
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

M
as

te
r’s

 th
es

is

Marvin Ademi

Enhancing Performance through
Parallel Memory and Arithmetic
Operations in the CV32E40X Core

Master’s thesis in Electronic Systems Design
Supervisor: Thomas Tybell
Co-supervisor: Øystein Knauserud
June 2023





Marvin Ademi

Enhancing Performance through
Parallel Memory and Arithmetic
Operations in the CV32E40X Core

Master’s thesis in Electronic Systems Design
Supervisor: Thomas Tybell
Co-supervisor: Øystein Knauserud
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Project Description

Embedded devices are vital in various applications, from consumer electronics to in-
dustrial control systems. With the increasing demand for more sophisticated and feature-
rich devices, the need for high-performance, low-power processors in embedded systems
has become crucial. The CV32E40X core is part of a set of open-source CPU cores called
the CV32E40X-family, spawned initially from the RI5CY project. The CV32E40X is a
low-power embedded processor designed for compute-intensive applications.

This project aims to enhance the performance of the CV32E40X core by enabling par-
allel execution of memory operations with other operations while considering the trade-
offs in area and power consumption. The project builds upon the understanding that opti-
mizing performance and area is challenging in embedded processor design.

i





Abstract

The study is written in collaboration with Silicon Labs and focuses on enhancing the
performance of the CV32E40X processor core by enabling parallel execution of memory
operations with other operations. The introduction highlights the increasing demands of
modern applications and the importance of improving processor cores. The CV32E40X
core, based on the RISC-V architecture, is aimed at compute-intensive applications. This
research aims to increase the core’s performance without exceeding a 20% increase in
area.

Several modifications were made to the CV32E40X core to achieve the objective. A
skid buffer introduced variable delay for the LSU and imposed backpressure on the OBI
interface. The ID, EX, and WB stages were modified to enable parallel execution. An
instruction ID tracker was also implemented to maintain program order during instruction
commitment.

The benchmark tests, including coremark, hello-world, ricv arithmetic basic test 1,
and csr instr asm, were conducted on both the baseline and modified designs. The results
indicate that the baseline design outperforms the modified version regarding IPC. The
modified design cannot fully execute coremark and hello-world, suggesting potential per-
formance limitations due to unresolved bugs. The results from running csr instr asm and
ricv arithmetic basic test 1 showed similar performance between the baseline and mod-
ified CV32E40X. In contrast, for coremark and hello-world, the baseline is 12.5% and
3.1% better in terms of IPC, respectively.

Bug analysis reveals potential culprits for the observed bugs, such as issues with ready
signals in the WB stage, mishandling of split memory operations, and overflow in out-
standing transactions. The instruction log also exhibits inconsistencies in tracking instruc-
tions, which affects the verification phase and test result interpretation.

Furthermore, power, area, and timing analysis show a slight increase in power con-
sumption and area utilization for the modified design compared to the baseline. However,
considering the unresolved bugs and the potential for future improvements, the small over-
head of 2.6% and 3.3% in power and area leaves room for optimization.

The conclusion highlights the need for bug resolution for future work. Further per-
formance optimizations, thorough testing with diverse workloads, and exploration of ad-
vanced features were also suggested. Resolving the identified bugs, such as those affecting
the LSU, is crucial to enhancing functionality and accuracy. Through these efforts, the
modified CV32E40X core has the potential to achieve improved performance, reliability,
and compatibility for a wide range of embedded applications.

iii



Sammendrag

Studiet er skrevet i samarbeid med Silicon Labs og fokuserer på å forbedre ytelsen
til CV32E40X-prosessorkjernen ved å muliggjøre parallell utførelse av minneoperasjoner
med andre operasjoner. Introduksjonen fremhever de økende kravene til moderne app-
likasjoner og viktigheten av å forbedre prosessorkjerner. CV32E40X-kjernen, basert på
RISC-V-arkitekturen, er rettet mot dataintensive applikasjoner. Denne forskningen tar
sikte på å øke kjernens ytelse uten å overstige en 20% økning i areal.

Det ble gjort flere modifikasjoner på CV32E40X-kjernen for å nå målet. En skid buffer
introduserte variabel forsinkelse for LSU-en og påla mottrykk på OBI-grensesnittet. ID-,
EX- og WB-stadiene ble modifisert for å muliggjøre parallell utførelse. En instruksjons-
ID-sporer ble også implementert for å opprettholde programrekkefølgen.

Test programmene, inkludert coremark, hello-world, ricv aritmetic basic test 1, og
csr instr asm, ble utført på både grunnlinjen og modifisert design. Resultatene indikerer
at grunnlinjedesignet overgår den modifiserte versjonen angående IPC. Den modifiserte
designen kan ikke utføre coremark og hello-world fullt ut, noe som antyder potensielle
ytelsesbegrensninger på grunn av uløste feil i funksjonaliteten av kjernen. Resultatene fra
å kjøre csr instr asm og ricv aritmetic basic test 1 viste lignende ytelse mellom baseline
og modifisert cv32e40x. I motsetning til dette, for coremark og hello-world, er grunnlinjen
henholdsvis 12,5% og 3,1% bedre når det gjelder IPC.

Feilanalyse avslører potensielle årsaker for de observerte feilene, for eksempel proble-
mer med ready signaler i WB-stadiet, feilhåndtering av delt minneoperasjoner og overløp i
utestående minnetransaksjoner. Instruksjonsloggen viser også inkonsekvenser i sporingsin-
struksjonene, noe som påvirker verifikasjonsfasen og tolkningen av testresultater.

Videre viser energi-, areal- og tidsanalyse en liten økning i energiforbruk og arealut-
nyttelse for den modifiserte designen sammenlignet med grunnlinjen. Men med tanke på
de uløste feilene og potensialet for fremtidige forbedringer, gir den lille overheaden på
2,6% og 3,3% i energi og areal rom for optimalisering.

Konklusjonen fremhever behovet for feilløsning for fremtidig arbeid. Ytterligere ytelsesop-
timaliseringer, grundig testing med ulike arbeidsbelastninger og utforskning av avanserte
funksjoner ble også foreslått. Å løse de identifiserte feilene, for eksempel de som påvirker
LSU, er avgjørende for å forbedre funksjonalitet og nøyaktighet. Gjennom denne innsat-
sen har den modifiserte CV32E40X-kjernen potensial til å oppnå forbedret ytelse.

iv



Acknowledgement

I want to thank my supervisors, Thomas Tybell from NTNU and Øystein Knauserud
from Silicon Labs, for their helpful advice and support. We always had informative con-
versations during our sessions, and I always anticipated your feedback. Your in-depth
comments have significantly contributed to this work’s development. I want to thank Øys-
tein for his technical knowledge, which was helpful whenever I ran into problems and
needed to weigh my options. The same goes for Thomas; I appreciate his guidance in
ensuring I continued developing my thesis and remaining on the right track. I also want
to thank Giorgi Solomnishvili for some insightful discussions and inputs on the technical
aspects of the thesis.

Lastly, I want to thank my family and friends for their everlasting support.

v





Table of Contents

Project Description i

Abstract iii

Sammendrag iv

Acknowledgement v

Table of Contents ix

List of Tables x

List of Figures xii

Listings xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Limitations of Study . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Trends in Processor Architecture 5
2.1 Scaling of Transistor Performance . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Simplified Instruction Set Architecture . . . . . . . . . . . . . . 7
2.1.3 In-order and Out-of-Order Execution . . . . . . . . . . . . . . . 7
2.1.4 Superscalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Load Slice Core . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Freeway Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



2.2.3 Forward Slice Core . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Comparing Architectures in Processor Metrics . . . . . . . . . . 13

3 RISC-V 16
3.1 RISC-V Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Core-V Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 CV32E40X Core Overview . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Pipeline Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Load Store Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Performance Limitations . . . . . . . . . . . . . . . . . . . . . . 24

4 Proposed Architecture 26
4.1 Key Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Program Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Iterative Backwards Dependency Analysis . . . . . . . . . . . . . . . . . 27
4.4 Strategies for Pipelining Logic . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Pipelining with a Global Valid Signal . . . . . . . . . . . . . . . 28
4.4.2 Pipelining with a Propagating Valid Signal . . . . . . . . . . . . 29
4.4.3 Simple Handshake . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Extending CV32E40X towards a Load Slice Core . . . . . . . . . . . . . 31
4.6 Significance and Novelty of Proposed Architecture . . . . . . . . . . . . 34

5 Design and Implementation 36
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 ID Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 EX Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 LSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Skid-buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6.1 Microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.2 Implementation of the skid buffer . . . . . . . . . . . . . . . . . 42
5.6.3 Formal Verification of the Skid Buffer . . . . . . . . . . . . . . . 43

5.7 WB Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Experimental Setup and Analysis 46
6.1 Baseline CV32E40X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Simulation Output and Data Log . . . . . . . . . . . . . . . . . . . . . . 48

6.4.1 RISC-V Formal Interface . . . . . . . . . . . . . . . . . . . . . . 48
6.5 Experimental framework and Baseline Performance . . . . . . . . . . . . 48

viii



7 Results and Discussion 52
7.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1 coremark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1.2 hello-world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.3 csr instr asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.4 ricv arithmetic basic test 1 . . . . . . . . . . . . . . . . . . . . . 55

7.2 Bug Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.1 Instruction log . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Power, Area and Timing Analysis . . . . . . . . . . . . . . . . . . . . . 57

8 Conclusion 62
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 64

ix



List of Tables

2.1 How different architectures perform overall in processor metrics in respect
to an baseline in-order stall-on-use core . . . . . . . . . . . . . . . . . . 14

2.2 Data on performance metrics presented in the paper by Lakshminarasimhan
et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Examples of some of the standard RISC-V base and extension instruction
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Cycles per instruction type . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 LSU interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Details on coremark benchmark results on the baseline design of CV32E40X
core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Details on hello-world benchmark result on the baseline design of CV32E40X
core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Details on csr instr asm result on the baseline design of CV32E40X core 51
6.4 Details on ricv arithmetic basic test 1 result on the baseline design of

CV32E40X core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 Details on coremark result on the modified design of CV32E40X core . . 53
7.2 Details on hello-world result on the modified design of CV32E40X core . 54
7.3 Details on csr instr asm result on the modified design of CV32E40X core 54
7.4 Details on ricv arithmetic basic test 1 result on the modified design of

CV32E40X core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.5 Execution log from csr instr asm on the baseline CV32E40X . . . . . . . 58
7.6 Execution log from csr instr asm on the modified CV32E40X . . . . . . 59
7.7 Area and power results from synthesis on baseline CV32E40X . . . . . . 60
7.8 Area and power results from synthesis on modified CV32E40X . . . . . . 60

x



List of Figures

2.1 A block diagram of how an in-order core is structured . . . . . . . . . . . 8
2.2 Block diagram depicting how an Out-of-Order core is structured . . . . . 8
2.3 Processor with two execution units . . . . . . . . . . . . . . . . . . . . . 9
2.4 Block diagram showcasing the structure of Load Slice Core and how it

builds on the in-order core . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Microarchitecture of the Freeway core . . . . . . . . . . . . . . . . . . . 12
2.6 Forward Slice Core architecture . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Block diagram of the CV32E40X core . . . . . . . . . . . . . . . . . . . 18
3.2 Block diagram of the IF stage in the CV32E40X core . . . . . . . . . . . 18
3.3 Block diagram of the ID stage in the CV32E40X core . . . . . . . . . . . 19
3.4 Block diagram of the EX and WB stage in the CV32E40X core . . . . . . 20
3.5 CV32E40X Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Wave diagram of a basic memory transaction in CV32E40X . . . . . . . 24

4.1 Pipelining with a global valid signal . . . . . . . . . . . . . . . . . . . . 29
4.2 Pipelining with a traveling valid signal . . . . . . . . . . . . . . . . . . . 29
4.3 Diagram of a simple handshake . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Signal flow for a simple handshake interface . . . . . . . . . . . . . . . . 31
4.5 Block diagram showing modification to the CV32E40X core . . . . . . . 33

5.1 Updated ID stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Block diagram of the LSU/EX interface . . . . . . . . . . . . . . . . . . 39
5.3 A block diagram of a basic skid buffer . . . . . . . . . . . . . . . . . . . 41
5.4 When there is no stalls, the buffer will act like a pass through . . . . . . . 41
5.5 Copying the incoming data to an internal buffer . . . . . . . . . . . . . . 42
5.6 The stall signal propagates upstream . . . . . . . . . . . . . . . . . . . . 42

6.1 Universal Verification Methodology (UVM) report summary of ricv arithmetic basic test 1
program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 hello-world message . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



6.3 Overview over what information is stored in the log of executed instructions 50

xii



Listings

4.1 Example RISC-V loop in assembly to showcase IBDA . . . . . . . . . . 28
5.1 Code for the syncronous logic of the skid buffer . . . . . . . . . . . . . . 42
5.2 Listing of when the skid buffer is in bypass mode . . . . . . . . . . . . . 43
5.3 Listing of the continous assignments of the outputs to the skid buffer . . . 43
5.4 Property checking if reset state is functioning correctly . . . . . . . . . . 44
5.5 Property checking if the behaviour is correct for when the receiver is not

ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Property checkingthe first rule. Request must remain stable if there is a

stalled outstanding request . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Property checking that no data is lost . . . . . . . . . . . . . . . . . . . . 44
5.8 Propoerty checking for passthrough or store of the input data . . . . . . . 45

xiii



Abbreviations

ISA Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

RISC Reduced Instruction Set Computer . . . . . . . . . . . . . . . . . . . . . . . 2

ILP Instruction Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

OoO Out-of-Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IPC Instructions Per Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CPI Cycles Per Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

sOoO slice-Out-of-Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

MLP Memory Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LSC Load Slice Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ISEs Instruction Set Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

IoT Internet-of-Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

HDL Hardware Description Language . . . . . . . . . . . . . . . . . . . . . . . . 3

LSU Load-Store Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ALU Arithmatic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

MUL/DIV Multiplication/Division . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xiv



AGIs address-generating instructions . . . . . . . . . . . . . . . . . . . . . . . . . 10

IST Instruction Slice Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

RDT register dependency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

FSC Forward Slice Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

FIFO first in, first out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ML Main Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

DLL Dependent Load Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

DEL Dependent Execute Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

HL Holding Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

IC Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PC Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

HPC Hardware Performance Counters . . . . . . . . . . . . . . . . . . . . . . . . 20

OBI Open Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IBDA Iterative Backwards Dependency Analysis . . . . . . . . . . . . . . . . . . 27

mux multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

HDL Hardware Description Language . . . . . . . . . . . . . . . . . . . . . . . . 3

FPGAs Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . . . . . . 28

xv



CRC cyclic redundancy check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

MCUs microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

UVM Universal Verification Methodology . . . . . . . . . . . . . . . . . . . . . . xi

CPUs central processing units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

RVFI RISC-V Formal Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

UVM Universal Verification Methodology . . . . . . . . . . . . . . . . . . . . . . xi

xvi



Chapter 1
Introduction

1.1 Motivation

Embedded devices play a crucial role in modern society, as they are used in various ap-
plications such as consumer electronics, medical equipment, automobiles, and industrial
control systems [1]. Embedded applications have evolved significantly in recent years,
with a growing demand for more sophisticated and feature-rich devices [2]. With advance-
ments in microprocessor technology, embedded devices have become more powerful and
versatile, allowing for more complex functionality [3; 4]. Integration of wireless and wired
communication technologies has enabled embedded devices to connect and interact with
other devices [5], adding complexity to application devices. As a result, embedded devices
are now designed to perform multiple functions, such as data processing, communication,
and storage.

Developing high-performance, low-power processors has been a key factor in enabling
the continued growth of the embedded device market [6; 7]. For embedded processors,
performance and area are two important factors [8; 9]. For performance, the importance
lies in the ability of the processor to execute tasks quickly and efficiently. Resources
are often limited for embedded systems. Therefore, the processor’s performance directly
impacts the system’s responsiveness and capability to handle real-time operations. An
embedded processor with high performance can ensure smooth multitasking, rapid data
processing, and swift response time, resulting in a seamless user experience.

Equally significant is the consideration of area [9]. Area, when discussing processors,
refers to the physical size or footprint of the processor. Optimization of area in embedded
processors is paramount, as area constraints are common for embedded systems. There
are several reasons for tight area constraints; amongst other reasons, embedded systems
are often used in devices with limited physical space. An example could be a smartwatch.
Power consumption is another reason why area is important—using the smartwatch as
an example again—batteries power smartwatches. Therefore, minimizing the processor
area contributes to reducing power consumption by reducing active circuitry. As a result,
increasing the duration it can operate before needing to be charged.

1



Chapter 1. Introduction

Balancing performance and area in embedded processor design is a constant challenge.
Achieving high performance often comes at the cost of increased complexity, which means
increased chip size and power consumption. In the end, the direct impact on the overall
system’s efficiency, functionality, and form factor gives such importance to performance
and area. By emphasizing optimizing for both performance and area, designers will be able
to create embedded processors that can deliver great computational power while occupying
minimal space and, as a result, enable the development of innovative and resource-efficient
embedded systems in a wide range of embedded applications.

RISC-V is a recent addition to the microprocessor landscape, offering a viable alter-
native to traditional technologies such as Intels x86 and ARMs ARM architecture [10]. It
was developed to provide a flexible and efficient Instruction Set Architecture (ISA) that can
be used for various applications, from low-power embedded systems to high-performance
computing. Its architecture follows the Reduced Instruction Set Computer (RISC) prin-
ciples. Unlike its competitors, RISC-V boasts an open-source ISA [10], allowing for un-
limited contributions from the community without licensing fees. RISC-V’s open-source
nature also enables customization of the ISA for specific applications. Open-source means
that users can optimize the architecture for their specific needs, leading to improved per-
formance and reduced power consumption. The popularity of RISC-V has grown signif-
icantly since the establishment of the RISC-V foundation, with a rising number of com-
panies and developers contributing to its development. One such group, OpenHW Group,
focuses on creating accessible, high-quality open-source technology [11]. They are driven
by their members and individual contributors, collaborating in hardware and software de-
sign to produce RISC-V-based processor cores. One of their current projects, CVE4, has
received significant contributions from Silicon Labs and includes a family of four 32-bit,
4-stage RISC-V processor cores intended for various embedded applications [12]. The
CV32E40X core in the CVE4 family is designed for compute-intensive applications. Per-
formance is, therefore, important factors in the development of the core.

1.2 Objectives and Limitations of Study
This thesis aims to increase the performance of the RISC-V CV32E40X processor core
without increasing the area of the core by more than 20%. This thesis’s challenge is
maintaining correct functionality and increasing performance through the proposed new
design.

More specifically, this work aims to implement a scheme that allows the CV32E40X
core to execute load/store instructions alongside other workloads. The idea is that allow-
ing other workloads to execute alongside load/store instructions can mitigate stalls due to
long memory latency, increasing the performance in return. Given that CV32E40X is a
low-power embedded processor, the goal has been to try and implement a power-efficient
implementation, despite power consumption not being the main focus of the thesis.

Instructions Per Cycle (IPC) will be used to evaluate performance. IPC is a perfor-
mance metric used in microprocessor design to quantify the number of instructions ex-
ecuted in a single clock cycle. It measures the efficiency of a processor in executing in-
structions. It is calculated as the ratio of the number of instructions executed to the number
of clock cycles required to execute those instructions [13]. The higher the IPC, the more

2



1.3 Structure of the Thesis

efficiently the processor can execute instructions and the faster the system’s overall per-
formance. By adopting a similar architecture to the Load Slice Core (LSC) architecture,
this thesis aims to not only improve the IPC on the CV32E40X core but also leverage the
strengths of the LSC design for improved performance and efficiency.

Evaluating the performance of a processor core solely based on IPC may be a limita-
tion of the study. While IPC is an important metric for evaluating the performance of a
processor core, it may provide a partial picture of its overall performance. For instance, a
processor core that achieves a high IPC may still have a high latency, negatively impacting
its overall performance. IPC measures the number of instructions a processor can execute
in a single cycle. At the same time, latency refers to the time for a single instruction to
be executed from start to finish. A processor with high IPC may be able to execute multi-
ple instructions in a single cycle. However, if the latency for each instruction is high, the
processor’s overall performance may still be impacted.

Hardware Description Language (HDL) design simulation can provide more accurate
test results than software simulation since it models the hardware at a lower level of ab-
straction. The HDL design simulation will simulate the behavior of the processor’s gates
and registers. In contrast, the software simulation will simulate the processor’s behavior at
a higher level of abstraction, leading to differences in timing behavior that may be absent
in the software.

The optimized CV32E40X core will be evaluated using HDL design simulation ex-
clusively. By simulating the processor’s behavior at a lower level of abstraction, a more
precise understanding of its performance characteristics can be gained and identify any
discrepancies that may arise.

1.3 Structure of the Thesis
The thesis is structured as follows: Chapters 2, 3 and 4 gives comprehensive background
with what is needed to understand the design, discussion and motivation to the work done
in the thesis. This includes past trends in processor architectures, some description of state-
of-the-art architectures, a deep dive into RISC-V and the structure of the CV32E40X core,
and lastly a high-level overview of the proposed architecture. In Chapter 5 the design
and implementation are presented. The explanation of the complete design is split into
four stages: ID stage, EX stage, LSU stage, and WB stage. Afterwards, an overview
of the experimental setup and how the evaluation is done is given in Chapter 6. What test
programs are run, what kind of tools are utilized and general information on the simulation
is presented in this chapter. Lastly, in Chapter 7, the modified CV32E40X is compared and
evaluated against the baseline CV32E40X.

3





Chapter 2
Trends in Processor Architecture

Throughout their history, processors have undergone tremendous evolution, with the in-
troduction of the microprocessor being a key milestone. Intel’s first microprocessor, the
Intel 4004, introduced in 1971, contained about 2300 transistors, had a clock speed of
740kHz, and could deliver 92,000 instructions per second while dissipating approximately
0.5 W [13; 14]. Since then, a new microprocessor has been launched practically every
year, each delivering significant performance improvements over its predecessors. Studies
have estimated that this growth has been exponential, around 50% per year [15], result-
ing in a cumulative growth of over three orders of magnitude in just two decades. These
improvements have been driven by manufacturing process advancements and processor
architecture innovations [16; 17].

Some of the work in this section is based on the work done in the specialization project.
More specifically the figure of the Out-of-Order (OoO) core and some of the research done
on the state-of-the-art architectures.

2.1 Scaling of Transistor Performance
In 1974, Robert Dennard, a researcher at IBM, made a significant observation that re-
ducing the size of a transistor could decrease its switching voltage, increase its switch-
ing frequency, and have a constant power consumption per square millimeter [18]. This
breakthrough became known as Dennard Scaling. With the scaling of transistors, it was
possible to lower their operating voltage, raise their operating frequency, and maintain the
same power consumption.

More transistors in a chip can be used to increase the processor throughput. In theory,
if the number of transistors in a chip is doubled, so would the capability of performing the
number of functions simultaneously. Storage would also increase by a factor of two. How-
ever, these performance gains are significantly lower in practice due to mainly two reasons.
Firstly, the internal micro-architecture of a processor. The performance of key components
such as cache memory and issue logic scales non-linearly with area [19]—secondly, wire
delay and the general impact of wires. Scaling down transistors by, for example, a fac-

5



Chapter 2. Trends in Processor Architecture

tor of two does not result in twice the number of transistors per unit area. The reasoning
is that more logic often requires an increase in the number of wires, increasing the area
that must be devoted to them. Also, wire delay scales poorly compared to transistor de-
lay. Therefore, as transistors continue to scale down, the impact of wire delays becomes
more noticeable and severe. As a result, a large part of the activity performed by current
microprocessors is spent on moving data around [14].

Bringing everything into coherence, the increase in transistors density opened up op-
portunities for architects to add more functionality to processors and set the stage for new
micro-architectural innovations. The rapid development in processor technology has en-
abled multiple design innovations in computer architecture. Computer architects could
optimize for Instruction Level Parallelism (ILP) without being overly concerned about
area and power [20]. This development resulted in a total performance improvement rate
of 52% per year from 1986-2003 [15], despite some of the challenges outlined above.
Some noteworthy innovations that followed include deeper pipelines, larger instruction
windows, OoO execution, new ISA features, more accurate branch predictors, and super-
scalar architectures.

2.1.1 Branch Prediction

Branch prediction has been an important microarchitecture technique since the early pro-
cessors. Any time branch instructions are fetched from memory; the preceding instruc-
tions depend on the branch outcome. The branch outcome is unavailable until the branch
is executed, which takes a couple of cycles. Therefore, stalling the processor from fetch-
ing more instructions until the outcome of the branch is known will cause a significant
penalty, specifically because branch instructions are very common in many applications.
Using a branch predictor to predict the outcome of the branch and speculatively executing
instructions of the predicted path can reduce the penalty given by stalling the fetch unit,
given that the predictor is highly accurate. The use of branch prediction goes back as early
as the late 1950s in the IBM Stretch computer [21].

In addition to better performance, branch predictors can help reduce power consump-
tion. Reducing power consumption with branch prediction is achieved by reducing the
amount of instruction fetches from memory. The amount of data fetched from memory
is reduced by speculatively fetching instructions before the branch outcome is known.
Secondly, as mentioned earlier, accurately predicting branch outcomes can prevent the
processors from needing to stall, which can waste energy as the processor is idle during
the stall.

Despite these advantages, branch predictors also have some disadvantages. Including
the added complexity of adding a branch predictor, they may also be less effective for
certain types of code. Code with irregular branch patterns can be challenging to predict,
resulting in an overhead that outweighs the benefits. However, specific branch predictor
techniques are designed to handle irregular branch patterns more effectively, emphasizing
that application is important when choosing which predictor to implement.

6



2.1 Scaling of Transistor Performance

2.1.2 Simplified Instruction Set Architecture

The ISA is an important aspect of processor architecture that has undergone significant
changes over time. New instructions have been added over the years to support better
common code structures found in mainstream applications, which builds on one of the
eight great ideas, as Dr. David A. Patterson stated, ”make the common case fast.” However,
a significant shift in ISA design occurred in the early 1980s as a result of independent
projects at UC Berkeley [22], IBM [23], and Stanford University [24]. This movement
was referred to at RISC and was coined by the UC Berkeley team, a term that others
adopted. Before this change, the prevailing ISA design trend was to increase complexity.
It was thought that computers could be made more efficient by reducing the semantic
gap between high-level programming languages and machine languages. However, these
projects demonstrated that a simpler ISA also offered significant benefits, such as a lower
design cost and processor verification. This success was partly due to the maturity of
compiler technology and the advantages of simpler circuitry in terms of delay, cost, and
energy consumption.

2.1.3 In-order and Out-of-Order Execution

The initial microprocessors, such as the Intel 4004 mentioned earlier, were designed as
in-order processors [25]. An in-order core microarchitecture typically comprises an in-
struction fetch unit that retrieves instructions from an instruction cache and stores them
in an instruction queue. An instruction decode unit that decodes the instructions and pre-
pares them for execution. The execution of instructions takes place in the back-end of the
microarchitecture, which usually includes execution units responsible for carrying out the
operations specified by the instructions. Once executed, the instructions are committed,
updating the architectural state. Figure 2.1 illustrates a block diagram depicting an in-
order core. The instruction queue and issue stage are often discussed as part of the decode
stage, depending on the specific type of in-order core. The issue stage represents the point
the decision is made regarding the next instruction sent for execution. Additionally, the
next part of figure 2.1 is the location of functional units, which includes ALUs! (ALUs!)
and a Load-Store Unit (LSU), commonly referred to as the EX stage in some diagrams.

In-order cores offer advantages in terms of efficiency since they do not require complex
instruction reordering or other optimization techniques employed by OoO cores. In-order
cores also possess a simpler microarchitecture, leading to lower power consumption and
reduced manufacturing costs. However, their execution model based on the program’s
order can significantly limit performance, particularly in complex programs involving de-
pendencies and data hazards.

The technique of OoO execution, also known as dynamic scheduling, gained widespread
usage during the 1990s [14]. This technique enables the hardware to execute instructions
in a different order than their appearance in the binary code while preserving the program’s
semantics. Its primary objective is enhancing ILP through instruction reordering. For in-
stance, OoO processors can execute younger instructions independent of the missing load
when encountering a cache miss instead of stalling all subsequent instructions as in-order
processors do. Figure 2.2 demonstrates that in-order is maintained until the EX stage.
Execution happens OoO before retiring in-order again.

7



Chapter 2. Trends in Processor Architecture

Figure 2.1: A block diagram of how an in-order core is structured

While OoO execution provides significant performance benefits, it comes at a cost.
The issue logic, including that of memory instructions, becomes much more complex.
Memory dependencies are more challenging to check than register dependencies because
register dependencies can be identified at decode time in program order. In contrast, mem-
ory dependencies require identification later in the pipeline’s back end once the effective
addresses of loads and stores are computed out of program order. Despite this cost, out-
of-order execution has become popular and is used by most current microprocessors.

Figure 2.2: Block diagram depicting how an Out-of-Order core is structured

2.1.4 Superscalar

Another aforementioned key microarchitecture technique that became common use during
the 1990s was superscalar. It was a new microarchitecture organization to exploit further
ILP. A superscalar processor is a type of processor that can process multiple instruc-
tions simultaneously in each of its pipeline stages. It can perform various operations like
fetching, decoding, renaming, issuing, executing, and committing multiple instructions si-
multaneously. In figure 2.3 a simplified processor with two execution units is shown. If
there are two instructions in the instruction queue with no hazards and not requiring the
same execution unit, the processor can dispatch both instructions in the same clock cycle.
Figure 2.3 visually represents two instructions retrieved from the instruction queue and
executed in parallel. The number of instructions that can be processed in parallel at each
pipeline stage is known as the width of the superscalar processor. However, in practical

8



2.2 State-of-the-Art

terms, not all pipeline stages may have the same width, so the width of the processor is
determined by the minimum width of its pipeline stages. A superscalar processor that has
a width of N has the potential to process N instructions per cycle, thereby achieving a
performance boost [26]. A superscalar processor requires replicating hardware resources
to enable such parallel processing, usually by the same factor as its width. However, the
hardware cost may grow non-linearly with the width of some processor parts. For exam-
ple, the bypass logic incurs a superlinear cost, which grows quadratically with the number
of functional units [14].

Figure 2.3: Processor with two execution units

2.2 State-of-the-Art

As transistor sizes have continued to shrink, the effectiveness of Dennard scaling has di-
minished. This is because as transistors approach the atomic scale, they begin to exhibit
quantum mechanical effects [27] that make it difficult to predict their behavior accurately.
As a result, it has become increasingly challenging to maintain the constant power density
required by Dennard scaling. Furthermore, as the power density increases, so does the
amount of heat generated by the Integrated Circuit (IC), which can cause reliability issues
and limit performance. This has led to a phenomenon known as the ”power wall” [28],
where the power consumption of ICs has reached a point where it is no longer feasible to
increase clock speeds or add more transistors without excessive power consumption and
heat dissipation. In the early 2000s, the power growth in microprocessors resulted un-
sustainable, and the trend changed towards flat or decreasing power budgets. The end of
Dennard scaling has led to a shift in micro-architecture design trends from simple tran-
sistor scaling to a more holistic approach that takes into account the entire system and
the specific requirements of different workloads [29; 14]. Finding an implementation that

9



Chapter 2. Trends in Processor Architecture

considers both power and area alongside performance would therefor be the ideal solution
for the CV32E40X core, as it is intended for embedded applications.

A relative new micro-architecture, slice-Out-of-Order (sOoO), represents a novel ap-
proach that builds upon the energy-efficient in-order stall-on-use cores, as opposed to the
more conventional out-of-order (OoO) cores [30]. The sOoO design aims to overcome the
limitations of in-order cores by enabling load and store instructions, along with their cor-
responding backward slices, to bypass arithmetic instructions in the instruction stream.
This, in turn, leads to an increase in both Memory Level Parallelism (MLP) and ILP
(instruction-level parallelism). The slices of the load and store instructions refer to the
address-generating instructions that precede a memory operation, commonly known as
address-generating instructions (AGIs). In essence, sOoO cores can be thought of as OoO
machines with certain restrictions. Notable works that have proposed sOoO cores include
LSC [30], Freeway [31], and Forward Slice Core (FSC) [32].

As transistor sizes have continued to shrink, the effectiveness of Dennard scaling has
diminished. The reasoning is that as transistors approach the atomic scale, they exhibit
quantum mechanical effects [27], making it difficult to predict their behavior accurately.
As a result, it has become increasingly challenging to maintain the constant power density
required by Dennard scaling. Furthermore, as the power density increases, so does the
amount of heat generated by the IC, which can cause reliability issues and limit perfor-
mance. The phenomenon is known as the ”power wall” [28], where the power consump-
tion of ICs has reached a point where it is no longer feasible to increase clock speeds or
add more transistors without excessive power consumption and heat dissipation. In the
early 2000s, the power growth in microprocessors resulted un- sustainable, and the trend
changed towards flat or decreasing power budgets. The end of Dennard scaling has led to
a shift in micro-architecture design trends from simple transistor scaling to a more holistic
approach that considers the entire system and the specific requirements of different work-
loads [29; 14]. Finding an implementation that considers both power and area alongside
performance would be the ideal solution for the CV32E40X core, as it is intended for
embedded applications.

A relatively new micro-architecture, sOoO, represents a novel approach that builds
upon the energy-efficient in-order stall-on-use cores, as opposed to the more conventional
OoO cores [30]. The sOoO design aims to overcome the limitations of in-order cores by
enabling load and store instructions, along with their corresponding backward slices, to
bypass arithmetic instructions in the instruction stream. The bypass scheme, in turn, leads
to an increase in both MLP and ILP. The slices of the load and store instructions refer to
the address-generating instructions that precede a memory operation, commonly known
as AGIs. In essence, sOoO cores can be considered OoO machines with certain restric-
tions. Notable works that have proposed sOoO cores include LSC [30], Freeway [31], and
Forward Slice Core (FSC) [32].

DELEN UNDER ER FRA FORDYPNINGSPROSJEKTET UTEN OM SISTE
DELKAPITTEL

2.2.1 Load Slice Core
The LSC architecture incorporates two in-order instruction queues to facilitate its op-
eration [30]. These queues include the bypass queue (B-IQ), specifically designed for

10



2.2 State-of-the-Art

memory instructions and AGIs, and the main queue (A-IQ), responsible for handling the
primary instruction flow. Figure 2.4 provides a visual representation of the LSC microar-
chitecture, elucidating how it extends the functionalities of the underlying in-order core.
Three circles in the figure’s upper-left corner correspond to a particular structure’s status:
new, pre-existing, or updated from the in-order core. The bypass queue plays a crucial role
by enabling memory instructions and AGIs to be dispatched for early execution. Instruc-
tions in the bypass queue can execute ahead of those in the main queue, thus leveraging
the benefits of OoO execution. LSC employs the register dependency table (RDT) and the
Instruction Slice Table (IST) to identify AGIs. RDT and IST allow these instructions to
proceed with OoO execution alongside the remaining instructions by utilizing the bypass
queue. LSC restricts the extent of OoO execution by selectively choosing between the
heads of the two in-order instruction queues. This approach minimizes energy require-
ments while enhancing performance by exploiting MLP. Experimental results conducted
by Carlson et al. indicate that LSC achieves a 53% performance improvement over a
baseline in-order processor.

Figure 2.4: Block diagram showcasing the structure of Load Slice Core and how it builds on the
in-order core

2.2.2 Freeway Core
LSC enhances MLP by separating load-dependent instructions into a separate queue. How-
ever, this approach still serializes the execution of load instructions within that queue, par-
ticularly in cases where a load depends on another load. Consequently, when the B-queue
experiences a stall due to a load dependency, younger independent loads behind the de-
pendent load also experience the same stall. This limitation hampers the ability to exploit
MLP fully. To address this issue, Kumar et al. proposed Freeway [31], which mitigates
LSC’s MLP constraints caused by load-dependent loads.

Figure 2.5 provides an overview of Freeway’s core architecture, wherein the orange-
colored blocks represent new structures, and the striped blocks denote updated structures
compared to LSC. Freeway resolves the problem by differentiating between two slices
within a splice containing loads. These two slices are called producer slices and depen-
dent slices. Freeway separates these two types and directs the dependent slices to a new

11



Chapter 2. Trends in Processor Architecture

yielding or Y-queue queue. The Y-queue is positioned beneath the A-queue and B-queue,
as illustrated in Figure 2.5. By moving the dependent slices to the Y-queue, the indepen-
dent slices in the B-queue can be issued for execution, thereby enabling a greater degree
of MLP than LSC.

Evaluation conducted by Kumar et al. demonstrates that Freeway surpasses LSC’s
performance by 12% and achieves MLP levels within 7% of the maximum limits offered
by complete OoO execution.

Figure 2.5: Microarchitecture of the Freeway core

2.2.3 Forward Slice Core
FSC is a recent proposal in sOoO cores. The research paper by Lakshminarasimhan et
al. [32] introduces FSC. It identifies four limitations in the previous sOoO techniques
mentioned earlier, namely limited ILP, limited MLP, IST misses, and Hardware Com-
plexity. FSC addresses these shortcomings by offering distinct features.

There are three key areas where FSC diverges from LSC and Freeway. Unlike LSC and
Freeway, which focus on backward slices encompassing both load and store instructions,
FSC specifically targets forward slices associated with load instructions. Forward slices
consist of instructions dependent on a load that has not finished executing. FSC employs
four separate in-order First-In, first in, first out (FIFO) instruction queues: Main Lane
(ML), Dependent Load Lane (DLL), Dependent Execute Lane (DEL), and Holding Lane
(HL). Figure 2.6 provides a comprehensive overview of the architecture, highlighting the
locations of these queues.

Instructions not belonging to a forward slice, including load instructions not part of
the forward slice, are transferred to the ML queue. Forward slices are divided into two
separate queues: loads are directed to the DLL queue, while non-load instructions are sent
to the DEL queue. Instructions that encounter a wait exceeding a predetermined number
of cycles at the head of the DEL queue are subsequently moved to the HL queue. This

12



2.2 State-of-the-Art

design allows independent instructions to be issued for execution when a stalled instruc-
tion, such as one involving prolonged memory access, occurs. The presence of the HL
queue enables the extraction of ILP and MLP opportunities that were not feasible with the
aforementioned sOoO techniques.

In comparison, using Freeway as a more specific example, dependent slices serialize
in the Y-queue, resulting in the potential hindrance of younger independent slices from
executing when a stalled dependent slice resides in the Y-queue. Experimental results pre-
sented by Lakshminarasimhan et al. illustrate that FSC achieves an average performance
improvement of 9.7% compared to Freeway while maintaining a similar power budget.

Figure 2.6: Forward Slice Core architecture

2.2.4 Comparing Architectures in Processor Metrics

Table 2.2 overviews how the architectural cores discussed in this chapter perform overall
in processor metrics to a baseline in-order stall-on-use core. The data is retrieved from the
papers written by Carlson et al. [30], Kumar et al. [31], and Lakshminarasimhan et al. [32].
The measurements are done through the SPEC CPU2006 and SPEC CPU2017 benchmark
suites. SPEC CPU2006 benchmark is used on the LSC and freeway core, while the SPEC
CPU2017 benchmark is used on the FSC. There is some deviation in data presented be-
tween the three papers. Different use of benchmark suites could be one explanation. An-
other explanation could be that different OoO processors were used for comparison, which
is seen by the drastically different area and power overhead compared to the in-order pro-
cessor. Since the same in-order processor is used between the three papers, this would
make sense and explain the deviation in data. Table 2.1 shows the data presented in the
paper by Lakshminarasimhan et al. Despite some deviation in the data, it still gives a good
overview of how the different cores perform compared to each other. Based on this data,
the core strengths of sOoO cores are brought forth, achieving excellent performance gains
compared to the in-order core without the enormous area and power overhead that comes
with OoO cores. It highlights why it is important to continue studying such implemen-
tations and experiment with these architectures on processors used in real applications,
as they strike a good balance between area, power, and performance. Looking at more
simplified versions of these architectures would be interesting for low-power embedded

13



Chapter 2. Trends in Processor Architecture

processors. Also, these results presented from the three papers are achieved from soft-
ware simulations. Investigating if comparable results are achievable by implementing the
architectures on real processor cores is interesting.

Table 2.1: How different architectures perform overall in processor metrics in respect to an baseline
in-order stall-on-use core

Architecture Performance Area Overhead Power Overhead
OoO 93% 154% 1250%
LSC 53% 15% 22%
Freeway 60% 16.5% 24%
FSC 64% 1.01% 1%

Table 2.2: Data on performance metrics presented in the paper by Lakshminarasimhan et al.

Architecture Performance Area Overhead Power Overhead
OoO 75% 38% 132%
LSC 44% 15% 22%
Freeway 50% 16.5% 24%
FSC 64% 1.01% 1%

14





Chapter 3
RISC-V

RISC-V is an open-source ISA that has been in development since 2010 [33]. The es-
tablishment of the RISC-V foundation has led to a surge in popularity, with a growing
number of developers and companies adopting the technology and actively contributing
to its development. This collaborative effort has been instrumental in enhancing the ma-
turity of the RISC-V ecosystem. This section will explore the RISC-V architecture, its
features, and the core-v family. Finally, the section will examine the inner workings of the
CV32E40X core and explore some of its potential performance limitations.

3.1 RISC-V Architecture

RISC-V is a RISC architecture [34]. RISC architecture has a small number of simple and
general-purpose instructions that are easy to execute quickly [35]. In addition, the base
instruction set includes only 47 instructions, which is significantly fewer than many other
popular architectures, such as ARM or x86 [34; 36; 37; 38]. This simplicity can make the
architecture easier to understand and implement and reduce the overhead associated with
instruction decoding and execution. More specifically, RISC-V is a load/store architecture,
meaning all data must be loaded from memory into registers before it can be operated. The
result of the operation must then be stored back in memory [39].

RISC-V’s modularity is one of its primary strengths, as it allows for developing spe-
cialized cores without an excess of unnecessary instructions. To create a RISC-V core, one
can start with one of the five base instruction sets that contain the minimum number of in-
structions needed for a functioning core. From there, custom instructions can be added, or
one can use one of the 21 official RISC-V Instruction Set Extensions (ISEs) [34]. Some of
these ISEs are still in development, and Table 3.1 lists several standard base and extension
instruction sets.

In addition to its modularity and simplicity, the RISC-V architecture is designed to be
highly extensible [40]. The ability for an extensible ISA means that it can be customized
and extended to meet the specific needs of different applications and systems. For example,

16



3.2 Core-V Family

Table 3.1: Examples of some of the standard RISC-V base and extension instruction sets

Name Description
Base ISA
RV32I 32-bit instruction set
RV32E 32-bit with 16 registers instruction set
RV64I 64-bit instruction set
RV128I 128-bit instruction set
Standard Extension
P Packed-SIMD Instructions
V Vector Operations
M Integer Multiplication and Division
A Atomic Instructions
F Single-Precision Floating-Point
D Double-Precision Floating-Point
Q Quad-Precision Floating-Point

specialized extensions can be added to support real-time processing, machine learning, or
other applications.

Overall, the RISC-V architecture’s modularity, simplicity, extensibility, and openness
make it a powerful and versatile platform for various applications, from embedded systems
to high-performance computing.

3.2 Core-V Family
As of writing this, there are 111 open-source cores available online on the official RISC-V
website [41], with more under development. Among these cores are those belonging to the
Core-V family [11], which the OpenHW group has developed. The Core-V family com-
prises seven cores designed for various applications, including Internet-of-Things (IoT)
and Unix Operating systems.

One significant contributor to the RISC-V project is Silicon Labs, particularly in the
CVE4 subgroup[12]. This subgroup consists of small and efficient cores specifically de-
signed for IoT applications. The CVE4 cores began as a continuation of the RI5CY core
from PULP but have since expanded with two additional cores: CV32E40S [42] for more
secure applications and CV32E40X [43] for more compute-intensive applications.

3.2.1 CV32E40X Core Overview
The CV32E40X is a 32-bit, in-order RISC-V core with a 4-stage pipeline, and it is open-
source. The pipeline stages include Instruction Fetch IF, Instruction Decode (ID), Execute
(EX), and Write-Back (WB) [43], as shown in Figure 3.1.

In the IF stage, instructions are fetched from memory, and a prefetcher is implemented
to continue fetching instructions even when the preceding stages are halted. Figure 3.2

17



Chapter 3. RISC-V

Figure 3.1: Block diagram of the CV32E40X core

gives an overview of the IF stage. The figure showcases the instruction interface where
the instruction arrives from memory. Afterward, the instructions are processed and sent to
the first pipeline register, where they eventually move to the second pipeline stage of the
processor. The IF stage can supply one instruction per cycle to the ID stage, as the aligning
buffer can only fetch one instruction per cycle.

Figure 3.2: Block diagram of the IF stage in the CV32E40X core

The ID stage decodes the fetched instructions, sets the control signals, and acquires
data from the instruction and register file to determine the instructions. As is visualized

18



3.2 Core-V Family

in Figure 3.3, the instructions are sent first sent to the decoder. The decoder interprets
the instructions and sets the correct control signals. When this is done, the data in the
registers, specified by the instruction, in the register file is read. In Figure 3.3, one can
see two inputs for reading registers, labeled rA and rB. There are also two outputs for the
data. The control signals ensure the correct data is outputted from the two MUXes. The
data is then sent to the next pipeline register for the specified operation in the EX stage.
The RISC-V instruction set manual provides details on how each instruction is structured.

Figure 3.3: Block diagram of the ID stage in the CV32E40X core

The EX stage contains three functional units: a LSU, an Arithmatic Logic Unit (ALU),
and a Multiplication/Division (MUL/DIV) unit. Figure 3.4 gives a visualization of the
functional units. Dependencies are handled by forwarding the result from EX and WB
directly to the next instruction. This work mainly focuses on the transition from the de-
code to execution stage, which involves passing through the second pipeline register. If
the condition are met, branches will be taken from the EX stage. Lastly, for multi-cycle
instructions the EX stage will be stalled until they are complete.

The EX stage contains three functional units: an LSU, an ALU, and a MUL/DIV
unit. Figure 3.4 gives a visualization of the functional units. Dependencies are handled by
forwarding the result from EX and WB directly to the next instruction. This work mainly
focuses on transitioning from the decode to the execution stage, which involves passing
through the second pipeline register. If the condition is met, branches will be taken from
the EX stage. Lastly, the EX stage will be stalled for multi-cycle instructions until they are
complete.

19



Chapter 3. RISC-V

Figure 3.4: Block diagram of the EX and WB stage in the CV32E40X core

Finally, the WB stage. In this stage, the result of ALU, Multiplier, Divider, or Load
instructions is written back to the register file.

From Figure 3.1, a controller can be seen beneath the core. Each of the pipeline stages
is connected to a controller block. The controller is responsible for handling in- interrupts
and exceptions. It also sets the right Program Counter (PC) value to be fetched when it is
known if a branch is taken in the EX stage. Another responsibility that the controller has
is data handling for performance counters, also called Hardware Performance Counters
(HPC). These are used to conduct low-level performance analysis or tuning.

3.2.2 Pipeline Details

Looking at Figure 3.5 gives another detailed overview over the pipeline of the CV32E40X
core. It shows how the instruction flow works in the CV32E40X core. Each stage contains
a ready and valid signal. The valid signal indicates that the stage has valid data for next
stage. The ready signal on the other hand, signalizes that the stage is ready for new data.
When the ready signal is high from the stage is ahead and the valid signal is high in the
current stage, the data is moved through the pipeline register and onto the next pipeline
stage. Looking at the AND gates in Figure 3.5 gives information on the conditions that
needs to be met for the ready and valid signals to go high.

Looking at Figure 3.5 gives another detailed overview of the pipeline of the CV32E40X
core. It shows how the instruction flow works in the CV32E40X core. Each stage contains
a ready and valid signal. The valid signal indicates that the stage has valid data for the
next stage. On the other hand, the ready signal signalizes that the stage is ready for new
data. When the ready signal is high from the stage ahead, and the valid signal is high in
the current stage, the data is moved through the pipeline register and onto the next pipeline

20



3.2 Core-V Family

stage. Looking at the AND gates in Figure 3.5 gives information on the conditions that
must be met for the ready and valid signals to go high.

Figure 3.5: CV32E40X Pipeline

Multi- and Single-Cycle Instructions

Table 3.2 gives an overview over the cycle count per instruction type. Not every instruction
has a fixed cycle count. Some of the instructions have a variable time, indicated as a range,
e.g. 3-35 means that the instruction takes a minimum of 3 cycles and a maximum of 35
cycles. The cycle count of these instructions depends on certain types of conditions. For
example, load instructions have normally an cycle count of 1. however, for non-word
aligned word transfer the cycle count is 2. The number shown in 3.2 for the different
instruction types are based on the assumption that there is zero stall on the instruction-side
interface and zero stall on the data-side memory interface.

Table 3.2 gives an overview of the cycle count per instruction type. Not every instruc-
tion has a fixed cycle count. Some instructions have a variable time, indicated as a range,
e.g., 3-35 means that the instruction takes a minimum of 3 cycles and a maximum of 35
cycles. The cycle count of these instructions depends on certain types of conditions. For
example, load instructions usually have a cycle count of 1. However, for non-word-aligned
word transfer, the cycle count is 2. The cycle count can also vary depending on memory
access time. The number shown in Table 3.2 for the different instruction types is based on
the assumption that there is zero stalls on the instruction-side interface and zero stalls on
the data-side memory interface.

Hazards can also affect the cycle count. The CV32E40X core experiences two cycle
penalties due to hazards [44]. For load and jump register data hazards, there is a 1-cycle
penalty. Load data hazards are when an instruction immediately following a load uses the
result of the load. In that case, the core must wait for the data to be retrieved from memory
in the WB stage. Jump register data hazard occurs when a jalr instruction depends on the
result of an immediately preceding non-load instruction. The other penalty is two cycles.

21



Chapter 3. RISC-V

Table 3.2: Cycles per instruction type

Instruction Type Cycles
Integer Computational 1
CSR Access 1 or 4 depending on CSR
Load/Store 1

2(non-word aligned word transfer and half-word
transfer crossing word boundary)

Multiplication 1(mul)
4(mulh, mulhsu, mulhu)

Division Remainder 3-35
Jump 2

3(target is a non-word aligned non-RVC instruc-
tion)

mret 2
3(target is a non-word aligned non-RVC instruc-
tion)

Branch(Not-Taken) 1
Branch(Taken) 3

4(target is a non-word aligned non-RVC instruc-
tion)

Instruction Fence 5
6(target is a non-word aligned non-RVC instruc-
tion)

The two-cycle penalty can also occur for jump register data hazards. However, only when
a jalr depends on the result of an immediately preceding load instruction.

22



3.2 Core-V Family

3.2.3 Load Store Unit

As the name may suggest, the LSU of the core handles access to the data memory. Table
3.3 lists all the signals used in the interface between the LSU and memory and describes
their use case. Look at the Core-V CV32E40X user manual [45].

The data bus interface is Open Bus Interface (OBI) protocol compliant. It is how the
LSU communicates with memory. The LSU, as depicted in Figure 3.1 and Figure 3.5,
works over both the EX and WB stages. In the EX stage, the LSU provides a valid address
contained within the data addr o[31:0]. Alongside the address, the control information
on data be o[3:0] and data we o, including data on data wdata o[31:0], is also provided.
After this is provided, data req o is set high. data gnt i is then set high as soon as the
memory is ready to serve the request, where the execution in the LSU transitions from
the EX stage to the WB stage. Following a granted request, the memory answers with
data rvalid i set high if data rdata i[31:0] contains valid data. data rvalid i is also set
high for store instructions. However, the data placed in data rdata i[31:0] has no meaning.
The data placed in data rdata i[31:0] is finally written back to the register file from the
WB stage for load instructions.

Table 3.3: LSU interface signals

Signal Direction Description
data req o output Request to memory is valid
data gnt i input Memory request accepted
data addr o[31:0] output Requested address from memory
data atop o[5:0] output Atomic attributes
data be o[3:0] output Byte Enable. Set for which bytes to read/write
data memtype o[1:0] output Memory Type attributes
data data prot o output Protection attributes
data dbg o output Debug mode access
data wdata o[31:0] output Data to be written to memory
data we o output Write Enable
data rvalid i input Signals end of memory transaction
data rdata i[31:0] input Data read from memory
data err i input An error occurred
data exokay i input Exclusive transaction status

Figure 3.6 shows a timing diagram of a primary memory transaction done by the LSU
in the CV32E40X core. Similar to what was explained in the previous paragraph, the
timing diagram shows that the transaction starts with data req o set to high, with additional
information like the address to be written to or read from and whether it is a load or a store
instruction. At the end of the transaction, data rvalid i is set to high alongside the data
read if the instruction was a load.

23



Chapter 3. RISC-V

Figure 3.6: Wave diagram of a basic memory transaction in CV32E40X

3.2.4 Performance Limitations
While the CV32E40X core is designed to handle compute-intensive applications, like any
processor core, it has some potential performance limitations. One of these potential per-
formance limitations could be due to CV32E40X being an in-order stall-on-use processor
core. A stall-on-use core is a type of processor core design where the processor waits for
an instruction’s result before executing the next instruction. This type of processor core is
also known as a load/store architecture.

An in-order stall-on-use processor core can experience significant performance limi-
tations due to data dependencies, which may result in stalls. Stalls occur when the core
waits for the necessary data to become available before proceeding with the next instruc-
tion. This waiting time can significantly reduce performance, particularly for workloads
with many data dependencies. The CV32E40X processor core exemplifies this limitation
because it lacks an instruction queue. An instruction queue is a buffer that temporarily
stores instructions awaiting execution. Without an instruction queue, a stall in the back-
end of the pipeline will cause the entire processor core to stall. In contrast, with an instruc-
tion queue, the processor core can continue to fetch and decode instructions as long as the
queue has sufficient space, despite a stall in the back-end of the pipeline.

Another limitation of an in-order stall-on-use processor core is that it may not fully
utilize the available processing resources. In the case of the CV32E40X core, there are
three functional units in the EX stage; an LSU, an ALU, and a MUL/DIV unit. If two
instructions in the CV32E40X core are independent and can be executed in parallel, one
would have to wait until the other completes before it can begin execution. This stall
can lead to underutilization of the processor resources and reduced overall performance.
Underutilization of a processor can hurt the overall system performance, particularly in
systems where the processor is a bottleneck. In such cases, the processor may not be able
to fully utilize its resources to complete tasks, leading to slower performance and increased
latency. Moreover, underutilization can also lead to inefficient power consumption. In
theory, the CV32E40X could execute up to three in-instructions in parallel, given that

24



3.2 Core-V Family

hardware supporting parallel execution is implemented. Memory accessing can be an
excellent example of how underutilization of a processor core can limit performance. The
processor can process several orders of magnitude more data than memory, so depending
on where in memory the wanted data is located, it can take multiple cycles to retrieve,
which would mean a stall for the processor, despite preceding instructions potentially not
having any dependencies to the executing load instruction.

In addition, an in-order stall-on-use processor core may struggle with code with a high
degree of branching or conditional execution. When the processor encounters a branch
instruction, it may have to wait until the condition is evaluated before determining the cor-
rect path. This waiting time can be significant, primarily if the branch condition depends
on data that is not available, leading to additional stalls. However, due to CV32E40X only
having four pipeline stages, the latency related to branches is slightly mitigated. The rea-
soning behind this is that when a branch instruction is encountered, the processor does not
know which instruction to fetch next until the branch condition is evaluated, which can
cause a stall in the pipeline. In a deeper pipeline, the delay caused by this stall is more
significant because more stages need to be flushed when a branch misprediction occurs.

25



Chapter 4
Proposed Architecture

This section will delve into the proposed architecture, representing a higher-level abstrac-
tion of the envisioned system design. Building upon the understanding of the system
requirements and the challenges identified in the previous sections, this proposed architec-
ture outlines a novel and innovative approach to address these challenges and achieve the
desired objectives. Some theories used in the implementation will also be presented.

4.1 Key Insights
There are three key insights when implementing the LSC microarchitecture. The first
insight is allowing load instructions and AGIs to bypass older instructions blocking the
pipeline, waiting for memory. In return, exposing additional MLP leads potentially to
performance levels close to full OoO scheduling [30]. The second insight bases itself on
achieving simple instruction scheduling. Load instructions and AGIs execute OoO to the
main instruction flow. However, to each other, the execution is happening in order. There-
fore, the instruction scheduling can be implemented using two FIFO queues, simplifying
the complex wake-up and selection logic in fully OoO core designs. The third and final
insight is on the detection of AGIs. AGIs can be detected iteratively, going one backward
step at a time, using the loop behavior in different applications [30].

4.2 Program Slices
A slice architecture, such as LSC, builds on the concept of program slices. Program slices
are a chain of dependent instructions leading to or away from an event. This event is
typically performance degrading, which can occur at some point in a program if certain
conditions are fulfilled. An example of such an occurrence can be a branch misprediction.

The categorization by Zilles et al. [46] recognizes four sub-slices. Value sub-slice
includes instructions that manipulate the operands used by the event instruction. The ad-
dress sub-slice includes instructions for calculating memory addresses for the value sub-

26



4.3 Iterative Backwards Dependency Analysis

slice—existence sub-slice, which includes branch instructions that determine whether the
event instruction will be executed. Lastly, the control flow sub-slice includes branch in-
structions that determine the path which leads to the event instruction.

AGIs are an important aspect of an LSC. These instructions can be defined as any
instruction yet to execute for which a dependency chain exists from that instruction to the
load address. In other words, these instructions produce the data that a future load or store
instruction will require for address calculation. AGIs are a part of the address sub-slice.

4.3 Iterative Backwards Dependency Analysis
Several techniques for detecting program slices have been developed. One of these tech-
niques is called Iterative Backwards Dependency Analysis (IBDA), a hardware technique
for identifying data-dependent instructions. IBDA is implemented in the front-end of the
processor, where it can inspect instructions as they are being dispatched to the back-end.
It requires two hardware structures, which were shortly mentioned in section 2.2.1. The
RDT contains the PC of the instruction that last wrote to a physical register for all phys-
ical registers. In other words, the RDT contains an entry of each physical register and
maps it to the last instruction that wrote to this register. When an instruction identified
as a part of a program slice enters the RDT, the PC of all the instructions that produced
its source operands can be looked up. These instructions all belong to a backward slice.
Source operands refer to the input values or data an instruction operates on. The previously
mentioned PC can then be inserted into the IST, the second component of the IBDA[30].

The IST contains the addresses (PC) of the instructions identified as belonging to the
backward slice by the RDT. Figure 2.4 in section 2.2.1 shows that the instructions are
looked up in the decode stage, while the RDT is updated during the rename stage. The
instructions in the IST are marked for bypass, which helps the LSC determine which in-
struction should go to which instruction queue. Instructions presented in the IST are in-
serted into the bypass queue, while the other instructions use the main queue. When the
marked-for-bypass instructions enter the RDT, its source registers are looked up, and the
producers of these source registers are recorded in the IST [30].

Consider the program in Listing 4.1 as an example. The goal is to track load slices.
Instructions in the loop are labeled with a number, which will be used as a reference when
explaining. The program consists of a loop centered around instruction (1), which reads
data from memory. Instructions (2)-(6) are working on the data, writing it back to mem-
ory, and calculating the following store address. Instructions (7)-(8) calculate the address
for the next load instruction and are, therefore, part of the load slice. At the start of the
program, the IST is empty. In the first iteration of the loop, the IST undergoes an update
by incorporating the li t3, 0x800500c instruction, which serves as the producer of the ini-
tial load address. However, upon reaching the second iteration of the loop, specifically
instruction (1), the RDT associates instruction (8) as the producer of the second load ad-
dress. Consequently, instruction (8) is appended in the IST. Next, when instruction (8) is
encountered within the same iteration, it already exists in the IST. Thus, upon inserting
instruction (8) into the RDT, it is designated as a constituent of a program slice, prompting
the retrieval of its sole dependency, a2, which is instruction (7). Instruction (7) is therefore
included in the IST. In the following iteration, upon reaching instruction (7), its depen-

27



Chapter 4. Proposed Architecture

dency, a1, is looked up alongside its producer, instruction (1). Thus, the entire program
slice is obtained, storing instruction (1) in the IST.

1 i n i t :
2 l i f t 0 , 50 ; Loop i t e r a t o r
3 l i t2 , 0 x8000301c ; I n t i a l l o a d a d d r e s s
4 l i t3 , 0 x8005000c ; I n i t i a l s t o r e a d d r e s s
5 j l oop
6 l oop :
7 ( 1 ) lw t1 , 0 ( t 2 ) # Read d a t a from memory
8 ( 2 ) mul t4 , t1 , t 5 # A r i t h m e t i c o p e r a t i o n on d a t a
9 ( 3 ) add t6 , t4 , t 1 # Per form a d d i t i o n

10 ( 4 ) d i v t7 , t4 , t 6 # Per form d i v i s i o n
11 ( 5 ) sw t6 , 0 ( t 3 ) # Wr i t e r e s u l t i n memory
12 ( 6 ) a d d i t3 , t3 , 32 # C a l c u l a t e n e x t s t o r e a d d r e s s
13 ( 7 ) mul t2 , t1 , 99 # C a l c u l a t e n e x t l o a d a d d r e s s
14 ( 8 ) a d d i t2 , t2 , 32 # C a l c u l a t e n e x t l o a d a d d r e s s
15 ( 9 ) a d d i t0 , t0 , −1 # Decrement loop c o u n t e r
16 ( 1 0 ) bnez t0 , l oop

Listing 4.1: Example RISC-V loop in assembly to showcase IBDA

4.4 Strategies for Pipelining Logic
Sequencing operations can be significant for timing and synchronization. Digital circuits
operate based on timing constraints, where signals must arrive at specific times for correct
operation. By sequencing operations, it is possible to ensure that different parts of the
circuit execute in the correct order and that signals are synchronized appropriately. Se-
quencing operations can mitigate data corruption, race conditions, and timing violations.

A state machine is one solution to sequencing operations. However, it can be highly
inefficient, as similar to Field Programmable Gate Arrays (FPGAs), logic can be created
for every state at once also when designing processor cores. Only the correct answer will
be selected at the end of each clock tick. One efficient solution to sequencing operations
is pipelining[47]. However, a challenge with designing a digital logic pipeline is that
the pipeline runs and still produces outputs even when the inputs to the pipeline are not
valid. This section will discuss some strategies for handling the signaling associated with
pipeline logic.

4.4.1 Pipelining with a Global Valid Signal
Using a global valid signal is the first strategy to be discussed in pipelining. The data going
through the pipeline, as seen in Figure 4.1, is valid when the global valid signal is true.
The basic rule of this pipelining method is first that there is a global valid line synchronous
with the clock. New data is ready every time the valid line is set high. The second and
final rule is that logic can only transition when the valid signal is true. One of the benefits
of this strategy is that real pipeline logic is not required per

28



4.4 Strategies for Pipelining Logic

Figure 4.1: Pipelining with a global valid signal

4.4.2 Pipelining with a Propagating Valid Signal
There are two problems with the previously discussed strategy. One of the problems is that
there is no way of knowing if an output sample is valid, and the second problem is that
the whole pipeline operation depends on a uniform clock to create a valid signal. What
happens when data is generated in bursts, and there is a need to determine the output’s
validity and timing? In such a case, another approach is needed.

This second approach propagates valid forward through each pipeline stage. Figure
4.2 shows a diagram of how this pipeline would look, with the data propagating alongside
the valid signal through each stage in the pipeline. The basic rules to this approach go as
follows: firstly, data associated with a valid signal that is true must also be valid. Secondly,
a valid signal must be produced with the output data of that stage when it is nearing the end
of the same stage. Thirdly, the valid signal must first be initialized to zero and set to zero
whenever a reset occurs. When a reset occurs, the data should be ignored. Fourthly, only
when the valid signal is high can something change. As a result, data is only referenced
when valid is high. The fifth and final rule states that for a new value to be eligible for
entry into the pipeline, all the logic components within the pipeline must be ready. In other
words, the discussed pipeline architecture does not accommodate for stalls.

This approach proves effective when the pipeline is segmented into stages featuring
only a single input valid signal and, similarly, when none rely on feedback from future
results. In essence, if there is an absence of dependencies requiring waiting, this particular
pipelining approach can work.

Figure 4.2: Pipelining with a traveling valid signal

4.4.3 Simple Handshake
As discussed with the previous approach, the main problem was that it could not handle
any stalls. Consider some communication protocols. Previous discussed approaches to
pipelining could fill the transmitter; however, what would the system do if the transmitter
was busy? A valid-ready handshake approach can help solve this problem[48].

The handshake approach relies on two signals, one from the current device and one
from the next in the pipeline. These two signals are called Ready and Valid. However,

29



Chapter 4. Proposed Architecture

the naming can change depending on different interfaces. Figure 4.3 shows two mod-
ules communicating through handshake signaling. The basic rules of this approach go as
follows:

• The first rule, a transaction takes place only if both the Ready and Valid signals are
true.

• The second rule, the receiving pipeline must not set the Ready line high if it is not
ready to receive data in the next clock cycle.

• The third rule, Valid signal should be set to true when data is ready to be sent. It
should not wait for the Ready signal to be set to true before also being set to true.
This helps avoid deadlocks by removing dependency between these two signals.

• Fourth rule, the Ready signals idle state should be in the ready condition, thus true.

• The fifth rule, the data that is being sent cannot change if the signal Valid is true.

• The sixth rule, data should be ignored in the ”do not care” state if the Valid is false.

• Seventh and final rule, Valid must be initialized to zero, while Ready must be initial-
ized to true, which applies to reset or a clear pipeline operation. Data does not need
to be set to anything since the data lines are placed in a ” do not care” condition due
to Valid being set to zero.

Figure 4.3: Diagram of a simple handshake

Figure 4.4 shows that a transaction gets carried out when both the valid and ready
signals are true. Remember that transaction is not an actual signal. It just gives a visual
presentation of a transaction with handshake. Similarly to the Valid line in the previous
propagating Valid approach, the Valid&&Ready combination serves as its analog. When
the (Transaction) line is in a high state, it indicates the validity of the data (due to the high
state of Valid), enabling the progression of processing by one additional step.

30



4.5 Extending CV32E40X towards a Load Slice Core

Figure 4.4: Signal flow for a simple handshake interface

4.5 Extending CV32E40X towards a Load Slice Core
In order to discuss the extension of the CV32E40X core into a load slice core, it is essen-
tial first to understand the characteristics of the CV32E40X core itself. As discussed in
section 3.2.1 the CV32E40X core is an in-order core. In addition, the CV32E40X core
does not have an instruction queue nor superscalar capabilities, meaning that a stall in the
back-end of the pipeline would stall the entire processor. The LSC builds on superscalar
in-order processors. Therefore, the first step in extending the CV32E40X core towards the
LSC is to enable superscalar capabilities. This thesis will try a different spin on things
and particularly focus on the execution of load/store instructions to the rest of the instruc-
tions. In other words, try to implement parallel execution between the LSU and the other
functional unit, not between each. One needs to introduce additional functional units and
pipeline stages to achieve superscalar capabilities. These new components enable paral-
lel execution of load/store instructions along with other instructions, thereby increasing
the overall throughput of the core and reducing the impact of memory latency. However,
implementing such capabilities introduces new challenges that need to be addressed.

One of the challenges is maintaining program order. Superscalar processors aim to
execute multiple instructions in parallel, which becomes challenging in an in-order core
because instructions must be executed in program order. Dependencies between instruc-
tions, such as data dependencies, where the output of one instruction is used as an input
for another, can create hazards that prevent parallel execution. Resolving these dependen-
cies without violating the in-order execution constraint is a challenge. Another important
consideration related to program order and instruction dependencies is the maintenance of
precise exceptions. Precise exceptions ensure that exceptions are raised and handled deter-
ministically and predictably. This means that if an exception is raised due to, for example,
a page fault, the processor knows which instructions are affected by this error and need to
be flushed and which instructions were not affected and are allowed to commit.

Another challenge that needs to be considered is control flow dependencies. Control
flow instructions, such as branches and jumps, can create challenges in superscalar imple-
mentations. In an in-order core, the outcome of a branch is typically determined late in the
pipeline, and subsequent instructions depend on that outcome. If multiple instructions are
already in flight and dependent on the branch outcome, incorrect speculation or incorrect
program order execution may occur. Handling control flow dependencies while preserving
the in-order execution constraint requires careful design.

31



Chapter 4. Proposed Architecture

Figure 4.5 shows a modified version of the CV32E40X core architecture shown in
Figure 3.1. It is a rough overview of the instruction flow. Firstly, there are now two
pipeline registers between the ID and EX stages, shown in purple in Figure 4.5. Two
pipelines will help make the LSU independent from the EX stage. In other words, the EX
stage will be divided into two stages: the LSU and EX. All data required by the LSU will
be stored in the LSU pipeline register, and all data required by the ALU and MUL/DIV
will be stored in the ID/EX pipeline register. There is also a pipeline register implemented
from the EX stage to the WB stage for the LSU, which depending if there is an active
instruction inside, will determine which instruction will be allowed to commit, which is
seen through the mux to the far right of Figure 4.5. In addition, a scoreboard is added
for tracking instructions so that the oldest instruction is committed and program order is
maintained. The idea of the modifications is to allow load/store instructions to execute
in parallel with other instructions. A read memory access can sometimes take multiple
cycles to execute, and being able to issue an add instruction in the meantime if there are
no dependencies saves meaningful execution time.

By introducing superscalar capabilities for load/store instructions and the rest of the
instructions, the foundation is laid for further enhancements and future extension of the
CV32E40X core into a more powerful LSC. This iterative approach allows one to build
upon existing designs and gradually incorporate new features and optimizations.

32



4.5 Extending CV32E40X towards a Load Slice Core

Figure 4.5: Block diagram showing modification to the CV32E40X core

33



Chapter 4. Proposed Architecture

4.6 Significance and Novelty of Proposed Architecture
The proposed architecture addresses performance limitations caused by memory accesses
without adding more complexity to the design, minimizing the area and power overhead.
There already exist architectures that try and address slow memory accesses. The previ-
ously discussed superscalar architecture and OoO execution are examples of this. OoO
execution does this by constantly looking in the instruction queue to which instruction is
ready to execute and issuing them for execution. So valuable work is done while memory
accesses are ongoing. Superscalar architecture also does this by utilizing all of the func-
tional units. However, with superscalar, the instructions are not issued for execution OoO.
For example, if there are a lot of back-to-back load instructions, the other functional units
cannot be utilized since instructions are issued in order. Superscalar architecture and OoO
execution can provide good results in performance output, however, often at the expense
of area and power. Therefore, Such implementations are not viable for some low-power
embedded systems.

Load instructions tend to have a longer latency than other instructions due to memory
being much slower than a processor. With the proposed architecture, higher per- per-
formance is achieved by parallelizing memory operations with the rest of the workload.
By doing this, the processor can overlap the execution of memory operations with other
computational tasks, effectively reducing the overall execution time. In addition, by over-
lapping memory operations with other computational operations, the processor can keep
more functional units busy, extracting more work from each clock cycle and maximizing
system throughput.

A limitation of this proposed architecture is that it is very workload dependent. This
architecture’s potential performance benefits depend on how long the memory latency is.
The longer the latency is to retrieve data from memory, the better the performance poten-
tial is. When examining the trade-offs between power, area, and performance, performance
potential is important. If memory accesses on specific embedded systems are not a bot-
tleneck, that would mean that the proposed architecture would only add to the area and
power without improving the performance much, making the implementation not worth
it. The fact that embedded processors are optimized to perform specific workloads speaks
in favor of this proposed architecture, as the goal of the architecture is also to optimize a
specific workload.

The novelty of the proposed architecture lies in the fact that it seeks to parallelize spe-
cific workloads. It can be seen as a restrictive superscalar. With superscalar, the idea is
to utilize all available functional units concurrently and have multiple copies of the same
functional unit. However, with the proposed architecture, the approach is more toward
parallelizing specific workloads. More specifically, allowing memory operations to exe-
cute parallel with arithmetic and control operations. It, therefore, requires less logic than
a superscalar processor as there is less information to keep track of.

34





Chapter 5
Design and Implementation

5.1 Introduction

This chapter will describe the practical design and implementation of this work. The task
in question is to extend the capabilities of the CV32E40X core [49] in the OpenHW Core-
V family [12] for load/store instructions and other instructions to be able to execute in
parallel, meaning that the internal HDL of the core will need to be extended and altered.
CV32E40X has a comprehensive verification and simulation environment, encompassing
the compilation of C or assembly applications, which serve as stimuli for simulation pur-
poses. The modified core design is available on GitHub.

The work consists of a skid buffer module and modifications on the pipeline stages
(ID, EX, and WB) and the controller. In addition, an assertion module for the skid buffer
has been designed to verify the design. Formal verification is the approach that has been
utilized. An overview of an estimate of the complete system is shown in Figure 4.5

5.2 Approach

The design process in this work is structured into three distinct steps, aiming to facilitate
the precise and comprehensive development of the complex system, CV32E40X. The first
step is logic design using microarchitecture. The second step is HDL implementation in
SystemVerilog. The third and last step is verification, also in SystemVerilog, and test-
ing, done through the applications available in the CV32E40X verification and simulation
environment.

The microarchitecture serves as a block diagram, visually representing the intricate
interconnections and subcomponents within a large and complex design. Managing the
numerous components and connections can be challenging, making the microarchitecture
an invaluable tool for comprehending the entire system and effectively describing the de-
sign.

After getting a better overview of the intended design through microarchitecture, the

36



5.3 ID Stage

design is implemented in hardware using SystemVerilog and verified through the verifica-
tion environment.

5.3 ID Stage

One of the first steps in achieving parallel execution between load/store instructions and
other instructions is to remove the dependency between the LSU and EX stage, dividing
the EX stage into two pipeline stages. The first step in the design phase was to divide the
ID/EX pipeline register from the baseline CV32E40X into two separate pipeline registers,
one for the EX stage and one for the LSU. Both pipeline registers have a reset condi-
tion and a non-reset condition. The register values are updated in the non-reset condition
based on certain conditions. For the LSU pipeline, the register values are assigned if both
id valid lsu o and lsu ready i are true. The ID/EX pipeline retains the same conditions
when id valid o and ex ready i are true. However, the valid signal for the ID stage is
slightly modified. Instead of having one valid signal for the ID stage, two valid signals
are implemented, one for the LSU and one for the EX stage. The reasoning is to avoid a
situation where a pipeline register that should not be updated gets updated. Consider a sit-
uation where there is an instruction in the ID stage with both the LSU and EX stage ready
for a new instruction. Having one valid signal for the ID stage would then move valid
instructions to the LSU and ID/EX pipeline. As a result, there would be a valid instruction
in one of the pipeline registers that should not be there. This can cause instructions ahead
in the pipeline to get deleted by accident.

Figure 5.1 shows the modification done in the ID stage, as discussed above. Firstly,
two, instead of one, ready signals are sent from the EX stage. Since the EX stage and
the LSU are not dependent anymore, ex ready is now only dependent on the wb ready
signal. lsu ready depends on both the granted signal from memory and wb ready from
the WB stage. Load/store instructions transition from the EX stage to the WB stage when
these two signals are true, as was discussed in section 3.2.3. This leaves the EX stage of
the LSU empty and ready for a new memory instruction. id ready is now true if either
or both lsu ready and ex ready are true. This depends on which type of instruction is
currently in the ID stage. lsu en signal determines what type of instruction is currently in
the ID stage. Looking at Figure 5.1, one can see that it is used as the select signal in the
multiplexer (mux). If lsu en is true, a load or a store instruction is currently in the ID stage,
meaning that the id ready signal is set by lsu ready. If lsu en is false, then the instruction
is not a memory instruction, and id ready is set by ex ready.

Lastly, an additional counter has been inserted in the ID stage. The purpose of the
counter is to give each instruction an ID to tell later on in the pipeline which instruction
is the oldest. With instruction ID, the aim is to maintain program order when committing
instructions and, therefore, have precise exceptions. This counter counts every time there
is a valid instruction in the ID stage, and the value of the counter is assigned to the ID of
the instruction when it moves in the pipeline register.

37



Chapter 5. Design and Implementation

Figure 5.1: Updated ID stage

5.4 EX Stage
The first important thing to be done in the EX stage is removing the LSU interface. Since
the goal is to execute instructions in the LSU and EX stage in parallel, removing all depen-
dencies between these two stages is required. This interface is used to share information
between the LSU and EX stage. The LSU informs the EX stage when it is ready for new
data and when it has been granted its request and is ready to move to the WB stage. The
LSU also shares information on when there is a misaligned transaction since, in practice,
two instructions would need to be executed for one misaligned transaction. Figure 5.2
shows the interface between the LSU and EX stages. The LSU signals that it is ready
through the EX stage by sending it information on the state of the instruction. On the other
hand, the EX stage keeps LSU updated on the validity of the instruction and when the WB
stage is ready so that the LSU can transition its instruction to the next stage. All the signals
used in this interface must be cut out, and the LSU needs to use them independently of the
EX stage.

Some logic in the EX stage depends on the signals received from the LSU and therefore
needs to be altered. The state of instructions in the LSU affects the valid and ready signals
for the EX stage. EX stage is ready for new data when an instruction is killed and otherwise
when all functional units are ready unless the stage is being halted. EX stage has valid data
when one functional unit has a valid output and is enabled for executing instructions. For
example, if the ALU is enabled and has a valid output without triggering an exception,
then the EX stage has valid data. Therefore, the ready and valid signals in the EX stage
were modified not to consider the state of the LSU, which were the signals lsu valid 0 and
lsu valid 0 seen in Figure 5.2. As mentioned above, the other three signals sent from the
LSU to the EX stage are related to a misaligned memory transaction.

38



5.4 EX Stage

Figure 5.2: Block diagram of the LSU/EX interface

When performing a load or store instruction in Main memory, if the effective address
of the data is not naturally aligned to the referenced datatype, certain conditions arise.
Precisely, when a word access is attempted, and the address is not aligned on a four-byte
boundary, or when a half-word access is attempted, and the address crosses a word bound-
ary, the load or store instruction is executed as two bus transactions. The first transaction
corresponds to data transfer from the lowest address involved, and the second transaction
handles the remaining data. The signals lsu last op ex and lsu last op ex, sent from the
LSU, are used in the EX stage to determine when the last transaction is finished so that
the WB stage does not interpret the two transactions as two instructions but as one. Since
all other instructions that are executed in the EX stage are all in one operation, it is quite
simple to move the logic used in the EX stage to handle misaligned memory accesses over
to the LSU module. This leaves the last two signals sent from the EX stage over to the
LSU.

Two signals are sent from the EX stage to the LSU. lsu ready ex signal is set by the
wb ready signal. So instead of having the EX stage send this signal to the LSU, the WB
stage sends its ready state directly. lsu valid ex is set by lsu en and lsu en. These signals
are sent from the ID stage through the pipeline registers. Now that there are implemented
two pipeline registers between the ID stage and the two stages, the EX stage and the LSU
stage, the LSU can retrieve these signals from the LSU pipeline register instead of getting
them from the EX stage.

In addition to removing the interface mentioned above between the EX stage and LSU,
logic has been added to determine which instruction should be moved to the WB stage to
commit. This decision is based on which instruction is the oldest. Knowing the oldest
instruction is relevant when executing instructions in the EX stage and the LSU. The
signal is called priority and is sent to the WB stage, where the final decision is made.
The logic is quite simple. It first checks if there are valid instructions in the LSU and EX
stage. If there are, the instruction ID is compared between these two instructions. The
instruction with the lowest ID is the oldest and gets priority to commit first. If there is just
one instruction in the LSU or EX stage, that instruction gets immediate priority.

39



Chapter 5. Design and Implementation

5.5 LSU
The main changes done on the LSU have been to change which pipeline register the LSU
gets its data from, including a pipeline register between the LSU and WB stage. However,
there was a problem that was encountered during the design phase. The problem involved
the loss of data from memory. In the baseline design, there is no downstream between EX
and WB stages for load/store instructions. No downstream means that when a load/store
instruction is executed in the EX stage, the WB stage will always remain ready. This is,
however, a problem if the goal is parallel execution, as the WB stage can only be ready
for the oldest instruction in the pipeline. Since the WB stage is not always ready with this
new design, an issue can lead to data loss from memory. The solution chosen to solve
this problem is the skid buffer. The skid buffer is the smallest pipeline FIFO buffer and is
useful when there is a need to pipeline the path between a sender and a receiver for timing
purposes. The following section will discuss the data loss issue and how the skid buffer
works. In addition, an explanation of the implementation, including formal verification of
the skid buffer, will be presented.

5.6 Skid-buffer
Skid Buffer is an elastic buffer to store the data when the receiver applies backpressure
on the sender. The logic behind the skid buffer is quite simple as it incorporates a simple
valid-ready handshake. The need for a skid buffer arises when there is a need to generate
a stall signal in a registered data-only context. Consider the CV32E40X core, which does
not use skid buffers. If there is an instruction the CPU needs to wait for, for example, a
memory load, then the decode stage needs to stall, or else an instruction can be lost. This
stall propagates backward, meaning that if the decode stage stalls, so will the fetch stage.
Due to the CV32E40X core utilizing combinatorial stall signals, the stall signal reaches
the fetch stage when little slack is left before the subsequent clock edge. The stall signals
could have been registered using skid buffers, breaking the timing accumulation. The
problem arises when the stall signal is registered since, in such cases, the preceding stage
in the pipeline remains unaware of the stall until it completes processing and registers the
values in the subsequent flip-flops.

Consequently, the data needs to go somewhere or get dropped. A similar issue arises
with the LSU when trying to change the timing for when it is ready to receive data from
memory. From the discussion on the LSU in section 3.2.3, it is understood that the LSU
sends a request to memory in the EX stage. Load/store instruction transitions from the EX
to WB stage when memory is ready to serve this request. If the LSU is not ready to receive
data from memory when a memory request is granted, or in other words, the WB stage is
busy with another instruction, the data sent from memory will be lost.

5.6.1 Microarchitecture
It is here where the skid buffer comes in, as shown in Figure 5.3. The objective of the
skid buffer is to establish a connection between the combinatorial logic on one side and
the registered logic on the other side by facilitating the transmission of the outgoing stall

40



5.6 Skid-buffer

signal, !o ready, which is limited to being a registered signal. Two rules must be followed
for the skid buffer to function correctly. The first rule is if the Valid signal is set high
and the Ready signal is set low, as such Valid & !Ready, the respective data must remain
constant into the next clock cycle. The second rule is that no data may be lost along the
way. See section 5.6.3 for the formal expression of these two rules.

Figure 5.3: A block diagram of a basic skid buffer

When the receiver is ready to receive data, the buffer acts like a pass-through device.
Look at Figure 5.4. On the other hand, if it is not ready, everything needs to be copied to
an internal buffer to prevent the input data from getting lost in the next cycle. Figure 5.5
gives a visualization of this, where one can see that the incoming Valid and data lines are
stored in the internal buffer, which gives the buffer its own internal valid signal and data
line.

Figure 5.4: When there is no stalls, the buffer will act like a pass through

A quick overview. The skid buffer must operate like a pass-through device when the
receiver is ready, as shown in Figure 5.4. The incoming Valid and data lines are directly
sent to the output. When the receiver is not ready, the incoming Valid signal and data
lines are stored in the internal buffer. In the next clock cycle, stored data can be sent to
the output. Moreover, while the incoming interface may progress to its subsequent data,
the discussed module detects that the incoming o ready signal is already set to false and
therefore knows that it needs to wait, as shown in Figure 5.6.

41



Chapter 5. Design and Implementation

Figure 5.5: Copying the incoming data to an internal buffer

Figure 5.6: The stall signal propagates upstream

5.6.2 Implementation of the skid buffer

The interface of the skid buffer module is set up similarly to what is visualized in figs. 5.3
to 5.6, with three inputs and three outputs. There are three internal signals that the internal
buffer is captured by. The first one, bypass reg, indicates which mode the skid buffer
runs on. If bypass reg is low, the skid buffer runs on ”skid” mode, storing valid data in the
internal buffer. If it is set to high, on the other hand, it will work like a pass-through device.
The way the logic of bypass reg works is that every time a valid signal is incoming, but
the output is stalled, bypass reg is set to low, or ”skid” mode. The skid buffer operates like
a pass-through device as default. Therefore, the internal buffer is cleared, and bypass reg
is set high after a reset. Look at Listing 5.1.

1

2 /*------------------------------------------
3 Synchronous logic
4 -------------------------------------------*/
5 always @(posedge clk, negedge rst_n) begin
6

7 // Reset condition
8 if (rst_n == 0) begin
9

10 // Internal Registers in the skid buffer
11 ready_reg <= 1’b0 ;
12 data_reg <= ’0 ;
13 bypass_reg <= 1’b1 ;

42



5.6 Skid-buffer

14

15 end
16

17 // Out of reset
18 else begin
19

20 // Bypass state
21 if (bypass_reg) begin
22

23 ready_reg <= 1’b1;
24

25 if (!i_ready && i_valid && ready_reg) begin
26 ready_reg <= 1’b0 ;
27 data_reg <= i_data ; // Data skid happened, store to buffer
28 bypass_reg <= 1’b0 ; // To skid mode
29 end
30 }

Listing 5.1: Code for the syncronous logic of the skid buffer

Once the receiving end is ready, the skid buffer returns to regular operation (pass-
through device). See Listing 5.2

1 // Skid state
2 else begin
3

4 if (i_ready) begin
5 ready_rg <= 1’b1 ;
6 bypass_rg <= 1’b1 ; // Back to bypass mode
7 end

Listing 5.2: Listing of when the skid buffer is in bypass mode

Listing 5.3 shows the assignments of the outputs on the skid buffer. The logic for the
output data is quite simple. It is a mux with bypass reg as the select signal. If bypass reg
is high, the data output gets the value from the input. If bypass reg is false, the output data
is assigned by the data stored internally in the buffer.

1

2 /*-----------------------------------------------------------
3 Continuous Assignments
4 -------------------------------------------------------------*/
5 assign o_ready = ready_reg ;
6 assign o_data = bypass_reg ? i_data : data_reg ;
7 assign o_valid = bypass_reg ? (i_valid & ready_reg) : 1’b1 ;

Listing 5.3: Listing of the continous assignments of the outputs to the skid buffer

5.6.3 Formal Verification of the Skid Buffer
In order to ensure the correctness and reliability of the skid buffer module, the approach
employed is formal verification, more specifically with the use of assertions in SystemVer-

43



Chapter 5. Design and Implementation

ilog. Formal verification techniques provide an accurate and complete analysis of the
design properties and help identify potential bugs or corner cases that may go unnoticed
during simulation testing. Simulation of digital circuitry can be very long, so verifying the
behavior of the different modules manually by, for example, looking at signal flow can be
very time-consuming. However, it is very important to have high assertion coverage, as
the assertions cover critical aspects of the design.

Following any reset, all internal signals in the skid buffer need to be cleared. The
behavior, as shown in Listing 5.4, can therefore be assumed.

1 property p_reset_clears_reg;
2 @(posedge clk)
3 !rst_n |=> !ready_rg_i && (data_rg_i == ’0) && bypass_rg_i;
4 endproperty
5

6 assert property(p_reset_clears_reg);

Listing 5.4: Property checking if reset state is functioning correctly

Another property that needs to be checked is that whenever the receiver is not ready,
the valid signal needs to continue into the next clock cycle, and the data needs to remain
stable. See Listing 5.5.

1 property p_data_held_when_not_ready;
2 @(posedge clk) disable iff (!rst_n)
3 i_valid && !o_ready |=> i_valid && $stable(i_data);
4 endproperty
5

6 assert property(p_data_held_when_not_ready);

Listing 5.5: Property checking if the behaviour is correct for when the receiver is not ready

There are three rules that the aim is to preserve when designing this skid buffer. The
first rule is when there is a stalled outstanding request on the output port. When this
happens, the request must remain stable to the next clock. See Listing 5.6.

1 property p_data_stable_after_o_valid;
2 @(posedge clk) disable iff (!rst_n)
3 o_valid && !i_ready |=> (o_valid && $stable(o_data));
4 endproperty
5

6 assert property(p_data_stable_after_o_valid);

Listing 5.6: Property checkingthe first rule. Request must remain stable if there is a stalled out-
standing request

The second rule checks for a critical aspect of the skid buffer: the ”no data loss” policy.
If there is any incoming data, then it needs to either be sent to the output or stored in the
buffer. See Listing 5.7.

1 property p_passthrough_or_store;
2 @(posedge clk) disable iff (!rst_n)
3 (!i_ready && i_valid && ready_rg_i)
4 |=> (data_rg_i == $past(i_data));

44



5.7 WB Stage

5 endproperty
6

7 assert property(p_passthrough_or_store);

Listing 5.7: Property checking that no data is lost

Analyzing the other corner cases for the second rule reveals that if either of these
scenarios, !i valid or i valid && !o ready, occurs, then noting happens in the input that
requires attention. Another interesting corner case to consider is when ready rg is low.
Specifically, when ready reg is low, and i ready is high, the buffer operates as a straight
pass-through, as verified by a brief design examination. Consequently, the remaining case
pertains to a scenario for when ready reg is low and i ready is also low, which was dis-
cussed previously for Listing 5.7.

Nonetheless, the initial analysis is still incomplete, as it does not discuss how the
design returns to an idle state. This aspect is important, as overlooking the return idle can
result in hard-to-find bugs. Therefore, ensuring the design’s proper return to idle can be
crucial. So any time i ready is true on the outgoing interface, all relevant signals should
be cleared. Subsequently, on the next clock cycle, o valid should only be true if i valid is
also true, which is the third rule. See Listing 5.8.

1 property p_passthrough_or_store;
2 @(posedge clk) disable iff (!rst_n)
3 (!i_ready && i_valid && ready_rg_i)
4 |=> (data_rg_i == $past(i_data));
5 endproperty
6

7 assert property(p_passthrough_or_store);

Listing 5.8: Propoerty checking for passthrough or store of the input data

5.7 WB Stage
There have been a few modifications done in the WB stage. Many changes have been
primarily due to two pipeline registers instead of one. Looking at Figure 4.5 shows there
is now a new pipeline between the LSU and WB stage called LSU/WB. So the necessary
changes were to change which signal should be retrieved from which pipeline register.
However, a more considerable modification is done involving the wb ready signal. Two
individual ready signals are implemented in WB—one for LSU and one for the EX stage.
The idea is that by having two ready signals, one can control which instructions can move
to WB to commit. The previously mentioned priority signal discussed in section 5.4 is
retrieved in WB and used to determine which of the ready signals should be set to true. So
by knowing what value priority has, the processor will know which instruction to let in.

45



Chapter 6
Experimental Setup and Analysis

The performance analysis of the CV32E40X core, a member of the CORE-V family
of RISC-V cores, was conducted utilizing the functional verification project known as
CORE-V-VERIF, developed by OpenHW Group [50]. The CORE-V-VERIF project en-
compasses a comprehensive verification environment based on the Universal UVM. Within
this environment, two established benchmarks, namely coremark, and hello-world, along
with two custom assembly programs, csr instr asm and ricv arithmetic basic test 1, were
employed for analysis.

This evaluation aims to compare the modified design of the CV32E40X core against
the baseline CV32E40X by examining the test results obtained from running the programs
mentioned above. It is important to acknowledge that the findings of this study may be
subject to limitations stemming from the relatively small sample size of benchmarks used,
which may only partially capture real-world conditions. Consequently, the results should
be interpreted with caution.

This section will provide a detailed account of the testing methodology employed in
the analysis. It will explain the specific procedures to execute the tests and the subsequent
steps to analyze the collected data. This section aims to establish a solid foundation for the
subsequent discussion and interpretation of the results by describing the testing process
and analytical framework.

6.1 Baseline CV32E40X

CV32E40X is still an ongoing project, so constant modifications are happening to the core.
It is, therefore, important to ascertain which version of the CV32E40X is referred to as the
baseline version in this work. In Git, a commit hash, or commit ID, refers to a unique
identifier for a specific commit within a Git repository. So the commit hash to the version
of CV32E40X core that is referred to as baseline and that the work presented in this thesis
is built upon is the following: e982a971ebb79e07cfa528c7dfcf7a35b72da5cd.

46



6.2 Toolchain

6.2 Toolchain
This section presents the toolchain and methodology employed to improve the perfor-
mance of the CV32E40X core. The following tools were utilized at various stages of the
design process

1. Simulation: QuestaSim and ModelSim, widely-used simulation tools, played a cru-
cial role in validating and verifying the functionality of the enhanced CV32E40X
core. Through QuestaSim and ModelSim, extensive simulations were conducted
to ensure the correctness and accuracy of the modified design. It facilitated exam-
ining the core’s behavior under different scenarios and input stimuli. QuestaSim
was mainly used for signal flow analysis to verify correct behavior and to identify
potential errors.

2. Synthesis: CadenceGenus. The synthesis stage involved transforming the CV32E40X
core’s RTL (Register Transfer Level) design into a gate-level representation. Ca-
dence Genus, a powerful synthesis tool, was employed to achieve this conversion.
Genus optimized the design for area, power, and timing, utilizing advanced algo-
rithms and optimizations to enhance the core’s performance characteristics.

3. Automatic Place-and-route++: Cadence Innovus. Cadence Innovus, an automatic
place-and-route tool, efficiently mapped the synthesized design onto the target hard-
ware. Innovus utilized sophisticated algorithms and techniques to determine the
optimal core components placement and efficiently route the interconnections.

4. STM28 nm Technology Library. The design used the STM (Standard Technology
Model) 28nm technology library. This library provided a set of standardized design
components and process models specific to the 28nm technology node.

6.3 Evaluation
The upcoming section will provide a comprehensive overview of the statistical measures
utilized to analyze the performance of the CV32E40X core. Specifically, the modified
version of the CV32E40X core will be evaluated and compared against the baseline ver-
sion, CV32E40X. The primary focus of the evaluation will be on the IPC metric obtained
by executing various test programs. One can assess the impact of the modifications on
the core’s performance by comparing the IPC values between the modified and baseline
versions.

IPC =
Instruction count of the program

Cycle count of the program
(6.1)

CPI =
Cycle count of the program

Instruction count of the program
(6.2)

IPC is a measure that calculates the average number of instructions executed by a
CPU during a specific time frame, divided by the number of clock cycles needed for their
execution. IPC is employed for determining speedup, as shown in equation 6.3. Cycles Per

47



Chapter 6. Experimental Setup and Analysis

Instruction (CPI), or Cycles Per Instruction, is another commonly used metric in processor
performance evaluation. It is simply the reciprocal of IPC and is chosen based on the
evaluator’s preference. The formula for CPI is provided in equation 6.2.

speedup =
IPCmodified

IPCbaseline
(6.3)

Speedup is a commonly used measure to evaluate the overall performance of proces-
sors when running benchmarks. It provides a clear indication of performance improve-
ment. In this context, the speedup is calculated by dividing the achieved IPC of the mod-
ified core by the IPC of the original core prior to the modifications. This report examines
the potential increase in IPC by allowing instructions to execute concurrently with inde-
pendent store or load instructions. The theoretical IPC resulting from this approach can
then be compared to the IPC measured from the benchmark results, offering insights into
the potential speedup achievable with such an implementation. Intuitively, a speedup value
greater than 1 signifies a performance improvement.

6.4 Simulation Output and Data Log
UVM report summary is used to see if a simulation was executed successfully. Figure 6.1
shows what the report summary after finishing a simulation looks like.

There is also a message printed out when the program has finished executing. For the
hello-world program, look at Figure 6.2 to see how it looks.

6.4.1 RISC-V Formal Interface
A bindable RISC-V Formal Interface (RVFI) interface is provided with the core. The
module is called CV32E40X rvfi and is used to create a log of the executed instructions.
This module has three purposes, which goes as follows:

• Formal verification

• Produce an instruction trace

• Used as a monitor for verification reasons

As mentioned, the textitCV32E40X rvfi module creates a log of executed instructions
generated when a test program finishes execution. Figure 6.3 shows what information is
included in the execution log. Information such as what type of instructions are executed,
what operands were used, and what cycle they finished with its execution is included. The
column ORDER shows the order in which the instructions finished executing.

6.5 Experimental framework and Baseline Performance
The coremark benchmark is designed to assess the performance of microcontrollers (MCUs)
and central processing units (CPUs) commonly used in embedded systems. It utilizes the

48



6.5 Experimental framework and Baseline Performance

Figure 6.1: UVM report summary of ricv arithmetic basic test 1 program

Figure 6.2: hello-world message

CoreMark/MHz metric to measure the single-threaded performance per clock frequency.
This metric is derived by dividing the single-core CoreMark score by the clock speed em-
ployed during the benchmark execution. The benchmark incorporates various algorithms

49



Chapter 6. Experimental Setup and Analysis

Figure 6.3: Overview over what information is stored in the log of executed instructions

and workloads, including list processing (find and sort), matrix manipulation (common
matrix operations), state machine (determining valid numbers in an input stream), and
cyclic redundancy check (CRC). For additional details on the coremark benchmark, refer
to Table 6.1, while Table ?? provides information specifically on the hello-world test.

Table 6.1: Details on coremark benchmark results on the baseline design of CV32E40X core

Baseline CV32E40X
Benchmark Coremark
Instruction count 2753145
Cycle count 6400027
IPC 0.43

The hello-world test program is an integral part of the core-v-verif repository and
serves as a sanity test designed for the CV32E40X core. This program performs sim-
ple tasks such as reading the MISA and MVENDORID CRCs and printing informative
messages to the standard output, including the famous ”HELLO WORLD!!!” greeting.
As a minimalistic workload, the hello-world program is an initial step in analyzing the
core, offering a smaller-scale evaluation compared to the more comprehensive coremark
benchmark.

Table 6.2: Details on hello-world benchmark result on the baseline design of CV32E40X core

Baseline CV32E40X
Benchmark hello-world
Instruction count 9929
Cycle count 21377
IPC 0.46

In addition to hello-world and coremark, a custom assembly program has been made
to test whether load/store instructions can run in parallel with other instructions and also
try to see if the design can deal with dependencies. Look at Table 6.3 for program re-
sults and details. The program is minimal, only including 19 instructions, a small sample
size that is mostly used for testing the design in the design phase. Look at the appendix
(Something) for a more detailed overview of the assembly program. The IPC seems higher
than expected, given the cycles and instruction counts presented. However, 170 cycles are
used for the startup process. The program execution itself takes only 86 cycles to finish.
This has not been considered for hello-world and coremark since these are much bigger
programs, and the impact from those 170 cycles on IPC is negligible.

ricv arithmetic basic test 1 is an assembly program and a part of the primary verifica-

50



6.5 Experimental framework and Baseline Performance

Table 6.3: Details on csr instr asm result on the baseline design of CV32E40X core

Baseline CV32E40X
Program csr instr asm
Instruction count 49
Cycle count 256
IPC 0.57

tion environment under custom tests. It runs primarily arithmetic operations, as is insinu-
ated by the program name. Table 6.4 shows the test results and details of the program on
the baseline CV32E40X. The word ”done” is printed in the terminal output if the program
can execute correctly.

Table 6.4: Details on ricv arithmetic basic test 1 result on the baseline design of CV32E40X core

Baseline CV32E40X
Program ricv arithmetic basic test 1
Instruction count 11455
Cycle count 37893
IPC 0.3

51



Chapter 7
Results and Discussion

The main contributions of this work have been the implementations done on the core itself.
This chapter will go through the results achieved from running simulations on the modified
CV32E40X core and a discussion evaluating the test results alongside if the trade-offs with
area and power can be worth it.

7.1 Performance Evaluation

This section will present and evaluate the performance results on hello-world, coremark,
csr instr asm, and ricv arithmetic basic test 1 for the modified design of the CV32E40X
core. The functionality of the modified design will also be discussed. It is important to
acknowledge that several bugs were encountered while implementing and evaluating the
proposed architecture during the development process. These bugs affected the function-
ality and overall performance of the processor, thereby limiting the program’s completion
and compromising the performance evaluation’s accuracy.

7.1.1 coremark

Table 7.1 gives an overview of the result retrieved from running the coremark benchmark
on the modified version of CV32E40X. Comparing Table 6.1 and Table 7.1 shows that
the baseline CV32E40X core performs better regarding IPC. The baseline version has
an IPC of 0.43, and the modified version has an IPC of 0.382. That gives a speedup
of 0.88. There is also a considerable disparity in instruction count between the two
versions of CV32E40X. Baseline CV32E40X can execute 2753145, while the modified
CV32E40X can only execute 182898 instructions. Looking at the simulation output shows
a ” PASSED” message was received. However, coremark also has a self-check that also
checks for any errors. The simulation environment was not able to find any errors. The
self-check, on the other hand, did report errors. The error report from the self-check is the
most plausible reason the program’s execution is cut short for the modified CV32E40X.

52



7.1 Performance Evaluation

Errors question the test result’s validity since it is hard to say if the design implemen-
tation is giving a worse performance or if potential unresolved bugs are hindering the
performance. Also, all of the assertions in the verification environment are not triggering,
making it harder to pinpoint where the problem is.

Details on coremark benchmark results on the baseline design of CV32E40X core

Baseline CV32E40X
Program coremark
Instruction count 2753145
Cycle count 6400027
IPC 0.43

Table 7.1: Details on coremark result on the modified design of CV32E40X core

Modified CV32E40X
Program coremark
Instruction count 182898
Cycle count 478818
IPC 0.382

7.1.2 hello-world

A similar conclusion on the coremark results can also be drawn from the test results shown
for the hello-world program in Table 7.2. Only 1872 of 9929 instructions were able to ex-
ecute before the simulation stopped. The simulation tests end when there are five triggers
from assertions or when the simulation is complete. This could be from one or multiple
assertions as long as they are triggered five times. Like the coremark, hello-world also
performs worse on the modified design.

Details on hello-world benchmark result on the baseline design of CV32E40X core

Baseline CV32E40X
Benchmark hello-world
Instruction count 9929
Cycle count 21377
IPC 0.46

53



Chapter 7. Results and Discussion

Table 7.2: Details on hello-world result on the modified design of CV32E40X core

Modified CV32E40X
Program hello-world
Instruction count 1872
Cycle count 4196
IPC 0.446

7.1.3 csr instr asm
As can be seen from the result retrieved from the baseline design, seen in Table 6.3, and
the modified design, seen in Table 7.3, both versions of the CV32E40X core achieved
almost the same IPC results. The baseline version finishing with 0.57 IPC and the modi-
fied version finishing with 0.55 IPC. Based on these results, the baseline runs faster than
the modified version again. However, as discussed in more depth in section 7.2.1, the re-
sults are invalid since the execution trace generated for the modified design needs to be
corrected. It seems that the incorrectness of the execution log is more aimed at the OR-
DER and INSTRUCTION columns. Both designs generated the same output from running
the program, printing out ”PASSED” and ”CV32 done” in the same number of clock cy-
cles. It gives reason to believe that the modified CV32E40X could execute the program,
csr instr asm, in the same amount of time as the baseline CV32E40X.

Details on csr instr asm result on the baseline design of CV32E40X core

Baseline CV32E40X
Program csr instr asm
Instruction count 49
Cycle count 256
IPC 0.57

Table 7.3: Details on csr instr asm result on the modified design of CV32E40X core

Modified CV32E40X
Program csr instr asm
Instruction count 47
Cycle count 256
IPC 0.55

The fact that both versions achieved similar performance is somewhat predictable. The
implemented design moves the stalling from the ID to the EX stage. Let us consider some
examples. For the baseline design, if a load instruction takes some time to retrieve the
data from memory, the ID stage will need to wait until the load instruction is finished

54



7.1 Performance Evaluation

executing. For the modified design, the instruction waiting in the ID stage, given that it
is not a load/store instruction and there are no data dependencies, will be able to execute
while the load instruction is waiting for data from memory. However the instruction will
still need to wait for the load instruction to finish and commit before being able to commit.
In theory, the stall is moved from the ID stage to the EX stage, and the total length of the
stall is still the same.

What is implemented is more of a foundation to increase the performance potential.
For example, adding an instruction queue in the WB stage would help avoid stalls in such
situations presented in the previous paragraph. Instructions that are finished executing can
move to the WB stage independently if they are the oldest instruction in the pipeline. As a
result, the functional units are freed much earlier than previously, allowing the following
instructions to execute. In the WB stage, the oldest instruction in the instruction queue is
then committed.

7.1.4 ricv arithmetic basic test 1

For this program, the CV32E40X core was able to complete it successfully. Looking at
Table 7.4 shows that the modified CV32E40X managed to achieve the same performance
as the baseline. However, the instruction count is two instructions short compared to
the baseline. The missing instructions can be explained by the fact that only ”don” was
printed to the terminal when the program finished executing. This means a store instruction
could not execute correctly, missing the last character. The results achieved from running
the ricv arithmetic basic test 1 program strongly indicate that the bugs observed with the
modified design are from the LSU. The primary function of this program runs primarily
arithmetic operations, which are executed correctly based on the results.

Details on ricv arithmetic basic test 1 result on the baseline design of CV32E40X core

Baseline CV32E40X
Program ricv arithmetic basic test 1
Instruction count 11455
Cycle count 37893
IPC 0.3

Table 7.4: Details on ricv arithmetic basic test 1 result on the modified design of CV32E40X core

Modified CV32E40X
Program ricv arithmetic basic test 1
Instruction count 11453
Cycle count 37892
IPC 0.3

55



Chapter 7. Results and Discussion

7.2 Bug Analysis
There are some potential culprits to what is causing the bugs on the modified design. One
of these is related to the ready signals in the WB stage. One of the assertions that triggers
when running the hello-world program is related to data forwarding. The properties are
part of the assertion module for the top module of the core. It checks that the operands
forwarded from the EX or WB stage are written to the WB register file. So if there is a data
dependency, the forwarded data from the WB or EX stage must be written to the register
file in the current or next clock cycle, respectively. At some point in the execution of
hello-world, the data forwarded is not written to the register file. One possible correlation
could be the ready signals in WB because there could be a corner case in which the ready
signal to either the LSU or EX stage is not set high when it should be. As a result, the
instruction cannot move to the WB stage to commit, delaying the instruction indefinitely.
Another reason is that an instruction from the ID stage could be moved for execution when
the functional unit is still in use, which deletes the executing instruction.

Another potential culprit could be when a split memory operation is performed. As
discussed in section 5.4, having the WB stage interpret a split load/store instruction as one
instruction, not two, is important. Split memory access is solved by setting the register
write-enable signal to false. Nothing is written to the register file for the first transaction.
However, the register write-enable signal is true for the last transaction. So the data is writ-
ten to the register file when the last transaction is committed in the WB stage. Handling
a split transaction wrong could trigger the assertions discussed in the previous paragraph.
If, for example, instead of only writing the data from memory to the register file in the last
transaction, it also happens in the first transaction, which means that the data forwarded
and the data written to the register file are not the same. This error can propagate through-
out the execution of the program since other instructions could use the wrongly written
data to perform their calculations.

Outstanding transaction overflow is another problem occurring during the execution of
the hello-world program. CV32E40X is only able to handle two outstanding transactions
at a time. The reasoning for the overflow in outstanding transactions is still uncertain.
However, what is certain is that the transfer requests are accepted faster than they are
handled. So the line of outstanding transactions continues to grow. One possible problem
could be that the skid buffer cannot apply back pressure, which is why there are too many
transactions on the OBI bus at once.

7.2.1 Instruction log
There is an issue with the instruction log. More specifically, the way instructions are reg-
istered in the instruction log. An instruction is registered in the log when it commits in
the WB stage. The log is generated through the RISC-V formal interface. CV32E40X rvfi
module checks when the last op o signal and wb valid o are both true. When this occurs,
the instruction is registered in the instruction log. The CV32E40X rvfi module tracks all
of the instruction information. Look at Figure 6.3 to see what is printed in the instruction
log. This module has not been modified to match the new modifications, so only the in-
structions in the EX stage are tracked. Therefore when a load instruction is executed, the
previous instruction executed in the EX stage is registered in the instruction log, making it

56



7.3 Power, Area and Timing Analysis

seem like the load instruction did not execute. Table 7.5 shows some of the instruction log
from executing csr instr asm on the baseline version. Table 7.6 shows similar data from
the instruction log from executing csr instr asm on the modified version for comparison.
As can be seen from looking at both of the tables, the data are quite different, especially for
instructions. It seems that either the module has been unable to register two instructions
during the execution or that a bug has prevented two instructions from executing. Look-
ing at the output from the simulation, nothing suggests that the program was not executed
correctly. Both ”PASSED” and ”cv32 done” was printed out, just like the baseline ver-
sion. Therefore, the execution could be correct for the modified CV32E40X, only that the
CV32E40X rvfi module could not generate the execution trace correctly due to not being
modified to accommodate the design changes.

The execution log of instructions is essential during the design phase as it provides
details of the sequence of instructions executed during the operation of the processor. It
captures the execution flow, including the order and timing of instructions, register values,
memory accesses, and other relevant events. If the execution log of instructions generated
is useless, the verification phase becomes much more complicated, and the test results will
not have any meaning.

7.3 Power, Area and Timing Analysis
The results gathered from running synthesis on both the baseline design and modified
design goes as follows: the baseline design exhibited power consumption of 0.321607mW
and an area utilization of 24181.809, while the modified design showed a slightly increased
power consumption of 0.330064mW and a larger area utilization of 24990.442. Look at
Tables 7.8 and 7.7 for a better overview over the results. This makes it an area overhead
of 3.3% and power overhead of 2.6%. It is difficult to argue the slight increase in power
and area for what benefits the implementation in this work brought, as unresolved bugs
prevented the modified core from running application programs successfully. However, it
could also argued that not much logic is needed to resolve the bugs based on test results
and as was argued in section 7.1.3, adding instruction queues alongside the implementation
presented in this work can tap into performance potential. Looking it from this perspective
you could say it is a trade off between power, area and future potential. The small overhead
in power and area, also leaves room for further optimizations in the future.

The results gathered from running synthesis on both the baseline design and modified
design goes as follows: the baseline design exhibited a power consumption of 0.321607mW
and an area utilization of 24181.809. In contrast, the modified design showed a slightly
increased power consumption of 0.330064mW and a more extensive area utilization of
24990.442. Look at Tables 7.7 and 7.8 for a better overview of the results. In percentage,
the area overhead is 3.3%, and the power overhead is 2.6%. It is difficult to argue the slight
increase in power and area for what benefits the implementation in this work brought, as
unresolved bugs prevented the modified core from running application programs success-
fully. However, based on test results, not much logic is needed to resolve the bugs. As
argued in section 7.1.3, adding instruction queues alongside the implementation presented
in this work can tap into performance potential. From this perspective, it is a trade-off be-
tween power, area, and future potential. The small overhead in power and area also leaves

57



Chapter 7. Results and Discussion

Table 7.5: Execution log from csr instr asm on the baseline CV32E40X

TIME CYCLE ORDER INSTRUCTION
528.000 170 1 c.j
546.000 176 2 sub
552.000 178 3 addi
558.000 180 4 addi
567.000 183 5 lw
573.000 185 6 addi
579.000 187 7 c.lw
582.000 188 8 addi
594.000 192 9 lw
597.000 193 10 addi
600.000 194 11 c.lw
603.000 195 12 addi
606.000 196 13 c.lw
612.000 198 14 sll
615.000 199 15 slli
621.000 201 16 lw
627.000 203 17 addi
633.000 205 18 lw
639.000 207 19 addi
648.000 210 20 lw
654.000 212 21 lui
657.000 213 22 c.li
660.000 214 23 c.sw
663.000 215 24 addi
669.000 217 25 c.sw
675.000 219 26 addi
681.000 221 27 c.sw
684.000 222 28 addi
690.000 224 29 c.sw
693.000 225 30 addi
699.000 227 31 c.sw
702.000 228 32 addi
708.000 230 33 c.sw
711.000 231 34 addi
717.000 233 35 c.sw
720.000 234 36 addi
726.000 236 37 c.sw
729.000 237 38 addi
735.000 239 39 c.sw
738.000 240 40 addi
747.000 243 41 c.sw
750.000 244 42 c.li
756.000 246 43 c.sw
762.000 248 44 c.sw
765.000 249 45 lui
768.000 250 46 addi
771.000 251 47 lui
777.000 253 48 addi
786.000 256 49 sw

58



7.3 Power, Area and Timing Analysis

Table 7.6: Execution log from csr instr asm on the modified CV32E40X

TIME CYCLE ORDER INSTRUCTION
528.000 170 1 c.j
546.000 176 2 sub
552.000 178 3 addi
558.000 180 4 addi
567.000 183 5 addi
573.000 185 6 addi
579.000 187 7 addi
582.000 188 8 addi
594.000 192 9 addi
600.000 194 10 addi
603.000 195 11 addi
606.000 196 12 addi
612.000 198 13 sll
615.000 199 14 slli
621.000 201 15 slli
627.000 203 16 addi
633.000 205 17 addi
639.000 207 18 addi
648.000 210 19 addi
654.000 212 20 lui
657.000 213 21 c.li
660.000 214 22 c.li
663.000 215 23 addi
669.000 217 24 addi
675.000 219 25 addi
681.000 221 26 addi
684.000 222 27 addi
690.000 224 28 addi
693.000 225 29 addi
699.000 227 30 addi
702.000 228 31 addi
708.000 230 32 addi
711.000 231 33 addi
717.000 233 34 addi
720.000 234 35 addi
726.000 236 36 addi
729.000 237 37 addi
735.000 239 38 addi
738.000 240 39 addi
747.000 243 40 addi
753.000 245 41 c.li
759.000 247 42 c.li
765.000 249 43 lui
768.000 250 44 addi
771.000 251 45 lui
777.000 253 46 addi
786.000 256 47 addi

59



Chapter 7. Results and Discussion

room for further optimizations in the future.

Table 7.7: Area and power results from synthesis on baseline CV32E40X

Baseline CV32E40X
Power 0.321607mW
Area 24181.809

Table 7.8: Area and power results from synthesis on modified CV32E40X

Modified CV32E40X
Power 0.330064mW
Area 24990.442

Notably, the modified design successfully met the timing constraints with a positive
slack of 34, leaving room for potential improvements or optimizations in terms of power
consumption, area utilization, or performance. The reason for this is that with positive
slack, the design has additional time available before the signal needs to stabilize, allowing
for potential power-saving measures, or it may be possible to combine or share resources
to reduce area footprint, or the designers can use the additional time available to optimize
critical paths to increase performance.

60





Chapter 8
Conclusion

This thesis aimed to enable the CV32E40X core to parallelize memory operations with
all other operations and evaluate its performance, considering the trade-offs in area and
power consumption. The introduction highlighted the importance of improving processor
cores to meet the growing demands of modern applications. This work implements a skid
buffer to impose variable delay for the LSU and apply backpressure to the OBI interface.
In addition, modifications in the ID stage, EX stage, WB stage, and controller have been
done to divide the EX stage into two stages, allowing for parallel execution. An instruc-
tion ID tracker has also been implemented to maintain program order when committing
instructions.

It was noted in chapter 7 that the modified CV32E40X core design had several issues
that hindered its functionality and overall performance. The coremark and hello-world
programs exhibited lower IPC and encountered errors during the self-check phase, rais-
ing questions about the validity and accuracy of the performance assessment. However,
the performance of the ricv arithmetic basic test 1 program was comparable in both the
baseline and modified designs, demonstrating that the problems mainly affected the LSU
rather than the execution of arithmetic operations.

Potential causes for the observed difficulties were identified through bug analysis, in-
cluding possible issues with ready signals in the WB stage, improper handling of split
memory operations, overflow in pending transactions, and problems with the instruction
log. These elements were potentially part of the redesigned CV32E40X reduced function-
ality and performance. For coremark and hello-world, the baseline is 12.5% and 3.1%
better in terms of IPC, respectively.

Power, area, and timing analysis revealed that the redesigned CV32E40X utilized more
area than the baseline while consuming more power. A small overhead of 2.6% and 3.3%
in power and area However, determining the actual advantages of the changes was diffi-
cult because of the remaining bugs. It was argued that fixing the problems and putting
instruction queues in place could unlock the performance potential and make the power
and space trade-offs acceptable.

Despite the difficulties, the updated design met the timing requirements with positive

62



8.1 Future Work

slack, which opened the door for later power consumption, space usage, and performance
enhancements. This extra time can be used to implement resource sharing, optimize essen-
tial pathways, or take power-saving measures. It gives designers more room for exciting
ideas for future extensions of the presented redesign of CV32E40X.

8.1 Future Work
While this thesis has made some progress in enabling parallel execution between memory
operations and the rest of the operations, several avenues for future work and improve-
ments should be explored.

Bug Resolution is the foremost priority for future work. The bugs encountered during
the implementation and evaluation of the modified design need to be addressed. Identi-
fying and resolving issues related to ready signals, split memory operations, outstanding
transaction overflow, and instruction log tracking would significantly enhance the func-
tionality and accuracy of the core.

Further performance optimizations can be explored once the bugs are resolved. For
instance, implementing instruction queues in the WB stage can help mitigate stalls and
improve overall performance, as suggested in the discussion. Investigating other potential
areas for performance enhancement, such as optimizing critical paths and exploring power-
saving measures, would also be valuable.

Conducting thorough testing on a broader range of benchmarks and real-world appli-
cations would provide a more comprehensive evaluation of the modified CV32E40X core.
Utilizing a broader range of workloads would validate the performance of the modified
CV32E40X, identify potential bottlenecks or issues specific to different workloads, and
ensure its reliability and compatibility across various use cases.

Exploration of Advanced Features: Future work could explore integrating advanced
features and extensions into the modified CV32E40X core, for example, extending the
CV32E40X core into a fully LSC. It would be interesting to compare the performance,
area, and power results with those presented in the paper by Carlson et al. [30]. and other
state-of-the-art sOoO[31; 32]. In addition, analyzing how effective the LSC would be for
embedded applications are some ideas proposed in this thesis on the way forward for this
work.

63



Bibliography

[1] G. Karsai, F. Massacci, L. Osterweil, and I. Schieferdecker, “Evolving embedded
systems,” Computer, vol. 43, no. 5, pp. 34–40, 2010.

[2] A. Ometov, O. Chukhno, N. Chukhno, J. Nurmi, and E. S. Lohan, “When wearable
technology meets computing in future networks: a road ahead,” in Proceedings of the
18th ACM International Conference on Computing Frontiers, 2021, pp. 185–190.

[3] S. Furber, “Microprocessors: the engines of the digital age,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2199, p.
20160893, 2017.

[4] F. H. Khan, M. A. Pasha, and S. Masud, “Advancements in microprocessor architec-
ture for ubiquitous ai—an overview on history, evolution, and upcoming challenges
in ai implementation,” Micromachines, vol. 12, no. 6, p. 665, 2021.

[5] Z. Fu, “The integration of communication technology and wireless communication in
the internet of things,” in 7th International Conference on Education, Management,
Information and Mechanical Engineering (EMIM 2017). Atlantis Press, 2017, pp.
318–322.

[6] D. Dobberpuhl, “The design of a high performance low power microprocessor,” in
Proceedings of 1996 International Symposium on Low Power Electronics and De-
sign. IEEE, 1996, pp. 11–16.

[7] P. Babulal and A. Mankodia, “Embedded system development trends,” 12 2006.

[8] P. P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportuni-
ties, and new frontiers,” in 2001 IEEE International Solid-State Circuits Conference.
Digest of Technical Papers. ISSCC (Cat. No. 01CH37177). IEEE, 2001, pp. 22–25.

[9] R. Cates, “Processor architecture considerations for embedded controller applica-
tions,” IEEE Micro, vol. 8, no. 3, pp. 28–38, 1988.

[10] “About risc-v,” https://riscv.org/about/, accessed: 2022-11-14.

64

https://riscv.org/about/


[11] “Openhw group, about us,” https://www.openhwgroup.org/about-us/, accessed:
2022-10-29.

[12] “Core-v family of open-source risc-v cores,” https://github.com/openhwgroup/
core-v-cores, accessed: 2022-10-29.

[13] F. Faggin, “How we made the microprocessor,” Nature Electronics, vol. 1, no. 1, pp.
88–88, 2018.

[14] A. González, “Trends in processor architecture,” Harnessing Performance Variabil-
ity in Embedded and High-performance Many/Multi-core Platforms: A Cross-layer
Approach, pp. 23–42, 2019.

[15] J. L. Hennessy and D. A. Patterson, “Computer architecture: a quantitative ap-
proach.” Elsevier, 2011, p. 52.

[16] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications of the
ACM, vol. 54, no. 5, pp. 67–77, 2011.

[17] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “Cpu db: record-
ing microprocessor history,” Communications of the ACM, vol. 55, no. 4, pp. 55–63,
2012.

[18] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”
IEEE Journal of solid-state circuits, vol. 9, no. 5, pp. 256–268, 1974.

[19] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the
44th annual design automation conference, 2007, pp. 746–749.

[20] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[21] J. E. Smith, “A study of branch prediction strategies,” in 25 years of the international
symposia on Computer architecture (selected papers), 1998, pp. 202–215.

[22] D. A. Patterson and C. H. Sequin, “Risc i: A reduced instruction set vlsi computer,”
in 25 years of the international symposia on Computer architecture (selected papers),
1998, pp. 216–230.

[23] G. Radin, “The 801 minicomputer,” in Proceedings of the first international sympo-
sium on Architectural support for programming languages and operating systems,
1982, pp. 39–47.

[24] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett, and J. Gill,
“Mips: A microprocessor architecture,” ACM SIGMICRO Newsletter, vol. 13, no. 4,
pp. 17–22, 1982.

[25] F. Faggin, “The intel 4004 cpu-on-a-chip was developed under pressure on an ex-
tremely tight schedule—and it worked.” IEEE SOLID-STATE CIRCUITS MAGA-
ZINE, vol. 1943, no. 0582/09, p. 9, 2009.

65

https://www.openhwgroup.org/about-us/
https://github.com/openhwgroup/core-v-cores
https://github.com/openhwgroup/core-v-cores


[26] D. M. Harris and S. L. Harris, “7 - microarchitecture: With contributions from
matthew watkins,” in Digital Design and Computer Architecture (Second Edition),
second edition ed., D. M. Harris and S. L. Harris, Eds. Boston: Morgan Kaufmann,
2013, pp. 370–473. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780123944245000070

[27] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of the com-
ing dark silicon apocalypse,” in Proceedings of the 49th annual design automation
conference, 2012, pp. 1131–1136.

[28] I. Stamelakos, S. Xydis, G. Palermo, and C. Silvano, “Variation-aware voltage island
formation for power efficient near-threshold manycore architectures,” in 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2014,
pp. 304–310.

[29] M. Horowitz, “Scaling, power, and the future of cmos technology,” in 2008 Device
Research Conference. IEEE, 2008, pp. 7–8.

[30] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The load slice
core microarchitecture,” in 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2015, pp. 272–284.

[31] R. Kumar, M. Alipour, and D. Black-Schaffer, “Freeway: Maximizing mlp for slice-
out-of-order execution,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2019, pp. 558–569.

[32] K. Lakshminarasimhan, A. Naithani, J. Feliu, and L. Eeckhout, “The forward slice
core microarchitecture,” in Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques, 2020, pp. 361–372.

[33] K. A. Andrew Waterman, “The risc-v instruction set manual,” Volume I: Unprivileged
ISA, version: 20191213, vol. 1, 2019.

[34] “Risc-v specification,” https://riscv.org/technical/specifications, accessed: 2023-01-
24.

[35] “What is risc,” https://www.arm.com/glossary/risc, accessed: 2023-01-24.

[36] “Risc-v assembler reference,” https://michaeljclark.github.io/asm.html, accessed:
2023-02-04.

[37] “Arm developer suite assembler guide,” https://developer.arm.com/documentation/
dui0068/b/ARM-Instruction-Reference, accessed: 2023-02-10.

[38] intel, “Intel® 64 and ia-32 architectures software developer’s manual.” intel, 2022.

[39] G. GOOSSENS, J. VAN PRAET, D. LANNEER, W. GEURTS, A. KIFLI,
C. LIEM, and P. G. PAULIN, “Embedded software in real-time signal processing
systems: Design technologies manuscript received february 1, 1996; revised
december 2, 1996. publisher item identifier s 0018-9219(97)02051-3.” in Readings

66

https://www.sciencedirect.com/science/article/pii/B9780123944245000070
https://www.sciencedirect.com/science/article/pii/B9780123944245000070
https://riscv.org/technical/specifications
https://www.arm.com/glossary/risc
https://michaeljclark.github.io/asm.html
https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference
https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference


in Hardware/Software Co-Design, ser. Systems on Silicon, G. De Micheli,
R. Ernst, and W. Wolf, Eds. San Francisco: Morgan Kaufmann, 2002, pp.
433–451. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9781558607026500399

[40] “27 isa extension naming conventions,” https://five-embeddev.com/riscv-isa-manual/
latest/naming.html, accessed: 2023-02-19.

[41] “Risc-v exchange,” https://riscv.org/exchange, accessed: 2023-02-28.

[42] “Openhw group core-v cv32e40s risc-v ip,” https://github.com/openhwgroup/
cv32e40s, accessed: 2023-01-21.

[43] “Openhw group core-v cv32e40x risc-v ip,” https://github.com/openhwgroup/
cv32e40x, accessed: 2023-01-16.

[44] “Pipeline details,” https://docs.openhwgroup.org/projects/cv32e40x-user-manual/
en/latest/pipeline.html, accessed: 2023-03-14.

[45] “Load-store-unit,” https://docs.openhwgroup.org/projects/cv32e40x-user-manual/
en/latest/load store unit.html, accessed: 2023-02-10.

[46] C. B. Zilles and G. S. Sohi, “Understanding the backward slices of performance
degrading instructions,” ACM SIGARCH Computer Architecture News, vol. 28, no. 2,
pp. 172–181, 2000.

[47] “Strategies for pipelining logic,” https://zipcpu.com/blog/2017/08/14/
strategies-for-pipelining.html, accessed: 2023-03-12.

[48] J. Teifel and R. Manohar, “Highly pipelined asynchronous fpgas,” in proceedings
of the 2004 ACM/SIGDA 12th International symposium on field programmable gate
arrays, 2004, pp. 133–142.

[49] “Core-v cv32e40x user manual,” https://docs.openhwgroup.org/projects/
cv32e40x-user-manual/en/latest/intro.html, accessed: 2022-10-10.

[50] “core-v-verif,” https://github.com/openhwgroup/core-v-verif, accessed: 2022-09-23.

67

https://www.sciencedirect.com/science/article/pii/B9781558607026500399
https://www.sciencedirect.com/science/article/pii/B9781558607026500399
https://five-embeddev.com/riscv-isa-manual/latest/naming.html
https://five-embeddev.com/riscv-isa-manual/latest/naming.html
https://riscv.org/exchange
https://github.com/openhwgroup/cv32e40s
https://github.com/openhwgroup/cv32e40s
https://github.com/openhwgroup/cv32e40x
https://github.com/openhwgroup/cv32e40x
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/pipeline.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/pipeline.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/load_store_unit.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/load_store_unit.html
https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/intro.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/intro.html
https://github.com/openhwgroup/core-v-verif



	Project Description
	Abstract
	Sammendrag
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	Listings
	Abbreviations
	Introduction
	Motivation
	Objectives and Limitations of Study
	Structure of the Thesis

	Trends in Processor Architecture
	Scaling of Transistor Performance
	Branch Prediction
	Simplified Instruction Set Architecture
	In-order and Out-of-Order Execution
	Superscalar

	State-of-the-Art
	Load Slice Core
	Freeway Core
	Forward Slice Core
	Comparing Architectures in Processor Metrics


	RISC-V
	RISC-V Architecture
	Core-V Family
	CV32E40X Core Overview
	Pipeline Details
	Load Store Unit
	Performance Limitations


	Proposed Architecture
	Key Insights
	Program Slices
	Iterative Backwards Dependency Analysis
	Strategies for Pipelining Logic
	Pipelining with a Global Valid Signal
	Pipelining with a Propagating Valid Signal
	Simple Handshake

	Extending CV32E40X towards a Load Slice Core
	Significance and Novelty of Proposed Architecture

	Design and Implementation
	Introduction
	Approach
	ID Stage
	EX Stage
	LSU
	Skid-buffer
	Microarchitecture
	Implementation of the skid buffer
	Formal Verification of the Skid Buffer

	WB Stage

	Experimental Setup and Analysis
	Baseline CV32E40X
	Toolchain
	Evaluation
	Simulation Output and Data Log
	RISC-V Formal Interface

	Experimental framework and Baseline Performance

	Results and Discussion
	Performance Evaluation
	coremark
	hello-world
	csr_instr_asm
	ricv_arithmetic_basic_test_1

	Bug Analysis
	Instruction log

	Power, Area and Timing Analysis

	Conclusion
	Future Work

	Bibliography

