
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Jonas Gjendem Røysland

Real-time classification onboard the
HYPSO-1 satellite

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Joseph Garrett
June 2023

Jonas Gjendem Røysland

Real-time classification onboard the
HYPSO-1 satellite

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Joseph Garrett
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Real-time classification onboard the

HYPSO-1 satellite

Jonas Gjendem Røysland

June 2023

Master Thesis

Department of Electronics Systems

Norwegian University of Science and Technology

Supervisor 1: Milica Orlandic

Supervisor 2: Joseph L. Garrett

i

Abstract

This thesis undertakes the design and development of the classification module in the image

processing pipeline onboard the HYPSO-1 satellite. The goal of the module is to detect different

classes of land, water, and clouds on a hyperspectral image captured onboard the satellite. One

reason for doing this is that a labeled image is 99.8% smaller than the original hyperspectral im-

age and will make the downlink time down from minutes to seconds. This can help the ground

station determine if the whole HSI capture should be downlinked or not. It also gives faster in-

formation if an image contains algae bloom that could be further investigated by autonomous

agents. To make the classification possible it is implemented the machine learning algorithm

Support Vector Machine with a Binary Decision Tree to predict the pixels. Since the images are

captured on different areas of the Earth with different sun angles and exposure, radiometric cal-

ibration is developed to calculate the radiance and reflectance in the image. The module is first

tested on a computer with a training set containing 10 different hyperspectral images for testing

accuracy and execution time. After this, it is tested on target hardware to test the execution time,

and behavior is as expected. Lastly, the implementation is uplinked and tested on the HYPSO-1

satellite. 4 HSI captures are labeled onboard and downlinked to verify the labeled image. From

the labeled results it is discussed that it can be used to detect errors in the capture and send

coordinates to autonomous agents for further investigations. It’s concluded that labels give an

indication of what is on the surfaces of the capture, but could have improvements in the data

set for fewer labeling errors.

ii

Sammendrag

Denne oppgaven foretar seg designet og utviklingen av klassifiserings modulen i bildeprosserin-

gen på HYPSO-1 satelliten. Oppgaven til modulen er å lage et klassifisert bilde som innholder

klasser som land, vann og skyer ut i fra et hyperspektral bilde tatt på satelliten. Dette blir

prossesert direkte på satelliten og gjort siden det klassifiserte bilde er 99.8% av størrelsen av

det orginale hyperspektrale bildet. Dette gjør at informasjon om bildet ned til bakkestasjonen

går fra minutter til noen sekunder. Dette kan være med å bestemme om bakkstasjonen ønsker

å laste ned det hyperspektrale bildet eller la være. Det gir også raskere informasjon for hvilken

koordinater autonome agenter skal sendes til for videre undersøkelse. For å gjøre klassifisering

direkte på satelliten er det utvilket maskinlæringsalgoritmen støttevektormaskiner med binært

beslutningstre for å forutse de ulike klassene. Siden de hyperspektrale bildene er tatt i ulike deler

av verdene med ulike solvinkler og eksponering er det uviklet radiometrisk kalibrering for regne

ut utstråling og refleksjonen i bildet. Modulen blir trent og testet først med et datsett med 10

ulike hyperspektrale bilder for å teste nøyaktighet og kjøretid på en datamaskin. Etter blir det

testet på samme maskinvare som satelliten LidSat for sjekke kjøretid, men også om oppførsel

er den samme. Til slutt blir modulen testet på HYPSO-1 satelliten der 4 klassifiserte bilder blir

lastet ned og verifisert at modulen har oppførsel som forventet. Ut i fra resultatene kan de klas-

sifiserte bildene bli brukt til å detektere feil i hyperspektrale bildene, men også til å gi indikasjon

hvor de autonome agentene skal bli sendt til for videre undersøkelese. Forbedringspotensiale

som kan gjøres videre er å forbedre datasettet som har blir brukt for å få mindre klassifiserings-

feil i bildene.

iii

Acknowledgment

I would like to thank my supervisor Millica Orlanic and co-supervisor Joseph L. Garret for the

many meetings we had discussing the project. Also giving me guidance, resources and technical

input throughout the master thesis. This thesis would not be possible without you.

Also like to thank, Dennis Langer and Simen Berg helping me test my implementation on

target hardware Lidsat at SmallSat NTNU. And to the most importance, let my implementation

by tested directly on the HYPSO-1 satellite and downlinking the results I needed for the thesis.

Thanks to the people on the software space segment sprint meeting for coming up with the

critique of my implementation and pushing for a better workflow throughout the master thesis.

Special thanks to Sivert Bakken and Roger Birkeland, for leading the meetings and also coming

with expertise in software development.

Thanks to all the past and current members of the HYPSO team for making it possible to test

cool stuff onboard a satellite in space. It wouldn’t be possible to test this stuff without years of

hard work.

Lastly, thanks to all my fellow students at Orbit NTNU for all the technical knowledge I

have gained in software development and space technology. The social stuff, good discussion,

memes, and the fun we had the roof.

Contents

Abstract . i

Sammendrag . ii

Acknowledgment . iii

Acronyms . vi

1 Introduction 1

1.1 Motivation . 1

1.2 UN’s sustainability goals . 3

1.3 Contributions . 3

2 Remote Sensing, HYPSO and Classification 4

2.1 Remote Sensing and Hyperspectral Images . 5

2.2 HYPSO . 6

2.3 HYPSO satellite specifications . 6

2.4 Classification onboard the satellite . 7

2.5 Software and GCC . 8

3 Theory and algorithms 9

3.1 Support Vector Machine . 9

3.1.1 Binary Decision Tree . 11

3.1.2 Sparse SVM . 12

3.1.3 Using SVMs in real-time systems. 12

3.1.4 Pros and cons with Linear Kernel . 13

3.2 Radiometric calibration . 14

3.2.1 Radiance . 15

3.2.2 Reflectance . 15

4 Hyperspectral dataset and usage of the labels 16

4.1 HSI Dataset . 17

4.1.1 Process for labeling training data . 19

4.2 Catching errors in the HSI captures . 20

iv

CONTENTS v

4.3 An observational pyramid with a drone . 21

5 Implementation and Design 22

5.1 Ground Training . 23

5.1.1 SVMBDT Training . 23

5.1.2 Sparse Selection . 24

5.1.3 Radiometric Coefficients . 25

5.1.4 Config File . 25

5.2 Onboard Classification . 26

5.2.1 Radiometric Calibration . 27

5.2.2 SVMBDT . 28

5.3 Decode Labels . 29

6 Numerical Experiments 32

6.1 Binary Decision Tree Structures . 33

6.2 Testing implementation accuracy and execution time 35

6.2.1 BDT 1 . 38

6.2.2 BDT 2 . 40

6.2.3 BDT 3 . 42

6.2.4 Deciding mode to be used onboard the satellite 44

6.3 Testing on LidSat . 46

6.4 Testing on HYPSO-1 . 48

6.5 Discussion . 50

7 Conclusion 51

7.1 Further Work . 52

Bibliography 52

A Code 57

B WHISPERS paper 58

Acronyms

ASV Autonomous Surface Vehicles. 6

AUV Autonomous Underwater Vehicles. 6

BDT Binary Decision Tree. 11, 23, 24, 27, 28, 32–36, 38, 40, 42, 44, 47, 50, 51

ELO-Hyp Efficient Learning and Optimization Tools for Hyperspectral Imaging Systems. 24

FPGA Field Programmable Gate Array. 6

GCC Gnu C Compiler. 8

GT Ground Truth. 17, 19, 35, 38, 39, 41, 42, 44, 51

HAB Harmful Algae Bloom. 3, 5, 11, 21, 50, 52

HSI Hyperspectral Image. iv, 1–3, 5, 7, 9, 12, 14, 16–21, 25–31, 35, 36, 44, 46, 48, 50–52

HYPSO Hyper-Spectral Small Satellite for Ocean Observation. 1, 2, 4, 6, 9, 21, 32

IoT Internet of Things. 21

LEO Low Earth Orbit. 1, 6

MDC Minimum distance classification. 10

ML Machine Learning. 3, 7, 9, 12, 19, 51

MLC Maximum likelihood classification. 10

NTNU Norwegian University of Science and Technology. 1, 6, 7

OPU Onboard Processing Unit. 6, 7, 27, 48

vi

Acronyms vii

OS Operative System. 8

RGB Red, green and blue. 17, 44

SDR Software Defined Radio. 6, 21, 52

SVM Support Vector Machine. 9–13, 19, 23, 28, 35

SVMBDT Support Vector Machine with Binary Decision Tree. v, 9, 17, 23, 24, 28, 35, 51, 52

UAV Unmanned Aerial Vehicles. 5, 6, 21

UHF Ultra High Frequency. 6

UN United Nations. 3, 50

WHISPERS Workshop for hyperspectral image and signal processing: Evolution in remote sens-

ing. 3, 58

Chapter 1

Introduction

In recent years small satellites have become more affordable to launch into space. And within

the next decades, it is expected the amount of satellites in Earth’s orbit largely increases [12]. In

some areas, they are used for global communication, space observation, and global monitoring

like remote sensing. Remote sensing is about measuring and capturing reflected sunlight on the

Earth’s surface. One of the subjects that could help monitor environmental and climate change

when doing remote sensing is harmful algae blooms [31]. By observing these areas environmen-

tal changes can be observed.

1.1 Motivation

One of the organizations having the objective of doing observations of algae booms is Hyper-

Spectral Small Satellite for Ocean Observation (HYPSO) team at SmallSat Labrotatry at NTNU in

Trondheim, Norway. HYPSO is currently operating the satellite HYPSO-1 which has an orbital

altitude of 540km, Low Earth Orbit (LEO)[18]. To monitor the algae bloom, a hyperspectral im-

ager onboard the satellite a capturing these areas. The images are called Hyperspectral Image

(HSI) that have 120 spectral bands in them, making it easier to separate different surfaces from

one another. Due to the high amount of spectral bands, the HSI has a size of 151MB and 78.6MB

when compressed. The compressed HSI usually takes 2-3 orbital passes, when the satellite is

in the local horizon of the ground station in Trondheim. Where each orbital pass is between

7-10 minutes, whereas orbit times around the Earth are around 90 minutes [6]. An illustration

of how the HYPSO-1 is operated with the ground station is viewed at Figure 1.1. Sometimes the

HSI captures only clouds or has pointing errors. This makes the HSI useless when wanted to be

further analyzed. If the ground station knew this before the image was downlinked, other HSI

captures could be prioritized.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: CONOPS for HYPSO-1, where HYPSO-1 captures a HSI and then downlinks it to
ground station [18].

One solution to give the ground station faster information on the HSI capture is producing a

labeled image onboard that can be downlinked. The pixels in the labeled image would contain

what type of surface the HSI had captured with different classes. The labeled image will have

a size of 327kB with up to 16 classes. The downlink speed between HYPSO-1 and the ground

station is 1Mpbs, making the downlink time of the labels 2-3 seconds [18]. The ground station

would then get fast information if the HSI capture should be downlinked or not. An illustration

of a HSI capture is classified and labeled onboard the satellite is viewed in Figure 1.2.

Figure 1.2: Illustration of HSI capturing the Earth’s surface and after processing it to a labeled
image onboard the satellite.

The thesis will start by introducing remote sensing, the HYPSO organization, and what fac-

tors must be considered when designing onboard classification. After this show what theory

and design are chosen for the classification and necessary calibration for the HSI.

CHAPTER 1. INTRODUCTION 3

1.2 UN’s sustainability goals

In this section, it will be looked at how HSI and the labeling of these images can benefit the

United Nations (UN)’s sustainability goals.

(a) Goal 6 (b) Goal 14 (c) Goal 15

Figure 1.3: UN’s sustainability goals 6, 14 and 15.

Harmful Algae Bloom (HAB) is often occurring in freshwater and brackish water systems

and occur where water is warm, still, and nutrient-rich. The algae blooms can harm the health

of humans and animals. Due to the rising global temperature, these algae blooms can occur

more often. Since their lives fish in these waters, they often carry these HAB when humans and

animals are eating them [33].

By labeling and mapping where HAB is located in the HSI, it could give a better understand-

ing of which areas and the time stamp these are located in the water. By doing this local areas

could be noted of the HAB, and help achieve the goals 6, 14, and 15. These goals are shown in

Figure 1.3.

1.3 Contributions

In this thesis, it’s implemented a classification module onboard the HYPSO-1 satellite and is the

first Machine Learning (ML) algorithm to be executed onboard the satellite. Making it possible

to see that a ML algorithm can be executed onboard a satellite. The classification module will be

further executed and tested after the delivery of the thesis, to see what other areas the labeled

HSI can be used for.

In the classification module, it is also implemented radiometric calibration onboard the

satellite. This can also be used for future projects where calibration of HSI is necessary.

For training the ML model in the classification module, 10 HSI captures have been labeled

for this thesis. They are produced since a desired data set that could train a ML algorithm to

work for every HSI captures, has not been produced before. This data set could also be used to

train other ML algorithms for other future projects.

Together with the master thesis, it has been produced a paper for the 2023 WHISPERS con-

ference. The proceeding paper submitted is found at Appendix B and submitted to [36].

Chapter 2

Remote Sensing, HYPSO and Classification

This chapter will be explained what remote sensing is and what hyperspectral images are used

with it. Further, explore the HYPSO organization and the satellites. Also, explain what kind of

design decision needs to be made when implementing onboard classification for the HYPSO

satellite.

4

CHAPTER 2. REMOTE SENSING, HYPSO AND CLASSIFICATION 5

2.1 Remote Sensing and Hyperspectral Images

(a) Remote Sensing (b) HSI Cube

Figure 2.1: (a) Illustration of a satellite using solar reflectance to capture the Earth’s surface. (b)
Illustration of an HSI cube having multiple spectral bands in the electromagnetic spectrum.

Remote sensing is about monitoring the characteristics of the Earth’s surface. For doing the re-

mote sensing satellites orbiting around the Earth can be used for global scales monitoring. For

local scales platforms such as Unmanned Aerial Vehicles (UAV), can give more detailed char-

acteristics of the surfaces. Multiple viewpoints from different platforms can give an accurate

characteristic of agriculture like growth in crops or HAB [35]. An illustration of how a satellite

monitors the surface of the Earth with reflected sunlight is shown in Figure 2.1 (a).

Remote sensing in recent years HSI, has become more popular due to the smaller sizes and

cheaper cost of the hyperspectral imagers. Some of the spacecraft that have been launched into

orbit around the Earth are EnMap, DESIS, HyspIRI, PRISMA, and HYPSO [22]. The reason for

using the HSI in remote sensing is due to its narrow bands that are represented in the electro-

magnetic spectrum. Each pixel that is captured in an image will have an accurately reflected

spectrum in the wavelength range. The HSI is represented as cubes that contain many spectral

bands in them, giving it a high spectral resolution. This gives great spectral information about

the different surfaces that are captured, making it easier to distinguish objects from one another

[23]. An illustration of an HSI cube is shown in Figure 2.1 (b).

CHAPTER 2. REMOTE SENSING, HYPSO AND CLASSIFICATION 6

2.2 HYPSO

HYPSO is an organization that is part of the Small Satellite Lab at NTNU in Trondheim. It con-

sists of post. docs, PhD-student, and bachelor and master students[18]. HYPSO’s first satellite

HYPSO-1 was launched from Florida with the SpaceX rocket Falcon-9 on January 13th, 2022, into

sun-synchronous LEO. Onboard the satellite is a hyperspectral imager, that aims to collect data

of oceanographic observations to support marine research. The data collection aims to sup-

port autonomous agents such as UAV, Autonomous Surface Vehicles (ASV), and Autonomous

Underwater Vehicles (AUV) [6].

For HYPSO’s next satellite HYPSO-2, it will have the same concepts as HYPSO-1 but also in-

clude a Software Defined Radio (SDR). The SDR is sending radio frequency in the Ultra High

Frequency (UHF)(400 MHz) bands, that will enable direct communication with the other au-

tonomous agents [9]. In section 4.3 it will be further explored how a labeled HSI could be used

to determine the coordinates for the autonomous agents.

2.3 HYPSO satellite specifications

Figure 2.2: M6P multi-purpose nano-satellite bus [24].

HYPSO-1 is a 6U CubeSat, where 1U is 10cm£10cm£10cm. It is a 6U Platform (M6P) commer-

cial available nanosatellite bus provided by NanoAvionics, shown in Figure 2.2. The satellite has

an Onboard Processing Unit (OPU) that consists of two core ARM processors and a Field Pro-

grammable Gate Array (FPGA) that is dedicated to the onboard processing. The OPU makes it

possible to do software updates, even if the satellite is in orbit [18]. The memory the OPU has is

1GB ram, where 50% of this is reserved [13]. The radio communication between the satellite and

CHAPTER 2. REMOTE SENSING, HYPSO AND CLASSIFICATION 7

ground station is a 2.4GHz IQ Spacecom S-band Transiever that can downlink data with a rate

of 1Mpbs [18]. When the hyperspectral imager is capturing HSIs the pixels contain 120 spectral

bands with the range 430 nm to 800 nm in the electromagnetic spectrum [6].

Before new software is uplinked to the satellite, this needs to be tested on the same hardware

as the satellite. On NTNU Small Sat Lab there is a setup called LidSat, that enables this testing

[5].

2.4 Classification onboard the satellite

To process the HSI onboard the satellite, an image processing pipeline is implemented. A pur-

posed pipeline for HYPSO-1 is shown in Figure 2.3. Many of these modules are already imple-

mented onboard but are not actively working classification modules, which are marked in red.

In this thesis, it will be done design decisions, implementation, and testing of this classification

module, to be actively executed onboard the satellite.

Figure 2.3: Proposed onboard image processing pipelines for HYPSO-1 [18], where the classifi-
cation module is marked with red.

When classifying of HSI onboard, pixel-wise ML techniques are widely used. The benefit

of these is that they have high accuracy, but also low memory usage [3]. Due to the limited

memory available on the OPU, the classification module needs to use less than 50% of 1GB.

The ML algorithm also needs to have a low classification time so that the labeled image can be

downlinked within one orbital pass.

The project thesis written in the fall of 2022 [28] it was designed and tested a Support Vector

Machine with Binary Decision Tree that had a low classification time and high overall accuracy

when labeling HSI, compared to other MLs. This algorithm will be further developed in this

thesis to be implemented in the classification module.

CHAPTER 2. REMOTE SENSING, HYPSO AND CLASSIFICATION 8

2.5 Software and GCC

The Operative System (OS) on the OPU is an Embedded Linux System that is called PetaLinux

[7]. For making applications for the imaging pipeline the programming language C is used.

This is used due to better memory control and faster execution time when the application is

executed. To make the program be executed on the target hardware, a compiler is used. For the

programming language C, the compiler Gnu C Compiler (GCC) is the most popular of choice.

The achieved goal of the program is that has the fastest execution time possible, but still have

the behavior as desired. To make the program have a faster execution time an optimization flag

is provided by GCC. The flag that is found that is reducing the execution time the most is the -O3

flag [15]. This will be further explored at chapter 6 when building the classification module with

and without -O3.

Chapter 3

Theory and algorithms

Will in this chapter explore the theory of the different algorithms for the classification module

onboard processing pipeline on the HYPSO satellite. The first is the ML algorithm Support Vec-

tor Machine with Binary Decision Tree (SVMBDT). This will do the classification and make the

labeled HSI. Due to the HSIs being captured around the Earth with different solar radiance and

reflectance, radiometric calibration is introduced. This will be explained how this can benefit

the SVMBDT when doing the classification.

3.1 Support Vector Machine

For classifying with ML algorithms, it’s called the supervised learning approach. This means

analyzing a given data set and making a model that can separate different data into different

classes that are desired. One of these ML algorithms is called Support Vector Machine (SVM),

which is a kernel-based ML model that is a powerful tool to solve practical binary classification

problems. When doing the separation there is a maximum margin hyperplane in the higher

dimensional space called feature space [10]. In the Figure 3.1 linear separation in feature space

is illustrated.

9

CHAPTER 3. THEORY AND ALGORITHMS 10

Figure 3.1: Illustration of SVM in feature space separating binary of two classes.

From the figure above, the linear separation has a maximum margin that is the goal of max-

imizing the distance between the two classes. The two classes are determined then above the

positive hyperplane (1) and below the negative hyperplane (°1). This is mathematically shown

in the Equation 3.1.

w · x +b =±1, (3.1)

where w is the weights, x is the input data and b is the intercept [10].

When the classification has multiple features it is shown as:

nX

i=1
wi · xi +b, (3.2)

where n is the number of features.

The SVM is trained with data set with a m number of samples. The data set contains input

vectors xi together with associated label vectors yi . The yi contains the class number, and xi is

the input data with n features. The data set is then given as:

(x0, y0), (x1, y1), ..., (xm , ym) (3.3)

The benefit of linear SVM compared to other machine learning algorithms is that the time

complexity is O (n) compared to Minimum distance classification (MDC) with O (n + logn) and

Maximum likelihood classification (MLC) with O (n logn) [27].

CHAPTER 3. THEORY AND ALGORITHMS 11

3.1.1 Binary Decision Tree

(a) Feature space (b) BDT General Structure

Figure 3.2: Illustration of SVMBDT in (a) separating two classes and then two subclasses in fea-
ture space with the BDT. (b) BDT general structure, where A and B are the main classes with n
and m amount of subclasses.

Since SVMs are doing binary separation, this only separates two classes. To have the possibility

of doing multiple classes a decision function needs to be utilized. The two most popular de-

cision functions for SVMs are one-vs-one and one-vs-rest [2]. The one-vs-one is comparing all

the classes to each other, and the one-vs-rest is comparing one class against all the other classes.

One other decision function for SVMs also exists and it is called Binary Decision Tree (BDT). The

BDT is designed to have one or more classes separating each other for every layer. This makes it

have M°1 SVM classifier in one tree structure [21]. The tree structure can be designed for differ-

ent scenarios. Making it possible to have classes and subclasses separated from each other that

have similar attributes. One example of this is separating clean water from water with a HAB.

The design of the tree is also affecting the execution time when predicting. If the tree is designed

with a class with a long travel path the execution time will proportionally increase. The design

structure of the BDT will be further explored in chapter 6.

CHAPTER 3. THEORY AND ALGORITHMS 12

3.1.2 Sparse SVM

When the HSI cubes are captured onboard the satellite 120 spectral bands in every pixel. The

number of spectral is for the SVM several features n and will affect the computational time when

calculating Equation 3.2. This makes the execution time (texecution) proportional with the num-

ber of bands (nbands).

texecution / nbands (3.4)

To restrict the number of bands used, Sparse SVM can be utilized to do band selection. For

doing the sparse selection the L1-Norm is restricting the number of bands [16]. These spectral

bands that are selected are then only considered when calculating Equation 3.2.

3.1.3 Using SVMs in real-time systems.

The benefit of using Linear SVM is its fast prediction making it have lower power consumption

but also has high accuracy with few training data compared to other ML algorithms. Often real-

time systems have a limited power budget and the algorithms need to be fast. Using SVM for a

real-time system can often have those requirements that are needed for these real-time systems.

Some real-time systems that use SVM are:

• For tracked mobile robots to classify real-time terrain estimation to improve autonomous

navigation [32].

• Detection system of scratches, cracks, or tears on conveyor belts on visual saliency [19].

• For the usage to diagnose breast cancer [20].

• Intelligent fault diagnosis method for Lithium-ion batteries [37].

CHAPTER 3. THEORY AND ALGORITHMS 13

3.1.4 Pros and cons with Linear Kernel

(a) Misclassification of Linear SVM with overfitting. (b) Correctly classified with Non-Linear SVM not
causing overfitting

Figure 3.3: Illustration of linear vs non-linear SVM in feature space.

For SVM there are two types of kernel functions defined as linear and non-linear, that separate

in the feature space. The linear that is shown Equation 3.2 and non-linear kernel as the RBF

(Radial Basis Function) that is shown in Equation 3.5 [4].

k(xi , x) = exp(°∞|xi °x|2) (3.5)

Generally, kernel SVMs have pretty high computational complexity when doing execution

time. When chosen for a real-time system the non-linear kernel as the RBF would high a higher

execution time than the linear one, due to the more complex separation. The cons with the lin-

ear kernel are that has a higher chance of causing overfitting when doing non-linear separation

in feature space. This is where non-linear has the benefit of linear making them less likely for

overfitting and misclassification when labeling HSIs [25]. The difference between the kernels is

illustrated in Figure 3.3.

CHAPTER 3. THEORY AND ALGORITHMS 14

3.2 Radiometric calibration

Figure 3.4: Illustration of the difference between radiance and surface reflectance. Where re-
flectance calibration is dependent on the solar zenith angle µS .

When capturing an HSI with a satellite the main method the imager takes is by push-broom

imaging. This method works by making a linear array perpendicular to the flight of the satellite.

When this is done continuously over an area, you will get an HSI cube [34]. This same method

applies also to HYPSO-1 [7]. The downside of this method, it can occur striping errors in the

image, that are parallel with the push-broom direction. One other factor when capturing an HSI

is the gain and exposure value from the imager. These errors and factors can affect the accuracy

of the classified labeled image when capturing HSI around the Earth’s surface [34].

A method that takes this into account is radiometric calibration. The purpose of radiometric

calibration is to translate raw digital numbers (DN) to physical units that measure the radiance

and reflectance intensity at the sensor [11]. The two methods of radiometric calibration are

described in the sections below and are illustrated in the Figure 3.4.

CHAPTER 3. THEORY AND ALGORITHMS 15

3.2.1 Radiance

Radiance is described as the radiant flux emitted, that is transmitted by a surface in a given

projected area. It is measured as watt per steradian square meter (W · sr°1 ·m°2) [8]. This is

calculated by the Equation 3.6.

L(∏, x) = [DN (∏, x)°Æ(∏, x)]Ø(∏, x), (3.6)

where L(∏, x) is the function of wavelenght ∏ and x is the cross-track spatial location. Æ(∏, x)

are the offset and Ø(∏, x) are the gain in the DN s [11].

Æ(∏, x) =Æd ar k (∏, x)+Æped (x), (3.7)

where the Æd ar k (∏, x) and Æped (x) are the dark current and pedal shift respectively [11].

3.2.2 Reflectance

The reflectance is measured as the amount of solar light reflected on the Earth’s surface. It is

calculated by the Equation 3.8.

Rsensor =
L(∏, x)£º£d 2

ESU N £ cosµS
(3.8)

Rsensor is the reflectance, d is the distance between the Earth and the Sun. ESU N is the mean

solar exo-atmospheric irradiance, and the µS is the Solar zenith angle [6].

Chapter 4

Hyperspectral dataset and usage of the

labels

In this chapter, it will be represented the HSI dataset used for training the onboard classification,

and what challenges that occur when making these labels. Also, discuss what predicted labeled

data can be used for working with autonomous agents and detecting errors in the capture.

16

CHAPTER 4. HYPERSPECTRAL DATASET AND USAGE OF THE LABELS 17

4.1 HSI Dataset

In machine learning, a dataset need to be in place when training and making parameters for

the models. For the SVMBDT discussed in section 3.1 the samples are formatted as the input

vector xi and associated labels vector yi . For this project, a dataset with 10 HSI captures from

the HYPSO-1 satellite with Ground Truth (GT) labels is produced. GT is telling what kind of

surfaces are in each pixel of the HSI. The dataset is viewed at Figure 4.1.

(a) (b) (c)

Figure 4.1: (a) The 10 HSI captures represented in Red, green and blue (RGB). (b) GT labels of
the 10 HSI. (c) Color mapping of the 10 different classes found in the labels.

For each of the 10 HSI cube, they are all radiance and reflectance radiometric calibrated.

They are calibrated with the implementation found in subsection 5.2.1. The spectral signature

of the dataset with radiance and reflectance is viewed in Figure 4.2.

CHAPTER 4. HYPERSPECTRAL DATASET AND USAGE OF THE LABELS 18

(a) Radiance (b) Reflectance

Figure 4.2: The spectral signature of the training data from Figure 4.1, with (a) radiance and (b)
reflectance calibrated.

The captures are taken on different surfaces of the Earth and timestamps. The date and the

coordinates of the HSI are viewed at Table 4.1.

Area Capture Date
Coordinates

Latitude Longitude

Antarctica 11/12-2022 74°40’20.0"S 23°19’50.2"W

Tharthar, Iraq 04/03-2023 35°29’28.0"N 43°33’35.2"E

Kampala, Uganda 04/02-2023 1°45’59.7"N 32°50’42.6"E

Los Angeles, USA 24/03-2023 35°28’04.0"N 118°01’13.2"W

Sittwe Lake, Myanmar 07/02-2023 21°35’32.4"N 92°52’39.1"E

Gobabeb, Namibia 14/02-2023 21°45’13.6"S 14°50’37.9"E

Trondheim, Norway (Snow) 27/03-2023 65°05’12.1"N 10°47’24.6"E

Venice, Italy 08/02-2023 46°50’05.5"N 12°57’58.2"E

Trondheim, Norway 23/08-2022 65°05’10.9"N 11°08’38.5"E

Svalbard, Norway 14/03-2023 78°33’55.5"N 20°28’24.4"E

Table 4.1: Different areas, capture date, and coordinates of the training HSI images in chrono-
logical order.

The classes in the training data consist of 10 classes. These consist of surfaces that are all over

the Earth’s surface and are captured by HYPSO-1. These classes are described in the Table 4.2.

CHAPTER 4. HYPERSPECTRAL DATASET AND USAGE OF THE LABELS 19

Number Class Name Description

0 Water Ocean water, rivers and lakes.

1 Strange Water Water with algae bloom, pollution or are shallow.

3 Forest Three forests and land vegetation.

4 Urban City surface, roads, and buildings.

5 Rock Mountains and rocky surfaces

6 Ice/Snow Ice glaciers and snow-covered surface.

7 Sand Sand deserts and beaches.

8 Thick Clouds Dens clouds covering the Earth’s surface.

9 Thin Clouds Thinner clouds, where the Earth’s surface can be viewed.

10 Shadows Shadows produced by clouds or mountain terrain.

Table 4.2: The number and description of the classes in the training data set.

4.1.1 Process for labeling training data

When machine learning algorithms are trained, a training set needs to be in place for the al-

gorithms to make the right classification decisions. In subsection 3.1.4 it was introduced how

linear separation could make the SVM algorithm make misclassifications. One other causes of

misclassifications are errors in the training data. The errors that are in the data set could affect

the MLs when training and will make a higher probability of false labeling in the images.

The labels can often be produced by using a supervised MLs together with a human by look-

ing at the captured image and a map of the same area. One example of this is the data set shown

in section 4.1. Some errors that can be viewed are in the Venice label, where no land surface is

labeled as urban. Also note that the Trondheim (Snow) label doesn’t have urban labels, due to

the city surface covered with snow in that HSI. This is compared to the Trondheim labels.

When the labels are produced this way more errors can occur, due to not knowing the local

knowledge of the capture area [14]. The solution for making fewer errors when producing the

GT is by using one or more of the autonomous agents together with a satellite. This will make

the labeling easier, due to more accurate analysis of a given area.

CHAPTER 4. HYPERSPECTRAL DATASET AND USAGE OF THE LABELS 20

4.2 Catching errors in the HSI captures

The HYPSO-1 satellite has captured and downlinked over 1000 HSI since it was launched in

2022. Many of the captures have been successful, but some have errors in them. These errors

can be capturing just clouds in the image, which are blocking the Earth’s surface. Other errors

are either pointing errors or the focus making the HSI distorted. Some examples of this HSI

captured by HYPSO-1 can be viewed at Figure 4.3

(a) (b)

(c) (d)

Figure 4.3: Some captured HSI with a)-c) error distortions, and d) clouds blocking most of the
surface area.

By producing labels and downlinking them before the whole HSI capture, the ground station

can determine if the HSI should be downlinked or not. They can determine this by the shape

and the classes produced in the labeled image. Some unsuccessful images that are labeled ei-

ther with errors or with a lot of clouds in them are later explored in the subsection 6.2.4 and

section 6.4.

CHAPTER 4. HYPERSPECTRAL DATASET AND USAGE OF THE LABELS 21

4.3 An observational pyramid with a drone

When the HYPSO-1 satellite takes HSI over large areas, around an area of 100km £ 100km is

covered. Due to the spatial resolution of the image, the local area captured would not have a lot

of details in them [6].

Figure 4.4: Satellite downlinking HSI label with georeferencing to determine which coordinate
a drone should be sent for taking images for more detailed areas.

To have more detailed imagery and analysis of an area a drone or UAV can be deployed [6].

For the HYPSO project, HABs are target surfaces that want to be further analyzed. To detect

the HABs the classified labeled HSI can be used, where some of the water are classified with

the strange water class. Due to the label’s small size, the coordinates where the UAV should be

sent can be downlinked in seconds when the satellite is on the horizon of the ground station.

The coordinates would then be produced with the labels and the georeferencing of the HSI. An

illustration of this is shown in Figure 4.4. For HYPSO-2 with a SDR, it is then possible to send

the coordinates directly from the satellite to the autonomous agents. Similar systems that send

information from the satellite to remote units are the Iridium NEXT system. This is based on

Internet of Things (IoT) services and has mega-constellations of satellites [9].

Chapter 5

Implementation and Design

In this chapter the implementation that is necessary for doing classification onboard the satel-

lite is presented. The implementation is divided into three parts: Ground Training, Onboard

Classification, and Decode Labels. A figure of how the implementation is linked together is

viewed in Figure 5.1. The implementation that will be discussed below can be found in the Ap-

pendix A and at [30].

Figure 5.1: An illustration of the implementation divided into three parts: Ground Training,
Onboard Classification, and Decode Labels.

22

CHAPTER 5. IMPLEMENTATION AND DESIGN 23

5.1 Ground Training

Figure 5.2: Illustration of the Ground Training.

The ground training has the task of making training data, doing the sparse selection, and saving

the radiometric coefficients to the config folder. This is illustrated in Figure 5.2. The config

folder has to be uplinked to the satellite so that the onboard classification module can load

the necessary data for doing radiometric calibration and classification. The ground training

functions that are described below are found in the folder ground_training/.

5.1.1 SVMBDT Training

The SVMBDT training aims to create the necessary parameters for each SVM model in the BDTs.

The parameters for each SVM model are the two classes, intercept (b) and weights (wi). To train

the SVM models individually the functions SvmDesionTreeTrain() and RetrieveSubData() from

the python program SVMBDT.py are utilized. This Python program was implemented with part

of the project thesis from fall 2022 [28], and the implementation can be found at [29]. This is

trained together with the Sklearn [26] function SGDClassifier() that trains the SVM models and

produces the intercepts and weights.

For this project, three BDTs are constructed where they are trained in individual files.

These files are listed with the names:

• svmbdt_training_bdt1.ipynb

• svmbdt_training_bdt2.ipynb

• svmbdt_training_bdt3.ipynb

Each of the design decisions and structures is viewed and discussed in section 6.1.

For training the files the SVM models have 4 different processing modes. These modes are

radiance, radiance sparse, reflectance, and reflectance sparse. These modes are trained individ-

ually and have their intercepts and weights.

CHAPTER 5. IMPLEMENTATION AND DESIGN 24

To make the BDT design that the onboard classification module can read a list needs to be

implemented. The general structure of this list is shown Figure 5.3

Figure 5.3: The BDT general file structure with N size and M size classes.

5.1.2 Sparse Selection

The sparse selection has the task to analyze the training data and give a list of which bands

should be considered when predicting with the SVMBDT. A binary file is then saved to the config

folder, which tells what band number should be used. To make the band selection decision the

Python program ssmv.py is utilized. This program is a part of the project Efficient Learning and

Optimization Tools for Hyperspectral Imaging Systems (ELO-Hyp) [1]. The implementation of

this can be found at [17].

CHAPTER 5. IMPLEMENTATION AND DESIGN 25

5.1.3 Radiometric Coefficients

To calculate the radiometric calibration some calibration files are needed. For doing radiance

the rad_coeffs_FM_binx9.csv and spectral_coeffs_FM_order2.csv found in the calibration_files/

folder. The is provided by Radcalnet is the top-of-atmosphere reflectance data [6]. For re-

flectance, the mean_extraterrestrial_solar_irradiance_chkur that is the mean solar exo-atmospheric

irradiance, that is also provided by RadCalNet [6].

5.1.4 Config File

The purpose of the config folder is to store all the data produced in the ground training module

and later uplink the folder to the satellite. The onboard classification module loads the nec-

essary data and uses it to calibrate and predict HSI. The folders for radiometric calibration are

calibration_files/ and constans, and for SVMBDT are bdt/, sparse_bands/ and svm_models/.

The config folder structure is viewed in Figure 5.4.

The benefit of having a config folder is that if the training data is improved and re-trained in

the future, only the config folder needs to be uplinked to the satellite. The onboard classification

module doesn’t need to be updated and re-uplinked to the satellite. The config folder is found

at onboard_classification/onboard_classification.

config

bdt

calibration_files

constants

sparse_bands

svm_models

Figure 5.4: Config Folder Structure.

CHAPTER 5. IMPLEMENTATION AND DESIGN 26

5.2 Onboard Classification

Figure 5.5: Illustration of onboard classification module.

The onboard classification module that is illustrated in Figure 5.5 combines the two implemen-

tations radiometric calibration and SVMBDT. The onboard classification first loads the target

HSI Cube onboard the satellite and then starts the init functions, radiometric_calibration_init()

and svmbdt_init(). These two functions will load the data from the config folder. After this, if

no errors have occurred, it starts looping through the pixels of the HSI Cube and starts labeling

them. First, the pixel is radiometric calibrated with the function radiometric_calibration_pixel()

and then predicted with the function svmbdt_predict() and saves it in the struct Labeled_Image.

This struct is then stored as a binary file with the function labeled_image_bin(). For every HSI

Cube that is being captured captures the binary file will then be called labels.bin. This file is the

downlinked labeled image and needs to be decoded to make a png image out of it. How the de-

coding is happening is shown in Figure 5.7. To make the onboard classification module execute,

this console command needs to be executed:

1 ./ onboard_classification.exe <capture folder file path > <output file path >
<config folder prefix > <bdt index > <processing mode > <local angels

path >

The <capture folder file path> is the folder path where the HSI cube is stored. <output file

path> what the path the labels binary file should be stored. <config folder prefix> is the config

folder prefix path. The <bdt index> has the available number listed in the table below:

Number BDT

1 BDT 1

2 BDT 2

3 BDT 3

Table 5.1: <bdt index> options.

The <processing mode> options available are listed in the table below:

CHAPTER 5. IMPLEMENTATION AND DESIGN 27

Number Processing mode

0 Radiance

1 Radiance Sparse

2 Reflectance

3 Reflectance Sparse

Table 5.2: <processing mode> options.

With these options, the ground station can then decide what type of processing modes and

BDTs structures that should be used for labeling the HSI captures.

5.2.1 Radiometric Calibration

The radiometric calibration implementation is taking inspiration from the paper [6], where

HYPSO-1 HSI cubes were radiometrically calibrated on the ground. The goal of this thesis is

to have radiometric calibration implemented onboard the satellite for this project. The radio-

metric calibration implemented can also be used for future projects where calibration of the HSI

cubes is necessary.

Radiometric calibration that is discussed in section 3.2 will turn the digital values from the

captured HSI cubes into physical values. The reason for using radiometric calibration in the

classification is that the HSI captures are taken from different areas of the Earth and will have

different radiance and reflectance. This will give the HSI a similar intensity, that fits the training

data and can make the predictions of the labels more robust.

Radiance is calculated with the Equation 3.6. The function that does this is the

apply_radiometric_calibration() with the code snippet where it is calculated shown as:

for(uint32_t i = 0; i < SPECTRAL_BAND_SIZE; i++){
pixel[i] = pixel[i] - background_value;
pixel[i] = pixel[i] * radiometric_calibration_coeff[i] / exp;

}

When a HSI cube is loaded to the onboard classification the folder where it is saved on the

OPU on HYPSO-1 is -hsi0. The exp is found in the file capture_config.ini in the same folder.

From the radiometric coefficients showed in subsection 5.1.3, the array radiometric_calibration_coeff

values are loaded from the file rad_coeffs_FM_binx9.csv.

CHAPTER 5. IMPLEMENTATION AND DESIGN 28

The cube can then are calibrated with reflectance as shown from the Equation 3.8. This is

calculated in the function radiance_to_reflectance() and it’s shown from the code snippet:

for(uint16_t i = 0; i < SPECTRAL_BAND_SIZE; i++){
calibrated_pixel ->X[i] =
calibrated_pixel ->X[i] *
PI *
earth_sun_distance * earth_sun_distance * // Squared ^2
esi ->coeff[i] *
la ->coeff[local_angels_index][SOLAR_ZENITH_ANGLE_INDEX];

The data necessary to be loaded for this calibration is from the constants/ the file

mean_extraterrestrial_solar_irradiance_thuillier stored in the esi struct. The ia struct con-

tains the solar zenith angels. On the ground these are calculated together with the HSI captures

telemetry data. Due to this is not implemented and calculated onboard the satellite by the time

of writing the thesis, the reflectance processing mode is not tested onboard the satellite but is

tested in the computer test in section 6.2. The reflectance can then be further tested when the

solar zenith angels calculations are implemented onboard the satellite.

5.2.2 SVMBDT

The SVMBDT consists of two parts the SVM prediction and the decision function BDT that has

been explored in section 3.1. For the SVM the function svm_linear() is computing the Equa-

tion 3.2. A code snippet of the function is shown below:

for(uint16_t i = 0; i < SPECTRAL_BAND_SIZE; i++){
pred += (X_i[i]* svm_model [3+i]) + svm_model [2];

}

if(pred >= 0){
return -1; }

else{
return 1; }

For calculating the SVM with sparse mode the function sparse_svm() is used. The band se-

lection is loading from the folder in the Config Folder sparse_bands, where the file sparse_bands1

is for BDT1. This applies the same to the two other BDTs structures found in the folder sparse_bands/.

As viewed in the Figure 5.3 the SVM says how the BDT is structured and which two classes

are in tree nodes. When a HSI is predicting a pixel in that node the results are either 1 or -1.

When the results are 1 it looks up the index number in the BDT list and jumps to the SVM model

index with new SVM model classes. Same if the result is -1, but to the right. If the index number

is 0, it stops in the tree node and set the class number in the struct array Labeled_Image. This

will then iterate through all the pixels in the HSI cube.

CHAPTER 5. IMPLEMENTATION AND DESIGN 29

5.3 Decode Labels

Figure 5.6: Illustration of decode labels.

When the Onboard Classification implementation has been predicted the labels.bin file is gen-

erated. The generated file size is dependent on the number of classes that are labeled in the

image. For the default size HSI size on HYPSO-1 with 956x684 in pixels dimension, the sizes are

shown in the table below:

N Classes Labels File Size

1 to 2 82 kB

3 to 4 163 kB

5 to 16 327 kB

Table 5.3: File size of the labels file structure with different N amount of classes in the labels with
956x684 pixels.

To make the labeled images so small the classes in the labels are sharing bytes. The labels

are then transformed to the smallest value that is represented in 2n . For example, 22 = 4 classes,

and the image is labeled with the classes {1,4,7,9}. The labels in the labels.bin file will be trans-

formed from {1,4,7,9} to {0,1,2,3}. These are stored in the data labels section of the file structure

that is shown in Figure 5.7.

CHAPTER 5. IMPLEMENTATION AND DESIGN 30

Figure 5.7: The labels file structure generated on the satellite and downlinked to the ground
station.

To reconstruct the original labels of the HSI when on the ground, the Python program de-

code_labels.py is used. It uses the classes in labels in the binary file to make the labels to their

original form. The program is found in the folder decoding/ in the Appendix A and [30]. The

three default dimensions that the HSI has is listed in the table below:

x dim y dim

684 956

598 1092

537 1216

Table 5.4: Default HSI capture dimensions.

CHAPTER 5. IMPLEMENTATION AND DESIGN 31

Since the labels are one-dimensional when stored in the binary file, the image dimensions of

the HSI could be different from the default dimension, without affecting the labels. To decode

the labels and create a png picture out of it, the Python program decode_labels.py is executed

as shown below:

1 python3 decode_labels.py <compressed labels bin file path > <decoded labels
save path >

Where <compressed labels bin file path> is the path for the labels.bin file and <decoded

labels save path> is the path where the labeled png picture should be stored. When executing

the program like this only the default dimension are supported. If in the future some other

dimension of the HSI capture is taken, the program can then be executed as shown below:

1 python3 decode_labels.py <compressed labels bin file path > <decoded labels
save path > <x dim > <y dim > <print metadata > <skew mode >

Where <print metadata> is the printing of the classes in labels, classification execution time,

and loading execution time that is shown in Figure 5.7. <skew mode> is turning the images to

bin-3 format.

Chapter 6

Numerical Experiments

In this chapter the implementation that is presented in chapter 5 will be tested. The dataset is

shown in section 4.1 and is used for training the three different BDT structures with four dif-

ferent processing modes each. The onboard classification is tested with different modes to test

the overall accuracy and execution times. The test is performed on a computer to see which

mode has the best performance to be executed onboard the HYPSO satellite. After the choice is

made, the onboard classification is tested first on the LidSat and after uplinked and executed on

HYPSO-1. The results from these tests will then be discussed.

32

CHAPTER 6. NUMERICAL EXPERIMENTS 33

6.1 Binary Decision Tree Structures

This section will describe the design choices for the three different BDT structures. The goal of

having different BDT structures is to see how the accuracy and execution time will differ from

one another.

• The BDT 1 is designed first to separate clouds, sand, and ice/snow against water and land

classes. It contains all the classes from the training data and the goal is to have a short

travel path to the longest prediction. The longest prediction is on the rock vs the urban

class, viewed in Figure 6.1 (a).

• The BDT 2 is to have a smaller tree structure, where only a limited of classes are labeled. It

first separates ice and clouds against water and land, viewed in Figure 6.1 (b). This is also

designed to see if this structure will have a shorter classification time versus the other two.

• The BDT 3 contains all of the classes in the training data and is structured to see if the

classification time increases when the tree nodes have a long travel path to the last sep-

aration. The first separation is water versus the rest of the classes, where the rest of the

classes have the longest travel path. This is viewed in Figure 6.1 (c).

CHAPTER 6. NUMERICAL EXPERIMENTS 34

(a) BDT 1 (b) BDT 2

(c) BDT 3

Figure 6.1: The three different BDT structures made for testing the onboard classification.

CHAPTER 6. NUMERICAL EXPERIMENTS 35

6.2 Testing implementation accuracy and execution time

Before the implementation is tested on the satellite hardware the BDT structure and type of pro-

cessing mode need to be tested. To test this, the overall accuracy and classification execution

time when predicting an HSI are taken into consideration. To test the overall accuracy the HSI

from the training data is predicted and compared with the GT labels. The classification execu-

tion time is measured by the time it takes to radiometric calibrate the HSI and label it with the

SVMBDT, which will be viewed in the subsections below.

Since the onboard classification that is explained in section 5.2 is designed to be executed

onboard the satellite, a shell script is produced to test all the different BDTs with the different

processing modes to run on a computer. This program is named onboard_classifcation.sh and

can be found at Appendix A and [30] in the folder onboard_classification/onboard_classifcation/src/.

The labeled binary files which are produced are decoded with the Jupyter notebook decode.ipynb

found in the folder decoding/. These programs are executed on the computer with the specifi-

cations listed in Table 6.1.

Computer Lenovo Legion 7 Slim Pro

Processor AMD Ryzen 7 5000 Series 3.2GHz

Graphic Card Nvidia RTX 3060

Memory 16 GB RAM

OS Windows 11

Table 6.1: Hardware and software the tests are executed on.

When these tests are executed the onboard classification memory usage is then monitored,

and it’s found that the peak memory usage is 1328 kB as shown in Table 6.2. As described in

section 2.3 the OPU has available 0.5 GB of memory for new software uplinked to the satellite.

The onboard classification uses well below that memory limit, making it possible to be executed

onboard the satellite.

Program Peak Memory Usage

Onboard Classification 1328 kB

Table 6.2: Peak memory usage of the onboard classification program when separately classifying
the HSI cubes.

Selecting the spectral bands that could be ignored when classifying with the SVMBDT, the

Sparse SVM introduces in subsection 5.1.2 is utilized. The bands that are selected with the band

weights are shown in Figure 6.2, where 40 spectral bands are selected. These bands will then be

CHAPTER 6. NUMERICAL EXPERIMENTS 36

used when doing the processing modes radiance sparse and reflectance sparse. The all bands

mode uses all 120 spectral bands of the HSI cube.

(a) Sparse Selection (b) Legend

Figure 6.2: Sparse band selection of the HSI training data from Figure 4.1. (a) The weights pro-
duce for each spectral band. (b) Color mapping legend for each class weight.

Before the onboard classification is tested, the training weights are produced by the Jupyter

notebooks presented in subsection 5.1.1. For doing the training the data set is loaded, where

10% random pixels are used. The training times with the different BDT structures and process-

ing modes are shown in Table 6.3. Observed in the table the radiance training times are higher

than the reflectance. This is due to reflectance being an easier model to solve, making it faster

to converge than radiance.

BDT Number
Radiance Reflectance

All bands Sparse All bands Sparse

1 39.01s 52.60s 8.08s 6.49s

2 22.47s 35.96s 2.23s 2.04s

3 51.93s 43.22s 5.20s 4.59s

Table 6.3: Training times of BDT 1, BDT 2, and BDT 3 for each type of processing mode.

In the section 2.5 it was mentioned that when building with GCC a -O3 flag can be added

for better execution times. The onboard classification is built with and without the -O3 with the

BDT 1. The result of this is shown in Table 6.4, where when using the -O3 flag makes it a signif-

icantly faster classification time. The -O3 flag will then be used for the test in the subsections

below. How to build the onboard classification in the console with the -O3 flag is shown below:

CHAPTER 6. NUMERICAL EXPERIMENTS 37

1 gcc onboard_classification.c ../../ radiometric/src/radiometric.c
../../ svm_bdt/src/svmbdt.c -o onboard_classification.exe -O3

Without -O3 With -O3

Radiance Reflectance Radiance Reflectance

All bands Sparse All bands Sparse All bands Sparse All bands Sparse

1.315s 0.878s 1.518s 1.095s 0.278s 0.194s 0.314s 0.238s

Table 6.4: Mean classification time with BDT1 with all the processing modes, without and with
the -O3 optimization flag.

When looking just a the radiometric calibration times, the execution time can be viewed in

Table 6.5 with radiance and reflectance.

Radiance Reflectance

0.143 s 0.176 s

Table 6.5: Mean Radiometric calibration execution time when testing on computer.

(a) (b)

Figure 6.3: Color mapping for the labeled results in the subsections below. (a) BDT 1 and 3, and
(b) BDT 2.

CHAPTER 6. NUMERICAL EXPERIMENTS 38

6.2.1 BDT 1

Area
Radiance Reflectance

All bands Sparse All bands Sparse

South Pole [%] 99.01 97.93 99.08 60.52

Tharthar [%] 94.74 93.92 96.89 0.04

Kampala [%] 75.43 83.67 80.61 3.45

Los Angeles [%] 84.12 79.31 80.08 1.4

Sittwe [%] 91.65 88.96 84.39 4.77

Gobabeb [%] 93.39 88.66 96.83 0.59

Trondheim [%] 82.46 88.06 90.1 24.09

Trondheim, (Snow) [%] 80.55 83.33 84.43 48.83

Venice [%] 62.84 70.2 63.73 17.23

Svalbard [%] 75.34 74.83 75.76 35.26

Mean overall accuracy [%] 83.95 84.89 85.19 19.62

Mean loading time [ms] 40.692 40.64 43.852 43.677

Mean classification time [s] 0.278 0.194 0.314 0.238

Table 6.6: BDT 1 testing accuracy, loading, and execution time from the training set data.

(a) (b) (c) (d) (e) (f)

Figure 6.4: Los Angeles with a) Capture, b) GT and c)-f) labeled predicted images in chronologi-
cal order as in the table.

CHAPTER 6. NUMERICAL EXPERIMENTS 39

(a) (b) (c) (d) (e) (f)

Figure 6.5: Venice with a) Capture, b) GT, and c)-f) labeled predicted images in chronological
order as in the table.

(a) Los Angeles (b) Venice (c)

Figure 6.6: Confusion matrix of the processing mode with radiance sparse, with (c) as the color
bar with the number of pixels in each class.

CHAPTER 6. NUMERICAL EXPERIMENTS 40

6.2.2 BDT 2

Area
Radiance Reflectance

All bands Sparse All bands Sparse

South Pole [%] 98.46 93.78 98.86 98.95

Tharthar [%] 88.84 89.01 88.56 88.49

Kampala [%] 95.15 92.53 93.04 91.64

Los Angeles [%] 75.88 76.27 75.84 74.77

Sittwe [%] 98.99 99.02 98.39 98.29

Gobabeb [%] 91.97 67.15 95.48 79.19

Trondheim [%] 93.18 93.32 94.09 93.95

Trondheim, (Snow) [%] 84.28 79.79 84.33 81.31

Venice [%] 88.32 88.55 87.01 85.38

Svalbard [%] 57.98 67.19 57.91 45.78

Mean overall accuracy [%] 87.3 84.66 87.35 83.77

Mean loading time [ms] 39.165 39.483 43.428 42.578

Mean classification time [s] 0.23 0.161 0.27 0.192

Table 6.7: BDT 2 testing accuracy, loading, and execution time from the data of the training set.

(a) (b) (c) (d) (e) (f)

Figure 6.7: Gobabeb with a) Capture, b) GT, and c)-f) labeled predicted images in chronological
order as in the table.

CHAPTER 6. NUMERICAL EXPERIMENTS 41

(a) (b) (c) (d) (e) (f)

Figure 6.8: Sittwe with a) Capture, b) GT and c)-f) labeled predicted images in chronological
order as in the table.

(a) Gobabeb (b) Sittwe (c)

Figure 6.9: Confusion matrix of the processing mode with radiance sparse, with (c) as the color
bar with the number of pixels in each class.

CHAPTER 6. NUMERICAL EXPERIMENTS 42

6.2.3 BDT 3

Area
Radiance Reflectance

All bands Sparse All bands Sparse

South Pole [%] 98.98 98.63 98.32 97.65

Tharthar [%] 80.36 66.65 71.91 71.12

Kampala [%] 64.85 82.74 82.06 81.86

Los Angeles [%] 54.79 52.4 56.57 55.26

Sittwe [%] 94.7 86.72 87.27 86.4

Gobabeb [%] 89.57 84.05 97.69 97.15

Trondheim [%] 83.75 85.67 87.9 88.25

Trondheim, (Snow) [%] 75.92 68.96 77.15 74.9

Venice [%] 60.41 69.15 70.33 68.43

Svalbard [%] 50.4 50.4 50.34 50.22

Mean overall accuracy [%] 75.37 74.54 77.95 77.12

Mean loading time [ms] 39.491 40.654 43.271 43.641

Mean classification time [s] 0.291 0.177 0.344 0.209

Table 6.8: BDT 3 testing accuracy, loading, and execution time from the training set data.

(a) (b) (c) (d) (e) (f)

Figure 6.10: Tharthar with a) Capture, b) GT, and c)-f) labeled predicted images in chronological
order as in the table.

CHAPTER 6. NUMERICAL EXPERIMENTS 43

(a) (b) (c) (d) (e) (f)

Figure 6.11: Kampala with a) Capture, b) GT, and c)-f) labeled predicted images in chronological
order as in the table.

(a) Tharthar (b) Kampala (c)

Figure 6.12: Confusion matrix of the processing with radiance sparse, with (c) as the color bar
with the number of pixels in each class.

CHAPTER 6. NUMERICAL EXPERIMENTS 44

6.2.4 Deciding mode to be used onboard the satellite

In this section, it will be discussed which BDT structure and processing mode that will be the

best choice to use for classifying onboard the satellite.

From the results in the subsection 6.2.1, subsection 6.2.2, and subsection 6.2.3 it is shown

that the BDT 3 has the worst performance compared to the BDT 1 and BDT 2 when measured

by accuracy and classification time. Between these two structures, it is shown that BDT 2 has

a slightly faster execution time than BDT 1, due to the lower amount of classes. The impor-

tance of the onboard classification is the model for every HSI around the Earth. The trade-off of

having more classes is better, with the expense to have a slightly higher classification time. Be-

tween the processing modes in the BDT 1 structure, the best accuracy is with the reflectance all

bands. With the reflectance sparse it is shown that has very low accuracy, which can be caused

by overfitting in the nodes from the trained data that has been used. Due to the solar zenith

angle not being implemented onboard the satellite as discussed in subsection 5.2.1 and having

a much higher classification time, the radiance sparse could be a better choice. Even with 0.5%

lower mean overall accuracy, it never gets worse than 70%. This value goes below with other

processing modes.

To further test the robustness of the BDT 1 radiance sparse, some HSI captured not in the

data set is labeled. The labels in this test can’t be measured due to not having GT, but the qual-

ity of the labels can be observed by comparing HSI in RGB representation. The different HSI

captures with the labeling results are shown in Figure 6.13. From the results in the figure, the

onboard classification with the mode chosen can be observed that it is overall robust. Due to

the training data not containing a space class, it is labeled as sand as shown in Figure 6.13(a)-

(b). The space capture is from an HSI that had pointing errors when captured, making the image

contain space and the curvature of the Earth. The ground station can then know that space is

labeled as sand and can determine by the labeled image that the HSI had pointing errors. The

Florida capture is shown in Figure 6.13(c)-(d) that shallow water is labeled as strange water as

expected. The moon capture, shown in Figure 6.13(e)-(f), labeling is not working for these types

of scenarios. The Svalbard capture in Figure 6.13(g)-(h) shows that a lot of clouds are blocking

much of the surface. The labels produced classified much of the image as clouds, which can give

the ground station an idea of how big a percentage is clouded in the HSI. The last HSI capture

Sogn in Figure 6.13(i)-(j), shows that the labeling is robust. Some errors are shown where some

clouds are labeled as urban. With these tests done the onboard classification with mode BDT 1

radiance sparse is used to label the different HSIs in the test shown in section 6.3 and section 6.4.

CHAPTER 6. NUMERICAL EXPERIMENTS 45

(a) Space Capture (b) Space Labels

(c) Florida Capture (d) Florida Labels

(e) Moon Capture (f) Moon Labels

(g) Svalbard Capture (h) Svalbard Labels

(i) Sogn Capture (j) Sogn Labels

Figure 6.13: Different HSI capture in different areas and scenarios to test the onboard classifica-
tion model’s robustness with mode BDT 1 radiance sparse.

CHAPTER 6. NUMERICAL EXPERIMENTS 46

6.3 Testing on LidSat

As mentioned in the section 2.3, new software that is developed for the satellite, needs to be

tested first on the setup Lidsat before uplinking and executing on the satellite. To test the on-

board classification on the Lidsat three different HSI captures are uploaded to it. The HSI cap-

tures are visualized in the Figure 6.14(a),(c), and (e). To execute the onboard classification the

following console command is executed:

1 ./ onboard_classification.exe "capture_folder/" "labels.bin" "config/" "1"
"1"

To test the classification time each HSI captures is tested two times, one without and one

with the -O3 flag. The different classification execution times for the three HSI captures are

shown in Table 6.9 and labeling of the HSI in Figure 6.14 (b), (d) and, (f). When these tests are

performed, it is shown that -O3 stills have faster execution times than without. The -O3 flag will

then be used for the build for onboard classification when uplinked to the HYPSO-1 satellite.

HSI Capture
Without -O3 With -O3

Classification Config Classification Config

Erie 33.14 s 0.46 s 8.57 s 0.49s

Vigo 36.06 s 0.46 s 9.52 s 0.49 s

Venice 35.68 s 0.46 s 9.12 s 0.49 s

Table 6.9: Classification and Loading Execution Time of the different HSI captures tested on the
LidSat.

CHAPTER 6. NUMERICAL EXPERIMENTS 47

(a) Erie Capture (b) Erie Labels

(c) Vigo Capture (d) Vigo Labels

(e) Venice Capture (f) Venice Labels

Figure 6.14: Lidsat test images, where RGB representation of the BDT cubes on the left and the
corresponding labeled images on the right.

CHAPTER 6. NUMERICAL EXPERIMENTS 48

6.4 Testing on HYPSO-1

Now that the onboard classification is tested on satellite hardware, it can be uplinked to the

HYPSO-1 satellite. This is done via the ground station in Trondheim, Norway where it’s uplinked

to HYPSO-1 under an orbital pass. To make the onboard classification execute after a HSI is

captured a script is added to the OPU. After the onboard classification is executed and HYPSO-1

is again in the horizon of the ground station the labeled HSI is downlinked. The downlink time

of the label versus the whole HSI cube is shown in Table 6.10.

HSI Cube Labeled HSI

10 min 24 s 2.64 s

Table 6.10: Downlink times of HSI Cube and labeled HSI from HYPSO-1 to the ground station.

This procedure is done multiple times, and some of the HSI captures with the associated

labels are shown in Figure 6.15. The different classification and loading execution times when

executing onboard HYPSO-1 are shown in Table 6.11.

HSI Capture Classification Config

Griegeschelt 8.25 s 0.49 s

Delaware 8.45 s 0.49 s

Greenbay 8.04 s 0.49 s

Ingdalen 9.06 s 0.49 s

Table 6.11: Classification and config loading times when labeling the four captures onboard
HYPSO-1.

CHAPTER 6. NUMERICAL EXPERIMENTS 49

(a) Griegeschelt Capture (b) Griegeschelt Labels

(c) Delaware Capture (d) Delaware Labels

(e) Greenbay Capture (f) Greenbay Labels

(g) Ingdalen Capture (h) Ingdalen Labels

Figure 6.15: One of the first onboard classification labeled images downlinked from the HYPSO-
1 satellite. To the left the HSI captures and to the right the associated classified labels.

CHAPTER 6. NUMERICAL EXPERIMENTS 50

6.5 Discussion

In this chapter the onboard classification module has been tested first on a computer, to test

the different overall accuracy and execution times with the different processing modes and BDT

structures. The mode and BDT chosen is BDT 1 radiance sparse, due to having one of the lowest

execution times and robust labeling accuracy, but also having all the 10 classes.

From the labeling results on Figure 6.13 (b), (h) and Figure 6.15 (h), it is shown captures

with pointing errors, distortions or mostly capturing clouds. The section 4.2 shows that many

HSI captures have this problem, and may not be downlinked if known. With the labels produced

onboard and having a short downlink time shown in Table 6.10, it can be used to help determine

if the HSI capture should be downlinked or not.

In the Griegshelt and Delaware labels in Figure 6.15 there is labeled strange water that po-

tentially can have algae blooms or pollution in it. In section 4.3 it was explained how the labels

could be used to determine the coordinates where the autonomous agents should be sent. For

HYPSO-1 that has not had a SDR, the coordinates must have been sent via the ground station

and to one of the agents afterward. In the future when the HYPSO-2 satellite is launched into

orbit this could be directly sent to the agents, with the areas labeled with strange water. If the

HSI captured is containing algae blooms fish farms could be warned that the area has HABs in

the water. Doing this could help reach the UN’s sustainability goals that are mentioned in sec-

tion 1.2. To better separate the strange water class, some subclasses of it could be made in the

future for the data set. This could be the algae bloom class, pollution class, and shallow water

class. Another class that could be added is a space class so that space is not labeled as sand.

If this is changed the BDT in the onboard classification module needs to be re-designed and

re-trained to make those labels in the HSI.

Even though the labeled HSI gives a good representation of how the HSI captures looks like,

some misclassifications occur in the labels. Viewed in the Griegeschelt labels in Figure 6.15

the snow-covered areas are labeled as thin and thick clouds. Also errors in the Delaware labels

where some cloud pixels are labeled as urban. And the Greenbay labels dark water is labeled

as shadows. To have fewer errors in the labels, the data set showed in section 4.1, could be

improved by further investigating the surfaces in the HSI captures.

To give a better understanding of how the labels can be utilized, the onboard classification

module will be further executed onboard HYPSO-1 and the labels downlinked to the ground

station.

Chapter 7

Conclusion

In this thesis, it has been implemented the classification module on the image processing pipeline

on the HYPSO-1 satellite. Inside the module is implemented radiometric calibration to reduce

stripping noise and factor in exposure of the HSI cube. After the HSI is calibrated the pixels are

labeled with the ML algorithm SVMBDT. To train the ML algorithm the ground training module

produces and saves the necessary training data and radiometric coefficients to a config file that

onboard classification can read from. To train the models a data set with 10 HSI with GT is pro-

duced for this project. After the HSI is labeled, it is produced as a binary file. The binary file is

then decoded by the decode labels module that produces a png image of the labels.

The implementations have been then tested first on a computer to test the accuracy and

the execution time for the different BDT designs, radiometric calibration, and sparse selection.

From this test, it is concluded the best mode for the classification onboard the HYPSO-1 satellite

is BDT 1 radiance sparse. This is due to overall high accuracy and one of the lowest execution

times compared to the other modes.

The onboard classification is then tested on target hardware Lidsat where three HSI was

tested. Labels are produced and working as expected, but with a slower classification time, due

to other hardware than the computer.

At the end the onboard classification is uplinked to the HYPSO-1 satellite. 4 HSI is labeled

onboard and downlinked to the ground. The labeled images were decoded and was showing

the expected behavior, with a similar execution time as the Lidsat. The labels it produced give

a good indication if the HSI cube errors in them should be downlinked or not, even with some

misclassifications.

51

CHAPTER 7. CONCLUSION 52

7.1 Further Work

The onboard classification will be further executed onboard the HYPSO-1 satellite to give a bet-

ter understanding of how the labels could be used. To verify that the strange water pixels could

contain HABs, a test with one of the autonomous agents would verify this. For the HYPSO-2

with the SDR an implementation that calculates the coordinates of HABs with the labels and

georeferencing of the HSI. They could then be directly sent from the satellite to the autonomous

agents for more detailed capturing.

As shown subsection 4.1.1 labeling and making a training set for HSI is a difficult task. The

labels that have been produced have some errors that are difficult to correct without local knowl-

edge. To make the classification module more accurate the training data could be improved by

doing some more research on the local areas. The data set could also be added more classes

with subclasses of strange water so that the HABs could be separated by the pollution and shal-

low water.

For a better execution time for the onboard classification module, the sparse selection should

be implemented on the radiometric calibration. The current implementation calibrates all the

120 spectral bands pixel-wise even when the SVMBDT is doing sparse mode.

Bibliography

[1] Efficient learning and optimization tools for hyperspectral imaging systems (elo-hyp),

https://elohyp.wordpress.com/. Accessed on 06/18-23.

[2] Savita Ahlawat and Amit Choudhary. Hybrid cnn-svm classifier for handwritten digit recog-

nition. Procedia Computer Science, 167:2554–2560, 2020.

[3] Adrián Alcolea, Mercedes E Paoletti, Juan M Haut, Javier Resano, and Antonio Plaza. In-

ference in supervised spectral classifiers for on-board hyperspectral imaging: An overview.

Remote Sensing, 12(3):534, 2020.

[4] Mohammad Azimi-Pour, Hamid Eskandari-Naddaf, and Amir Pakzad. Linear and non-

linear svm prediction for fresh properties and compressive strength of high volume fly ash

self-compacting concrete. Construction and Building Materials, 230:117021, 2020.

[5] Sivert Bakken, Roger Birkeland, Joseph L Garrett, P Amund R Marton, Milica Orlandić,

Evelyn Honoré-Livermore, Dennis D Langer, Cecilia Haskins, and Tor A Johansen. Test-

ing of software-intensive hyperspectral imaging payload for the hypso-1 cubesat. In 2022

IEEE/SICE International Symposium on System Integration (SII), pages 258–264. IEEE, 2022.

[6] Sivert Bakken, Marie B Henriksen, Roger Birkeland, Dennis D Langer, Adriënne E

Oudijk, Simen Berg, Yeshi Pursley, Joseph L Garrett, Fredrik Gran-Jansen, Evelyn Honoré-

Livermore, et al. Hypso-1 cubesat: First images and in-orbit characterization. Remote

Sensing, 15(3):755, 2023.

[7] Sivert Bakken, Evelyn Honoré-Livermore, Roger Birkeland, Milica Orlandić, Elizabeth F

Prentice, Joseph L Garrett, Dennis D Langer, Cecilia Haskins, and Tor A Johansen. Soft-

ware development and integration of a hyperspectral imaging payload for hypso-1. In 2022

IEEE/SICE International Symposium on System Integration (SII), pages 183–189. IEEE, 2022.

[8] AJ Batista-Leyva. Radiometry and photometry: Two visions of one phenomenon. Revista

Cubana de Física, 36(1):66–72, 2019.

53

https://elohyp.wordpress.com/

BIBLIOGRAPHY 54

[9] Roger Birkeland, Gara Quintana-Diaz, Evelyn Honoré-Livermore, Torbjörn Ekman, Fer-

nando Aguado Agelet, and Tor A Johansen. Development of a multi-purpose sdr payload

for the hypso-2 satellite. In 2022 IEEE Aerospace Conference (AERO), pages 1–11. IEEE, 2022.

[10] Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodríguez-Mazahua, and Asdrubal Lopez. A

comprehensive survey on support vector machine classification: Applications, challenges

and trends. Neurocomputing, 408:189–215, 2020.

[11] John W Chapman, David R Thompson, Mark C Helmlinger, Brian D Bue, Robert O Green,

Michael L Eastwood, Sven Geier, Winston Olson-Duvall, and Sarah R Lundeen. Spectral

and radiometric calibration of the next generation airborne visible infrared spectrometer

(aviris-ng). Remote Sensing, 11(18):2129, 2019.

[12] Giacomo Curzi, Dario Modenini, and Paolo Tortora. Large constellations of small satellites:

A survey of near future challenges and missions. Aerospace, 7(9):133, 2020.

[13] Magnus Danielsen. System integration and testing of on-board processing system for a

hyperspectral imaging payload in a cubesat. Master’s thesis, NTNU, 2020.

[14] Arthur Elmes, Hamed Alemohammad, Ryan Avery, Kelly Caylor, J Ronald Eastman, Lewis

Fishgold, Mark A Friedl, Meha Jain, Divyani Kohli, Juan Carlos Laso Bayas, et al. Accounting

for training data error in machine learning applied to earth observations. Remote Sensing,

12(6):1034, 2020.

[15] P Ezhil et al. Experimental analysis of optimization flags in gcc. Turkish Journal of Com-

puter and Mathematics Education (TURCOMAT), 12(7):1875–1879, 2021.

[16] JL Garrett, NK Singh, TA Johansen, and I Necoara. Accelerating support vector machines for

remote platforms by increasing sparsity. In 2022 12th Workshop on Hyperspectral Imaging

and Signal Processing: Evolution in Remote Sensing (WHISPERS), pages 1–5. IEEE, 2022.

[17] Joseph Garrett. Ssp-ls. https://github.com/ELO-Hyp/SSP-LS/tree/new-diag, 2023.

[18] Mariusz E Grøtte, Roger Birkeland, Evelyn Honoré-Livermore, Sivert Bakken, Joseph L Gar-

rett, Elizabeth F Prentice, Fred Sigernes, Milica Orlandić, J Tommy Gravdahl, and Tor A

Johansen. Ocean color hyperspectral remote sensing with high resolution and low la-

tency—the hypso-1 cubesat mission. IEEE Transactions on Geoscience and Remote Sensing,

60:1–19, 2021.

[19] Xiao-li Hao and Huan Liang. A multi-class support vector machine real-time detection sys-

tem for surface damage of conveyor belts based on visual saliency. Measurement, 146:125–

132, 2019.

https://github.com/ELO-Hyp/SSP-LS/tree/new-diag

BIBLIOGRAPHY 55

[20] Hui Huang, Xi’an Feng, Suying Zhou, Jionghui Jiang, Huiling Chen, Yuping Li, and Chengye

Li. A new fruit fly optimization algorithm enhanced support vector machine for diagnosis

of breast cancer based on high-level features. BMC bioinformatics, 20:1–14, 2019.

[21] Jingfu Li. Iot security analysis of bdt-svm multi-classification algorithm. International

Journal of Computers and Applications, 45(2):170–179, 2023.

[22] Bing Lu, Phuong D Dao, Jiangui Liu, Yuhong He, and Jiali Shang. Recent advances of hyper-

spectral imaging technology and applications in agriculture. Remote Sensing, 12(16):2659,

2020.

[23] Wenjing Lv and Xiaofei Wang. Overview of hyperspectral image classification. Journal of

Sensors, 2020, 2020.

[24] NanoAvionics. Innovative ocean research from ntnu to ride on the nanoavionics m6p

nano-satellite bus, https://nanoavionics.com/, 2018.

[25] Feiping Nie, Wei Zhu, and Xuelong Li. Decision tree svm: An extension of linear svm for

non-linear classification. Neurocomputing, 401:153–159, 2020.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learn-

ing Research, 12:2825–2830, 2011.

[27] Abdul Razaque, Mohamed Ben Haj Frej, Muder Almi’ani, Munif Alotaibi, and Bandar

Alotaibi. Improved support vector machine enabled radial basis function and linear vari-

ants for remote sensing image classification. Sensors, 21(13):4431, 2021.

[28] Jonas Gjendem Røysland. Support vector machine with binary decision tree for classifica-

tion onboard a satellite. NTNU, 2022.

[29] Jonas Gjendem Røysland. Svm_thesis_project. https://github.com/jonasroy/SVM_
THESIS_PROJECT, 2022.

[30] Jonas Gjendem Røysland. onboard-pipeline-modules. https://github.com/
NTNU-SmallSat-Lab/onboard-pipeline-modules/tree/classification, 2023.

[31] PM Salgado-Hernanz, M-F Racault, JS Font-Muñoz, and G Basterretxea. Trends in phy-

toplankton phenology in the mediterranean sea based on ocean-colour remote sensing.

Remote Sensing of Environment, 221:50–64, 2019.

https://nanoavionics.com/
https://github.com/jonasroy/SVM_THESIS_PROJECT
https://github.com/jonasroy/SVM_THESIS_PROJECT
https://github.com/NTNU-SmallSat-Lab/onboard-pipeline-modules/tree/classification
https://github.com/NTNU-SmallSat-Lab/onboard-pipeline-modules/tree/classification

BIBLIOGRAPHY 56

[32] Bijo Sebastian and Pinhas Ben-Tzvi. Support vector machine based real-time terrain esti-

mation for tracked robots. Mechatronics, 62:102260, 2019.

[33] Signe Stroming, Molly Robertson, Bethany Mabee, Yusuke Kuwayama, and Blake Schaeffer.

Quantifying the human health benefits of using satellite information to detect cyanobac-

terial harmful algal blooms and manage recreational advisories in us lakes. GeoHealth,

4(9):e2020GH000254, 2020.

[34] Min Wang, Ke-ming Yang, and Guo-ping Wang. Relative radiometric calibration of yaw

data without calibration field of hyperspectral images based on harmonic analysis. Inter-

national Journal of Remote Sensing, 41(14):5429–5442, 2020.

[35] Marie Weiss, Frédéric Jacob, and Grgory Duveiller. Remote sensing for agricultural appli-

cations: A meta-review. Remote sensing of environment, 236:111402, 2020.

[36] WHISPERS. Workshop for hyperspectral image and signal processing: Evolution in remote

sensing, https://www.ieee-whispers.com/, 2023. Accessed on 06/18-23.

[37] Lei Yao, Zhanpeng Fang, Yanqiu Xiao, Junjian Hou, and Zhijun Fu. An intelligent fault di-

agnosis method for lithium battery systems based on grid search support vector machine.

Energy, 214:118866, 2021.

https://www.ieee-whispers.com/

Appendix A

Code

The implementation that is described in chapter 5 and used in chapter 6 is found in the attach-

ments in the zip folder Implementation/.

57

Appendix B

WHISPERS paper

Proceeding paper submitted to WHISPERS conference 2023. The paper is named HYPERSPEC-

TRAL CLASSIFICATION ON-BOARD THE HYPSO-1 CUBESAT and is found in the pages below.

58

HYPERSPECTRAL CLASSIFICATION ON-BOARD THE HYPSO-1 CUBESAT

Jonas G. Røysland1, Dennis D. Langer2,4, Simen Berg3,
Milica Orlandić1,4, Joseph L. Garrett3,4†

1Department of Electronic Systems
2Department of Marine Technology

3Department of Engineering Cybernetics
4Center for Autonomous Marine Operations and Systems

Norwegian University of Science and Technology
O.S. Bragstads Plass 7034 Trondheim, Norway

ABSTRACT

Index Terms— Machine Learning, Real-time
Classification, Remote Sensing, Support Vector Ma-
chines, Embedded Systems

1. INTRODUCTION

The vast amounts of data created by hyperspectral
payloads and the limited satellite downlink band-
width together encourage the use of onboard pro-
cessing for hyperspectral remote sensing missions.
Because tasks such as compression and sensor cor-
rections offer the largest immediate gain, passing
more data through the same bandwidth, they were
the first to be run onboard.

In recent years the popularity of small satellites
has exponentially increased after the launch cost has
been lowered. This has opened up more possibil-
ities for researching the Earth’s surface with satel-
lites. This is called remote sensing and is about
monitoring the characteristic of an area by captur-
ing the reflected solar light from the surface. This is
visualized in Fig. 1.

One of the satellite projects doing this is HYPSO
at NTNU in Trondheim. On the 13th of January

The research leading to these results has received funding
from the NO Grants 2014 – 2021, under Project ELO-Hyp, con-
tract no. 24/2020.
†joseph.garrett@ntnu.no

Fig. 1: Illustration of remote sensing where solar
light is reflected on the Earth’s surface and hitting
an imager on a satellite [1].

2022, their first satellite HYPSO-1 with a hyper-
spectral imager was launched into Low Earth Orbit
(LEO) [2]. The data it produces are Hyperspectral
Images (HSI) which are images that contain high
amounts of spectral bands (120 on HYPSO-1). The
benefit of HSI is that have more information in the
electromagnetic spectrum, which makes it more ca-
pable to identify objects and materials on surfaces.
One of the main goals of HYPSO with HSI is to
analyze and monitor harmful algae blooms (HABs)
in waters, that could harm the local ecosystem.

Due to the limited bandwidth between the satel-

lite and the ground station, and the size of HSI
(151MB)[3], it takes at least 90 minutes (2 orbital
passes) to downlink one HSI [2]. This is less likely
to make able to work with other real-time systems
as Auntomus drones to have a local analysis of
an area. One solution to make the information of
the HSI a lot smaller is classified labels that are
produced onboard the satellite. Example of this is
illustrated in Fig. 3 . The labels will then contain
classes (for example algae blooms) that say what
types of surfaces are located on the pixels. With im-
age dimensions of 956x684, the labels would have
a size of 327kB with a max of 16 classes.

To make the prediction when labeling onboard,
Support Vector Machine (SVM) with Binary Deci-
sion Tree (BDT) has been implemented. SVM is a
supervised learning model that does binary separa-
tion. The least computational separation in SVMs is
linear kernels that are mathematically shown as:

nX

i=1

wi · xi + b = ±1 (1)

,where xi input data, wi weight, b intercept and
n number of features. The separation is visualized
in Fig. 2 (a).

(a) Feature space (b) Binary Decision Tree

Fig. 2: (a) SVM separating two classes and then two
subclasses in feature space with the BDT. (b) Gen-
eral BDT structure where each node has an SVM
model.

The BDT is the SVMs decision function that
makes it possible to do multiclass predictions.
The BDT makes it possible to design which of
the classes should be separated from each other,
and where the subclasses should go. This makes
it robust when doing multiclassification, and the

majority of the errors are done in the subclasses [4].
A general tree structure is shown in Fig. 2 (b). The
time complexity of SVMs is O(n) [5], making it
more predictable how the execution time will be.

Due to the high amount of spectral bands (n fea-
tures) and the execution are proportional to it. To
reduce the n, Sparse SVM is utilized for the band
selection. Making only the most significant spectral
bands chosen [6]. This then will affect the number
of calculations in Equation 1.

When the HSI is captured, it is taken place in
different areas of the Earth and can have a different
exposure value. This could affect the prediction for
the SVMBDT making more errors due to this differ-
ence. To solve this problem, radiometric calibration
has been implemented. This makes the digital val-
ues in the images into physical values. The first part
of the calibration is done by looking at the scatter-
ing of the solar lights, and it’s called radiance. It’s
mathematically expressed as:

L(�, x) = [DN(�, x)� ↵(�, x)]�(�, x), (2)

where DN(�, x) are the digital numbers in the
image, L(�, x) is the function of wavelenght � and
x is the cross-track spatial location. ↵(�, x) are the
offset and �(�, x) are the gain in the DNs.

The second part of the calibration is called re-
flectance. This factor in the distance from the Sun
and Earth and the solar zenith angle of the reflected
solar light. The mathematical expression is shown:

Rsensor =
L(�, x)⇥ ⇡ ⇥ d2

ESUN ⇥ cos✓S
(3)

Rsensor is the reflectance, d is the distance be-
tween the Earth and the Sun. ESUN is the mean
solar exo-atmospheric irradiance, and the ✓S is the
Solar zenith angle [2].

2. LABELING, TRAINING, AND TESTING

To make the concept described above three parts
are implementation. These are ground training, on-
board classification and decode labels. The ground
training loads training data and trains models to

make the SVM model weights wi and intercepts b,
and the sparse selection. These and the radiomet-
ric coefficients are stored in a config folder that is
stored onboard the satellite. The onboard classi-
fication loads then targeted the HSI cube and the
config data when it is executed. The ground station
has the choice to make decisions the cube should
be radiometrically calibrated with radiance or re-
flectance. When the cube is calibrated the pixels are
then predicted with the SVMBDT with the choice
of using all the bands or the sparse selection. The
predicted labels are then stored as a compressed la-
beled image. When the satellite is in the horizon of
the ground station the labels can be downlinked and
decoded by the decode labels part. An illustration
of how all three parts a linked together are shown in
Figure 3.

Fig. 3: Illustration of how the ground training, on-
board classification, and decode labels are working
together [1].

For making the config data that are necessary for
the onboard classification to the predictions, the HSI
training sets are made with labeled ground truth.

The training data with legend are shown in Fig. 4.

(a) HSI Captures (b) Labels (c) Legend

Fig. 4: Labeled HSI training set with (a) HSI cap-
tures in RGB representation and (b) the associated
labels of the HSI captures.

The implementation that is made is tested on a
personal computer to verify the accuracy and the
different prediction times with different processing
modes. Since the same model should predict all
the HSI around the Earth, a BDT structure is de-
signed to aim for separating cloud/ice/sand, water,
and land surface. These have different subclasses
where water has strange water, clouds have thick
and thin clouds, and the land mass is forest, urban,
and rock. The shadow class is the shadows pro-
duced by clouds and terrain. The strange water con-
tains algae bloom, pollution, and shallow water. The
BDT constructed for this is shown in Fig. 5.

The implementation is trained with 10% of the
training data and tested on the computer. The results
from this with four different processing modes are
shown in Fig. 6.

The overall processing method with the best ac-
curacy is reflectance but also has the longest classifi-
cation time. The best trade of accuracy and also hav-
ing the best classification time are Radiance Sparse.

Fig. 5: BDT 1 Structure

Fig. 6: Results from computer test where the 10
training HSI are tested by accuracy, loading time,
and classification time.

Due to this, the processing method is the choice that
would be run when doing the in-flight test.

Before the onboard classification is tested on-
board the HYPSO-1 satellite, the implementation
needs to be tested on target hardware. On NTNU
Smallsatlab there is a setup called LidSat, where the
goal is to test software on satellite target hardware.
The test is performed with mean loading and classi-
fication time shown as:

Fig. 7: LidSat mean loading and classification exe-
cution times when predicting HSI.

3. IN-FLIGHT TESTS

Now the implementation has been tested on the tar-
get hardware it is ready to be tested onboard the
satellite. The onboard classification build together
with the config folder is uplinked to the HYPSO-1
satellite via the ground station. To test the imple-
mentation some HSI captures that are stored on the
satellite are tested. The results of the in-flight on-
board labels are shown in Fig. 8, after they are de-
coded on the ground.

Fig. 8: One of the in-flight test results where to the
left are the captures and to the right labels.

The figure above shows that the labels have the
same shapes as the original HSI captures. The la-
bels are robust when labeling between land, cloud,
and water. The errors in the labeled image are for
example ice/snow classified as clouds, from the
Griegsechelt labels. From the Miss (Pointing Error)
Capture, it can be viewed that the capture wasn’t
successful to aim at the Earth’s surface. The bot-
tom pixel is clouds and the top is space. Due to the
SVMBDT model doesn’t have space labels from the
training data, the space pixels are predicted as sand.
From the four labels that have been downlinked, it
can successfully say that the labels can give a good
estimate if the HSI captures are good enough to be
downlinked or not.

Further, the onboard classification will be label-
ing every HSI captures that is taken. The labels will
then be downlinked before the whole HSI captures
so that the ground station can determine if the cap-
ture will be downlinked or not.

Fig. 9: HYPSO-1 classification table.

4. CONCLUSION

This paper has explored the design of the onboard
classification on the HYPSO-1 satellite for label-
ing HSI captures. For the prediction SVMBDT is
chosen for its low execution time, but overall ro-
bustness. Since the captures are taken over all of
the Earth with different exposure in the images,
radiometric calibration is utilized before doing the
prediction. The SVMBDT is trained with 10 HSI
training labels and is tested for overall accuracy
and execution when doing the test. The process-
ing mode chosen to run on the satellite is Radiance
Sparse with the lowest classification time with an
85% overall accuracy. The onboard classification is
tested on target hardware, and then later uplinked
to the HYPSO-1 satellite. The implementation is

working as intended and the labeling gives a good
representation of the original HSI captures. The
ground station then has a labeled image to deter-
mine if the HSI capture should be downlinked or
not.

5. REFERENCES

[1] Jonas Gjendem Røysland, Real-time classifica-
tion onboard the HYPSO-1 satellite, Norwegian
University of Science and Technology, 2023.

[2] Sivert Bakken, Marie B Henriksen, Roger
Birkeland, Dennis D Langer, Adriënne E
Oudijk, Simen Berg, Yeshi Pursley, Joseph L
Garrett, Fredrik Gran-Jansen, Evelyn Honoré-
Livermore, et al., “Hypso-1 cubesat: First
images and in-orbit characterization,” Remote
Sensing, vol. 15, no. 3, pp. 755, 2023.

[3] Sivert Bakken, Evelyn Honoré-Livermore,
Roger Birkeland, Milica Orlandić, Elizabeth F
Prentice, Joseph L Garrett, Dennis D Langer,
Cecilia Haskins, and Tor A Johansen, “Soft-
ware development and integration of a hyper-
spectral imaging payload for hypso-1,” in 2022
IEEE/SICE International Symposium on System
Integration (SII). IEEE, 2022, pp. 183–189.

[4] Jingfu Li, “Iot security analysis of bdt-svm
multi-classification algorithm,” International
Journal of Computers and Applications, vol. 45,
no. 2, pp. 170–179, 2023.

[5] Abdul Razaque, Mohamed Ben Haj Frej,
Muder Almi’ani, Munif Alotaibi, and Bandar
Alotaibi, “Improved support vector machine
enabled radial basis function and linear variants
for remote sensing image classification,” Sen-
sors, vol. 21, no. 13, pp. 4431, 2021.

[6] JL Garrett, NK Singh, TA Johansen, and
I Necoara, “Accelerating support vector ma-
chines for remote platforms by increasing spar-
sity,” in 2022 12th Workshop on Hyperspectral
Imaging and Signal Processing: Evolution in
Remote Sensing (WHISPERS). IEEE, 2022, pp.
1–5.

	Abstract
	Sammendrag
	Acknowledgment
	Acronyms
	Introduction
	Motivation
	UN's sustainability goals
	Contributions

	Remote Sensing, HYPSO and Classification
	Remote Sensing and Hyperspectral Images
	HYPSO
	HYPSO satellite specifications
	Classification onboard the satellite
	Software and GCC

	Theory and algorithms
	Support Vector Machine
	Binary Decision Tree
	Sparse SVM
	Using SVMs in real-time systems.
	Pros and cons with Linear Kernel

	Radiometric calibration
	Radiance
	Reflectance

	Hyperspectral dataset and usage of the labels
	HSI Dataset
	Process for labeling training data

	Catching errors in the hsi captures
	An observational pyramid with a drone

	Implementation and Design
	Ground Training
	svmbdt Training
	Sparse Selection
	Radiometric Coefficients
	Config File

	Onboard Classification
	Radiometric Calibration
	SVMBDT

	Decode Labels

	Numerical Experiments
	Binary Decision Tree Structures
	Testing implementation accuracy and execution time
	BDT 1
	BDT 2
	BDT 3
	Deciding mode to be used onboard the satellite

	Testing on LidSat
	Testing on HYPSO-1
	Discussion

	Conclusion
	Further Work

	Bibliography
	Code
	WHISPERS paper

