
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Helena Thu Phan
Vilde Taklo Kenworthy

Learning of Nonlinear Dynamics with
Contraction-Based Regularization

Master’s thesis in Engineering and ICT
Supervisor: Olav Egeland
June 2023

Helena Thu Phan
Vilde Taklo Kenworthy

Learning of Nonlinear Dynamics with
Contraction-Based Regularization

Master’s thesis in Engineering and ICT
Supervisor: Olav Egeland
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

The presented thesis is submitted to fulfill the final requirements for obtaining the
degree of Master of Science in Engineering and ICT at the Norwegian University
of Science and Technology (NTNU). This thesis is written during Spring 2023 for
the course "TPK4960 - Robotics and Automation, Master’s Thesis" within the
Department of Mechanical and Industrial Engineering.

Readers of this thesis would benefit from having a fundamental understanding of
linear algebra, metric spaces, and regression analysis. However, the necessary the-
oretical concepts are covered in the preliminaries section. The primary objective
of this thesis is to investigate and evaluate the performance of random Fourier
features in approximating different kernels in a reproducing kernel Hilbert space.
These features are then deployed in various regression problems. The focus is
on different vector fields with distinct characteristics, such as contraction. The
vector fields are both learned and simulated, and the resulting outcomes will be
analyzed and discussed. This thesis contributes to validating theoretical concepts
and practical applications in the field of engineering, particularly in the area of
learning system dynamics.

Acknowledgments

We would like to express our sincere gratitude towards Professor Olav Egeland at
NTNU for the challenging yet exciting research subject, as well as for his support,
guidance, and feedback throughout the development of this thesis. Furthermore,
we would like to thank Ph.D. candidate Torbjørn Smith, our discussions have
been of great value in solving technical problems and complex tasks. Olav and
Torbjørn’s knowledge and insightful feedback have significantly contributed to
improving the quality of this research. Lastly, we would like to thank our family
and friends for their encouragement and support throughout the thesis.

Summary

Learning unknown dynamical systems is a complex task involving inferring the
underlying system behavior from observed data without prior knowledge of the
underlying equations. Understanding and accurately learning these dynamics is of
great importance in various fields, such as robotics and control systems, enabling
predictive modeling, control, and decision-making in complex and uncertain en-
vironments.

This thesis addresses this challenge by exploring the use of random Fourier fea-
tures (RFF) to approximate different kernels in a reproducing kernel Hilbert space
(RKHS) and solve various regression problems. The focus will be on learning vec-
tor fields with various characteristics. To accomplish this, three kernels were
approximated: a Gaussian separable kernel, a curl-free kernel, and a symplectic
kernel. The characteristics included properties such as contraction constraints
and vanishing points. Regression problems were solved on both real-world and
self-generated data, demonstrating the potential of RFF in learning dynamical
systems. The results obtained in this thesis indicate that using RFF to approx-
imate kernels in a RKHS for various regression problems provided accurate and
satisfactory estimates while being computationally efficient.

Sammendrag

Å lære ukjente dynamiske systemer er en kompleks oppgave som involverer å ut-
lede den underliggende systematferden fra observert data, uten forkunnskaper om
de underliggende ligningene. Å forstå og nøyaktig lære dynamikken til disse sys-
temene er av stor betydning for ulike områder, som robotikk og kontrollsystemer.
Dette muliggjør prediktiv modellering, kontroll og beslutningstaking i komplekse
og usikre miljøer.

Denne masteroppgaven tar opp denne utfordringen ved å utforske bruken av til-
feldige Fourier features (RFF) for å tilnærme ulike kjerner i et reproduserende
kjerne Hilbert-rom (RKHS) og løse ulike regresjonsproblemer. Fokuset vil være å
lære vektorfelt med ulike egenskaper. For å oppnå dette ble tre kjerner tilnærmet:
en Gaussisk separerbar kjerne, en curl-fri kjerne og Disse egenskapene inkluderer
kontraksjonsbegrensninger og forsvinningspunker. Regresjonsproblemer ble løst
på både virkelighets og selvgenerert data, noe som demonstrerte potensialet til
RFF i å lære dynamiske systemer. Resultatene utledet i denne oppgaven indikerer
at bruk av RFF for å tilnærme kjerner i en RKHS for ulike regresjonsproblemer
ga nøyaktige og gode estimater, samtidig som det var beregningsmessig effektivt.

Contents

Preface i

Summary v

Sammendrag vii

1. Introduction 1
1.1. Motivation . 1
1.2. Related Work . 2
1.3. Aim of the Thesis . 3

2. Preliminaries 5
2.1. Kernels . 5

2.1.1. Positive Definite Kernel . 5
2.1.2. Reproducing Kernel . 6
2.1.3. Reproducing Kernel Hilbert Spaces 8
2.1.4. Feature Map . 8
2.1.5. Kernel Trick . 8
2.1.6. Complexity in Kernel Methods 9

2.2. Random Fourier Features . 10
2.2.1. Random Features . 10
2.2.2. Fourier Transform . 10
2.2.3. Bochner’s Theorem . 13
2.2.4. Real-Valued Approximation of a Scalar Kernel 15
2.2.5. Alternative Random Fourier Feature Expressions 16
2.2.6. Random Fourier Features for Curl-Free Kernel 16

2.3. Kernel Regression . 18
2.3.1. The Representer Theorem 18
2.3.2. Gaussian Separable Kernel 19
2.3.3. Regularized Least-Squares 20
2.3.4. Regularized Least-Squares with Random Fourier Features . 22

2.4. Vector-Valued RKHS . 25
2.4.1. Moore-Aronszajn Theorem for the Vector Case 25

x Contents

2.4.2. Vector-valued Curl-Free Kernel 26
2.4.3. Vector-Valued Regularized Least-Squares 27
2.4.4. Random Fourier Features for Vector-Valued Functions . . . 28

2.5. RKHS for Vector Fields . 31
2.5.1. Contraction Analysis . 31
2.5.2. Contraction as a Constraint 33
2.5.3. Curl-Free Kernel Approximation with RFF 35
2.5.4. Regularized Least-Squares with Contraction Constraints . . 36
2.5.5. Random Fourier Features with Contraction Constraints . . 37

2.6. Vanishing Point . 37
2.6.1. RKHS Vector Fields Vanishing on a Point Set 37
2.6.2. Random Fourier Features Vanishing on a Point Set 38

2.7. Hamiltonian Dynamics . 41
2.7.1. Hamilton’s Equations of Motion 41
2.7.2. Hamiltonian Dynamics . 42
2.7.3. Symplectic Kernel . 43
2.7.4. Symplectic Kernel from a Gaussian Kernel 44
2.7.5. Symplectic Characteristics 45
2.7.6. Approximating Hamiltonian Dynamics 48
2.7.7. Hamiltonian Dynamics of a Pendulum 50

3. Method 53
3.1. Python Tools for Optimization and Numerical Solution Solving . . 53

3.1.1. MOSEK . 53
3.1.2. PICOS . 54
3.1.3. Numdifftools . 54
3.1.4. Solving Ordinary Differential Equations 54

3.2. Data Generation . 55
3.2.1. Generating RFF Parameters for Learning 55

3.3. Learning with LASA Benchmark 55
3.3.1. The Dataset . 55
3.3.2. Dataset Splitting . 57
3.3.3. Parameters Used for Learning 58
3.3.4. Algorithms used in Implementation 59

3.4. Learning Hamiltonian Systems . 66
3.4.1. Generating Trajectories . 66
3.4.2. Learning Hamiltonian Dynamics with RFF 67

3.5. Comparison Metrics . 69
3.5.1. Reproduction Accuracy . 69
3.5.2. Computation Time for Training 70

Contents xi

4. Results 71
4.1. LASA Handwriting with RFF . 71

4.1.1. Learnt Models with Gaussian Separable Feature Map . . . 72
4.1.2. Learnt Models with Vector Field Vanishing on a Point Set . 78
4.1.3. Learnt Model with Curl-Free Feature Map 80

4.2. Hamiltonian Systems with RFF . 82
4.2.1. Hamiltonian Dynamics Model with RFF 83
4.2.2. Hamiltonian Dynamics Model with Added Noise 86

5. Discussion 89
5.1. Expectations . 89

5.1.1. Expectations for LASA Models 89
5.1.2. Expectations for Learning Hamiltonian Dynamics 91

5.2. Comparing Results - LASA . 93
5.2.1. Estimation with and without Mean 93
5.2.2. Estimation with and without Contraction 95
5.2.3. Estimation with and without Vanishing Point 96
5.2.4. Estimation with Vanishing Point and Contraction 98
5.2.5. Estimation with Curl-Free Feature Map 100
5.2.6. Comparison with External Results 101

5.3. Comparing Results - Hamiltonian Dynamics 103
5.3.1. Generating Trajectories with Numerical Methods 103
5.3.2. Estimating Hamiltonian Dynamics of a Pendulum 104
5.3.3. Adding Noise to the Training Data 106

5.4. Additional Considerations . 108
5.4.1. The use of Finite Difference Method 108
5.4.2. Limitations due to Generated RFF Parameters 108
5.4.3. Computational Efficiency with RFF 109

5.5. Future Work . 109

6. Conclusion 111

A. Code 119
A.1. LASA . 119
A.2. Hamiltonian Dynamics . 119
A.3. Solving Regression Problems using PICOS and MOSEK 119

List of Figures

2.1. Feature map. Illustration [48]. 9
2.2. Convergence of two trajectories. Illustration [35]. 33
2.3. Conservation of volume. Illustration [25]. 45
2.4. Symplecticity of a linear mapping. Illustration [25]. 48

3.1. The seven human handwriting demonstrations (a) Angle-shape (b)
S-shape . 56

4.1. The four trajectories used for training (a) Angle-shape (b) S-shape 72
4.2. The mean trajectory used for training (a) Angle-shape (b) S-shape 72
4.3. Learnt model with Gaussian separable feature map trained on a

single trajectory (a) Angle-shape (b) S-shape 73
4.4. Learnt model with Gaussian separable feature map trained on four

trajectories (a) Angle-shape (b) S-shape 73
4.5. Angle-shape - Comparison between actual and estimated trajectory

for model trained on a single trajectory with a Gaussian separable
feature map (a) Demo 5 (b) Demo 6 (c) Demo 7 74

4.6. S-shape - Comparison between actual and estimated trajectory for
model trained on a single trajectory with a Gaussian separable
feature map (a) Demo 5 (b) Demo 6 (c) Demo 7 74

4.7. Angle-shape - Comparison between actual and estimated trajectory
for model trained on four trajectories with a Gaussian separable
feature map (a) Demo 5 (b) Demo 6 (c) Demo 7 75

4.8. S-shape - Comparison between actual and estimated trajectory for
model trained on four trajectories with a Gaussian separable feature
map (a) Demo 5 (b) Demo 6 (c) Demo 7 75

4.9. Learnt model with Gaussian separable feature map and contraction
constraints (a) Angle-shape (b) S-shape 76

4.10. Angle-shape - Comparison between actual and estimated trajectory
for model with Gaussian separable feature map and contraction (a)
Demo 5 (b) Demo 6 (c) Demo 7 . 77

xiv List of Figures

4.11. S-shape - Comparison between actual and estimated trajectory for
model with Gaussian separable feature map and contraction (a)
Demo 5 (b) Demo 6 (c) Demo 7 . 77

4.12. Learnt model with vanishing point and Gaussian separable feature
map (a) Angle-shape (b) S-shape 78

4.13. Learnt model with vanishing point, contraction constraints and
Gaussian separable feature map (a) Angle-shape (b) S-shape . . . 78

4.14. Angle-shape - Comparison between actual and estimated trajec-
tory for model with contraction constraints and vanishing point
(a) Demo 5
(b) Demo 6 (c) Demo 7 . 79

4.15. S-shape - Comparison between actual and estimated trajectory for
model with contraction constraints and vanishing point (a) Demo
5 (b) Demo 6 (c) Demo 7 . 79

4.16. Learnt curl-free model with vanishing point and contraction
(a) Angle-shape (b) S-shape . 80

4.17. Angle-shape - Comparison between actual and estimated trajectory
for model with vanishing points, contraction and curl-free feature
map
(a) Demo 5 (b) Demo 6 (c) Demo 7 81

4.18. S-shape - Comparison between actual and estimated trajectory for
model with vanishing points, contraction and curl-free feature map
(a) Demo 5 (b) Demo 6 (c) Demo 7 81

4.19. Generated trajectories for a pendulum system with step
size = 0.01 (a) Leapfrog method (b) Explicit Euler method 82

4.20. Pendulum dynamics used in regression problem 83
4.21. Learnt pendulum dynamics (a) Symplectic feature map (b) Gaus-

sian separable feature map . 84
4.22. Estimated trajectory compared to actual trajectory (a) Symplectic

feature map (b) Gaussian separable feature map 84
4.23. Error for position q and momentum p (a) Symplectic feature map

(b) Gaussian separable feature map 85
4.24. Total error for the estimated trajectories 85
4.25. Pendulum dynamics used in regression problem with noise 86
4.26. Learnt model with noise (a) Symplectic feature map (b) Gaussian

separable feature map . 87
4.27. Estimated trajectory compared to actual trajectory with noise (a)

Symplectic feature map (b) Gaussian separable feature map 87
4.28. Error for position q and momentum p with noise (a) Symplectic

feature map (b) Gaussian separable feature map 88
4.29. Total error for the estimated trajectories with noise 88

List of Figures xv

5.1. End part of the estimated trajectory for S-shape model (a) Trained
on a single trajectory (b) Trained on four trajectories 94

5.2. Initial part of estimated trajectory for Angle-shape model (a) With
contraction (b) Without contraction 95

5.3. Estimated vector field around the vanishing point (0, 0) (a) Angle-
shape (b) S-shape . 96

5.4. Estimated vector field around point (0, 0) for Angle-shape (a) With
vanishing point (b) Without vanishing point 97

5.5. Estimated trajectory around point (0, 0) for S-shape (a) With van-
ishing point (b) Without vanishing point 97

5.6. Region around (0, 0) for estimated vector field with contraction
and vanishing point (a) Angle-shape (b) S-shape 98

5.7. Initial part of estimated trajectory with vanishing point for S-shape
model (a) With contraction (b) Without contraction 99

5.8. Region around (0, 0) for estimated vector field with contraction for
Angle-shape model (a) With vanishing point (b) Without vanishing
point . 99

5.9. Middle region of the estimated trajectory for the Angle-shape with
vanishing point and contraction (a) Curl-free feature map (b) Gaus-
sian separable feature map . 100

5.10. Middle region of the estimated trajectory for the S-shape with van-
ishing point and contraction (a) Curl-free feature map (b) Gaussian
separable feature map . 101

5.11. Vector Fields learned for Gaussian separable feature map (a) Result
from Sindhwani et al. Illustration [51] (b) Result from thesis 102

5.12. Vector Fields learned for curl-free feature map (a) Result from Sind-
hwani et. al Illustration [51]. (b) Results from thesis 103

5.13. Estimated vector field zoomed in on the trajectory (a) Symplectic
feature map (b) Gaussian separable feature map 104

5.14. Estimated vector field in the lower-right-hand side (a) Symplectic
feature map (b) Gaussian separable feature map 105

List of Tables

3.1. Train and Test values for Angle-shape 58
3.2. Train and Test values for S-shape 58
3.3. LASA Handwriting - Parameters 59
3.4. LASA Handwriting - RFF Parameters 59
3.5. Numerical integration - Parameters 67
3.6. Pendulum - Parameters . 67
3.7. Hamiltonian System - RFF Parameters 68

4.1. Error measurements between actual and estimated trajectory for
model trained on a single trajectory with a Gaussian separable
feature map . 74

4.2. Error measurements between actual and estimated trajectory for
the model trained on four trajectories with a Gaussian separable
feature map . 75

4.3. Computation time for solving α in regression problem with Gaus-
sian separable feature map . 76

4.4. Error measurements between actual and estimated trajectory model
with Gaussian separable feature map and contraction 77

4.5. Computation time for estimating α in regression problems with
vanishing point and Gaussian separable feature map 80

4.6. Error measurements between actual and estimated trajectory for
model with vanishing point, contraction and Gaussian separable
feature map . 80

4.7. Computation time for estimating α in regression problem with curl-
free feature map . 82

4.8. Error measurements between actual and estimated trajectory for
model with vanishing point, contraction and curl-free feature map 82

4.9. Mean trajectory error measurements for learnt Pendulum dynamics 87

Chapter 1.

Introduction

This introductory chapter provides the motivation for the master’s thesis, presents
relevant literature and related work, and outlines the key goals.

1.1. Motivation
The field of data-driven modeling, which is classified within the broader scope of
machine learning, has become a significant research area. In cases where it is not
practical or possible to derive models based on equations from first principles,
data-driven approaches become useful. Furthermore, in various scientific and
engineering fields, extracting physical laws from data is a central challenge in many
diverse areas of science and engineering. As a result, there are many critical data-
driven problems, such as understanding brain activity, climate pattern inference,
and determining stability in financial markets [16]. These problems demonstrate
the importance of leveraging data to gain insights, make predictions, and drive
informed decision-making. This thesis is motivated by a specific method within
data-driven modeling, which involves using data to learn models for robotics and
control systems.

When it comes to control systems, understanding system dynamics is often cru-
cial for designing an appropriate control system. However, there may be occasions
where controlling a system with unknown dynamics is necessary or preferable. As
mentioned, this could happen when the system’s dynamics are unknown and can
not be directly measured or derived from first principles. In such cases, a learn-
ing technique, such as regression, can be used to estimate the dynamics based on
measurements of the system’s inputs and states. By using regression, the system’s
behavior can be approximated based on a limited number of observed trajectories.
This approach proves particularly useful in situations where obtaining a mathe-
matical model of the system is difficult or impossible [26]. It is also valuable when

2 Chapter 1. Introduction

the system’s complexity prevents accurate modeling.

Furthermore, machine learning faces a significant challenge in efficiently repre-
senting and modeling complex, high-dimensional data [22]. This challenge is es-
pecially relevant in regression tasks that aim to predict output values based on
one or more input features. However, reproducing kernel Hilbert space (RKHS)
and random Fourier features (RFF) presents a promising approach to overcoming
this challenge. These techniques have been proven to enable efficient function
approximation in a feature space, making them useful for modeling complex data.
These techniques can also provide valuable insights into the trade-offs between
computational efficiency and modeling performance in various regression prob-
lems.

Our specialization project [28] investigated using RFF to approximate kernels
in a RKHS, yielding promising results. The project demonstrated that using
RFF provided satisfactory estimates in regression problems, significantly reducing
computation time compared to using the exact kernel. Hence, it is now desired
to further research the potential of using RFF to estimate dynamical systems.

1.2. Related Work
Improving the precision of learning in data-driven modeling is a broad research
area that is valuable for the control and robotics industry. The use of RFF to
approximate kernels in a RKHS to learn these systems represents a more narrow
research area within this field. The literature review revealed notable contribu-
tions to this subject, highlighting its significance.

The ability to approximate various radial basis kernels using random Fourier fea-
tures was first introduced by Rahimi and Recht in 2007 [46]. They demonstrated
that using RFF as input to standard linear learning algorithms could produce
results comparable in accuracy, training time, and evaluation time to state-of-
the-art large-scale kernel machines. The primary concept of this approach was to
map input data to a low-dimensional, randomized feature space and apply existing
fast linear methods. This was made possible using a RKHS, a concept proposed
by Aronszajn in 1950 [6]. The literature review shows that using RFFs for approx-
imating functions presented in an RKHS has proven highly effective for solving
regression problems, as demonstrated in [46]. This method was later extended
to vector-valued functions, as introduced by Brault et al. [13] and Minh [39] in
2016. Moreover, this technique enables efficient function approximation, which
is advantageous in accurately modeling and predicting data in various regression
tasks.

In 2018, Sindhwani et al. [51] introduced a vector field learning approach that uti-

1.3. Aim of the Thesis 3

lized random features for function approximation in learning stable vector fields.
The objective was to satisfy contraction under the identity metric. The vector
field was parameterized using a vector-valued reproducing kernel, and RFF was
used to approximate the kernel. In addition, the paper aimed to position the equi-
librium of the vector field at desired locations, also known as vanishing points,
and control the local contraction at different points by utilizing convex optimiza-
tion. Their approach was then demonstrated on imitation learning tasks using a
real-world dataset.

Singh et al. [52] addressed the challenge of learning controlled dynamics from
demonstrations. Their objective was to learn a dynamics model for a system with
an unknown dynamics function. To achieve this, they used a small set of sampled
data points from observed trajectories to estimate the system’s behavior. By
leveraging tools from RKHS and contraction theory, they introduced the concept
of learning stabilizable dynamics in 2021.

Ahmadi and Khadir [1] introduced a framework for learning a dynamical system
of a limited number of trajectories while subject to side information. In this
context, side information refers to any additional knowledge about the system
being learned, apart from the trajectory data. Therefore, explicitly integrating
side information into the learning process was of interest to compensate for the
limited number of trajectory observations. One side information defined in the
paper is the incorporation of Hamiltonian systems, which will be investigated in
this thesis.

In 2022, Boffi and Slotine [11] presented a nonparametric adaptive algorithm for
learning unknown dynamics in a RKHS. To address the computational cost of
a RKHS, the authors proposed a randomized implementation using RFF. This
randomized algorithm retained the expressivity of the nonparametric input while
recovering the complexity of classical parametric methods. Furthermore, the au-
thors proposed an approximation of a symplectic kernel using RFF, enabling the
estimation of a high-dimensional Hamiltonian dynamical system.

1.3. Aim of the Thesis
The aim of this thesis explores the use of random Fourier features for kernel-based
regression problems for learning dynamical systems. This includes investigating
how the incorporation of additional information and using different kernels can
enhance the precision of the learning process. Specifically, RFF will be used to
approximate three different kernels, namely the Gaussian separable, the curl-free,
and the symplectic kernel. Additionally, contraction constraints and vanishing
points will be incorporated into the regression problem. Furthermore, the thesis

4 Chapter 1. Introduction

will demonstrate the efficacy of using RFF to approximate kernels where the data
is corrupted by noise.

Chapter 2.

Preliminaries

This section provides the necessary information to understand the subject mat-
ter discussed in this thesis. It covers essential definitions, concepts, and theories
helpful in understanding the material. The work in [19] has served as a significant
source of guidance in this regard. The references provided also contain elementary
proofs excluded from this report. Finally, it is worth noting that some of the con-
tent presented in the preliminaries was included in the report for the specialization
project [28].

2.1. Kernels
Kernel methods transform data from their original input space to a feature space.
Through the utilization of a kernel method, it becomes possible to convert a non-
linear problem in the input space to a simple linear problem in the feature space.
To accomplish this, kernel methods substitute the inner product of the data with
a selected kernel function [4].

2.1.1. Positive Definite Kernel

This section is based on [40] and [49]. If a kernel, denoted as k, is symmetric
and satisfies Mercer’s theorem, then it is considered positive definite. A kernel is
symmetric if the following holds

k(x, z) = k(z,x), ∀x, z ∈ X (2.1)

where X is a closed subset of Rn and n ∈ N. Given a finite set of points x1, . . . ,xN
∈ X and real numbers a1, . . . , aN ∈ R

6 Chapter 2. Preliminaries

N∑
i=1

N∑
j=1

aiajk(xi,xj) ≥ 0 (2.2)

If a kernel is positive definite, and x1 and x2 ∈ X , then

|k(x1,x2)|2 ≤ k(x1,x1)k(x2,x2) (2.3)

The reason for this is a characteristic of dot products known as the Cauchy-
Schwarz inequality for kernels [10].

2.1.2. Reproducing Kernel

This section is based on Moore-Aronszajn’s theorem [57], which states that for
any set X , a kernel k: X × X is positive definite if and only if it is a reproducing
kernel. Let H be a reproducing kernel Hilbert Space (RKHS) with a reproducing
kernel k. The symmetry of the inner product between two points x, z ∈ X 2 in H
implies that

k(x, z) = ⟨kx, kz⟩H = ⟨kz, kx⟩H = k(z,x) (2.4)

Symmetry follows as a result of this. For any set of points x1, . . . ,xn ∈ X n and
real numbers a1, . . . , an, it can be shown that the kernel k is positive definite when

n∑
i=1

n∑
j=1

aiajk(xi,xj) =
n∑
i=1

n∑
j=1

aiaj⟨kxi , kxj ⟩H

=
n∑
i=1

n∑
j=1

⟨aikxi , ajkxj ⟩H

=
〈

n∑
i=1

aikxi ,
n∑
j=1

ajkxj

〉
H

=
∥∥∥∥∥
n∑
i=1

aikxi

∥∥∥∥∥
2

H
≥ 0

(2.5)

Now, consider a vector space H0 ⊂ RX , where

H0 = span{kx : x ∈ X } (2.6)

Two arbitrary functions f, g ∈ H are given by

2.1. Kernels 7

f(x) =
n∑
i=1

aikxi =
n∑
i=1

aik(xi,x) (2.7)

g(x) =
n∑
i=1

bikzi =
n∑
i=1

bik(zi,x) (2.8)

The inner product is defined as

⟨f, g⟩H0 =
n∑
i=1

n∑
j=1

aibjk(xi, zj) (2.9)

The inner product between function f and kernel kx is given by

⟨f, kx⟩H0 = f(x) (2.10)

A positive definite kernel k gives

||f ||2H0 = ⟨f, f⟩H0 =
n∑
i=1

n∑
j=1

aiajk(xi,xj) ≥ 0 (2.11)

It is also noted that

||kx||2H0 = ⟨kx, kx⟩H0 = |k(x,x)| (2.12)

Cauchy-Schwarz inequality states that [10]

|l(x)| = |⟨x, z⟩| ≤ ||x|| ||z|| (2.13)

where l is a bounded linear functional on H0.

Based on this, it follows that

|f(x)| = |⟨f, kx⟩|H0 ≤ ||f ||H0 ||kx||H0 = ||f ||H0

√
|k(x,x)| (2.14)

which shows that if ||f ||H0 tends to zero, then f will tend to zero. Based on this,
it has been demonstrated that H0 has all the characteristics of a Hilbert space
except for completeness, which classifies it as a pre-Hilbert space. A process for
constructing the closure H of H0 is outlined in [6].

8 Chapter 2. Preliminaries

2.1.3. Reproducing Kernel Hilbert Spaces

A Hilbert space is considered to be a reproducing kernel Hilbert space if it has
a reproducing kernel. The reproducing property and Hilbert space structure of
RKHS ensure the effectiveness of many practical learning algorithms implemented
in these function spaces [63].

Suppose H is a Hilbert space consisting of functions f : X → R. If a kernel k :
X × X → R satisfies the following two conditions, then it is a reproducing kernel
of the Hilbert space H with an inner product denoted as ⟨·, ·⟩H [54].

1. For each x ∈ X
k(x, ·) ∈ H (2.15)

2. Reproducing property, also known as the kernel trick.

f(x) = ⟨f, k(x, ·)⟩H ∀x ∈ X , ∀f ∈ H (2.16)

If the reproducing kernel k is positive definite, then the Hilbert space H is unique
[6].

2.1.4. Feature Map

To map the data from the input space to the feature space F, see Figure 2.1, a
nonlinear mapping function is applied [4]. This can be represented as follows

ψ : Rd → F (2.17)

x → ψ(z) (2.18)

Let X ⊂ Rn be a set, and let k: X × X be a kernel. The kernel function is
represented as

k(x, z) = ψ(x)Tψ(z) (2.19)

2.1.5. Kernel Trick

This section is based on [46]. The kernel trick generates features for algorithms
relying solely on the inner product of input point pairs. For this to work, it
is necessary that any positive definite kernel k(x, z), where x, z ∈ Rn, defines
an inner product and a transformation ϕ. This ensures that the inner product
between the transformed data points can be calculated.

2.1. Kernels 9

Figure 2.1.: Feature map. Illustration [48].

⟨ϕ(x), ϕ(z)⟩ = k(x, z) (2.20)

The data will be accessed by the algorithm through k(x, z) or through a kernel
matrix consisting of kernel k applied to all data point pairs.

It is proposed to use a feature map that is randomized, denoted by ψ : Rn → Rd,
to map the data to an inner product space of low dimension. As a result, the
inner product between the transformed data point pairs approximates their kernel
evaluation.

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ≈ ψ(x)Tψ(z) (2.21)

By using ψ, an explicit transformation can be achieved rather than relying on the
implicit transformation provided by the kernel trick. It is worth mentioning that
ψ is low-dimensional compared to the transformation ϕ. Therefore, ψ can be used
to transform the input and approximate the solution of a corresponding nonlinear
kernel machine. This is done by transforming the input using ψ and applying fast
linear learning techniques.

2.1.6. Complexity in Kernel Methods

The power of kernel methods comes from the kernel trick, which uses a feature
map ψ(·) to implicitly map the data into a feature space, allowing for non-linear
functional learning. However, despite their applicability, kernel methods can be
computationally expensive when considering algorithm complexity. A typical ker-
nel learning algorithm requires O(N3) computation and O(N2) memory, where
N is the number of data points [33]. To address this issue, Rahimi and Recht
[46] proposed an approximation framework, discussed in Section 2.2, which has
proven to give great results in kernel regression problems with significantly faster
computation time. This framework reduces the computational complexity of ker-

10 Chapter 2. Preliminaries

nel methods by reducing them to linear learning in the feature space, allowing for
computation using fast linear solvers. As a result, time and space complexity is
reduced from O(N3) and O(N2) to O(NR2) and O(NR) respectively, providing
substantial computational savings as long as R << N .

2.2. Random Fourier Features
One significant disadvantage of RKHS is their computational cost [11]. However,
the theory of random Fourier features (RFF) has provided a key breakthrough
for overcoming this challenge. The RFF method is a widely utilized approach to
improve the scalability of kernel methods, particularly in the context of kernel
ridge regression (KRR). The approach was first introduced in a study by Rahimi
and Recht in 2007 [46] and involves constructing random features using Bochner’s
Theorem and inverse Fourier transform to approximate a shift-invariant kernel
[39]. This method enables the approximation of low-dimensional, randomized
kernels, providing a more efficient means of processing large datasets.

In recent years, a growing interest has been in developing scalable kernel-based
methods, such as KRR, using RFFs [62, 13, 61]. The material presented here is
based on the work in [13] and provides an overview of Fourier transformation,
Bochner’s theorem, and the approximation of kernels using RFF.

2.2.1. Random Features

Rahimi and Recht [46] proposed a technique that utilizes a set of random fea-
tures to project data points onto a randomly selected line, followed by apply-
ing a sinusoidal function to generate a scalar output. By drawing random lines
from a distribution, the inner product of the transformed points approximates the
shift-invariant kernel. The theoretical foundation for this approach is Bochner’s
theorem [46], which comes from classical harmonic analysis and provides valuable
insights into the use of random features for this purpose.

2.2.2. Fourier Transform

This section builds upon the theories presented in [61] and explains the Fourier
transform of the Gaussian radial basis function. Prior knowledge of Fourier trans-
formation is beneficial. The significance of this finding lies in its potential to es-
tablish a connection between the Gaussian kernel and random Fourier features,
which serves as a foundation for utilizing Fourier-based approximations in kernel
regression.

2.2. Random Fourier Features 11

By using a finite number of random Fourier features, it is possible to approximate
the Fourier transform of the Gaussian radial basis function. This approximation is
possible because the Fourier transform of the Gaussian function itself is a Gaussian
function [32].

For the Gaussian radial basis function

Let the Fourier transform of a function G(w) be defined by

g(x) =
∫ ∞

−∞
G(w)e−iwxdw (2.22)

and let the inverse Fourier transform G(w) be defined by

G(w) = 1
2π

∫ ∞

−∞
g(x)e−iwxdx (2.23)

Considering a function defined as

g(x) = e
− x2

ρ2 (2.24)

and applying this function to (2.23), generates the inverse Fourier transform

G(x) = 1
2π

∫ ∞

−∞
e

− x2
ρ2 e−iwxdx = 1

2π

∫ ∞

−∞
e

−(x2
ρ2 +iwx)

dx (2.25)

Suppose the integral of a Gaussian function is

∫ ∞

−∞
e−(ax2+bx)dx =

√
π

a
e(b2

4a
) (2.26)

With a = 1/ρ2 and b = iw, the inverse Fourier transform becomes

G(w) = 1
2π

√
πρ2e− ρ2w2

4 = 1√
2π 2

ρ2

e− 1
2

ρ2
2 w

2 (2.27)

The probability density function of the normal distribution can be expressed based
on the theory of normal distribution when the expected value is zero

12 Chapter 2. Preliminaries

p(w) = 1√
2πσ2

e− 1
2 (w

σ
)2 (2.28)

From the previous analysis, it can be concluded that setting

σ2 = 2
ρ2 (2.29)

G(w) will represent the probability density function of a normal distribution.

For the Gaussian radial basis function with vector variable

Building upon the previous section, the case involving vector variables is now
considered. In the vector case, the Fourier transform is given by

g(x) =
∫ ∞

−∞
G(w)e−iwTxdw (2.30)

and the inverse Fourier transform is defined as

G(w) = (1
2π)n

∫ ∞

−∞
g(x)eiwTxdx (2.31)

By replacing g(x) in (2.30) with the function

g(x) = e
− x2

ρ2 (2.32)

the inverse Fourier transform becomes

G(w) = (1
2π)n

∫ ∞

−∞
e

− x2
ρ2 e−iwTxdx =

∫ ∞

−∞
e

−(x2
ρ2 +iwTx)

dx (2.33)

Given that the integral of a Gaussian function in the case of vectors is

∫ ∞

−∞
e−(ax2+bTx)dx =

√
(π
a

)ne(||b||2
4a

) (2.34)

it is seen that a = 1/ρ2 and b = iw. This results in the inverse Fourier transform

2.2. Random Fourier Features 13

G(w) =
(1

2π

)n√
(πρ2)ne− ρ2||w||2

4 =

 1√
2π 2

ρ2

n e− 1
2

ρ2||w||2
2 (2.35)

With the probability density function being

p(w) =
(1√

2πσ2

)n
e− 1

2 (||w||
σ

)2 (2.36)

If σ2 is set to be equal to

σ2 = 2
ρ2 (2.37)

then G(w) will be the probability density function of a normal distribution.

2.2.3. Bochner’s Theorem

Bochner’s theorem, explained in [46], states that a continuous kernel on Rn, rep-
resented as

k(x, z) = g(x− z) (2.38)

is positive definite if and only if the kernel k is the Fourier transform of a non-
negative measure.

As mentioned, Bochner’s theorem is the theoretical result leading to random
Fourier features [13]. This theorem implies that any kernel k that is positive
definite, continuous, and shift-invariant can be represented as the Fourier trans-
form of a non-negative measure µ.

Let a kernel k be

k(x, z) = g(x− z) =
∫
Rn
e−iw(x−z)dµ(w) (2.39)

If µ(w) is the cumulative distribution function for p, then

µ(w) =
∫ w

p(w)dw (2.40)

14 Chapter 2. Preliminaries

By using Leibniz integral rule it can be found that

dµ = p(w)dw (2.41)

Note that ∫
Rn
dµ =

∫
Rn
p(w)dw = 1 (2.42)

(2.39) can therefore be rewritten

g(x) =
∫
Rn
e−iwxp(w)dw (2.43)

(2.39) can also be written as an expectation over

µ : k0(x− z) = Eµ[e−iw(x−z)] (2.44)

Given that k is real-valued, the real part can be defined as

k(x, z) = Eµ[cos(w(x− z))]
= Eµ[cos(wz) cos(wx) + sin(wz) sin(wx)]

(2.45)

Let
∑d
i=1 xi represent a column vector of length dm obtained by concatenating

vectors xi ∈ Rm. Given this, the feature map ψ : Rn → R2d defined as

ψ(x) = 1√
d

d∑
i=1

[
cos(wix)
sin(wix)

]
(2.46)

is a random Fourier feature map.

To approximate the kernel, each wi, where i = 1, ..., d, is sampled independently
from the inverse Fourier transform µ of k0. This produces a Monte-Carlo estimator
k(x, z) = ψ(x)ψ(z) of the kernel, as described in [13]. It is stated in [46] that the
convergence of this approximation towards the desired kernel, given in equation
(2.39), depends on the dimension d.

According to [13], the RFF approach requires two steps before learning can be-
gin. The first step involves defining the randomized feature map of a given shift-
invariant kernel, while the second step is to compute the randomized feature map
using the spectral distribution µ. It is also shown in [46] that for the Gaussian
kernel k(x− z) = e−γ∥x−z∥2 , the spectral distribution µ(w) is indeed Gaussian.

2.2. Random Fourier Features 15

2.2.4. Real-Valued Approximation of a Scalar Kernel

As observed in [46], real-valued functions can be used to represent random Fourier
features. This is possible because the probability density function of the features
is real, and the kernel can be expressed as an integral in the following manner

K(x, z) =
∫
Rd

cos(wT (x− z))p(w)dw (2.47)

When the feature map is given by

ψw(x) =
[
cos(wTx)
sin(wTx)

]
(2.48)

it follows from trigonometric identities that ψw(x)Tψw(z) = cos(wx) cos(wz) +
sin(wx) sin(wz) = cos(w(x− z)).

Bochner’s theorem for the kernel is given by

K(x, z) =
∫
Rd
ψw(x)ψw(z)p(w)dw (2.49)

By calculating

K(x, z) = 1
d

d∑
i=1
ψwi

(x)Tψwi
(z) (2.50)

an approximation of the kernel can be found. Further on, w1, ...,wd can be drawn
based on the probability p(w).

The approximation now satisfies the following

K(x, z) = Ψ(x)TΨ(z) (2.51)

where
Kij = k(xi,xj) ≈ ψ(xi)Tψ(xj) (2.52)

where the approximate feature map is

16 Chapter 2. Preliminaries

Ψ(x) = 1√
d

ψwi
(x)
...

ψwd
(x)

 = 1√
d

cos(wT

1 x)
sin(wT

1 x)
...

cos(wT
d x)

sin(wT
d x)

 (2.53)

2.2.5. Alternative Random Fourier Feature Expressions

A real alternative formulation of the random Fourier features is mentioned in [46].
Here, an approximation of the kernel is obtained by

K(x, z) = 1
d

d∑
i=1
ψwi

(x)Tψwi
(z) (2.54)

where

ψw(x) =
√

2 cos(wTx+ b) (2.55)

It can also be given by

ψw(x) =
√

2 sin(wTx+ b) (2.56)

As for the approximation outlined in Section 2.2.4, the value of wi is selected
with probability p(w), while the value of b is chosen uniformly at random from
the interval [0, 2π).

2.2.6. Random Fourier Features for Curl-Free Kernel

The concept of curl-free kernels has been introduced for learning conservative vec-
tor fields [55], which is when the vector fields conserve energy. The curl property
of vector fields is applicable when representing the rotational movement of a field.
A vector field F is considered irrotational, or curl-free, if

∇ × F = 0 (2.57)

This indicates that the vector field has no rotational component.

It is possible to find an approximation of a curl-free kernel using RFF [51]. To
find the curl-free kernel when using RFF, the Hessian of g(x) defined in equation

2.2. Random Fourier Features 17

(2.43) is calculated. The Hessian is given as

∇2g(x) =
∫
Rn

(
∇2e−iwTx

)
p(w)dw (2.58)

This gives
Gcf (x) = −∇2g(x) =

∫
Rn
wwT e−iwTxp(w)dw (2.59)

Gcf (x− z) can then be expressed as

Gcf (x− z) =
∫
Rn
wwT e−iwT (x−z)p(w)dw

=
∫
Rn
wwT eiw

Txeiw
T zp(w)dw

(2.60)

Recall that
K(x, z) = G(x− z) =

∫
Rn
ψw(x)ψw(z)T p(w)dw (2.61)

Comparing equation (2.60) with equation (2.61) it follows that

ψw(x) = we−iwTx (2.62)

The approximation for the curl-free kernel Kcf (x, z) is defined as

Kcf (x, z) = Ψ(x)Ψ(z) (2.63)

where it follows that

Ψ(x) = 1√
d

e−iwT

1 xwT

...
e−iwT

d xwT

 (2.64)

Looking at the kernel approximation expressed in equation (2.55), the curl-free
approximation can be defined as

Ψcf (x) =
√

2
d

sin(wT
1 x+ b1)wT

1
...

sin(wT
d x+ bd)wT

d

 (2.65)

18 Chapter 2. Preliminaries

where its elements are given by

ψi = sin(wT
i x+ bi)wT

i (2.66)

Alternatively, the approximation can be defined as

Ψcf (x) =
√

2
d

cos(wT
1 x+ b1)wT

1
...

cos(wT
d x+ bd)wT

d

 (2.67)

with elements given by
ψi = cos(wT

i x+ bi)wT
i (2.68)

2.3. Kernel Regression
In this section, the theoretical aspects of kernel ridge regression will be discussed,
starting by introducing the Representer Theorem, followed by the Gaussian Sep-
arable kernel. It will also present the methods of Regularized Least-Squares and
how these methods with Random Fourier features can be used to approximate the
exact kernel and solve an optimization problem.

2.3.1. The Representer Theorem

This section is based on [49]. Consider a nonempty set X , with a corresponding
reproducing kernel Hilbert Space H and let k: X × X be a positive definite kernel.
Let (x1, y1), . . . , (xN , yN) ∈ X × R be a training sample, g on [0,∞) → R be a
strictly monotonically increasing function, and c : (X × R2)N → R ∪ {∞} be an
arbitrary cost function. There exists a class of functions

F =
{
f ∈ RX

∣∣∣∣∣f(·) =
∞∑
i=1

aik(·, zi), ai ∈ R, zi ∈ X , ||f || < ∞
}

(2.69)

||·|| is the norm associated with the kernel k in the reproducing kernel Hilbert
Space. The norm for any zi ∈ X and ai ∈ R is given by

∥∥∥∥∥
∞∑
i=1

aik(·, zi)
∥∥∥∥∥

2

=
∞∑
i=1

∞∑
j=1

aiajk(zi, zj) (2.70)

2.3. Kernel Regression 19

Any f ∈ F that minimizes the regularized functional

c((x1, y1, f(x1)), ..., (xN , yN , f(xN))) + g(||f ||) (2.71)

can be represented in the form

f(·) =
N∑
i=1

aik(·, xi) (2.72)

This representation can be utilized for ridge regression, see Section 2.3.3.

With mean squared loss, the cost function c is defined as

c((x1, y1, f(x1)), ..., (xN , yN , f(xN))) = 1
N

N∑
i=1

(yi − f(xi))2 (2.73)

and function g is given by

g(||f ||) = λ||f ||2, λ > 0 (2.74)

2.3.2. Gaussian Separable Kernel

This section is based on [53], which highlights the Gaussian separable kernel as
the most widely used kernel in RKHS. The scalar Gaussian kernel k: Rn×Rn → R
is given by

k(x, z) = e− ||x−z||2

2σ2 (2.75)

where x = [x1, ..., xn]T and z = [z1, ..., zn]T are vectors. The hyperparameter σ is
a scalar parameter that determines the bandwidth of the kernel and controls the
degree of correlation between points.

The Gaussian kernel is shift-invariant, which means that

k(x, z) = g(x− z) = e− ||x−z||2

2σ2 (2.76)

for a positive definite function g [61]. The associated density is also Gaussian,
N (0, σ−2IN).

20 Chapter 2. Preliminaries

2.3.3. Regularized Least-Squares

This section covers regularized least-squares, a traditional statistical technique
commonly referred to as ridge regression, and it is based on [54], [59] and [60].
Assume that N input data points xi and the corresponding outputs yi are given,
where i = 1, . . . , N , in other words z = (xi, yi)Ni=1. Here xi ∈ X ⊆ Rm and yi ∈ R.

Given an RKHS with the kernel K, the optimization problem for regularized least-
squares is formulated as minimizing the cost function

fz,λ = arg min
f∈HK

1
N

N∑
i=1

||f(xi) − yi||2R + λ||f ||2HK
(2.77)

The classic way to minimize a cost function is by solely using the least-square
term, which is the first term on the right-hand side. However, there is a big risk
of overfitting when working in the feature space. Therefore, regularization is nec-
essary, which is the reason why the second term is included. The hyperparameter
λ regulates the strength of the regularization, and the noise of the problem is
associated with it.

As mentioned, the function f can be represented by the form

f(x) =
N∑
i=1

aik(x,xi) (2.78)

By replacing f (x) in (2.77) with the right hand side of (2.78), the optimization
problem can be rewritten as

fz,λ = arg min
f∈HK

1
N

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

ajk(x,xj) − yi

∥∥∥∥∥∥
2

R

+ λ||f ||2HK
(2.79)

2.3. Kernel Regression 21

The second term in (2.77) can be reformulated as

||f ||2HK
=
〈

N∑
i=1

aik(·,xi),
N∑
j=1

ajk(·,xj)
〉

Hk

=
N∑
i=1

N∑
j=1

⟨aik(·,xi), ajk(·,xj)⟩HK

=
N∑
i=1

N∑
j=1

aiajkij

= aTKa

(2.80)

where a = [a1, ..., aN]T

This gives

fz,λ = 1
N

||Ka− y||2R + aTKa (2.81)

By differentiating the right-hand side of equation (2.81) with respect to a and
utilizing the symmetry of K, the term can be expressed in the following manner

fz,λ = − 1
N
K(y −Ka) + λKa (2.82)

Any solution should satisfy fz,λ = 0, which gives

− 1
N
K(y −Ka) + λKa = 0 (2.83)

Multiplying all elements with K−1 and reorganizing gives the unique solution

a(K + λNIN) = y (2.84)

If K is non-singular, a can be found by

a = (K + λNIN)−1y (2.85)

where a = [a1, ..., aN]T , y = [y1, ..., yN]T and K is the Gram matrix of the kernel
k, Kij = k(xi,xj).

22 Chapter 2. Preliminaries

The exact solution for the optimization problem in the scalar case is then

f(x) =
N∑
i=1

aik(x,xi) (2.86)

and the value of y can be predicted.

2.3.4. Regularized Least-Squares with Random Fourier Features

When using random Fourier features in ridge regression, the inputs x are replaced
with their feature map

xi → ψi = ψ(xi) (2.87)

The regularized least-squares problem can be resolved by utilizing Random Fourier
Features to obtain an approximation of the kernel. Randomized approximated
feature maps have proven to be a good mechanism to scale up kernel methods
and reduce the computational expenses for large-scale tasks [27]. The following
is based on [21], [34] and [46]. Let (xi, yi), ..., (xN , yN) be the set of inputs and
corresponding output, where xi ∈ Rm and yi ∈ R. Consider the minimization
problem

L[f] = arg min
f∈HK

1
N

N∑
i=1

||f(xi) − yi||2R + λ||f ||2HK
(2.88)

f (x) is a linear combination of N functions k(x,xi), and it is given by

f(x) =
N∑
i=1

aik(x,xi) (2.89)

It is possible to define a feature map ψ : X → Rd, which has the following property

k(x, z) ≈ ψ(x)Tψ(z) (2.90)

where ψ(x) = [ψ(xi), ..., ψ(xd)]T ∈ Rd.

The inner product is given by

ψ(x)Tψ(z) = 1
d

d∑
i=1

ψi(x)ψi(z) (2.91)

2.3. Kernel Regression 23

and function f is given by

f(x) =
N∑
i=1

aik(x,xi) ≈
d∑
i=1

aiψ(x)Tψ(xi) =
d∑
i=1

aiψi(x) = ψ(x)Tα (2.92)

where α is

α =
d∑
i=1

aiψ(xi) ∈ Rd (2.93)

Rather than being expressed as a linear combination of N functions k(x,xi), f (x)
is now represented as a linear combination of d functions ψi(x).

Based on [52] it is shown that the norm f is given by

||f ||2Hk
=

d∑
i=1

d∑
j=1

⟨ai, k(xi,xj)aj⟩

≈
d∑
i=1

d∑
j=1

⟨aiψ(xi), ajψ(xj)⟩

=
〈

d∑
i=1

aiψ(xi),
d∑
j=1

ajψ(xj)
〉

= ⟨α,α⟩
= ||α||2

(2.94)

It is now possible to reformulate the optimization problem over α ∈ Rd instead.
The following is based on [37].

Vector f = [f (x1), ..., f (xN)]T is given by

f = ΨTα (2.95)

where Ψ is matrix containing the transformed inputs, Ψij = ψi(xj)

Ψ = [ψ(x1), ...,ψ(xN)] ∈ Rd×N , ΨT =

ψ(x1)
...

ψ(xN)

 ∈ RN×d (2.96)

24 Chapter 2. Preliminaries

The kernel matrix is given by

K = ΨTΨ ∈ RN×N (2.97)

with elements

Kij = k(xi,xj) ≈ ψ(xi)Tψ(xj) (2.98)

ΨΨ ∈ Rd×d, and has the following elements

{ΨΨT }ij =
d∑

k=1
ψk(xi)ψk(xj) (2.99)

By defining vector y = [y1, ..., yN]T , the optimization problem can be rewritten
to

min
α∈Rd

L[α] = 1
N

||ΨTα− y||2 + λ||α||2

= 1
N

(ΨTα− y)T (ΨTα− y) + λαTα

= 1
N

(αTΨΨTα− 2αΨTy + yTy) + λαTα

(2.100)

By differentiating L with α, and setting it equal to zero, the minimum will be
achieved. This gives the solution

1
N

(−2Ψy + 2ΨΨTα) + 2λα = 0 (2.101)

(ΨΨT + λNI)α = Ψy (2.102)

α = (ΨΨT + λNI)−1Ψy (2.103)

This solution is of dimension d.

2.4. Vector-Valued RKHS 25

2.4. Vector-Valued RKHS
This section is focused on the regularized least-squares problem for the case where
the inputs and outputs can be vectors. This can be considered as an extension of
the properties of the scalar case.

2.4.1. Moore-Aronszajn Theorem for the Vector Case

The Moore-Aronszajn theorem discussed in Section 2.1.2 can be generalized so
that it applies to the case of vector-valued functions. This section is based on [39]
and [38].

Consider a vector valued function f : Rn → Rm, and a function
K : Rn × Rn → Rm×m. The function K is a positive definite kernel if

K(x, z)T = K(z,x), ∀x, z ∈ Rn (2.104)

and
N∑
i=1

N∑
j=1

⟨yi,K(xi,xj)yj⟩ ≥ 0 (2.105)

for every set of points {xi}Ni=1 ∈ Rn and {yi}Ni=1 ∈ Rm. If both equation (2.104)
and (2.105) are satisfied, then there exists a RKHS, HK , with a kernel K.

Let Kxy : Rn → Rm be a function given by

(Kxy)(z) = K(z,x)y ∈ Rm, ∀z ∈ Rn (2.106)

Function Kxy defines the following set

H0 = span{Kxy | x ∈ Rn,y ∈ Rm} (2.107)

where the elements are functions from Rn to Rm. Let function f and g be defined
as followed

f =
N∑
i=1
Kxiyi ∈ H0, g =

N∑
j=1
Kzjwj ∈ H0 (2.108)

with inner product

26 Chapter 2. Preliminaries

⟨f , g⟩H0 =
〈

N∑
i=1
Kxiyi,

N∑
j=1
Kzjwj

〉
H0

=
N∑

i,j=1
⟨yi,K(xi, zj)wj⟩ (2.109)

If HK is the completion of H0, it is the RKHS of vector-valued functions from Rn
to Rm. The inner product can then be defined as

⟨Kxy,Kzw⟩HK
= ⟨y,K(x, z)w⟩ (2.110)

The reproducing property is

⟨f(x),y⟩ = ⟨f ,Kxy⟩HK
, f ∈ HK (2.111)

2.4.2. Vector-valued Curl-Free Kernel

Let Kcf (x, z) be a matrix-valued curl-free kernel, where

Kcf (x, z) = Gcf (x− z) (2.112)

The kernel is found using the Hessian of the scalar Gaussian kernel [51]. In [36],
the Hessian is defined as

Gcf (x) = −∇2g(x) (2.113)

where

∇2g(x) =
{
∂2g(x)
∂xi∂xj

}
(2.114)

and the scalar Gaussian kernel is defined in equation (2.76).

The expression for the matrix-valued curl-free kernel is therefore

Kcf (x, z) = Gcf (x− z) = 1
σ2 e

− ||x−z||2

2σ2

[
I −

(
x− z
σ

)(
x− z
σ

)T]
(2.115)

The selection of this kernel results in vector fields in the corresponding RKHS
being curl-free. They can, according to [51], be interpreted as gradient flows with
respect to a potential field V

2.4. Vector-Valued RKHS 27

ẋ = f(x) = −∇V (x) (2.116)

2.4.3. Vector-Valued Regularized Least-Squares

This section is based on [2] and [41]. Consider N inputs {xi}Ni=1 and their cor-
responding outputs {yi}Ni=1, where xi ⊆ Rn and yi ⊆ Rm. Here, n and m
represents the dimension of the inputs and outputs, respectively. This leads
to z = {(xi,yi)}Ni=1. In order to extend the regularized least-squares problem
described in (2.77) to the vector-valued case, it can be rewritten as follows

fz,λ = arg min
f∈HK

1
N

N∑
i=1

||f(xi) − yi||2RmN + λ||f ||2HK
(2.117)

In the scalar case, the solution to the problem is

f(x) =
N∑
i=1
K(x,xi)ai ∈ Rm (2.118)

given by the representer theorem, and the kernel being K(x,xi) : Rn × Rn →
Rm×m. When assuming that the kernel is Gaussian separable, it is given by

K(x, z) = k(x, z)Im =

k(x, z) 0 . . . 0

0 k(x, z) . . . 0
...

...
0 0 . . . k(x, z)

 (2.119)

where k: Rm × Rm → R is the scalar shift-invariant Gaussian kernel described in
(2.75).

(2.118) can be written as

f(x) = [K(x,x1), ...,K(x,xN)]

a1
...
aN

 (2.120)

The coefficients a can be found from

(K + λNINm)a = y (2.121)

28 Chapter 2. Preliminaries

Which gives

a = (K + λNINm)−1y (2.122)

This is the same asa1
...
aN

 =

K(x1,x1) · · · K(x1,xN)

...
K(xN ,x1) · · · K(xN ,xN)

+NλINm

−1 y1

...
yN

 (2.123)

One coefficient vector ai ∈ Rm is given by

N∑
j=1
K(xi,xj)aj +NλINai = yi, i = 1, ..., N, ai ∈ Rm (2.124)

Regarding the dimensions, a = [a1, ...,aN] ∈ RNm where ai ∈ Rm and y =
[y1, ...,yN] ∈ RNm. The kernel is a matrix K ∈ RNm×Nm, where K(xi,xj) ∈
Rm×m.

2.4.4. Random Fourier Features for Vector-Valued Functions

Random feature approximations to kernel functions can be extended to matrix-
valued kernels [13, 39]. Given data points (xi,yi) for i = 1, . . . , N , with xi ∈ Rn
and yi ∈ Rm, the optimization problem described in (2.88) can be rewritten so
that it applies to vector-valued functions

min
f∈HK

L[f] = 1
N

N∑
i=1

||f(xi) − yi||2RmN + λ||f ||2HK
(2.125)

Given f = [f1, ..., fm]T , where fi : Rm → R, each function is real-valued and
defined by the scalar kernel k(x, z) in the RKHS.

Recall that for a scalar kernel, an approximation can be defined as (2.90) and
(2.91) by using RFF. Combining these two equations lets the scalar kernel expres-
sion be obtained as

K(x, z) ≈ ψ(x)Tψ(z) =
d∑
i=1

ψi(x)ψi(z) (2.126)

2.4. Vector-Valued RKHS 29

An approximation of the matrix kernel K(x, z) can then be given by

K(x, z) = ψ(x)Tψ(z)Im

=

ψ(x)Tψ(z) 0 . . . 0

0 ψ(x)Tψ(z) . . . 0
...

...
0 0 . . . ψ(x)Tψ(z)

(2.127)

Ψ can be defined as

Ψ(x) = ψ(x) ⊗ Im =

ψ1(x)Im
...

ψd(x)Im

 ∈ Rdm×m (2.128)

and

Ψ(x)T = ψ(x)T ⊗ Im = [ψ1(x)Im . . . ψd(x)Im] ∈ Rm×md (2.129)

where ⊗ is the Kronecker product and m is the dimension.

According to [52], the kernel matrix K can now be expressed as

K(x, z) = Ψ(x)TΨ(z) (2.130)

For the scalar case, the function f can be approximated as

f(x) =
N∑
i=1
K(x,xi)ai ≈

N∑
i=1

Ψ(x)TΨ(xi)ai =
N∑
i=1

Ψ(x)ai = Ψ(x)Tα (2.131)

where ai ∈ Rm and

α =
N∑
i=1

Ψ(xi)ai ∈ Rdm (2.132)

Since Ψ(x) is given by (2.128), function f(x) can be viewed as a linear combina-
tion of d functions ψi(x). Therefore the approximation can be expressed as

f(x) = [ψ1(x)Im . . . ψd(x)Im]α =
d∑
i=1

ψ(x)Imα (2.133)

The optimization problem can be reformulated to solve for α instead of f , which

30 Chapter 2. Preliminaries

reduces the problem’s dimension to dm.

By using the same derivation as in equation (2.94), but replacing f with (2.131),
the norm of f can be reformulated to

||f ||2HK
= ⟨α,α⟩ = ||α||2 (2.134)

Φ can be defined as

Φ =

Ψ(x1)T
...

Ψ(xN)T

 ∈ RNm×dm (2.135)

Vector F can be written as

F =

f(x1)
...

f(xN)

 =

Ψ(x1)T
...

Ψ(xN)T

α ∈ RNm (2.136)

Which gives
F = Φα (2.137)

The vector Y is given by

Y =

y1
...
yN

 ∈ RNm (2.138)

By rewriting (2.125) to be solved for α, the following holds

min
α∈Rdm

L[α] = 1
N

(Φα− Y)T (Φα− Y) + λαTα (2.139)

To obtain the minimum for (2.139), the equation is differentiated with respect to
α and set equal to zero. The solution to the problem is then given by

(ΦTΦ + λNIdm)α = ΦTY (2.140)

α = (ΦTΦ + λNIdm)−1ΦTY (2.141)

which, as mentioned, has the dimension dm.

2.5. RKHS for Vector Fields 31

Dimensions for curl-free kernel

In the case of a curl-free kernel approximation, some dimensions will be different
than in the case of a Gaussian kernel.

Note that while Ψ(x) for the Gaussian kernel is given by

Ψ(x) = ψ(x) ⊗ Im ∈ Rdm×m (2.142)

Ψcf (x) for the curl-free kernel will be

Ψcf (x) = ψcf (x) ∈ Rd×m (2.143)

This shows that the feature maps have different dimensions, where ψ(x) ∈ R and
ψcf (x) ∈ Rm. As for α, it has dimension d, and Φ ∈ RNm×d. On the other hand,
the vectors F and Y will have the same dimensions as for the Gaussian kernel,
which is Nm.

2.5. RKHS for Vector Fields
This section introduces an extension to regularized least-squares so that a con-
straint, based on contraction, can be applied to a subset of data points. This
constraint is applied to a vector field, meaning the dimensions of x and y will be
the same, thus implying n = m.

2.5.1. Contraction Analysis

This section is based on [35] and [51]. Consider the system

ẋ = f(x) (2.144)

where ẋ ∈ Rm is the velocity vector at position x ∈ Rm. If f is continuously
differentiable, then equation (2.144) will yield the differential relation

δẋ = ∂f

∂x
δx (2.145)

where ∂f
∂x is the Jacobian of f .

Here, δx denotes a virtual displacement, an infinitesimal spatial displacement at
a fixed time between neighboring trajectories. By defining the squared distance

32 Chapter 2. Preliminaries

between two neighboring trajectories as δxT δx, the rate of change is given by

d

dt
(δxT δx) = 2δxT δẋ = 2δxT ∂f

∂x
δx (2.146)

Let λmax(x) denote the largest eigenvalue of the symmetric part of the Jacobian
of f . The symmetric part is given by

1
2

(
∂f

∂x
+ ∂f

∂x

T
)

(2.147)

Assume that λmax is strictly negative, which means that

λmax(x) ≤ −µ, ∃µ(x) > 0, ∀x ≥ 0 (2.148)

If the Jacobian is negative definite, given by

1
2

(
∂f

∂x
+ ∂f

∂x

T
)

≤ −µ(x)I < 0 (2.149)

then
d

dt
(δxT δx) ≤ −2µ(x)δxT δx (2.150)

and the distance between neighboring trajectories will shrink.

Integrating both sides of equation (2.150) results in

||δx|| ≤ ||δx0||e−
∫ t

0 µ(x)dt (2.151)

This shows that any infinitesimal length ||δx|| converges exponentially to zero.

Contraction region

This theory on contraction region can be found in [35]. Given a specific trajectory,
consider a ball of constant radius centered around it. The ball is designed to
remain within a contraction region at all times. This property arises due to the
negative definiteness of the Jacobian matrix within the contraction region. As
a result, any trajectory that initiates inside the ball will remain inside it and
exponentially converge toward the given trajectory. Any length segment within
the ball will decrease exponentially over time. Figure 2.2 illustrates this. Note that

2.5. RKHS for Vector Fields 33

if the whole state space is a contraction region, global exponential convergence
will be guaranteed.

Figure 2.2.: Convergence of two trajectories. Illustration [35].

Hence, an open, connected set, also known as a region, of the state space for the
system in equation (2.144) is a contraction region if the Jacobian of f is negative
definite in that region. This ensures that any two trajectories that start within
the region will converge exponentially toward each other.

2.5.2. Contraction as a Constraint

According to [35], a condition that must be satisfied for contraction to occur is

∇Tf(x) + (∇T (f(x))T ⪯ −µI (2.152)

where ∇T denotes transposing the gradient. ∇Tf(x) is the Jacobian of f given
by

∇Tf(x) =
{
∂fi
∂xj

}
(2.153)

and

∇f(x) =

∂f1(x)
∂x1

· · · ∂f1(x)
∂xm...

∂fm(x)
∂x1

· · · ∂fm(x)
∂xm

 (2.154)

34 Chapter 2. Preliminaries

Based on equation (2.129) and (2.131), the approximation of f can be written as

f(x) = [ψ1(x)Im · · · ψd(x)Im]

α1
...
αd

= ψ1(x)α1 + · · · + ψd(x)αd

(2.155)

where each element of f(x) is defined as

fi(x) = ψ1(x)α1i + · · · + ψd(x)αdi (2.156)

This gives
fi(x)
∂xj

= ψ1(x)
∂xj

α1i + . . .+ ψd(x)
∂xj

αdi (2.157)

and

∇f(x) =

ψ1(x)
∂x1

α11 + · · · + ψd(x)
∂x1

αd1 · · · ψ1(x)
∂xm

α11 + · · · + ψd(x)
∂xm

αd1
...

ψ1(x)
∂x1

α1m + · · · + ψd(x)
∂x1

αdm · · · ψ1(x)
∂xm

α1m + · · · + ψd(x)
∂xm

αdm

(2.158)

Based on equation (2.153) and (2.157), the Jacobian for the approximation of f
can be expressed as

∇Tf(x) = ∇T (Ψ(x)T)α =
d∑

k=1
αk∇Tψk(x) (2.159)

Upon examining equation (2.159), it can be seen that the inequality constraint
expressed in equation (2.152) can be reformulated so that it is applicable for RFF

d∑
k=1

(αk∇Tψk(x) + ∇ψk(x)αTk) ⪯ −µIm (2.160)

This inequality constraint is affine in αk.

2.5. RKHS for Vector Fields 35

Gradient of the feature map

As mentioned in Section 2.2.5, the feature map ψk(x) can be defined as

ψk(x) =
√

2 cos(wTx+ b) (2.161)

Then the derivative of ψk is

∇ψk(x) = −
√

2 sin(wTx+ b)w (2.162)

2.5.3. Curl-Free Kernel Approximation with RFF

With the curl-free kernel approximation defined as in equation (2.65), the learned
function f(x) =

∑N
i=1K(x,xi)ci can be approximated with an RFF kernel ap-

proximation as

f(x) = Ψ(x)Tα

=
√

2
d

[sin(wT
1 x+ b1)wT

1 . . . sin(wT
d x+ bd)wT

d]

α1
...
αd

=
√

2
d

[sin(wT
1 x+ b1)wT

1 α1 + . . .+ sin(wT
d x+ bd)wT

d αd] ∈ Rm

(2.163)

where {αk}dk=1 ∈ R are the scalar components of α ∈ Rm. Each of the m compo-
nents of f can be written as a sum

 f1(x)
...

fm(x)

 =
√

2
d

 sin(wT
1 x+ b1)w11α1 + . . .+ sin(wT

d x+ b1)wd1αd
...

sin(wT
1 x+ b1)w1mα1 + . . .+ sin(wT

d x+ b1)wdmαd

 (2.164)

where {wij}mj=1 ∈ R denotes the scalar components of the vectors {wi}di=1 ∈ Rm.

Using the RFF approximation, the expression for the Jacobian of f can now be
obtained

36 Chapter 2. Preliminaries

∇f(x) =

∂f1(x)
∂x1

. . . ∂f1(x)
∂xn...

∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 (2.165)

Observe that each element in the Jacobian can be expressed as

∂fi(x)
∂xj

=
√

2
d

(
w1j cos(wT

1 x+ b1)w1iα1 + . . .+ wdj cos(wT
d x+ bd)wdiαd

)
(2.166)

The Jacobian can now be written as the sum of outer products as seen below

Df(x) =
d∑

k=1
wk∇T

(√
2
d

sin(wT
k x+ bk)

)
αk

=
d∑

k=1
wk

√
2
d

 cos(wT
k x+ bk)wk1

...
cos(wT

k x+ bk)wkm

T

αk

(2.167)

2.5.4. Regularized Least-Squares with Contraction Constraints

In [51] the optimization problem is given by

min
f∈HK

L[f] = 1
N

N∑
i=1

||f(xi) − yi||2 + λ||f ||2HK
(2.168)

subject to 1
2(J(x) + J(x)T) ⪯ −µIm (2.169)

The notation ⪯ in equation (2.169) indicates that the left-hand side of the equation
is negative definite with eigenvalues that are less than or equal to −µ, where µ is
a positive scalar.

J(x) is the Jacobian of f(x), defined as

J(x) = ∂f

∂x
= ∇Tf(x) ∈ Rm×m (2.170)

2.6. Vanishing Point 37

It should be noted that the contraction constraints in equation (2.169) can be
enforced using only a subset of points M.

2.5.5. Random Fourier Features with Contraction Constraints

It is possible to reformulate regularized least-squares with a contraction condition
so that it can be applied to the usage of RFF. The optimization problem needs to
be reformulated so that it is solved for α. Based on equation (2.137) and (2.138),
the problem can be written as

min
α∈Rd

L[α] = (Φα− Y)T (Φα− Y) + λαTα (2.171)

When RFF is used, the Jacobian is given by

J(x) = ∇T (Ψ(x)T)α (2.172)

as shown in Section 2.5.2.

The optimization problem with a contraction condition can therefore be expressed
as

min
α∈Rdm

L[α] = (Φα− Y)T (Φα− Y) + λαTα (2.173)

subject to 1
2(∇T (Ψ(x)T)α+αT∇Ψ(x)) ⪯ −µIm (2.174)

2.6. Vanishing Point
Further work in [51] leads to developing a set of vector fields that vanish at specific
points of interest. These targeted points are essentially the equilibrium points
one aims to learn in the associated dynamical system. An equilibrium state, also
known as a steady state, is a state where the system is stable and does not change
over time [23].

2.6.1. RKHS Vector Fields Vanishing on a Point Set

Given a RKHS denoted as HK , consider the subset of functions that vanish on a
set of points Z = {x∗

1, ...,x
∗
p}. The points in Z represent the desired equilibrium

points.

HZ
K = {f ∈ HK : f(x∗

i) = 0 ∈ Rm,x∗
i ∈ Z} (2.175)

38 Chapter 2. Preliminaries

It should be emphasized that HZ
K forms a closed subspace of HK and, as such,

constitutes a distinct RKHS that is associated with a modified kernel function
KZ .

Let HZ
K ⊆ HK , which is an RKHS defined by the matrix-valued kernel expressed

as

KZ(x, z) = K(x, z) −K(x, Z)K(Z,Z)−1K(Z, z) (2.176)

The equation above is a generalization of Theorem 116 in [9]. Here, S = {xi ∈
Rm}Ni=1 and S′ = {zi ∈ Rm}N ′

i=1 is any two sets of points. K(S′, S) is the Gram
matrix on any matrix-valued kernel K on S, S′, which is an N ′m × Nm matrix
defined by the n× n blocks given by

Gij = K(zi,xj) ∈ Rm×m (2.177)

Therefore, starting with any base matrix-valued kernel K, KZ can be defined as
in (2.176). By doing so, one can generate its corresponding RKHS as a subset
of vector fields that are ensured to vanish on Z, the targeted set of equilibrium
points.

Regularized least-squares with vanishing point

Let (xi, zi) for i = 1, ..., N and xi, zi ∈ Rm be a set of data points. If the objective
is to make vector fields vanish at certain points, the resulting optimization problem
will be

fz,λ = arg min
f∈HZ

K

1
N

N∑
i=1

||f(xi) − zi||2R⋗N + λ||f ||2HZ
K

(2.178)

subject to 1
2(J(x) + J(x)T) ⪯ −µIm (2.179)

Where J(x) is the Jacobian of function f , described in equation (2.170).

The problem is now over the subset HZ
K , instead of HK .

2.6.2. Random Fourier Features Vanishing on a Point Set

This section will discuss the steps to transform a matrix-valued feature map ψ to
ψZ , so that ψZ(x) vanishes on Z, according to the procedure in [51].

Given a set of points X = (x1, ...,xN), a matrix-valued feature map is defined

2.6. Vanishing Point 39

Ψ(X) = [Ψ(x1), ...,Ψ(xZ)] ∈ Rdm×Nn (2.180)

For K(x, z) ≈ Ψ(x)TΨ(z) it can be derived that

KZ(x, z) = K(x, z) −K(x, Z)K(Z,Z)−1K(Z, z)
= Ψ(x)TΨ(z) − Ψ(x)TΨ(Z)(Ψ(Z)TΨ(Z))−1Ψ(Z)TΨ(z)
= Ψ(x)T [I − Ψ(Z)(Ψ(Z)TΨ(Z))−1Ψ(Z)T]Ψ(z)
= Ψ(x)T [I − PΨ(Z)]Ψ(z)
= Ψ(x)TP⊥

Ψ(Z)Ψ(z)

(2.181)

where PΨ(Z) is the orthogonal projector onto the range of Ψ(Z).

It follows that the matrix P⊥
Ψ(Z) can be factorized as the product of a lower-

triangular matrix L and its transpose LT using Cholesky factorization [12], given
by

P⊥
Ψ(Z) = LLT (2.182)

Therefore, in order to find L in equation (2.185), it is necessary to first compute
P⊥

Ψ(Z). It can be observed from equation (2.181) that

PΨ(Z) = Ψ(Z)(Ψ(Z)TΨ(Z))−1Ψ(Z)T (2.183)

and
P⊥

Ψ = I − PΨ(Z) (2.184)

Note that this is for some L ∈ Rdm×dm and P⊥
Ψ(Z) ∈ Rdm×dm in the case of a

Gaussian separable kernel. For a curl-free kernel the dimensions will be L ∈ Rd×d

and P⊥
Ψ(Z) ∈ Rd×d. The dimensions of the identity matrix I vary depending on

which kernel is used and is of the same size as PΨ(Z). It is important to highlight
that, in the presence of numerical noise, ensuring that matrix P is Hermitian and
positive-definite is important.

This leads to a new feature map, which can be defined as

ΨZ(x) = LTΨ(x) (2.185)

40 Chapter 2. Preliminaries

The new feature map satisfies

KZ(x, z) = ΨZ(x)TΨZ(y) (2.186)

Notice that even though the kernel KZ(x, z) is not shift-invariant, this particular
structure still retains the ability to be a low-rank feature map while ensuring that
ΨZ(x) vanishes on Z.

Regularized least-squares with RFF vanishing on a point set

Given a set of points (xi, yi) for i = 1, . . . , N , where xi,yi ∈ Rm, and a chosen
subset of the data points, given by (xj , yj) for j = 1, . . . ,M . If it is desired that
vector fields vanish at specific points, the optimization problem becomes

min
α∈Rdm

L[α] = (ΦZα− Y)T (ΦZα− Y) + λαTα (2.187)

subject to 1
2

M∑
i=1

(JΨZ
i

(xi)αi + JTΨZ
i

(xi)αi) ⪯ −µIm (2.188)

Compared to equation (2.179) it can be seen that

J(x) = JΨZ (x)α (2.189)

JΨZ
i

denotes the m×m Jacobian of ΨZ
i [51]. This leads to

JΨZ (x) = ∇T (ΨZ(x)T) = ∇T (Ψ(x)TL) (2.190)

ΦZ is given by

ΦZ =

ΨZ(x1)T

...
ΨZ(xN)T

 =

Ψ(x1)TL
...

Ψ(xN)TL

 (2.191)

The dimension for ΦZ and α will be the same as in Section 2.4.4.

Note that

JΨZ (x)α =

ψZ

1 (x)
∂x1

α11 + · · · + ψZ
d (x)
∂x1

αd1 · · · ψZ
1 (x)
∂xm

α11 + · · · + ψZ
d (x)
∂xm

αd1
...

ψZ
1 (x)
∂x1

α1m + · · · + ψZ
d (x)
∂x1

αdm · · · ψZ
1 (x)
∂xm

α1m + · · · + ψZ
d (x)
∂xm

αdm

(2.192)

2.7. Hamiltonian Dynamics 41

2.7. Hamiltonian Dynamics
A Hamiltonian system is a well-established framework for describing the time evo-
lution of systems that possess conserved quantities, known as Hamiltonians [55].
One of the most significant of these conserved quantities is the system’s total en-
ergy, which remains constant over time. This section explores the fundamentals
of Hamiltonian dynamics, including the Hamiltonian function, the Hamiltonian
equations of motion, the symplectic kernel, and the symplectic integrator. The
applications of Hamiltonian dynamics for a pendulum will also be presented. The
theoretical framework for Hamiltonian dynamics presented in this section is pri-
marily based on [20] and [42].

2.7.1. Hamilton’s Equations of Motion

Hamilton’s equations of motion are closely related to Lagrange’s equation of mo-
tion and rely on generalized coordinates and energy expressions [20].

Consider the Lagrangian

L(q, q̇, t) = T (q, q̇, t) − U(q) (2.193)

with generalized coordinates q, kinetic energy T (·) and potential energy U(·).

The Hamiltonian H can be described from the Lagrangian L, where a change of
variables is needed. While the Lagrangian variables are (q, q̇), the Hamiltonian’s
are (q,p) ∈ Rd. Usually, the variables q = (q1, ..., qN) and p = (p1, ..., pN)
represent the position and the momentum respectively. The rationale behind this
change can be explored in greater depth in [42].

Defining the vector of momentum variables as

p = ∂L(q,ϕ(q,p, t))
∂ϕ

(2.194)

and using Legendre transformation leads to the Hamiltonian being defined as

H(q,p, t) = pTϕ(q,p, t) − L(q,ϕ(q,p, t), t) (2.195)

Through a system of ordinary differential equations called Hamilton’s equations
of motion

q̇ = ∂H(q,p, t)T

∂p
, ṗ = −∂H(q,p, t)T

∂q
+ τ (2.196)

42 Chapter 2. Preliminaries

the evolution of the Hamiltonian function H(q,p) can be described. The dot
notation represents derivatives with respect to the time variable t [17].

Note that for many mechanical systems, for instance, harmonic oscillators, the
Hamiltonian will be the total energy of the system. In other words

H(q,p) = T (p) + U(q) (2.197)

The time derivative of the Hamiltonian

The time derivative of the Hamiltonian is an important property regarding the en-
ergy conservation of the system. From [20], the time derivative of the Hamiltonian
is derived from the chain rule

dH

dt
= ∂H

∂p
ṗ+ ∂H

∂q
q̇ + ∂H

∂t
(2.198)

Inserting q̇ and ṗ from equation (2.196) gives

dH

dt
= q̇T

(
−∂HT

∂q
+ τ

)
+ ∂H

∂q
q̇ + ∂H

∂t
= q̇Tτ + ∂H

∂t
(2.199)

This leads to the time derivative of the Hamiltonian

dH

dt
= q̇Tτ + ∂H

∂t
(2.200)

Now suppose the Hamiltonian is time independent, that is H = H(q,p), and the
system is unactuated, meaning τ = 0, then

dH(q,p)
dt

= 0 (2.201)

2.7.2. Hamiltonian Dynamics

Now that Hamilton’s equation of motion is introduced, the Hamiltonian system
with symplectic dynamics [11] can be described by

q̇ = ∂H(q,p)
∂p

, ṗ = −∂H(q,p)
∂q

(2.202)

2.7. Hamiltonian Dynamics 43

where q,p ∈ Rn, and the state vector becomes x = [qT ,pT] ∈ R2n.

This gives the gradient of H

∇H =
[
∇qH
∇pH

]
(2.203)

and an alternative notation of the dynamics is[
q̇
ṗ

]
=
[

0 I
−I 0

] [
∇qH
∇pH

]
(2.204)

From [11], the symplectic 2n× 2n matrix is defined as

J =
[

0 I
−I 0

]
(2.205)

where I is the identity matrix of the dimension of p or q [24]. The dynamical
system is then given by

ẋ = J∇H(x) (2.206)

Note that a system is Hamiltonian if and only if it is symplectic [20].

2.7.3. Symplectic Kernel

To ensure that the kernel used in Hamiltonian dynamic modeling satisfies the
symplectic property, the curl-free kernel is extended by adding a term proportional
to the gradient of a scalar potential function.

Assume a curl-free kernelKcf (x, z) = Gcf (x−z) as described in equation (2.115).
Then according to [11], the symplectic kernel is defined as

K(x, z) = −J∇2g(x− z)JT (2.207)

where H is a RKHS defined by the kernel K. Hence, it becomes possible to
represent any function f belonging to H in the following form

f(x) =
N∑
i=1
K(x,xi)ai =

N∑
i=1
G(x− xi)ai (2.208)

Inserting (2.207) into the equation above gives

44 Chapter 2. Preliminaries

f(x) = −J∇
N∑
i=1

∇T g(x− xi)JTai

= −J∇
N∑
i=1

∇T g(x− xi)αi

(2.209)

where αi = JTai. Defining the Hamiltonian as

H(x) = −
N∑
i=1

∇T g(x− xi)αi (2.210)

leads to

f(x) = J∇H(x) = ẋ (2.211)

this describes the Hamiltonian dynamics, and note that this corresponds to the
equation described in (2.206).

2.7.4. Symplectic Kernel from a Gaussian Kernel

A symplectic kernel can be derived from the Gaussian separable kernel defined
in equation (2.76). Similarly, as for the derivation of a curl-free kernel from a
Gaussian kernel, the symplectic kernel can be defined as

G(x) = 1
2σ2 e

− xT x
2σ2 J

(
I − xxT

σ2

)
JT (2.212)

In the case of real-valued RFF, the approximation of the symplectic kernel is

K(x, z) = G(x− z) = JΨ(x)TΨ(z)JT (2.213)

which is derived from

G(x− z) = J

∫
Rn
wwT e−iwT (x−z)p(x)dwJT

= J

∫
Rn
wwT cos(wT (x− z))p(w)dwJT

(2.214)

2.7. Hamiltonian Dynamics 45

Here, Ψ(x) is given by

Ψ(x) = 1√
d

cos(wT

1 x)wT
1

sin(wT
1 x)wT

1
...

cos(wT
d x)wT

d

sin(wT
d x)wT

d

 (2.215)

Note that equation (2.65) and (2.67) offers an alternative definition for Ψ(x).

By using the feature map described in equation (2.67), the following vector field
is given

f(x) = J
d∑
i=1

αi cos(wT
d x+ bd)wd (2.216)

2.7.5. Symplectic Characteristics

This section, based on [25] and [5], outlines important characteristics that make
a Hamiltonian system symplectic. One fundamental property of Hamiltonian
systems is that the Hamiltonian H(p, q) is a first integral of the system described
in equation (2.196). Furthermore, the property of symplecticity exhibited by the
flow is of importance [25].

Volume preservation - Liouville’s theorem

It is stated in [25] that every symplectic transformation and symplectic integrator
applied to a Hamiltonian system preserves volume in phase space. The phase
space is 2n-dimensional where p = [p1, . . . , pn]T and q = [q1, . . . , qn]T .

Figure 2.3.: Conservation of volume. Illustration [25].

46 Chapter 2. Preliminaries

Given a system of ordinary differential equations in the phase space

ẋ = f(x) (2.217)

where x = [pT , qT]T is the state vector and

f(x) =
[
−∂H

∂q
∂H
∂p

]
(2.218)

Then the phase flow is defined as

Φt(x(0)) = x(t) (2.219)

Here, x denotes the solution of the Hamiltonian dynamics at time t with initial
value x(0).

Liouville’s theorem states that the phase flow Φt(D) of a region D in the phase
space, which represents a material volume of particles following Hamiltonian dy-
namics, preserves the volume vol(D). In other words, for any region D in the
phase space

vol(Φt(D)) = vol(D) (2.220)

which is illustrated in Figure 2.3.

Equation (2.220) is derived from the fact that f(x) has zero divergence, which
follows from

divf(x) = ∂

∂p

(
−∂H

∂q

)
+ ∂

∂q

(
∂H

∂p

)
= 0 (2.221)

For a detailed explanation of how the preservation of volume in the phase space
is related to the vector field f(x), refer to pages 68-70 in [5].

Symplectic transformations

When studying the flow property, it is common to study two-dimensional paral-
lelograms in R2n. Given the parallelogram P spanned by two vectors in the (p, q)
space

2.7. Hamiltonian Dynamics 47

ξ =
(
pξ

qξ

)
, η =

(
pη

qη

)
(2.222)

where pξ, qξ,pη, qη ∈ Rn.

The vectors are written using the basis vectors in R2n as

ξ = qξ1e1 + . . . qξnen + pξ1en+1 + . . .+ pξne2n (2.223)

η = qη1e1 + . . . qηnen + pη1en+1 + . . .+ pηne2n (2.224)

The vectors can be projected onto the plane by ei and en+1 for i = 1, . . . , n as

ξi,n+1 = qξi ei + pξien+i (2.225)

ηi,n+1 = qηi ei + pηi en+i (2.226)

The sum of the projected areas in the quadratic form can then be defined by

ω2(ξ,η) =
n∑
i=1

(qξi p
η
i − pξi q

η
i) (2.227)

This equation can also be written by the 2-form matrix expression as

ω2(ξ,η) = ξTJη (2.228)

where the symplectic matrix J is the same as in (2.205).

To achieve a symplectic transformation, consider a linear transformation applied
to both ξ and η. Suppose that both vectors undergo a linear transformation,
yielding Aξ and Aη respectively, where A ∈ R2n×2n, then

ω2(Aξ,Aη) = ξTATJAη (2.229)

If the transformation defined by A satisfies

ω2(Aξ,Aη) = ω2(ξ,η) ∀ ξ,η (2.230)

it is said to be symplectic. Note that the following now holds

48 Chapter 2. Preliminaries

ξTATJAη = ξTJη (2.231)

which means that for the linear transformation A, the sum of the areas of the
projections of the parallelogram onto all the coordinate planes defined by qi and
pi remains unchanged, as seen in Figure 2.4. From equation (2.231) it can be
observed that

ATJA = J (2.232)

and according to [25], the transformation defined by A obtains the symplectic
property if and only if this holds.

Figure 2.4.: Symplecticity of a linear mapping. Illustration [25].

In the case of a nonlinear transformation, given by g(ξ) and g(η), the transfor-
mation g is considered to be symplectic if its Jacobian matrix g′(x) is symplectic,
meaning that

g′(x)TJg′(x) = J (2.233)

2.7.6. Approximating Hamiltonian Dynamics

This section is based on [43] and [24]. It is stated in [43] that when working
with Hamiltonian dynamics in practice, it is necessary to approximate Hamilton’s
equations. This is done by discretizing time, using a small step size denoted as
h. Two of the methods that can be used are described in this section, namely
explicit Euler’s method and the leapfrog method.

Explicit Euler’s method

When using explicit Euler’s method to simulate dynamical systems, such as Hamil-
tonian dynamics, the following steps are performed

2.7. Hamiltonian Dynamics 49

pn+1 = pn + h
dpn
dt

= pn − h∇qH(qn,pn) (2.234)

qn+1 = qn + h
dqn
dt

= qn + h∇pH(qn,pn) (2.235)

Note that by assuming that H(q,p) = T (p) +U(q), equation (2.234) and (2.235)
can be reformulated to

pn+1 = pn − h
∂U

∂q
(qn) (2.236)

qn+1 = qn + h
∂T

∂p
(pn) (2.237)

The explicit Euler method is first-order accurate [44], meaning that the error
discretization is O (∆t).

The leapfrog method

The leapfrog method, also known as the Störmer-Verlet method, is a symplectic
integrator method, and it can be applied to Hamiltonian systems. According to
[43], even better results can be obtained with this method. The following steps
are performed [24]

pn+ 1
2

= pn − h

2 ∇qH(pn+ 1
2
, qn) (2.238)

qn+1 = qn + h

2

(
∇qH(pn+ 1

2
, qn) + ∇pH(pn+ 1

2
, qn+1)

)
(2.239)

pn+1 = pn+ 1
2

− h

2 ∇pH(pn+ 1
2
, qn+1) (2.240)

Assuming that H(q,p) = T (p) + U(q), it can be reformulated to

pn+ 1
2

= pn − ∂U

∂q
(qn) (2.241)

50 Chapter 2. Preliminaries

qn+1 = qn + h
∂T

∂p
(pn+ 1

2
) (2.242)

pn+1 = pn+ 1
2

− h

2
∂U

∂q
(qn+1) (2.243)

The leapfrog method achieves second-order accuracy by initially taking a half step
for the momentum variables, followed by computing a full step for the position
variables using the updated momentum values, and finally calculating another
half step for the momentum variables using the new position values. The error
discretization is O

(
∆t2

)
.

2.7.7. Hamiltonian Dynamics of a Pendulum

The equations of motion for a pendulum with a point mass m can be defined by
the differential equation

θ̈ + g

L
sin θ = 0 (2.244)

where L is the length of the pendulum, g is the acceleration due to gravity, and
θ is the angular displacement [8]. This can be rewritten to

θ̇ = ω

ω̇ = − g

L
sin θ

(2.245)

For a pendulum, the kinetic energy is given by T = 1
2mL

2θ̇
2 and the potential

energy is U = mgL(1 − cosθ). Based on this the Lagrangian can be expressed as

L = 1
2mL

2θ̇
2 −mgL(1 − cosθ) (2.246)

The generalized coordinate for the Hamiltonian dynamics is set to q = θ, and the
momentum is

p = ∂L

∂q̇
= mL2θ̇ (2.247)

which gives θ̇ = p
mL2 .

2.7. Hamiltonian Dynamics 51

Given equation (2.197), the Hamiltonian for a pendulum system can be repre-
sented as follows

H(q,p) = 1
2
p2

mL2 +mgL(1 − cos q) (2.248)

and Hamiltonian dynamics is

q̇ = ∂H

∂p
= p

mL2

ṗ = −∂H

∂q
q̇ = −mgL sin q

(2.249)

which leads to q̈ = − g
L sin q.

In addition, it can be seen that the gradient potential energy is given by

∂U

∂q
= mgL sin(q) (2.250)

Chapter 3.

Method

This chapter presents the methodology used to model dynamical systems using
regression. The optimization tools used, the method to generate data, the algo-
rithms used to solve various regression problems, and the corresponding parameter
settings will be explained. The theory presented in the Preliminaries chapter was
in order to learn the models. Python is used to solve the regression problems, and
the code can be found in [29]. The code is developed from scratch.

3.1. Python Tools for Optimization and Numerical
Solution Solving

This section provides an overview of the Python tools used in this thesis. The
optimization tools PICOS and MOSEK were used to solve the regression problems
where contraction constraints are incorporated. PICOS was used to define the
regression problems, while MOSEK was used to solve the problem.

3.1.1. MOSEK

MOSEK is a powerful and reliable optimization software package designed to solve
complex optimization problems efficiently [3]. This tool is iterative and provides
a range of solvers to address linear, quadratic, conic, and nonlinear optimization
problems, as well as the ability to handle complex constraints. It is particularly
well-suited for large-scale optimization problems and has a reputation for being
one of the most robust and efficient optimization solvers available.

54 Chapter 3. Method

3.1.2. PICOS

Python Interface for Conic Optimization Solvers (PICOS) is a Python-based mod-
eling language that provides an interface for different optimization solvers, in-
cluding MOSEK [47]. It is built on top of NumPy and enables users to define
optimization problems, decision variables, and integrate external data to define
objective functions and constraints of the problem. An advantage of using PI-
COS is the ability to define the optimization problem as a high-level model, and
thereby reducing the focus on technical details.

3.1.3. Numdifftools

When dealing with problems involving both vanishing point and contraction con-
straints, the mathematical expression necessary to compute the gradient of the
feature map ψ became complex, leading to a significant increase in computation
time. Here, the referenced ψ is used in equation (2.192). This made it difficult to
obtain an analytical solution compared to the scenario without vanishing points.

Because of these limitations, it was necessary to use a Python package to compute
the gradient. To address this, the Python library numdifftools was used, which
solves automatic numerical differentiation problems [14]. This library uses an
adaptive finite difference method, along with a Richardson extrapolation method-
ology, to provide a highly accurate approximated result.

3.1.4. Solving Ordinary Differential Equations

To evaluate the results obtained from the regression problems in this thesis, it
was necessary to solve ordinary differential equations (ODEs). To do this, the
Python-based SciPy library was used. SciPy has built-in solvers that solve initial
value problems for ODE systems [58]. The solver used in the simulations was
solve_ivp.

This solver requires an initial value, a function, and a time span as input. It then
performs numerical integration of the system of ODEs [50]. The system of ODEs
is represented by the equations

dy

dt
= f(t, y) (3.1)

y(t0) = y0 (3.2)

3.2. Data Generation 55

3.2. Data Generation
In this thesis, most of the regression problems use a real-world dataset. The
dataset is obtained from [18], and it is a LASA handwriting experiment. Addi-
tional details can be found in Section 3.3.1. However, when learning with Hamil-
tonian systems, it was necessary to self-generate trajectories, and the process is
explained in Section 3.4.1.

3.2.1. Generating RFF Parameters for Learning

As described in Section 2.2.3, in order to use RFF in learning, a feature map ψ of
a shift-invariant kernel needs to be defined. This thesis uses three different feature
maps, each based on a specific kernel. Equations (2.55), (2.65), and (2.67) define
the feature maps associated with the Gaussian separable kernel, the curl-free
kernel, and the symplectic kernel, respectively. When feature maps are mentioned
further in this thesis, these are the ones referred to.

To use the feature maps in the learning process, it is necessary to generate their
parameters, w and b. As mentioned in Section 2.2.5, wi ∈ RN is selected with
probability p(w) from a normal distribution, while bi ∈ R is randomly selected
from the uniform distribution [0, 2π]. The shape of w depends on the dimension
m, resulting in the shape (m, d), and b will always have the shape (1, d), where
d is the number of samples. A trial-and-error approach was used to generate the
parameters until satisfactory values were obtained.

3.3. Learning with LASA Benchmark
This section presents the methodology for solving regression problems with the
LASA library dataset obtained from [18]. The regression problems presented in
this section are based on the research findings reported in [51]. The code developed
for this problem can be found under the directory lasa in the GitHub repository
[29].

3.3.1. The Dataset

To replicate two-dimensional human handwriting movements and learn their cor-
responding vector fields, our Python program was developed implementing the
LASA library dataset [30] sourced from [18]. This dataset consists of .mat files,
which made it necessary to use SciPy’s loadmap function to work with MATLAB
files in a Python program.

56 Chapter 3. Method

The dataset includes 30 handwriting movements and is commonly used as a bench-
mark for evaluating the effectiveness of random Fourier features and regression
techniques. Out of the 30 motions, 26 feature a single pattern, three have two
patterns, and one has three patterns. The demonstrations in the dataset were
recorded from pen input using a Tablet-PC.

The dataset consists of two-dimensional motions, denoted as ζ = [x; y] ∈ R2.
The dataset includes seven demonstrations for each pattern, with varying start-
ing points ending at the same final point. However, the starting points for each
demonstration are near one another. The demonstrations contain the same num-
ber of data points and may intersect. Each demonstration consists of 1000 position
x and velocity ẋ measurements. It was decided to learn the dynamics of two pat-
terns in the dataset, namely the Angle- and S-shape, and Figure 3.1 shows the
seven demonstrations for these. The experimental parameters used in this study
can be seen in Table 3.3.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

��������������������������������������	����

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

	�
���������������������������������������
��

(b)

Figure 3.1.: The seven human handwriting demonstrations (a) Angle-shape (b)
S-shape

It is important to emphasize that the learnt model in this study is invariant to
time, implying that its behavior and response to input remain consistent over
time. The model relies solely on spatial information to derive motion, eliminating
the need for time-warping trajectory alignment before training. However, this
time-invariance feature also implies that the model’s generalization capability re-
lies on the spatial environment, as discussed in [31]. As a result, if the motion
initiates from an inconvenient location, the model’s accuracy may be limited to
only half of the pattern. A case in point is if the motion starts close to the middle
of the demonstration, such as at point [−25, 35] for the Angle-shape model in
Figure 3.1(a), the reproduction may be inadequate. Depending on the intended

3.3. Learning with LASA Benchmark 57

application, this generalization feature may be advantageous or disadvantageous.
To ensure precise reproduction of the desired pattern, it is important to position
the origin of the frame of reference at the starting point, as done in this thesis.

3.3.2. Dataset Splitting

To ensure reliable validation of the results obtained during the modeling, the
dataset was divided into training and test sets. This division will allow for an
unbiased evaluation of a model’s performance on unseen data during real-world
predictions [56]. As presented in Section 3.3.1, the LASA library dataset includes
seven demonstrations for each pattern. Among these demonstrations, four were
allocated for training the model, while the remaining three were reserved for
testing purposes, as indicated in Table 3.3. This resulted in an approximately
60/40 split.

For most of the regression problems addressed in this thesis, a training dataset of
1000 points was created by calculating the mean of position and velocity measure-
ments from the four training demonstrations. This resulted in a single trajectory,
and this approach aligns with the one used in [51]. However, when RFF was
used to estimate a vector field without contraction and vanishing points, refer to
Algorithm 1, two models were trained.

The first model was trained by using the mean trajectory, while the second model
was trained on all four training demonstrations individually without computing
their mean. This resulted in the model being trained on four distinct trajectories,
leading to a training set consisting of 4000 points. The objective was to compare
the two resulting simulations to determine the potential benefits of using the single
trajectory as a training approach for regression problems.

Training the model

During the training process, the value of α was determined by using the training
set. The different methods for calculating α are explained in Section 3.3.4. Once
α was obtained, a trajectory was simulated using the numerical solver solve_ivp.
As discussed in Section 3.1.4, solve_ivp requires a function as one of its inputs.
This function is used to learn the dynamics of the system and the specific function
defined depended on whether vanishing points were present or not.

For the cases without vanishing points, the function used was

f(x) = Ψ(x)α (3.3)

58 Chapter 3. Method

while for the cases with vanishing points, the function used was

f(x) = ΨZ(x)α = LTΨ(x)α (3.4)

Once the value of α was estimated using the training set, it was evaluated us-
ing different test sets to assess the accuracy of the approximation. Finally, the
solve_ivp function was used again to approximate the trajectory f for each test
set, and the resulting approximations were plotted against the actual trajectory.

Table 3.1 outlines the initial conditions and timespan used for training and testing
the model with the Angle-shape. Similarly, when using the S-shape, Table 3.2
presents the corresponding values for training and testing.

Dataset Initial condition Timespan
Training datasets 1-4 [-44.2241 -2.1552] [0. 2.9655]
Test dataset 5 [-47.5862 2.0679] [0. 2.8368]
Test dataset 6 [-46.8966 0.6897] [0. 3.0366]
Test dataset 7 [-48.9655 -1.7241] [0. 3.1252]

Table 3.1.: Train and Test values for Angle-shape

Dataset Initial condition Timespan
Training datasets 1-4 [35.7252 44.0041] [0. 4.6176]
Test dataset 5 [34.5554 45.3539] [0. 4.4489]
Test dataset 6 [34.5553 46.0738] [0. 4.7592]
Test dataset 7 [38.5148 46.4337] [0. 4.6556]

Table 3.2.: Train and Test values for S-shape

3.3.3. Parameters Used for Learning

When it comes to learning dynamical systems, selecting the correct parameters for
testing can significantly influence the accuracy of replicating trajectories. There-
fore, choosing parameters was crucial for achieving the best possible results. To
determine which hyperparameters should be used in the regression problems, a
set of candidate values was tested based on the values used in [51].

Table 3.3 and Table 3.4 display the parameters and their corresponding values
used for learning. Table 3.3 is the same for both shapes, whereas Table 3.4
presents the values used for the regression problems with RFF, which vary based
on the chosen shape. Notice the difference in the number of samples between the
Angle- and S-shape. This is because a larger number of samples were required

3.3. Learning with LASA Benchmark 59

to achieve satisfactory results when training the S-shape. The reason the Angle-
shape requires less number of samples to provide a satisfactory shape is because
of its simplicity of representation. The Angle-shape has a straightforward nature
with one change in direction and can therefore be accurately captured with fewer
data points. Conversely, the S-shape has two direction changes and therefore
requires denser sampling to accurately represent smoother and more complex
curves.

Parameter Value
Number of points with mean, N 1000
Number of points without mean, N 4000
Number of contraction points, M 250
Number of training datasets 4
Number of test datasets 3
Vanish point (0, 0)

Table 3.3.: LASA Handwriting - Parameters

Parameter Angle Sshape
Number of samples, d 100 200
σ 10 10
λ 0.1 0.1
µ 0 0

Table 3.4.: LASA Handwriting - RFF Parameters

3.3.4. Algorithms used in Implementation

In this section, a variety of algorithms are introduced. These algorithms were
used to solve regression problems to learn models involving the estimation of
vector fields using RFF. All of the algorithms were developed based on the theory
presented in the preliminaries, and the feature maps used are described in equation
(2.55) for the Gaussian separable kernel and equation (2.65) in the case of a curl-
free kernel. The Gaussian separable feature map was selected based on the results
obtained in the specialization project [28], which showed that it provided a slightly
better result than the feature map given in equation (2.48). While the majority of
algorithms described in this section focus on outlining the approach for estimating
α, one algorithm describes the process of finding L used in regression problems
with vanishing points. After estimating α in the different regression problems, it
was used to estimate the trajectory using solve_ivp, as outlined in Section 3.3.2.
The last algorithm presented, describes the process for estimating the function f ,
resulting in the estimated trajectory.

60 Chapter 3. Method

As previously stated, the use of PICOS was necessary to define the regression
problems and MOSEK to solve them in the cases where contraction constraints
were incorporated. An example with explanation of how this was implemented
in Python can be seen in Appendix A.3, where the code is developed based on
Algorithm 2.

Algorithm for vector-valued regression

Algorithm 1 was used to solve a vector-valued regression problem, where the kernel
is approximated using RFF. The kernel used is the Gaussian separable kernel. The
code based on this algorithm can be found in the file lasa_gaussian_separable
and lasa_gaussian_separable_without_mean in the GitHub repository [29].

Algorithm 1 Estimating α with Gaussian separable feature map
Input: N data points (xi,yi) where xi ∈ Rn,yi ∈ Rm

Scalar feature map
√

2 cos(wT
i xi + bi)

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ

Output: Estimated α
Create the Nm× dm matrix Φ
for i ∈ 1 : N do

for j ∈ 1 : d do
ψ[j] =

√
2 cos(wT

j xi + bj)
end for
Ψ(xi) = ψ(xi) ⊗ Im
Φ[i] = Ψ(xi)T

end for
Solve equation (ΦTΦ + λdIdm)α = ΦTY for α

3.3. Learning with LASA Benchmark 61

Algorithm for contraction constraints

Algorithm 2 was used to finding α in the regression problem where contraction
constraints were considered. The algorithm is developed based on the theory
presented in Section 2.5.5. The Python code for this can be found in
lasa_gaussian_separable in the GitHub repository [29].

Algorithm 2 Estimating α in regression problem with contraction
Input: N data points (xi,yi) where xi,yi ∈ Rm

Scalar feature map
√

2 cos(wT
i xi + bi)

Gradient of scalar feature map −
√

2 sin(wT
i xi + bi)wi

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ
Parameter µ
M constraint points

Output: Estimated α
Create the Nm× dm matrix Φ
for i ∈ 1 : N do

for j ∈ 1 : d do
Ψ[j] =

√
2 cos(wT

j xi + bj)
end for
Φ[i] = Ψ(xi)T

end for
Apply contraction constraints to the regression problem
for i ∈ 1 : M do

Calculate J(xi)
for j ∈ 1 : d do

∇ψj = −
√

2 sin(wT
j xi + bj)wj

J(xi) += 1
2

(
αj∇ψTj (xi) + (αj∇ψTj (xi))T

)
end for
Add constraints s.t. J(xi) ⪯ −µIm to the problem

end for
Set min

α∈Rdm
[(Φα− Y)T (Φα− Y) + λαTα] as the objective of the problem

Solve for α

62 Chapter 3. Method

Algorithm for finding L

As seen in Section 2.6.2, the inclusion of vanishing points in regression problems
using RFF necessitates the computation of a lower-triangular matrix L. The
approach to find L is shown in Algorithm 3. The algorithm shows both how it
is calculated when there is a curl-free feature map and when there is a Gaussian
separable feature map. The dimension for Φ for the curl-free kernel will be d×Zm,
and for the other kernel, it will be dm× Zm. The code for finding L in the curl-
free case can be found in the file lasa_curl_free and for the Gaussian separable
case, it can be found in lasa_vanish in the GitHub repository [29].

Algorithm 3 Finding the lower-triangular matrix L
Input: Vanishing points {x∗

i }Zi=1 ∈ Rm
Number of vanish points Z
Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R

Output: Lower-triangular matrix L
Calculate Φ(Z)
for i ∈ 1 : Z do

for j ∈ 1 : d do
if curl-free feature map then
ψ[i] =

√
2 sin(wT

j x
∗
i + bj)wT

j

else
ψ[j] =

√
2 cos(wT

j x
∗
i + bj)

end if
end for
if curl-free feature map then

Ψ[i] = ψ(x∗
i)

else
Ψ[i] = ψ(x∗

i) ⊗ Im
end if
Φ[i] = Ψ(x∗

i)T
end for
Calculate equation P⊥

Φ(Z) = I − (Φ(Z)(Φ(Z)TΦ(Z))−1Φ(Z)T)
Ensure P is a Hermitian positive-definite matrix given numerical noise

P⊥
Φ(Z) =

P⊥
Φ(Z)+P⊥

Φ(Z)T

2 + I ∗ 1e−12
Take the Cholesky factorization of PΦ to find L

3.3. Learning with LASA Benchmark 63

Algorithms for vanishing point

For the models that required a vector field to vanish at specific points, both con-
traction and non-contraction cases were considered. Algorithm 4 can be used to
address the problem when there is no contraction. Algorithm 5, on the contrary,
can be used to solve regression problems with contraction constraints. As men-
tioned in Section 3.1, finite difference was used to calculate the gradient of the
feature map ψ, because of the computational cost and complexity of solving the
mathematical expression in equation (2.192). This is used in Algorithm 5. The
code can be found in the file lasa_vanish in [28].

Algorithm 4 Estimating α in problem with vanishing point
Input: N data points (xi,yi) where xi,yi ∈ Rm

Scalar feature map
√

2 cos(wT
i xi + bi)

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ
Lower triangular matrix L

Output: Estimated α
Create the Nm× dm matrix ΦZ

for i ∈ 1 : N do
for j ∈ 1 : d do
ψ[j] =

√
2 cos(wT

j xi + bj)
end for
Ψ(xi) = ψ(xi) ⊗ Im
ΨZ(xi) = LTΨ(xi)
ΦZ [i] = ΨZ(xi)T

end for
Solve equation (ΦTΦ + λdIdm)α = ΦTY for α

64 Chapter 3. Method

Algorithm 5 Estimating α in problem with vanishing point and contraction
Input: N data points (xi,yi) where xi,yi ∈ Rm

Scalar feature map
√

2 cos(wT
i xi + bi)

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ
Parameter µ
M constraint points
Lower triangular matrix L

Output: Estimated α
Create the Nm× dm matrix ΦZ

for i ∈ 1 : N do
for j ∈ 1 : d do

Ψ[j] =
√

2 cos(wT
j xi + bj)

end for
ΨZ(xi) = LTΨ(xi)
ΦZ [i] = ΨZ(xi)T

end for
Apply contraction constraints to the regression problem
for i ∈ 1 : M do

Calculate ∇ΨZ(xi) using finite difference
for j ∈ 1 : d do

∇ψj = ∇ΨZ(xi)[j]
J(xi) += 1

2

(
αj∇ψTj (xi) + (αj∇ψTj (xi))T

)
end for
Add constraints s.t. J(xi) ⪯ −µIm to the problem

end for
Set min

α∈Rdm
[(ΦZα− Y)T (ΦZα− Y) + λαTα] as the objective of the problem

Solve for α

3.3. Learning with LASA Benchmark 65

Algorithm for curl-free feature map with vanishing point and
contraction

A regression problem with both vanishing points and contraction constraints was
considered for the curl-free case. This can be seen in the Algorithm 6. It should
be noted that Algorithm 5 shares similarities with the current algorithm, except
for the difference in dimensions. Specifically, α ∈ Rd for the current algorithm
compared to α ∈ Rdm. The code for this can be seen in the lasa_curl_free file,
in the GitHub repository [29].

Algorithm 6 Estimating α in curl-free problem with vanishing point and con-
traction
Input: N data points (xi,yi) where xi,yi ∈ Rm

Feature map
√

2 sin(wT
i xi + bi)wT

i

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ
Parameter µ
M constraint points
Lower triangular matrix L

Output: Estimated α
Create the Nm× d matrix ΦZ

for i ∈ 1 : N do
for j ∈ 1 : d do

Ψ[j] =
√

2 sin(wT
j xi + bj)wT

j

end for
ΨZ(xi) = LTΨ(xi)
ΦZ [i] = ΨZ(xi)T

end for
Apply contraction constraints to the regression problem
for i ∈ 1 : M do

Calculate ∇ΨZ(xi) using finite difference
for j ∈ 1 : d do

∇ψj = ∇ΨZ(xi)[j]
J(xi) += 1

2

(
αj∇ψTj (xi) + (αj∇ψTj (xi))T

)
end for
Add constraints s.t. J(xi) ⪯ −µIm

end for
Set min

α∈Rd
[(ΦZα− Y)T (ΦZα− Y) + λαTα] as the objective of the problem

Solve for α

66 Chapter 3. Method

Algorithm for finding the function approximation

After finding the estimated α for the different regression problems, the approxi-
mation of function f(x) was calculated for the learnt model. Algorithm 7 shows
how this can be done.

Algorithm 7 Approximation of function f
Input: N data points {xi}Ni=1 ∈ Rm

Estimated α
Feature map Ψ

Output: Estimated function f
Find the estimated function f
for i ∈ 1 : N do
f(xi) =

∑N
j=1 Ψ(xi)αj

end for

3.4. Learning Hamiltonian Systems
This section explains the approach for solving regression problems associated with
Hamiltonian dynamics, specifically for a pendulum. In the GitHub repository [29]
under the folder hamilton, the code developed for these regression problems can
be accessed.

3.4.1. Generating Trajectories

When working with Hamilton systems, generating data points for different trajec-
tories was desired. Two numerical integration methods were used for this purpose:
the leapfrog integrator and the explicit Euler method, both presented in Section
2.7.6. Using these methods allowed for a simulation of the system’s evolution over
time, which would help understand the behavior of the Hamiltonian dynamics.
This included analyzing the properties of stability and conservation of energy.

Both methods were used to generate a trajectory over a defined time interval with
a specific step size. Based on the old position q, the old momentum p and the
step size, the methods calculated the new q and p. The methods started with an
initial condition and were iteratively applied to generate subsequent points along
the trajectory.

In this thesis, the decision was made to use identical parameter values for both
methods when generating the trajectories. This choice would ensure consistency
and comparability in the resulting trajectories, establishing a fair analysis of the
methods’ behavior. These values can be found in Table 3.5.

3.4. Learning Hamiltonian Systems 67

Parameter Value
Initial condition, (q0, p0) (2, 0)
Time interval [0, 10]
Step size 0.01

Table 3.5.: Numerical integration - Parameters

The methods were used to generate trajectories for a pendulum. The parameters
specific to this system used in the trajectory generation are listed in Table 3.6.

Parameter Value
Mass, m 1
Length of pendulum, L 1
Acceleration of gravity, g 9.81

Table 3.6.: Pendulum - Parameters

Following the trajectory generation, the values found for q and p were used to
calculate the Hamiltonian dynamics of the pendulum system, specifically ṗ and
q̇. The Hamiltonian dynamics of a pendulum can be seen in Section 2.7.7.

3.4.2. Learning Hamiltonian Dynamics with RFF

After generating the two trajectories, the leapfrog-generated trajectory was chosen
for learning purposes. RFF was used to approximate a symplectic kernel and
a Gaussian separable kernel, resulting in a sympletic feature map described in
equation (2.67) and a Gaussian separable feature map described in equation (2.55).
These feature maps were then used in regression problems to learn and understand
the trajectory dynamics. The main objective of this approach was to compare the
performance of the two feature maps in regression problems involving the learning
of Hamiltonian dynamics. The comparison involved evaluating each feature map’s
accuracy, stability, and capability to estimate vector fields. Additionally, studying
their robustness to generalizing unseen data is essential to understand how reliable
each feature map was for modeling these dynamic systems.

To ensure a fair comparison, identical parameters were used for both regression
problems. The specific values of these parameters can be found in Table 3.7.

The trajectory generated using the leapfrog method was trained twice for each
kernel: once with noise intentionally added to the training set and once without
noise. When noise is incorporated into a dataset, it hinders the model’s ability to
memorize the training samples due to their continuous variation. Consequently,
this leads to developing a more robust model that exhibits lower generalization

68 Chapter 3. Method

Parameter Value
Noise, σest 0.01
Number of points, N 1000
Number of samples, d 30
Dimension, m 2
σ 5
λ 0.001

Table 3.7.: Hamiltonian System - RFF Parameters

error [15]. To add noise, standard deviation with zero mean was used, and the
value can be seen in Table 3.7.

To solve for α and estimate the trajectory generated using the Gaussian separable
feature map, Algorithm 1 was used. Meanwhile, Algorithm 8 was deployed to
estimate the trajectory where the symplectic feature map was used.

Algorithm 8 Estimating α with a symplectic feature map
Input: N data points (xi,yi) ∈ RN where xi ∈ Rn,yi ∈ Rm

Scalar feature map
√

2 cos(wT
i xi + bi)wT

i

Dimension m
m samples w1, ...,wm ∈ Rm with d samples wi = w1, ..., wd ∈ RN
d samples b1, ..., bd ∈ R
Tuning parameter λ
Symplectic matrix J

Output: Estimated α
Create the Nm× d matrix Φ
for i ∈ 1 : N do

for j ∈ 1 : d do
ψ[j] =

√
2 cos(wT

j xi + bj)wT
j

end for
Ψ(xi) = Jψ(xi)
Φ[i] = Ψ(xi)T

end for
Solve equation (ΦTΦ + λdId)α = ΦTY for α

3.5. Comparison Metrics 69

3.5. Comparison Metrics
Comparison metrics were used to evaluate and compare the performance of the
different models and algorithms. In addition, these metrics allow for determining
which model and regression technique performs best.

3.5.1. Reproduction Accuracy

In comparing the accuracy of learned dynamical systems for both LASA-shape
trajectories and Hamiltonian dynamics, reproduction accuracy is a key criterion.
This criterion assesses the system’s ability to replicate the positions observed in
the training and test demonstrations. For the LASA benchmark dataset, this eval-
uation assumes that the system is initialized with the same initial conditions as
the human movement and is integrated for the same duration as the human move-
ment, denoted as T [51]. For Hamiltonian dynamics, T represents the maximum
time duration in which the simulation will run.

The measurement of the reproduction error, considering l demonstration trajec-
tories, is given by

TrajectoryError = 1
l

l∑
i=1

1
Ti

Ti∑
t=0

||xit − x̂it||2 (3.5)

This reproduction error is also used in [51]. It gives the mean trajectory error for a
given shape model, where T denotes the actual time of the human demonstration
movement, x is the actual trajectory, and x̂ is the estimated trajectory. For
Hamiltonian dynamics, the reproduction error is determined as the mean error
between the leapfrog-generated trajectory x and the trajectory x̂ estimated from
the learned dynamics.

In the case of Hamiltonian systems, the residual error was computed at each point,
denoted by i, to assess the difference between the predicted values and the actual
values for both the position q and momentum p. This was achieved by utilizing
the equation

ResidualError = x̂i − xi (3.6)

Additionally, the total error of q and q at each point was determined by calculating
the Euclidean norm. This was accomplished using the equation

TotalError =
√
q2
i + p2

i (3.7)

70 Chapter 3. Method

The errors obtained from equations (3.6) and (3.7) were plotted to provide a visual
representation of the accuracy of the estimated trajectories.

3.5.2. Computation Time for Training

To gain insights into how different characteristics in vector fields will impact the
computation time when solving the regression problems using the LASA dataset,
the model’s training time was analyzed. In order to do this, a Python decorator
utility was developed to measure the time it takes to approximateα in the different
regression problems. The decorator is based on [45]. This utility records the
start and end times of a method’s execution and calculates the difference between
them.

Chapter 4.

Results

This section presents the results obtained in the thesis by implementing the
methodologies outlined in the Method chapter. These methodologies included
learning and simulating the models described in Section 3.3 and 3.4. The results
include plots, errors, and computation time for different functions. The outcomes
offer an understanding of how models using regression and RFF perform on sim-
ulated and real-world data.

4.1. LASA Handwriting with RFF
The results achieved by solving different regression problems using the LASA
data benchmark are presented in this section. The algorithms applied in the
analysis are detailed in Section 3.3.4, while the resulting plots and associated
error measurements are displayed here. As mentioned in Section 3.3.1, it was
decided to learn the dynamics for the Angle- and S-shape.

Figure 4.1 shows the four demonstrations used for training. As noted in Section
3.3.1, the demonstrations begin at different initial positions but end at the same
point, which is evident from the plots. The mean trajectory was calculated for
the four demonstrations, which were then used for learning in most regression
problems, as stated in Section 3.3.3. After computing the mean, the resulting
trajectories can be seen in Figure 4.2.

For the following results, each subplot shows the result for (a) the Angle-shape
dataset and (b) the S-shape dataset, except for the plots where the learnt model
trajectories are compared to the actual trajectories.

72 Chapter 4. Results

��� ��� ��� ��� �
��

�

��

��

��

��

��
	�������������������������
�������������

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

	�������������������������
�����������
��

(b)

Figure 4.1.: The four trajectories used for training (a) Angle-shape (b) S-shape

��� ��� ��� ��� �
��

�

�

��

��

��

��

��

��

��

��

��������������������������������������	����

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��	��������������������������
��������	�

(b)

Figure 4.2.: The mean trajectory used for training (a) Angle-shape (b) S-shape

4.1.1. Learnt Models with Gaussian Separable Feature Map

The results of learning a model that uses RFF to approximate a Gaussian separa-
ble kernel are displayed in this section. Two different vector fields were estimated,
one where contraction constraints were enforced during the learning process and
another where no contraction constraints were applied. In the absence of con-
traction, two regression problems were solved, one where the mean of the training
demonstrations was calculated and one where it was not, as mentioned in Section
3.3.2. This resulted in one model being trained on a single trajectory and one
model on four trajectories. The learnt model trained on a single trajectory is
shown in Figure 4.3, while the learnt model trained on four trajectories can be

4.1. LASA Handwriting with RFF 73

seen in Figure 4.4.

��� ��� ��� ��� �
��

�

�

��

��

��

��

��

��

��

��

���������	���������������������������

��������
	����������

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

�
����
����
�
�����������������
����

	�
������
���
�����

(b)

Figure 4.3.: Learnt model with Gaussian separable feature map trained on a
single trajectory (a) Angle-shape (b) S-shape

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���������	���������������������������

��������
	����������

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

�
����
����
�
�����������������
����

	�
������
���
�����

(b)

Figure 4.4.: Learnt model with Gaussian separable feature map trained on four
trajectories (a) Angle-shape (b) S-shape

In both cases where the mean was taken and not, the estimated α was tested on
the last three demonstration sets. The test sets were estimated separately. The
results can be seen in Figure 4.5 and Figure 4.6 when the mean was taken, while
Figure 4.7 and Figure 4.8 show the case where no mean was taken. The plots
compare the estimated and actual trajectories, where the blue line represents the
estimated trajectory while the red line represents the actual trajectory.

The error measurements between the actual and estimated trajectories were also

74 Chapter 4. Results

found for both cases, and the result can be seen in Table 4.1 and Table 4.2.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	���
�����

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(b)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(c)

Figure 4.5.: Angle-shape - Comparison between actual and estimated trajectory
for model trained on a single trajectory with a Gaussian separable feature map
(a) Demo 5 (b) Demo 6 (c) Demo 7

� �� �� �� ��
��

�

��

��

��

��

��

��

��������������������
�����������������������	�����

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

	���
�����

(b)

� �� �� �� ��
��

�

��

��

��

��

��

��

	���
�����

(c)

Figure 4.6.: S-shape - Comparison between actual and estimated trajectory for
model trained on a single trajectory with a Gaussian separable feature map (a)
Demo 5 (b) Demo 6 (c) Demo 7

Error for Gaussian separable feature map with mean
Test set Angle-shape S-shape

Demoset 5 1.7508 1.9645
Demoset 6 1.6415 3.0726
Demoset 7 1.7658 1.9650

Mean trajectory error 1.7194 2.3341

Table 4.1.: Error measurements between actual and estimated trajectory for
model trained on a single trajectory with a Gaussian separable feature map

4.1. LASA Handwriting with RFF 75

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	���
�����

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(b)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(c)

Figure 4.7.: Angle-shape - Comparison between actual and estimated trajectory
for model trained on four trajectories with a Gaussian separable feature map (a)
Demo 5 (b) Demo 6 (c) Demo 7

� �� �� �� ��
��

�

��

��

��

��

��

��

��������������������
�����������������������	�����

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

	���
�����

(b)

� �� �� �� ��
��

�

��

��

��

��

��

	���
�����

(c)

Figure 4.8.: S-shape - Comparison between actual and estimated trajectory for
model trained on four trajectories with a Gaussian separable feature map (a)
Demo 5 (b) Demo 6 (c) Demo 7

Error for Gaussian separable feature map without mean
Test/demo set Angle-shape S-shape

Demoset 5 2.8838 0.7612
Demoset 6 10.1051 1.5059
Demoset 7 4.4088 17.6026

Mean trajectory error 5.7993 6.6232

Table 4.2.: Error measurements between actual and estimated trajectory for the
model trained on four trajectories with a Gaussian separable feature map

76 Chapter 4. Results

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��
���������	������������������������

��������
	����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

���������	������������������������

��������
	����������

(b)

Figure 4.9.: Learnt model with Gaussian separable feature map and contraction
constraints (a) Angle-shape (b) S-shape

Table 4.3 displays the computation time for the functions used to approximate α
for the different regression problems presented in this section.

Computation time for solving α
Function Angle-shape S-shape

alpha_approx without mean 3.4586s 7.5489s
alpha_approx with mean 0.8560s 2.1191s

alpha_approx_with_constraint 27.3204s 56.6461s

Table 4.3.: Computation time for solving α in regression problem with Gaussian
separable feature map

The estimated α was tested on the remaining demonstrations, and the result can
be seen in Figure 4.10 and Figure 4.11. The error between the estimated and
actual trajectory was calculated, and it can be found in Table 4.4

4.1. LASA Handwriting with RFF 77

�	� ��� ��� ��� ��� �
��

�

	

��

�	

��

�	

��

�	

��

��

���	

���������������
�������������������
�����������

(a)

�	� ��� ��� ��� ��� �
��

�

	

��

�	

��

�	

��

�	

��

��

���

�����������������
�������������������
����������

(b)

�	� ��� ��� ��� ��� �
��

�

	

��

�	

��

�	

��

�	

��

��

���

�����������������
�������������������
����������

(c)

Figure 4.10.: Angle-shape - Comparison between actual and estimated trajec-
tory for model with Gaussian separable feature map and contraction (a) Demo 5
(b) Demo 6 (c) Demo 7

��� � �� �� �� ��
��

�

��

��

��

��

	�

��

���	

���������������
�������������������
�����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

	�

��

���

�����������������
�������������������
����������

(b)

��� � �� �� �� ��
��

�

��

��

��

��

	�

��

���

�����������������
�������������������
����������

(c)

Figure 4.11.: S-shape - Comparison between actual and estimated trajectory for
model with Gaussian separable feature map and contraction (a) Demo 5 (b) Demo
6 (c) Demo 7

Error for Gaussian separable feature map with contraction
Test/demo set Angle-shape S-shape

Demoset 5 1.0729 0.8582
Demoset 6 0.7960 1.3056
Demoset 7 0.8125 0.7270

Mean trajectory error 0.8938 0.9636

Table 4.4.: Error measurements between actual and estimated trajectory model
with Gaussian separable feature map and contraction

78 Chapter 4. Results

4.1.2. Learnt Models with Vector Field Vanishing on a Point Set

This section presents the results obtained when RFF is used to approximate a
Gaussian separable kernel, and it is desired that the vector field vanishes at a spec-
ified point. One model was learned considering that no contraction was present,
and the result obtained can be seen in Figure 4.12. A second model was learned
when contraction constraints were incorporated into the regression problem, as
shown in Figure 4.13. Notice that the plots contain a green dot representing the
location of the vanishing point.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	��

��������

����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

����������������	��������������������������

���������
	����������

(b)

Figure 4.12.: Learnt model with vanishing point and Gaussian separable feature
map (a) Angle-shape (b) S-shape

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	�����
��

���������

����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	������������������������������������

���������

���������

(b)

Figure 4.13.: Learnt model with vanishing point, contraction constraints and
Gaussian separable feature map (a) Angle-shape (b) S-shape

4.1. LASA Handwriting with RFF 79

The estimation of α in the case of contraction was then used to find an estimate of
the test demonstrations. The estimated trajectories were plotted with the actual
trajectory, which can be seen in Figure 4.14 and 4.15.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

�������������������������������	�����������

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

��������������������������������
����������	

(b)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

��������������������������������
����������	

(c)

Figure 4.14.: Angle-shape - Comparison between actual and estimated trajec-
tory for model with contraction constraints and vanishing point (a) Demo 5
(b) Demo 6 (c) Demo 7

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	���
�����

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

���	

(b)

��� � �� �� �� ��
��

�

��

��

��

��

��
��

���	

(c)

Figure 4.15.: S-shape - Comparison between actual and estimated trajectory for
model with contraction constraints and vanishing point (a) Demo 5 (b) Demo 6
(c) Demo 7

The computation time to find the two estimations of α was also calculated and
can be seen in Table 4.5.

The mean error between the actual and estimated trajectory for the different test
demonstrations was calculated, and the results can be seen in Table 4.6.

80 Chapter 4. Results

Computation time for estimating α
Function Angle-shape S-shape

alpha_approx_z 1.2785s 3.6893s
alpha_approx_with_constraint_z 34.3604s 66.1032s

Table 4.5.: Computation time for estimating α in regression problems with
vanishing point and Gaussian separable feature map

Error for learnt model with vanishing point and contraction
Test/demo set Angle-shape S-shape

Demoset 5 1.1356 0.8422
Demoset 6 0.7620 1.2770
Demoset 7 0.9534 0.7221

Mean trajectory error 0.9503 0.9471

Table 4.6.: Error measurements between actual and estimated trajectory for
model with vanishing point, contraction and Gaussian separable feature map

4.1.3. Learnt Model with Curl-Free Feature Map

In this section, the results of training a model that uses RFF to approximate a curl-
free kernel. Figure 4.16 displays the results of the simulation for the learnt model
involving contracting vector fields with a curl-free feature map while incorporating
a vanishing point.

��� ��� ��� ��� ��� �
 �

�

��

��

��

��

 �

	����
�������������������������������������

��������!
����������

(a)

��� � �� �� �� ��
 �

�

��

��

��

��

��

 �

	����
�������������������������������������

��������!
����������

(b)

Figure 4.16.: Learnt curl-free model with vanishing point and contraction
(a) Angle-shape (b) S-shape

4.1. LASA Handwriting with RFF 81

The estimation of α found from the learnt models presented in Figure 4.16 was
used to find an estimate of the three test demonstrations for both Angle- and
S-shape. These estimations were then plotted with the actual trajectory, as seen
in Figure 4.17 and Figure 4.18.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	���
�����

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(b)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���	

(c)

Figure 4.17.: Angle-shape - Comparison between actual and estimated trajec-
tory for model with vanishing points, contraction and curl-free feature map
(a) Demo 5 (b) Demo 6 (c) Demo 7

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	���
�����

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

���	

(b)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

���	

(c)

Figure 4.18.: S-shape - Comparison between actual and estimated trajectory for
model with vanishing points, contraction and curl-free feature map (a) Demo 5
(b) Demo 6 (c) Demo 7

The computation time for estimating α was calculated, and it can be seen in
Table 4.7.

The error measurements between the estimated trajectories and actual trajectories
for the test demos were calculated for both Angle and S-shape, and the result is
shown in Table 4.8.

82 Chapter 4. Results

Computation time for estimating α
Function Angle-shape S-shape

alpha_approx_with_constraint_cf 24.5403s 58.2451s

Table 4.7.: Computation time for estimating α in regression problem with curl-
free feature map

Error for curl-free feature map
Test/demo set Angle-shape S-shape

Demoset 5 1.6316 0.9493
Demoset 6 1.4436 1.4383
Demoset 7 1.0377 0.8934

Mean trajectory error 1.3709 1.0936

Table 4.8.: Error measurements between actual and estimated trajectory for
model with vanishing point, contraction and curl-free feature map

4.2. Hamiltonian Systems with RFF
This section presents the results obtained from estimating the Hamiltonian dy-
namics of a pendulum. The results from using the two feature maps to estimate
a trajectory generated by leapfrog are presented, followed by the outcomes from
adding noise to the generated trajectory. In the study, the symplectic kernel and
the Gaussian separable kernel were approximated using RFF. This approximation
resulted in a symplectic and a Gaussian separable feature map.

�� �� � � �

���������

��

��

��

�

�

�

�

	
��

��
��

�
��

���

(a)

�� �� � � � �
����������

��

��

��

�

�

�

�

��

��
��

�
��

�����������������������������������	�������	����

(b)

Figure 4.19.: Generated trajectories for a pendulum system with step
size = 0.01 (a) Leapfrog method (b) Explicit Euler method

4.2. Hamiltonian Systems with RFF 83

As mentioned in Section 3.4.1, it was necessary to generate trajectories for the
pendulum system in order to use them for learning. Figure 4.19 shows the two
generated trajectories in phase space, where the same initial point and step size
were used. The trajectory in Figure 4.19(a) was obtained using the leapfrog
method, while the trajectory in Figure 4.19(b) was obtained using explicit Euler.

4.2.1. Hamiltonian Dynamics Model with RFF

As mentioned in Section 3.4.2, the trajectory used for learning was the one gen-
erated by using the leapfrog method and the resulting vector field used in the
regression problems is presented in Figure 4.20.

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

�������� ���������������������������

��������!
����������

Figure 4.20.: Pendulum dynamics used in regression problem

The model was learned using two different feature maps and then simulated to
generate the estimated trajectories. The approximated vector fields are shown in
Figure 4.21.

Furthermore, to compare the similarities and differences between the actual and
estimated trajectories, they were plotted in the same figure, as illustrated in Figure
4.22.

To better understand the error progression for the position and momentum, the
errors at each point were plotted on a time-axis, as illustrated in Figure 4.23.
The dark blue plot represents the error for the position, while the light blue plot
represents the error for the momentum.

In Figure 4.24, the total error between the actual and estimated trajectory is
plotted at each point, with the time-axis displaying the error scale.

84 Chapter 4. Results

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

�����������������������

������������������
�����������

(a)

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

���������������������

�������������������
����������

(b)

Figure 4.21.: Learnt pendulum dynamics (a) Symplectic feature map (b) Gaus-
sian separable feature map

�	 �� �� �� � � � � 	
�

�����

���

�
��

���

���

��

��

��

����

�

��
�������������������
�����������������

(a)

�	 �� �� �� � � � � 	
�

�����

���

�
��

���

���

��

��

��

����

�

���������������� ��������������������� �����������������
������������������
����������������

(b)

Figure 4.22.: Estimated trajectory compared to actual trajectory (a) Symplectic
feature map (b) Gaussian separable feature map

4.2. Hamiltonian Systems with RFF 85

� � � 	 � ��
����

������

����
�

������

������

�����

�����

�����

���
�

�����

��
��
�

���������������������!��������������
����������
����� ���

(a)

� � � � 	 ��
����

����

����

���

���

�
��

�

���������������������������������
���������
����������

(b)

Figure 4.23.: Error for position q and momentum p (a) Symplectic feature map
(b) Gaussian separable feature map

� � � 	
 ��
����

���

���

���

���

���

���

��
��
�

��
����������������
���������������

Figure 4.24.: Total error for the estimated trajectories

86 Chapter 4. Results

4.2.2. Hamiltonian Dynamics Model with Added Noise

The following results were obtained when noise was added to the training data.
Figure 4.25 displays the vector field used in the regression problem under this
circumstance, and leapfrog was again the method used to generate the trajectory.

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

�������� ������������������������������������

��������!
����������

Figure 4.25.: Pendulum dynamics used in regression problem with noise

The learnt models using RFF are presented in Figure 4.26. In Figure 4.26(a),
the symplectic feature map was used in the regression problem, while in Figure
4.26(b) the Gaussian separable feature map was used in the regression problem.

Figure 4.27 shows the estimated trajectories and streamlines plotted against the
actual trajectory.

The errors for the estimated position and momentum are shown for both the
symplectic feature map and the Gaussian separable feature map in Figure 4.28.

The plot in Figure 4.29 displays the total error as a function over time between
the actual and estimated trajectory in the case where noise was added.

The mean trajectory error between the actual and estimated trajectory is pre-
sented in Table 4.9. It presents the error for the case where noise was added and
the case when it was not.

4.2. Hamiltonian Systems with RFF 87

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

����������������������������������

������������������
�����������

(a)

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

��������������������������������

������������������
����������

(b)

Figure 4.26.: Learnt model with noise (a) Symplectic feature map (b) Gaussian
separable feature map

�	 �� �� �� � � � � 	
�

�����

���

�
��

���

���

��

��

��

����

�

��� �����������������������"�!�������������"��������������
������������������"
��� ������������"

(a)

�	 �� �� �� � � � � 	
�

�����

���

�
��

���

���

��

��

��

����

�

��� �����������������������"�!�������������� �����������
������������������"
��� ������������"

(b)

Figure 4.27.: Estimated trajectory compared to actual trajectory with noise (a)
Symplectic feature map (b) Gaussian separable feature map

Error for learnt model - Pendulum
Feature map MTE MTE with noise = 0.01
Symplectic 0.00414 0.00238

Gaussian separable 0.01593 0.02186

Table 4.9.: Mean trajectory error measurements for learnt Pendulum dynamics

88 Chapter 4. Results

� � � � 	 ��
����

�����

�����

�����

����

����

����

����

�
��
�

����������������� ������������!��������������
����������
����������

(a)

� � � � 	 ��
����

����

����

����

���

���

���

�
��
�

��
���������
����������

(b)

Figure 4.28.: Error for position q and momentum p with noise (a) Symplectic
feature map (b) Gaussian separable feature map

� � � 	 � ��
����

���

���

���

���

���

���

��	

��

��
��
�

������������ �������������!��������������������������
�!���������������
��������������

Figure 4.29.: Total error for the estimated trajectories with noise

Chapter 5.

Discussion

This section will outline the anticipated results for the learnt models, followed
by an analysis and comparison of the findings presented in the Results chapter.
Furthermore, future work will be discussed.

5.1. Expectations
As demonstrated in the specialization project [28], using RFF for kernel approx-
imation resulted in reasonable estimates with reduced computational cost. Con-
sequently, given that the hyperparameters are carefully selected, the use of RFF
is expected to give reasonable estimates for the problems outlined in this thesis
with low computational cost. Furthermore, since RFF is used to approximate a
vector field, the expected behavior of the estimated streamlines will be similar to
the actual streamlines.

5.1.1. Expectations for LASA Models

Computation time for the different shapes

In terms of computation time, it is anticipated that the Angle-shape will exhibit
faster performance compared to the S-shape. This expectation is based on the
difference in the number of samples, with the Angle-shape having 100 samples
and the S-shape having 200.

Estimating with and without taking the mean of training sets

As mentioned in 3.3.2, most results were generated by taking the mean of the four
training demonstrations, leading to a single trajectory. When taking the mean
of the training sets, the impact of noisy data points is expected to be reduced,

90 Chapter 5. Discussion

leading to a more robust model that is less sensitive to such noise. This can
lead to a more stable and reliable model that generalizes better to new, unseen
data. On the other hand, not taking the mean of the training sets can be useful
in situations where the data has a clear structure or pattern. By not taking the
mean, the model can capture the underlying structure or pattern more accurately
and potentially achieve better performance on the training data. For the LASA
dataset, taking the mean gives a training set of 1000 points, while not taking the
mean lets the model be trained on all 4000 points. Creating a single trajectory for
model training using four trajectories is expected to be more beneficial in our case,
as it will help reduce the impact of minor variations in the individual patterns and
make the training process more stable. It is also expected that the computation
time will be reduced in the case where the mean trajectory is used.

Estimating with contraction constraints

Based on the contraction theory presented in Section 2.5.2, it is expected that
adding contraction constraints to the regression problem would lead to perfor-
mance improvement in robustness and accuracy. It is anticipated that all trajec-
tories close to the estimated trajectory would converge toward it. This will enforce
smoothness and consistency in the learned vector field, preventing overfitting and
improving its generalization performance. In regions where the contraction con-
straints are satisfied, the streamlines are expected to converge towards each other
and the estimated trajectory, with the distance between them decreasing expo-
nentially. The resulting convergence would increase the accuracy of the estimated
flow by constraining the magnitude of the Jacobian of the learned vector field.
Ultimately, this reduces unrealistic or unstable flow behavior.

Applying contraction constraints to the regression problem during the learning
process is also anticipated to increase the computation time. This is because each
point in the applied constraints needs to be differentiated, as seen in Algorithm
2, resulting in additional steps required to estimate α. Furthermore, the incor-
poration of constraints made using a numerical optimization solver like MOSEK
necessary. This approach is expected to result in increased computation time as it
uses an iterative method to obtain a solution, as compared to using a closed-form
solution.

Estimating with vanishing point

For the problems where vanishing points are defined, improvements in the coher-
ence of the resulting vector fields are expected. This means that the streamlines
should not contain abrupt changes in direction but have smooth and consistent
flow patterns. Furthermore, vanishing points are expected to act as attractors and

5.1. Expectations 91

guide streamlines toward specific regions. Therefore, the streamlines around the
vanishing points should converge toward them. The vanishing point in this thesis
is (0, 0), as seen in Table 3.3. Hence, it is expected that the streamlines con-
verge toward this point. It is also expected that the equilibrium of the estimated
trajectory is placed precisely at the specified point.

The presence of vanishing points is expected to increase the computation time
compared to their absence. This is because estimating α requires more steps
when vanishing points are present. This can be seen in the algorithms and in
Section 2.6.2, where the process of defining the new feature map ΨZ = LTΨ with
the property of vanishing on Z requires additional steps, one of which involves
finding the values of L.

Estimating curl-free vector field

When estimating a vector field using a curl-free feature map instead of a Gaussian
separable feature map, it is expected that several differences could arise. As Sec-
tion 2.4.2 explains, a vector field is considered curl-free if it has zero curls. Hence,
the vector fields estimated with a curl-free feature map are expected to maintain
the direction and magnitude of their streamlines. In this case, the streamlines are
anticipated to exhibit gradient flows and not form closed loops or rotations.

Furthermore, the computation time for estimating α in the curl-free case is ex-
pected to be faster compared to non-curl-free. This is because of the dimensions,
where α is in Rd in the curl-free case compared to Rdm.

5.1.2. Expectations for Learning Hamiltonian Dynamics

Benefits of using a symplectic integrator for Hamiltonian systems

Given the theoretical framework presented in Section 2.7.6, the leapfrog method
is expected to yield better results than the explicit Euler method. This is pri-
marily because explicit Euler is only first-order accurate, while leapfrog is second-
order accurate, as previously explained. Consequently, it can be inferred that the
leapfrog method can handle larger step sizes without numerical instability. In
contrast, the explicit Euler method is expected to generate poor results when the
step size is too large. As a result, when using the same step size h, the leapfrog
method is generally expected to yield more accurate results than the explicit Euler
method.

The leapfrog method is also anticipated to outperform the explicit Euler method
in conserving energy. Being a symplectic integrator, the leapfrog method preserves
the Hamiltonian structure of the system. This property contributes to better en-

92 Chapter 5. Discussion

ergy conservation, resulting in more accurate and stable simulations over time. In
contrast, the explicit Euler method is a non-symplectic integrator and therefore
does not preserve the symplectic structure of the system. Consequently, numerical
errors can accumulate over time, causing the estimate to deviate from the sys-
tem’s actual behavior. This deviation from the expected trajectory violates the
conservation of energy. This violation is expected to be observed by coordinate
values exhibiting unbounded growth and expanding the region of interest over
time.

Estimating Hamiltonian dynamics

Approximating a symplectic kernel using RFF is expected to enhance the accu-
racy of results for Hamiltonian systems. This is because the generated symplec-
tic feature map satisfies the symplectic conditions, as outlined in Section 2.7.3.
Therefore the symplectic structure of the original Hamiltonian system will be pre-
served even after transformation through the feature space. By comparing it to
the Gaussian separable feature map, it is anticipated that the symplectic feature
map will demonstrate better energy conservation over an extended period and
enhanced accuracy in learning Hamiltonian dynamics.

The preliminaries state that the leapfrog method is a symplectic integrator known
for preserving the symplectic structure. Since the dataset was generated using
this method, the dataset itself inherently exhibits a symplectic structure. Con-
sequently, the symplectic feature map is expected to outperform the Gaussian
separable feature map on this dataset. As mentioned in Section 2.7.3, the sym-
plectic kernel is designed to capture and model the symplectic dynamics of the
system, making it well-suited for accurately representing the underlying behavior.
However, it is important to note that the Gaussian separable feature map, despite
not explicitly preserving the symplectic structure, can still capture the overall
patterns and structure of the data. Thus, while the symplectic feature map is an-
ticipated to perform better, the Gaussian separable feature map can still provide
reasonable results by capturing the general characteristics of the dataset.

Introducing noise to the dataset

As discussed in Section 3.4.2, including noise in a dataset enhances the model’s
robustness, mitigating the risk of overfitting. Consequently, this improvement
is anticipated to be reflected in the obtained results. Additionally, adding noise
provides a more realistic representation of the complexity present in real-world
datasets. Therefore, it is expected to understand better how the model will per-
form when faced with diverse and challenging scenarios encountered in real-world
applications.

5.2. Comparing Results - LASA 93

Based on the standard deviation of 0.01 observed in Table 3.7, it can be inferred
that the added noise to the data is relatively insignificant. This implies that the
noise is unlikely to impact the underlying patterns of the data significantly but
rather introduce subtle variability. This subtle noise is expected to preserve the
essential characteristics of the data while contributing to smooth transitions and
improved robustness in both regression problems as long as the regression param-
eters are carefully adjusted. By incorporating such small-magnitude noise, the
Gaussian separable feature map is anticipated to yield smooth and continuous
estimations, effectively capturing the data’s patterns and providing reliable pre-
dictions. When dealing with the symplectic feature map, it is important to note
that any added noise should not interfere with the inherent symplectic proper-
ties of the data. This guarantees that the symplectic feature map can accurately
capture the data’s patterns and dynamics, even in the presence of noise. Ulti-
mately, this leads to reliable predictions that align with the symplectic nature of
the system.

Although both feature maps are expected to perform well with added noise, the
symplectic feature map is anticipated to outperform the Gaussian separable fea-
ture map. This is because of its symplectic characteristics, which can be useful in
capturing the underlying Hamiltonian dynamics.

5.2. Comparing Results - LASA
In this section, an analysis and comparison will be conducted on the results pre-
sented in Section 4.1, showing the outcomes from solving regression problems
using the LASA dataset.

5.2.1. Estimation with and without Mean

Based on Figure 4.3-4.8, as well as Table 4.1 and 4.2, the findings indicate that the
most accurate results were obtained when training the model on a single trajectory.
Specifically, this was achieved by taking the mean of four demonstrations to create
a single training set consisting of 1000 points. Both models provided a good
estimate for the model when training it, where the model trained on four different
trajectories even performed slightly better for the S-shape. This can be observed in
Figure 5.1, where the model trained on a single trajectory shows a slight deviation
in the learned S-shape towards the end.

Comparing Table 4.1 with Table 4.2 and Figures 4.5-4.8, it is evident that the
trained model provides better results for the test demonstrations when it is trained
on a single trajectory. The mean trajectory error (MTE) for the Angle-shape was
1.7194, and 2.3341 for the S-shape when trained on a single trajectory. In contrast,

94 Chapter 5. Discussion

� �� �� �� ��
��

�

��

��

��

��

��

��

�
����
����
�
�����������������
����

	�
������
���
�����

(a)

� �� �� �� ��
��

�

��

��

��

��

��

��

�
����
����
�
�����������������
����

	�
������
���
�����

(b)

Figure 5.1.: End part of the estimated trajectory for S-shape model (a) Trained
on a single trajectory (b) Trained on four trajectories

the MTE was 5.7993 for the Angle-shape and 6.6232 for the S-shape when trained
on four trajectories. The difference is significant, indicating that the best estimate
is obtained when taking the mean, which was the expected outcome.

On the contrary, it is worth mentioning that the model, which was trained on four
trajectories, performed well on demos 5 and 6 for the S-shape. The first two test
demos had errors of 0.7612 and 1.5059, respectively, which were better than the
errors obtained when taking the mean, where the errors were 1.9645 and 3.0726.
However, the last test demo resulted in a significantly poor outcome, with an
error of 17.6026 compared to 1.9650 when taking the mean. This indicates that
training the model on a single trajectory is more effective in finding an estimate
that works for all the demos. Additionally, when it comes to the Angle-shape,
training the model on a single trajectory outperforms training on four trajectories
for all test demos, with errors around 1.7 compared to the best result of 2.8838
for the four-trajectory model.

Table 4.3 provides the computation time for both shapes, revealing noteworthy
differences. Specifically, learning the S-shape has a significantly higher computa-
tional cost compared to the Angle-shape. This was expected, due to the require-
ment of 200 samples for accurate outcomes in the case of the S-shape, in contrast
to the 100 samples needed for the Angle-shape.

In line with the expectations, the single trajectory model demonstrated faster
computation times for both shapes. In the case of a single trajectory, the compu-
tation time was 0.8560s and 2.1191s for the Angle-shape and S-shape, respectively.
For the model trained on four trajectories, it was 3.4586s and 7.5489s. The results
highlight the computational efficiency of the single trajectory model. That being
said, the computation times for both models are relatively fast, demonstrating
the computational efficiency of using RFF.

Consequently, based on the test results, it was decided that the preferred approach
for the remaining regression problems would be to train the model on a single

5.2. Comparing Results - LASA 95

trajectory.

5.2.2. Estimation with and without Contraction

The incorporation of contraction constraints in the regression problem, as ob-
served in Figure 4.9, has a noticeable impact on the robustness of the streamlines.
In contrast to Figure 4.3 without contraction, including these constraints signif-
icantly improves the overall stability of the streamlines. As expected, the con-
traction constraints resulted in the streamlines converging towards the estimated
trajectories and converging toward each other. This can be observed in Figure
4.9, where the streamlines around the estimated trajectory point toward it.

There are clear differences between the streamlines in Figure 4.3 and Figure 4.9.
For instance, this can be observed in the initial part of the two trajectories, seen in
Figure 5.2. The streamlines in Figure 5.2(b) follow the estimated trajectory, while
the streamlines in Figure 5.2(a) converge toward it. This converging behavior
aligns with the theory and expected results, indicating that using RFF to learn
vector fields with contraction constraints can provide accurate and reliable results.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���������	������������������������

��������
	����������

(a) ��� ��� ��� ��� �
��

�

�

��

��

��

��

��

��

��

��

���������	���������������������������

��������
	����������

(b)

Figure 5.2.: Initial part of estimated trajectory for Angle-shape model (a) With
contraction (b) Without contraction

Empirical support for our findings can be observed when examining the estimated
trajectory and its corresponding error measurements for the test sets. These es-
timates can be seen in Figure 4.5-4.6 and Figure 4.10-4.11. In particular, when
contraction was incorporated, the MTE for the Angle-shape was found to be
0.8938, as shown in Table 4.4, which is essentially lower than the MTE of 1.7194
obtained without contraction, as shown in Table 4.1. Similarly, the MTE for the
S-shape was found to be 0.9636 with contraction, compared to 2.3341 without.

96 Chapter 5. Discussion

These results demonstrate that the contraction constraints lead to significant im-
provements in accuracy and performance during the learning process. They also
indicate that the model’s ability to estimate trajectories is better in the presence
of contraction.

That being said, incorporating contraction constraints significantly increased the
computational cost required to estimate α. As shown in Table 4.3, the com-
putational time for the Angle- and S-shape without contraction was 0.8560s and
2.1191s, respectively, while with contraction, it increased to 27.3204s and 56.6461s.
As mentioned in Section 5.1.1, this increase in computational cost was expected,
considering the need to incorporate constraints into the model and use MOSEK
and PICOS to solve the regression problem. Thus, this additional computational
cost is necessary to increase the accuracy and reliability of the simulated learned
vector fields.

5.2.3. Estimation with and without Vanishing Point

By examining the vector field in Figure 4.12, it becomes evident that all stream-
lines around the vanishing point (0, 0) converge towards it for both the Angle-
and S-shape. This is easier to observe in Figure 5.3, which provides a close-up of
the region around the vanishing point. It can also be observed that the estimated
trajectory ends at the desired point, represented by the green dot. These re-
sults are consistent with the expectations outlined in Section 5.1.1 and the theory
presented in the preliminaries.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	��

��������

����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��
��

����������������	��������������������������

���������
	����������

(b)

Figure 5.3.: Estimated vector field around the vanishing point (0, 0) (a) Angle-
shape (b) S-shape

To ensure that the results were satisfactory, it was decided to compare the case
where a vanishing point was defined to the case where there was none. A closer
look around the vanishing point for the Angle- and S-shape is shown in Figure
5.4 and Figure 5.5, respectively. The difference between the streamlines with

5.2. Comparing Results - LASA 97

and without a defined vanishing point is clear in both cases. In Figure 5.4(a)
and Figure 5.5(a) the streamlines near the vanishing point converge towards it.
Conversely, in Figure 5.4(b) and Figure 5.5(b), most of the streamlines move along
the estimated trajectory, and the trajectories do not end at the point (0, 0).

The difference between the models with and without a vanishing point is especially
evident for the S-shape. None of the streamlines in Figure 5.5(b) converge to
(0, 0), whereas all streamlines in Figure 5.5(a) do. Additionally, the estimated
trajectory without a vanishing point does not end in (0, 0), while it does in Figure
5.5(a). This difference is consistent with the theory presented in the preliminaries.
Therefore, it can be concluded that the RFF method is reliable in estimating
vector fields with vanishing points and is likely to produce accurate results.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	��

��������

����������

(a)

��� ��� ��� ��� �
��

�

�

��

��

��

��

��

��

��

��

���������	���������������������������

��������
	����������

(b)

Figure 5.4.: Estimated vector field around point (0, 0) for Angle-shape (a) With
vanishing point (b) Without vanishing point

��� � �� �� �� ��
��

�

��

��

��

��

��

��

����������������	��������������������������

���������
	����������

(a)

� �� �� �� ��
��

�

��

��

��

��

��
��

�
����
����
�
�����������������
����

	�
������
���
�����

(b)

Figure 5.5.: Estimated trajectory around point (0, 0) for S-shape (a) With van-
ishing point (b) Without vanishing point

Based on the comparison between Table 4.3 and Table 4.5, it can be inferred that
the presence of vanishing points leads to increased computational time than in

98 Chapter 5. Discussion

their absence. For instance, for the Angle-shape, the computation time for tra-
jectory estimation increased from 0.8560s to 1.2785s when a vanishing point was
incorporated. This observation is consistent with the expectations since defining
a vanishing point requires additional steps when solving the regression problem.

5.2.4. Estimation with Vanishing Point and Contraction

The results were satisfactory when both contraction and a vanishing point were
present. As expected, the streamlines surrounding the estimated trajectory con-
verged toward it. Additionally, the estimated trajectories end in (0, 0), and there
are clear convergences toward the vanishing point, which is better visualized in
Figure 5.6.

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	�����
��

���������

����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	������������������������������������

���������

���������

(b)

Figure 5.6.: Region around (0, 0) for estimated vector field with contraction and
vanishing point (a) Angle-shape (b) S-shape

Comparing the vanishing point models

For the models involving vanishing points, the expected behavior was for conver-
gence to occur solely around the vanishing point in Figure 4.12, while convergence
throughout the estimated trajectory was anticipated in Figure 4.13. This becomes
apparent in the area around the initial point of the estimated trajectory, as demon-
strated for the S-shape in Figure 5.7. In Figure 5.7(a), all streamlines converge
towards the estimated trajectory, whereas in Figure 5.7(b), some streamlines de-
viate away due to the absence of contraction. However, around the vanishing
point, observed by comparing Figure 5.6 with Figure 5.4(a) and Figure 5.5(a), it
becomes evident that they closely resemble each other. For both the Angle- and
S-shape, the streamlines close to the vanishing point converge towards it, and the
trajectories end in (0, 0).

5.2. Comparing Results - LASA 99

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	������������������������������������

���������

���������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

����������������	��������������������������

���������
	����������

(b)

Figure 5.7.: Initial part of estimated trajectory with vanishing point for S-shape
model (a) With contraction (b) Without contraction

Comparing the contraction models

The simulated vector fields obtained from the regression problem with only con-
traction and the regression problem with both vanishing point and contraction
exhibit both differences and similarities. Figure 4.13 and Figure 4.9 show closely
resembling streamlines. However, there are distinctions around the vanishing
point, particularly for the simulated Angle-shape as shown in Figure 5.8. Fur-
thermore, it can be observed that in the absence of vanishing points, streamlines
do not necessarily converge towards (0, 0), as seen in Figure 5.8(b).

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	�����
��

���������

����������

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

���������	������������������������

��������
	����������

(b)

Figure 5.8.: Region around (0, 0) for estimated vector field with contraction for
Angle-shape model (a) With vanishing point (b) Without vanishing point

Based on Table 4.6 and the corresponding figures, Figure 4.14 and 4.15, it is
evident that training the model with both vanish point and contraction constraints
generates good results. The MTE for the Angle-shape was 0.9503, and for the
S-shape, it was 0.9471, indicating that the estimated α obtained after training
the model was close to accurate. That being said, the trained model with only

100 Chapter 5. Discussion

contraction generated slightly better results. The computation time was also
faster without vanishing points, taking 27.3204s for the Angle-shape and 56.6461s
for the S-shape. In contrast, it took 34.3604s and 66.1032s when incorporating a
vanishing point, as seen in Table 4.5. This outcome was expected since learning
a model with a vanishing point requires more steps, as mentioned.

Although the computation time increased in the presence of vanishing points and
the error was slightly larger, the results were satisfactory for both vanishing points
and contraction constraints. These findings strongly support that using RFF to
approximate kernels in regression problems is a reliable method for estimating
vector fields with different characteristics.

5.2.5. Estimation with Curl-Free Feature Map

The simulations in Figure 4.16 have the expected behavior of a curl-free vector
field, with streamlines lacking curls and closed loops. The presence of both con-
traction and a vanishing point is also apparent in the simulated vector fields in
the figure.

��� ��� ��� ��� ��� �
 �

�

��

��

��

��

 �

	����
�������������������������������������

��������!
����������

(a)

��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	�����
��

���������

����������

(b)

Figure 5.9.: Middle region of the estimated trajectory for the Angle-shape with
vanishing point and contraction (a) Curl-free feature map (b) Gaussian separable
feature map

Significant differences in the streamlines and their rotational patterns become
apparent by comparing the results using a curl-free feature map to those using
a Gaussian separable feature map. This can be observed in Figure 5.9 for the
Angle-shape and Figure 5.10 for the S-shape.

While using both feature maps caused the streamlines to converge toward the
estimated trajectory, the curl-free streamlines do not exhibit rotations or loops in
the flow, in contrast to the Gaussian separable feature map. These properties can
be seen in Figure 5.9(b), which aligns with the theory that a curl-free vector field

5.2. Comparing Results - LASA 101

��� � �� �� �� ��
 �

�

��

��

��

��

��
 �

	����
�������������������������������������

��������!
����������

(a)

��� � �� �� �� ��
��

�

��

��

��

��

��

��

	������������������������������������

���������

���������

(b)

Figure 5.10.: Middle region of the estimated trajectory for the S-shape with
vanishing point and contraction (a) Curl-free feature map (b) Gaussian separable
feature map

should not have any curl, and its streamlines should be gradient flows.

The curl-free model had a slightly higher error than the Gaussian separable model.
As seen in Table 4.8, the MTE values for the curl-free model were 1.3709 and
1.0936 for the Angle-shape and S-shape, respectively, compared to 0.9503 and
0.9471 for the Gaussian separable model, seen in Table 4.6. However, the obtained
results remain reasonable, as evidenced by the close resemblance between the
estimated and actual trajectories in Figure 4.17 and Figure 4.18.

Regarding computational time, the results show that the estimation of α is faster
for the curl-free feature map than for the Gaussian separable feature map. This
can be observed in Table 4.5 and Table 4.7. One possible explanation for this find-
ing is the difference in complexity between the two feature maps. As previously
stated, the regression problem involving a curl-free feature map has a lower di-
mension compared to the Gaussian separable one. In particular, when estimating
α in the curl-free case, α is in Rd, where d = 100 for the Angle-shape and d = 200
for the S-shape, while in the Gaussian separable case, α is in Rdm, where m = 2.
Hence, the difference in the number of samples for α, 100 versus 200 for the
Angle-shape and 200 versus 400 for the S-shape, impact the computational time
required. Therefore, the number of parameters increases for the Gaussian sepa-
rable model, leading to more computations necessary, increasing the computation
time, as expected.

5.2.6. Comparison with External Results

To evaluate the accuracy of the streamlines in the vector fields learned in this
thesis, the vector fields generated in [51] were used for comparison. These vector

102 Chapter 5. Discussion

fields share the same characteristics as the ones simulated in Figure 4.13 and
Figure 4.16. Specifically, both sets of vector fields are approximated using RFF
with either a Gaussian separable kernel or a curl-free kernel. Additionally, both
approaches incorporate contraction constraints and a vanishing point.

A comparison of the contracting vector fields generated in this thesis with those
presented in [51] reveals strong similarities. In Figure 5.11, a comparison of the
vector fields obtained when using a Gaussian separable feature map is illustrated.
It can be observed that the estimated vector fields exhibit a close resemblance to
one another, as the streamlines converge in similar regions.

Similarly, in Figure 5.12, where the feature map is curl-free, the streamlines have
no rotations and contract in similar regions. Based on these observations, it is
reasonable to assume that the results achieved in this thesis regarding learning
stable vector fields from the LASA-benchmark dataset are satisfactory.

(a) ��� ��� ��� ��� ��� �
��

�

��

��

��

��

��

	�����
��

���������

����������

(b)

Figure 5.11.: Vector Fields learned for Gaussian separable feature map (a) Re-
sult from Sindhwani et al. Illustration [51] (b) Result from thesis

5.3. Comparing Results - Hamiltonian Dynamics 103

(a) ��� ��� ��� ��� ��� �
 �

�

��

��

��

��

 �

	����
�������������������������������������

��������!
����������

(b)

Figure 5.12.: Vector Fields learned for curl-free feature map (a) Result from
Sindhwani et. al Illustration [51]. (b) Results from thesis

5.3. Comparing Results - Hamiltonian Dynamics
This section analyses and compares the results outlined in Section 4.2. The focus
will be on comparing the symplectic feature map and Gaussian separable feature
map.

5.3.1. Generating Trajectories with Numerical Methods

Looking at Figure 4.19, it becomes evident that the leapfrog and explicit Euler
methods, generate different trajectories. While both trajectories have the same
initial position (2, 0), they exhibit substantial differences in their final positions.
As explained in Section 2.7.6, using the symplectic approach to update the pen-
dulum’s position and momentum at half-time steps results in a trajectory that
preserves the system’s energy. This is visually demonstrated in Figure 4.19(a),
where the pendulum sustains its oscillations along the same path, unlike the ex-
plicit Euler method shown in Figure 4.19(b), where the trajectory spirals outward.
This indicates that energy is added to the trajectory, and it diverges to infinity.
Consequently, energy is not conserved, and the trajectory is unstable. Based on
this, it was determined that deploying the trajectory generated by the explicit
Euler method for learning would not be beneficial. Instead, the leapfrog method
demonstrated favorable outcomes, making it the preferred choice for generating
trajectories for the purpose of learning Hamiltonian dynamics of a pendulum.

104 Chapter 5. Discussion

5.3.2. Estimating Hamiltonian Dynamics of a Pendulum

The results obtained for estimating the Hamiltonian dynamics of a pendulum,
seen in Figure 4.21, clearly indicate that the symplectic feature map provides a
more accurate depiction of the actual vector field than the Gaussian separable
feature map. This outcome aligns with the theory presented in the preliminaries
and the expected results.

Upon examining the learnt model using the symplectic feature map, it becomes
apparent that the streamlines exhibit clear resemblances to the actual stream-
lines. This observation suggests that the feature map successfully maintains the
system’s geometric structure, specifically the symplectic structure of the Hamil-
tonian, leading to a more precise prediction.

On the contrary, the streamlines for the Gaussian separable model exhibit slight
deviations in the center, suggesting less effective preservation of the symplectic
structure. As a non-symplectic function, the Gaussian separable feature map was
not expected to guarantee energy conservation, which resulted in inaccuracies
in the simulation. Figure 5.13 shows the inner circle for the two learnt models,
making it easier to observe the differences.

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

�����������������������

������������������
�����������

(a)

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

���������������������

�������������������
����������

(b)

Figure 5.13.: Estimated vector field zoomed in on the trajectory (a) Symplectic
feature map (b) Gaussian separable feature map

Further examination of Figure 5.13 shows that the symplectic feature map outper-
forms the Gaussian separable feature map in accurately representing the stream-
lines surrounding the outer region of the estimated trajectory. Figure 5.14(b)
displays more vertically oriented and downward-pointing streamlines, indicating
a less precise capture of the underlying dynamics of the pendulum system. In
contrast, Figure 5.14(a) exhibits horizontally-flowing streamlines that closely fol-
low the trajectory’s shape, and it closely resembles the actual streamlines, seen
in Figure 4.20. As a result, these observations highlight the benefit of using a
symplectic model for learning Hamiltonian systems.

5.3. Comparing Results - Hamiltonian Dynamics 105

This discrepancy aligns with expectations, as the symplectic kernel is designed to
preserve symplectic properties. Conversely, the Gaussian separable feature map
may face challenges in accurately capturing these characteristics. It is impor-
tant to note that the Gaussian separable feature map’s sub-optimal performance
could be attributed to the choice of tuning parameters, such as the regulariza-
tion parameter, for instance, λ. Selecting different parameter values could have
potentially resulted in improved results.

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

�����������������������

������������������
�����������

(a)

�� �� �� �� � � � � �
�

�����

�	��

����

����

���

���

���

	��

����

�

���������������������

�������������������
����������

(b)

Figure 5.14.: Estimated vector field in the lower-right-hand side (a) Symplectic
feature map (b) Gaussian separable feature map

Looking at Figure 4.22, it becomes evident that relying solely on visual analy-
sis to distinguish between the estimated and actual trajectories is challenging.
A close resemblance between the actual trajectory depicted in red and the es-
timated trajectory in blue makes it difficult to perceive their differences. This
suggests that both the symplectic and Gaussian separable feature maps yield sat-
isfactory results in trajectory estimation. However, to obtain a precise measure
of the differences and evaluate the accuracy of the estimations, it was necessary
to calculate numerical error estimates.

Error analysis

The error estimates presented in Figure 4.23 indicate that using the Gaussian
separable feature map yields higher error values than the symplectic feature map.
For instance, the highest error value for the momentum p for the former is ap-
proximately 0.5, while it is closer to 0.1 for the latter.

Additionally, the error comparison presented in Figure 4.24 further support the
superior performance of the symplectic feature map compared to the Gaussian
separable feature map. Both feature maps exhibit a similar initial trend of low
error values. However, as time evolves, the Gaussian separable model consistently

106 Chapter 5. Discussion

demonstrates higher error rates. Particularly, beginning from 2 seconds, the er-
ror associated with the Gaussian separable model exhibits a consistent increase,
resulting in subsequent errors and ultimately leading to an exponential growth of
the overall error.

Moreover, considering the error analysis presented in Table 4.9, it can be con-
cluded that the symplectic feature map outperforms the Gaussian separable fea-
ture map in accurately estimating the Hamiltonian dynamics of a pendulum. The
MTE for the symplectic model is significantly better at 0.00414, compared to
0.01593 for the Gaussian separable model. These results clearly demonstrate that
using a symplectic feature map provides more accurate estimations. However, it
is important to mention that the Gaussian separable feature map still produces
reasonable trajectory estimations, as indicated by its MTE of 0.01593, which is
satisfactory.

5.3.3. Adding Noise to the Training Data

To evaluate the performance of the models, it was desirable to introduce noise
into the training data. By doing this, improvements in results were observed
when using the symplectic feature map.

Several observations can be made upon examining the impact of noise on the
vector field estimation. First, it can be observed that the vector field in Figure
4.25 closely resembles the noise-free vector field depicted in Figure 4.20. This
similarity is consistent with the expectations, as the small standard deviation in
the incorporated noise resulted in minimal noticeable variation from the noise-free
case.

When looking at the estimated streamlines and trajectories in the presence of
noise, seen in Figure 4.26, both feature maps demonstrate the ability to estimate
the actual trajectory with reasonable accuracy, similar to the noise-free scenario.
However, there are noticeable differences in their performance regarding the es-
timated streamlines. The symplectic model demonstrates a close resemblance to
the actual streamlines, accurately capturing the system’s symplectic character-
istics. In contrast, the Gaussian separable feature map exhibits deviations in
the estimated streamlines and faces more challenges in accurately capturing the
symplectic nature of the system.

To summarize the visual analysis of the results, it can be observed that the intro-
duced noise had minimal impact on the vector field estimation. However, there
were notable differences in the performance of the two feature maps. The symplec-
tic model exhibited better alignment with the actual streamlines and successfully
captured the symplectic characteristics of the pendulum system. It is important

5.3. Comparing Results - Hamiltonian Dynamics 107

to note that these results may have varied if different tuning parameters were
chosen. Therefore, it is crucial to carefully tune the parameters to optimize the
performance of the estimation methods.

Error analysis

Similar to the noise-free trajectory scenario, Figure 4.27 exhibited minimal visual
difference between the actual and estimated trajectories. Consequently, the er-
ror between the actual and estimated trajectories was plotted to provide a more
detailed analysis of the estimation accuracy. The error plots displayed in Figure
4.28 indicate that the inclusion of noise results in better outcomes for trajectory
estimated with the symplectic feature map. Upon analyzing the error axis, no-
tice that the inclusion of noise decreased the error interval from approximately
[−0.1, 0.1] to [−0.06, 0.06] for the symplectic model. Conversely, the estimation
using the Gaussian separable feature map results in poorer estimation with the
interval increasing from approximately [−0.5, 0.4] to [−0.7, 0.5]. These results
suggest that the symplectic feature map is more prone to noisy data, as expected.

The numerical errors further support the assumption that the symplectic feature
map outperforms the Gaussian separable feature map in the regression problem.
Studying Figure 4.29, it can be seen that for the Gaussian separable model, the
error of the model increase in an exponential trend, which can be observed from
the light blue line. The learnt model experiences a cumulative error, which grows
more extensive as it continues to learn. On the contrary, the total error for the
symplectic model remains relatively constant over time, forming a horizontal line.
These results indicate a stable error estimation that does not progressively increase
with time. This observation is consistent with the theory that a symplectic kernel
can preserve energy in a manner distinct from a standard kernel.

The models with added noise, Figure 4.29, compared to the noise-free models,
Figure 4.24, reveals significant differences in the observed trends of the error
plots. In the absence of noise, the two results exhibit a similar pattern, with
the symplectic feature map consistently displaying lower errors than the Gaussian
separable feature map. However, when noise is introduced, the total error asso-
ciated with the Gaussian separable feature map maintains the same pattern over
time as for the noise-free scenario, while the symplectic feature map demonstrates
notable improvements. The total error range for the Gaussian separable feature
map increases from [0.0, 0.5] to [0.0, 0.7], while for the symplectic feature map, it
decreases from [0.0, 0.1] to [0.0, 0.75], as discussed earlier.

Furthermore, as seen in Table 4.9, the MTE for the symplectic model demon-
strates significant enhancement, decreasing from 0.00414 to 0.00238, which is a
clear improvement. The MTE for the Gaussian separable model on the other

108 Chapter 5. Discussion

hand, increased increased from 0.01593 to 0.02186, indicating a decrease in model
performance.

Based on the mentioned observations, there is a clear indication that using RFF
with a symplectic kernel is superior in estimating the Hamiltonian dynamics of
a pendulum, regardless of the presence of noise. This outcome strongly aligns
with the theory presented in the preliminaries. Notably, the symplectic feature
map exhibits impressive capabilities in preserving the symplectic structure of a
system, even when subjected to noise. In contrast, the RFF approximation using
the Gaussian separable kernel struggles to capture the symplectic structure but
demonstrates proficiency in accurately estimating the actual trajectory. These
findings highlight the effectiveness of using RFF for kernel approximation and
regression problems, as it yields satisfactory results.

5.4. Additional Considerations
Even though the results obtained were satisfactory, there are some other factors
worth mentioning that may have influenced the outcomes.

5.4.1. The use of Finite Difference Method

As explained in the Method section, numdifftools was used to determine the gra-
dient of feature map ψ in the regression problems solved to obtain the simulations
in Figure 4.13 and Figure 4.16. This Python library uses finite difference method
(FDM) to approximate the gradient of a given function, as explained in Section
3.1. While FDM can give satisfactory outcomes, it does not calculate the exact
gradient, which may cause minor errors in the estimated gradient and ultimately
result in errors in the estimated vector fields. Consequently, the error computed
for the simulations could have been smaller if the exact gradient had been calcu-
lated. However, based on the results obtained, it is evident that the estimated
gradient of ψ is quite close to the correct value. Hence, it is reasonable to be-
lieve that numdifftools is a valuable tool for estimating complex gradients as it
significantly reduces computational time.

5.4.2. Limitations due to Generated RFF Parameters

Since both w and b in the feature maps were randomly generated, the estima-
tion may fail to adequately represent the trajectories, potentially leading to low
approximation accuracy. Additionally, if the RFF parameters are not optimized
properly, the resulting feature map may fail to capture the key characteristics of
the target function. Furthermore, the approximation accuracy may decrease if the

5.5. Future Work 109

number of used random features is insufficient, whereas using too many features
may result in overfitting. Because of this, generating reasonable RFF parameters
and selecting an appropriate number of samples for the two shapes was important.
As mentioned, this was done through a trial-and-error process until the results
were satisfactory. However, even better results could probably be obtained with
different RFF parameters. Therefore, it would be interesting to discover a method
to generate optimal parameters.

5.4.3. Computational Efficiency with RFF

Based on the computation times presented in this thesis, it can be concluded that
the use of RFF in regression problems is computationally efficient. The results
showed that the computation times ranged from 0.8560s to 34.3604s for the Angle-
shape, and 2.1191s to 66.1032 for the S-shape. These findings demonstrate that
RFF remains efficient in modeling vector fields, regardless of whether additional
characteristics are incorporated into the learning process. As mentioned in Section
2.1.6, the computational efficiency of RFF is due to its ability of dimensionality
reduction and scalability benefits when handling large-scale tasks.

5.5. Future Work
Due to time and resource limitations, this thesis could not test the presented
methods on more complex systems. However, as a promising area for future
research, it would be interesting to apply the methods used in this thesis to real-
world dynamic systems like cranes and quadcopters.

While this thesis focused on contraction constraints, it would be interesting to
investigate the effectiveness of other types of constraints in regression problems
using RFF. As discussed in Section 1.1, Ahmadi and Khadir [1] introduced a
framework that incorporates side information to assist the learning process. Their
study demonstrated that incorporating side information led to a closer alignment
between the learned vector field and the true behavior. Although this thesis
incorporated one of their side information, namely Hamiltonian systems, it would
be interesting to explore other side information presented in their article and
incorporate them into regression problems with RFF. Additionally, Singh et al.
[52] proposed a stabilizability constraint that offers promising avenues for further
exploration.

To further enhance the accuracy of estimation through kernel approximation us-
ing RFF, exploring a more efficient approach for determining optimal RFF pa-
rameters would be beneficial instead of relying on a trial-and-error method. For

110 Chapter 5. Discussion

example, one possible approach could be to investigate different nonlinear opti-
mization techniques. Moreover, the article by Avron and Indyk [7] demonstrates
a promising way to determine the optimal number of samples, thus improving the
overall performance of RFF-based methods.

The findings from both the thesis and the specialization project [28] demonstrates
that using RFF to approximate kernels in a RKHS yields accurate outcomes while
reducing the complexity of the problem. Moving forward, it would be interesting
to compare the performance of RFF-based methods with other state-of-the-art
approaches, such as neural networks, in terms of accuracy and computation time.

Chapter 6.

Conclusion

This thesis investigated using random Fourier features (RFF) to approximate
different kernels in a reproducing kernel Hilbert space (RKHS) to solve various
regression problems. The primary focus has been on estimating vector fields
with different characteristics, to see how these can improve the precision of the
learning process. Simulations were conducted on both a real-world dataset and
a self-generated one, and the results indicate that using RFF provided accurate
estimates and was computationally efficient.

One of the regression problems solved in this thesis involved a vector field with no
specified constraints. This was modeled twice, where one was trained on a single
trajectory, by taking the mean of the four demonstrations, and the second was
trained on four. It was concluded that training on a single trajectory provided
the most accurate results. Another regression problem involved a vector field
with contraction constraints, leading to a more complex problem and increased
computation time. However, the learnt model was adequate and provided accurate
results. It was also observed that the streamlines in the contracting vector field
were more robust than the ones without contraction, and the precision in the
learning process was increased.

The thesis also explored regression problems where it was required to have the
vector field vanish at specific points. In order to do this, two models were trained
with a Gaussian separable feature map. The first model was trained with the
incorporation of contraction constraints in the regression problem, while the sec-
ond model was without. The results obtained for both models aligned with the
theoretical expectations. Additionally, a model was trained on a curl-free feature
map enforcing both vanishing point and contraction during the learning process,
yielding satisfactory results.

Furthermore, two numerical methods were used to generate trajectories for the
Hamiltonian dynamics of a pendulum, namely the explicit Euler and the leapfrog

112 Chapter 6. Conclusion

method. The leapfrog method gave the best results, and its generated trajectory
was then used to solve different regression problems. Following this, two different
kernels, specifically the Gaussian separable and the symplectic kernel, were ap-
proximated with RFF to estimate the dynamics of a pendulum, resulting in their
corresponding feature maps. The trajectory was generated twice for each feature
map, one with the inclusion of noise and one without. In both scenarios, the sym-
plectic feature map outperformed the Gaussian separable feature map, showcasing
its capability to capture the symplectic dynamics of the system. Conversely, the
streamlines estimated using the Gaussian separable feature map exhibited less
satisfactory performance. Nevertheless, it is essential to note that despite its lim-
itations in estimating streamlines for symplectic systems, the Gaussian separable
feature map still provided satisfactory result when estimating the trajectory.

Overall, it can be concluded that using RFF to estimate different kernels in a
RKHS provides reliable results and can estimate various vector fields with different
characteristics. However, the selection of a suitable kernel for the problem and
generating satisfactory RFF parameters is crucial for achieving optimal results.
In the future, it would be interesting to compare the performance of RFF-based
methods to other state-of-the-art methods for vector field approximation, such as
neural networks, in terms of accuracy, computation time, and errors.

References

[1] A. A. Ahmadi and B. El Khadir. “Learning dynamical systems with side
information”. In: Learning for Dynamics and Control. PMLR. 2022, pp. 718–
727.

[2] M. A. Alvarez, L. Rosasco, N. D. Lawrence, et al. “Kernels for vector-valued
functions: A review”. In: Foundations and Trends® in Machine Learning 4.3
(2012), pp. 195–266.

[3] MOSEK ApS. “Mosek optimizer API for Python”. In: Version 9.17 (2022),
pp. 6–4.

[4] A. Apsemidis, S. Psarakis, and J. M. Moguerza. “A review of machine learn-
ing kernel methods in statistical process monitoring”. In: Computers & In-
dustrial Engineering 142 (2020), p. 106376.

[5] V. I. Arnold. Mathematical methods of Classical Mechanics. Springer-Verlag,
1989.

[6] N. Aronszajn. “Theory of reproducing kernels”. In: Transactions of the
American mathematical society 68.3 (1950), pp. 337–404.

[7] H. Avron, M. Kapralov, C. Musco, A. Musco C. Velingker, and A. Zandieh.
“Fourier features for kernel ridge regression: Approximation bounds and
statistical guarantees.” In: International conference on machine learning
(2017), pp. 253–262.

[8] A. Beléndez, C. Pascual, D. I. Méndez, T. Beléndez, and C. Neipp. “Exact
solution for the nonlinear pendulum”. In: Revista brasileira de ensino de
fısica 29 (2007), pp. 645–648.

[9] A. Berlinet and C. Thomas-Afnan. Reproducing Kernel Hilbert Spaces in
Probability and Statistics. Springer Link, 2014.

[10] R. Bhatia and C. Davis. “A Cauchy-Schwarz inequality for operators with
applications”. In: Linear algebra and its applications 223 (1995), pp. 119–
129.

[11] N. M. Boffi, S. Tu, and J. Slotine. “Nonparametric adaptive control and
prediction: theory and randomized algorithms”. In: The Journal of Machine
Learning Research 23 (2022).

114 References

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004, pp. 669–672.

[13] R. Brault, M. Heinonen, and F. d’Alché-Buc. “Random Fourier Features
For Operator-Valued Kernels”. In: Asian Conference on Machine Learning
63 (2016), pp. 110–125.

[14] P. A. Brodtkorb and J. D’Errico. “Numdifftools documentation”. In: (2018).
[15] J. Brownlee. Better deep learning: train faster, reduce overfitting, and make

better predictions. Machine Learning Mastery, 2018.
[16] S. L. Brunton, J. L. Proctor, and J. N. Kutz. “International Conference on

Machine Learning”. In: Proceedings of the National Academy of Sciences
113.15 (2016).

[17] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. “Symplectic Recurrent
Neural Networks”. In: CoRR abs/1909.13334 (2019).

[18] Downloads - Stable Estimator of Dynamical Systems (SEDS). https://cs.
stanford.edu/people/khansari/download.html. Accessed: 2023-04-24.

[19] O. Egeland. “Optimization”. NTNU, unpublished. 2023.
[20] O. Egeland and J. T. Gravdahl. Modeling and Simulation for Automatic

Control. Marine Cybernetics AS, 2002.
[21] T. Evgeniou, M. Pontil, and T. Poggio. “Regularization networks and sup-

port vector machines”. In: Advances in computational mathematics 13.1
(2000), pp. 1–50.

[22] J. Fan and R. Li. “Statistical challenges with high dimensionality: Feature
selection in knowledge discovery”. In: arXiv preprint math/0602133 (2006).

[23] R. Haag, D. Kastler, and E. B. Trych-Pohlmeyer. “Stability and equilibrium
states”. In: Communications in Mathematical Physics 38 (1974), pp. 173–
193.

[24] E. Hairer, C. Lubich, and G. Wanner. “Geometric numerical integration
illustrated by the Störmer–Verlet method”. In: Acta numerica 12 (2003),
pp. 399–450.

[25] E. Hairer, G. Wanner, and C. Lubich. Geometric numerical integration:
Structure preserving algorithms for ordinary differential equations. Springer,
2006.

[26] F. E. Harrell et al. Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis. Vol. 608. Springer, 2001.

[27] P. Huang, H. Avron, Sainath T.N., V. Sindhwani, and B Ramabhadran.
“Kernel Methods Match Deep Neural Networks in Timit”. In: IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (2014),
pp. 205–209.

https://cs.stanford.edu/people/khansari/download.html
https://cs.stanford.edu/people/khansari/download.html

References 115

[28] V. Kenworthy and H. Phan. “Learning-Based Adaptive Control Based on
Reinforcement Learning”. NTNU, unpublished. 2022.

[29] V. T. Kenworthy and H. T. Phan. GitHub Repository. https://github.
com/helenatp/tpk4960. 2023.

[30] S. M. Khansari-Zadeh and A. Billard. “Learning stable nonlinear dynamical
systems with gaussian mixture models”. In: IEEE Transactions on Robotics
27.5 (2011), pp. 943–957.

[31] S. M. Khansari-Zadeh and O. Khatib. “Learning Potential Functions from
Human Demonstrations with Encapsulated Dynamic and Compliant Behav-
iors”. In: Autonomous Robots 41.1 (2017), pp. 45–69.

[32] J.E. Kirkwood. Mathematical Physics with Partial Differential Equations.
Academic Press, 2013, pp. 327–350.

[33] Z. Li. “Sharp analysis of random fourier features in classification”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence (2021).

[34] F. Liu, X. Huang, Y. Chen, and J. AK. Suykens. “Random features for ker-
nel approximation: A survey on algorithms, theory, and beyond”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 44.10 (2021),
pp. 7128–7148.

[35] W. Lohmiller and J-J. E. Slotine. “On contraction analysis for non-linear
systems”. In: Automatica 34.6 (1998), pp. 683–696.

[36] I. Macêdo and R. Castro. Learning divergence-free and curl-free vector fields
with matrix-valued kernels. IMPA, 2010.

[37] R. Meyer, M. Weichselbaum, and A. W. Hauser. “Machine learning ap-
proaches toward orbital-free density functional theory: Simultaneous train-
ing on the kinetic energy density functional and its functional derivative”.
In: Journal of chemical theory and computation 16.9 (2020), pp. 5685–5694.

[38] C. A. Micchelli and M. Pontil. “On learning vector-valued functions”. In:
Neural computation 17.1 (2005), pp. 177–204.

[39] H. Q Minh. “Operator-Valued Bochner Theorem, Fourier Feature Maps for
Operator-Valued Kernels, and Vector-Valued Learning”. In: Journal of Ma-
chine Learning Research abs/1608.05639 (2016).

[40] H. Q. Minh, P. Niyogi, and Y. Yao. “Mercer’s theorem, feature maps, and
smoothing”. In: International Conference on Computational Learning The-
ory. Springer. 2006, pp. 154–168.

[41] H.Q. Minh and V. Sindhwani. “Vector-valued Manifold Regularization.” In:
ICML. 2011.

[42] D. Morin. “Chapter 15 The Hamiltonian method”. In: (2008). url: https:
//scholar.harvard.edu/files/david-morin/files/cmchap15.pdf.

https://github.com/helenatp/tpk4960
https://github.com/helenatp/tpk4960
https://scholar.harvard.edu/files/david-morin/files/cmchap15.pdf
https://scholar.harvard.edu/files/david-morin/files/cmchap15.pdf

116 References

[43] R. M. Neal et al. “MCMC using Hamiltonian dynamics”. In: Handbook of
markov chain monte carlo 2.11 (2011), p. 2.

[44] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Vol. 153. Springer Link, 2003.

[45] Python decorator to measure execution time. https://dev.to/kcdchennai/
python-decorator-to-measure-execution-time-54hk. Accessed: 2022-
11-10.

[46] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Ma-
chines”. In: Advances in Neural Information Processing Systems. Ed. by J.
Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc.,
2007.

[47] G. Sagnol and M. Stahlberg. “PICOS: A Python interface to conic optimiza-
tion solvers”. In: Journal of Open Source Software 7.70 (Feb. 2022), p. 3915.
issn: 2475-9066. doi: 10.21105/joss.03915.

[48] B. Scholkopf and A.J. Smola. Learning with Kernels. The MIT Press, 2002.
[49] B. Schölkopf, R. Herbrich, and A. J. Smola. “A generalized representer

theorem”. In: International conference on computational learning theory.
Springer. 2001, pp. 416–426.

[50] scipy.integrate.solve_ivp. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.integrate.solve_ivp.html. Accessed: 2023-03-16.

[51] V. Sindhwani, S. Tu, and M. Khansari. “Learning Contracting Vector Fields
For Stable Imitation Learning”. In: (2018).

[52] S. Singh, S. Richards, V. Sindhwani, J-J. Slotine, and M. Pavone. “Learning
stabilizable nonlinear dynamics with contraction-based regularization”. In:
The International Journal of Robotics Research 40.10-11 (2021).

[53] I. Steinwart and C. Scovel. “Fast rates for support vector machines using
Gaussian kernels”. In: The Annals of Statistics 35.2 (2007), pp. 575–607.

[54] J. Suzuki. Kernel Methods for Machine Learning with Math and Python:
100 Exercises for Building Logic. Springer Nature, 2022.

[55] Y. Tanaka, T. Iwata, and N. Ueda. “Symplectic Spectrum Gaussian Pro-
cesses: Learning Hamiltonians from Noisy and Sparse Data”. In: Conference
on Neural Information Processing Systems (2022).

[56] A. Vabalas, E. Gowen, E. Poliakoff, and A. J. Casson. “Machine learning
algorithm validation with a limited sample size”. In: PloS one 14.11 (2019),
e0224365.

[57] J-P Vert. Aronszajn’s theorem. https://members.cbio.mines-paristech.
fr/~jvert/svn/kernelcourse/notes/aronszajn.pdf.

https://dev.to/kcdchennai/python-decorator-to-measure-execution-time-54hk
https://dev.to/kcdchennai/python-decorator-to-measure-execution-time-54hk
https://doi.org/10.21105/joss.03915
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/notes/aronszajn.pdf
https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/notes/aronszajn.pdf

References 117

[58] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. “SciPy
1.0: fundamental algorithms for scientific computing in Python”. In: Nature
methods 17.3 (2020), pp. 261–272.

[59] K. Vu, J. C. Snyder, L. Li, M. Rupp, B. F. Chen, T. Khelif, K-R Müller,
and K. Burke. “Understanding kernel ridge regression: Common behaviors
from simple functions to density functionals”. In: International Journal of
Quantum Chemistry 115.16 (2015), pp. 1115–1128.

[60] M. Welling. “Kernel Ridge Regression”. In: Max Welling’s Classnotes in
Machine Learning (2013).

[61] J. Yang, V. Sindhwani, H. Avron, and M. Mahoney. “Quasi-Monte Carlo
feature maps for shift-invariant kernels”. In: International Conference on
Machine Learning. PMLR. 2016, pp. 485–493.

[62] H. Zhen, L. Ming, and C. Zhang. “Dependent Online Kernel Learning With
Constant Number of Random Fourier Features”. In: IEEE Transactions on
Neural Networks and Learning Systems 26.10 (2015).

[63] D-X. Zhou. “Derivative reproducing properties for kernel methods in learn-
ing theory”. In: Journal of computational and Applied Mathematics 220.1-2
(2008), pp. 456–463.

Appendix A.

Code

The source code for the results conducted in this thesis can be found at https:
//github.com/helenatp/tpk4960.

A.1. LASA
All the code related to the LASA handwriting dataset simulations can be accessed
in the directory named src/lasa. Each file within this directory has a markdown
section labeled Read data at the beginning. This is where the desired shape can
be selected. If you want to run the Angle dataset, comment out the corresponding
code line, and do the same for the Sshape dataset if desired.

A.2. Hamiltonian Dynamics
The file named hamilton_pendulum has a markdown section at the beginning
labeled Noise. Under this markdown, you will find a variable named noise. This
variable is of Boolean type, and its value determines whether noise is incorporated
into the trajectory. To execute the file with noise included, set the variable to
True. Conversely, set the value to False if you want to run it without noise.

A.3. Solving Regression Problems using PICOS and
MOSEK

This section demonstrates how PICOS and MOSEK can be implemented to solve
a regression problem. The code below shows how Algorithm 2 is implemented
using these optimization tools. As mentioned in Section 3.1 PICOS is used to

https://github.com/helenatp/tpk4960
https://github.com/helenatp/tpk4960

120 Appendix A. Code

create the optimization problem, while MOSEK is used to solve it. In the code,
pc refers to PICOS.

To solve the optimization problem using PICOS, a systematic approach was fol-
lowed. An empty problem object was created to serve as the container for the
optimization problem, seen in line 4. Constant parameters, representing fixed
values in the problem, were defined as seen in lines 5-12. Following this, the opti-
mization variable for the problem was defined, which in this case is α, seen in line
13. The contraction constraints were then defined and added to the problem, as
seen in lines 15-24. Then, the objective function, representing the quantity to be
minimized, was defined and set in the problem object, as seen in lines 25 and 26.
Finally, at line 27, the problem was solved with MOSEK defined as the desired
solver.

1 def alpha_approx_with_constraint (x, y, w, b, dim , d, lam , N, mu ,
constraint_points):

2 phi_ = phi(x, w, b, N, d, dim)
3 mu = mu * np.eye(dim)
4 problem = pc. Problem ()
5 phi_param = pc. Constant (’phi_ ’, phi_)
6 lam_param = pc. Constant (’lam ’, lam)
7 dim_param = pc. Constant (’dim ’,dim)
8 d_param = pc. Constant (’d’, d)
9 mu_param = pc. Constant (’mu ’, mu)

10 constraint_points_param = pc. Constant (’constraint_points ’,
constraint_points)

11 y_reshaped = np. array (np. ravel ([y[0] , y[1]] , ’F’))
12 y_reshaped_param = pc. Constant (’y_reshaped ’, y_reshaped)
13 alpha_var = pc. RealVariable (’alpha_var ’, (d_param *dim_param , 1))
14 # Creating constraints
15 for i in range (constraint_points_param):
16 constraint_index = i*np. int64 (np. floor (len(x[0])/

constraint_points))
17 x_i = x[:, constraint_index]
18 gradient = np. zeros (dim)
19 for j in range (d):
20 index = 2*j
21 gradient_of_psi_param = pc. Constant (’gradient_of_psi ’,

gradient_of_psi (x_i , w[:, j], b[:, j]))
22 jacobi = alpha_var [index : index +2] * gradient_of_psi_param .T
23 gradient = gradient + 0.5 * (jacobi + jacobi .T)
24 problem . add_constraint (gradient << mu_param)
25 obj = ((phi_param * alpha_var) - y_reshaped_param).T * ((phi_param

* alpha_var) - y_reshaped_param) + lam_param *(alpha_var .T * alpha_var)
26 problem . set_objective (’min ’, obj)
27 problem . solve (solver =’mosek ’)
28 alpha_var = alpha_var .np. reshape ((-1 ,))
29 return alpha_var

	Preface
	Summary
	Sammendrag
	Introduction
	Motivation
	Related Work
	Aim of the Thesis

	Preliminaries
	Kernels
	Positive Definite Kernel
	Reproducing Kernel
	Reproducing Kernel Hilbert Spaces
	Feature Map
	Kernel Trick
	Complexity in Kernel Methods

	Random Fourier Features
	Random Features
	Fourier Transform
	Bochner's Theorem
	Real-Valued Approximation of a Scalar Kernel
	Alternative Random Fourier Feature Expressions
	Random Fourier Features for Curl-Free Kernel

	Kernel Regression
	The Representer Theorem
	Gaussian Separable Kernel
	Regularized Least-Squares
	Regularized Least-Squares with Random Fourier Features

	Vector-Valued RKHS
	Moore-Aronszajn Theorem for the Vector Case
	Vector-valued Curl-Free Kernel
	Vector-Valued Regularized Least-Squares
	Random Fourier Features for Vector-Valued Functions

	RKHS for Vector Fields
	Contraction Analysis
	Contraction as a Constraint
	Curl-Free Kernel Approximation with RFF
	Regularized Least-Squares with Contraction Constraints
	Random Fourier Features with Contraction Constraints

	Vanishing Point
	RKHS Vector Fields Vanishing on a Point Set
	Random Fourier Features Vanishing on a Point Set

	Hamiltonian Dynamics
	Hamilton's Equations of Motion
	Hamiltonian Dynamics
	Symplectic Kernel
	Symplectic Kernel from a Gaussian Kernel
	Symplectic Characteristics
	Approximating Hamiltonian Dynamics
	Hamiltonian Dynamics of a Pendulum

	Method
	Python Tools for Optimization and Numerical Solution Solving
	MOSEK
	PICOS
	Numdifftools
	Solving Ordinary Differential Equations

	Data Generation
	Generating RFF Parameters for Learning

	Learning with LASA Benchmark
	The Dataset
	Dataset Splitting
	Parameters Used for Learning
	Algorithms used in Implementation

	Learning Hamiltonian Systems
	Generating Trajectories
	Learning Hamiltonian Dynamics with RFF

	Comparison Metrics
	Reproduction Accuracy
	Computation Time for Training

	Results
	LASA Handwriting with RFF
	Learnt Models with Gaussian Separable Feature Map
	Learnt Models with Vector Field Vanishing on a Point Set
	Learnt Model with Curl-Free Feature Map

	Hamiltonian Systems with RFF
	Hamiltonian Dynamics Model with RFF
	Hamiltonian Dynamics Model with Added Noise

	Discussion
	Expectations
	Expectations for LASA Models
	Expectations for Learning Hamiltonian Dynamics

	Comparing Results - LASA
	Estimation with and without Mean
	Estimation with and without Contraction
	Estimation with and without Vanishing Point
	Estimation with Vanishing Point and Contraction
	Estimation with Curl-Free Feature Map
	Comparison with External Results

	Comparing Results - Hamiltonian Dynamics
	Generating Trajectories with Numerical Methods
	Estimating Hamiltonian Dynamics of a Pendulum
	Adding Noise to the Training Data

	Additional Considerations
	The use of Finite Difference Method
	Limitations due to Generated RFF Parameters
	Computational Efficiency with RFF

	Future Work

	Conclusion
	Code
	LASA
	Hamiltonian Dynamics
	Solving Regression Problems using PICOS and MOSEK

