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Preface

This thesis is conducted as the final work to achieve the Master’s degree in Reliability, Avail-

ability, Maintenance and Safety (RAMS) given by the Department of Mechanical and Industrial

Engineering of NTNU in Norway. It represents the culmination of interesting research, analysis,

and reflection in pursuit of a deeper understanding of how machine learning can be used as

surrogate models in production environments.

This thesis journey started with a topic proposed by DNV Group AS with Siegfried Eisinger

in contact with the supervisor Shen Yin from the RAMS department at NTNU. The initial step

was a literature review and research related ended up in my specialization project called "Study

on AI-based surrogate modeling technique and its efficiency in a production environment" de-

livered in December 2022. It continued with a definition of the research followed by a review of

more academic papers and relevant case studies, intellectual discourse with mentors, and the

performance of different tests and experiments with programming. The objective was not to

engage in an exhaustive review of every aspect of the subject but rather to identify key elements

and present them concisely and coherently.

This thesis work aims at readers who have background knowledge or understanding of sys-

tem modeling and simulations as well as basic knowledge and interest in statistics and machine

learning and want to apply it to implement in a real productive environment or anything similar.

José Nicolás Espinoza Guzmán

Trondheim, June 2023
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Executive Summary

Nowadays, in the engineering areas, modeling and simulation are widely used for productive

and research purposes. They represent a very important discipline, especially in the scientific

and design fields. The complexity of the models and their simulation has surpassed the physical

capacity of computers to perform such requirements in an acceptable time. A possible solution

for this problem is the development of simpler models for the already complex models. This

answer is called surrogate models or metamodels and represents another abstract layer over re-

ality. These surrogate models act like "black-box" functions, which imitate the outcomes based

only on inputs. The approach is data-driven so it matches perfectly with the development of

machine learning since those methodologies synergize harmoniously.

The objective of this thesis is to evaluate the performance of using Machine learning al-

gorithms as surrogate models for a simple bouncing ball model. The results can be used as a

guide for future research regarding the use of these techniques in production environments. All

the concepts related to Modeling, Surrogate Modeling, and Machine Learning are reviewed and

presented in the theoretical background in addition to other topics needed to understand the

research completely.

The research methodology was based on the classical approach and the Design of Experi-

ments steps were followed to establish the experiments. Five different Machine Learning algo-

rithms were chosen to train surrogate models. Support Vector Machines, Kernel Ridge, Decision

Tree, K-Nearest Neighbors, and Gaussian Process. Each type of these techniques was used to

train multiple models varying the hyperparameter selection and comparing the results with two

different setups. Then, after selecting the best representative of every type, they were measured

on the performance of solving a specific task: Finding the angle that maximizes the horizontal

distance traveled by the ball before the first bounce.

The results show how different the different algorithms create the surrogate models to mimic

the original model behavior. In this opportunity, Support Vector Machine models did not per-

form well but all the others did. When evaluated on the range of the same parameters as trained

the models were very accurate, particularly the Gaussian Process model with very impressive

results. The Kernel Ridge model consistently presented accurate predictions and behavior, be-

coming one of the most robust models. K-Nearest Neighbors and Decision Tree models showed

also good results, with the particularity that the out function was similar to a step function in

mathematics, with multiple values giving the same results, which can be very practical when

using these techniques to narrow down possibilities of possible simulations. Overall, the results

demonstrate that Machine Learning algorithms can be a powerful tool to be used as surrogate

models and can assist expensive models in their task as predictors. Of course, more experiments

and research are needed and some recommendations are suggested to continue this research.
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Chapter 1

Introduction

This introductory section presents the context, background, and motivation for this thesis prob-

lem, followed by a description of the objectives pursued. In addition, the work’s scope and lim-

itations are presented, as well as the approach used to solve the objectives. Lastly, a structural

overview of the complete document is given.

1.1 Background

The massive use of computer simulations caused a revolution in all development fields, espe-

cially in engineering and design. Bundling implementations of material, mechanical and phys-

ical properties into a software package, simulating the desired aspects of a system, and per-

forming the tests and experiments virtually greatly decreased the cost of researching and in-

creased the efficiency of the outcomes. This radical decrease in the number of prototypes or

physical experiments needed to be able to validate any new ideas in conjunction with the pos-

sibility of simulating thousands of attempts with a small fraction of the resources invested was

a major achievement accomplished in the 90s. However, their computational cost grew enor-

mously as simulation software became more accurate and gained precision over the last years.

This growth of the computational virtual cost was, in fact, faster than the growth of the physical

power of computers and, in consequence, produced very slow and lengthy simulations for very

detailed and powerful models, even in high-performance environments (regarding computa-

tional power). These results are due mainly to the never-ending drive for finer time scales, more

detail, and general algorithmic complexity. For instance, the simulation of climate situations

can take several hours to complete [7], and a computational fluid dynamics (CFD) simulation

of a cooling system can take days to complete [18], not even mention particle simulations in the

field of micro and nanomechanics. Considering all the previous context, nowadays we face a

new type of problem. The use of this computationally expensive simulation for evaluation with

intensive tasks such as optimization and sensitivity analysis has become impractical and should

2
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be avoided. The actual demand for virtual experiments for modern product development pro-

cesses can get out of control due to fine resolution and detail and to counter this enormous cost,

an additional layer of abstraction between the complex system in the real world and the engi-

neer was proposed, more specifically between the simulation and the engineer. Rather than

interacting directly with the simulator, a cheaper approximation is constructed. The possible

solution is surrogate models, meta-models, or emulators [49].

Surrogate models offer an enticing data-driven approach to achieve analogous objectives

as simulations in various applications, such as design space exploration, optimization, visual-

ization, or sensitivity analysis, while upholding predetermined quality standards and require-

ments. The fundamental concept behind surrogate modeling involves constructing a globally

accurate model across the entire design space, devoid of any involved parameters, while ab-

staining from explicit consideration of the underlying phenomena being represented, often

called black-box functions, because there is no interest in knowing what happens inside the

model but instead, the focus primarily lies on capturing the relationships between inputs and

outputs. Surrogate models or metamodels can be defined as the process of building mathemat-

ical models capable of capturing the input/output relationship of the simulation (or a previous

model), generating predictions for the value of the response functions faster than simulation

models [46]. Therefore, the metamodels seek to establish a cause-and-effect relationship be-

tween the input and output variables of the model. At this point is when the advances in artifi-

cial intelligence come to assist the generation of these kinds of solutions. In particular, with the

machine learning techniques and methods, since they are built as data-driven approaches just

the same way surrogate models are. The best of using machine learning is that the surrogate

models produced are not expensive at all. The whole process of producing a good surrogate

model is not an easy task by the results are promising. There are many examples of using ma-

chine learning for this specific proposes, but due to the multiple options existing these days,

there is still not clear how these methods perform generally, that is the reason to start with this

work and conduct a review of some applications to inspire a future work for a project master

thesis.

1.2 Objectives

The main objective of this master’s thesis is to investigate the performance of existing machine

learning algorithms to generate surrogate models for a simple model, as a representation of any

generic productive model. These surrogate models are a simple, neat, and cheap option when

detailed models, simulations, or experimentation are very expensive. The specific objectives set

to achieve the main objective can be summarized as follows:

1. To clearly explain the key concepts of modeling and surrogate modeling.
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2. To research Machine Learning algorithms and their use as surrogate models.

3. To train surrogate models for a simple model using different Machine Learning algorithms.

4. To measure the general performance of these surrogate models.

5. To establish guidelines and recommendations for the use of these algorithms in real ap-

plications

1.3 Approach

The thesis continues a specialization report called "Study on AI-based surrogate modeling tech-

nique and its efficiency in a production environment". The theoretical background is a summary

of that work that is based on an extensive literature review covering all the necessary topics.

Thus, some of the sections are taken from there. The sources used to assess the literature re-

view were books, articles, scientific papers, and, websites found with the engines such as ORIA,

Scopus, Science Direct, and Google Scholar.

The following research is an experiment performed in Python using a model developed by

the co-supervisor of this thesis, Siegfried Eisinger, from the company DNV. All the codes are

provided in the appendix and were developed by me to achieve this thesis’s objectives.

1.4 Scope & Limitations

The scope of the basic concepts of modeling and surrogate modeling are thoroughly reviewed

since they are the underlying base for the whole purpose of this study. The concepts and the

process are exposed even though is expected that the reader may have some basic knowledge

about it. On the other hand, Artificial Intelligence and Machine Learning concepts and topics

are only presented as their basis and mostly bounded to the specific matters of this thesis.

The research and experiment limitations come from the construction of the surrogate mod-

els. This is not a study on how to properly train and fit models but instead, find general lines,

patterns, or such to evaluate the performance of some of these techniques applied in the con-

structions of these emulators. Also, the number of techniques used, the performance metrics,

and the experiments’ ideas are narrow and, therefore, susceptible to being replicated, comple-

mented, or improved in further research and experiments.



CHAPTER 1. INTRODUCTION 5

1.5 Outline

This section serves as a quick guide for the thesis. It highlights the main sections and subsec-

tions that are covered, giving a clear understanding of the flow and progression of this work. The

following is the outline of this thesis.

• Chapter 1 - Introduction: This chapter presents the background and context of this thesis

in conjunction with the objectives and limitations.

• Chapter 2 - Theoretical Background: The state of the art is presented in this chapter. The

necessary knowledge of the topics of interest for the complete understanding of this work

is presented, mainly structured in modeling, machine learning, and some complementary

subjects.

• Chapter 3 - Research: The chapter presents the specific work and experiments. Describ-

ing the model of study, the problem, and the methodology used to tackle it.

• Chapter 4 - Results: This chapter shows the results obtained through the experimenta-

tion. It is divided into two experiments, and the machine learning technique groups the

results.

• Chapter 5 - Conclusions: This is the last chapter of the thesis. It summarizes the work

done and the conclusions withdrawn from it. Also, a section dedicated to the discussion

and recommendations for further work is added.

• Appendix and Bibliography: As with any other research, in the end, all the references

used and complementary information, such as code lines, are presented.



Chapter 2

Theoretical background

This chapter presents a series of concepts, methodologies, and a literature review of matters

necessary to know and understand to explore this thesis further. Some of the topics reviewed

are strongly limited or simplified to give only the necessary information and approach that this

study concerns and, therefore, should be considered this work objective as context for the use

of certain definitions outside this environment.

The chapter starts with the theory related to modeling to understand the following, and more

specifically, the topic of surrogate modeling. It continues with a small review of Artificial Intelli-

gence, machine learning, and examples of the different techniques used to create the surrogate

models. Finally, complementary topics are presented to provide the necessary information and

context to cover all actions performed in this research fully.

2.1 Modeling Theory

Modeling is an integral and indispensable component of all intellectual tasks. In simple terms,

scientific models serve as representations of reality, adaptable to varying levels of complexity

and detail. Depending on the context, these models are often described as simplifications or

abstractions of reality. In different fields, formal definitions of "modeling" and "model" may

vary to align with specific objectives and limitations, but they fundamentally share the same

core concept.

The scope of model applications is extensive. They are employed to depict realities imper-

ceptible to the naked eye, such as atoms and cells, and those that transcend human scale, like

planets. Models also aid in representing phenomena occurring at different speeds, ranging from

rapid lightning strikes to gradual erosion. Furthermore, models can even encapsulate potential

realities and ideas that have yet to materialize, such as weather forecasting.

The main objective of models is to use them to solve problems. Many of these problems are

6



CHAPTER 2. THEORY 7

too complex to be solved by commonsense rules of thumb or by intuitive reasoning, and the use

of words by themselves is only sometimes a satisfactory way of describing relationships. Models

reduce ambiguity because they describe complexity with the maximum parsimony [14].

2.1.1 Type of Models

Models are essential and common in many fields of knowledge. They can be found in many dif-

ferent disciplines of science, such as philosophy, communication, ecology, engineering, medicine,

etc., and can be classified in various ways. For simplicity, this thesis considers a basic approach

common approach for classification:

1. Iconic: These are also known as physical models, which are representations that visually

show what real things look at the physical and escalated representation of the target real-

ity.

2. Symbolic: These are mathematical models. They represent the entities and their relations

in terms of their functioning and mathematical functions and equations. Very often these

models consider time and space. These are the models this work is focused on for the

research chapter.

3. Analogue: These models are between the other two. They usually take a representation or

function from one model and apply it to another.

A formal definition used by John Jeffers in his modeling book [14], can describe in simple

terms a symbolic model, and it is the definition used for this work. The definition states:

"A model is a formal expression of the relationship between defined entities in physical or

mathematical terms"

An important point to clarify is that modeling is not a mathematics branch and therefore,

a purely theoretical task. Modeling is the application of logic and mathematics to reality. As a

result of this process, the formal expression, must be capable of predicting reality and be tested

against it [5].

2.1.2 The Modeling Process

Building a model in science resembles a scientific investigation. Thus, the starting point is the

definition and delimitation of a problem. Next, a sequence of different steps needs to be com-

pleted for the majority of the modeling projects. Some of these steps are usually repetitive and

cyclical due to the intrinsic fact of testing and confirmation activities involved. To illustrate the

process, Ian Cameron’s model development framework [11] is represented in Figure 2.1.
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Figure 2.1: Model development framework [11]

Problem and Model Definition

The starting point of any modeling process is the definition of a problem. It is key to clearly

articulate the problem subject to solve or the question trying to answer through the model. In

this step, understanding the objectives, scope, and requirements of the project is extremely im-

portant.

Model Conceptualization

The conceptualization of the model is one of the most important steps in the whole process be-

cause boundaries and assumptions are defined, and the systems, sub-systems, different phases,

and constraints of consideration are identified.

In this phase of the process is important to understand and criticize the assumptions of a

model from the circumstance that the most mathematically sophisticated member of the team

brings quantitative judgment to bear even on problems where the other team members under-

stand the workings of the system better [45].

Model Data Requirements

In simple words, every model needs data to be constructed. Even though this step is rather

simple to understand, this is one of the most challenging tasks to complete. Plenty of issues

to be identified and multiple considerations depend particularly on the on-process model (and
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the previous conceptualization step). Some examples are the inaccessibility of the data, which

will lead to experiments or simulation activities to generate it. Inappropriate data, due to poor

choices, carelessness on treatment, etc, may lead to disastrous outcomes. This concept is so

relevant in science in general that the expression "garbage in, garbage out" [33], which explains

the previous point, is very popular among all the disciplines in science.

Model Construction

This step refers to transferring the abstract description from the previous phases to something

tangible, through an appropriate tool or approach. The challenge, though, is to take the out-

come from the goal discussions and combine it with the model conceptualization and data re-

quirements to create a model that can encompass both the conceptualization and the objective.

Model Solution

This is the execution or run of the model. Most of the models are solved through numerical

methods. The most common methods are algebraic equations, differential equations, integrals,

hybrid systems, stochastic systems, time series, etc. [11].

Verification

This step refers to checking the implementation of the model and contrasting it against the orig-

inal or initial model. Simply put, to determine if the model developed accurately represents

the model concept output on the second step (model conceptualization) through comparison.

Thacker [48] defines this concept as a "debugging" activity. He explains how to carry out this

phase and addresses some possible implementation issues and ways to fix them. This review

needs to go further into these details.

Validation

Validation is a step closely related to verification, yet it is different. To start with an analogy the-

ories can be proved to be wrong but can never be proved to be right; therefore, there is always

a risk of false confidence in model-based outcomes. Models that can provide accurate predic-

tions of the performance of the corresponding real system for some restricted circumstances

do not mean that the model can give good predictions in all cases [38]. The validation process

requirement should establish the model’s predictive accuracy and underscores the key role of

uncertainty quantification in this process. A simple question to explain this stage proposed in

[11] is: "is the model a reasonable representation of the actual system?". Sensitivity analyses and

tests can be performed to ensure the quality of assumptions, inputs, parameters, etc., and vali-

date the model. Here the connection between the second and third steps is completely clear. If
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the model is not validated it is necessary to review the conceptualization and the data require-

ments.

Deployment and Maintenance

The final step in the modeling cycle is the deployment and posterior maintenance of the mod-

els. Some authors [11] [21] will indicate that this is the beginning of the model’s life. There

are a bunch of good practices to ensure a long and healthy life of models, but, to be consistent

with the scope of the thesis, this step represents the implementation of a verified and validated

model.

2.1.3 Computational Simulation and Modeling

Computer modeling has emerged as a powerful tool in various fields, revolutionizing how we

understand, analyze, and predict complex systems and phenomena. These techniques utilize

the computational power of computers to create virtual representations of real-world systems,

allowing researchers, engineers, and scientists to simulate and experiment with these systems

in a controlled and cost-effective manner. Simulation involves running the computer model

to replicate the behavior of the real-world system over time. Through simulation, it can be ob-

served how the system responds to different inputs, study its dynamics, and evaluate the impact

of various factors and variables. This allows for a deeper understanding of complex phenomena

that may be challenging or impractical to study directly in the real world.

Computer modeling and simulation find applications in diverse domains, including physics,

engineering, biology, economics, social sciences, etc. They enable scientists and engineers to

study intricate systems that were impossible before. The advantages of computer modeling and

simulation are numerous. They provide a controlled and repeatable environment for experi-

mentation, reducing the need for expensive and time-consuming physical prototypes or exper-

iments. They also offer the ability to explore various scenarios and "what-if" analyses, aiding in

decision-making processes and risk assessments. Additionally, computer models and simula-

tions can uncover insights and reveal hidden patterns that might not be immediately apparent

in real-world observations. One of the main motivations is that simulation eliminates approx-

imations. Usually, to treat a problem analytically one needs to resort to some approximation;

for example, a mean-field-type approximation. With a computer simulation, we can study sys-

tems not yet tractable with analytical methods. The computer simulation approach allows one

to study complex systems and gain insight into their behavior. Indeed, the complexity can go far

beyond the reach of present analytic methods[24]. Even with such a, there is an important limi-

tation: "you can program what you want but you cannot compute what you want" [37]. It’s clear
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that there is an important difference in the concept of programming and computing, and there

is always good to remember that computers are built machines with limitations; therefore, they

are not always capable of carrying out what is in our minds. However, it is crucial to acknowl-

edge that computer models and simulations simplify reality and inherently have limitations.

The accuracy and reliability of the results depend on the fidelity of the model, the quality of in-

put data, and the assumptions made during the modeling process. Validation and verification

techniques are employed to assess the credibility of the models and ensure that they capture the

system’s essential features accurately.

There is plenty of literature to go deep into this topic. Some interesting sources can be read

[36] [12] [24] [9] however the deepness of their work belongs to the computer science discipline

and the information and discussions presented on their studies are far from the scope of this

study.

2.2 Surrogate Modelling

Surrogate models are a special type of model. They are also called metamodels, emulators,

or response surface models. Surrogate models are Data-driven models. This means that the

models assume that absolutely nothing is known about the inner workings of the simulator. The

literature commonly uses the "black box" concept, where the information about the response

is collected from evaluations and the phenomena that happen inside are disregarded. Finally,

from these data, an approximation is derived.

To understand the development and importance of surrogate models it is important to un-

derstand how they become a solution. The introduction of computer simulations caused a rev-

olution. Simulating the desired aspects of a system and performing the tests and experiments

virtually drastically reduced the cost of prototypes, experiments, etc. However, as simulation

software became more precise and gained accuracy over the years, its computational cost grew

tremendously. The growth of computational cost was so fast that it had beaten the growth in

computational power, resulting in lengthy simulations on state-of-the-art machines and high-

performance computing environments, mainly due to the never-ending drive for finer time

scales, more detail, and general algorithmic complexity [12]. This is the problem that surro-

gate models try to solve. To this end, surrogate models can be considered a cheap alternative to

evaluate mathematical expressions that can replace the simulator (when this is very expensive).
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2.2.1 Formalism

As surrogate models are one of the main topics of interest in this thesis, it is appropriate to

formally define the surrogate modeling process. Equation 2.1 presents the formality. Where

given an expensive function f and a collection of data samples with corresponding evaluations

represented by D we seek to find an approximation function f̃ :

ar g maxt∈T ar g mi nθ∈Θ− Λ(κ, f̃t ,ν,D)

sub j ect to Λ(κ, f̃t ,ν,D) ≤ τ
(2.1)

κ represents an error function and τ the target value for the quality as expressed by the error

function, all under the operation of the model quality estimatorΛ. The quality estimator drives

the optimization of both the model type t out of the set of available model types T and its hy-

perparameters θ. Therefore, the choice of Λ is crucial to obtain a satisfying surrogate model at

the end of the process as it is the metric driving the search for θ. This often leads to requiring

several iterations of the process to obtain satisfactory results.

2.2.2 Approximation Models

Approximation-based models constitute the largest and most popular category of surrogate

models. The reason for the popularity of these approaches is mainly the benefits or advantages

that these category offers, which can be summarized in the next points [47]:

• Can be constructed without prior knowledge about the system of interest and provide

interpretability. By analyzing the surrogate model’s coefficients or feature importance,

insights into the underlying relationships and mechanisms driving the system’s behavior

can be obtained.

• They are mostly based on algebraic models integrated with optimization algorithms. This

integration allows for various optimization techniques (like gradient-based methods, or

surrogate-based optimization), to find optimal designs or parameter settings.

• They are very cheap or easy to evaluate. Using surrogate models can minimize the need for

expensive physical prototypes or extensive testing. This leads to significant cost savings

in research, development, and manufacturing processes.

• They are generic and thus easily transferable. These models can often be transferred to

similar problem domains or related systems, allowing for knowledge transfer and reuse

of modeling efforts. This adaptability and transferability make surrogate models valuable

tools in various applications.
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Regardless of the technique selected for the constructions of the surrogate model, most of

them can follow the flow shown in Figure 2.2. We can appreciate the similarities and differ-

ences with a classic flow or framework for models presented in the previous point in Figure 2.1.

Consider that these models are constructed from the training samples obtained from the high-

fidelity simulation model. The main stages for developing a surrogate model are described as

follows.

Figure 2.2: Generic surrogate model construction [34]

Design of Experiments

The design of experiments (usually abbreviated as DOE) is the first stage for constructing a sur-

rogate model. Is the strategy for allocating the training points into the space[34]. Typically, the

number of samples is limited due to budget. When the training data comes from computer

simulations, it’s commonly used the space-filling technique. The most common techniques

for space filling in DOE are factorial design factorial designs, random sampling, uniform grid

sampling, and Latin hypercube sampling. DOE is also a whole new subject of study, and plenty

of literature exhaustively covers this topic. To go deeper, some recommendations for review are

[15], [6], and [41].
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Data Acquisition

This step involves gathering the data that has been trained and generated during the preceding

phase.

Identification

This step defines and develops a model using approximation techniques or algorithms. In most

cases, determining the surrogate model parameters requires solving a suitably defined mini-

mization problem; however, in some situations, the model parameters can be found using ex-

plicit formulas by solving an appropriate regression problem [34].

Validation

This stage is to verify the model’s accuracy. Usually, the generalization capability of the surrogate

is of major concern [8]. The predictive power of the designs is not seen during the identification

stage. Consequently, the model testing should involve a separate set of testing samples. Main-

taining a proper balance between surrogate approximation and generalization (accuracy at the

known and the unknown data sets) is also of interest.

Those are the main stages for one iteration of constructing a surrogate model based on ap-

proximations. Specifically, a new set of samples and the corresponding high-fidelity model eval-

uations may be added to the training set upon model validation and utilized to re-identify the

model until the target accuracy is reached. This thesis presents a generic study mainly in the

Identification and Validation stages.

2.3 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is a discipline within the computer science field that aims to replicate

and develop human intelligence and its processes through computers. There is not a formal

agreement about the definition of this concept but in this study, we are not going to provide

any specific definition but adopt the general idea of it. Artificial Intelligence is a wide field of

knowledge dedicated to the design, modeling, and implementation of intelligent systems so

that they automatically give a response to complex problems arising in the real world. In this

regard, several subfields can be found in this broader paradigm. Machine Learning (ML) and

Optimization are the ones that stand out [50]. Furthermore, this study will focus on the Machine

Learning branch of the IA and how it is used for modeling.
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2.3.1 Machine Learning

Machine learning (ML) is currently widely used in many modern artificial intelligence applica-

tions. The breakthrough of the computation ability has enabled the system to compute com-

plicated different ML algorithms in a relatively short time, providing real-time human-machine

interaction and making multiple applications possible [13]. ML comprises those algorithms tar-

geted to extract knowledge from data, relying on fundamental concepts in computer science,

statistics, or probability. Apart from that, ML goes one step further, being capable of unveiling

additional features from the data, such as causality or advanced cognitive reasoning. Thus, ML

techniques are meant to properly represent raw data featuring experience and render it into a

model able to gain insights and make either decisions or predictions. ML is closely related to

data mining, although the latter fundamentally concentrates on exploratory analysis, while the

former draws upon other artificial intelligence disciplines such as computational statistics or

pattern recognition [50].

All machine learning algorithms have 3 main components: the data, the model, and the loss

function.

The Data

Arguably the most important of the components for an ML method. The collection of data

points or data sets is singular points which are atomic units of “information containers”. This

collection of points could be everything of interest. As there are no restrictions for the types

of data, one practical requirement for a useful definition of data points is that we should have

access to many of them. Many ML methods construct estimates for a quantity of interest (such

as a prediction or forecast) by averaging over a set of reference (or training) data points. [30].

Another requirement is the number of features contained in the set. A feature is any variable

used to define every individual point. If the sample size is called m and the number of features

n, the behavior of ML methods often depends crucially on the ratio m/n. The performance of

ML methods typically improves with increasing m/n. As a rule of thumb, we should use data

sets for which m/n >> 1.

The Model

Practical ML methods can search and evaluate only a (tiny) subset of all possible hypothesis

maps. This subset of computationally feasible (“affordable”) hypothesis maps is called the hy-

pothesis space or model underlying an ML method. The preference for a particular hypothesis

space often depends on the available computational infrastructure available to an ML method.

Different computational infrastructures favor different hypothesis spaces. ML methods imple-

mented in a small embedded system might prefer a linear hypothesis space, resulting in algo-
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rithms requiring a small number of arithmetic operations.[30]. As an informal objective, and

the way ML is strongly connected with surrogate modeling, can be represented as shown in

equation 2.2.

y ≈ h(x) or y ≈ ŷ (2.2)

where the ML will learn a hypothesis map h : X −→ Y with X features and Y labels (x ∈ X and

y ∈ Y ).

The Loss Function

The loss function, also known as the cost function or objective function, is implemented to an-

swer the question: Which predictor map out of all the maps in the hypothesis space is the best for

the ML problem at hand?. The value quantifies the discrepancy or error between the predicted

output of a model and the true target values in the training data. A small (close to zero) value

indicates a low discrepancy between the predicted label and the true label of a data point, which

is the desired target. It’s worth noting that different loss functions have distinct properties and

implications. Some loss functions may be more sensitive to outliers or have different gradients,

which can influence the learning dynamics and convergence of the model. Thus, understanding

the characteristics of different loss functions is crucial for designing effective machine learning

models. More details about this topic can be found in [30]. Still, essentially every method of ML

surrogate models has associated with a loss function and can change the performance of the

same algorithm [25].

2.3.2 Machine Learning Categories

Here are four classical main classical categories to classify Machine Learning algorithms based

on how the data is collected and the learning style applied to the model generation. These cat-

egories are:

• Supervised Learning

• Unsupervised Learning

• Semi-supervised Learning

• Reinforcement Learning

The next short definitions for these categories are taken from [50].
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Supervised Learning

In this category, labeled input data feeds a learning algorithm in the training phase. The model

or inferred function will be generated under the premise of minimizing an error function or, on

the contrary, maximizing the precision. These systems are intended to correctly map unseen

examples. Mostly addressed problems, in this case, are classification and regression

Unsupervised Learning

No label for any input vector is provided. In this case, the objective is to find the structure behind

the patterns with no supervisory or reward signal. These models analyze and deduce peculiar-

ities or common traits to discover similarities and associations among the samples. Example

problems are clustering and latent variable models.

Semi-supervised Learning

Labeled and Unlabeled instances feed the algorithm, falling between the previously mentioned

categories. The acquisition of labeled data is fairly expensive and often requires human skills

while unlabeled data can be of great practical value to surpass the performance of previous

learning approaches. The goal of this kind of system can be oriented towards transudative learn-

ing (deriving the labels of the unlabeled data by searching for analogies) or inductive learning

(inferring the mapping from initially labeled vectors to their corresponding categories).

Reinforcement Learning

In this last category, the system interacts with its environment by producing actions and receiv-

ing either a positive or a negative stimulus from the events in response. These stimuli prompt

the translation of that feedback into a learning process aiming at minimizing the punishment

or maximizing the gained reward. This sort of learning is typical of robotics and its realistic en-

vironments which require algorithms for identifying relevant peripheral events in the stream of

sensory inputs.

In addition to these categories, we can define 2 new categories, due to the latest technolog-

ical advances and the development of more complex and sophisticated paradigms. The inner

complexity of these new models, which try to represent complex knowledge is usually called

Deep Learning [32], and the newer ways for training a model via online and shared learning is

called Federated Learning [29].

Regardless of the categories of ML, there are two fundamental types of machine learning

problems: Regression and classification.
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• Regression Problems: Regression problems involve predicting a continuous or numerical

output variable. The goal is to model the relationship between input variables (also known

as features or independent variables) and the output variable. Regression techniques aim

to estimate the best-fitting mathematical function that describes the relationship between

the variables. Examples of regression problems include predicting housing prices based

on features like size and location, forecasting stock prices, or estimating sales revenue

based on marketing expenditures.

• Classification Problems: Classification problems involve assigning input instances to pre-

defined classes or categories. The goal is to learn a decision boundary or function to clas-

sify new, unseen instances based on their features accurately. Classification tasks can be

binary, where there are two classes (e.g., spam detection or disease diagnosis), or multi-

class, with more than two classes (e.g., image recognition or sentiment analysis).

In summary, regression problems predict continuous values, while classification problems

deal with assigning instances to predefined categories. The choice between regression and clas-

sification depends on the nature of the problem and the type of output variable you are trying

to predict or classify [26].

2.3.3 Machine Learning Techniques

Machine learning encompasses a wide range of techniques that allow computers to model through

data and make predictions or take actions without explicit programming. These models act as a

model of a model and thus can replace an expensive simulation model by approximating its in-

put and output responses [28]. A compact table can be found in figure 2.3 and it shows a sample

of techniques in parallel with DOE and fitting alternatives.

Some of the most commonly used machine learning techniques for constructing surrogate

models are presented in the next lines.

Linear Regression

This technique is often used where a surrogate system of interest is represented as a linear com-

bination of the variables. The general expression can be found in equation 2.3

f̂ (x) = w0 +
d∑

j=1
x j w j (2.3)

where x is a vector of size d , d is the number of variables and w is the vector of length d +1. To

obtain the weight vector, the sum of squared errors between the actual data and the surrogate

predicted value is minimized. Linear regression can often describe the behavior of functions
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Figure 2.3: Common DOE, ML and Fitting techniques used for surrogate models construction
[51]

over small ranges but eventually becomes too limited to describe data from real systems. The

most basic linear regression model (when X is dimension 1) is given by equation 2.4

f̂ (x) = b + a ×x (2.4)

Polynomial Regression

Polynomial regression is a statistical technique that uses regression analysis and analysis of vari-

ance to determine the relationship between design variables and responses. A linear polynomial

is used to approximate the implicit limit state equation. The surrogate model is defined in equa-

tion 2.5.

f̂ (x) =
k∑

j=1
β jν j (x) (2.5)

where β are the unknown coefficients and ν the polynomial functions. Once again, the param-

eters can be estimated by the least square solution of the system. The final expression of the

model is given by the equation 2.6 where the ϵ represents the statistical error.
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f̂ (x) = β0 +
n∑

j=1
β j x j +

n∑
i=1

n∑
j≤i

βi j xi x j + ... + ϵ (2.6)

Radial Basis Function

To start with this method, a radial function is one where the Euclidean distance between the

point to be measured and the sample point is used as the independent variable. Knowing that

a radial basis function is a model constructed via the linear superposition with radial functions.

In the equation 2.7 we have β as the vector of the model parameters and φ(x,c) as the radial

functions vector.

f̂ (x) =
k∑

j=1
β jφ(||x − c j ||) (2.7)

The calculation of the parameters is obtained with the solution of the equation shown in

equation 2.8 whereΦ is the matrix of p ×k with the entries defined as shown in 2.9.

λ = Φ+ f = (ΦTΦ)−1ΦT f (2.8)

Φk,l = φ(||ck − c l ||) (2.9)

Is worth mentioning that the radial function basis properties vary depending on the chosen

radial function selected φ(||x − c j ||). The most common ones are Gauss, Multi-quadric, inverse

Multi-quadric, and thin-plate splines functions. More details are found in reference [28]

Kriging

Kriging is based on the idea that a surrogate can be represented as a realization of a stochastic

process [10]. It is a special type of Gaussian process and in its most general form can be repre-

sented as follows (see 2.10).

f̂ (x) =
k∑

j=1
β j f j (x) + ϵ(x) (2.10)

In the expression, f j (x) are the k known independent functions that define the trend of the

location of x, as follows, β j are the unknown parameters and ϵ(x) the random error at location

x. The predictor is written as shown in 2.11:

f̂ (x) = f (x)Tβ∗ + r (x)Tγ∗ (2.11)

In the previous equation, β∗ is the vector of generalized least-square estimates of β, r (x) is
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the correlation vector (between ϵ(x) and ϵ(x j )) and γ∗ is given by the covariance matrix. Hav-

ing a random error term allows Kriging surrogates to provide an estimate of the uncertainty in

addition to the predicted value at a specific location.

Support Vector Regression Models

This form of the surrogate is similar to Kriging (see 2.3.3) and usually are referred to as SVR.

However, the way to calculate unknown parameters for this surrogate differs significantly from

that. The unknown parameters in the model are obtained by formulating a mathematical opti-

mization problem shown in 2.12 s.t. 2.13

mi n
1

2
|w |2 +C

1

n

n∑
i=1

(ζ+(i ) +ζ−(i )) (2.12)

w.xi +µ− y i ≤ ϵ+ζ−(i )

y i −w.xi −µ≤ ϵ+ζ+(i )

ζ+(i ),ζ−(i ) ≥ 0

(2.13)

Support Vectors regressions transform the input data into m-dimensional space and at-

tempt to construct a set of hyper-planes so that the distance from it to the nearest data point

on each side of the plane is maximized using kernel functions. The kernel functions to trans-

form the data into a higher dimensional feature space to make it possible to perform the linear

separation.[52] An approximate graphical representation can be found in figure 2.4

Kernel Ridge Regression Model

Kernel Ridge Regression (KRR) is a machine learning technique used for regression tasks. It is

an extension of Ridge Regression that incorporates kernel methods to handle nonlinear rela-

tionships between the input features and the target variable in a similar way that support vector

machine. KRR combines the strengths of ridge regression, which provides regularization to pre-

vent over-fitting, with the flexibility of kernel methods, which can capture complex patterns in

the data.

The goal is to learn a function that maps input features to the target variable. The resultant

function is a linear combination of basis functions transformed by a kernel function. The kernel

function is responsible for computing the similarity between pairs of input samples and plays a

crucial role in capturing nonlinear relationships[44].

This method includes the solution to overcome over-fitting or ill-posed problems in the re-

gression analysis is so-called ridge regularization, also known as Tikhonov regularization, in
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Figure 2.4: Representation of support vector regression [28]

which a ridge penalty term is imposed on the objective function in the optimizer to keep the

regressor coefficients under control. This leads to the classic ridge regression (RR) methods

which are commonly used in many regularization problems [35]. Given a finite training dataset,

the objective of a linear regressor is to minimize the following cost function:

ERR (w) =
n∑

i=1
(ϵ2

i )+ρ∥w∥2, (2.14)

where ϵi ≡ w T xi − yi . It can be shown that the optimal decision vector is:

w = [X X T +ρI ]−1X y = [S +ρI ]−1X y (2.15)

Gaussian Process

This non-parametric Bayesian technique provides the regression of the target function as a dis-

tribution over functions. This process uses a linear combination of inputs to predict the outputs.

To achieve the goal, the Gaussian process (GP) uses a kernel function as a measure of similarity

between points. Predictions are also characterized by a mean value and a standard deviation.

The mean values of the predictions are given by equation 2.16.
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f̂ (x) =
Nt∑
j=1

β j k(xi , x) (2.16)

k(xi , x) =σ2R(x −xi ) (2.17)

xi are the parameters used for the training and Nt is the total number of observations. β j

represents the weights (calculated with the knowledge of the kernel function) and k(xi , x) is

the kernel function of election to generate the covariance matrix. The kernel is expressed as

shown in 2.17, which leads to analysis R(x − xi ) as the correlation between the points and the

samples. There is not only one way to tackle this function, and in the figure 2.5 we can see some

of the most common functions. The θ are roughness parameters indicating the rate at which the

correlation between the output responses at the design point and the sample point. A maximum

likelihood method is used to estimate the parameters but, due to the difficulty of solving partial

derivatives, usually an optimization algorithm is the common approach to find the solution of

the method. The prior distribution is a GP in which the mean function is quadratic. When the

information at the five sample points is added to the GP, the posterior distribution of the design

space is obtained. The shaded areas in the prior and posterior distributions represent the 95%

confidence intervals. A graphic illustration is presented in 2.6.

Figure 2.5: Common correlation function types [28]
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Figure 2.6: GP model examples [28]

Decision Trees

The Decision Trees methodology works by dividing the dataset into small subsets that serve as

guides to develop the decision tree nodes. The nodes can be either decision nodes or leaf nodes,

where the former represents a question or decision, and the latter represents the decisions made

or the outcome. Decision trees continually split the dataset according to the parameters defined

in the decision nodes. Decision nodes have branches coming out of them, and each decision

node can have two or more branches. The branches represent the different possible answers

that define how the data is split [42].

To perform the prediction, once the decision tree is built, the model takes each instance and

follows the sequence that matches the instance’s features until it reaches a final leaf. According

to this, the classification process starts at the root node (the one on top) and continues along the

branch that describes the instance. This process continues until a leaf node is reached, which

represents the prediction for that instance

Random Forest

In a random forest regression, the response is obtained from a combination of the predictions

of several decision trees, which are trained on random subsets of the complete data set[19].

The decision trees are flowchart structures in which each internal node represents a "decision"

on a particular characteristic or attribute, and each branch represents a possible outcome of the

decision. The technique has become very popular for nonlinear regression, scaling well to many

input parameters and large amounts of data. It also allows for an inspection of the importance

of individual features in the results, which can be useful for interpretability. A graphical scheme
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can be found in figure 2.7

Figure 2.7: Random forest diagram

K - Nearest Neighbors

The k-Nearest Neighbors (KNN) is a nonparametric statistical algorithm [53]. This means that

there is no explicit training phase before classification. KNN algorithm uses the entire dataset

as the training set, i.e., it does not split the dataset into training and testing sets. KNN algorithm

assumes that similar entities exist nearby. In other words, similar entities have features that are

close to each other. Figure 2.5 shows similar data points that are close to each other. KNN al-

gorithm hinges on this assumption being true enough for the algorithm to be useful. KNN can

be used to predict loan approval, calculate credit ratings, speech recognition, handwriting de-

tection, image recognition, intrusion detection, etc. KNNs are used in real-life scenarios where

non-parametric algorithms are required. These algorithms do not make any assumptions about

how the data is distributed[20]. Figure 2.8 show a graphical representation of the KNN algo-

rithm.

Artificial Neural Networks

Artificial neural networks (ANNs) attempt to mimic the behavior of neurons in the brain. The

models consist of an input and an output layer that are connected by several hidden layers in

between [52]. For this project, ANNs can be considered as just another way of approximating

sampled model data to create a surrogate model, since this is a large area of research with mul-

tiple approaches. The basic component of any ANN is the neuron and these interact with each

other through different layers. The illustration shown in figure ?? can represent a neuron and
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Figure 2.8: Graphical representation of KNN classification

figure 2.10 the interaction they make. In those figures, wi represent the weights or regression

coefficients, β the bias of each neuron.

Figure 2.9: Basic structure of a neuron [34]

The construction of a neural network model involves the selection of its architecture se-

lection and the training, i.e., the assignment of the values to the regression parameters. The

network training can be formulated as a nonlinear least-squares regression problem. A popu-

lar technique for solving this regression problem is the error back-propagation algorithm.[34].

Training of a neural network refers to the process that identifies the values of the weights and
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Figure 2.10: Basic representation of a 3 layer ANN [28]

biases, for this maximum number of iterations, a maximum error threshold, and a maximum

training time are set. When any of these conditions are met, the training ends, and by com-

paring the training time, the number of training iterations, and the training error, it is judged

whether the trained neural network meets the established requirements.

The steps to implement a neural network[28]:

1. Neural Network initialization: The connection weights and thresholds of the input layer,

the hidden layer, and the output layer are randomly assigned values in the range of (−1,

1).

2. Input of sample data: The t-th sample data X t = (x t
1, x t

2, ..., x t
m) and the corresponding

output data Y t = (y t
1, y t

2, ..., y t
n) are extracted using a random method to fed the network.

3. Layer connection: The inputs and outputs of each neuron among the hidden layers and

the output layer are calculated using the connection weights and thresholds.

4. Training Error calculus: Using the expected and actual outputs, calculate the error for

each sample. The empirical formula is shown in equation 2.18.

E t = 1

2

n∑
k=1

(y t
k −ot

k ) (2.18)

5. Correction for the hidden-output: The error found in each neuron is used to correct and

adjust the connection weights and thresholds between the hidden and output layers. The
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following formula is used to continuously improve the weights of the output layer: (see

equations 2.19 and 2.20)

∆wk j = −η ∂E t

∂wk j
(2.19)

∂E t

∂wk j
=−(y t

k −ot
k ) f

′
(lk )c j (2.20)

where η is called learning efficiency, f
′
(lk ) is the partial derivative of the excitation func-

tion concerning the input lk to the output layer and c j are the output layer values. There-

fore, the adjustment of the weights is given by 2.21

wk j (t +1) = wk j (t )+∆wk j = wk j (t )+η(y t
k −ot

k ) f
′
(lk )c j (2.21)

6. Correction for the input-hidden: The iterative formula for adjusting the weights is the

same previous idea, but here the partial derivatives contain 2 functions. Thus, the final

equation for adjusting the weights is shown in 2.22.

w j i (t +1) = w j i (t )+∆w j i = w j i (t )+η(y t
k −ot

k ) f
′
(lk )wk j f

′
(b j )xi (2.22)

7. Continue the iteration: Random selection of one of the remaining samples within the

training data and repeat from step 3 until the training of N samples is completed. The

final error can be easily computed using the formula given in 2.23.

E = 1

N

N∑
t=1

E t (2.23)

2.4 Others

2.4.1 Functional Mock-up Interface

The Functional Mock-up Interface or FMI is a standard for exchanging dynamical simulation

models between different tools in a standardized format[16]. The intention is to simplify the

creation, storage, exchange, and (re-) use of dynamic system models of different simulation

systems for model/software/hardware-in-the-loop simulation, for cyber-physical systems, and

other applications. It is an open-source published under a creative commons license (Creative

Common Attribution-Share Alike 4.0 International). Currently, the latest version is 3.0 and it is

supported for more than 160 simulation tools [31].

Every model is distributed in a zip file with extension .fmu (functional mock-up unit) that con-
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tains:

• Model description, an XML file with the definition of the variables

• Functions, a set of all model equations, called C-functions,

• Extras, any kind of extra information, documentation, tables, maps, etc.

2.4.2 Computational Tools

Python language

Python is one of the most popular programming languages for data science and therefore en-

joys a large number of useful add-on libraries developed by its great developer and open-source

community [43]. Python is not a compiled language, meaning that it does not precompile the

code into binary. Instead, a software environment, Python interpreter, translates the script into

binary during the execution of the code in real-time. With its distribution, Python comes with

some basic functionality but relies on external packages to perform almost all numerical com-

putations. After the natural selection process over the past 10 years, a small set of packages that

provide some fundamental computing capabilities have received wide acceptance in the Python

community [22].

Sci-kit Learn

Scikit-learn is the most comprehensive and open-sourced machine learning package in Python.

As machine learning is often a component of a more general application (such as a Web service),

it is desirable to have it furnished using the same programming language as the other parts of

the application for seamless integration [40].

In summary, Scikit-learn includes a collection of efficiently implemented machine learning

methods and is well-documented and maintained by the community. However, readers should

also be aware that it is possible that Scikit-learn may not include some methods that are used

in specialized applications. As such, we recommend readers consider Scikit-learn as long as the

needed methods are available but look for other software for those methods not included. In the

next section, we will show some specific examples of how to use the machine learning methods

in Scikit-learn [22].

The Scikit-learn package covers four main topics related to machine learning. They are data

transformation, supervised learning, unsupervised learning, and model evaluation and selec-

tion. The details in each topic can be found in the user guide on the Scikit-learn website (see ref

[3].
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Figure 2.11: Pandas work scheme [39]

Pandas

Pandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data

structures and data analysis tools for the Python programming language. It provides fast, flexi-

ble, and expressive data structures designed to make working with “relational” or “labeled” data

both easy and intuitive. It aims to be the fundamental high-level building block for doing practi-

cal real-world data analysis in Python. It can read practicable all popular data files format (CSV,

Excel, SQL, JSON, parquet,. . . ) and present them into a neat framework. Similarly, it can save

data in the same multiple file extensions. A small structure can be found in figure 2.11

Pyplot and Seaborn

Pyplot and Seaborn are Python data visualization libraries based on matplotlib. It provides a

high-level interface for drawing attractive and informative statistical graphics. A brief descrip-

tion of each one is stated:

• Pyplot provides a MATLAB-like interface for creating various types of plots, charts, and

figures. Pyplot offers a wide range of functions and methods to customize plots, control

axes, add labels, titles, legends, and more. It is a versatile library used for creating basic to

advanced visualizations and is well-suited for scientific and technical plotting.

• Seaborn provides a higher-level interface for creating attractive and informative statistical

graphics. Seaborn simplifies the process of creating complex plots, such as scatter plots,

line plots, bar plots, box plots, heatmaps, and more. It offers various built-in themes,

color palettes, and statistical functionalities to enhance the visual representation of data.

Seaborn is particularly useful for exploratory data analysis and visualizing relationships

and distributions in datasets.

More details can be found on their web pages [2] and [4]
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FMPy and PythonFMU

FMPy is a free Python library to simulate Functional Mock-up Units (FMUs). It supports FMI 1.0

and 2.0 and the Co-Simulation and Model Exchange features. Also, it has a graphical user inter-

face that facilitates the work with simulations [1]. It has been developed at Dassault Systèmes

and released under the BSD 3-clause license.

PythonFMU is a lightweight framework that enables the packaging of Python3.x code as co-

simulation FMUs. The framework consists of a set of helper classes and a command line utility

for transforming compliant Python sources into ready-to-use cross-platform FMUs [23].

2.4.3 Error Measurements - Metrics

When evaluating regression models, it is important to consider the specific context and re-

quirements of the problem. Different metrics have different strengths and weaknesses, and the

choice of evaluation metric depends on the specific goals and characteristics of the regression

task at hand [17],[27]. Some of the most popular metrics can be used to assess their performance

and in this thesis, the focus is on the metrics for regression problems, therefore, classification

metrics are not covered.

Coefficient of Determination or R2

It represents the proportion of variance (of y) that has been explained by the independent vari-

ables in the model. It provides an indication of goodness of fit and therefore a measure of

how well-unseen samples are likely to be predicted by the model, through the proportion of

explained variance. It indicates how well the model fits the data, with higher values (closer to 1)

indicating better fit. Equation 2.24 shows the estimated calculus of the coefficient.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳi )2

(2.24)

Mean Absolute Error

Mean Absolute Error, often also called MAE, is a risk metric corresponding to the expected value

of the absolute error loss or l-norm loss. It calculates the average absolute differences between

the predicted values and the true values. It provides a measure of the average absolute deviation

of the predictions from the actual values. The formula for its calculation is shown in equation

2.25.
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M AE(y, ŷ) = 1

nsamples
×

nsamples−1∑
i=0

|yi − ŷi | (2.25)

where ŷi is the predicted valued of the i -th sample and y is the true value.

Mean Squared Error

Mean Squared Error or MSE, is the average of the squared differences between the predicted

values and the true values. It provides a measure of the average squared deviation of the pre-

dictions from the actual values. Lower MSE values indicate better model performance. It is very

similar to MAE but this measurement is more sensitive to outliers. Equation 2.26 shows the

formula.

MSE(y, ŷ) = 1

nsamples
×

nsamples−1∑
i=0

(yi − ŷi )2 (2.26)

Median Absolute Error

The Median Absolute Error is particularly interesting because it is robust to outliers. The loss is

calculated by taking the median of all absolute differences between the target and the predic-

tion, in other words, it calculates the median of the absolute differences between the predicted

values and the true values. The metric is calculated as equation 2.27 shows.

Medi an Absol ute Er r or (y, ŷ) = medi an(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn |) (2.27)

Max Error

The Max error calculates the maximum residual error, which means, it finds the largest differ-

ence between the predicted value and the true value. It serves as a measure of the worst-case

error encountered by the regression model. In an ideal scenario where the model perfectly fits

the training set, the Max Error would be 0. This metric provides valuable insights into the extent

of error exhibited by the fitted model. The equation 2.28 shows the formality of its calculus.

M ax Er r or (y, ŷ) = max(|yi − ŷi |) (2.28)



Chapter 3

Research

This research chapter aims to show the investigation of the performance of different machine

learning algorithms as surrogate models. The research’s methodology involves the construc-

tion of surrogate models using a range of machine learning algorithms, which are, support vec-

tor machines, Kernel Ridge, Decision Trees, and Gaussian Processes from a simple simulation

model that will represent a productive process. The performance of these surrogate models is

evaluated using some performance metrics, including accuracy and robustness. The findings

of this study provide valuable insights into the performance of machine learning algorithms in

surrogate modeling and offer guidance on the selection of appropriate algorithms, methods,

and considerations for general engineering applications or production processes.

3.1 Model of Study

The constructions of surrogate models need a prior model to be based on. For this purpose, a

model that simulates the trajectory of a simple ball that bounces in the earth with the possibility

to set energy loss during bounce and energy loss from drag was chosen. The model selection was

based on its simplicity, prior knowledge of the physics involved, and the possibility of gathering

as much data as needed without expending a huge amount of resources.

This particular model was developed by Siegfried Eisinger from DNV company, co-supervisor

of this work. It is written in Python and built it using FMU standards with the help of PythonFMU

and FMPY libraries. The whole code for the model can be found in the appendix. It is important

to mention once again that this model tries to act as a symbolic representation of a productive

process.

The model needs a set of initial values, also known as parameters, to perform the simulation.

These parameters have to be given to the model as initial values. The list of the parameters is

following:

33
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• Height y0 : Represents the ball’s height at the simulation’s beginning. Also considered as

the vertical distance. It has dimension [m].

• Velocity v0 : The ball’s total velocity at the simulation’s beginning. Also called speed. It has

dimension [m/s].

• Angleα0 : Represents the initial angle of the velocity regarding the horizontal axis. It is set

in degrees.

• Bouncing Factor B f : Represents the speed change factor while the ball bounces. It has

no dimension and can be considered as a multiplicative energy factor during the bounce.

• Drag Factor D f : Represents the drag deceleration factor. It has dimension [1/m].

Given the initial parameters, the model will simulate the behavior of the ball, tracking the

following variables:

• Horizontal distance x : Keeps track of the ball’s position on the horizontal axis.

• Vertical distance y : Keeps track of the ball’s position on the vertical axis.

• Horizontal speed vx : Keeps track of the velocity or speed on the horizontal axis.

• Vertical speed vy : Keeps track of the velocity or speed on the vertical axis.

• Time t : Keeps track of the time in the simulation.

The model will simulate the trajectory of a ball thrown with the initial parameters and reg-

ister the tracking variables at every time step (in this setup every 0.04[s]). Figure 3.1 shows an

example of the output of one simulation generated with initial parameters: y0 = 0, v0 = 3, B f =
1, D f = 0 and α0 = 45o . On the horizontal axis, the movement is a Rectilinear Uniform Motion,

due to a constant vx (drag=0), and Uniform Accelerated Motion in the vertical axis, due to a

constant slope in vy . Also, it is easy to identify when the ball bounces because the vy describes

a sudden change from a negative value to a positive (direction of the motion). Those times also

correspond with the variable y reaching a value close to 0.

3.2 Definition of the problem

Now that the model is described and known, the next step is to define the particular objective

of this experiment. Taking into consideration that the main objective of this study is to assess

the performance of machine learning algorithms as surrogate models generally and not find-

ing the best algorithm or parameters optimization to fit the surrogate models for a particular
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Figure 3.1: Graphical output of one simulation of the model of study
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model, the problem cannot be only to predict some results but to work with these predictions.

The problem of this research is, therefore, as follows:

"To build a surrogate model that helps to find the angle that maximizes the horizontal dis-

tance traveled by the ball before its first bounce, given a set of initial parameters".

This problem is suitable for this study mainly for two reasons. The first one is because it

represents a problem that the original model cannot solve on its own unless that iterate and

perform multiple simulations. Given the assumptions that are carrying out simulations, it may

result in expensive either in terms of time and/or resources involved the alternative solution

is to construct a surrogate model that is able to produce similar results inexpensively, in this

particular case, using the help of artificial intelligence.

The second reason is the link between this and a potential future problem in a productive

environment. For instance, it can be imagined as the parallel with a model that simulates a

productive plant under a certain configuration that looks for the production optimization for all

the possible configurations of variables.

3.3 Methodology

Now that the model subject of study is clear and the problem is defined, the next lines describe

the general methodology of the study of this thesis. It consists in an experiment that mixes

classical experimentation with artificial intelligence tools, so logically, the methodology starts

with the design of the experiment, followed by the machine learning preparation and finalizing

with the analysis of the results.

3.3.1 Design of the Experiment

The first phase of the thesis methodology is the experiment design. This has been done based

partially on the Design of Experiments methodology to keep formality and give a robust base on

the thesis results.

Problem Definition

As it is mentioned in the previous section, the problem to solve is to build surrogate models that

can emulate the behavior of a more complex model and use the outcomes to optimize another

certain task. To achieve this, it is necessary to establish the variables involved.
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Figure 3.2: Terminal Simulation Error with α0 = 0

Factor Definition

Following the Design of Experiments methodology, it is necessary to identify the factors, or inde-

pendent variables, involved. This particular model has five variables that can be considered for

the study. Nevertheless, it has been decided to work only with three. Three factors are enough to

find interactions or interference among them but still not too many to require extensive analysis

that may lead to wrong conclusions. In addition, three variables allow using graphical tools to

visualize the outcomes.

Since the Bouncing Factor (B f ) does not interfere with the objective of this study, because

the useful data will be only until the ball reaches its first bounce, it is immediately the first factor

to stay off the study. This variable was set as 1 and it is mentioned for control purposes only.

From the rest of the variables, the Height was selected to remain constant and equal to 0

(y0 = 0). The reason for this decision is purely convenience since from the theory it is well known

that without the consideration of any drag forces, D f = 0, we know that the angle that maximizes

the distance is 45o for any velocity values, so it is easy to establish a control output with these

parameters.

Consequently, the factors that are considered in the study are the Velocity, Drag Factor, and

Angle.

Level of the Factors

The next step is time to define the level of the selected factors. Starting with the Angle factor the

levels chosen range from 1o to 90o . This decision is supported by the objective defined and the

factors decision. The lower value is 1 because the model does not support α0 = 0 while y0 = 0.

It does not run. Figure 3.2 shows the terminal output. This behavior corresponds with reality

because the ball will never bounce due to its starting position at 0 and no vertical speed. The

maximum value was chosen as 90o because from that value the vertical movement is symmetric

to the previous ones (sin(90−x)o = sin(90+x)o ∀x ∈ [0,90]) and the horizontal movement only

changes direction thus, in combination, these values will provide only redundant information.

For the Velocity and the Drag Factor the range of the values were chosen arbitrarily. There are
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no other criteria for the selection other than maintaining the common idea of having positive

values. For the Velocity factor, the the range from 1 to 5 [m/s] was chosen; for the Drag Factor

factor, the range level was 0 to 30 [m−1].

Response Variable Definition

Since the study’s objective is to find an angle that maximizes the distance traveled, it is evident

that the response variable has to be the horizontal distance x.

Experimental Data Collection

The experimental design type chosen for collecting the data is the uniform grid sampling or lev-

eling experimental design. In this, the levels of the factors are chosen such that the experimental

points are uniformly spaced along the range of the factors. This allows for better estimation of

the response between the levels of the factors and reduces the possibility of extrapolation errors.

One simulation with the combination of the following parameters was carried out to gather

the initial data.

1. Height y0 = [0]

2. Bouncing Factor B f = [1]

3. Velocity v0 = [1,2,3,4,5]

4. Drag Factor D f = [0,5,10,15,20,25,30]

5. Angle α0 = [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90]

3.3.2 Machine Learning set up

This machine learning problem lies in the category of Supervised Learning because it involves

labeled data. This means the algorithms learn to map input data (that include the factors) to

predict output using the "labeled training dataset" obtained from the experimental data collec-

tion. Further on identifying the task, the surrogate models must predict the variable numerical

value, therefore, a regression algorithm is applied.

The programming language used is Python, and some libraries were used to facilitate the

coding. Scikit-learn is the library used for the artificial intelligence approach, allowing the ap-

plication of machine learning algorithms and training models easily. Pandas is the library for

data manipulation and Seaborn with Matplot.Pyplot for creating the graphics.
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Machine learning Algorithms

Scikit-learn has implemented several methods under the supervised learning regression cate-

gory. In this study, only five of them are implemented. The models used are listed as follows:

• Kernel ridge regression (KRR)

• Support Vector Machine regression (SVM)

• Neighbors-based regression (KNN)

• Gaussian Processes for regression (GP)

• Decision Trees applied to regression (DT)

All linear algorithms were set aside due to their limitations regarding the prediction of nonlinear

processes.

Training

The basis for the Machine Learning algorithms is the necessity of data to be trained and tested,

also called dataset. In this experiment, to construct the dataset, a simple approach was taken

and the steps used to obtain it were the following:

1. Perform the simulations for every combination of the parameters established in the ex-

perimental data collection. During this step, three combinations (α0 = 5, v0 = 1 and

D f = 20,25,30) failed to run due to model limitations regarding step size, so 627 files with

data were generated.

2. Run an algorithm to find the line position when the variable vy (vertical speed) changes

its direction (changes from a negative value to a positive one) and the vertical position y

is very close to 0. This indicates the first bounce.

3. Take the values of the line that contains the first bounce, add the correspondent fields of

the initial parameters, also called factors in the experiment, and add it to a new file, the

dataset.

The full code can be found in the appendix. Figure 3.3 shows the head of the Dataset gener-

ated. It has all the tracking variables during the first bounce for the setup of the five parameters.

In addition, data frames normally have an index column (’Unnamed: 0’ in this case) but are not

relevant to this work. The last step before training is splitting the information into the input

variables (columns with the factors) and the output variable i.e. column x.
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Figure 3.3: Original dataset overview

3.3.3 Analysis of the Results

The last phase in the methodology is to explain how to analyze the results. The procedure to

analyze the results starts with comparing multiple models for each machine learning method-

ology, studying their performance through different sets of values. Then a comparison of the

best of each model identifies its strength and weaknesses.

For the selection of the best models, two approaches are used. Graphical analysis in con-

junction with a mathematical comparison of the errors of each model. The metric used for ac-

curacy purposes is the Mean Absolute Error (MAE), and for robustness, is the Median Absolute

Error.

The reasons for choosing MAE as the accuracy indicator are:

1. Robustness to outliers: MAE is less sensitive to outliers than MSE, and since the experi-

ments are not focused on optimizing the models is better to use this metric.

2. Intuitive interpretation: MAE provides a clear interpretation of the average error magni-

tude.

3. Simplicity: MAE is a straightforward metric, easy to understand and also is computation-

ally more efficient since it does not involve squaring the errors.

The reasons for choosing Median Absolute Error as the robustness indicator are:

1. Robustness: This is the least sensitive measurement to outliers that every other metric for

regression in the Scikit learn package.
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2. Insensitivity to error magnitude: is insensitive to error magnitudes and only considers

their relative ordering. This property can be desirable in situations where the exact mag-

nitude of errors is less important than their rank or order.

3. Intuitive interpretation: Similar to MAE, the Median absolute error provides a clear inter-

pretation of the typical size of errors made by the model.



Chapter 4

Results

In this chapter, we will delve into the results obtained from the data analysis, which was con-

ducted by the established methodology outlined in the preceding chapters, by organizing and

comparing the outcomes of every model. These findings will contribute to the existing knowl-

edge in the field and offer insights for future investigations.

The presentation of results will be structured logically, starting with the comparison of mod-

els trained with the same methodology but different hyperparameters and their performance

as surrogate models with the same configurations as the dataset and after the same compari-

son with different configurations. Subsequently, the results obtained from each experiment will

be presented, accompanied by appropriate visual aids, such as tables and graphs, to facilitate

comprehension and enhance the clarity of the findings.

Ultimately, the results chapter aims to provide a comprehensive understanding of the em-

pirical evidence generated from the study. It is the foundation upon which subsequent discus-

sions, interpretations, and conclusions are built, enabling others to draw inferences and make

informed decisions based on the study’s outcomes.

4.1 General performance with the same level of factors as the

trained

Subsequently, the results obtained from each experiment will be presented, accompanied by

appropriate visual aids, such as tables and graphs, to facilitate comprehension and enhance the

clarity of the findings. It is expected that the surrogate models should be able to predict relatively

well since the points are very close to the original data. In the experiment, a prediction of the

distance x for every 1-degree angle is performed to catch how the different algorithms perform

extrapolating the points. (trained data only has responses for every 5 degrees). The conditions

for the first comparison, in consequence, are the following:

42



CHAPTER 4. RESULTS 43

1. Height y0 = [0]

2. Bouncing Factor B f = [1]

3. Velocity v0 = [1,2,3,4,5]

4. Drag Factor D f = [0,5,10,15,20,25,30]

5. Angle α0 = [1,2,3, ...,88,89,90]

This experiment is addressed as "First Comparison" in further references.

4.1.1 Support Vector Machine Regression Models

One of the main characteristics of SVM regression is that it is less sensitive to outliers than other

regression methods. This feature will affect the performance in this experiment since the data

does not contain natural out layers or noise. In addition, careful tuning of hyperparameters is re-

quired, especially the regularization parameter (denoted C) and the kernel function, which can

affect the performance of the model. Since this is not a thorough study of how to properly fit a

model only general advice was used to select the hyperparameters. Two are the most important

hyperparameters that need to be decided. For the kernel, the choice was Radial Basis Function

(RBF), since linear kernels were discarded due to the nature of the process itself (it is known a

priory that a ball trajectory with acceleration is not a linear behavior) and also polynomial ker-

nels are more computationally expensive. Then, following the literature recommendations, the

C hyperparameter is set between 10−3 and 103, allowing the training of seven different models.

Figure 4.1 shows the results of predicting the seven models for the parameters

It can be appreciated that models with the lowest C value (see pink and brown points) tend

to stay very linear, since they are more tolerant of errors and allow more points to surpass the

margins. On the other extreme, the blue and orange points, which represent the models with the

highest value of C show curves that, in some cases, are very accurate in comparison to the real

model, for example in the cases with D f = 0 but in other are completely far from the original

model behavior. This can easily be spotted on D f = 15 and lower speeds in which the models

behave opposite, presenting a "U" shape.

On the numerical analysis, it is no surprise that the models with high C values obtained the

lowest value of mean absolute error value. In fact, the higher the C value on the model, the lower

the error is. Nevertheless, analyzing the median absolute error results, the models with the best

score, i.e., the lowest value of error, change. These results indicate that the most accurate model
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Figure 4.1: Performance of SVM regression models, first comparison
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is the SVR(C=1000) but is the second worst in robustness and the model SVR(C=0.1) is the most

robust but the third worst in accuracy.

Figures 4.2 and 4.3 show the mean absolute error and the median absolute error values of

the models. The graphical and numerical analysis combination suggests that these SVM models

do not surrogate properly the original model in this first comparison experiment.

Figure 4.2: Mean absolute error for the SVM models, first comparison

Figure 4.3: Median absolute error for the SVM models, first comparison

4.1.2 Kernel Ridge Regression Models

Similar to SVM, Kernel Ridge Regression (KKR) also is based on a kernel function that aims to

find a higher dimensional space to map the data and applied ridge regressions in that space.

Computationally speaking, is less expensive than SVM based on the algorithms needed to train

models. The same criteria apply in this set of models for the election of the kernel, a Radial

Basis Function (RBF), and the regularization parameter in this methodology is called alpha and

also is the most important hyperparameter. In this opportunity, the hyperparameter gamma

that determines the weighting of every point was set with the value 0.1 to reduce the risk of

overfitting and, once again, is one of the general tips found in the literature. Figure 4.4 shows

the graphical results of the different KRR models.

The graphical analysis for the models evidences the behavior of the different models and

compares them with the behavior of the original model. Similarly to the SVM regression models,
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Figure 4.4: Performance of KR regression models, first comparison

the models with more strict regularization parameters tend to predict better. KR(alpha=0.01)

and KR(alpha=0.1) seem to represent in a good way the original model and keep it constant

through the different levels of the factors. Furthermore, reviewing the mathematical scores of

the errors, the same models present lower values in accuracy and robustness. The figures 4.5

and 4.6 show the mean of these values and indicates a great performance of these models to
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surrogate the original.

Figure 4.5: Mean absolute error for the KRR models, first comparison

Figure 4.6: Median absolute error for the KRR models, first comparison

4.1.3 K Nearest Neighbors Regression Models

The next set of models to analyze is the K Nearest Neighbors technique. One of the peculiarities

of this methodology is that is a non-parametric algorithm. It makes predictions by finding the

"K" closest data points (also called neighbors) in the training set to a given test data point and

using their average (or weighted average) value as the predicted output. A very simple algorithm

that is mainly used for classification problems, but in this case adapted to predict a numerical

value.

The only hyperparameter needed to build a KNN model is ’K’, which indicates the number

of neighbors to be considered. In Scikit Learn, this parameter is called ’n’. In this work, four

different models were trained, with n = {3,5,7,10}. By default, the ’n’ is set by 5 in Scikit Learn,

so in the figures usually, this model only shows KNeighborsRegression().

Figure 4.7 shows the behavior of the model, and it can be notated that these models can

consistently represent the behavior of the original model, however for some of the combinations

of variables the models with the largest K value (blue and orange on the figure) tends to present

a slightly chaotic behavior and scatter away from the rest. For instance, Figure 4.7 for D f = 5 and

V = 5. There is also an interesting behavior where all models tend to overestimate the distance

traveled for smaller velocities and sub-estimate for higher velocities. This lead to thinking that

the best estimations are done for the middle ground level of the factors.

The figures 4.8 and 4.9 that show the error scores, confirm that the model KNeighborRegres-

sor(n=3) is the most accurate and robust of the four trained which seems consistent with the

graphical analysis.
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Figure 4.7: Performance of KNN regression models, first comparison
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Figure 4.8: Mean absolute error for the KNN models, first comparison

Figure 4.9: Median absolute error for the KNN models, first comparison

4.1.4 Decision Trees Regression Models

Decision trees are another technique mainly used for classification problems but can also be

extended to predict numerical values in their regression form. There is only one important pa-

rameter for the algorithm to be indicated and it is the ’max depth’, which indicates the maximum

amount of nodes that the model should create. By default, this value is blank, which indicates

that the model reaches all the possible branches. In conjunction with the default model, the

other four models were trained with "max depth"= 2,5,6,10 to compare outcomes. Figure 4.10

show these outcomes.

As expected, lower "max depth" models seem very limited in their ability to predict accu-

rately, in contrast, the model with no restriction tends to follow very closely the behavior of

the original model simulations in all of the level combinations. Once again, these observations

are corroborated with the error values presented in figure 4.11 and figure 4.12 where the values

of both types of errors decrease while the max depth increases, reaching practically 0 error for

the unrestricted model. This is not a major surprise, due to this algorithm including the points

trained as outcomes, defining the branches.

4.1.5 Gaussian Processes Regression Models

The last method of machine learning to compare is the Gaussian Process (GP). As stated in the

theoretical background, this algorithm provides a non-parametric approach that models the

distribution over functions rather than explicit function approximations which allow for han-

dling complex relationships and provides uncertainty estimates for predictions.

Training a GP model is challenging since choosing the kernel, also known as the covariance
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Figure 4.10: Performance of DT regression models, first comparison
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Figure 4.11: Mean absolute error for the DT models, first comparison

Figure 4.12: Median absolute error for the DT models, first comparison

function or correlation function, is crucial when using Gaussian Processes. The kernel deter-

mines the assumptions about the underlying data and the functional relationships between

input variables. The selection of an appropriate kernel depends on the specific problem do-

main, the nature of the data, and the desired characteristics of the GP model. The choice of

kernel should be guided by the characteristics of the data, such as smoothness, periodicity, lin-

earity, and prior knowledge about the problem. In practice, it is often beneficial to try multi-

ple kernels and select the one that yields the best model performance through techniques like

cross-validation or marginal likelihood optimization, nevertheless, that work requires substan-

tial knowledge and experience working with GP and it is outside of this thesis objective. There-

fore, in this experiment the GP models trained were using 3 different kernel functions indepen-

dently: Radial Basis Function or RBF, Dot Product, and Rational Quadratic. Figure 4.13 shows

the outcomes of these models.

The models with RBF and Rational Quadratic kernel mimic the behavior of the original

model very consistently, only with a small variation for small angles, where the Rational Quadratic

Model tends to deviate from predicting higher values than the original model simulations. On

the other hand, the pure dot product kernel has a very low attachment to the original. This was

expected due to its nature as a covariance function and specialization in capturing linear rela-

tionships.

The error values, confirming the graphical analysis, show values near 0 for both of the mod-

els, but if it only considered the magnitude of these results the best model, in terms of accuracy

and robustness is the rational quadratic model, an unexpected result considering the graphical

observations done regarding the prediction of this for smaller angles for all factor combinations.
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Figure 4.13: Performance of GP regression models, first comparison
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The detailed values of the Mean and Median Absolute Errors can be found in figures 4.14 and

4.15 respectively.

Figure 4.14: Mean absolute error for the GP models, first comparison

Figure 4.15: Median absolute error for the GP models, first comparison

4.2 General performance with an interpolated level of factors

For a second experiment, the levels of the factors differ from those used for training. The original

model simulated all the combinations for the middle points on the factor levels than the original

dataset. This means that the data to compare results was carried out with the following values:

• Height y0 = [0]

• Bouncing Factor B f = [1]

• Velocity v0 = [1.5,2.5,3.5,4.5]

• Drag Factor D f = [2.5,7.5,12.5,17.5,22.5,27.5]

• Angle α0 = [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90]

For references purposes, this comparison is addressed as "Second Comparison" and the

same patterns of analysis in the previous comparison are used here, which means that the mod-

els are predicting outcomes for the same factor levels listed before, but for every 1 whiting the

range of the angle level, i.e:

• Angle α0 = [1,2,3, ...,88,89,90]
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4.2.1 Support Vector Machine Regression Models

The performance for the second comparison of the SVM regression models is shown in Figure

4.16. Once again the graphical analysis shows that SVM models cannot reply consistently to the

behavior of the original model regardless of the value of the C parameter. There is not a single

model that can predict accurately nor robustly the simulation’s behavior.

The error values in this occasion present different results compared with the first compari-

son. Regarding accuracy, now the middle values C models present the best performance, being

the model SVR(C=0.1) the one with the less score. Similar behavior is presented in the robust

measurement, where once again model SVR=(0.1) presents the best value even when all the

models score alike. Details on the score values can be found in Figure 4.17 for Mean Abso-

lute Error and 4.18 for Median Absolute Error. These results only come to reaffirm the previous

analysis that these types of algorithms (with only the variation of the C hyperparameter) do not

properly surrogate this model.

4.2.2 Kernel Ridge Regression Models

Kernel Ridge regression models behave very similarly to the first comparison for this second

experiment. The Model KR(alpha=0.01) presents the best scores regarding errors and also the

model seems to mimic better the behavior of the simulations. Details on the graphical perfor-

mance of these models are shown in Figure 4.19. The figure evidence that the models with the

small alpha (purple and red) follow very closely the behavior of the original model in various

setups but tend to be less precise for the combinations with small Drag Factor and High values

of Speed.

The error metrics are displayed in Figures 4.20 and 4.21. These are consistent with the first

comparison experiment. Also, it can be noticed that the models KR(alpha=0.01) and KR(alpha=0.1)

present very similar results, being the models with the lower values in accuracy and robustness.

4.2.3 K Nearest Neighbors Regression Models

Based on the graphical performance of KNN models shown in Figure 4.22 once again, models

tend to represent fairly accurate simulation behavior. Maintaining the tendency of the model

KNeighbors(n=10) to overestimate for lower values of factors and estimate for higher combina-

tions, nevertheless, the other models seem to estimate better among this range of variables even

though the curve that presents is more "spiky" than smooth.

Figure 4.23 shows the Mean Absolute Error for the models. In this opportunity, the model

KNeighbors(n=5) is the one that presents the lower score, and Figure 4.24 shows the Median Ab-
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Figure 4.16: Performance of SVM regression models, second comparison
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Figure 4.17: Mean Absolute Error for the SVM models, second comparison

Figure 4.18: Median Absolute Error for the SVM models, second comparison

solute Error for the models. For this metric, the model KNeighbors(n=3) is the one that presents

the lower score.

4.2.4 Decision Trees Regression Models

The performance for decision tree models keeps presenting a good mimic of the original model

even though the accuracy for some combinations (i.e. D f = 2.5 and V0 = 4.5) was very distant

from the simulations. Once again the model without the depth restriction seems to be the one

with the closest behavior. The overall performance of these models in the second comparison is

shown in Figure 4.25, and it can be appreciated that the output function can be associated with

a step function.

For the accuracy measure, the unrestricted model remains to present the lowest value (check

Figure 4.26) and also is keeping the first place in the Median Absolute Error as Figure 4.27 shows.

4.2.5 Gaussian Processes Regression Models

GP models remain among the best-performing models in imitating the original model behavior.

However, it can be appreciated that the quality of the predictions for these combinations is in-

ferior to the one shown in the first comparison. See, for example, the combination D f = 7.5 and

V0 = 4.5 in Figure 4.28 how the behavior of the surrogate models differs from the original model.

In addition to being away from the numerical values the curve that the surrogate describes for
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Figure 4.19: Performance of KR regression models, second comparison
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Figure 4.20: Mean Absolute Error for the KR models, second comparison

Figure 4.21: Median Absolute Error for the KR models, second comparison

that combination is very different from the original one.

Despite the graphical analysis, the errors for these models keep scoring very low and similar

values. Detailed scores can be checked in Figures 4.29 and 4.30.

4.3 Performance on the specific problem

Based on the general performance analyzed in the previous comparisons, one model for each

machine learning methodology was chosen except for the SVM model due to the discrepancies

observed. The surrogate models analyzed here are listed below:

• GaussianProcessRegressor(kernel=RBF())

• DecisionTreeRegressor()

• KNeighborsRegressor(3)

• KernelRidge(kernel=RBF, gamma=0.1, alpha=0.01)

These models now are measured with the study’s objective of finding the angle that maxi-

mizes the horizontal distance traveled before the first bounce. To start with this step, the per-

formance of these models is put into perspective. Therefore, Figure 4.31 shows the graphical

performance of the models on the first comparison setup and Figure 4.32 on the second com-

parison.

It can be noticed that on the first comparison, the models generally are very close to each

other and also close to the values of the simulation; the KNN model nevertheless, seems to be
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Figure 4.22: Performance of KNN regression models, second comparison
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Figure 4.23: Mean Absolute Error for the KNN models, second comparison

Figure 4.24: Median Absolute Error for the KNN models, second comparison

one with less accuracy in the prediction of the value presenting a constant tendency to overes-

timate at speed v = 1 and sub estimate at speed v = 5.

For the comparison of the second experiment, it can be appreciated how the models struggle

to represent certain combinations, the same that was already checked in the previous section.

4.3.1 Specific problem algorithm

To solve the specific problem a simple algorithm was programmed. It consists of predicting the

x value for each angle in the range with step 1 degree and keeping the predictions in a variable

as Data Frame, then looking through this variable and finding the maximum value and selecting

the angle that produced that outcome. In order to produce more data to withdraw more robust

conclusions, the surrogates predicted the target value for every one of the combinations from

the first and second comparison factor values. This means that every surrogate model predicted

a total of 10,530 values. (combination of 90 degrees, 7 levels of velocity, and 13 levels of Drag

Factor). Figure 4.33 shows the errors for the models on the predictions of these values. The

numbers evidence that the most accurate of the four models is the Kernel Ridge, followed closely

by the Gaussian Process. Then, for the median absolute error, is the Gaussian Process model the

most robust, placing in the second position the Kernel Ridge model.

Since the error calculated only take into consideration the predicted values, a manual ap-

proach was used in addition to the previous tools. This consisted of finding the real answer for

the angle through the simulation using the original model. The same algorithm applied for the

surrogate models was used with the original information finding the angle for all the configu-

rations. This angle was compared with the angle finding in the surrogates and calculated as an

error. These errors are shown as "Average Deviation" which considers the average value of the

differences and also the "Max Deviation" which shows the maximum difference through all the

combinations. These values have a dimension equal to a degree.
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Figure 4.25: Performance of DT regression models, second comparison
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Figure 4.26: Mean Absolute Error for the DT models, second comparison

Figure 4.27: Median Absolute Error for the DT models, second comparison

Following the methodology applied so far, the comparison was applied to the outcomes with

the parameters regarding the first comparison. Table 4.1 shows the deviation associated with

this configuration.

As expected, the Gaussian Process model is the most accurate under these factor values,

presenting only 0.057 degrees of deviation on average from the simulated solution. Also, the

model has the lowest maximum error, with a value of 5 degrees.

Table 4.2 shows the deviation on the second comparison parameters. In this opportunity,

the Gaussian Process keeps the first place according to accuracy, with an average deviation of

-0.458 degrees. However, it is the worst score regarding the max error, presenting a difference of

20 degrees for some combinations. The Decision Tree model has the least of the max errors and

the second best in accuracy.

Finally, Table 4.3 shows the deviations considering all the combinations. This includes the

91 combinations of Speed and Drag Factor. Here, it can be seen that the Gaussian Process model

has the lowest average deviation, hence the most accurate, but also presents the worst deviation,

with a max error of 21 degrees. On the other extreme, the Decision Tree model has the least max

deviation, only with a value of 8 degrees, however, is the model that scores the worst on the

Model Average Deviation Max Deviation

DecisionTreeRegressor() -1.971 6
GaussianProcessRegressor(kernel=RBF(length scale=1)) 0.057 5

KernelRidge(alpha=0.01, gamma=0.1, kernel=’rbf’) 0.314 6
KNeighborsRegressor(n neighbors=3) -1.686 8

Table 4.1: Angle deviations for first comparison combinations
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Figure 4.28: Performance of GP regression models, second comparison
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Figure 4.29: Mean Absolute Error for the GP models, second comparison

Figure 4.30: Median Absolute Error for the GP models, second comparison

average precision.

It checked the combinations where the models performed the worst on the task. These con-

figurations are:

• For the GP model, the worst scores were in the combinations D f =7.5 with v= 4, 4.5 and 5

• For the DT model, the worst scores were in the combinations D f =2.5 with v= 4, 4,5 and 5

• For the KR model, the worst scores were in the combinations D f =2.5, 7.5 with v= 4, 4.5

and 5

• For the KNN model, the worst scores were in the combinations D f = 12.5, 22.5, and 27.5

with v= 1.5 and 3

The most repetitive levels of the factors are the higher values of velocity and the intermediate

values of drag. One possible explanation is the distribution of the data on the training dataset.

Figure 4.34 shows the map of points that were used to train the models. It can be appreciated

that the majority of the points are in the bottom left quarter of the graphic. Furthermore, the

three curves that can be easily appreciated over the rest there correspond to the values of D f = 0

and v = 3,4,5.

Model Average Deviation Max Deviation

DecisionTreeRegressor() 0.958 7
GaussianProcessRegressor(kernel=RBF(length scale=1)) -0.458 20

KernelRidge(alpha=0.01, gamma=0.1, kernel=’rbf’) 1.083 9
KNeighborsRegressor(n neighbors=3) -2.000 14

Table 4.2: Angle deviations for second comparison combinations
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Model Average Deviation Max Deviation

DecisionTreeRegressor() -0.786 8
GaussianProcessRegressor(kernel=RBF(length scale=1)) -0.427 21

KernelRidge(alpha=0.01, gamma=0.1, kernel=’rbf’) 0.444 10
KNeighborsRegressor(n neighbors=3) -0.581 15

Table 4.3: Summary of the angle deviations for the models



CHAPTER 4. RESULTS 66

Figure 4.31: Performance of the best models, first comparison
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Figure 4.32: Performance of the best models, second comparison
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Figure 4.33: Mean and Median absolute errors for the models

Figure 4.34: Scatter plot of training data



Chapter 5

Conclusions and Recommendations for

Further Work

5.1 Summary and Conclusions

The general objective of this thesis is to investigate and study the performance of machine learn-

ing techniques used as surrogate models. In this thesis, the model to be surrogate was a simple

bouncing ball simulation model and five different machine learning techniques were used to

train different models to experiment with. Two major comparisons were carried out to measure

the quality of the predictions made by the models. Also, the models were measured regarding a

specific problem: finding the angle that maximizes the horizontal distance traveled before the

first bounce. The findings of this study allow us to conclude the following.

In general, machine learning techniques can be really good tools to act as surrogate models.

The results show that four of the five techniques used on average emulated the original model’s

behavior very accurately and consistently. The best performance on all the models was when

evaluating with the same level of parameters that the data used for training them. The worst

performance they presented was when the speed values were high and the drag was relatively

small. This bad performance was due to the amount of points or data. Figure 4.34 in the pre-

vious chapter shows the density of the training points. The models cannot correctly interpret

this drastic change which is the reason for this performance. The performance of the models on

the specific problem of finding the angle that maximizes the distance was very good. All models

presented on average less than 1 degree of deviation from the original simulation model con-

sidering 91 different levels of factor combinations.

Support Vector Machine Regression models could have performed better in this study. This

does not mean that SVM models are not good to act like surrogate models but probably was due

69
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to the training settings and more research on these models is needed before concluding some-

thing. The literature also indicates that SVM is normally used for classification problems rather

than regression ones. On the other hand, Kernel Ridge Regression models performed very solid

in all scenarios and even presented the best score on the accuracy measurement. Even when

Decision Tree and K Nearest Neighbors techniques are mostly used for classification problems,

the algorithm to make them predict numerical outcomes in regression problems showed very

decent results. KNN models presented good results when the combinations of the factors were

in the middle values. Still, the model tends to overestimate or underestimate the predictions

at near-the-border combination values. This is not a surprise considering the algorithm used

for this technique. The DT model presented an excellent performance when the values to pre-

dict matched the trained data but started to fail on the predictions whit interpolated values,

nevertheless for the specific problem was the model with the worst score of average deviation

(−0,786o) but the best score on the max deviation. Gaussian Process models can be extremely

good at emulating the behavior of the models, performing very well in almost all scenarios and

also presenting the least average deviation on the problem. The drawback is that this model has

the worst maximum deviation, reaching 21o for the combination of high speed and low drag.

The definition of the objective and the requirements and characteristics of the problem plays

a huge role in the selection of the technique for the model. For instance, if a problem needs to

replicate the "shape" of the predictor function GP is the only type of model that replicates the

smoothness of the curve in this case. In contrast, KRR presented a "spiky" shape, and DT and

KNN showed essentially a step function. But these characteristics can also be used in different

ways. Imagine the objective is to use the surrogate models to narrow down a possible solution,

then the DT and KNN can provide a range of values since the step shape. GP can also give the

standard deviation, a prediction, and a range of possible outcomes associated with a probability

that can narrow down options.

As a final conclusion, always remember that the surrogate models will emulate the behavior

of the models they are surrogating, including mimicking their failures and limitations. In the

original model used in this work, when the parameters are set as V0 = 5 and D f = 0. Theoret-

ically, the angle that maximizes is 45o . Nevertheless, due to approximations, steps, and other

models’ limitations, the angle that shows the maximum distance x is 46o . This can be corrobo-

rated in Figure 5.1
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Figure 5.1: Results of simulation for V=5 and Drag 0

5.2 Recommendations for Further Work

This section aims to give some recommendations and ideas that outline potential avenues for

future research based on the findings and limitations of the current study. The objective is to be a

small guide for others interested in expanding the existing research or addressing the identified

gaps and unanswered questions. These recommendations have been divided into short-term

and medium/long-term recommendations.

5.2.1 Short-term Recommendations

In this category, the first recommendation is to repeat the experiments performed in this thesis

but with better knowledge and experience on how to properly train and fit models, with all the

specific techniques. Use complementary tools such as preprocessing the training data, dimen-

sionality reduction, parameter optimization, etc. Focusing on only one technique at a time but

performing an optimized surrogate model will give more complementary information about the

performance of the IA.

A second short-term recommendation is to include and explore using of Deep Learning

techniques such as Artificial Neural Networks. A small review of these techniques was presented

in Chapter 2, but since the training using ANNs requires more expertise, it was impossible to in-

clude them in the experiments. Nevertheless, deep learning seems more powerful than some of

the techniques used and should be considered for future analysis.

5.2.2 Medium/Long-term Recommendations

The next step would be experimenting with a detailed or expensive real production model. This

is the ultimate goal of the research. This is at least a medium-term recommendation thought

since is necessary to have more knowledge about the performance of the techniques to be able
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to choose the best algorithm for the particular case, etc. This thesis already presents some gen-

eral conclusions but further specific research is needed. Real production models are expensive,

so it is recommended to continue researching those once the short-term recommended studies

have been carried out to save resources.
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Appendix

6.1 Bouncing Ball Model

6.1.1 Code for the Model

1 # These imports are only there to be able to override more of the
fmi2slave class in order to avoid error messages (see below). Can be
removed when pythonfmu is updated

2 import datetime
3 from typing import Dict#, Any , ClassVar , List , Optional
4 from xml.etree.ElementTree import Element , SubElement
5 from pythonfmu._version import __version__ as VERSION
6 from pythonfmu.variables import Boolean , Integer , Real , ScalarVariable ,

String
7 from pythonfmu.fmi2slave import FMI2_MODEL_OPTIONS
8 # end special imports
9

10 from pythonfmu import Fmi2Causality , Fmi2Initial , Fmi2Variability ,
Fmi2Slave , Boolean , Integer , Real , String , DefaultExperiment

11 #from .default_experiment import DefaultExperiment
12

13 from math import radians , degrees , sin , cos , sqrt
14

15 class BouncingBall(Fmi2Slave):
16 ’’’Fmi2Slave implementation of a model , which can be compiled into an

FMU through buildFMU
17

18 The following variables can be set and transferred to Fmi2Slave.
__init__:

19

73
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20 guid , author , license , version , copyright , modelName , description ,
default_experiment

21

22 In the overridden class the interface variables should be defined.
23 ’’’
24 instance_name = ’Bouncing Ball’
25

26 def __init__(self , ** kwargs):
27 # argDict = { ’modelName ’ : ’Bouncing Ball ’,
28 # ’author ’ : ’Siegfried Eisinger , DNV ’,
29 # ’description ’ : ’A simple bouncing ball model

for experimenting with PythonFMU ’,
30 # ’default_experiment ’ : DefaultExperiment( start_time

=0, stop_time =10, step_size =0.1),
31 self.modelName = ’BouncingBall ’
32 self.author = ’Siegfried Eisinger , DNV’
33 self.description = ’A simple bouncing ball model for experimenting

with PythonFMU ’
34 self.start_time = 0
35 self.stop_time =10#, step_size =0.1)
36 self.step_size = 0.1
37 self.default_experiment = DefaultExperiment( start_time =0,

stop_time =10)#, step_size =0.1)
38

39 super().__init__( ** kwargs)
40 self.y0 = 0.0 # the (initial)) height in [m]
41 self.angle0 = 45 # the initial angle (in degrees !)
42 self.v0 = 1.0 # speed in angle direction
43 self.bounceFactor = 0.95 # factor on speed when bouncing
44 self.drag = 0.0 # drag decelleration factor defined as a = self.

drag* v^2 with dimensin 1/m
45 self.energy = None
46 self.period = None
47 self.enter_initialization_mode () # ensure that the variables get

correct values
48 self.register_variable(Real( name="y0", causality=Fmi2Causality.

parameter , description="y position at time 0", initial=Fmi2Initial.
exact , variability=Fmi2Variability.fixed))

49 self.register_variable(Real( name="angle0", causality=
Fmi2Causality.parameter , description="angle at time 0", initial=
Fmi2Initial.exact , variability=Fmi2Variability.fixed))

50 self.register_variable(Real( name="v0", causality=Fmi2Causality.
parameter , description="speed at time 0", initial=Fmi2Initial.exact ,
variability=Fmi2Variability.fixed))
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51 self.register_variable(Real( name="bounceFactor", causality=
Fmi2Causality.parameter , description="factor on speed when bouncing",
initial=Fmi2Initial.exact , variability=Fmi2Variability.fixed))

52 self.register_variable(Real( name="drag", causality=Fmi2Causality.
parameter , description="drag decelleration factor defined as a = self.
drag* v^2 with dimensin 1/m", initial=Fmi2Initial.exact , variability=
Fmi2Variability.fixed))

53 self.register_variable(Real( name="x", causality=Fmi2Causality.
output , description="x position at time", initial=Fmi2Initial.exact ,
variability=Fmi2Variability.continuous))

54 self.register_variable(Real( name="y", causality=Fmi2Causality.
output , description="y position at time", initial=Fmi2Initial.exact ,
variability=Fmi2Variability.continuous))

55 self.register_variable(Real( name="v_x", causality=Fmi2Causality.
output , description="speed in x-direction at time", initial=Fmi2Initial
.exact , variability=Fmi2Variability.continuous))

56 self.register_variable(Real( name="v_y", causality=Fmi2Causality.
output , description="speed in y-direction at time", initial=Fmi2Initial
.exact , variability=Fmi2Variability.continuous))

57 self.register_variable(String("mdShort", causality=Fmi2Causality.
local))

58

59 # Note:
60 # it is also possible to explicitly define getters and setters as

lambdas in case the variable is not backed by a Python field.
61 # self.register_variable(Real(" myReal", causality=Fmi2Causality.

output , getter=lambda: self.realOut , setter=lambda v: set_real_out(v))
62

63 def enter_initialization_mode(self):
64 a0 = radians( self.angle0)
65 self.x = 0.0 # start always at x=0
66 self.y = 1.0* self.y0
67 self.v_x = self.v0* cos( a0)
68 self.v_y = self.v0* sin( a0)
69 self.energy = 9.81* self.y + 0.5* self.v_y*self.v_y
70 self.period = 2* self.v_y/ 9.81 # may change when energy is taken

out of the system
71 print("INIT y0:", self.y0 ,", angle:", self.angle0 , "v_x_0:", self.

v_x , ", v_y_0:", self.v_y , ", bounce:", self.bounceFactor , ", drag:",
self.drag)

72 return( True)
73

74 def do_step(self , current_time , step_size):
75 def bounce_loss( v0):
76 if self.bounceFactor == 1.0:
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77 return( v0)
78 v0 *= self.bounceFactor # speed with which it leaves the

ground
79 self.energy = v0*v0/2
80 self.period = 2*v0/9.81
81 return( v0)
82

83 self.x += self.v_x* step_size
84

85 y = self.y + self.v_y* step_size - 9.81/ 2* step_size*step_size
86

87 if y <= 0: # bounce
88 t0 = self.v_y /9.81* (1 - sqrt( 1 + 2*self.y*9.81/ self.v_y/

self.v_y)) # time when it hits the ground
89 v0 = sqrt (2* self.energy) #more exact than self.v_y - 9.81* t0

# speed when jumps off the ground (without energy loss)
90 v0 = bounce_loss( v0) # check energy loss during bouncing
91 #print(" BOUNCE", current_time , ’(’, self.x, ’,’, self.y,’)’,

t0 , v0)
92 tRest = step_size -t0
93 while True:
94 if tRest < self.period: # cannot do a whole bounce in the

remaining time
95 break
96 if self.drag != 0: raise NotImplementedError("Bouncing a

whole period is not implemented when drag is involved. Try choosing
smaller time steps.")

97 v0 = bounce_loss( v0)
98 tRest -= self.period
99

100 self.y = v0* tRest - 9.81/ 2* tRest*tRest # height end of
step

101 self.v_y = v0 - 9.81* tRest # speed end of step
102 else:
103 self.v_y -= 9.81* step_size
104 self.y = y
105 if self.drag != 0:
106 fac = 1 - self.drag* sqrt( self.v_x*self.v_x + self.v_y*self.

v_y)* step_size
107 self.v_x *= fac
108 self.v_y *= fac
109 self.energy = 9.81* self.y + 0.5* self.v_y*self.v_y
110 #print("FAC", fac , self.v_x , self.v_y , self.energy)
111 e = 9.81* self.y + 0.5* self.v_y*self.v_y
112 if abs( e-self.energy) > 1e-6: # and and
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113 print("Energy leak", current_time , e, self.energy)
114 self.energy = e
115 #print(current_time , self.x, self.y, self.v_x , self.v_y)
116 return True
117

118 # =================
119 # Note: It should not be necessary to include this , but there is an

error in the function which needs to be fixed in the package
120 # Until then , the function is overridden
121 # See location of DefaultExperiment within modelDescription and

the fact that the default variables must be converted to strings
122 def to_xml(self , model_options: Dict[str , str] = dict()) -> Element:
123 """ Build the XML representation of the model.
124

125 Args:
126 model_options (Dict[str , str]) : FMU model options
127

128 Returns:
129 (xml.etree.TreeElement.Element) XML description of the FMU
130 """
131

132 t = datetime.datetime.now(datetime.timezone.utc)
133 date_str = t.isoformat(timespec="seconds")
134

135 attrib = dict(
136 fmiVersion="2.0",
137 modelName=self.modelName ,
138 guid=f"{self.guid!s}",
139 generationTool=f"PythonFMU {VERSION}",
140 generationDateAndTime=date_str ,
141 variableNamingConvention="structured"
142 )
143 if self.description is not None:
144 attrib["description"] = self.description
145 if self.author is not None:
146 attrib["author"] = self.author
147 if self.license is not None:
148 attrib["license"] = self.license
149 if self.version is not None:
150 attrib["version"] = self.version
151 if self.copyright is not None:
152 attrib["copyright"] = self.copyright
153

154 root = Element("fmiModelDescription", attrib)
155
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156 options = dict()
157 for option in FMI2_MODEL_OPTIONS:
158 value = model_options.get(option.name , option.value)
159 options[option.name] = str(value).lower()
160 options["modelIdentifier"] = self.modelName
161 options["canNotUseMemoryManagementFunctions"] = "true"
162

163 SubElement(root , "CoSimulation", attrib=options)
164

165 if len(self.log_categories) > 0:
166 categories = SubElement(root , "LogCategories")
167 for category , description in self.log_categories.items():
168 categories.append(
169 Element(
170 "Category",
171 attrib ={"name": category , "description":

description},
172 )
173 )
174

175 if self.default_experiment is not None:
176 attrib = dict()
177 if self.default_experiment.start_time is not None:
178 attrib["startTime"] = str(self.default_experiment.

start_time)
179 if self.default_experiment.stop_time is not None:
180 attrib["stopTime"] = str(self.default_experiment.stop_time

)
181 if self.default_experiment.tolerance is not None:
182 attrib["tolerance"] = str(self.default_experiment.

tolerance)
183 SubElement(root , "DefaultExperiment", attrib)
184

185 variables = SubElement(root , "ModelVariables")
186 for v in self.vars.values ():
187 if ScalarVariable.requires_start(v):
188 self.__apply_start_value(v)
189 variables.append(v.to_xml ())
190

191 structure = SubElement(root , "ModelStructure")
192 outputs = list(
193 filter(lambda v: v.causality == Fmi2Causality.output , self.

vars.values ())
194 )
195
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196 if outputs:
197 outputs_node = SubElement(structure , "Outputs")
198 for i, v in enumerate(self.vars.values ()):
199 if v.causality == Fmi2Causality.output:
200 SubElement(outputs_node , "Unknown", attrib=dict(index=

str(i + 1)))
201

202 return root
203

204 def __apply_start_value(self , var: ScalarVariable):
205 vrs = [var.value_reference]
206

207 if isinstance(var , Integer):
208 refs = self.get_integer(vrs)
209 elif isinstance(var , Real):
210 refs = self.get_real(vrs)
211 elif isinstance(var , Boolean):
212 refs = self.get_boolean(vrs)
213 elif isinstance(var , String):
214 refs = self.get_string(vrs)
215 else:
216 raise Exception(f"Unsupported type!")
217

218 var.start = refs [0]

6.1.2 Code for Python FMU Simulator of the model

1 import tempfile
2 import zipfile
3 from pathlib import Path
4

5 from pythonfmu.builder import FmuBuilder #builder , csvbuilder , deploy
6 from pythonfmu._version import __version__
7

8 from fmpy import dump , simulate_fmu , plot_result , write_csv
9

10

11

12 if __name__ == ’__main__ ’:
13 def build( scriptFile , testIt=False):
14 with tempfile.TemporaryDirectory () as documentation_dir:
15 doc_dir = Path(documentation_dir)
16 license_file = doc_dir / "licenses" / "license.txt"
17 license_file.parent.mkdir()
18 license_file.write_text("Dummy license")
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19 index_file = doc_dir / "index.html"
20 index_file.write_text("dummy index")
21 asBuilt = FmuBuilder.build_FMU( scriptFile , dest=’.’,

documentation_folder=doc_dir)
22

23 if testIt:
24 result = simulate_fmu(asBuilt.name , stop_time =2, step_size

=0.04, solver=’Euler’, start_values ={ ’angle0 ’:45, ’bounceFactor ’:1.0,
’drag’:0, ’v0’:3, ’y0’:0})

25

26 print( dump( asBuilt.name))
27 plot_result(result)
28 write_csv(’res.csv’, result)
29 return( asBuilt)
30 # build(’basic_example.py ’)
31 build(’bouncing_ball.py’, testIt=True)

6.2 Gathering the Data

6.2.1 Code for performing the initial simulations - FMU modified

1 import tempfile
2 import zipfile
3 import pandas as pd
4 import numpy as np
5 from pathlib import Path
6

7 from pythonfmu.builder import FmuBuilder #builder , csvbuilder , deploy
8 from pythonfmu._version import __version__
9

10 from fmpy import dump , simulate_fmu , plot_result , write_csv
11

12

13 bouncelist =[1]
14 ylist =[0]
15 draglist=np.linspace (0 ,30 ,13)
16 anglelist = list(range (1,91,1))
17 vlist=np.linspace (1,5,9)
18

19 failedlist =[]
20

21 for i in anglelist:
22 for j in bouncelist:
23 for k in draglist:
24 for l in ylist:
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25 for m in vlist:
26

27 try:
28

29 if __name__ == ’__main__ ’:
30 def build( scriptFile , testIt=False):
31 with tempfile.TemporaryDirectory () as

documentation_dir:
32 doc_dir = Path(documentation_dir)
33 license_file = doc_dir / "licenses" /

"license.txt"
34 license_file.parent.mkdir()
35 license_file.write_text("Dummy license

")
36 index_file = doc_dir / "index.html"
37 index_file.write_text("dummy index")
38 asBuilt = FmuBuilder.build_FMU(

scriptFile , dest=’.’, documentation_folder=doc_dir)
39

40 if testIt:
41 result = simulate_fmu( asBuilt.name ,

stop_time=2, step_size =0.001 , solver=’Euler’, start_values ={’angle0 ’:i,
’bounceFactor ’:j, ’drag’:k, ’y0’:l, ’v0’:m})

42 print( dump( asBuilt.name))
43 #plot_result(result)
44 write_csv(’Single_Experiments3/BB -%

dangle -%dbf -%2fdrag -%dy -%2fv.csv’ %(i,j,k,l,m), result)
45 return( asBuilt)
46 # build(’basic_example.py ’)
47 build(’bouncing_ball_Multiple_Experiments.py’,

testIt=True)
48 except:
49 print(’combination {},{},{},{},{} not possible ’.

format(i,j,k,l,m))
50 failedlist.append(’BB -%dangle -%dbf -%ddrag -%dy -%dv.

csv’ %(i,j,k,l,m))
51

52 faildf = pd.DataFrame(failedlist)
53 faildf.to_csv(’failed_experiments.csv’)

6.2.2 Code for generating the initial dataset

1 import pandas as pd
2 import numpy as np
3



CHAPTER 6. APPENDIX 82

4 anglelist =[1 ,10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90]
5 bouncelist =[1,2,3]
6 draglist =[0 ,5,10 ,15 ,20 ,25 ,30]
7 ylist=[0, 1, 2, 3]
8 vlist=[0, 1, 2]
9

10 final = pd.DataFrame ()
11 errores = []
12 for i in anglelist:
13 for j in bouncelist:
14 for k in draglist:
15 for l in vlist:
16 for m in ylist:
17 try:
18 df = pd.read_csv(’BB -{}angle -{}bf -{}drag -{}y-{}v.

csv’.format(i,j,k,l,m))
19 if l ==0:
20 varray = [0.1]
21 else:
22 varray = [l]
23 if m == 0:
24 yarray = [0.1]
25 else:
26 yarray= [m]
27 df[[’Speed ’]]= varray
28 df[[’Heigh ’]]= yarray
29 df[[’Drag’]]=[k]
30 df[[’Bounce_Factor ’]]=[j]
31 df[[’Angle ’]]=[i]
32 final = pd.concat ([final , df])
33

34 except:
35 errores.append(’BB -{}angle -{}bf -{}drag -{}y-{}v.csv

’.format(i,j,k,l,m))
36

37

38 final.to_csv(’final_data.csv’)

6.3 Code for the Experiments

1 #!/usr/bin/env python
2 # coding: utf -8
3

4 # In[ ]:
5
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6

7

8

9

10 # In[1]:
11

12

13 #Setting up libraries and loading Dataframe
14 import pandas as pd
15 import numpy as np
16 import matplotlib.pyplot as plt
17 import seaborn as sns
18

19 from sklearn.gaussian_process import GaussianProcessRegressor
20 from sklearn.gaussian_process.kernels import RBF , WhiteKernel ,

ExpSineSquared , RationalQuadratic , DotProduct
21 from sklearn.tree import DecisionTreeRegressor
22 from sklearn import neighbors
23 from sklearn.kernel_ridge import KernelRidge
24

25 from sklearn.metrics import *
26

27 df = pd.read_csv(’Data_First_Bounce.csv’)
28 x = df.iloc [: ,6:]. values
29 y_x = df.iloc [:,2]
30 y_time = df.iloc [:,1]
31

32 df2 = pd.read_csv(’Data_First_Bounce2.csv’)
33 x2 = df2.iloc [: ,6:11]
34 y_x2 = df2.iloc [:,2]
35

36 df.head (10)
37

38

39 # In[2]:
40

41

42 #Train the models
43 GP = GaussianProcessRegressor(kernel=RBF())
44 DT = DecisionTreeRegressor ()
45 KNN = neighbors.KNeighborsRegressor (3)
46 KR = KernelRidge(kernel = ’rbf’, gamma =0.1, alpha =0.01)
47

48 models =[GP, DT , KNN , KR]
49 for i, model in enumerate(models):
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50 model.fit(x,y_x)
51

52

53 # In[3]:
54

55

56 #creating q dataframe with the predictions and ploting against the
original model

57 totalresults =pd.DataFrame ()
58 for s in range (1,6):
59 for d in [0,5 ,10,15,20,25,30]:
60 test_point = [s,0,d,1] #[v0, y0, drag , BF, a0]
61 data_points = df.loc[(df[’Speed’] == test_point [0]) & (df[’Heigh’]

== test_point [1]) & (df[’Drag’] == test_point [2]) & (df[’Bounce_Factor
’] == test_point [3])]

62 pred = pd.DataFrame ()
63

64 for i, model in enumerate(models):
65 for a in range (1,91):
66 param = [[ test_point [0], test_point [1], test_point [2],

test_point [3],a]]
67 #print(param)
68 re = pd.DataFrame(model.predict(np.array(param)))
69 re[[’Angle ’]]=a
70 re[[’model ’]]= model
71 re[[’Drag’]]=d
72 re[[’Speed ’]]=s
73 pred = pd.concat ([pred ,re])
74 totalresults = pd.concat ([re, totalresults ])
75

76 colors =[’r’, ’y’, ’g’, ’m’, ’c’]
77 plt.plot(data_points[’Angle’],data_points[’x’], color=’blue’,

linewidth =2.5)
78 for i, model in enumerate(models):
79 plt.scatter(pred.loc[pred[’model ’]==model , [’Angle ’]], pred.

loc[pred[’model ’]==model , [0]], s=3, color=colors[i])
80

81 plt.plot(data_points[’Angle’],data_points[’x’], color=’blue’,
linewidth =2.5)

82 plt.show()
83

84

85 # In[4]:
86

87
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88 ### mergin prediction with original points in one DataFrame
89 df[[’Source ’]]=’Simulation ’
90 df.rename(columns ={’x’:’X Distance ’}, inplace=True)
91

92 totalresults.rename(columns ={0:’X Distance ’, ’model ’:’Source ’}, inplace=
True)

93 plotdata = pd.concat ([ totalresults , df],ignore_index=True , sort=False )
94 #plotting the results for every level of factor
95 plt=sns.FacetGrid(plotdata , col=’Speed’, row=’Drag’, hue=’Source ’, sharey=

’row’)
96 plt.map(sns.lineplot ,’Angle’, ’X Distance ’)
97 plt.add_legend ()
98 sns.move_legend(plt , "lower left", bbox_to_anchor =(0, -0.05), ncol =2)
99

100

101 # In[5]:
102

103

104 #calculating errors for first comparison
105 ypred = {}
106 points = x
107 for i, k in enumerate(models):
108 ypred[’p{0}’.format(i)] = k.predict(np.array(points))
109 print(’Model {} MAE =’.format(k),mean_absolute_error(y_x , ypred[’p{}’.

format(i)]))
110 print(’Model {} Median A. Error =’.format(k),median_absolute_error(y_x

, ypred[’p{}’.format(i)]))
111

112

113 # In[6]:
114

115

116 #Solving the specific problem of angle that maximizes the X distance for
every model

117 totalresults.reset_index(drop=True , inplace=True)
118

119 for d in range (0,31,5):
120 for s in range (1,6):
121 for i, model in enumerate(models):
122 trcopy = totalresults.loc[( totalresults[’Source ’]== model)&(

totalresults[’Speed’]==s)&( totalresults[’Drag’]==d)]
123 value_max = trcopy[’X Distance ’]. idxmax ()
124 print(’With Drag ={} and V0={}; {} gives Max Angle ={}’.format(d

,s,model ,totalresults.loc[value_max ][’Angle ’]))
125 #print(df)
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126 orcopy = df.loc[(df[’Speed ’]==s)&(df[’Drag’]==d)]
127 ormax = orcopy[’X Distance ’]. idxmax ()
128 print(’With Drag ={} and V0={}; Simulation Model gives Max Angle ={}

’.format(d,s,df.loc[ormax ][’Angle’]))
129 print(’------------------------------------------------’)
130 print(’------------------------------------------------’)
131 print(’------------------------------------------------’)
132

133

134 # In[7]:
135

136

137 totalresults2 = pd.DataFrame ()
138 for s in [1.5 ,2.5 ,3.5 ,4.5]:
139 for d in [2.5 ,7.5 ,12.5 ,17.5 ,22.5 ,27.5]:
140 test_point2 = [s,0,d,1] #[v0 , y0, drag , BF]
141 data_points = df2.loc[(df[’Speed’] == test_point [0]) & (df[’Heigh’

] == test_point [1]) & (df[’Drag’] == test_point [2]) & (df[’
Bounce_Factor ’] == test_point [3])]

142 pred2 = pd.DataFrame ()
143

144 for i, model in enumerate(models):
145 for a in range (1,91):
146 param2 = [[ test_point2 [0], test_point2 [1], test_point2 [2],

test_point2 [3],a]]
147 #print(param)
148 re2 = pd.DataFrame(model.predict(np.array(param2)))
149 re2[[’Angle ’]]=a
150 re2[[’model ’]]= model
151 re2[[’Drag’]]=d
152 re2[[’Speed ’]]=s
153 pred2 = pd.concat ([pred2 ,re2])
154 totalresults2 = pd.concat ([re2 , totalresults2 ])
155

156

157 # In[8]:
158

159

160 #plot the results
161 df2[[’Source ’]]=’Simulation ’
162 df2.rename(columns ={’x’:’X Distance ’}, inplace=True)
163

164 totalresults2.rename(columns ={0:’X Distance ’, ’model’:’Source ’}, inplace=
True)

165 plotdata2 = pd.concat ([ totalresults2 , df2],ignore_index=True , sort=False )
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166

167 #plotting for the second comparisson
168 plt2=sns.FacetGrid(plotdata2 , col=’Speed’, row=’Drag’, hue=’Source ’,

sharey=’row’)
169 plt2.map(sns.lineplot ,’Angle ’, ’X Distance ’)
170 plt2.add_legend ()
171 sns.move_legend(plt2 , "lower left", bbox_to_anchor =(0, -0.05), ncol =2)
172

173

174 # In[9]:
175

176

177 #calculating errors for second comparison
178 ypred2 = {}
179 points2 = x
180 for i, k in enumerate(models):
181 ypred2[’p{0}’.format(i)] = k.predict(np.array(points))
182 print(’Model {} MAE =’.format(k),mean_absolute_error(y_x , ypred2[’p{}’

.format(i)]))
183 print(’Model {} Median A. Error =’.format(k),median_absolute_error(y_x

, ypred2[’p{}’.format(i)]))
184

185

186 # In [10]:
187

188

189 allpredicts = pd.DataFrame ()
190 for s in np.arange (1 ,5.5 ,0.5):
191 for d in np.arange (0 ,31 ,2.5):
192 for i, model in enumerate(models):
193 for a in range (1,91):
194 p = [[s,1,d,1,a]]
195 re2[[’X Distance ’]] = pd.DataFrame(model.predict(np.array(

p)))
196 re2[[’Angle ’]]=a
197 re2[[’model ’]]= model
198 re2[[’Drag’]]=d
199 re2[[’Speed ’]]=s
200 allpredicts = pd.concat ([ allpredicts ,re2])
201

202

203 # In [11]:
204

205

206 #generating the new Dataframe with the data combined
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207 df3 = pd.read_csv(’Data_First_Bouncefull.csv’)
208 x3 = df3.iloc [: ,7:12]
209 y_x3 = df3.iloc [:,2]
210

211 df3[[’Source ’]]=’Simulation ’
212 df3.rename(columns ={’x’:’X Distance ’}, inplace=True)
213

214

215 # In [12]:
216

217

218

219

220

221 # In [13]:
222

223

224 #check the algorithm
225 temporal=df3.loc[(df3[’Speed’]==5)&(df3[’Drag’]==0)]
226 temporal.loc[(df3[’Angle ’]>40)&(df3[’Angle ’]<50)]
227

228

229 # In [14]:
230

231

232 #plotting the density of the training points
233 simplot=sns.scatterplot(data=df, x=’Angle’, y=’X Distance ’, marker=’*’,

color=’b’)
234

235

236 # In [15]:
237

238

239 #generating the dataframe with the solution of the specific problem for
all 91 combinations of speed and drag

240 allpredicts.reset_index(drop=True , inplace=True)
241 df3.reset_index(drop=True , inplace=True)
242 new=pd.DataFrame ()
243 temp=pd.DataFrame ()
244 temp2=pd.DataFrame ()
245 for d in np.arange (0 ,31 ,2.5):
246 for s in np.arange (1 ,5.5 ,0.5):
247 for model in models:
248 trcopy2 = allpredicts.loc[( allpredicts[’model ’]== model)&(

allpredicts[’Speed’]==s)&( allpredicts[’Drag’]==d)]
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249 #print(trcopy2)
250 value_max2 = trcopy2[’X Distance ’]. idxmax ()
251 #print(value_max2)
252 print(’With Drag ={} and V0={}; {} gives Max Angle ={}’.format(d

,s,model ,allpredicts.loc[value_max2 ][’Angle ’]))
253 p = [[s,1,d,1,a]]
254 #temp[[’X Distance ’]] = pd.DataFrame(model.predict(np.array(p)

))
255 temp[[’Model’]]= model
256 temp[[’Speed’]]=s
257 temp[[’Drag’]]=d
258 temp[[’Max Angle’]]= allpredicts.loc[value_max2 ][’Angle’]
259 new = pd.concat ([new ,temp])
260

261 orcopy2 = df3.loc[(df3[’Speed ’]==s)&(df3[’Drag’]==d)]
262 ormax2 = orcopy2[’X Distance ’]. idxmax ()
263 #temp2[[’X Distance ’]] = pd.DataFrame(model.predict(np.array(p)))
264 temp2[[’Model ’]]=’Simulation ’
265 temp2[[’Speed ’]]=s
266 temp2[[’Drag’]]=d
267 temp2[[’Max Angle ’]]=df3.loc[ormax2 ][’Angle’]
268 new = pd.concat ([new ,temp2 ])
269 print(’With Drag ={} and V0={}; Simulation Model gives Max Angle ={}

’.format(d,s,df3.loc[ormax2 ][’Angle’]))
270 print(’------------------------------------------------’)
271 print(’------------------------------------------------’)
272 print(’------------------------------------------------’)
273

274

275 # In [16]:
276

277

278 #saving the results of the specific problem
279 new.to_csv(’performance.csv’)
280

281

282 # In [17]:
283

284

285 ## FOR DT regressor model , use the extreme angles for the new simulations
286

287 param =[5, 2.5] #speed & Drag
288 inter = allpredicts.loc[( allpredicts[’model’]== models [1])&( allpredicts[’

Speed’]== param [0])&( allpredicts[’Drag’]== param [1])]
289 maxim = inter[’X Distance ’]. idxmax ()
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290 inter[[’Angle ’]].loc[inter[’X Distance ’]== inter.loc[maxim ][’X Distance ’]]
291

292

293 # In [18]:
294

295

296 # FOR KNN Regressor , use the extreme angles for the new simulations
297 param =[5, 2.5] #speed & Drag
298 inter2 = allpredicts.loc[( allpredicts[’model ’]== models [2])&( allpredicts[’

Speed’]== param [0])&( allpredicts[’Drag’]== param [1])]
299 maxim2 = inter2[’X Distance ’]. idxmax ()
300 inter2 [[’Angle’]]. loc[inter2[’X Distance ’]== inter2.loc[maxim2 ][’X Distance

’]]
301

302

303 # In [19]:
304

305

306 param =[2, 0] #speed & Drag
307 inter3 = allpredicts.loc[( allpredicts[’model ’]== models [0])&( allpredicts[’

Speed’]== param [0])&( allpredicts[’Drag’]== param [1])]
308 maxim3 = inter3[’X Distance ’]. idxmax ()
309

310 a,b = models [0]. predict(np.array ([[ param[0],1,param[1],1, inter3.loc[maxim3
][’Angle ’]]]), return_std=True) #[v0 , y0, drag , BF , a0]

311 print(a)
312 print(b)
313 print(a-b)
314 #inter3[[’Angle ’]].loc[(a-b) < inter3[’X Distance ’] < (a+b)]
315

316 inter3.head (60)
317

318 ##tells me that is a lot of uncertanty because the std dev is way bigger
than the predicted value

319

320

321 # In [20]:
322

323

324 #calculating the overall error for every model
325 y_final=df3.iloc [:,2]
326 x_final=df3.iloc [: ,7:12]
327 ypredfinal = {}
328 for i, k in enumerate(models):
329 ypredfinal[’p{0}’.format(i)] = k.predict(np.array(x_final))
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330 print(’Model {} MAE =’.format(k),mean_absolute_error(y_final ,
ypredfinal[’p{}’.format(i)]))

331 print(’Model {} Median A. Error =’.format(k),median_absolute_error(
y_final , ypredfinal[’p{}’.format(i)]))

332 print(’.............................................................. ’
)

333

334

335 # In[ ]:
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