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Abstract: Early fault detection (EFD) in run-to-failure processes plays a crucial role in the condition
monitoring of modern industrial rotating facilities, which entail increasing demands for safety, energy
and ecological savings and efficiency. To enable effective protection measures, the evolving faults have
to be recognized and identified as early as possible. The major challenge is to distil discriminative
features on the basis of only the ‘health’ signal, which is uniquely available from various possible
sensors before damage sets in and before the signatures of incipient damage become obvious and
well-understood in the signal. Acoustic emission (AE) signals have been frequently reported to be
able to deliver early diagnostic information due to their inherently high sensitivity to the incipient
fault activities, highlighting the great potential of the AE technique for EFD, which may outperform
the traditional vibration-based analysis in many situations. To date, the ‘feature-based’ multivariate
analysis dominates the interpretation of AE waveforms. In this way, the decision-making relies
heavily on experts’ knowledge and experience, which is often a weak link in the entire EFD chain.
With the advent of artificial intelligence, practitioners seek an intelligent method capable of tackling
this challenge. In the present paper, we introduce a versatile approach towards intelligent data
analysis adapted to AE signals streaming from the sensors used for the continuous monitoring of
rotating machinery. A new architecture with a convolutional generative adversarial network (GAN)
is designed to extract the deep information embedded in the AE waveforms. In order to improve the
robustness of the proposed EFD framework, a novel ensemble technique referred to as ‘history-state
ensemble’ (HSE) is introduced and paired with GAN. The primary merits of HSE are twofold: (1) it
does not require extra computing time to obtain the base models, and (2) it does not require a special
design of the network architecture and can be applied to different networks. To evaluate the proposed
method, a durability rolling contact fatigue test was performed with the use of AE monitoring. The
experimental results have demonstrated that the proposed ensemble method largely improves the
robustness of GAN.

Keywords: early fault detection; acoustic emission signal; unsupervised learning; ensembled method;
convolutional GAN

1. Introduction

A rolling bearing is the core component in many rotating machines. Any failure in
rolling bearings can lead to a chain reaction of faults in the whole mechanical system,
causing the rapid and unexpected breakdown of the machine. Being an essential part of
condition monitoring, the early and accurate identification of an imminent failure is deemed
effective in reducing property loss and even possible casualties caused by catastrophic in-
dustrial breakdowns. Recent years have seen the rapid development of innovative artificial
intelligence (AI) algorithms, including two major groups: machine learning (ML) and deep
learning (DL). Inspired by the progress in this field on the one hand, and informed by the
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long-standing unaddressed challenges faced by traditional ‘feature-based’ approaches, prac-
titioners strive to find new solvers—intelligent methods capable of detecting the emerging
faults early, reliably and seamlessly, without heavy reliance on human labor and expert
experience [1,2]. To date, numerous intelligent fault diagnosis schemes have been proposed.
Lei et al. have analyzed the relevant bibliometric data in this field [2]. The application of DL
started to thrive after 2015 and it gradually surpassed traditional ML models. At present, the
DL-based machine fault diagnosis framework has become the mainstream of intelligent fault
diagnostics. Compared with traditional ML models, the procedures of feature extraction and
fault recognition are integrated within the DL approach. The DL approach is unique in that
it is capable of extracting features automatically from the input data through multiple layers
comprising processing units called hidden neurons. This makes DL suitable to process the
raw signal straightforwardly, without any signal pre-processing. Classical DL architectures
include the Back Propagation Neuron Network (BPNN) [3], Convolutional Neuron Network
(CNN) [4,5], Deep Boltzmann Machine (DBM), Deep Brief Network (DBN), Autoencoder
(AEN) [6,7], Long Short-Term Memory (LSTM) network [8,9] and their variants.

The emerging damage in the machine can be communicated through different sig-
nal sources. Among them, the vibration-based technique is the most widely used one
owing to its simplicity, the transparency of the analysis based on spectral features and
cost advantages. However, there are shortcomings of vibration signals, which are to be
mentioned. Firstly, the vibration acceleration signals can hardly be detectable until the
damage develops significantly to a mature stage, corresponding to large-scale faults causing
vibrations in heavy or slowly rotating structures. It is often too late to use this information
for preventive maintenance [10]. Secondly, the vibration signals induced by early defects
are easily masked by the routine background mechanical vibration of the rotating machine.
It has been frequently reported that acoustic emission (AE) signals can detect the incipient
crack earlier than traditional vibration signals [11–14]. Even if this claim is not always
justified, the modern AE technique provides a promising means for EFD in roller bearings.
The AE is referred to as a phenomenon of transient elastic wave generation by a sudden
local drop in internal stress within the material. Compared to the vibration signal, AE
has a much wider frequency range (20 kHz to 10 MHz), and, thus, it does not overlap or
interfere with low-frequency mechanical vibration signals. To date, the ‘feature-based’ para-
metric analysis prevails in interpreting information derived from AE waveforms [15–17].
However, these hand-designed features are inherently linked through AE to the specific
signal processing techniques in the time, frequency or time–frequency domains [15,18,19].
These features need to be carefully extracted and analyzed by experts, and there is no
guarantee that the features tailored to a specific fault diagnosis condition are applicable for
other tasks.

To reduce the risk of biased opinions, we leverage the DL technique to explore the
implicit fault information embedded in AE signals. Among all types of DL models, the gen-
erative adversarial network (GAN) has shown a remarkable capacity to perform distribution
fitting. GAN is a powerful generative model that was first proposed by Goodfellow et al. in
2014 [20]. Unlike conventional neural networks, GAN implements generative modeling as a
game between two separated networks: a Generator is trained to produce synthetic data
that are close to the real data, while a Discriminator is trained to discriminate between the
synthetic and real data. During this training process, the probability distribution of the real
data can be learned by the Generator. There are many successful applications of GAN in
the fault diagnosis field. Existing research mainly focuses on the problem of ‘unbalanced
data’, i.e., the sample size of anomal data is much smaller than that of regular data [21–26].
GAN is utilized to generate synthetic abnormal data to assist model training. These studies
have demonstrated that GAN has an excellent ability to learn representative features from
mechanical signals. Xia et al. summarized the applications of GAN to anomaly detection in
a number of fields [27]. It can be concluded that GAN is suitable for early fault detection
(EFD) problems in two ways [28]: (1) it shows superiority in fitting the distribution of health
signals; the Generator can be trained to learn rich and hierarchical information from the data



Appl. Sci. 2023, 13, 3136 3 of 19

characteristic of the normal operating state of the machine; thus, these abnormal data should
be poorly reconstructed; (2) the Discriminator forms a health indicator (HI) to indicate the
abnormal signals.

Although GAN is a promising approach for EFD, it faces a well-known issue of
unstable training. In contrast to traditional supervised networks, whose performance can
be well reflected by the loss value, GAN consists of two networks’ fighting’ with each
other, so the loss values of the two networks show a relationship of ‘as one falls, the other
rises’. The balance between the Generator and Discriminator is subtle. Therefore, it is
difficult to determine when the Discriminator is well-trained, leading to the problem of
instability. In order to improve the robustness of GAN in the EFD problem, we introduced
a new ensemble technique referred to as the ‘history-state ensemble’ (HSE) [29] method.
HSE assumes that neural networks can generate multiple local optima during the training
history. Our previous experimental results [29] have demonstrated that these local optima
are diverse, and their combination improves the accuracy and stability of the single network.
The ensemble method is generally perceived to be time-consuming. However, the benefit
of the HSE is that it does not require extra training costs to obtain multiple base models.
We only need to record the historical training model weights that should be discarded
after each model update when using the backpropagation algorithm to adjust the model.
Therefore, it does not require a specially designed network architecture. These historical
training model weights are denoted as ‘history states’ or base models.

In a brief summary, the main contributions of this paper are as follows.

(1) We proposed a novel architecture of GAN consisting of convolutional blocks and
LSTM for EFD in the run-to-failure process.

(2) A new ensembled health indicator (EHI) is constructed by integrating GAN and a
novel ensemble technique called the HSE method.

(3) A laboratory durability test of a roller bearing element monitored by the acoustic emis-
sion technique was carried out to evaluate the effectiveness of the proposed method.

2. The Proposed Architecture of Convolutional GAN

We first introduce the basic theory of traditional GAN, and the architecture of the
proposed convolutional GAN is elaborated.

2.1. Basic Theory of GAN

The basic structure of GAN consists of two networks, as illustrated in Figure 1. The
main idea is to construct a neural network model, known as the ‘Generator’, in order
to map the random noises z into a new data space G(z). The goal is to minimize the
discrepancy between the ‘fake data’ from the mapped space G(z) and the ‘real data’ from
the target space pr(x). In contrast to traditional neural networks such as the Autoencoder,
which directly minimizes the distance through the mean square error (MSE), one more
neural network is introduced in GAN, referred to as the ‘Discriminator’, which is aimed to
distinguish G(z) from pr(x).
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Figure 1. The basic structure of GAN.

The above stated goal can be achieved through the joint training of the two networks,
and the original loss functions for the Generator and Discriminator are express as follows:

max
D

L(D) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

min
G

L(G) = Ez∼pz(z)[log(1− D(G(z)))] (2)
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where G and D represent the Generator and Discriminator, respectively. The D outputs a
score ranging from 0 to 1 for each sample. In order to distinguish between the ‘fake data’
and ‘real data’, D tries to assign a value close to 1 for the sample x from ‘real data’, and
a value close to 0 for the sample G(z) from ‘fake data’. Then, the loss function for D is
maximized. On the other hand, G attempts to produce ‘fake data’ to fool D; thus, it will be
adjusted to produce ‘fake data’ that are close to ‘real data’, allowing D(G(z)) to be close to
1; therefore, the loss function of G is minimized. If both networks have sufficient capacity,
they will reach a point at which both models cannot be improved anymore because the
generated distribution approximates the real distribution well enough.

The original loss function of GAN has been reported with challenges, such as unstable
training and the poor quality of generated data. The key problem stems from the embedded
Jensen–Shannon divergence (JSD) as a measure of the distance between real and gener-
ated distribution; the details can be found in [30]. To overcome the training challenges,
Arjovsky et al., proposed to replace JSD with the Wasserstein distance (WD) defined as

W(pr, pθ) =
1
K

sup‖ f ‖L≤1 Ex∼pr [ f (x)]− Ex̃∼pg [ f (x̃)] (3)

where f : x→ R is a set of Lipschitz functions satisfying the condition | f (x1)− f (x2)|
|x1−x2|

≤ K,
and K is the Lipschitz constant. It can be observed that the absolute value of the derivative
of f does not exceed K. By applying this distance metric in GAN, the function f is referred
to as a ‘critic’ in the original paper, which can be approximated by D, and pg is the model
distribution implicitly defined by x̃ = G(z), z ∼ pz(z). The variant of GAN with WD is
known as Wasserstein GAN (WGAN). Compared with JSD, WD has a smoother change rate
when measuring the distance between two distributions; thus, it can provide meaningful
gradient information to G.

The original WGAN applies a ‘weight clipping’ method to enforce a Lipschitz con-
straint by clamping the network weights to a fixed range [−c, c] after each gradient update.
This method still leads to optimization difficulties such as gradient vanishing [23,31]. There-
fore, Gulrajani et al. proposed an alternative solution by enforcing a soft version of the
Lipschitz constraint with a penalty on the gradient norm of random samples x̌ ∼ px̌, which
is expressed as

δ = Ex̃∼px̃

[
(‖∇x̃D(x̃)‖2 − K)2

]
(4)

where x̌ = εx + (1− εx̃), with x ∼ pr, x̃ ∼ pg, and ε ∼ N[0, 1]. The K is generally set as 1.
With the gradient penalty, a new objective is proposed as

max
D

L(D) = Ex̃∼pθ
[D(x̃)]− Ex∼pr [D(x)] + βEx̃∼px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(5)

min
G

L(G) = −Ex̃∼px̃ [D(x̃)] (6)

where β is the penalty coefficient, and the WGAN with a gradient penalty is referred to
as gp-WGAN.

2.2. Design of Generator and Discriminator

It is well-known that GAN is difficult to train, even with the use of WD and gradient
penalty methods. One of the prime challenges is the diversity of the generated data, which
is needed to cover the data distribution sufficiently. Otherwise, the Generator may become
‘lazy’, therefore producing the homogeneous data fooling the Discriminator. However,
a good point in early fault detection, i.e., in early anomaly detection in the streaming of
diagnostic data, is that the primary focus should be the performance of the Discriminator.
This is the difference between our task and many other tasks, such as image generation
or imbalanced data problems in fault diagnostics. In our work, it is not necessary that the
Generator’s input is a random signal. Hence, the Autoencoder-based Generator architecture
is adopted in this work, i.e., both the input and output of the Generator are real data. The
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Autoencoder is known as a powerful and versatile non-linear dimensionality reduction
technique employing neural networks for which the target output is the same as the input.

The proposed architectures of the Generator and Discriminator are shown in Figure 2.
The Generator comprises an encoder block and a decoder block with a bottleneck block
between them. The encoder is built of two convolutional layers to learn hierarchical
representations of the real input, and each convolutional layer is followed by a down-
sampling layer to reduce the feature size. Moreover, the down-sampling layer helps to
boost the model’s robustness to noise and variations in input data. Then, the real input is
compressed into a compact representation called the bottleneck. In this paper, the LSTM
cell is used in the bottleneck layer to capture the time-series correlation in data. By stacking
two layers of LSTM cells, the network can learn more complex patterns in the input data
and have better long-term memory retention. Next, the compressed representation is
fed into the decoder, which consists of two convolutional layers, one up-sampling layer
and one fully connected layer that finally reconstructs the input. In the competition
between the Generator and the Discriminator, if the Discriminator is too powerful, it
will quickly converge before the Generator can learn useful information from the input.
Therefore, a more concise structure is used in the Discriminator, which is composed of
three convolutional layers, three down-sampling layers, two fully connected layers and a
one-dimensional output layer.
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Figure 2. Architectures of the proposed Generator and Discriminator.

The most important mathematical details related to the above structure are presented
below.

(1) Convolutional layer. The convolution process refers to a specialized linear operation
where a small window called a kernel or filter overlays and slides through the entire
input with a preset stride, which is mathematically expressed as

Hk = Activ

(
inMap

∑
i=1

Conv(Wk, Xi) + bk

)
(7)

where Conv(·) denotes the convolution window, Wk is the kernel that slides through the
data X and bk is the corresponding bias. Activ(·) represents the activation function, Hk
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stands for the feature vector extracted by the k-th kernel and the subscript k defines the
number of kernels.

(2) Average down-sampling layer. The down-sampling layer is also referred to as the
pooling layer, which is commonly applied after a convolution layer to reduce the
dimension of the feature maps. It refers to a special type of convolution whereby the
kernel slides through the entire input map, and, generally, instead of creating the
element-wise product, the average value of the overlaid input region is extracted; this
quantity is the so-called ‘average pooling’.

(3) Up-sampling layer. In contrast to down-sampling, up-sampling is generally used
after the encoder to restore the resolution of the original data. The most common
up-sampling techniques include Nearest Neighbor, Bilinear and Bicubic [32]. The
Bilinear method is adopted in the present work.

(4) Fully connected layer. The fully connected layer refers to the type of neural network
where all the input from the previous layer is connected to every neural node of the
next layer:

Ĥ = Activ(W ∗H + b) (8)

where H stands for the neural nodes of the previous layer; W and b represent the weights
and bias.

(5) LSTM cell. LSTM is a variant of Recurrent Neural Network (RNN), which has the
advantage of exploiting the information of time-series signals. LSTM alleviates the
vanishing gradient problem in the original RNN by introducing a memory cell, as
described in Figure 3. The memory cell consists of a forget gate, input gate, output
gate and state gate, which are mathematically described as follows:

ft = σ
(

W f ·[xt, ht−1] + b f

)
(9)

it = σ(Wi·[xt, ht−1] + bi) (10)

ot = σ(Wo·[xt, ht−1] + bo) (11)

C̃t = tanh(Wc·[xt, ht−1] + bc) (12)

Ct = ft·Ct−1 + it·C̃t (13)

ht = ot·tanh(Ct−1) (14)

where the ft, it, ot and Ct represent the forget gate, input gate, output gate and state gate,
respectively. xt is the input vector of the LSTM unit at the current time t, and ht−1 is the
hidden vector of the previous time t− 1. Therefore, LSTM considers the information at the
current time and the previous time. σ and tanh represent the ‘sigmoid’ and ‘tanh’ activation
functions, respectively.
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It is worth noting that the input of LSTM should be a matrix, but the AE signal is a
vector. Thus, the original 1D data should be converted to two-dimensional space. To this
end, we simply divide the signal into multiple segments along the time axis. Thus, the
input is reshaped into a N ×M matrix, where N denotes the number of segments, and M
stands for the length of each segment. The matrix is firstly processed by the encoder as M
separated samples to capture detailed information about each segment, and the extracted
features are stacked as a matrix and fed into the bottleneck layer. The output of the
bottleneck layer is again processed by the decoder as a separate dataset. The reconstructed
data are concatenated by the last fully connected layer. The data flow in the Generator is
illustrated in Figure 4.
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3. The Proposed EFD Framework Based on Convolutional GAN and
History-State Ensemble
3.1. Definition of a Health Indicator (HI) Based on GAN

The output of the Discriminator is a single value that distinguishes the fake data from
real data. If the input is identified as real, the Discriminator will ascribe a high value to
it, whereas a low value will be set otherwise. If we apply this to the early fault detection
problem with the training data from only the normal operating state, the Discriminator will
ascribe the faulty data to the low value based on the assumption that the defect has distorted
the normal AE waveform, which is successfully captured by the sensors. Therefore, the
Discriminator naturally determines the health indicator HI, as presented below:

HI = D(X) (15)

where X denotes the evaluated data.

3.2. Ensembled Health Indicator
3.2.1. Motivation

The remaining question is how to determine whether the Discriminator has been well-
trained or not. Differing from traditional supervised networks, whose performance can
be assessed by the loss value, GAN benefits from the competition between the Generator
and Discriminator. Therefore, the loss values of the two networks exhibit a relation of ‘as
one falls, the other rises’. To overcome this problem, we introduce a simple yet effective
ensemble technique referred to as the history-state ensemble (HSE) method, as described in
our dedicated study [29]. The advantages of the HSE method are twofold: (1) it does not
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require extra computing time to obtain the base models, and (2) it is versatile enough to be
seamlessly applied to plain neural networks without readjusting the network architecture.
Similarly to traditional ensemble techniques, the implementation of HSE methods assumes
(i) encouraging the model to generate accurate base models with high diversity, and
(ii) assembling these models to create a more robust classifier.

3.2.2. Base Model Generation

To obtain the base models, HSE is based on the assumption that the neural networks
can generate multiple local optima, also referred to as ‘history states’, during the training
process, and these local optima can be taken as base models for ensemble learning. There-
fore, to generate multiple base models, one only needs to preserve the historical weights of
the network, as illustrated in Figure 5. Hence, the time cost of this procedure is negligible.
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Figure 5. Illustration showing the typical behavior of the training loss value as a function of the
number of training epochs; the definition of parameters θ1 and θ2 is clarified graphically (see the text
for details).

The obtained base models have a direct impact on the model performance, which is
affected chiefly by three factors: (1) the number of base models, (2) the accuracy of each
base model and (3) the diversity within all base models. In order to encourage the diversity
of base models, the Mini-Batch Gradient Descent (MBGD) is recommended in the training
process. MBGD is a variant of the gradient descent algorithm whereby the whole training
dataset is divided into multiple small batches, and only one batch is used to calculate the
gradient at each iteration. The application of MBGD increases the model update frequency,
which helps to generate more models and encourages their diversity. Moreover, two extra
parameters need to be defined, as illustrated in Figure 5. Here, θ1 denotes the number of
training epochs at which the first base model is acquired, and θ2 indicates the model update
frequency. The total number of acquired base models is calculated as

N = int
(

S− θ1

θ2

)
(16)

where S is the total number of training epochs.

3.2.3. Ensemble Results

Average voting (AV) is used to integrate the results of all base models, and, for the
case of this paper, a new ensembled HI (EHI) can be constructed:

EHI =
N

∑
i=1

Di
(
X̂
)
/N (17)
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where Di
(
X̂
)

represents the score given by the i-th base model, and N is the total number
of the base models.

To define the fault alarm, a threshold th is set as

th = min(EHItrain)− C ∗ std(EHItrain) (18)

where HItrain represents the HI values obtained by training signals. min(·) selects the
minimum value of all the HItrain values, and std represents the standard deviation. C is the
constant that reflects the confidence of the result. In this paper, the C is set as 3.

3.3. Dimension Reduction of the Raw AE signals

The high sampling frequency of AE signals results in a large amount of acquired data,
which increases the computational burden of the model. Therefore, a Moving Variance
Window (MVW) is applied to the raw AE signals for dimension reduction, as illustrated
in Figure 6. With the step-wise shifting of the window, the variance of the covered signal
is calculated, i.e., each windowed data segment is transformed into a single value of the
variance. The output is a dimensionless number, which measures the dispersion of the
data; thereby, the sub-signal is de-dimensionalized. The function of MVW is to capture
the transient events and highlight some essential detailed features of the data. Moreover,
since the signal dimension is vastly reduced, processing by the neural network is faster and
easier. The MVW is mathematically described as follows:

X̂ =
1
l ∑

x∈winX
k,l,s

|x− µ|2 (19)

winX
k,l,s = X

[
xk,s

start : xk,s
start + l − 1

]
(20)

xk,s
start = (k− 1)× s + 1, k = 1, 2, . . . nk (21)

where X denotes the raw AE signal, winX
k,l,s represents the area of signal X covered by the

moving window, and k, l and s are integers specifying the moving step, window length and
moving stride, as illustrated in Figure 6. xk,s

start is the start point of the window on signal
X. The total number of moving steps is computed as nk = [(N − l)/s] + 1, where N is the
length of the recorded AE signal; µ in definition (19) denotes the mean of winX

k,l,s. The
MVW applies a moving window slide over the original AE signal to extract the variance;
thus, the signal dimension can be largely reduced, which makes it easier to be processed
by the neural network. Additionally, the MVW helps to capture the transient events and
highlight some important detailed information in the data.
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3.4. Overall Framework

With the pre-processing of dimensional reduction, the original high-dimensional AE
signals can be processed by the proposed ensembled convolutional GAN. The general
procedures of the proposed EFD framework are summarized as follows.

Step 1: Data acquisition. AE signals are acquired at fixed time intervals from sen-
sors mounted on the test machine. The signals received at the initial health stage of the
experiment are treated as the training set, and the remaining serve as the test set.

Step 2: Dimension reduction The MVW is first applied to the raw signals to reduce
the dimension.

Step 3: Model set-up.

(1) Offline training stage: the pre-processed training data are fed into the convolutional
GAN. During the training phase, the history states are recorded at fixed training
epochs. Thus, N base models are obtained.

(2) Setup threshold: the training set is fed into the Discriminator only, and N scores
are generated by the base models for each sample. The EHI and the threshold are
calculated by Equations (17) and (18).

Step 4: Online test stage. The samples in the test set are sequentially fed into the
Discriminator to calculate the EHI. The EHI values exceeding the threshold are considered
a fault alarm.

4. Experimental Validation
4.1. Test Rig and AE Data Acquisition

One can find more details of the experimental setup and durability test in [17]. To
evaluate the performance of the proposed method, a rolling contact fatigue test was carried
out in this section. The test rig, designed at SINTEF Industry (Trondheim, Norway),
consists of four roller bearings, as illustrated in Figure 7a. The test specimen is in the
central position, supported by another three rollers. Each roller is supported by two needle
bearings (type SKF NA 6914-zw). To monitor damage associated with the rolling contact
fatigue, the broadband WD (MISTRAS, Princeton, NJ, USA) sensors were mounted on the
housing of the needle bearing supporting the test roller. A close-up view of the sensors
and their location on the rig is presented in Figure 7b. The streaming AE signals were
recorded periodically at fixed time intervals, and each data file contains 2 s of streaming
AE waveforms sampled at 2 MHz using the Kongsberg HSIO-100-A (Kongsberg Maritime,
Trondheim, Norway) high-speed acquisition module. At the beginning of the test, the
recording time interval was set at 60 min. When the first damage was confirmed by periodic
ultrasonic inspections of the test roller, the recording time interval was reduced to 20 min
to obtain more AE realizations containing information about the faults. At the end of
the experiment, 2471 AE records were qualified for the analysis. Figure 8 displays the
amplitude of the raw AE signal against contact fatigue cycles. An appreciable change in
the AE amplitude is observed for the first time after 4.6 × 107 fatigue cycles.
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To monitor and visualize the development of incipient damage, ultrasonic inspections
were performed periodically during the test using the Olympus OMNISCAN SX (Olympus,
Tokyo, Japan) phase array ultrasonic tester (PAUT). According to the PAUT inspection
results, the health condition of the test specimen was divided into five stages, as indicated by
different colors in Figure 8. The number of records for each state is presented in Table 1. The
short-time Fourier spectrograms of several randomly chosen AE signals, which are typically
observed during the five stages of the damage propagation, are presented in Figure 9. It
can be seen that the fault signatures at the early stage of the damage (corresponding to
0.5 mm and 1 mm length of the internal crack) are still invisible to the naked eye. As the
faults grow up to 1.5 mm, some high-frequency components induced by AE bursts emerge
gradually, and the number of AE bursts increases with the damage development.

Table 1. The number of AE records for different stages of damage propagation.

Health Condition Number of Records Number of Fatigue Cycles

No damage 542 2.8 × 107

0.5 mm crack 377 3.6 × 107

1 mm crack 809 4.8 × 107

1.5 mm crack 718 6.5 × 107

2 mm crack 25 6.6 × 107
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4.2. Results and Discussion
4.2.1. Data Preprocessing

Original high-dimensional AE signals are firstly processed by MVW with the moving
step k of 8192. The window length l and moving stride s are set as 464. Therefore, each AE
file is downsized to a shorter vector with a length of 8192. Let us recall the structure of the
Generator, where two LSTM cells are utilized to capture the time-series correlations in the
data. To fit the Generator, each input datum is divided into N segments with length M,
as described in Figure 4. We recommend that each segment should contain information
about at least one entire axel revolution. In this way, LSTMs can capture the correlation
of AE signals generated in continuous axel revolutions. For instance, the lowest axel
rotation frequency in the present work is 254 rpm, i.e., for a 2-s recording, 8 complete
rotations are captured. Therefore, the segment parameters N and M are defined as 8 and
1024, respectively.

4.2.2. Network Training

The proposed method was implemented with the open-source PyTorch machine learn-
ing framework. The detailed architectures of the proposed Generator and Discriminator
are described in Table 2. The first 60% of healthy data (325 recorded AE signals) are used
for training the convolutional GAN, and the EHI of each training sample is calculated by
Equation (17). Then, a fault alarm threshold can be obtained according to Equation (18).
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Table 2. The detailed parameters of the proposed Generator and Discriminator.

Generator Discriminator

Layers Output size Layers Output size

Input 1024@1 Input 8192@1

[C : 25, S : 1, P : 12] 1024@16 [C : 125, S : 1, P : 63] 8192@8[
A : 2, S : 2, P : 0

Batchnorm

]
512@16 [A : 2, S : 2, P : 0] 4096@8

[C : 5, S : 1, P : 2] 512@1 [C : 25, S : 1, P : 12] 4096@16[
A : 2, S : 2, P : 0

Batchnorm

]
256@1 [A : 2, S : 2, P : 0] 2048@16

LSTM× 2 256@1 [C : 25, S : 1, P : 12] 2048@1

[C : 5, S : 1, P : 2] 256@16 [A : 2, S : 2, P : 0] 1024@1[
Batchnorm

Up : 2

]
512@16 FC : 512@1

[C : 5, S : 1, P : 2] 512@1 FC : 256@1

[Batchnorm] 512@1 FC : 1 1@1

FC : 1024 1024@1

Note: C denotes the convolutional kernel, A denotes the average pooling kernel, S and P are the stride and
padding numbers of each kernel, respectively. FC stands for the fully connected layer. The output size is denoted
by ‘a@b’, where a represents the length of the output vector, and b is the number of output channels.

The network was trained by 500 epochs, and the loss values of the Generator and
Discriminator are shown in Figure 10. It can be observed that these loss values oscillate,
indicating that both the Generator and Discriminator concurrently attempt to improve
their individual capacity during training. To implement the HSE method, two ensemble
parameters, θ_1 and θ_2, need to be preset. In this section, the values for θ_1 and θ_2 are
set at 300 and 20, respectively, and a total of 10 base models are obtained from Formula
(16). Then, averaging voting is applied to the ensemble and the results according to
Equation (17). The EHI generated by the proposed method is shown in Figure 11.
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Figure 11. The generated EHI of the acquired AE signals.

We assess the performance of HIs from the following aspects: (1) the ability to re-
flect the breakpoint between the healthy stage and the onset of defects; (2) the ability to
characterize the waveform change of the signal; since failure is an irreversible process,
(3) HI is expected to be continuous and monotonic. Figure 11 shows the obtained EHI of
all of the 2471 AE data files. Observations show that the EHI successfully characterizes
the evolution of the recorded AE waveforms from the following aspects. Firstly, the EHI
value shows rapid growth at the stage of the 0.5 mm crack, and a breakpoint between the
healthy and fault stage is easily observed. Secondly, the IEPF value captures the initiation
of the continuous AE transient bursts at the intersection of the 1 mm crack and 1.5 mm
crack. Additionally, the EHI presents excellent monotonicity.

In order to evaluate the proposed method and highlight its superiority over existing
conventional procedures, the following techniques are introduced and compared with
each other.

Statistical parameters: (1) Mean; (2) Variance; (3) Root Mean Square (RMS); (4) Skew-
ness; (5) Kurtosis; (6) Shape Factor; (7) Crest Factor; (8) Impulse Factor; (9) Margin Factor;
(10) Information Entropy (IE); (11) Energy Entropy; (12) Mean Frequency (MeanFreq);
(13) RMS Frequency (RMSF); (14) Root Variance Frequency (RVF); (15) Median Frequency (Med-
Freq).

Machine learning models: (16) One-Class SVM (17) Local Outlier Factor (LOF);
(18) Isolation Forest (iForest); (19) Autoencoder.

The samples are fed into the probed models sequentially. The streaming accuracy (SA)
is used as a metric to quantify the performance of each model, which is expressed as

SAt = nt/Nt (22)

where Nt denotes the total number of samples from the start to time t; nt denotes the
number of the correctly classified samples until time t. SAt shows the performance of
the probed methods against the acquisition time of each AE signal, and their results are
compared in Figure 12, while the average accuracy is plotted in Figure 13. It can be seen
that the superiority of the proposed method becomes gradually more and more obvious
during the 1 mm crack growth stage, where the developed ensembled convolutional GAN
shows the highest average accuracy among all probed contenders.
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Finally, we investigate the influence of the ensemble parameters on the model perfor-
mance. The ensemble model performance is impacted by the two ensemble parameters θ1
and θ2, and the model training epoch S. To facilitate the analysis, we set the parameter θ2
at 1, and examine the influence of θ1 and the training epochs at fixed base model numbers.
With fixed θ2 and training epochs, the ensemble parameter θ1 is defined as S− n, where
S denotes the current training epoch, and n represents the base model number. Figure 14
shows the experimental results with different training epochs ranging from 50 to 500. The
black line presents the average accuracy of the convolutional GAN, while the red lines show
the ensembled model accuracy with different base model numbers ranging from 5 to 30.
Figure 15 represents the result of the quantitative analysis of the accuracy improvement of
the model after applying the HSE procedure. Based on the observation of Figures 14 and 15,
the following conclusions can be drawn.
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(1) The HSE effectively reduces the accuracy fluctuation of a single GAN under different
training epochs.

(2) One can observe that the accuracy of the ensembled model remains at the upper
bound of the single GAN, indicating that the proposed method can improve the
performance of convolutional GAN in a general sense.

(3) With a smaller number of training epochs ranging from 50 to 300, the HSE method
can effectively improve the model accuracy by an average of 10% or more, as shown
in Figure 15. It also indicates that the proposed ensemble method can improve the
model efficiency with a smaller training budget

(4) The model performance is directly related to the number of base models, i.e., the
robustness of the ensembled model increases with the number of base models.

In summary, we have demonstrated that HSE improves the overall performance of
the single GAN in terms of model stability and accuracy.

5. Conclusions

The present paper extends our previous efforts to study and promote the HSE method
to non-destructive testing applications: here, we tested its effectiveness for early fault
diagnostics in rotating machinery. The main findings can be summarized as follows.

(1) A new convolutional GAN is designed in this paper and applied for EFD in the
run-to-failure test of a roller bearing. To boost the learning capacity of the Generator,
an Autoencoder-based Generator architecture is designed in this work. Two convo-
lutional blocks are used to extract the local information of the data, and the Long
Short-Term Memory (LSTM) cells are embedded in the bottleneck layer to extract the
time-series correlation of the signal.

(2) A novel HSE method is introduced in the designed convolutional GAN to establish
an ensembled health indicator (EHI). The proposed ensembled convolutional GAN
is combined with the AE technique. There have been limitations in the use of AE
technology for condition monitoring, partly due to challenges with processing a large
amount of data; thus, a smoothing Moving Variance Window (MVW) is used in this
work to reduce the dimensions of the raw AE signal.

(3) We demonstrate the effectiveness of the HSE method when applied to GAN and EFD
problems. Roller fatigue test monitoring by AE sensors was performed to evaluate
the proposed method. Experimental results demonstrate the effectiveness of the
proposed method.

(4) The HSE-based approach benefits from the fact that (i) it does not require extra training
costs to generate multiple base models, and (ii) it can be applied to all types of neural
networks without tuning the network architecture. Experimental results indicate
that not only does the HSE method improve the diagnostics of incipient flaws in
specific rolling bearing elements under contact fatigue conditions, but it is also an
efficient vehicle to enhance the performance and capacity of convolutional GAN in a
general sense.
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