
Effective rheology of immiscible
two-phase flow in porous media
consisting of random mixtures of
grains having two types of wetting
properties

Hursanay Fyhn1*, Santanu Sinha2 and Alex Hansen1

1PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway,
2PoreLab, Department of Physics, University of Oslo, Oslo, Norway

We consider the effective rheology of immiscible two-phase flow in porous media
consisting of randommixtures of two types of grains having different wetting properties
using a dynamic pore network model under steady-state flow conditions. Two
immiscible fluids, denoted by “A” and “B”, flow through the pores between these
two types of grains denoted by “+” and “−”. Fluid “A” is fully wetting, and “B” is fully non-
wettingwith respect to “+”grains,whereas it is theoppositewith “−”grains. Thedirection
of the capillary forces in the links between two “+” grains is, therefore, opposite
compared to the direction in the links between two “−” grains, whereas the capillary
forces in the linksbetween twoopposite typesofgrains average tozero. For awindowof
grain occupation probability values, a percolating regime appears where there is a high
probability of having connected paths with zero capillary forces. Due to these paths, no
minimum threshold pressure is required to start a flow in this regime. When varying the
pressure drop across the porous medium from low to high in this regime, the relation
between the volumetric flow rate in the steady state and the pressure drop goes from
being linear to a power law with exponent 2.56, and then to linear again. Outside the
percolation regime, there is a thresholdpressurenecessary to start theflowandno linear
regime is observed for low pressure drops. When the pressure drop is high enough for
there to be a flow, we find that the flow rate depends on the excess pressure drop to a
power law with exponents around 2.2–2.3. At even higher excess pressure drops, the
relation becomes linear.We see no change in the exponent for the intermediate regime
at the percolation critical points where the zero-capillary force paths disappear. We
measure themobility at the percolation threshold at low pressure drops so that the flow
rate versus pressure drop is linear. Assuming a power law, themobility is proportional to
the difference between the occupation probability and the critical occupation
probability to a power of around 5.7.
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1 Introduction

It was in 1827 that Ohm published his law stating that electrical current is proportional
to the voltage drop across a conductor [1], meeting fierce resistance from the physics
community in the beginning. Darcy arrived in 1856 at a similar law for single-phase flow in
porous media, i.e., the volumetric flow rate is proportional to the pressure drop across the
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porous medium [2]. Both of these fundamental laws are examples of
there being a linear relationship between current and driving force.
In the case of the Darcy law, the derivation based on pore scale
physics has been a challenge, see e.g., Whitaker’s derivation based on
momentum transfer [3].

The Darcy law for single-phase flow through a porous sample is
given as follows:

Q � −AK
μL

ΔP, (1)

where Q is the volumetric flow rate along the axis of the cylindrical
sample, ΔP is the pressure drop along it in the flow direction, A is the
area of the sample orthogonal to the flow direction, K is the
permeability of the sample, μ is the viscosity of the liquid, and L
is the system length.

In 1936, the Darcy law (1) was generalized to the simultaneous
flow of two immiscible liquids by Wyckoff and Botset by essentially
splitting it into two [4].

Qw � −AKkrw
μwL

ΔP, (2)

Qn � −AKkrn
μnL

ΔP, (3)

where the subscripts w and n refer to the wetting properties of the
two fluids with respect to the matrix; w refers to the more wetting
fluid and n to the less wetting fluid. The idea behind this split is
simple. The wetting fluid will see a pore space reduced by the
presence of the other fluid, leading to a reduction in effective
permeability for the wetting fluid. The reduction parameter is the
wetting relative permeability krw. Completely analogously, the non-
wetting fluid sees an effective reduction of the permeability by a
factor krn, the non-wetting relative permeability. The split was given
physical contents when Wyckoff and Botset assumed that the two
relative permeabilities were functions of the wetting saturation Sw
alone, the wetting saturation being the pore volume occupied by the
wetting fluid divided by the total pore volume and assuming the
fluids are incompressible. Barenblatt et al. [5] have later shown that
this assumption is valid if there exists a local phase equilibrium
between the fluids, a condition that is fulfilled only for slow flows. A
further assumption built into Eqs 2, 3 is that there are no
macroscopic saturation gradients present.

The total volumetric flow rate is given by the sum of the
volumetric flow rates of each fluid as follows

Q � Qw + Qn, (4)
and as a consequence, the generalized Darcy Eqs 2, 3 predict the
following expression:

Q � −AK
L

krw
μw

+ krn
μn

[ ] ΔP, (5)

that is, a total volumetric flow rate being proportional to the
pressure drop.

Eqs 2, 3 assume that there are no macroscopic saturation
gradients. If this is not the case, the pressure is split into one
associated with the non-wetting fluid, Pn, and one associated
with the wetting fluid, Pw. Their difference is equal to the
capillary pressure function, Pn − Pw = Pc(Sw), which is also

assumed to depend only on the Sw. Eqs 2, 3 will then contain
terms of the type ∇Pc = (dPc/dSw)∇Sw, thus setting up the pressure
gradient and the saturation gradient as driving forces. When these
equations are combined with mass conservation, the result is a
closed set of equations that determine how the saturation develops
within the porous medium.

When the saturation changes inhomogeneously in the porous
medium with time, one implicitly assumes that fluid interfaces move
within the porous medium. It was then a surprise when Tallakstad
et al. [6, 7] reported a flow rate Q depending on ΔP as follows:

Q∝ |ΔP|β, (6)
with β ≈ 1.85 for a two-dimensional glass-bead-filled Hele–Shaw cell
filled with a water–glycerol mixture and air in the flow regime where
the generalized Darcy Eqs 2, 3 are supposed to be valid. This study
was followed up by an NMR study of the three-dimensional glass
bead packings by Rassi et al. [8] finding an exponent β varying
between 2.2 and 3.3. Aursjø et al. [9] using the same model porous
medium as Tallakstad et al. [6, 7], but with two incompressible
fluids, found β ≈ 1.5 or 1.35, depending on the fractional flow rates.
Similar results, in the sense that β is considerably larger than one,
have since been observed by a number of groups; see [10–13]. There
has also been a considerable effort to understand these results
theoretically and reproduce them numerically [6, 7, 14–25].

It should be pointed out that the power law behavior seen in Eq.
6 is different from that described by Wilkinson in 1986 [26]. In his
work, Wilkinson used the invasion percolation model to work out
the dependence of the relative permeabilities on the capillary
pressure, which could be linked to the saturation. He found that
the non-wetting relative permeability krn would depend on the
difference between the capillary pressure Pc and a critical
capillary pressure Pc

c related to the percolation critical point,
which is shown as follows:

krn ~ Pc − Pc
c( )t, (7)

where t is the percolation conduction exponent [27]. This is,
however, a very different problem from that giving rise to Eq. 6.
The power law in (7) is a direct reflection of the geometry of the
clusters of the non-wetting fluid in the system after the invasion
process. Hence, it is a static problem. The power law in (6) is, as we
shall see, the result of a dynamic process caused by the motion of the
fluid interfaces.

The power law behavior in Eq. 6 is due to a competition between
the capillary and the viscous forces. It is straightforward to
understand why the flow rate should increase faster than linear
when these forces are in competition. When the pressure difference
across the porous medium is increased, more interfaces begin to
move, leading to a higher effective permeability [28]. The reason
why it should be a power law is less obvious. The best argument was
perhaps already given by Tallakstad et al. [6, 7] through comparing
the pressure drop across fluid clusters with the capillary pressures
holding them in place. Capillary fiber bundle models [29, 30] are
porous media in the form of bundles of capillary fibers, and they are
typically simple enough to be mathematically solvable [16, 19–21,
24, 25]. When the fibers have undulating radii along the long axis,
they show non-linear volumetric flow rate vs. pressure drop; they are
not quite of the form (6) but rather
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Q �
0 if |ΔP|≤Pt,
M |ΔP| − Pt( )β if Pt < |ΔP|<Pmax,
MD |ΔP| − Pt( ) if Pmax ≪ |ΔP|,

⎧⎪⎨⎪⎩ (8)

where Pt is a threshold pressure necessary for the flow to occur, Pmax

is the maximum threshold pressure found in any capillary fiber, and
M and MD are mobilities. A non-zero threshold pressure is in
general necessary in porous media when neither of the two
immiscible fluids percolates when dealing with porous media and
not just the capillary fiber bundle model [10, 15, 21]. The existence of
a non-zero threshold pressure makes the measurement of β much
harder than when it is zero as this implies determining two
parameters simultaneously, (Pt, β), rather than just one, β.

A central unanswered question is whether the exponent β is
universal in the sense that there are classes of systems that all have
the same value, i.e., can one define universality classes? Intuitively, this is
a very appealing idea as one has a diverging length scale, as in
equilibrium critical phenomena as |ΔP| → Pt mentioned previously
[6, 7]. The experimental measurements of β have so far neither given
any indication of the existence of universality classes nor have the
computational efforts due to the difficulties in dealing with two
unknown parameters, Pt and β. Roy et al. [19] found using a
capillary fiber bundle model that β = 2 if the fiber-to-fiber
probability distribution of thresholds includes Pt = 0 with a finite
probability; otherwise, β = 3/2. The fibers here had smoothly undulating
radii along the flow direction. Lanza et al. [24] who studied a non-
Newtonian mixture of immiscible Newtonian and non-Newtonian
fluids in a capillary fiber bundle model found a different value of β
when the radius distribution is jagged from when it is smooth.

Eq. 8, which was derived for the capillary fiber bundle model,
predicts there being a pressure drop |ΔP| = Pt below which the flow rate
Q is zero. This threshold may be zero. Within the capillary fiber bundle
model, this means that some capillary tubes belonging to the bundle
have interfaces that move as soon as there is a pressure difference across
them. There is, however, one important mechanism missing in the
capillary fiber bundle models: in the porous medium, the immiscible
fluids may be percolating. In other words, there are pathways through
the porous medium along which there are no interfaces. In this case,
there will be a linear regime when the pressure drop is low enough so
that the interfaces surrounding the percolating paths do not move.
When the pressure drop is increased sufficiently for them to do so, the
non-linear power law regime sets in.

Recently, Fyhn et al. [21] studied the exponent β and the threshold
pressure Pt in a capillary fiber bundle model and a dynamic pore
network model under mixed wet conditions. In the dynamic pore
network model, each link was given a wetting angle—in the sense
that if there is an interface in the link, this is the angle it will make with
thewalls of the tube—drawn from a given probability distribution. In the
capillary fiber bundle model, each undulating tube is given a wetting
angle from a given probability distribution. In both models, a
constitutive law of the form (8) was found. The capillary fiber
bundlemodel could be solved analytically, giving the following equation:

β �
1 if |ΔP| − Pt ≫Pmax,
2 if Pt ≪ |ΔP| − Pt ≪Pmax,
3/2 if 0< |ΔP| − Pt ≪Pt.

⎧⎪⎨⎪⎩ (9)

The network model studies showed a less clear picture, with β

varying between 1 and 1.8, depending on the saturation and the

wetting angle distribution. It was not possible to resolve whether
there were regions of fixed β or whether it varied continuously with
the parameters of the model. This was due to the non-zero threshold
pressure Pt, which needed to be determined together with β.

We study here a model for immiscible two-phase flow in a
porous medium made from two types of grains that have different
wetting properties with respect to the fluids. The model treats the
interfacial tension between the two fluids similarly to a model
introduced by Irannezhad et al. [31, 32]. We imagine a packing
of two types of grains, say type “+” and type “−.” Two immiscible
fluids, denoted by “A” and “B,” flow through the pores between the
grains denoted by “+” or “−”. Fluid “A” is fully wetting, and “B” is
fully non-wetting with respect to “+” grains, whereas it is the
opposite with respect to “−” grains. The direction of the capillary
forces in the links between two “+” grains is, therefore, opposite
compared to the direction in the links between two “−” grains,
whereas the capillary forces in the links between two opposite types of
grains are zero.

The probability that a grain is of “+” type is p+. A second
parameter is the wetting saturation Sw. There is a rich phase diagram
when plotting the threshold pressure Pt as a function of the two
control variables p+ and Sw, which is illustrated in Figure 1. It should
be noted, in particular, in this phase diagram that there is a region in
the middle where the threshold pressure Pt = 0. This region is limited
by two p+ = constant critical lines. Each line signifies a percolation
transition [27]. The two curved gray lines signify a possible shift of
the two blue transition lines due to the dynamics of the model. There
are also two other lines: one green line marked “hysteretic
transition” and one red line marked “non-hysteretic” transition.
Crossing such a line, one of the two fluids stops moving and we are
essentially dealing with a single-phase flow problem. When the
wetting fluid stops moving, there is no hysteresis. On the other hand,
when the non-wetting fluid stops, there is hysteresis in the sense that

FIGURE 1
Phase diagram showing the exponent β and the threshold
pressure Pt plotted against the occupation probability p+ and the
saturation Sw. The diagram is symmetric about the p+ = 1/2 line. The
two vertical blue lines are critical lines associated with the two
percolation transitions. The lower red line is separating the two-phase
flow from the single-phase flow. There is no hysteresis associatedwith
this line. The upper green line also distinguishes between two-phase
and single-phase flows. However, in this case, there is hysteresis. The
two gray lines represent the transition lines from threshold pressure
Pt = 0 to a non-zero value. The nature of these lines is unknown.
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wetting saturation has to be lowered more to get the non-wetting
fluids moving again [33].

In the region where Pt = 0, while still having two-phase flow, we
observe an exponent β = β3 = 2.56 ± 0.05 for saturation Sw = 0.5. This
value is also seen when setting p+ = pc or p

+ = 1 − pc, where pc ≈
0.5927 is the site percolation threshold for square lattices, i.e., β =
β2 = β3. For p

+ much lower than 1 − pc or p
+ much higher than pc, still

for saturation Sw = 0.5, we see β = β1 = 2.25 ± 0.1. The large
uncertainty in β seen here stems from Pt > 0.

It is surprising that β2 = β3 within the precision we are able to
obtain. The exponent β2 is obtained at the percolation threshold
where the paths where fluid surfaces meet no resistance are fractal
with fractal dimension 4/3 as they are the external perimeters of
percolation clusters [34]. The reason for not seeing the critical
behavior reflected in β comes from there also being other links
that have no interfacial tension in them as they contain no interfaces,
thus driving the system away from criticality. In order to investigate
whether there are any traces at all in the transport properties of the
percolation critical point, we have studied the mobility M at low
pressure drops as p+ approaches a critical value, where we expect it to
vanish with an exponent t′ of the same type as the conductivity
exponent t in ordinary percolation in the vicinity of the critical p+

[27, 35]. We find that t′ ≈ 5.7, indicating that the system is not
critical and M falls off faster than algebraic. We, therefore, expect
there to be two extra transition lines (marked in gray in Figure 1)
that distinguish between Pt = 0 and Pt > 0. The nature of these lines is
unknown.

Weuse a dynamic pore networkmodel [36–40] for this study. It has
been used earlier in the context of modeling-mixed wetting porous
media; see [21, 41, 42]. We describe the model in Section 2 including
our use of the wetting model similar to that introduced by Irannezhad
et al. [31, 32]. Section 3 explains how we identify the paths through the
network that have no capillary forces associated with them and relate
them to a site percolation problem. Section 4 presents the analysis of the
low pressure drop mobility at the percolation critical points. Section 5
constitutes our investigation of the volumetric flow rate Q vs. pressure
dropΔP.We fix the saturation Sw = 0.5 and scan through this line in the

phase diagram in Figure 1 for different values of p+. We also tested
whether there would be hysteresis with respect to increasing or
decreasing the pressure drop, finding none. Section 6 contains a
summary and our conclusions.

2 Dynamic pore network model

A sketch of the dynamic pore network (DPN) model used in this
work is given in Figure 2, showing a square two-dimensional
network with links with the same length tilted 45° from the flow
direction. ΔP across the network drives the flow leading to Q, which
is measured over a cross section of the system normal to the
direction of the overall flow. The zoomed-in sketch to the right
in Figure 2 illustrates the rules for using the wetting properties of the
grains to assign wetting angles θ to the links, where θ is consistently
defined through one of the fluids. In contrast to earlier models [21,
41, 42] that assign the wetting angles to the pores or links directly,
the physical basis for this model is a mixture of grains and the
wettability of the pore space in-between depends on the wettability
of the surrounding grains, similar to the system introduced by
Irannezhad et al. [31, 32]. We assume two types of grains, they
being either fully non-wetting with θ = 180° or fully wetting with θ =
0°. Having fully non-wetting or fully wetting grains maximizes the
difference between the two types of grains in terms of their
wettability and, hence, maximizes any impact on the rheology
that comes as a result of this difference. The grains are denoted
fully non-wetting and assigned a notation “+” with an occupation
probability p+, and the rest of the grains are then fully wetting with a
notation “−”. For each link, θ is determined based on the link’s
adjacent grains. Each grain in the network is connected to four links,
which means each link has two adjacent grains, as shown in Figure 2.
If both of the adjacent grains are assigned “+”, the link will have θ =
180°. If both of the adjacent grains are assigned “−”, then θ = 0°.
Lastly, if one of the adjacent grains is “+” and the other one is “−”,
the link in the middle should be easy to pass through for both fluids,
and the wettability should be neutral with θ = 90°.

FIGURE 2
Dynamic pore network model implemented on a square lattice consists of links oriented 45° from the overall flow direction. The flow is driven by a
global applied pressure ΔP, and the total volumetric flow rateQ is measured over a cross section normal to the direction of the overall flow. The wetting
angle θ of each link is based on its adjacent grains. The grains are assigned “+”with an occupation probability p+, and the rest of the grains are assigned “−”.
If both of the adjacent grains are assigned “+”, θ= 180° (marked pink). If both of the adjacent grains are assigned “−”, θ= 0° (marked blue). Lastly, if one
of the adjacent grains is “+” and the other one is “−”, then θ = 90° (marked black), and hence, there are no capillary forces associated with interfaces in the
link.
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The networks have periodic boundary conditions in both
directions. Two fluids that flow through the network are
immiscible, and their movement is traced through the position of
their interfaces at each instant in time. Whenever the fluids flowing
in a link reach the crossing point with the three other links, namely, a
node, the fluids get distributed into the neighboring links in the same
time step instead of being retained in the node itself [36].

The volumetric flow in each link with length l, pointing along the
link’s center axis x, is given by the following equation:

q � −π�r
4

8μl
Δp − x̂ · ∑

k

pt xk( )Ĵk⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (10)

where it has been assumed that the radius does not deviate too
much from its average value �r [36]. Here, μ = sAμA + sBμB is the
saturation weighted viscosity of the fluids, where sA and sB are
saturations of the two fluids A and B, respectively, with viscosities
μA and μB in the links (in contrast to Sw, which is the average
saturation over the whole network). Figure 3 can be used to further
explain the variables in Eq. 10. The unit vector Ĵ lies along the x-
axis and points in the direction out of the fluid within which θ is
defined. In Figure 3, θ is consistently measured through fluid A in
both examples (a) and (b), regardless of if fluid A is more or less
wetting with respect to the solid. Hence, Ĵ also consistently points
across the interface starting from fluid A toward fluid B. The sum
in Eq. 10 is taken over the interfaces numbered k with varying Ĵk
with positions xk ∈ [0, l] along x. The dot product of this sum with
the unit vector x̂ in the positive x direction is taken afterward to
obtain the total capillary pressure. The capillary pressure across
one interface at position x which has an angle θ with the solid
through fluid A is modeled by using the Young–Laplace
equation [43],

pt x( ) � 2σ cos θ
r x( ) , (11)

where σ is the surface tension and

r x( ) � r0

1 − a cos 2πx
l( ) (12)

is the radius where a is the amplitude of the periodic variation, and
r0/a is randomly chosen from the interval [0.1l, 0.4l]. This way, pt
varies with both the position along a link and from link to link.

For all simulations in the following, the two immiscible fluids
have been given surface tension 3.0 · 10–5 N/mm and viscosity

0.1 Pa·s for both. The overall network saturation is kept constant
at 0.5, meaning there are equal amounts of the two fluids. The links
in the network have length l = 1 mm. In all the figures, the
logarithms are in base 10.

3 Easy links and connected paths

There are three types of links in the model: those that are of the
“++” type, those that are of the “−−” type, and the “+−” = “ − +” type.
We will, in the following, refer to the latter type as “easy links” since
they offer no capillary resistance to interfaces that happen to be in
them. Paths of connected easy links may percolate, i.e., stretch across
the network forming loops as we are implementing bi-periodic
boundary conditions. We will refer to such percolating paths of
easy links as “connected paths”; see Figure 4.

The geometry of the easy links and connected paths may be
mapped onto an ordinary site percolation problem [27]. The links
altogether form a square lattice. The nodes of the dual lattice form
another square lattice [44] and are assigned “+” or “−”. These values
are placed at random. The distribution of neighboring “+” sites in
this dual lattice forms an ordinary site percolation problem. In an
infinitely large lattice, there will be a percolating “+” cluster when
p+ ≥ pc, where pc is the site percolation threshold 0.5927. . .. If we, on
the other hand, focus on the “−” sites, there will be a cluster of such
sites that percolate if p− = 1 − p+ ≥ pc or p

+ ≤ 1 − pc ≈ 0.4073. . . [45].
Hence, if 0 ≤ p+ ≤ 1 − pc, the “−” clusters percolate, if 1 − pc ≤ p+ ≤ pc,
neither the “−” sites nor the “+” sites percolate, and if pc ≤ p+, the “+”
sites percolate. We show in Figure 5 a map of the wetting angles
associated with different values of p+. The easy links are shown in
black.

We note that if neither the “+” sites nor the “−” sites percolate
(1 − pc ≤ p+ ≤ pc), there must be connected paths. We, furthermore,
note that if either of the two site types percolates, there cannot be any
connected paths. At the two thresholds, p+ = 1 − pc and p+ = pc, the
connected paths appear together with the appearance of a
percolating cluster of either “−” or “+” type as the perimeter of
the incipient percolating cluster is a connected path. At the
percolation thresholds, we know that the fractal dimension of the
perimeter, and hence the corresponding connected path, is 4/3 [34].
For values away from the critical points, the connected paths are not
fractal. Hence, the structure of the easy link clusters and the
connected path is very different away from the critical points
while still being in the interval 1 − pc ≤ p+ ≤ pc.

FIGURE 3
Wetting angle θ is consistently measured through fluid A in both examples (A,B), regardless of thewettability situation. The unit vector Ĵ lies along the
center axis x and points in the direction out of the fluid within which θ is measured, which, in this case, is from fluid A to fluid B.
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The probability of finding a connected path as a function of p+ is
investigated by testing 1,000 randomly generated networks with size
L × L for each p+ ∈ {0.3000, 0.3001, 0.3002, . . ., 0.7000}. The results
are shown in Figure 6 for L = 50 links and L = 100 links. We see that
the two curves cross very close to 1 − pc and pc.

4 Mobility

As we will show with the results presented in the following
section, the constitutive law between the volumetric flow rate Q and
the pressure drop |ΔP| can be written as follows:

Q �
M|ΔP| if |ΔP|<Pl,
Mm|ΔP|β3 if Pl < |ΔP|<Pu,
MD|ΔP| if Pu < |ΔP|,

⎧⎪⎨⎪⎩ (13)

in the region 1 − pc ≤ p+ ≤ pc. Here, Pl and Pu are two crossover
pressures. There are three regimes: 1) a linear regime for low pressure

drops, 2) a non-linear regime for intermediate pressure drops, and 3) a
linear regime for high pressure drops. Each regime is characterized by a
mobility, M(p+, Sw), Mm(p

+, Sw), and MD(p
+, Sw), respectively.

If we move to values of p+ where Pt > 0, regime (1) disappears.
Hence, we have that M(p+, Sw) tends to zero as p+ reaches the
boundary between the Pt = 0 region and the Pt > 0 region. We
hypothesize, in the following, that the boundaries of this region are
given by the percolation thresholds 1 − pc and pc.

Expecting that M(p+, Sw) shows similar behavior to the
conductivity in percolation [35], we make the assumption that
the mobility vanishes as

M ~
p+ − 1 − pc( )( )t′ forp+ → 1 − pc( )+,
pc − p+( )t′ forp+ → pc( )−,

⎧⎨⎩ (14)

where t′ is a transport exponent of the same type as the conductivity
exponent t in ordinary percolation, which is 1.303(8) according to
[46]. In Eq. 14, p+ → (1 − pc)+ means p+ approaches 1 − pc from

FIGURE 4
Due to periodic boundary conditions in both directions parallel and orthogonal toQ, it is not enough for a path to connect the bottom to the top of
the network in the direction ofQ to qualify as a connected path; it also has to loop back to itself. We show here four examples of clusters of easy links in an
8 × 8 lattice. Figures (A,B) do not qualify as connected paths, as defined for the networks in this work, while (C,D) do. The cluster of easy links in (A)
connects the top and the bottom of the network but needs one additional link centered at (x, y) = (4, 4) to form a connected path. The cluster of easy
links in (B) forms a closed loop but does not cross the network fully in the flow direction, which is along the y-axis. In (C), the link centered at position (x,
y) = (1, 7) meets the link centered at (x, y) = (6, 8) due to the periodic boundary condition in the y-direction and completes the loop, hencemaking the path
a connected path. The effect of having a periodic boundary condition in the x-direction is apparent in (D), where the link centered at (x, y) = (8, 2) connects
to the link at (x, y) = (1, 3), and similarly, (x, y) = (8, 6) connects to (x, y) = (1, 7) and (x, y) = (4, 8) connects to (x, y) = (5, 1), thus completing the loop.
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above and p+ → (pc)− means p+ approaches pc from below. By using
finite size scaling analysis, we obtain the following equation:

M ~ L−t′/], (15)
where ] is the correlation length exponent in percolation, which is
known to be 4/3 [47].

To investigate the relation given in Eq. 15, we set p+ = 0.5927 ≈ pc
and network-dimensions L × L for L between 50 and 90 links. The
lowest numerically feasible |ΔP| is used in order to stay in the lower
linear regime in Eq. 13, specifically 2.8 Pa/link )|ΔP|/L)5.8 Pa/link.
When operating at low |ΔP|, the flow, which is mainly through the
connected paths, stabilizes quickly and retains approximately a constant

value compared to the fluctuating flow at higher |ΔP|. For these
simulations, the flow is driven for approximately 40 pore volumes of
fluid through the network, where one pore volume is equal to the total
volume of the pore space in the network. The values ofQ are calculated
by averaging over the last 20 pore volumes simulated. Variation in the
connected paths a network can have is covered by averaging the results
over 50 network realizations. The results are shown in Figure 7, where
we get t′/] = 4.3 ± 1.0, giving the following equation:

t′ � 5.7 ± 1.3. (16)
This is a huge value. A possible explanation for the observed

value is that the system is not at a critical point in spite of the

FIGURE 5
At p+ = 0, shown in (A), all the grains are fully wetting grains that are noted as “−” in Figure 2. This means that the pore space between these grains,
namely, the links in DPN, all have θ = 0°. Oppositely at p+ = 1.0, shown in (E), there are only links that have θ = 180°. In these two extreme cases, there is no
easy link in the network with neutral wettability θ = 90°. Moving away from these extremes, when p+ = 0.3 in (B) or when p+ = 0.7 in (D), links with θ = 90°

are present but not enough to create a connected path that crosses the entire system. At the middle point of p+ = 0.5 (C), DPN has half of each type
of grain, creating the highest possible probability for having connected paths with only θ= 90° links. In these examples, p+ = 0.5 (C) is the only one that lies
within the limit 1− pc < p+ < pc, and it is only here we find connected paths.
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geometry of the easy links and the connected paths indicating
this. In our argumentation, we have not taken into account the
empty links, i.e., those links that do not contain any interfaces.
They will be indistinguishable from the easy links with respect
to the dynamics. These empty links drive the system away from
the percolation critical point, and Figure 7 is in reality,
indicative of non-algebraic behavior. We have indicated this
possible shift in transition in the phase diagram shown in
Figure 1.

5 Non-Darcy behavior

In the simulations performed for this section, networks have
dimensions 100 × 100 links2. For each |ΔP|, the flow is driven for
approximately 100 pore volumes of fluid through the network. This
ensures the steady-state flow, and the value ofQ in the steady state is

calculated by averaging over the total flow rate during approximately
the last 25 pore volumes simulated.

5.1 Hysteresis

We pose, here, the question of whether there are any
hysteretic effects from raising and lowering the pressure drop
|ΔP| on the volumetric flow rate Q. The result is shown in
Figure 8. With the passing of time, measuring in terms of
injected pore volumes, |ΔP| applied across a network is raised
and then lowered in steps. The |ΔP| values used, 200 Pa, 266 Pa,
355 Pa, 473 Pa, and 631 Pa, are from the lowest numerically
feasible range. It can be observed from Figure 8 that whenever

FIGURE 6
Probability for having connected paths in systems with non-
wetting grain probability p+ and size L × L, where L is either 50 or
100 links.

FIGURE 7
MobilityM in networks with size L × L. The slope of the linear fit is
−t′/] = −4.3 ± 1.0. The saturation was set to Sw = 0.5 in this calculation.

FIGURE 8
Increasing global pressure difference |ΔP| with the injected pore
volumes raises the volumetric flow rate Q, and subsequently
decreasing |ΔP| returns Q to the original value. Q was measured in
units mm3/s.

FIGURE 9
Total volumetric flow rate Q as a function of global pressure
difference |ΔP| in systemswith different non-wetting grain occupation
probabilities p+. The results of linear fit with slopes β are included in the
plot, where β is the exponent in Q ∝ |ΔP|β. Q was measured in
units mm3/s, and |ΔP| was measured in units Pa. This figure is the basis
for Eq. 13.

Frontiers in Physics frontiersin.org08

Fyhn et al. 10.3389/fphy.2023.1175426

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1175426


|ΔP| is returned to the same value, Q also quickly stabilizes back
to the previous value it had with the same |ΔP|. This shows that
the steady-state results generated using the DPN model do not
depend on long-term memory [48].

5.2 Volumetric flow rate dependence on
pressure drop

The results relatingQ and |ΔP| in systems with zero Pt and different
values of p+ are shown in Figure 9. We used p+ ∈ {0.42, 0.46, 0.50, 0.54,
0.58, and 0.5927} for the simulations. For each of these p+ values, the
results were averaged over 10 randomly chosen networks that have
connected paths, meaning 10 networks were randomly chosen from a
subset of networks with zero threshold pressure Pt. To assist the

understanding of Figure 9, velocity maps of a network with p+ = 0.5
at various |ΔP| have been plotted in Figure 10. The velocity maps show
the steady-state averaged absolute velocities; in other words, they show
the average speed of the fluid. The velocities are color coded so that those
through neutral links with θ = 90° are in shades of red, and the rest that
are through links with θ ∈ {0°, 180°} are in shades of blue. The results in
Figures 9, 10 show three regimes in terms of β, as indicated in Eq. 13.

The lowest regime in Eq. 13 seems to correspond to log |ΔP|)2.8 in
Figure 9; in other words, |ΔP|/L)6.3 Pa/link. The transition from this
regime to the next ismore gradual for p+ away from0.5 in Figure 9. In this
regimewith very low |ΔP|, we find β = 1.00 ± 0.01. The velocitymaps of a
network with p+ = 0.5 at two different |ΔP| in this regime are shown in
Figures 10A,B, and they indicate that the flow is mainly through the
neutrally wet (red) links. When increasing log |ΔP| from Figure 10A to
Figure 10B, the impactmainlymanifests in the increase of the speed of the

FIGURE 10
Maps of steady-state averaged absolute velocities |vp| at different global pressure differences |ΔP|, where velocities through links with the wetting
angle θ= 90° have shades of red and those through links with θ ∈ {0°, 180°} have shades of blue. The network had non-wetting grain occupation probability
p+ = 0.5. |ΔP| was measured in units Pa.
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fluids rather than the creation of newpaths. Therefore, itmakes sense that
the flow remains Darcy-like with β approximately equal to 1. In the
lowest regime in Figure 9, it is apparent that the mobility M in Eq. 13
decreases when p+ moves away from 0.5 toward pc ≈ 0.5927 and 1 − pc ≈
0.4073. In this regime, the flow is mainly through the connected paths.
The network has more connected-path links and transports more fluid
for the same |ΔP| value, hence resulting in a larger Q value, meaning a
largerM value when p+ moves toward 0.5. For instance, at log |ΔP| ≈ 2.3,
the number of active connected-path links is high at p+ = 0.5, as can be
seen in Figure 10A, slightly lower at p+ = 0.54, as can be seen in
Figure 11A, and significantly lower at p+ = 0.58, as can be seen in
Figure 11B, makingQ at p+ = 0.58 significantly less than in the other two
cases.

The middle regime in Eq. 13 seems to correspond to 3.3) log
|ΔP|)4.1 in Figure 9; in other words, 20.0 Pa/Link)|ΔP|/L)125.9 Pa/
link. Here, the exponent in Eq. 13 is β = β3 = 2.56 ± 0.05, andMm is the
same for all p+ values examined. When log |ΔP| increases from
Figure 10C to Figure 10D in this regime, the velocity maps show that
there is a significant increase in the number of flow carrying links,
meaning Q also increases significantly. The opening of new paths in
addition to the increased flow in the already active paths explains β being
large. At this level of |ΔP|,Mm and β being the same for all p+ examined
makes sense as the connected paths that differentiate networks with
different p+ no longer are the main contributors to the flow.

The highest regime in Eq. 13 seems to correspond to log |ΔP|U
4.5 in Figure 9; in other words, |ΔP|/LU316.2 Pa/link. Here, the
exponent in Eq. 13 is β = 1.00 ± 0.01, and MD is the same for all p+

examined. The velocity maps taken from two different points in this
regime are shown in Figures 10E,F. In both cases, almost all the links
in the network are carrying flow, regardless of their wettability;
hence, increasing |ΔP| does not create new paths. The effect of
capillary barriers in the links becomes insignificant in comparison to
the enormous pressure drop across the links, making all p+ produce
the sameQ at the same |ΔP|. Increasing |ΔP| in this regime increases
Q linearly, which is indicative of Darcy flow.

As the results in Section 3 show, there are very few to zero
connected paths outside of the range 1 − pc ≤ p+ ≤ pc examined in
Figure 9. If p+ was very close to the range examined in Figure 9, the
behavior of β andM would have been expected to be the same as in

Figure 9 since the flow will similarly be carried by the connected
paths. To test p+ further away, simulations have been performed
with p+ = 0.2 and 0.3, and the results are shown in Figure 12. Here, Pt
is not zero, unlike the systems used for Figure 9 and corresponding
constitutive Eq. 13. In this case, we find a constitutive equation

Q �
0 if |ΔP|≤Pt,
Mm |ΔP| − Pt( )β if Pt < |ΔP|<Pu,
MD |ΔP| − Pt( ) if |ΔP|<Pu,

⎧⎪⎨⎪⎩ (17)

where Pu is the crossover pressure between non-linear and Darcy
behavior. By varying Pt from 0.00 Pa to the lowest |ΔP| in the
datasets with an increment of 0.01 Pa, mathematical linear fits
with slopes β were calculated at the lowest pressures to find the
candidate that gave the least root-mean-square error. This gave
β = 2.23 ± 0.05 and Pt � (3.4 ± 0.5) kPa for p+ = 0.2, and β =

FIGURE 11
Maps of steady-state averaged absolute velocities |vp| at log |ΔP| ≈ 2.3, where |ΔP| is the global pressure difference. The velocities through links with
the wetting angle θ = 90° have shades of red, and those through links with θ ∈ {0°, 180°} have shades of blue. p+ is the non-wetting grain occupation
probability.

FIGURE 12
Total volumetric flow rateQ as a function of effective pressure in
systems with different non-wetting grain occupation probabilities p+.
The effective pressure is the difference between the global pressure
difference |ΔP| and the threshold pressure Pt. The results of linear
fit with slopes β are included in the plot, where β is the exponent in
Q∝ (|ΔP| − Pt)β . Q and |ΔP| were measured in the units of mm3/s and
Pa, respectively.
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2.29 ± 0.05 and Pt � (2.0 ± 0.5) kPa for p+ = 0.3. The regime these
β correspond to is the middle regime discussed in Figure 9, where
the behavior was also non-linear due to the capillary barriers
created by the interfaces between the two fluids. Fyhn et al. [21]
have observed β > 1 behavior even in networks with the same
wetting angle everywhere, which would be the same as having p+

→ 0.0 or 1.0 here. Due to the lack of connected paths in systems
with p+ = 0.2 and 0.3, the lowest regime in Figure 9 does not
appear for the results in Figure 12. Lastly, the highest regime
where β ≈ 1 should occur for all where the flow pushes through
almost the entire network and there is almost no influence of p+.
This is indeed what we see in Figure 12 as well.

6 Conclusion

We studied the effect of having porous media consisting of
randomly mixed dual-wettability grains on the immiscible two-phase
flow using a dynamic pore network model. The model treats the
interfacial tension between the two fluids similarly to a model
introduced by Irannezhad et al. [31, 32]. The model has two
parameters, the saturation Sw and the probability p+ to have a grain
of “+” type. The model, which is explained in Figure 2, contains links
(pores) of three types when filled with two immiscible fluids A and B:
links that are wetting with respect to fluid type A, links that are wetting
with respect to fluid type B, and easy links where there are no capillary
forces associated with interfaces. The parameter p+ controls the number
of links generating capillary forces and easy links. The model has a rich
phase diagram, sketched in Figure 1. There is a region 1 − pc ≤ p+ ≤ pc,
where pc is the site percolation threshold, where the easy links form
connected paths across the network. Outside this region, i.e., for p+ ≪
1 − pc or p

+ ≫ pc, easy links do not percolate. We find two classes of
constitutive equations for the volumetric flow rate Q vs. pressure drop
|ΔP|. For 1 − pc ≤ p+ ≤ pc, we observed the constitutive Eq. 13—see
Figure 9—whereas for p+≪ 1 − pc or p

+≫ pc, we observed a constitutive
Equation 17; see Figure 12. The crucial point that distinguishes these is
whether there is a non-zero threshold pressure Pt.

When 1 − pc ≤ p+ ≤ pc, we observed the following: at the regimes
with the lowest and highest |ΔP|, it seems that β = 1.00 ± 0.01 because
there is no significant change in the paths fluids are flowing through,
and increasing |ΔP| only increases the flow in the already active paths.
At the lowest |ΔP|, the flow ismainly through connected paths with zero
resistance. When p+ → 0.5 in this regime, there are more connected
paths, which means more fluid gets transported, making Q hence M
higher. At the highest |ΔP|, almost the entire network is always active.
On the other hand, β > 1 in themiddle regime where an increase in |ΔP|
increases the flow in the active paths and, in addition, opens new
conducting paths. In the middle and the highest regimes, the flow is no
longermainly through the connected paths, and the differences between
the pressures across the links and the capillary barriers in the links are
large. With the diminished role of the connected paths and capillary
barriers at higher pressure drops, Mm and MD do not depend strongly
on p+. The exponent in the middle regime was found to be β = β3 =
2.56 ± 0.05. We saw no systematic dependence of β on p+.

For p+ = 0.2, however, β = 2.23 ± 0.05 and Pt � (3.4 ± 0.5) kPa,
and for p+ = 0.3, β = 2.29 ± 0.05 and Pt � (2.0 ± 0.5) kPa. Due to the
necessity of determining Pt and β simultaneously at these p+ values,
there is more uncertainty associated with the measurements of β. It

is not possible to verify or falsify whether there is a fixed β = β2, or
whether it depends on p+ and Sw.

The existence of connecting paths is a percolation problem. They
disappear when p+ → (1 − pc)+ or p+ → (pc)−. It would, therefore,
be expected that themobilityM defined in Eq. 13would exhibit a critical
behavior similar to the conductance near a critical point. By making the
hypothesis thatM behaves as in Eq. 14 and using finite size scaling, we
determined t′ ≈ 5.7; see Figure 7. This is a huge value and raises the
suspicion that the system is not critical where percolation theory dictates
that it should be. Possible suspects for causing this push away from
criticality are the links that do not contain interfaces. They are not easy
links, but they have precisely the same effect on the dynamics of the flow
as the easy links. If this is so, the transition lines would then be shifted, as
shown in Figure 1.

We have only explored a small part of the phase diagram of this rich
model in this first study. The phase diagram should be investigated in
more detail and over a wider range of parameters. The nature of the
transition lines is as of now unknown and should also be further
investigated. There are percolation transitions in the model. The
question as to where they are and what their properties are as the
transport is not through percolation clusters remains unclear.
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