

Average using the values in Table 5.2

Correlation with true similarities for 10 parallel runs
Similarity type / Reference Std. deviation Relative difference
Grid Porto / DTW 0.010 7.0%
Grid Porto / Fréchet 0.010 5.4%
Disk Porto / DTW 0.017 8.4%
Disk Porto / Fréchet 0.012 3.5%
Grid Rome / DTW 0.007 4.6%
Grid Rome / Fréchet 0.010 3.6%
Disk Rome / DTW 0.012 7.6%
Disk Rome / Fréchet 0.009 4.4%

6.3 Analysis of clusters

For the practical performance of the schemes, in terms of clustering, we will first
discuss the results from the visual inspection against the previously discussed res-
ults in this chapter. Afterwards, the index analysis of the clustering outputs will
be discussed in detail.

The most important result from the visual inspection is the general observation
for both schemes that the disk-based clustering outputs are slightly more dense
and less spread than the grid-based clusters. Furthermore, as stated in chapter 5,
the disk-based clusters seem to preserve the direction of movement better, where
the colour gradient of the clusters’ trajectories move more holistically. With basis
in the previously discussed higher correlation for the disk-based schemes, the fact
that the disk-based clusters visually looked sharper than the grid based was ex-
pected. However, the fact that the disk-based schemes hardly were distinguishable
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from the true clustering outputs in terms of internal spread and direction of move-
ment is promising in terms of practical performance. With argumentation in the
observed correlation values, it was expected that the grid-based schemes would
have more spread clusters than the disk-based. However, when comparing them
to the true similarity clusters, they do not appear to be too far off in terms of
spread and size.

The observation that the schemes clustering outputs appear to have more in
common with the clustering outputs from Fréchet than DTW for both Porto and
Rome (Figures 5.11 and 5.12), can also be explained by the corresponding cor-
relation values, which we have seen was higher for Fréchet distance. By looking
at the clustering outputs for the schemes and comparing them to the true valued
clustering outputs, we believe that a partial explanation for the higher correlated
Fréchet distance is the schemes ability to maintain the trajectories’ direction of
movement. We note that this is an inference based on our subjective visual in-
spection, but we still believe it is important to remark this when evaluating the
practical performance of the schemes.

To fully understand the practical clustering performance of the schemes a dis-
cussion of the internal cluster evaluation index scores is necessary. As stated, the
internal Davies-Bouldin indexes presented in Table 5.3, are computed using the
schemes’ similarities, and the computed indexes cannot be compared in a mean-
ingful way. The reason is that the index is designed as a metric for evaluating the
performance of clustering algorithms, and not the performance of varying similar-
ities. We will therefore not discuss these values further, which was only included
as a curiosity of internal evaluation which must be seen in the context of the cor-
responding clustering output only.

However, by combining the clustering output from the LSH-schemes with the
true similarities, the Davies-Bouldin index can be computed and compared in a
meaningful way, since the similarities used for computation are consistent (Table 5.4).
We then see that the visual observation that the schemes’ clustering outputs were
slightly closer to Fréchet distance than DTW, are reflected in the adjusted relative
Davies-Bouldin scores, which consistently were lower for Fréchet distance. This is
naturally explained by the lower correlation with Fréchet. Nevertheless, and more
importantly, the adjusted Davies-Bouldin index is never more than two times any
of its reference values, and never more than 1.386 (Disk Rome / Frechet) for the
best reference value of the schemes. Despite the lower grid correlation over Rome,
the DB scores are slightly better for the grid-based similarities than the disk-based
similarities, which show that the practical performance of the schemes not neces-
sarily are fully related to the correlation.

When looking at the decomposed within-like and between-like factors of the
Davies-Bouldin index (Table 5.4), it becomes evident that the schemes’ cluster-
ing outputs are not as dense as the true similarities since the factors are slightly
poorer. However, for the disk-scheme over Porto, we observe little loss in terms
of within-cluster and between-cluster distances. On the other hand, with the lim-
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ited data base with only two data-sets and two reference clustering outputs, we
cannot state if any of the schemes are better suited for clustering, nor draw any
other comparative conclusions. However, even though the within-like distances
are slightly higher than the references, they are also a result of configuration,
which can be adjusted.

Based on the discussed visual analysis and Davies-Bouldin index scores, we
argue that both the schemes show satisfying practical performance. This is further
supported by the rand index scores for the schemes, with scores well over 0.9,
close to the maximum score of 1.0. In terms of practical performance, the scores
mean that more than 90% of the trajectories are treated the same way as the
reference clustering output for both the grid- and disk-based schemes over Porto
and Rome. However, we still have to take into account that the rand index does
not differentiate between trajectories that are agreed by chance and trajectories
that are agreed correctly. We believe that this effect cannot be ignored, since the
clusters from the schemes are visually fairly different from the true clustering
outputs in terms of its content. On the other hand, we observe fairly different
clusters between the two reference clustering outputs as well. The fact that the
size and shape of the clusters are fairly similar underpins that the schemes are
fairly suitable for a practical task like clustering.

6.4 Remarks and Reflections

In this section, we have included some thoughts and reflections regarding the
performance and usability of the examined LSH-schemes.

As stated in several sections in this chapter, the configuration of the schemes
are essential in terms of performance. However, the configuration also offers a
trade-off between accuracy and efficiency, which can be utilised according to the
needs of the user. By increasing the number of layers and the accuracy at each
layer, the effectiveness of the schemes increases, but so does the time consump-
tion during similarity generation. At several times in this thesis, we have noted
that a direct comparison of the schemes accuracy are unfair due to their different
configurations. It would therefore have been interesting to examine whether the
grid-schemes’ accuracy would have been closer to the disk-schemes’ accuracy if
the hash similarity computation times were adjusted for. A more fine-grained grid
than we have used, would have led to an increase in computation-time, and we
therefore presume that the different schemes’ accuracy would have been closer
if they were adjusted for computation time. The important knowledge from the
configuration of the schemes is their ability to be tuned for accuracy or efficiency
by the needs of the implementation.

We remark that an essential part of our argumentation that the true simil-
arity measures are slow, is their computation time. However, both the grid- and
disk-based schemes in this research have been implemented with the same DTW-
algorithm used to compute the true similarities. As stated in subsection 6.2.1,
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both the hashed similarities and the true DTW similarities have a run-time of
O(n2). We therefore note that the true run-time gain of the schemes are achieved
through shorter input hashes instead of algorithmic differences. As a comment
on the shorter hashes, we therefore note that the theoretical maximum time con-
sumption of the grid hashes should be the same as the computation time of the
true similarities multiplied by the number of layers. This is due to the fact that the
compression of the grid scheme is given by the removal of consecutive duplicate
tiles, but in a highly detailed grid, every trajectory point will be hashed to its own
tile giving the output hash the same length as the input trajectory. Unfortunately,
for the disk-based scheme, there are no theoretical maximum time consumption
value other than the number of disks, with the reason being that a trajectory could
be hashed to more disks than it has points. This effect will result in more exhaust-
ive computation at every layer than computing the true DTW similarity once. Both
the schemes could in the worst case end up with worse time consumption than the
true similarities, which is important to be aware of when setting the parameter
values of the schemes.

6.4.1 Simplifications

As stated in section 4.6, some simplifications were made during the research of
the grid- and disk-based schemes. The simplifications and their assumed effect are
shortly summarised in this section.

Firstly, we remark that the euclidean distance have been used for several tasks
like computing distances between trajectory points, the computation of grids and
disks in addition to the length of the trajectories. Due to the fact that all geograph-
ical points are located on a sphere, the values computed by the euclidean distance
will be slightly inaccurate, and should for correctness have been computed using
the haversine distance for spheres. However, due to the fact that the extracted
data from both data-sources are limited to a tiny geographical rectangle of ap-
proximately 6 x 8 kilometres, we believe that the curvature of the earth can be
ignored for all practical reasons in our research.

Furthermore, in the disk-based scheme, disks were included in trajectories’
hashes if the euclidean distance between a disk’s centre and a trajectory point
was less than the given radius parameter. This was computed using the geograph-
ical coordinates of the disks and points, and the radius was recalculated to be the
corresponding latitudinal distance. Due to the reason that the distances between
longitudes become smaller further to the north, the disks will therefore have more
of an elliptical shape than a perfect circle over Porto and Rome. At 40 degrees
north, the distance between two longitudes are 85 kilometres, compared to ap-
proximately 111 kilometres at equator. This is a significant reduction, but for the
purpose of examining whether the schemes are usable for similarity computation,
we believe that it can be seen through, even though a more circular shape would
likely entail better accuracy.
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As stated in subsection 6.2.1, the computational load of measuring the true
similarity computation time for the largest sub-sets was high and the process
turned out to be very exhaustive. Therefore, as discussed, we opted to use the
measured computation times for the smaller sub-sets and interpolate to find an
approximation of the larger sub-sets. In terms of correctness, this approach is open
to criticism since we are comparing it to the measured computation times of the
schemes. However, we believe that the interpolated values are relatively close to
the true values since the trajectories in the data-sets are of approximately the same
lengths. We therefore believe that the run-times should follow a predictable curve,
also for the largest sub-sets, and still be practically usable for comparison.

We remark that the test-sets of both Porto and Rome, which was used to de-
termine the parameter configuration of the schemes (section 5.1), only consisted
of 50 trajectories each. Due to the high computational load of computing the true
similarities, we found it most efficient to determine the parameters using these
test-sets. However, a drawback of using only 50 trajectories is that the computed
correlation values are likely to be exposed to chance, since both schemes are based
on random variables and that the selected 50 trajectories could not be represent-
ative for the entire data-set. From the simplifications made in this research, we
believe that this simplification could be the most influential, which could be a
reason for the slightly varying correlations presented in the 2d-histograms and
the correlations presented in section 5.1. Despite this, we still believe the presen-
ted results of this research are highly valid.

We wrap up this chapter by noting that the general evaluation of the schemes
are that they provides fairly accurate similarity values, under the assumption that
the schemes are properly configured. Furthermore, the results have shown that
the schemes are suitable for similarity computation and that they are usable for
practical task like clustering.



Chapter 7

Conclusion

In this thesis, we have studied whether two locality-sensitive hashing schemes de-
signed for trajectories are suitable for efficient similarity computation. In order to
examine the main motivation of improving the exhaustive run-times of traditional
trajectory similarity computation, we have experimentally evaluated the aspects
accuracy, efficiency and time consumption of the schemes. Additionally, to eval-
uate whether the similarities computed by the schemes are usable for practical
tasks, we generated clusters from the schemes’ similarity values and evaluated
the output.

The chosen evaluation criteria laid a solid foundation for the understanding of
the schemes’ performance, and the observed results gave interesting aspects for
the discussion. We have summarised the conclusive results from this research in
the context of this thesis’ research questions:

The aim of RQ1 was to examine whether the LSH-schemes presented by Driemel
and Silvestri [7] and Astefanoaei et al. [8] were adaptable to similarity computa-
tion between trajectories. We implemented the schemes as described in the papers
and adjusted them slightly by changing their distance function to DTW. We found
that the schemes were able to produce highly acceptable similarities for a variety
of configurations, and with a proper configuration they were both able to deliver
fairly strong accuracy when compared to DTW and Fréchet distance.

In terms of scaling, which was the main objective of RQ2, we have shown that
the schemes are capable of reducing the computation time required by DTW a two
digit number of times. For the grid-based scheme, we observed similarity compu-
tation up to 100 times faster than the true similarities. We also observed that this
speed-up was consistent and consequent for the various data-sizes, which shows
that both schemes are highly competitive in terms of scalability. With the scheme
configurations used for this thesis, we observed that the grid-based schemes per-
formed better in terms of efficiency, but poorer in terms of accuracy, but we remark
that the configurations must be seen as a trade-off between accuracy and efficiency
which left this observation open for further research to be conclusive. We have also
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observed that the overhead related to generating the schemes’ hashes are very low,
almost negligible when compared to the similarity computation times.

For RQ3, we have proven that the similarities are suitable for a practical task
like clustering. We have seen that the generated clusters visually were almost as
dense and tight as the true clustering outputs, The clustering index scores however
were slightly more critical to the density of the clusters based on the schemes’
similarities, but in general we evaluated the practical usability of the schemes’
similarities to be satisfying.

In general, we have seen that the similarities generated by both the grid-based
and disk-based schemes are usable, but with a somewhat reduction in accuracy
compared to DTW and Fréchet, which can be controlled by their configuration.
The schemes provides a significant speed-up orders of magnitude faster than the
reference algorithms, and are also suitable for practical tasks. As a closing con-
clusive remark, which have been stated at numerous times through this thesis,
we remark that the accuracy and efficiency of the schemes are a result of the
configuration which can be adjusted according to the area of usage.

7.1 Further Work

In this research we have focused on examining whether the locality-sensitive
schemes are a suitable faster alternative trajectory similarity computation. Dur-
ing this work, we have found several important aspects that we believe would be
highly interesting to research further.

As mentioned, an important feature of the schemes are their configuration,
and we believe that a more comprehensive study of the influence from these con-
figurations would be rewarding. If we had time, we would have extended this
research to include questions related the configurations. For instance, we would
like to be able to answer questions related to the extra run-time cost of adding
another layer to schemes.

Furthermore, a more comparative study between the two schemes would also
be interesting topics to research. For instance, adjusting the grid- and disk-based
schemes for run-time and comparing their correlation with true values was aspects
that we wanted to examine, but fell outside the scope of our research questions. It
would also make sense to include a comparative study of possible similarity meas-
ures that could be applied to the hashes in order to find an optimal algorithm. As
we saw in this research, DTW happened to be far more precise than edit-distance,
but we did not examine other alternatives.

We would also like to mention that the paper provided by Driemel and Silvestri
[7] contained descriptions of other similar grid-based schemes, which would have
been interesting to include in our study. The article by Astefanoaei et al. [8] also
contained a more detailed disk-based scheme with different resolutions at differ-
ent layers which also would have been interesting to include in a more compar-
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ative study.

Finally, we have evaluated the schemes on data-sets based on the movement of
taxis which is connected to an underlying traffic-network. Even though the results
were promising, we believe that it would be valuable to evaluate the schemes on
other types of data as well.
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Appendix A

Edit distance as hash similarity
measure

(a) Correlation with DTW (b) Correlation with Fréchet

Figure A.1: Correlation with the true similarities for the grid similarities with
varying grid resolution and number of layers. Edit distance used as similarity
measure. Results from the test-set of Porto. Standard deviation marked with
dashed lines.
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(a) Correlation with DTW (b) Correlation with Fréchet

Figure A.2: Correlation with the true similarities for the grid similarities with
varying grid resolution and number of layers. Edit distance used as similarity
measure. Results from the test-set of Rome. Standard deviation marked with
dashed lines.

(a) Correlation with DTW (b) Correlation with Fréchet

Figure A.3: Correlation with the true similarities for the disk similarities with
varying disk diameter and number of layers, computed with 50 disks. Edit dis-
tance used as similarity measure. Results from the test-set of Porto. Standard
deviation marked with dashed lines.
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(a) Correlation with DTW (b) Correlation with Fréchet

Figure A.4: Correlation with the true similarities for the disk similarities with
varying disk diameter and number of layers, computed with 50 disks. Edit dis-
tance used as similarity measure. Results from the test-set of Rome. Standard
deviation marked with dashed lines.
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Clustering outputs
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Figure B.1: Clustering output over Porto generated from DTW distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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Figure B.2: Clustering output over Porto generated from Fréchet distance. The
trajectories’ colour gradient displays the movement direction from light to dark
blue.
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Figure B.3: Clustering output over Porto generated from Grid distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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Figure B.4: Clustering output over Porto generated from Disk distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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Figure B.5: Clustering output over Rome generated from DTW distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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Figure B.6: Clustering output over Rome generated from Fréchet distance. The
trajectories’ colour gradient displays the movement direction from light to dark
blue.
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Figure B.7: Clustering output over Rome generated from Grid distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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Figure B.8: Clustering output over Rome generated from Disk distance. The tra-
jectories’ colour gradient displays the movement direction from light to dark blue.
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