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Abstract

The increasing capabilities of higher order methods used in computational
fluid dynamics enables the analysis of previously little understood phenom-
ena. One such case is the intricate flow mechanism causing obstructive sleep
apnea. In working towards a better understanding of the flow mechanism,
a arbitrarily high order Discontinuous-Galerkin Immersed boundary method
has been developed for the 2D compressible Navier-Stokes equations. The
arbitrarily high order is achieved using a novel approach to the construction
of basis functions. The method is tested on the case of a flow over a circular
cylinder. Results are obtained which indicate that further investigation is
needed, but that the method is indeed capable of qualitatively reproducing
the expected behaviour.
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Chapter 1

Introduction

1.1 Motivation

The field of computational fluid dynamics have undergone rapid development
during the last decades and has now matured to the point where it has be-
come an integral part of research and industries such as weather forecasting,
aviation, and process engineering. These advancements, as well as advance-
ments in computational infrastructure, means that the envelope of possible
use cases of CFD is expanding. The research project VirtuOSA[49], which
this thesis is a part of, aims to apply CFD to one such use case. Namely,
to use CFD to better understand the complex flow phenomena occurring in
the upper airways of patients affected by the sleep disorder obstructive sleep
apnea. The tools developed as a part of the research project is intended to
aid clinicians in providing patient specific diagnostics and treatment. The
objective is for this to result in an improved prognosis for the patient.

Multiple interrelated mechanisms and phenomena seem to be responsible
for the onset of obstructive sleep apnea. An extensive overview of these can
be found in the works of Moxness [39]. Moxness identified the complex ge-
ometry of the human upper airways and its effects on, and interaction with,
the air flow as a point in need of better understanding. In an advancement
towards the goal of providing such an understanding, the aim of this thesis
is to develop a method for high accuracy flow simulations in complex geome-
tries. Several objectives were formulated by me and by supervisor Bernhard
Müller[40].

1. Review the literature for higher order discretization methods like the
discontinuous Galerkin method and other higher order methods

2. Investigate a higher order method for flow in complex geometries

2
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3. Develop, implement and test a higher order method for the 2D com-
pressible Navier-Stokes equations in complex geometries

4. Verify and validate the higher order method for benchmark test cases

1.2 State of the art

Any graduate student taking an introductory class in CFD is likely to en-
counter various first- and even second order schemes. However, higher order
methods, which in the CFD community is regarded as any method of order 3
or higher[51], are seldomly explored in much detail except for perhaps a pass-
ing remark acknowledging their existence. While the basics must absolutely
come first, this do in fact mean that many people’s knowledge of CFD ends
at second order. These people then go on to jobs in the various industries
that use CFD, and take with them a bias towards using lower order meth-
ods. This affinity for lower order methods as well as increased computational
capabilities have lead to a situation where large parts of various industries
opt for a ”brute-force”-strategy when employing CFD. Thus, higher-order
methods have to some extent been relegated to a niche research community.
Of course, the people involved with higher-order methods cannot be absolved
completely of their effect on the extent of their adoption either. The field do
seem quite daunting for those uninitiated due to its heavy use of mathemat-
ics, notation, and comprehensive analysis. All of these factors have lead to
the proliferation of some misconceptions regarding higher-order methods.

1. They are computationally expensive.

2. The level of accuracy obtained by using higher order methods are be-
yond the current demands of most industrial applications.

3. They are complicated and the added coding effort of implementing
them means that their not worthwhile.

4. They are less robust than lower order methods.

While it is true that higher-order methods generally require more work
per mesh element, this varies depending on what higher-order method you
use[10]. However, computational cost alone is an insufficient measure when
assessing a method. This is where the order of accuracy, which has hitherto
been referred to as simply the order, becomes relevant. Given a mesh with a
characteristic mesh size h on which some method is used to find an approxi-
mate solution uh to the exact solution u, then we determine the error norm
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as
eh = ∥u− uh∥. (1.1)

The order of accuracy p is then determined by the behaviour of eh w.r.t.
changes in h. That is

eh ∝ hp. (1.2)

Of course, p is rarely constant across the entire range of possible values of
h, however, meaningful estimates of its asymptotic behaviour can still be
derived. For further details, the reader is referred to [50]. Lets define the
characteristic number of mesh units as

n =
1

h
. (1.3)

Let us also introduce the cost per mesh unit c. The cost ch of obtaining uh

on a mesh with d spatial dimensions is therefore

ch = cnd = c. (1.4)

Note that this implies that

ch,HO

ch,LO
=

cHO

cLO
, (1.5)

i.e., the ratio of the computational cost of the higher order method to that of
the lower order method on the same mesh remains constant w.r.t h. However,
the error norm does not. In fact, on a two-dimensional mesh, halving the
characteristic mesh size results in four times the total computational cost.
The error of a first order method would on this mesh be reduced by a factor of
4, while the error of a fourth order method is reduced by a factor of 16. This
illustrative example shows that by decreasing the mesh size, higher order
methods quickly outpaces lower order ones in terms of error. Much more
accurate solutions can therefore be obtained with less refined meshes. So, in
response to misconception 1, higher order methods might be more expensive
per mesh unit, but they require a lot fewer mesh units to reach comparable
levels of accuracy than lower order methods. Thus, the CPU-time spent on
reaching the same solution is likely to be lower for a higher order method.
This is demonstrated well eloquently in [10].

Misconception 2 is also just that, a misconception. Low-order methods
combined with turbulence models can yield modestly accurate estimates of
key quantities within reasonable time frames. However, there are several
cases for which they simply do not suffice. As pointed out by [51], a 5% error
in one solution variable might yield a 20% error in a derived quantity. This is
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especially critical wherever you have flow behaviour that depends on highly
detailed structures such as vortexes or acoustic waves[51]. An example of
such a flow is the flow over a helicopter. The aerodynamic forces acting on
the body of the helicopter is highly dependent on the vortices produced at
the wing tips. It of paramount importance that these vortexes are not erro-
neously dissipated before they reach the helicopter body. The solution then
becomes highly dependent on the ability of the method to accurately resolve
finer flow structures. For the reasons explained in regards to misconception
1, resolving these flow structures accurately quickly becomes infeasible with
lower-order methods.

This leads quite readily into misconception 3. While most higher order
methods are indeed more complicated and requires some added coding effort,
the upfront cost is quickly recuperated in terms of the efficiency of the method
once implemented. Summarized, although a pair of scissors are much cheaper
than a lawn mower, one would be wise to chose the latter if one wishes to
mow a lawn of any discernible size.

The last misconception is dependent on what higher order method is in
question. A more thorough discussion of the distinct methods can be found
later in this chapter, or in [10]. The statement that higher order methods are
less robust need not necessarily be a problem. Although lower order methods
might be able to produce a solution for a wider range of inputs, this comes
at the cost of the accuracy of those solutions. Essentially, what good is a
solution if it is wrong.

Now that some reasoning to why one would want to use a higher order
method has been given, one also needs to decide which method to use. In
the context of hyperbolic conservation laws, such as the compressible Navier-
Stokes, there are two classes of higher order methods which are of particular
prominence within the CFD community. Namely the ENO/WENO schemes
and the Discontinuous-Galerkin method[1, 10, 9]. Therefore, these will be
the focus of the ensuing discussion of the present text. However, one should
not infer from this that there doesn’t exist other higher-order methods.

1.2.1 ENO/WENO

In order to make the Godunov’s scheme[24] second order accurate in space,
van Leer developed the MUSCL scheme in his 1979 paper [48]. The idea
behind the MUSCL scheme was to approximate the state within each finite
volume as linear, rather than constant as in the classical Godunov’s scheme.
As a consequence a wider stencil is required in order to accurately reconstruct
the linear slope within the cell. A finite difference or finite volume scheme
employing a large fixed stencil is able to provide high accuracy as long as
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the solution is smooth. Unfortunately, using such a stencil when solving
a hyperbolic equation leaves the scheme susceptible to spurious oscillations
near discontinuities or shocks[45]. In the early days of higher order methods,
there existed mainly two ways of dealing with such oscillations. The first
approach was to add artificial viscosity near discontinuities such that the
oscillations could be suppressed. The second approach was to apply limiters
intended to reduce the order near discontinuities. Both of these approaches
required carefull tuning, often being quite dependent on the specific problem
at hand. Then the MUSCL scheme was extended to arbitrary order by Harten
et. al. in their 1986 paper[25]. In contrast to the large fixed stencils of the
previously discussed traditional finite difference methods, the scheme used an
adaptive stencil. This lead to the scheme being able to be highly accurate in
smooth regions while avoiding spurious oscillations at discontinuities. This
property ended up being the namesake of this class of schemes, which would
be named Essentially Non-oscillatory Schemes, or ENO schemes for short.
The ENO schemes utilises one out of several candidate stencils based on some
smoothness criterion [10]. Thus, stencils which would not introduce spurious
oscillations to reconstruction can be chosen over stencils that would. This
idea is then developed further in the 1994 paper by Liu et. al. in 1994 [36]
in which the weighted ENO scheme, or WENO, is introduced. Instead of
choosing only one out of multiple candidate stencils such as with the ENO
schemes, the WENO schemes utilise a weighted convex combination of all
candidate stencils. The essentially non-oscillatory property is obtained by
having the weights depend on the smoothness of the respective stencils such
that stencils affected by discontinuities essentially have no contribution to the
final convex combination. The resulting reconstruction lead to an increase
in the order of accuracy of one compared to that of the ENO schemes.

ENO-/WENO schemes can be formulated as both finite difference schemes
and as finite volume schemes [45]. These two formulations have their own
sets of advantages and disadvantages. Noteworthy of the FDM formulation
of the WENO schemes is

1. Low computational cost compared to other higher-order methods.[10]

2. They are rather Straightforward to implementation.[9]

3. They require a uniform or sufficiently smooth curvilinear mesh[45]. Ide-
ally, the mesh needs to be of the same smoothness as the reconstruction
if the desired order is to be achieved[9].

The FVM formulation has one major advantage over the FDM formulation.
Namely that the FVM formulation is capable of being applied to arbitrary
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triangulations, making them significantly more flexible than the FDM for-
mulation[9]. However, this comes at a cost. Some properties of the FVM
formulation of the WENO schemes is summarized below.

1. They can solved on arbitrary triangulations[9][45].

2. They are more complicated to implement and have a higher computa-
tional cost than their finite difference counterparts when solving higher
dimensional problems[10].

The ENO- and WENO schemes have been of continued research interest
within the CFD community. Attempts have been made to make them more
compact through the development of methods such as the Central-WENO
(CWENO) described in [19, 47]. Although CWENO schemes have been
shown to be more robust and compact than their non-central counterparts,
the crux of the matter is that these methods all require moderately large
stencils due to their very nature. This is in stark contrast to the highly local
Discontinuous-Galerkin method which is to be discussed next.

1.2.2 Discontinuous-Galerkin method

The Discontinuous-Galerkin method was first introduced in the seminal work
of Hill and Reed (1973) [43] where they used the method as a means to solve
the neutron transport equations on triangular grids. The method was based
on the Galerkin FEM method where continuous operators are discretized
using a weak formulation w.r.t some trial space. Instead of using a continuous
trial space, Reed and Hill used test functions which were continuous within
cells, but which could be discontinuous across cell interfaces. This lead to
the global mass matrix becoming diagonal and thus trivially invertible. It is
for this reason that the DG-method shares several features in common with
traditional finite volume methods.

One of these features is that explicit time discretizations can be used to
advance in time, thus circumventing the difficulties of implicit time integra-
tion. Chavent and Salzano developed such a method in their 1982 paper [7].
A one-dimensional scalar conservation law was discretized using piecewise
linear functions for the spatial discretization and explicit Euler for the tem-
poral discretization. Unfortunately, this discretization proved to have rather
poor stability properties[12]. This scheme was later improved upon by Cock-
burn and Chavent in 1989[8] when they introduced suitable slope limiters to
the scheme. Further, these slope limiters were generalized to higher order by
Cockburn and Shu in 1989[16], discretizing using higher order polynomials
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and Runge-Kutta time stepping. This scheme would be named the Runge-
Kutta DG method, or RKDG. These extensions proved to make the scheme
capable of simulating hyperbolic scalar conservation laws with a high order
of accuracy in smooth regions while avoiding spurious oscillations near dis-
continuities[12]. An extension of the scheme to one dimensional hyperbolic
systems followed in 1989 by Cockburn, Lin, and Shu[13], to multiple dimen-
sions in 1990 by Cockburn, Hou, and Shu [11], and ultimately to hyperbolic
systems in multiple dimensions in 1998 by Cockburn and Shu [15]. While
the RKDG was being developed for hyperbolic systems, Bassi and Rebay
were in 1997[2] already on their way to extend the method to work with
convection diffusion equations such as the Navier-Stokes equations. They
introduced the Local DG method (LDG), where the Navier-Stokes equations
are rewritten as a first order system by having the solution gradients occupy
the same function space as the solution. Since then, numerous DG methods
have been developed. The reader is referred to [12, 14, 26] for more details.
Some properties of the DG method is summarized below.

1. It has great parallel efficiency, meaning that computational times can
be reduced by using architectures capable of parallel computing such
as multi-core CPUs or GPUs.[12]

2. It is local, meaning that any finite cell need only communicate with
cells with which it shares an interface.

3. Care must be taken when using the method for which shocks and other
discontinuities are present.

1.2.3 Immersed Boundary

As their namesake would suggest, higher order methods are capable of achiev-
ing high solution accuracy. That is, as long as the problem geometry can be
discretized accurately. One approach is to discretize the spatial domain us-
ing a mesh consisting of higher order curved elements. However, high order
mesh generation of complex geometries are considered time consuming, in-
sufficiently robust, and in general somewhat of a bottleneck inn regards to
the use of higher order methods[50].

A second approach is to use a class of methods known as immersed bound-
ary methods. The fundamental idea behind the immersed boundary method,
virtual boundary method, embedded boundary method, or any other moniker
used to describe it, is to fulfill a boundary condition through some means
other than having a computational mesh conform to the aforementioned
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boundary. In other words, the geometric representation of the problem ge-
ometry is decoupled from mesh. The immersed boundary method was first
introduced by Peskin in his 1972 paper[41]. In the paper, Peskin outlines a
method for simulating the flow around a heart valve on a cartesian grid using
a fictitious force field.

The IBM has had a steady increase in popularity since it was introduced
by Peskin, and there now exist several variants of the method. Among these
methods are the subclass of the so called ghost cell immersed boundary
method (GCIBM) developed in the works of Tseng and Ferziger[46], Fed-
kiw, Aslam, Merriman, and Osher[20], and Ghias, Mittal, Dong[23]. The
GCIBM enforces boundary conditions by using so called ghost cells. These
ghost cells are cells located in parts of the computational domain enclosed by
an immersed boundary where no or different governing equations than the
ones in the rest of the domain are solved. They’re oftentimes located close to
the immersed boundary. Since the solution variables at the ghost cells hold
no physical meaning, they need to be explicitly set. The idea behind the
GCIBM is to set the values at the ghost points such that a boundary con-
dition is satisfied at the immersed boundary through the numerical method.
The GCIBM is capable of recreating sharp interfaces[23], which is beneficial
if one wants to recreate complex geometry accurately. Another benefit of
the GCIBM is that it can be implemented in such a way that no special
treatment of the ghost cells are needed once their values are set. The fact
that the ghost cells require no special makes it a lot simpler to parallelize the
method.

In recent years, the IBM has been used in combination with higher or-
der numerical methods. The previously discussed ENO scheme was used in
conjunction with the GCIBM of [20] and in 2007, Fidkowski and Darmofal
developed a Discontinious-Galerkin IBM[21]. Since then, multiple other DG-
IBM methods have followed such as the ones described in [34, 3, 32, 53, 52,
22, 31].

1.2.4 Conclusions

This review of higher order methods and boundary treatments is by no means
exhaustive, but highlights what was deemed the most promising candidates
to achieve the objectives stated in section 1.1 at the time of writing this
thesis. Ultimately, the DG-method in combination with the GCIBM was
chosen over the ENO/WENO schemes. The locality and parallelizability of
the DG-method makes it an attractive scheme to coupled with the GCIBM.
It is believed that parallelizability is of key importance in reducing the com-
putational time to the point where patient specific preoperative CFD be-
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comes a feasible diagnostic tool. The ENO-/WENO schemes do have some
favorable properties especially regarding their ability to handle shocks and
discontinuities. However, the flow conditions in the human upper airway are
believed to be sufficiently below the limit for which such phenomena would
arise. The justification for using the compressible Navier-Stokes in lieu of
the incompressible variant, is the strong relation between OSA and acoustic
phenomena. A fact anyone sharing a bed with an OSA patient can likely
attest to.

1.3 Outline

I chapter 2 the compressible Navier-Stokes equations are presented along with
an equation of state and various assumptions. Additionally, some boundary
conditions that will later be discretized are given. In chapter 3, a method
for constructing basis polynomials is detailed, followed by the construction
of a Discontinuous-Galerkin scheme. Then numerical discretizations of the
aforementioned boundary conditions are given. Chapter 3 ends on the con-
struction of a ghost point immersed boundary method using radial basis
functions. In chapter 4 a test case meant for testing the developed method is
presented and the results and discussion of the testing is found in chapter 5.
Some concluding remarks regarding the results and some recommendations
regarding further work is given in chapter 6 and 7 respectively.



Chapter 2

Governing Equations

2.1 The Compressible Navier-Stokes equations

As this thesis pertains to model aerodynamic flow in complex geometries,
the compressible Navier-Stokes equations were chosen as suitable governing
equations. They describe the temporal evolution of mass, momentum, and
energy. The set of equations is oftentimes accompanied by an equation of
state in order to close the system. The following presentation of the com-
pressible Navier-Stokes will be done in two spatial dimensions.

Ut +∇ · F(U,∇U) = 0 (2.1)

Where U is the conserved variables and ∇ · F the divergence of the flux.
The subscript t denotes the temporal derivative. The conserved variables are
given as

U =


ρ
ρu
ρv
ρE

 , (2.2)

where ρ, u, v, and E are the density, the velocity components, and the specific
total energy. The flux is regarded as consisting of a convective term and a
viscous term. They are denoted by superscript c and v respectively.

F = Fc − Fv (2.3)

Note that the dependence of the flux on U and ∇U is hereafter omitted
for brevity’s sake. The subscripts 1 and 2 are used to denote the spatial

11
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directionality of the flux. The convective flux is given as

Fc
1,2 =




ρu
ρu2 + p
ρuv
ρHu

 ,


ρv
ρuv

ρv2 + p
ρHv


 (2.4)

and the viscous flux as

Fv
1,2 =




0
τ11
τ21

τ11u+ τ12v + kTx

 ,


0
τ12
τ22

τ21u+ τ22v + kTy


 , (2.5)

where the viscous stress tensor, τ , is given by

τ = µ

[
4
3
ux − 2

3
vy uy + vx

uy + vx
4
3
vy − 2

3
ux

]
. (2.6)

The specific total enthalpy is given by H ≡ E + p
ρ
and the specific total

energy by E ≡ e + 1
2
∥u∥2, where e is the specific internal energy. The ideal

gas law is used to close the system by introducing an explicit expression for
the pressure

p = ρe(γ − 1). (2.7)

The specific heat capacities, cp, cv, and as such, the adiabatic index γ = cp/cv
is also assumed to be constant. Unless otherwise is specified, a value of
γ = 1.4 it is a good fit for dry air at standard conditions. The ideal gas
law is further used to express the quantities of the speed of sound c and the
temperature T as

c =

√
γp

ρ
(2.8)

and

T =
γ − 1

R
e. (2.9)

Here, R is the gas constant of air and is assumed to have a value of R =
287.052874 m2

Ks2
unless otherwise is stated.

Using the Reynolds-, Mach, and Prandtl number

Re0 =
ρ0u0L0

µ0

, Ma0 =
u0

c0
, P r0 =

γR
γ − 1

µ0

k0
, (2.10)
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in combination with a reference speed u0 and a characteristic length scale, a
nondimensionalization of the flow variables is formulated.

t∗ =
u0

L0

t, x∗ =
x

L0

, y∗ =
y

L0

, u∗ =
u

u0

, v∗ =
v

u0

, (2.11)

E∗ =
E

u2
0

, H∗ =
H

u2
0

, T ∗ =
γR

(γ − 1)u2
0

T, p∗ =
γMa0
ρ0u2

0

p (2.12)

µ∗ =
Re0
L0

µ, k∗ =
(γ − 1)Pr0Re0

γRL0

k (2.13)

The superscript ∗ will hereafter be omitted and any flow variable should
be taken to be nondimensionalized unless information is provided to the
contrary.

2.2 Boundary conditions

In addition to the governing equations, boundary conditions are also needed
to ensure that a problem is well posed. This section will describe some
physical boundary conditions that will later be used for the discretization of
the numerical method and test-cases. The governing equations dictates what
occurs on some domain Ω with a boundary Γ = ∂Ω. The state just inside
and outside the boundary Γ is given as U−

Γ and U+
Γ respectively. Where the

state exactly at the boundary is referenced, the − and + is omitted.

Figure 2.1: Domain and boundary

2.2.1 Free stream

The free stream boundary condition simply presumes that the flow beyond
the boundary is at some prescribed state known as the free stream, i.e.

U+
Γ = U∞. (2.14)
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2.2.2 No slip

The no slip condition is assumed to apply at solid boundaries. This means
that fluid at a solid boundary is assumed to have no velocity relative to the
boundary. If the boundary is fixed (which it will be for all test-cases in
thesis), then the no slip condition states that

uΓ = 0, (2.15)

or in terms of the conserved variables

[ρu]Γ = 0. (2.16)

2.2.3 Periodic

Figure 2.2: A domain with periodic boundaries.

The periodic boundary couples two or more segments of the domain boundary
such that they behave as if they were connected. Stated more plainly, what
flows into one boundary flows out of the coupled boundary, and vice versa.
Two boundary segments, Γa and Γb, are coupled by{

U+
Γa

= U−
Γb

U+
Γb

= U−
Γa

. (2.17)

It is assumed that periodic boundaries are parallel to one another.
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2.2.4 Adiabatic

An adiabatic wall is a wall where there is no heat flux. This implies that the
following relation holds for the density and the energy.{

∂ρ
∂n

= 0
∂E
∂n

= 0
(2.18)
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Chapter 3

Numerical Method

3.1 Construction of basis

3.1.1 Polynomial basis

A polynomial, a(η), of order equal to or less than Np can be regarded as a
linear combination of terms from the monomial basis of order Np.

b(η) = {ηi}Np

i=0 (3.1)

Therefore a polynomial basis with Np polynomials {ai}Np

i=0 of order equal to
or less than Np can be expressed as a set of dot products between vectors

containing the polynomial coefficients, {ai}Np

i=0, and the monomial basis.

a0(η) = a0 · b(η) = Σ
Np

i=0a0,iη
i

a1(η) = a1 · b(η) = Σ
Np

i=0a1,iη
i

a2(η) = a2 · b(η) = Σ
Np

i=0a2,iη
i

...

aNp(η) = aNp · b(η) = Σ
Np

i=0aNp,iη
i

By introducing a coefficient matrix, the previous operation becomes

A =


aT
0

aT
1

aT
2
...

aT
Np

 =⇒ a(η) = Ab(η) =



a0(η)
a1(η)
a2(η)
...

aNp(η)
,


(3.2)

17
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thus, allowing us to express any polynomial basis as the product of a coeffi-
cient matrix and a monomial basis.

We define the Gram matrix1 of some function space w.r.t. the spatial
domain Ω as

Ga =

∫
Ω

a(η)aT (η)dη. (3.3)

By using the formulation of (3.2) along with the definition of the Gram
matrix, one is left with

Ga =

∫
Ω

a(η)aT (η)dη

=

∫
Ω

Ab(η)[Ab(η)]Tdη

= A

∫
Ω

b(η)bT (η)dηAT

= AGbA
T .

The gram matrix of any polynomial basis can therefore be found if the coef-
ficient matrix and the Gram matrix of the monomial basis is known.

Ga = AGbA
T (3.4)

By taking the spatial domain Ω to be [ηa, ηb] and introducing the shorthand
k = i + j + 1 an analytical expression of the Gram matrix of the monomial
basis is trivially arrived at.

Gb =

∫
Ω

b(η)bT (η)dη =

{∫ ηb

ηa

ηi+jdη

}Np,Np

i,j=0

=

{
ηkb − ηka

k

}Np,Np

i,j=0

(3.5)

Finding the derivative of some polynomial basis w.r.t. η is achieved by
transforming the coefficient matrix. To perform this transformation the ma-
trix D is introduced as

D =

[
0 0

{i}Np

i=1I 0

]
(3.6)

such that
da(η)

dη
= aη(η) = Pηb(η) = (PD)b(η). (3.7)

1The way that the Gram matrix is defined here might differ from other sources where
this definition would technically be the transpose of the Gram matrix, however, the Gram
matrix being symmetric means that these definitions are equivalent.
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Extending a basis to two dimensions is done using the Kronecker product,
denoted ⊗.

a2D(η, ξ) = a(η)⊗ a(ξ) = (Ab(η))⊗ (Ab(ξ)) = (A⊗A)(b(η)⊗ b(ξ)) (3.8)

This extension let us define 2-dimensional2 coefficient matrices and monomial
bases

A2D = A⊗ A, b2D(η, ξ) = b(η)⊗ b(ξ) (3.9)

and even partial derivatives

a2D
η (η, ξ) = (AD ⊗ A)b2D(η, ξ)

a2D
ξ (η, ξ) = (A⊗ AD)b2D(η, ξ).

3.1.2 Legendre basis

An orthonormal polynomial basis p(η) = Pb(η) is used in the numerical
method. Requiring the basis to be orthonormal is equivalent to requiring
that it’s Gram matrix is the identity matrix, i.e.,

Gp = PGbP
T = I. (3.10)

Since Gb is Hermitian, Cholesky-decomposition can be used to factor it as

Gb = BBT , (3.11)

where B is a lower triangular matrix. This implies that

Gp = PBBTP T = (PB)(PB)T . (3.12)

Thus, if P satisfies PB = I, then Gp = IIT = I and P is determined by
solving the linear system

PB = I. (3.13)

Unsurprisingly, this yields normalized Legendre polynomials. These poly-
nomials will be used as a basis for the modal expansion of the numerical
method.

2The subscripts 1D and 2D are omitted where dimensionality can be inferred from
context, i.e. you might encounter a2D = a ⊗ a and a = a1D ⊗ a1D but rarely a2D =
a1D ⊗ a1D.
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Figure 3.1: The first five normalized Legendre polynomials.

3.1.3 Lagrange basis

The Legendre basis can be used for modal expansion of our solution, however,
for certain operations a basis ℓ(η) = Lb(η) which is exact at certain locations,
or nodes η, is desired. We first define the Vandermonde matrix3.

V = b(ηT ) =


(ηT )0

(ηT )1

(ηT )2

...
(ηT )Np

 =


η00 η01 η02 . . . η0Np

η10 η11 η12 . . . η1Np

η20 η21 η22 . . . η2Np

...
...

...
. . .

...

η
Np

0 η
Np

1 η
Np

2 . . . η
Np

Np

 (3.14)

This is done such that we can evaluate our new basis at the aforementioned
nodes. Our basis thus becomes

ℓ(η) = Lb(η) = LV. (3.15)

Ultimately, we would like to evaluate our solution approximation as a
weighted sum of the basis polynomials. Therefore, if we require each basis

3One might encounter the Vandermonde matrix, defined in other works, as the trans-
pose of how it’s defined in this text.
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polynomial to be unity at it’s corresponding node and to vanish at all other
nodes, our solution approximation would be exactly that of it’s corresponding
weight at that node. Thus, to find this basis, we solve the following linear
system.

LV = I (3.16)

This yields the Lagrange polynomials which can be seen in 3.2.

Figure 3.2: The first five Lagrange polynomials using Legendre nodes.

The roots of the Np + 1th Legendre polynomial is used as nodes for the
Lagrange interpolation.

3.2 Discontinuous-Galerkin Method

3.2.1 Spatial discretization

We begin by rewriting equation 2.1 as a system of equations.{
Ut +∇ · F(U,S) = 0

S−∇U = 0
. (3.17)
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Figure 3.3: A fourth order 2D Lagrange basis made using the construction
methods outlined in section 3.1.
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Figure 3.4: A fourth order 2D Legendre basis made using the construction
methods outlined in section 3.1.
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Similarly to flux, the auxiliary variable S also has two components.

S1,2 =

(
∂U

∂x
,
∂U

∂y

)
(3.18)

. Given some domain Ω for which the dynamics is governed by equation 3.17,
the equation can be transformed to a weak formulation by multiplying by a
trial space of test functions ψ and integrating over the domain.∫∫

Ω

ψUtdxdy +

∫∫
Ω

ψ (∇xy · F) dxdy = 0 (3.19)

Rather than integrating over the entire domain Ω all at once, we subdivide
the domain into smaller subdomains, or cells, Ωh for which we assume our
solution to be continuous.∫∫

Ωh

ψhUtdxdy +

∫∫
Ωh

ψh (∇xy · F) dxdy = 0 (3.20)

The specific trial spaces of each cell are all generated from a reference trial
space ψ∗ over a reference cell Ω∗. The only thing distinguishing the specific
trial space from the reference trial space is a coordinate mapping specific to
each cell.

ψh(x, y) = ψ∗(ηh(x), ξh(y)) (3.21)

The coordinate mapping that will be used in this thesis assumes that the
domain Ω is subdivided into into a perfectly cartesian grid, thus simplifying
the following derivation significantly. The coordinate mapping of cell h is as
follows. 

ηh(x) = 2
xh
b−xh

a

[
x− xh

a+xh
b

2

]
ξh(y) = 2

yhb −yha

[
y − yha+yhb

2

] (3.22)

The integration can therefore be transformed such that it is evaluated on Ω∗

instead of Ωh. We do this by rewriting the differentials as dx = dx
dη
dη = 1

ηhx
dη

dy = dy
dξ
dξ = 1

ξhy
dξ

(3.23)

such that equation 3.20 becomes

1

ηhxξ
h
y

(∫∫
Ω∗
ψ∗Utdηdξ +

∫∫
Ω∗
ψ∗ (∇xy · F) dηdξ

)
= 0, (3.24)
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which is equivalent to∫∫
Ω∗
ψ∗Utdηdξ +

∫∫
Ω∗
ψ∗ (∇xy · F) dηdξ = 0. (3.25)

Similarly, the gradient operator ∇xy is transformed by

∇xy = J−1
h ∇ηξ, J−1

h =

[
ηhx 0
0 ξhy

]
. (3.26)

Transforming the gradient, and using Green’s identity leaves us with∫∫
Ω∗
ψ∗Utdηdξ =

∫
Ω∗

J−1
h ∇ηξψ

∗ · Fdηdξ −
∮
χ

ψ∗ F|Γ · J−1
h dχ. (3.27)

Γ is a parameterization of the cell boundary with dependence on the param-
eter χ. dχ is a shorthand for n̂Γdχ, n̂Γ being the outwards pointing normal
w.r.t. boundary Γ.

Figure 3.5: A depiction of the reference cell and it’s boundary normals.

The boundary of the reference cell is parameterized as

Γ :


Γe(χ) = [1, χ]T

Γw(χ) = − [1, χ]T

Γn(χ) = [χ, 1]T

Γs(χ) = − [χ, 1]T

, (3.28)

and the normal is given by

n̂Γ =
∂

∂χ

[
Γ2

−Γ1

]
. (3.29)
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3.2.2 Solution approximations

Even though we have arrived at an equation, our solution is still unknown
to us (if it weren’t this thesis would be moot). Since equation 3.27 describes
the change in our solution with respect to time, we want to find some way
of keeping track of our solution within each cell, and how it changes. We
do this by introducing appropriate approximations for the quantities found
in equation 3.27. The quantities we must approximate are the conserved
variables U, the flux within the cell F, and the flux across its boundary FΓ.

We approximate U as the piecewise continuous union of the solution
approximations of each individual cell. The solution in cell h is approximated
as the weighted sum of the Legendre polynomials as a modal basis ph(η, ξ)
with the time dependent weights Uh

M(t).

Ũh(x, y, t) = Uh
M(t) · ph(x, y) (3.30)

U(x, y, t) ≈
⋃
h=0

Ũh(x, y, t) (3.31)

Combining equation 3.30 and 3.18 gives us an approximation of S1 and S2.

S̃h
1(x, y, t) ≈ Uh

M(t) · ∂p
h(x, y)

∂x
= ηhx

(
Uh

M(t) · ∂p(η, ξ)
∂η

)
(3.32)

S̃h
2(x, y, t) ≈ Uh

M(t) · ∂p
h(x, y)

∂y
= ξhy

(
Uh

M(t) · ∂p(η, ξ)
∂ξ

)
(3.33)

For a non-linear flux function, evaluating the the flux of our modal solution
approximation isn’t straightforward. However, using the convenient property
of the Lagrange basis evaluating to unity at the chosen nodes introduced in
section 3.1.3 means that we can transform our modal solution expansions
to nodal ones, evaluate the weights directly, and then arrive at a nodal flux
approximation employing the same polynomial space. The nodal weights are
obtained by simply evaluating the approximations at the nodes.

Uh
N(t) = Ũh(ηc, ξc, t) (3.34)

Sh
N(t) = S̃h(ηc, ξc, t) (3.35)

The flux reconstruction within cell h thus becomes

F̂h(x, y, t) = Fh
N · ℓh(x, y), (3.36)

Where Fh
N = F

(
Uh

N ,S
h
N

)
.The reconstruction at the cell interface is much

the same. A one-dimensional nodal expansion is used.

F̂h
Γ(x, y, t) = Fh

Γ · ℓh,1D(χt̂Γ · 1) (3.37)



3.2. DISCONTINUOUS-GALERKIN METHOD 27

The tangent of the boundary t̂Γ is defined as

t̂Γ =
∂Γ

∂χ
(3.38)

Since the solution is dually defined at the cell interface, a suitable numerical
flux function H is chosen to reconcile the case for which the left and right
state differ.

Fh
Γ = H

(
Uh,L

Γ ,Uh,R
Γ ,Sh,L

Γ ,Sh,R
Γ

)
. (3.39)

3.2.3 Operator construction

Now that we have suitable approximations, these can be inserted into equa-
tion 3.27. We choose the Legendre polynomials to be our trial space, and
transpose4 our approximations before inserting them.∫∫

Ω∗
p
(
Ũh

)T

t
dηdξ︸ ︷︷ ︸

(i)

=

∫∫
Ω∗

J−1
h ∇ηξp ·

(
F̂h

)T

dηdξ︸ ︷︷ ︸
(ii)

−
∮
χ

p
(
F̂h

Γ

)T

· J−1
h dχ︸ ︷︷ ︸

(iii)

.

(3.40)
Due to the length of equation 3.40, each term is treated separately. The first
term yields the mass matrix M .

(i) →
∫∫

Ω∗
ppTdηdξ︸ ︷︷ ︸
M

Uh
M (3.41)

The second term gives the stiffness matrices K1 and K2.

(ii) → ηhx

∫∫
Ω∗

pηℓ
Tdηdξ︸ ︷︷ ︸

K1

Fh
1,N + ξhy

∫∫
Ω∗

pξℓ
Tdηdξ︸ ︷︷ ︸

K2

Fh
2,N (3.42)

And from the third term, the boundary operators Qe,w,n,s are obtained.

(iii) → ηhx

Qe︷ ︸︸ ︷∫
χ

pe
(
ℓ1D(χ)

)T
dχFh

e − ηhx

Qw︷ ︸︸ ︷∫
χ

pw
(
ℓ1D(−χ)

)T
dχFh

w (3.43)

+ ξhy

∫
χ

pn
(
ℓ1D(χ)

)T
dχ︸ ︷︷ ︸

Qn

Fh
n − ξhy

∫
χ

ps
(
ℓ1D(−χ)

)T
dχ︸ ︷︷ ︸

Qs

Fh
s

4The action of transposing pertains only to the dimensions of the functional space, not
the two spatial dimensions nor the four variable dimensions. This is in contrast to the two
dot products in equation 3.40 which only operate along the spatial dimension.
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Using the newly identified operators, equation 3.40 becomes5

U̇h
M = M−1

[
Kh

1F1,N +Kh
2F2,N +Qh

wF
h
w −Qh

eF
h
e +Qh

sF
h
s −Qh

nF
h
n

]
. (3.44)

Ultimately, by employing the ideas presented so far in this chapter, explicit
expressions for the operators are found. The mass matrix is by definition the
identity matrix, and its inverse naturally so too.

M = I =⇒ M−1 = I (3.45)

The stiffness matrices become

K1 =
[
P 1DD ⊗ P 1D

]
GbL

T (3.46)

K2 =
[
P 1D ⊗ P 1DD

]
GbL

T , (3.47)

and the boundary operators

Qe = P
[
b1D(1)⊗G1D

b

]
L1DT

(3.48)

Qw = P
[
b1D(−1)⊗G1D

b

]
L1DT

(3.49)

Qn = P
[
G1D

b ⊗ b1D(1)
]
L1DT

(3.50)

Qs = P
[
G1D

b ⊗ b1D(−1)
]
L1DT

(3.51)

3.2.4 Temporal discretization

We let the temporal discretization be relatively agnostic to the spatial dis-
cretization, and thus replace the right hand side of equation 3.44 with a
residual function dependent only on the modal weights and time.

U̇h
M = R(Uh

M , t) (3.52)

The classical fourth order Runge-Kutta method is used due to it’s favorable
stability and high order. The residual equation is used to express the method
as

k1 = R
(
Uh
M , t

)
k2 = R

(
Uh
M + k1∆t/2, t+∆t/2

)
k3 = R

(
Uh
M + k2∆t/2, t+∆t/2

)
k4 = R

(
Uh
M + k3∆t, t+∆t

)
Uh
M = Uh

M +∆t [k1 + 2k2 + 2k3 + k4] /6.

5The superscript h, in relation to the operators, is used as a shorthand for the operator
multiplied with it’s preceding scaling factor, e.g. Kh

1 = ηhxK1 = 2
∆xh

K1.
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A convective and a viscous a CFL number based on [17, 44] are used to
determine the time step as follows.

∆tc ≤
Cc

(2Np + 1)
(

|u|+c
∆x

+ |u|+c
∆x

) (3.53)

∆tv ≤
ρCv

(2Np + 1)2
(√

2µ max
{

4
3
, γ
Pr

})(
1

∆x2 +
1

∆y2

) (3.54)

∆t = min {∆tc,∆tv} (3.55)

Numerical flux

The notation of the average {{u}} = 1
2
(u+ + u−) and the jump [[u]] = n̂−u−+

n̂+u+, commonly used by the DG-community, will from hereon be used to
define the interfacial flux-functions. For a more thorough introduction to
these operators, the reader is referred to [26]. A Rusanov flux is used for the
convective fluxes at the cell interfaces.

Hc
(
UL,UR

)
= {{Fc}} − 1

2
a [[U]] (3.56)

The largest wave speed is used to determine the directionality of the flux,
i.e. a = max{aL, aR}, the largest wave speed of the convective flux being
a1 = |u|+ c and a2 = |v|+ c in the x- and y direction respectively.

As pointed out in [18], greater care must be taken in the reconstruction
of the interfacial diffusive fluxes than their convective counterparts. This is
due to the dependence of the diffusive fluxes on the spatial derivatives of
the solution. Additional terms are thus introduced to the diffusive numerical
flux in order to account for the case where there’s a jump in the solution
variables between adjacent cells. The viscous flux described here is that of
the Direct Discontinuous-Galerkin method (DDG) described in [37].

Hv
(
UL,UR,SL,SR

)
= Fv

(
{{U}} ,S∗(UL,UR,SL,SR

))
(3.57)

Here S∗ is a special reconstruction of the interfacial gradient given by

S∗ = {{S}}+ β0

∆
[[U]] n̂+ β1∆ [[∇S · n̂]] . (3.58)

Ultimately β0 was set to 1 and β1 to 0.
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3.3 Boundaries

In this section, two types of boundary implementations will be used. Firstly,
a brief description of the numerical treatment of conforming boundaries are
presented. Thereafter, a thorough description of an immersed boundary
method follows.

3.3.1 Conforming boundaries

The flux functions of section 3.2.4 are used to weakly enforce certain bound-
ary conditions. This is done by prescribing the state of the conserved vari-
ables, and their derivatives, exterior to the domain. The second derivatives
of U are to be extrapolated from the interior in all boundary discretizations,
meaning that all terms resulting from ∇S in equation 3.58 can be neglected
in the numerical boundary treatment. Most of the ensuing boundary dis-
cretizations are taken from [38].

Far field

The discretization of a far field or inflow boundary is achieved by prescribing

U+ = U∞ (3.59)

and extrapolating derivatives from the interior.

S+ = S− (3.60)

Subsonic outflow

A partially non-reflecting subsonic outflow boundary is discretized by extrap-
olating all variables and derivatives, except the pressure, which is determined
by

p+ = 2pΓ − p−, (3.61)

where pΓ is the prescribed pressure at the outflow boundary.

Adiabatic wall

Again, all variables and derivatives are extrapolated from the interior. Then
the velocity is set to zero such that the no-slip condition is enforced.

u+ = 0 (3.62)
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While it is possible to enforce the adiabatic condition by requiring that there’s
no heat flux along the normal of the wall such as done in [18], a simpler and
consistent formulation when no-slip is already assumed is to require there to
be no mass, nor energy flux along the normal such as in equation 2.18. We
therefore construct the aforementioned exterior gradients by subtracting the
interior gradients projected onto the wall normal from interior gradient.

[∇ρ]+ = [∇ρ]− −
(
[∇ρ]− · n̂

)
n̂ (3.63)

[∇(ρE)]+ = [∇(ρE)]− −
(
[∇(ρE)]− · n̂

)
n̂ (3.64)

Symmetry

The symmetry boundary condition is implemented by mirroring all direc-
tional quantities6 and reflecting all scalar quantities w.r.t. the boundary.
This leads to the following implementation.

u+ = u− − 2
(
u− · n̂

)
n̂ (3.65)

S+ = S− − 2
(
S− · n̂

)
n̂ (3.66)

ρ+ = ρ− (3.67)

E+ = E− (3.68)

3.3.2 Immersed Boundary Method

In this section an immersed boundary method based on the imposition through
the use of a fictitious fluid field is detailed. The method presented here is
loosely based on the one found in [30], although, with some significant differ-
ences. The fictitious fluid field (which shall hereafter be known as the ghost
fluid), is used to simulate the presence of an obstacle in the flow. Given
a domain Ω we partition it into a fluid part ΩF , a solid part ΩS, and the
bound between these two parts Γ. On ΩF the solution is governed by the
compressible Navier-Stokes while on ΩS solution values can be prescribed.
The idea is to prescribe solution values on ΩS such that chosen boundary
conditions are fulfilled on Γ.

6Directional quantity here refers to any quantity that can be thought of as having a
direction, i.e. be expressed as a vector.
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Figure 3.6: Signed distance function of a unit circle.

Figure 3.7: A domain partitioned into two separate domains, ΩF and ΩS,
separated by the boundary Γ.

First, we need some way of partitioning the domain as stated. We choose
to describe the geometry implicitly through the use of a signed distance
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function ϕ(x, y). The partitioning is then defined as

ΩF = {(x, y) ∈ R | ϕ (x, y) > 0} (3.69)

ΩS = {(x, y) ∈ R | ϕ (x, y) < 0} (3.70)

Γ = {(x, y) ∈ R | ϕ (x, y) = 0} . (3.71)

While it would be convenient to treat the conditions on Γ generally, some
choice should be made as the remainder of the implementation will depend
on what conditions we want to have fulfilled. The no-slip condition of 2.2.4
is thus selected.

We’ll first treat the no-slip condition, i.e. u = 0 on Γ. If we do an
odd reflection of u and v about the boundary Γ, then u and v must pass
through zero at the boundary, and the condition is fulfilled. We use the
signed distance property of ϕ to define the vector δ from the closest point on
Γ to some point x.

δ(x) = ϕ(x)∇ϕ(x) (3.72)

A reflection of point x about Γ can now be constructed as

xr(x) = x− 2δ(x). (3.73)

The odd extension of the velocity in the ghost domain becomes

u(x) = −u(xr), x ∈ ΩS. (3.74)

Even extensions are used for the density and the energy.

ρ(x) = ρ(xr), x ∈ ΩS. (3.75)

E(x) = E(xr), x ∈ ΩS. (3.76)

An even extension is used for the derivatives of U.

∇U(x) = ∇U(xr), x ∈ ΩS. (3.77)

The above continuous treatment of ΩS must be discretized in a way com-
patible with the rest of the numerical treatment detailed in this chapter. The
modal bases is transformed into its nodal representation. This is done such
that the domain in which any particular node lies can be identified, and the
proper treatment be applied to that node. The nodes that are within ΩS

are denoted as the ghost points xGP . Each ghost point has a corresponding
image point which is the reflection of of the ghost point about the boundary.

xIP = xr(xGP ) (3.78)
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The question then becomes; how do you recreate the solution state at xIP .
The naive approach might be to use the nodal solution approximation de-
tailed in section 3.1.3. However, since the polynomial of each node only van-
ish at other nodes, this reconstruction is ill suited for cells containing both
ghost points and image points. It could perhaps still be possible to obtain the
values at the ghost points using this reconstruction, but one would need to
solve for these unknowns implicitly. Instead, the solution state at the image
point is reconstructed such that it has no dependence on any ghost points.
The two following criterions were used to find a suitable reconstruction.

1. The reconstructed state at any image point should be independent of
what occurs within the solid domain such that the value at the ghost
points can be evaluated explicitly, and in any order.

2. The reconstructed state should be consistent, i.e., if an image point
coincides with a node, then the reconstruction at that image point
should take on the value of the solution at the coincident node.

First the cell wherein the image point lies is identified. Then the distance
between the image point and the nodes of the cell is determined.

di = ∥xi − xIP∥ (3.79)

Then a set of weights are constructed based on the reciprocal of the squared
distance.

wi =

{
d−2
i xi ∈ ΩF

0 else
(3.80)

The weights are normalized.

ŵi =
wi∑
wi

(3.81)

Using the nodal values Uh
i , we ultimately are left with the following approx-

imation at the image point.

UIP =
∑

Uh
i ŵi (3.82)

The reconstruction satisfies criterion 1 as only fluid points are used in its
construction. Additionally, it can be shown that

lim
xIP→xi

ŵj =

{
1 j = i

0 j ̸= i
(3.83)
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(a) Four cells intersected
by a boundary.

(b) Sampling at image
point is done within same
cell as ghost node.

(c) Sampling at image
point is done in different
cell than the one contain-
ing the ghost node.

Figure 3.8: A display of distinct sampling configurations. The solid part of
the domain is depicted in gray, while the fluid is depicted as blue. The yellow
node is the ghost node for which a value must be sampled at its image point
(black diamond). Only fluid nodes (red) are used to reconstruct the state at
the image point, while other ghost nodes (gray) are ignored.

meaning that
lim

xIP→xi

UIP = Uh
i , (3.84)

i.e., the reconstruction satisfies criterion 2 as well. In essence, since the
functional basis used to reconstruct the state at the image point only depends
on the distance to a particular node, the state is reconstructed using radial
basis functions (RBF).
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(a) Lagrange reconstruction. (b) RBF reconstruction.

Figure 3.9: The reconstruction of the continuous solution across some cell h
using its nodal values Uh

N,i.
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Test cases

The chosen test case is that of a cylinder in a flow. This test case has been
abundantly documented both experimentally as well as numerically. This
test case is used to asses the presented IBM.

4.1 Flow over cylinder

There are multiple reasons why the flow over a cylinder is a good benchmark
to evaluate the immersed boundary method presented in this thesis. It is
a relatively simple geometry, while also being sufficiently complicated as to
not be trivial. It is a well documented benchmark case for which there exist
a plethora of experimental and numerical results. It shows distinct flow be-
haviour in various flow domains and gives rise to the Kármán vortex street
above some critical Reynolds number. The Kármán vortex street serves as
a useful phenomena on which quantitative and qualitative assessment of a
numerical solution can be based. A rectangular flow domain with a cylinder
of diameter D at its origin is used. The flow domain extends symmetri-
cally about its origin in the vertical direction and spans a total height of H.
Horizontally, the domain spans the distance between an inlet and an outlet
located L1 and L2 away from the cylinder. Similarly to the previous test
case, the free stream- and outflow boundary treatment of 3.3 are used at
inlet and outlet, while a symmetry boundary condition is used for the top
and bottom ”wall”.

The flow regimes can roughly be classified according to table 4.1. Regime
3 was ultimately chosen due to it’s transient, but orderly behaviour of alter-
nating vortices. Further, a Reynolds number of 100 was chosen as it coincides
with the works [1,2,3]. A low mach number was desired such that the sim-
ulations could be compared to incompressible solutions. Even so, the Mach
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Figure 4.1: A depiction of the dimensions of the computational domain used
for the a circular cylinder in a flow test case.

number still needed to be sufficiently high as to allow reasonable simulation
times without violating the stringent CFL-condition. A Mach number of
0.25 was chosen as a suitable compromise between the two. However, due
to a small calculation error1, the Mach number ended up being ≈ 0.1786.
Fortunately, the results of [6] and [29] indicate that this change in the Mach
number should not lead to drastic changes in the resulting flow. The Prandtl
number was simply held constant at 0.72, being a good fit for air at standard
conditions[42]. The chosen flow state is summarized in table 4.1.

Re Ma Pr
100 0.1786 0.72

Table 4.1: Values of the dimensionless numbers used to characterize the flow
of the test case.

The distance function that will be used to describe the circle is given as

ϕ(x, y) =
√
x2 + y2 − 1

2
. (4.1)

1The relation p0 = γ
Ma2

0
was accidentally used instead of the supposed p0 = 1

γMa2
0

yielding a Mach number of 0.17857142857142858.
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(a) Re ∈ [0, 5] Known as stokes flow,
this regime is characterized by inertial
effects being negligible compared to vis-
cous forces. This leads to symmetric
streamlines upstream and downstream
of the cylinder[27].

(b) Re ∈ [5, 40] The flow separates be-
hind the cylinder and a recirculation
zone consisting of two counter-rotating
vortices form[4]. The length of the re-
circulation zone increase with increas-
ing Re[27].

(c) Re ∈ [40, 200] The recirculating vor-
tices become inherently unstable, and
as such, minute disturbances are ampli-
fied until a periodic, but unsteady pat-
tern is formed.[27] The pattern is char-
acterized by the alternate shedding of
vortices from either side of the cylin-
der[4]. Although unsteady, the flow is
still laminar.

(d) Re ∈ [200) The wake becomes tur-
bulent[27]. While It is possible to iden-
tify distinct regimes above Re = 200,
for simplicity no such distinction has
been made in this text.

Figure 4.2: Classification of four distinct flow regimes for the flow around a
cylinder. It should be noted that the Reynolds numbers given are estimates.
In reality there will be some overlap between the regimes.
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L1 Length between inlet and center of cylinder
L2 Length between outlet and center of cylinder
H Height of domain
Nc Number of elements in x-direction
Mc Number of elements in y-direction
Np Order of 1D basis functions
Re0 Reference Reynolds number
Ma0 Reference Mach number
Pr0 Reference Prandtl number
CCFL Convective CFL number
CDFL Diffusive CFL number

Table 4.2: Input parameters of the flow over a cylinder test case.
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Results

Several simulations were performed at various orders p and refinement levels
r. At low Reynolds numbers (regime 3, table 4.1) a computationally ex-
pensive transient exists between symmetric initial conditions and the steady
periodic behaviour described in section 4.1[33]. However, this transient can
be significantly shortened by altering initial or inlet conditions. The following
method ended up being effective in triggering vortex shedding.

1. Simulate cylinder using symmetric initial- and boundary conditions
until a modest wake has developed.

2. Project solution onto the grid of a new simulation with a vertical offset
of one cylinder radius.

3. Let solution converge to regular vortex street.

This method and initialization with previously converged solutions were used
to obtain convergence towards steady periodic vortex shedding.

Four simulations were performed at various levels of grid refinement.
These four simulations were all performed at the same similar flow condi-
tions, with Re = 100, Ma = 0.1786, and Pr = 0.72. The simulations are
denoted A, B, C, D in order of the lowest to the finest grid used for the
simulation. Various details regarding the simulations is found in table 5 and
the dimensions of the domain is described in table 5.1.

According to Newton’s second law of motion, the change in momentum
w.r.t. time of the fluid is equal to the force acting on the fluid.

F =

∫∫
Ω

∂ (ρu)

∂t
dΩ (5.1)

The change in momentum w.r.t. is readily found from the momentum equa-
tion of the Navier-Stokes equations. The momentum equation is expressed
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L1 L2 H
10 20 20

Table 5.1: Dimensions of computational domain for the test case of a circular
cylinder in a flow. All values given are normalized w.r.t. the diameter of the
cylinder.

Table 5.2: The computational details of simulations performed on the flow
over the cylinder test case.

A B C D

r 1 2 3 4
p 4 4 4 4
Ncells 48 96 144 192
Mcells 32 64 96 128
NDOFs 24576 98304 221184 393216
CCFL 0.4 0.4 0.4 0.4
CDFL 0.4 0.4 0.4 0.4
tCPU 2580 40080 264960 282720
tsim 57.46 98.54 158.18 79.61
tCPU/tsim 45 407 1675 3551
tCPU/ (tsimNDOFs) 1.83 · 10−3 4.14 · 10−3 7.57 · 10−3 9.03 · 10−3

in terms of the momentum flux tensor σ.

(ρu)t +∇ · σ = 0 (5.2)

The momentum flux consists of a convective term, a pressure term, and a
viscous term.

σ = ρuuT + pI − τ (5.3)

From Newton’s third law, since the cylinder is at rest, the force acting on the
cylinder must be of equal magnitude and opposite direction to that of the
force acting on the fluid exerted by the cylinder. Therefore, by combining
equation (5.1) and (5.2) and using the divergence theorem, the force acting
on the cylinder is

Fcyl = −
∮
S

σ · n̂dS. (5.4)

Here S is the cylinder surface and n̂ the outward facing unit normal. Since
a no slip condition is supposed to apply at the boundary in question, the



43

convective term ρuuT is neglected. Nondimensionalizing equation 5.4 then
leaves us with

c =
1

1
2
ρ0u2

0D0

∫
S

(τ − pI · n̂) dS, (5.5)

where the vector c is used to find the drag- and the lift coefficient. The unit
vectors î and ĵ, being parallel and orthogonal to the freestream flow direction
respectively, are then used to find the drag- and lift coefficient.

cD = c · î, cL = c · ĵ (5.6)

The nondimensional Strouhal number is defined based on the frequency of os-
cillations of the lift coefficient ω, the cylinder diameter D0, and the reference
velocity u0.

St =
ωD0

u0

(5.7)

In order to assess convergence, the change in the lift coefficient between
consecutive extrema was used. Simulation B, C, and D initially descends
rapidly. This initial decent quickly slows down and a more irregular pattern
emerges. Simulation A display this irregular pattern from the beginning. It
is believed that this is due to simulation A being initialized with an already
converged solution of the same order and grid size. Simulation B, C, and
D were all initialized from grids coarser than that of the their respective
meshes. There could be multiple causes for this irregular behaviour. The
sampling frequency might be to low, leading to errors in peak estimation.
Alternatively, non-harmonic frequency components of the signal might be
present or simply not have had sufficient time to decay. The output of the
simulations were all saved as snapshots at regular intervals. In order to
better estimate periodicity and peak values of drag and lift, cubic splines
were used to interpolate simulation parameters in between saved snapshots.
The drag coefficient cD, lift coefficient cL, and the Strouhal number St were
all estimated based on the.

It is of interest to find some quantity that can be used to assess the
efficacy of the immersed boundary. The no-slip boundary condition implies
that the momentum should vanish at the boundary. One could based on this
derive an error coefficient using the convective term of equation (5.3). This
however, could potentially introduce situations where the error appear small
due to cancellation. To avoid this, a boundary integral of the momentum
magnitude is used instead. The error estimate is then formulated as

ê =

∫
S

ρ ∥u∥ dS. (5.8)
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Figure 5.1: The evolution of the absolute change between consecutive peaks
in the absolute lift coefficient in absolute w.r.t. time. Simulations A - D are
shown. The graphs are used in assessing the convergence of the simulations
towards steady periodic behaviour.

The resulting error estimates of simulations A - D can be found in table 5.4
or in figure 5.2.
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Table 5.3: Resulting parameters of simulation of flow over a cylinder at
Re = 100 for previous and current work.

Ma cD cL St

Liu[35] - 1.35± 0.012 ±0.339 0.165
Calhoun[5] - 1.330± 0.0014 ±0.298 0.175

Karagiozis[29]
0.05 1.317 ±0.320 0.168
0.25 1.336 ±0.319 0.168

Canuto[6]
0.1 1.35± 0.0096 ±0.328 0.166
0.2 1.36± 0.0093 ±0.332 0.165

A

0.1786

1.632± 0.052 ±0.922 0.161
B 1.404± 0.021 ±0.546 0.166
C 1.386± 0.014 ±0.449 0.162
D 1.254± 0.011 ±0.346 0.165

Table 5.4: The error estimate of simulations A - D.

A B C D
0.122 0.051 0.061 0.045

Figure 5.2: The error estimate of the imposed boundary condition w.r.t.
refinement level of the grid.
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Figure 5.3: The pressure distribution of the flow in vicinity of the cylinder.
As expected, a increase in pressure is observed in front of the cylinder and
a pressure drop is observed in its wake. The pressure drop align with the
vortices shown in 5. The cylinder is shown as a white circle. It is simulation
D that is depicted and the time of the snapshot corresponds to that of 5 c.

There’s a decrease in error between refinement level 1 and 2 similar to that
one would expect from a first order method. Thereafter, the error surprisingly
increase slightly between level 2 and 3 before ultimately, at refinement level
4, decreasing to a value slightly below that of refinement level 2. No clear
pattern or trend could be inferred from the available data.

Interestingly, the drag coefficient of simulation B is substantially smaller
than that of simulation A, but almost identical to simulation C. A signifi-
cant decrease from simulation C to D is then observed. Further, the drag
coefficient of simulation D is lower than that of all selected sources. The lift
coefficient is slightly higher. However, the Strouhal number is in good agree-
ment with [6] and [35]. Unlike [6][5][35], the variation in the drag coefficient
seem to not be fully symmetric about the mean for simulation A - C. This
might merely come down to the way the coefficient is reported, but it could
also be due to some error introduced by the presented immersed boundary
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Figure 5.4: The velocity magnitude of the flow in vicinity of the cylinder.
A stagnation point can be seen right in front of the cylinder and a velocity
deficit is observed immediately behind the cylinder. Alternating fluctuations
in the velocity magnitude can be seen further downstream. The cylinder is
shown as a white circle. It is simulation D that is depicted and the time of
the snapshot corresponds to that of 5 c.

method.

The strange behaviour of the error estimate and the drag coefficient could
be indicative of some non-linear effect dependent on the proximity between
nodal locations to the immersed boundary. It should be noted that the
cylinder does occupy a very small portion of a uni-distant cartesian grid,
meaning that quite few cells are used to simulate the immersed boundary.
In fact, on the finest grid, the cylinder only occupies 44 cells. There could
also be a dependence on the ratio of ghost fluid to fluid within a cell. The
momentum flux of simulations A - D near the boundary is shown in figure 5.
It appears that the basis functions have some difficulty in approximating the
boundary condition for the coarser grids. Supporting the hypothesis of ill-
conditioned cells, artifacts can be seen in those boundary cells where the ratio
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of ghost fluid to fluid is small. These artifacts would hopefully vanish with
further refinement of the grid. Unfortunately, without further investigation,
no proper conclusion can be drawn from these quantities alone.

Even though the numerical quantities discussed previously in this chapter
doesn’t entirely align with what one would expect, the immersed boundary
method is definitively able to reproduce the superficial behaviour expected.
A clear vortex street of evenly spaced vortices form behind the cylinder in all
simulations. The vortices being shed are of equal magnitude but alternating
sign such as described in [27]. The described shedding behaviour is shown in
figure 5.

Table 5.5: The specifications of the hardware on which all simulations were
done.

Processor Intel(R) Core(TM) i7-8700 CPU
Clock speed 3.20GHz
RAM 32GB
System architecture 64-bit
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(a) Simulation A (b) Simulation B (c) Simulation C

(d) Simulation D

Figure 5.5: The momentummagnitude in the vicinity of the immersed bound-
ary. Snapshots of simulations A - D are taken at points in time where no lift
force is acting on the cylinder.
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(a) (b) (c) (d) (e)

Figure 5.6: Snapshots of the vorticity field in the wake of the cylinder at
different times during a single oscillation of the lift coefficient. Simulation D
is shown.
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(a) Drag

(b) Lift

Figure 5.7: The evolution of the drag and lift coefficient w.r.t time of simu-
lations A - D.
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Chapter 6

Conclusions

Various higher order methods, like the ENO-/WENO schemes and the DG-
method, and their relation to the IBM has been reviewed. Based on the
review, the DG-method coupled with the GCIBM was chosen as a start-
ing point for the development of a high order accurate method capable of
simulating complex geometries. A novel framework of basis construction
was developed, and the construction of arbitrarily high order Legendre and
Lagrange polynomials within this framework was shown. These basis func-
tions were then used to construct the operators of a modal DG-method with
nodal integration. An IBM method was developed for the DG-method. A
no-slip Dirichlet boundary condition was enforced by setting the values of
ghost nodes based on a reconstructed state sampled at corresponding image
points. Radial basis functions were used to provide a reconstructed state at
the image points which would only depend on the fluid nodes of the sampled
cell. The task of developing a satisfactory von Neumann boundary condition
was not completed due to time limitations.

The flow over a cylinder was chosen as a test case for which multiple
simulations were run. Although periodic vortex shedding was achieved, The
convergence history (shown in figure 5.1) leaves some to be desired. Error
estimates were used to analyze the order of accuracy of the IBM, which was
shown to be no higher than 1st order. However, it is argued that this doesn’t
necessarily reflect the order of the method as the large domain in combination
with equally spaced cells left very few cells to represent the boundary of the
cylinder.

In spite of these issues, the results do show some promise. The drag-
and lift coefficients and the Strouhal number were compared against values
found in selected sources. While not in exact agreement, the drag- and lift
coefficients did not deviate too far from the expected values. The Strouhal
number ended up being fairly close to that found in the presented sources.
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Additionally, the qualitative behaviour of the flow was in good agreement
with what one would expect from the chosen test case.

In summary, the results are not entirely conclusive, but the method shows
some promise and is need of further development and investigation.
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Further work

First and foremost, a more thorough analysis of the method needs to be
completed. More simulations should be run at higher refinement levels and
orders. Using equidistant cells proved to be a major bottleneck due to the
size of the domain compared to the cylinder. To circumvent this, it is highly
encouraged that some sort of grid refinement is implemented. The grid refine-
ment, or h-refinement, could then easily be coupled with order refinement,
or p-refinement, due to the way the basis functions are constructed. This
is known as hp-refinement and is an active area of research within the DG-
community[44]. A proper von Neumann boundary or a non-homogeneous
Dirichlet condition must be implemented.

The use of special boundary fulfilling basis functions should also be in-
vestigated. Some additional computations might be required as it could be
the case that a separate basis functions must be generated for each boundary
cell. However, it is believed that the method of basis construction outlined in
this thesis would significantly lessen the computational burden. More details
regarding these basis functions can be found in appendix A.

After further development, some way of representing patient specific ge-
ometries should be implemented. The effects of non-ideal effects such as
a slip boundary due to the patients mucous membrane, or fluid-structure-
interactions between air flow and soft tissue should be investigated and im-
plemented. Additionally, it would be highly interesting to extract and analyse
sound from the simulations.
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Appendix A

Abstract

The methods presented in chapter 3 are also applicable to other fundamental
bases other than the monomial basis. Owing to this, bases for which various
boundary conditions are fulfilled exactly can be used. On encouragement
from my supervisor, we wrote an abstract of a paper detailing the use of such
bases. The abstract was submitted to and accepted for a contributed talk at
the International Conference on Spectral and High Order Methods of 2023
(ICOSAHOM2023)[28]. The abstract is included on the next page.
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Constructing a basis for enforcing immersed boundaries
in discontinuous Galerkin methods
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A novel approach for imposing immersed Dirichlet and Neumann bound-
ary conditions in discontinuous Galerkin (DG) methods is presented. The ap-
proach is based on constructing a functional basis for which the linear span
only includes functions satisfying the boundary condition being imposed at an
immersed boundary. The basis is constructed from a starting basis multiplied
by some modifier function, e.g., a signed distance function. Thereafter, a linear
combination of the modified basis is found that satisfies the orthonormality con-
straint imposed on the mass matrix. While a unique basis must be constructed
for every element intersected by an immersed boundary (IB), once constructed,
those IB elements can be treated almost identically to non-IB elements. The
approach is particularly interesting as it combines the convenience and quality
of Cartesian grids, the compactness and the high order of DG methods, and
retains this order near boundaries while imposing boundary conditions exactly.
A 2D implementation of the approach is demonstrated using the heat equation,
the Burgers’ equation, the compressible Euler equations, and the compressible
Navier-Stokes equations.

Figure 1: Graph of a function ψ(ξ, η) from a constructed basis for an immersed
boundary intersected element satisfying a Dirichlet boundary condition. The
immersed boundary is shown as a dashed circle segment.



Appendix B

GUI

Figure B.1: A custom GUI developed to debug the DG-solver. Depicted is
simulation D, with the u-component of the velocity being shown as a surface
plot. The part of the domain occupied by the cylinder is hidden.

Developing a CFD-solver from the ground up is not especially hard. How-
ever, developing a CFD-solver from the ground up that actually do what you
intend it to do is quite difficult. Thus, being able to analyze the output of the
solver is paramount. Developing a DG-solver in particular poses some addi-
tional challenges in this regard. Firstly, using a polynomial basis means that
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there exist less available software capable of properly displaying the solution
than for more traditional CFD-methods like the finite volume method. Sec-
ondly, understanding the behaviour of the discontinuities at cell interfaces is
not necessarily straightforward given just the traditional 2D-representation
of color mapped values. Another issue that applies to CFD in general is
the large amounts of data produced by transient simulations. This means
that analyzing solution output with tools using software rendering, such as
pythons Matplotlib, becomes tedious at best, and gruelling at worst.

For the reasons stated in the previous paragraph, a custom GUI was
developed. The Tkinter python library was used for the interface elements
and the OpenGL graphics API for the rendering. The program loads a time
series of conserved variables and some auxiliary data like grid specifications.
Vertices of the conserved- and some derived variables are generated using the
proper operators. The vertices are sent to the GPU. Since the entire time
series is sent to the GPU at once, changing the displayed quantity or the time
can be done with virtually no latency. This makes for a pleasant debugging
experience.

Figure B.2: Drop down menu of what variable to display.
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(a) File tab (b) Data tab

(c) Plotting tab (d) Parameter tab

Figure B.3: Various tabs of the GUI.
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Figure B.4: Vorticity field of simulation D rendered as a part of the GUI.
Wire frame is turned on such that each individual cell can be seen. The plot
appears darkened due to a special shading technique meant to provide the
viewer with information regarding incidence.
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