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ABSTRACT

This study offers a Bottom Hole Pressure (BHP) uncertainty analysis performed
on the Olympus synthetic reservoir model. Different BHP scenarios were taken
into consideration by using various reservoir realizations. The reservoir’s Net
Present Value (NPV) was estimated using economic considerations and discount
rate for each realization. By altering the number of Monte Carlo samples, con-
vergence analysis was done to evaluate the precision of the NPV estimates. To
depict the distribution of NPV values, probability density function (PDF) and
cumulative distribution function (CDF) graphs were created. The research offers
insightful information about how BHP uncertainties affect the reservoir’s economic
performance. The findings support reservoir management and investment choices,
allowing for better-informed field development decisions.

Denne studien tilbyr en analyse av usikkerheten knyttet til bunnhullstrykk (BHP)
utført på det kunstige Olympus-reservoarmodellen. Forskjellige BHP-scenarier
ble tatt i betraktning ved bruk av ulike reservoarrealiseringer. Reservoarets net-
tonåverdi (NPV) ble estimert ved å ta økonomiske hensyn og diskonteringsrente for
hver realisering. Ved å endre antall Monte Carlo-eksempler, ble konvergensanal-
yse utført for å evaluere presisjonen til NPV-estimatene. For å illustrere fordelin-
gen av NPV-verdier ble det opprettet sannsynlighetstetthetsfunksjon (PDF) og
kumulativ fordelingsfunksjon (CDF) -grafer. Forskningen gir innsikt i hvordan
BHP-usikkerheter påvirker reservoarets økonomiske ytelse. Funnene støtter reser-
voarstyring og investeringsvalg, og muliggjør bedre informerte beslutninger om
feltutvikling.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation
Risk analysis is a crucial component that can be applied to various phases of the
development process of a petroleum field. Each phase of the reservoir’s lifecycle
presents distinct decisions and uncertainties, necessitating the adoption of specific
methodologies and tools tailored to the corresponding phase [1].

During the exploration phase, well-defined risk methodologies are typically em-
ployed to evaluate the potential of discovering hydrocarbon reserves. These method-
ologies involve analysing seismic data, geological studies, and other exploration
techniques to assess the reservoir’s presence, size, and quality. The focus is iden-
tifying prospects most likely to contain economically viable reserves. Risk assess-
ments during this phase help inform decisions regarding drilling exploration wells,
determining the feasibility of production, and estimating the initial reserves [2].

As the project transitions from the appraisal to the development phase, the level
of uncertainty may decrease compared to the exploration phase. However, the
significance of risk associated with the recovery factor, which relates to the per-
centage of hydrocarbons that can be extracted from the reservoir, may increase
significantly. In the development phase, critical decisions need to be made regard-
ing the production strategy, facilities design, and infrastructure planning. The
complexity of the decision-making process arises from factors such as substantial
irreversible investments, a large number of uncertainties, a strong dependence on
the results associated with the production strategy definition, and the necessity
of accurately predicting reservoir behavior[3].

Incorporating additional information on uncertain attributes and allowing for flex-
ibility during the development phase is crucial to mitigate risks effectively; This
can involve gathering more data through well testing, reservoir modelling, and
dynamic simulation studies. By integrating this additional information, decision-
makers can enhance their understanding of reservoir behaviour, optimize pro-
duction strategies, and improve the overall project economics[4]. However, it is
essential to note that acquiring additional information in offshore petroleum fields
can be challenging and expensive due to the high costs associated with offshore
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2 CHAPTER 1. INTRODUCTION

operations and limited flexibility. As a result, probabilistic risk analysis becomes
an essential tool, enabling decision-makers to assess and quantify the uncertainties
associated with each possible scenario and make informed decisions based on the
probabilities involved[5].

During the development phase of a petroleum field, various uncertainties arise
that can significantly impact production and revenue. One such critical uncer-
tainty is bottom hole pressure (BHP). BHP is the pressure at the bottom of the
wellbore and plays a vital role in determining the flow rate and ultimate recovery
of hydrocarbons. However, accurately predicting and managing BHP is challeng-
ing due to the complex interplay of reservoir characteristics, fluid properties, and
wellbore dynamics. Uncertainties in BHP can result from variations in reservoir
permeability, fluid behaviour, and the effectiveness of reservoir management tech-
niques. The uncertainty in BHP can have significant consequences on production
and revenue. For example, if the predicted BHP is higher than the actual BHP,
reservoir deliverability can be overestimated, potentially causing production con-
straints and lower than expected output. On the other hand, if the predicted BHP
is lower than the actual BHP, it may result in an underestimation of production
potential and missed opportunities for maximizing hydrocarbon recovery. There-
fore, accounting for BHP uncertainties and developing strategies to mitigate their
impact on production and revenue is crucial[6].

In addition to BHP uncertainty, other uncertainties can affect the development
phase. For example, geological uncertainties, such as variations in reservoir prop-
erties and fluid distribution, pose significant challenges in accurately characteriz-
ing the reservoir. These uncertainties can lead to variations in production per-
formance, reservoir behaviour, and, ultimately, the project’s economic viability.
Therefore, quantifying and incorporating these geological uncertainties into reser-
voir modelling and production forecasting is essential to make informed decisions
about well placement, facility design, and production strategies[7].

Moreover, operational uncertainties, such as drilling and completion uncertain-
ties, equipment failures, and production disruptions, can further impact produc-
tion and revenue. Unforeseen issues during drilling or completion operations can
lead to delays, cost overruns, and suboptimal well performance. Equipment fail-
ures or production disruptions can result in downtime and reduced production
rates, directly affecting revenue generation. Proper risk assessment and contin-
gency planning are crucial to mitigate these operational uncertainties and ensure
smooth operations throughout the development phase[8].

Companies can optimize production and maximize revenue by addressing and
managing uncertainties, including BHP, geological, and operational uncertainties
during the development phase. Integrated reservoir modelling, dynamic simula-
tion studies, and advanced data analytics techniques can help quantify and miti-
gate these uncertainties. Additionally, incorporating sensitivity analyses and sce-
nario planning can provide insights into the potential range of outcomes, enabling
decision-makers to make more robust and informed decisions regarding production
strategies, investment allocation, and risk mitigation measures[9].
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Decision-making under uncertainty implies that at least one course of action has
multiple potential outcomes. The utility of decision analysis methods lies not in
eliminating risk entirely but in providing tools to evaluate, quantify, and under-
stand the risks associated with different courses of action. Decision analysis tech-
niques such as decision trees, Monte Carlo simulations, and sensitivity analyses
can be employed to assess the impact of uncertainties on crucial project parame-
ters and identify risk-mitigation strategies[1].

In conclusion, risk analysis and management play crucial roles throughout the
lifecycle of a petroleum field. From exploration to development, understanding,
and quantifying uncertainties, incorporating additional information, and utilizing
decision analysis techniques are essential for effective risk mitigation and informed
decision-making.

1.2 Background and Definitions

Risk and risk assessments have a long history. The Athenians demonstrated their
ability to evaluate risk before making judgments more than 2400 years ago[10].
However, the scientific study of risk assessment and management is still very new,
having only existed for thirty to forty years. The first scientific publications, pa-
pers, and conferences that addressed core concepts and guidelines for assessing
and managing risk date back to this period effectively[11]. Uncertainty is a crucial
notion in terms of risk conceptualization and risk assessments. Since the begin-
ning of risk assessment in the 1970s and 1980s until now, there has been extensive
discussion in the literature about how to comprehend and handle uncertainty.

The subject, however, is quite essential. A modern viewpoint on the difficul-
ties, complications, and potential techniques for characterizing and communicat-
ing uncertainty in risk assessment is given in [12]. Probabilistic analysis is the
most commonly used method for dealing with risk analysis uncertainties, both
aleatory (representing variation) and epistemic (owing to a lack of information).

Due to data limitations and inference problems, there are uncertainties in reservoir
characterization that affect the outcomes. Probability distributions are used to
characterize the imprecision or incompleteness of measurements or observations,
referred to as data uncertainty. Errors, variability, or restrictions in the data col-
lection process are the causes of this uncertainty.
Inference uncertainty, conversely, denotes a lack of comprehensive understanding
or certainty in drawing inferences from the existing evidence. It results from poor
models, incomplete data, or the system’s inherent variability. For effective anal-
ysis and well-informed decision-making, it is necessary to consider both data and
inference uncertainties.

To address these uncertainties extensively, it is common practice to create proba-
bility distributions by developing several scenario models and generating multiple
realizations of each contributing characteristic. With the help of this method, it
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is feasible to examine uncertainties more thoroughly and have a better knowledge
of the range of potential results for reservoir characterization.

The definitions in this section come from Y. Zee Ma and Paul R. La Pointe’s
book "Uncertainty Analysis and Reservoir Modeling: Developing and Managing
Assets in an Uncertain World". These definitions are specifically contained in
Chapter 1 of the book[11].

1.2.1 Parameter Uncertainty Quantification

A probability distribution often represents uncertainty in reservoir parameters,
like uncertainties in measurements. Many have examined how to quantify the
level of uncertainty surrounding these parameters throughout the early stages of
field development using a variety of data sources and geologic scenarios [13]. In
experimental design, parameter uncertainty is often classified into two or three
categories, low, medium, and high, rather than employing a probability distribu-
tion.

Probability distributions of uncertain quantities in reservoir characterization are
often empirical, while some general mathematical laws may cause them to be
nearly normal or lognormal. For example, as a result of the central limit theorem,
adding numerous random variables typically results in a normal distribution[14],
whereas multiplying numerous variables typically results in a lognormal distribu-
tion[15]. However, the distributions of the input variables and their relationships
will significantly impact the resulting probability distribution, particularly when
data are scarce.

1.2.2 The Value of Information

In light of the fact that uncertainty can be viewed as an issue of underdetermi-
nation, more data would inevitably lessen the uncertainty. This is the ’value of
information’. In the oil and gas business, decision analysis is mainly used to dis-
cuss the VOI[16][17]. Therefore, reducing uncertainty in reservoir characterization
and management is crucial for VOI.

1.2.3 Value of Information and Sampling Bias

Theoretically, as additional information becomes accessible, our understanding of
the reservoir should advance. Nevertheless, sampling biases can make the VOI
more challenging. Consider the situation in Figure 1.2.1 . Based on the first three
wells, the average NTG was 23%. The average NTG from all seven wells after the
four extra wells were drilled was reportedly 57%. However, there were five data
points for the demarcated channel complex, which makes up around 60% of the
area. Only two data points were available for the overbank region, which makes
up two-fifths (40%) of the total area. As a result, there is a sample bias that needs
to be taken into account.
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Figure 1.2.1: Illustration of the VOI using NTG ratios for reservoir delineation.
(A) Only three data points were initially available. (B) Four additional data
points have helped delineate the channel complex (shown between the two dotted
lines)[11].

1.2.4 Variability and Uncertainty

Understanding the "variability" of geologic processes, petrophysical characteris-
tics, and other reservoir variables is necessary for reservoir characterization. Vari-
ability is an attribute that may be measured and refers to how much these events
fluctuate over time. Due to heterogeneities at several scales, including structural,
stratigraphic, depositional facies, petrophysical characteristics, and fluid distribu-
tions, the subsurface exhibits great variability.

In contrast, "uncertainty" results from a lack of understanding about a certain
variable. Uncertainty can result from mistakes in data or the indeterminacy and
indefiniteness of a variable. Uncertainty, in contrast to variability, is not reliant on
the occurrence of changes; it can still exist in the presence of a constant parameter
if knowledge is incomplete. Despite this, variability and uncertainty frequently go
hand in hand because high variability tends to add more unknowns, which in-
creases uncertainty.

1.2.5 Error and Uncertainty

Keeping uncertainty and error separate is crucial. While an error is the difference
between a single result and a number’s real value, an uncertain quantity takes the
form of a range due to the unknown elements. Error and uncertainty do, however,
have a fundamental link. The likelihood of errors in the reservoir characterization
result and business decision increases with larger uncertainty in the input data. In
contrast, inaccurate geology, geophysical, petrophysical, or engineering data will
result in more significant uncertainty in reservoir characterization and modeling.

Simply said, inadequate or uncertain input data can result in inaccuracies and
uncertainties in the reservoir’s final analysis. This can have an impact on the abil-
ity to make appropriate business decisions about the reservoir, such as resource
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estimation, production scheduling, or investment plans. Thus, it is essential to
reduce uncertainty and assure the data’s trustworthiness in reservoir characteri-
zation to enhance the validity of the findings and the decision-making procedures.

1.2.6 Uncertainty and Risk
The probability of unfavorable outcomes is frequently implied by the word "risk"
in common speech. For instance, there is a chance that a well will turn out to be
dry. Risk and uncertainty are related to some extent in this regard. In a more
theoretical context, "risk" is defined as the likelihood of an unfavorable occurrence
and its impact or consequences. Risk, therefore, consists of two components: un-
certainty (how likely something is to occur) and consequence (what would happen
if it did occur). It’s vital to remember that risk can occasionally also refer to an
uncertain outcome with no clear consequences.

Risk directly influences decision-making due to its consequence component.
For example, the potential loss arising from a faulty prediction is included in risk
analysis but not in uncertainty analysis alone. Indeed, it is frequently claimed
in decision-making that the potential repercussions of being incorrect are more
important than the probability of being wrong. For example, the Port-Royal
writers’ 1662 claim that fear of damage should be proportional to the likelihood of
an event supports the idea of uncertainty analysis, but it ignores the consequence
component of risk. Modern risk analysis, on the other hand, created on the basis
of utility theory, says that only the irrational make decisions based simply on the
probability of an outcome without considering its consequences.

1.2.7 Risk and Reward
Discussing risk and reward is important because risk may be lowered to zero if one
does not care about the prospective benefits. Although it is commonly recognized
that the oil exploration and production industry carries significant risks, there are
also possible advantages. If not, nobody would take the chance to discover oil.

1.2.8 Decision Analysis Under Uncertainty or Risk
Making decisions requires reducing uncertainty to a manageable degree. A strat-
egy for reducing uncertainty is to take the value of information (VOI) into ac-
count. In addition, enhancing reservoir characterization technologies, approaches,
and procedures can also aid in lowering reservoir management uncertainty.

1.3 Previous Studies
Several pieces of research have significantly advanced the study and measurement
of uncertainty in the oil and gas sector. In order to improve the precision and
dependability of uncertainty assessment and to support well-informed decision-
making processes, this research has used a variety of methodologies and strategies.

In one study, an innovative method for quantifying uncertainty in decision-making
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was presented[1]. The researchers created sophisticated mathematical methods
and algorithms to analyze uncertainties more accurately. These techniques in-
cluded sensitivity assessments, Monte Carlo simulations, and Bayesian inference.
These methods help decision-makers comprehend the uncertainties surrounding
the decision variables better and help them to make more informed decisions.

Researchers studied strategies for uncertainty quantification unique to porous me-
dia flows[3]. To account for uncertainty about fluid flow behavior in porous media,
they investigated several modeling techniques, such as numerical simulation tech-
niques. Statistical techniques, including Latin hypercube sampling and polynomial
chaos expansion, were used to quantify uncertainties and evaluate their influence
on flow behavior. These techniques helped decision-makers improve their pro-
duction plans by giving them valuable insights into the unpredictability of flow
parameters.

Model validation and uncertainty quantification were dealt with concurrently us-
ing multiobjective optimization approaches[4]. This research considered variables
like data fitting, prediction accuracy, and model complexity while integrating sev-
eral optimization objectives into the analysis. In addition, the researchers used
strategies like evolutionary algorithms, genetic algorithms, and surrogate mod-
eling to examine the trade-offs between various aims. By considering different
objectives, decision-makers could improve model validation and acquire a more
thorough grasp of the uncertainties related to the model inputs and outputs.

Comparative studies have been done in the field of petroleum reservoir engineer-
ing to assess various approaches to uncertainty quantification[18]. The probabilis-
tic collocation and experimental-design methodologies were compared to measure
their effectiveness in capturing reservoir uncertainty. While experimental-design
methods used strategies like Latin hypercube sampling and orthogonal arrays,
probabilistic-collocation methods used polynomial chaos expansions and spectral
algorithms. These studies helped decision-makers choose the best strategy for as-
sessing reservoir uncertainty by illuminating the advantages and disadvantages of
each method.

Stochastic sampling techniques were compared to assess how good they were at
estimating uncertainty[19]. Many algorithms were examined for performance and
computational efficiency, including Markov Chain Monte Carlo, Latin hypercube
sampling, and sequential Monte Carlo approaches. Decision-makers could com-
pare various methods and make educated decisions based on the computational
needs, accuracy, and applicability for particular uncertainty quantification activi-
ties.

In order to improve history matching and uncertainty quantification in petroleum
reservoir modeling, population-based techniques were presented[20]. These algo-
rithms, which include evolutionary methods, particle swarm optimization, and
genetic algorithms, were used to calibrate reservoir models and quantify uncer-
tainty related to model parameters. As a result, decision-makers could enhance
the matching of historical production data and generate more accurate estimates
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of reservoir behavior uncertainty by utilizing these population-based methods.

Researchers considered both technical and market concerns when studying the
staged development of a marginal oil field[21]. They used probabilistic modeling
approaches, such as Monte Carlo simulations and scenario analysis, to evaluate the
risks associated with reservoir features, oil prices, and project economics. These
techniques allowed decision-makers to analyze various development scenarios un-
der various uncertainties and estimate the risks of staged development.

In conclusion, a wide range of techniques were used in these investigations, includ-
ing Bayesian inference, Monte Carlo simulations, sensitivity analyses, numerical
simulations, evolutionary algorithms, surrogate modeling, probabilistic modeling,
and population-based algorithms. As a result, decision-makers may efficiently
measure and assess uncertainties in the oil and gas business using these method-
ologies, resulting in better management strategies and more informed decision-
making processes.

1.4 Objectives

This project aims to create a computational framework for uncertainty analysis
in reservoir modeling utilizing Monte Carlo sampling and considering BHP uncer-
tainties in addition to reservoir characteristics uncertainty. The following are the
precise objectives:

1. Implement a Python code that uses Monte Carlo sampling to provide a
significant number of samples for each reservoir realization while accounting
for BHP uncertainties using the normal probability distributions.

2. Create a parallel execution approach to use the Eclipse reservoir simula-
tor to execute several reservoir realizations concurrently, utilizing parallel
computing resources to lower the computational time needed for simulation
runs.

3. Extract production profiles and calculate the Net Present Value (NPV) for
each sampling realization, considering BHP uncertainties and assessing their
impact on reservoir performance and economic viability.

4. Determine the point of convergence for the results by increasing the number
of samples until the NPV calculations show negligible changes, ensuring an
accurate representation of the uncertainty in the reservoir model considering
BHP uncertainties.

5. Create visualizations such as plots and charts to effectively communicate and
interpret the uncertainty analysis results, providing insights into the range
of feasible production profiles and the corresponding economic uncertainty
considering BHP uncertainties.
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1.5 Working Tools
In this section, the primary assets used in this research to build the computational
framework for reservoir modeling uncertainty analysis were reviewed. Two primary
tools that had a significant contribution were Python Programming Language and
Eclipse Reservoir Simulator.

1.5.1 Python Programming Language
Python was utilized as the programming language to put the computational foun-
dation into place. As a result, it is the best option for scientific computing and
data analysis activities due to its adaptability, extensive ecosystem of libraries,
and simplicity of usage.

The Monte Carlo sampling technique for uncertainty analysis using Python was
successfully applied. Various libraries, including NumPy and Pandas, were used to
create random samples based on normal distributions, do statistical calculations,
and handle numerical operations with ease. The seaborn package was also used
to produce meaningful visualizations of the results.

Several functionalities, such as parallel execution and data processing, were easily
integrated into the framework due to the flexibility of Python, which made it eas-
ier to design a modular and adaptable codebase. In addition, Python’s extensive
documentation and active community provided invaluable resources and support
throughout the project’s development[22].

1.5.2 Eclipse Reservoir Simulator
The Eclipse reservoir simulator is an industry-standard program for simulating
fluid flow and predicting reservoir behavior. Due to its robust capabilities and
algorithms, it is a trusted instrument in the oil and gas sector for reservoir engi-
neering jobs.

The Eclipse reservoir simulator’s sophisticated modeling capabilities and practical
simulation algorithms were taken advantage of by integrating our computational
framework with it. In addition, several reservoir realizations were run concur-
rently thanks to the parallel execution method, which considerably reduced the
calculation time needed for the simulations.

The smooth integration of Python with the Eclipse reservoir simulator allowed
data sharing, allowing us to extract simulation outputs and further analyze and
display the results using Python’s data manipulation and charting packages[23].

Overall, the combination of Python and the Eclipse reservoir simulator demon-
strated a powerful and effective working environment for developing and imple-
menting the uncertainty analysis framework.
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TWO

METHODOLOGY

2.1 Olympus Synthetic Reservoir Model

The Olympus synthetic reservoir model serves as a representative simulation of
a newly discovered oil field in the North Sea. Developed collaboratively by re-
searchers from TNO (the Netherlands Organization for Applied Scientific Re-
search), TU Delft, and industry partners ENI, Equinor (previously Statoil), and
PETROBRAS, this model was specifically designed for benchmark studies and
field development optimization activities[24].

2.1.1 Model Dimensions

The Olympus reservoir model encompasses a field with a border fault on one side
and measures 9 km by 3 km in size. To capture the reservoir’s complexities, the
model incorporates 16 distinct strata representing the 50-meter-thick reservoir.
In addition to the boundary fault, six minor faults are included within the reser-
voir. The model consists of two zones: the top zone features fluvial channel sands
intermixed with floodplain shales, while the bottom zone comprises alternating
layers of coarse, medium, and fine sands, resembling a clinoformal stratigraphic
sequence. The impermeable shale layer separates the two zones.

The grid cells in the Olympus reservoir model are approximately 50 m Œ 50
m Œ 3 m in size. All the geological and petrophysical parameters are modeled at
this grid scale without upscaling. The model consists of approximately 341,728
total grid cells, of which 192,750 are active. The presence of a single-layer shale
barrier accounts for the inactive grid cells. Moreover, the model incorporates five
non-sealing faults, enabling unrestricted fluid flow throughout the reservoir[25].

2.1.2 Facies and Property Modeling

Multiple facies types are represented in the Olympus reservoir model, with each
zone containing four different facies. Table 2.1.1 summarizes the various facies
types and their corresponding geological properties, including porosity, perme-
ability, and Net-To-Gross (NTG). Conventional geostatistical approaches were

11
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employed to derive the geological characteristics of each facies type. A porosity-
permeability relationship was not established at this field development stage due
to limited information. The permeability values in the X and Y directions are
identical, while the permeability in the Z direction is 10 percent of the X-direction
permeability[25].

Table 2.1.1: Summary of facies properties[26]

Facies Type Zones Present Porosity
Ranges

Permeability
Ranges (mD)

Net-To-Gross

Channel Sand Top 0.2-0.35 40-1000 0.8-1
Shale Top and Bar-

rier
0.03 1 0

Coarse Sand Bottom 0.1-0.2 75-150 0.7-0.9
Sand Bottom 0.1-0.2 75-150 0.75-0.95
Fine Sand Bottom 0.05-0.1 10-50 0.9-1

2.1.3 Oil-Water Contact and Model Initialization
The depth of the Oil-Water Contact (OWC) in the Olympus reservoir model was
determined to be 2090 m, along with an in-situ hydrostatic pressure of 206 Bar.
This information was obtained from available exploration well logs. Due to the
distinct relative permeability curves associated with each facies, each realization
of the reservoir model exhibits a unique initial water saturation distribution[25].

2.1.4 Model Realizations
In this study six realizations of Olympus have been used to account for reservoir
uncertainty. Among these realizations, one is the worst-case scenario, representing
unfavorable reservoir properties and challenging conditions. Another realization
is chosen as the best-case scenario, representing ideal reservoir characteristics and
optimal performance. Also, four realizations fall between these extreme cases,
representing intermediate reservoir behaviors.

The worst-case(Olympus 49) realization allows for an in-depth analysis of the po-
tential challenges and limitations in reservoir performance. It serves as a critical
reference point for understanding the impact of unfavorable reservoir properties
on production outcomes under BHP uncertainty.

Conversely, the best-case realization(Olympus 40) serves as a benchmark for op-
timal reservoir performance. It provides valuable insights into the factors that
contribute to successful reservoir development and allows for identifying best prac-
tices and potential opportunities for further optimization.

The four intermediate realizations(Olympus 8, 14, 22, 45) comprehensively un-
derstand the reservoir’s behavior under varying conditions. As a result, they offer
insights into possible production outcomes and the associated uncertainties.
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By studying these realizations, it becomes possible to assess the sensitivity of
reservoir performance to changes in porosity, permeability, net-to-gross character-
istics, and initial water saturation under BHP uncertainty.

2.2 Determining Key Drivers of Production Profile Vari-
ability

The significance of understanding flow patterns and accurately predicting BHP
cannot be overstated in upstream oil and gas production. Reliable knowledge
about flow behavior is essential for upstream professionals to design and implement
effective production schemes. A crucial aspect of this is the ability to accurately
estimate the pressure drop from the reservoir bottom to the surface through pro-
duction wells, which relies on the proper prediction and representation of BHP[27].

Despite numerous efforts to develop mechanistic approaches and conventional
models or correlations, accurately predicting and describing BHP with high ac-
curacy and low uncertainty remains challenging. Many existing models fail to
capture the complexity of BHP behavior, resulting in limited predictive capabil-
ity. This failure is particularly problematic considering BHP’s substantial impact
on flow pattern distribution through production wells.

In recognition of this challenge, it is imperative to consider the uncertainty as-
sociated with BHP and the uncertainty related to reservoir characteristics such as
porosity, permeability, and net-to-gross ratio. A more comprehensive understand-
ing of the overall system behavior can be achieved by incorporating BHP uncer-
tainty into reservoir simulations. This incorporation allows for a more realistic
assessment of the uncertainties that may affect production performance, enabling
better decision-making and the development of more robust production strategies.

Considering BHP uncertainty alongside reservoir characteristic uncertainty offers a
more holistic approach to uncertainty analysis in the upstream sector. It acknowl-
edges the interplay between reservoir properties and flow behavior, recognizing
that accurate BHP prediction is vital for optimizing production performance. In-
tegrating BHP uncertainty into the analysis makes the overall uncertainty assess-
ment more robust, providing a more accurate representation of the potential range
of production outcomes and identifying appropriate mitigation strategies[25].

Addressing the challenges associated with BHP prediction and uncertainty analysis
is crucial for improving production planning and optimizing reservoir performance.
By accounting for BHP uncertainty in addition to reservoir characteristic uncer-
tainty, upstream professionals can enhance their understanding of flow behavior,
improve production scheme design, and make informed decisions that maximize
the economic potential of oil and gas reservoirs.
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2.3 Monte Carlo
The Monte Carlo method is a computational methodology used to handle prob-
lems combining uncertainty and probability. Numerous disciplines use it exten-
sively, including engineering, economics, physics, and statistics. The technique
comes from Monaco’s renowned Monte Carlo Casino, well-known for its chance
and randomness-based games.

The Monte Carlo approach is used in the context of uncertainty quantification
to evaluate the propagation of uncertainty through a model or system. It entails
producing numerous random samples or situations based on probability distribu-
tions linked to uncertain model parameters. Realizations or iterations are standard
terms used to describe these samples.

The following steps make up the Monte Carlo process[28]:

1. Define Probability Distributions:
Determine the model’s uncertain parameters’ probability distributions based
on the information at hand or the knowledge of a professional. The normal
(Gaussian), uniform, exponential, and other distributions are frequently uti-
lized.

2. Create Random Samples:
Random samples are created from the specified probability distributions for
each uncertain parameter. The desired accuracy and problem complexity
determine how many samples are needed.

3. Model evaluation:
The model or system is assessed for each sampled parameter value set. This
entails conducting simulations, resolving equations, or completing calcula-
tions to gain desired model outputs or reactions.

4. Statistical Analysis:
After gathering all of the model outputs from the previous stage, statistical
approaches are used to examine the data. Descriptive statistics like mean,
standard deviation, and percentiles are computed to describe the distribu-
tion of the outputs.

5. Uncertainty Propagation:
The statistical analysis sheds light on how uncertainty in the input param-
eters affects the outcome by spreading across the model. It aids in compre-
hending the likelihood of various outcomes and their range.

The Monte Carlo approach excels at handling complicated systems with nu-
merous uncertain parameters. It captures the entire range of potential values and
their corresponding probability by taking samples from the parameter distribu-
tions, enabling a thorough investigation of uncertainty.

The Monte Carlo approach is adaptable and can be used with a wide range of
models, including physical experiments, computer simulations, and mathematical
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models. It can, however, be computationally taxing, particularly for models with
several parameters or intricate interactions. Methods including variance reduc-
tion, importance sampling, and parallel computing are frequently used to increase
effectiveness in these situations.

Overall, the Monte Carlo method is an effective tool for quantifying uncertainty,
enabling decision-makers to assess risks, make informed decisions, and gain in-
sights into the behavior of complex systems under uncertain conditions.

2.4 Distribution functions
Probability distributions are used to model random events for which the outcome
is uncertain. They represent how probabilities are distributed across the possible
values of a random variable. Probability distributions have various properties,
such as expected value and variance, which can be calculated. Continuous random
variables are denoted as X or T , while discrete random variables are denoted as
K [29].

2.4.1 Probability density function (PDF)
A probability density function (PDF) is used in probability theory to express the
relative likelihood that a continuous random variable takes on a specific value or
falls within a particular range. The PDF, denoted as f(t), defines the probability
of the random variable falling within a range of values rather than taking on a
specific value. The probability is determined by integrating the PDF over that
range, which lies beneath the density function but above the horizontal axis and
between the lowest and highest values of the range. The area under the entire curve
is equal to 1, and the probability density function is nonnegative everywhere, i.e.,
f(t) [30]. ∫ ∞

−∞
f(t)dt = 1,

∑
k

f(k) = 1(2.1)

The probability that an event will occur between limits a and b is given by:

P (a ≤ T ≤ b) =

∫ b

a

f(t)dt = F (b)− F (a)(2.2)

P (a ≤ K ≤ b) =
b∑

i=a

f(k) = F (b)− F (a− 1)(2.3)

Where F (t) and F (k) are the cumulative distribution functions (CDF) of the
continuous and discrete random variables, respectively.

The probability of a discrete PDF at an instant value ki can be calculated by
minimizing the limits to [ki−1, ki]:

P (K = ki) = P (ki < K ≤ ki) = f(k)(2.4)

For a continuous PDF, where limits are minimized to [t, t+∆t], the probability
is calculated as:
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P (T = t) = lim
∆t→0

P (t < T ≤ t+∆t) = lim
∆t→0

f(t) ·∆t(2.5)

Figure 2.4.1: Left: continuous PDF, right: discrete CDF[29].

2.4.2 Cumulative distribution function (CDF)

The cumulative distribution function (CDF), denoted as F (t) or F (k), represents
the probability that a random event will occur before or at a certain value of the
random variable. The CDF is obtained by integrating the PDF:

F (t) = P (T ≤ t) =

∫ t

−∞
f(x)dx(2.6)

F (k) = P (K ≤ k) =
b∑

i=a

f(ki) for ki ≤ k(2.7)

The limits of the CDF for −∞ < t < ∞ and 0 ≤ k ≤ ∞ are:

lim
t→∞

F (t) = 0, F (−1) = 0(2.8)

lim
t→∞

F (t) = 1, lim
k→∞

F (K) = 1(2.9)

The CDF can also be used to calculate the probability of an event occurring
between two limits:

P (a ≤ T ≤ b) =

∫ b

a

f(t)dt = F (b)− F (a)(2.10)

P (a ≤ K ≤ b) =
b∑

i=a

f(k) = F (b)− F (a− 1)(2.11)
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Figure 2.4.2: Left: continuous CDF/PDF, right: discrete CDF/PDF[29].
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2.5 Economic Evaluation
The economic evaluation of the project relies on the Net Present Value (NPV) as a
key metric for assessing the financial performance across different case realizations.
The NPV is an essential indicator of revenue generation and expense management
throughout the development project, aiding decision-making in uncertainty.

The NPV represents the sum of discounted future cash flows, accounting for both
positive and negative financial outcomes, brought back to their present value [31].
It is calculated using the formula:

NPV =
∑(

CFt

(1 + r)t

)
(2.12)

Where:

NPV denotes the Net Present Value,
CFt represents the cash flow in each time period,

r is the discount rate,
t is the time period.

The cash flow (CFt) is determined by subtracting the operating expenses
(OPEX) and capital expenditures (CAPEX) from the generated revenue. The
revenue comprises the combined annual revenue from oil and gas production.

CFt = (Oil Revenue+Gas Revenue)− CAPEX−OPEX(2.13)

The components of the formula are as follows:

Oil Revenue : Annual oil production multiplied by the oil price,
Gas Revenue : Annual gas production multiplied by the gas price,

CAPEX : Total cost of drilling, piping, and manifold expenses,
OPEX : Operational costs after production commences,

including fixed operational and water disposal expenses.

To perform the NPV calculation, the following inputs are needed from the
user:

1. The number of years before production refers to the years required for the
project before the production phase starts. It represents the period during
which initial investments and preparations are made.

2. The number of production years indicates the duration of the production
phase, during which oil and gas are extracted, and revenue is generated.

3. Drilling costs for production wells: The program can access the model sched-
ule file to retrieve the number of wells and calculate the total drilling costs
for these wells.
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4. Piping cost: This represents the cost of piping infrastructure required for
transporting the extracted oil and gas. Additionally, the user needs to pro-
vide the duration in years for which this cost is applicable.

5. Manifold cost: The cost of the manifold, which is an essential component
of the production infrastructure, should be provided in millions of dollars
($M). The user also needs to specify the number of manifolds required.

6. OPEX (fixed): Operational costs after production commences, including
fixed operational expenses, such as maintenance and personnel costs.

7. Oil price: The price of oil per standard cubic meter ($/Sm3).

8. Gas price: The price of gas per standard cubic meter ($/Sm3).

9. Water cost: The cost of water disposal per standard cubic meter ($/Sm3).

10. Interest rate: The discount rate used in the NPV calculation, expressed as
a percentage. It represents the opportunity cost of investing in the project
and is used to discount future cash flows to their present value.

Default values for the inputs can be found in the Appendix B.

The resulting NPV values were used to derive probability and cumulative distribu-
tion functions for the set of realizations, providing valuable insights into potential
financial outcomes across various scenarios.
it should be noted that the NPV calculation stops when the cash flow becomes
negative after starting the production.

For a detailed breakdown of the NPV calculations, please refer to Appendix A
- 2.

2.6 Mean Absolute Percentage Error (MAPE)
In order to estimate the accuracy of the results and assess their convergence, the
mean absolute percentage error (MAPE) method has employed. MAPE is a widely
used statistic for analyzing the accuracy of forecasts or estimations by calculating
the average percentage variation between expected and actual values. It offers a
relative measure of error, making it easier to compare data of various scales and
magnitudes.

The MAPE is calculated using the following formula[32]:

MAPE =
1

n

∑(∣∣∣∣Actual− Forecast
Actual

∣∣∣∣)× 100(2.14)

where:

• MAPE is the mean absolute percentage error.

• n is the number of data points or observations.
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•
∑

denotes the summation symbol.

• Actual represents the actual or observed values.

• Forecast represents the predicted or estimated values.

The method determines the absolute percentage difference between each data
point’s actual and predicted values, adds up these differences, and then divides the
total number of data points by the sum to determine the average. A percentage
is used to represent the outcome.

A smaller average percentage difference between the anticipated and actual values
is a sign of higher accuracy, which is indicated by a lower MAPE. A larger MAPE,
on the other hand, denotes greater variance and lower forecast or estimate accu-
racy.

We can quantify the convergence of the NPV estimations by comparing the aver-
age percentage differences between the NPV value from a smaller sample size and
the NPV value from a larger sample size using the MAPE.

2.7 Case Design and Procedure
The first Python script is used to analyze the impact of Bottom Hole Pressure
(BHP) uncertainty on oil production profiles. This script’s primary goal is to
alter the schedule file by introducing variations in BHP values to analyze their
impact. Six different reservoir model realizations are considered to account for
the uncertainty in the reservoir characteristics and ensure a thorough assessment.

Each realization has two folders located in the machine’s hard drive. The reser-
voir’s critical properties are located in the first folder, and a data file containing
a reference to these attributes is located in the second folder. The script creates
various scenarios for each realization by modifying the schedule file inside the first
folder, specifically by changing the BHP values.
these modifications are done by creating several samples of BHP values for the
eleven production wells using the Monte Carlo sampling technique during each
simulation run. The BHP values cover the range of uncertainties related to the
wells’ behavior and are between 140 and 200 psi.

In Addition, the first script makes use of multiprocessing techniques to speed
up simulations and reduce computational time. Multiprocessing techniques allow
several simulations to run simultaneously, significantly lowering the overall calcu-
lation time. As a result, in varied BHP conditions, the oil production profiles may
be studied more effectively

For the organization and convenience of analysis, the script creates distinct folders
with the name of each realization and a particular sample number. This folder
structure makes it easy to save and retrieve simulation data, encouraging further
study and result comparison.



CHAPTER 2. METHODOLOGY 21

In the final step, the script extracts production data from RSM files, which are
the output files generated by the Eclipse reservoir simulator and the production
profiles for oil, gas, and water are extracted and stored in an Excel sheet within
the folder of each sample. These production profiles and the user-defined input
data serve as the basis for further calculations.

The second script determines each sample’s Net Present Value (NPV) using the
user’s input and the retrieved production data. The NPV values are then kept
in each sample’s folder, giving a thorough overview of the financial viability of
various BHP scenarios. In addition, a summary file that compiles the production
profiles for all samples and realizations is created in the main folder.

The main folder contains individual and aggregated NPV values for all samples
and the recovery factor. This organized data makes it simple to compare and
analyze the financial results of various BHP scenarios.

Based on the saved data, the script also provides the option to produce Prob-
ability Density Function (PDF) and Cumulative Distribution Function (CDF)
charts. These maps offer insightful information on the distribution of production
profiles and aid in determining the degree of uncertainty related to various BHP
scenarios. The created plots are saved as files in the "myplots" directory in the
main folder

To summarize, these Python scripts produced for this analysis update the schedule
file and make simulation runs more effortless, but they also include data extrac-
tion, NPV calculation, and thorough result storage and presentation. By smoothly
integrating these capabilities, the script enables users to examine the economic vi-
ability of various BHP scenarios, investigate recovery factor variations, and derive
essential insights from output profiles.

In addition, these scripts also offers a convenient GUI, allowing one to change
modeling parameters and obtain updated results.(Please refer to Appendix D to
see a preview of the GUI)
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THREE

RESULTS AND DISCUSSION

3.1 PDF and CDF Analysis for Each Realization

The PDF plot sheds light on the probability of various NPV outcomes. The CDF
plot demonstrates the cumulative likelihood of various NPV outcomes, while the
distribution of NPV values reveals how probable each value is. It displays the
probability of obtaining a specific NPV value or less.

OLYMPUS 49 (The best case)

PDF CDF

Figure 3.1.1: OLYMPUS 49 PDF and CDF

The left-skewed PDF curve distribution in Figure 3.1.1 shows that the proba-
bilities are heavily weighted in favor of larger NPV values in Olympus 49. While
the curve’s tail extends to the left, its peak is displaced to the right. Peak dis-
placed to the right implies a higher likelihood of reaching NPV values above the
mean or median and a substantially lower likelihood of achieving lower NPV values.

Regarding the Olympus 49’s CDF curve ,Figure 3.1.1, its integral-like shape shows
that the probability initially builds gradually before increasing more quickly as
the NPV values rise. Lower NPV values initially have a lower probability of being
attained. However, as NPV values rise, the probability increases more quickly,

23



24 CHAPTER 3. RESULTS AND DISCUSSION

suggesting a more significant probability of achieving NPV values towards the up-
per end of the range, in this example, closer to 1800 $M.

The CDF curve of Olympus 49 contains inflection point, which indicate a region
where the rate of change in probability changes. This point reflect crucial BHP
values or ranges significantly impacting NPV results. A key decision point or risk
linked with BHP uncertainty, such as profitability thresholds, regulatory compli-
ance, or operational limitations, can be identified by locating and comprehending
these inflection points.

OLYMPUS 40(The worst case)

PDF CDF

Figure 3.1.2: OLYMPUS 40 PDF and CDF

Figure 3.1.2’s CDF curve shows various traits that provide the likelihood of
obtaining greater NPV values in Olympus 40. The curve initially shows a positive
trend, indicating a gradual rise in the probability of exceeding particular NPV
targets as the values rise.

Notably, an almost plateau phase occurs on the CDF curve of Olympus 40. The
plateau reflects a saturation point when there is little chance of future NPV value
increases. The possibility of attaining even higher NPV values after this point is
either constant or does not considerably rise.

The existence of the plateau phase in the CDF curve can be interpreted in several
ways:

• Resource restrictions: The plateau could indicate restrictions on some re-
sources, including production capacity or available funding. It implies lim-
itations prohibiting NPV from increasing or expanding beyond a certain
point.

• Factors that could cause risk: The plateau phase could indicate the existence
of essential risks or uncertainties above and beyond a specific NPV value.
In order to achieve larger NPV values, one must accept additional risks or
uncertainties with a lower probability or impact.
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OLYMPUS 45 (A middle case)

PDF CDF

Figure 3.1.3: OLYMPUS 45 PDF and CDF

The NPV values are distributed symmetrically and bell-shaped according to
the Olympus 45’s PDF plot in Figure 3.1.3. In contrast to the earlier examples,
this distribution shows that probabilities are uniformly distributed around the
mean or central NPV value. The NPV value most likely to be found is close to
the distribution’s center, as seen by the curve’s peak aligning with the mean.

The NPV estimates have moderate fluctuation or uncertainty, given the PDF
plot’s symmetry and bell-shaped form. In addition, The curve’s short tails sug-
gest a lesser likelihood of extreme NPV values. This short tail implies that the
NPV distribution centers more on the central or most likely NPV value. The
narrower range of possible outcomes and the short tails suggest less variability or
uncertainty in the NPV estimations.

Like the first instance, the CDF curve of Olympus 45 in Figure 3.1.3 displays an
integral-shaped pattern representing the cumulative likelihood of attaining NPV
values up to a specific threshold. The curve steadily rises on the y-axis as NPV
values rise along the x-axis, representing the rising likelihood of achieving NPV
values within that range. The CDF curve has an inflection point, just like in the
first instance.

A critical range of NPV values that substantially impact the probability distri-
bution is highlighted by this inflection point, which denotes a location where the
rate of change in probability changes. The slope of the curve declines beyond the
inflection point, indicating a decreased rate of probability growth. Nonetheless,
the trend is still positive, showing that the likelihood of reaching greater NPV
values is increasing, albeit slower.

Three additional realizations, in addition to the ones already covered, support
mentioned justifications. Please refer to the appendix C for a visual reference.
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3.2 Uncertainty Quantification

The P10/P50/P90 strategy is a reliable methodology used in this study to assess
uncertainty in the analysis accurately. This approach uses the Monte Carlo sim-
ulation technique, which permits the creation of numerous alternative scenarios.
The "P" in P10, P50, and P90 here stands for percentile.

A minimum of 90% probability that the quantities retrieved from the project
will meet or surpass the low estimate is guaranteed by the P90 value. In light
of the lower end of the estimate, this suggests a relatively conservative approach.
P50, on the other hand, denotes a probability of at least 50% that the quantities
match or exceed the best estimate. It acts as a trustworthy intermediate mean
and forecasted value, representing a fair estimate within the range of possibilities.

The P10 number also includes a minimum 10% likelihood that the amounts will
match or surpass the high estimation in the oil and gas sector. This represents a
higher-end estimate that accounts for the possibility of better results[33].

The cumulative probability function is used to calculate these values. This func-
tion offers a thorough assessment of the probability distribution while consider-
ing numerous uncertainties and variables that affect the project’s success. This
method allows for more detailed knowledge of the uncertainty surrounding the
project’s results.

Figure 3.2.1: Olympus six realiations PDF
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Figure 3.2.2: Olympus six realiations CDF

Olympus 40 Olympus 22 Olympus 45
P90 P50 P10 P90 P50 P10 P90 P50 P10

NPV($M) -1427 -1187.5 -1010.4 -916.6 -645.8 -458.3 -364.5 -83.3 208.3
Olympus 8 Olympus 14 Olympus 49

NPV($M) P90 P50 P10 P90 P50 P10 P90 P50 P10
-333.3 -52 229.1 -41.6 354.1 625 937.5 1385.4 1687.5

Table 3.2.1: NPV values for different Olympus models

Both of these figures provide useful information about the possible production
rates and the economic value of the field.

Consequently, the decision maker must devise a field development concept that
effectively harnesses the upside potential of the field (in the case of Olympus 49)
while safeguarding against potential downside risks (Olympus 40).

In summary, the analysis indicates that Olympus has a marginal economic outlook.
Among the various realizations, only realization 49 and the optimistic scenarios
for realization 14 are projected to yield a positive net present value (NPV).

3.3 Convergence analysis
A convergence study was performed to examine the convergence behavior of NPV
estimations using four different sample sizes (25, 75, 125, and 200 Monte Carlo
samples). The graphs below show how the sample size and the calculated NPV
values are related.
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PDF CDF

Figure 3.3.1: OLYMPUS 45 - 25 Samples PDF and CDF

PDF CDF

Figure 3.3.2: OLYMPUS 45 - 75 Samples PDF and CDF

PDF CDF

Figure 3.3.3: OLYMPUS 45 - 125 Samples PDF and CDF
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PDF CDF

Figure 3.3.4: OLYMPUS 45 - 200 Samples PDF and CDF

In addition, a comparative analysis was conducted to assess the convergence using
a fixed set of 10 NPV values for each case. The mean absolute percentage error
(MAPE) was calculated between these fixed NPV values obtained from varying
sample sizes of 25, 75, 125, and 200 Monte Carlo samples in OLYMPUS 45.

Figure 3.3.5: Percentage error among different set of samples
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Figure 3.3.6: Mean absolute percentage error

Figures 3.3.5 and 3.3.6 show an apparent convergence between 25 and 200 sam-
ples. With smaller sample sizes, the NPV estimations’ initial degree of variability
is higher. However, as the sample size grows, the NPV values stabilize and exhibit
less variability.
.Figure 3.3.5 has visual evidence of the convergence and diminishing error between
observed and actual values as the sample size grows is provided by the observed
values from the smaller sample set and the actual values from the larger sample
set connected by a line.

According to Figure 3.3.6, The MAPE values also steadily decline with sample
size, showing a decline in the average percentage difference and an improvement
in the precision of the NPV predictions. The declining MAPE values imply a
convergence to NPV estimates that are more precise.

Please refer to the Appendix C to see further convergence examples.
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CONCLUSIONS AND FURTHER WORK

Conclusion

In conclusion, this work analyzed Bottom Hole Pressure (BHP) uncertainty in
the Olympus synthetic reservoir model. The analysis determined the reservoir’s
Net Present Value (NPV) based on economic considerations and discount rates
by considering several BHP scenarios and reservoir realizations. The convergence
analysis revealed the precision of NPV estimates, which was conducted by altering
the number of Monte Carlo samples. To further illustrate the distribution of NPV
values, probability density function (PDF) and cumulative distribution function
(CDF) graphs were used.

The study provided insight into how BHP’s uncertainty affected the reservoir’s
economic performance. These revelations have important effects on reservoir man-
agement and investment choices. Stakeholders might choose better field develop-
ment plans if they are aware of the connection between BHP uncertainty and
financial results. The study’s findings offer helpful insights to enhance reservoir
management procedures and encourage the best investment choices in the oil and
gas sector.

4.1 Further Work

Increase the number of simulation samples: Running simulations with more sam-
ples can increase the outcomes’ precision and bring the Mean Absolute Percentage
Error (MAPE) closer to zero. As a result, the analysis will be more precise overall,
and more accurate estimations of the Net Present Value (NPV) will be provided.

Examine several production and injection well pricing scenarios: To evaluate their
effect on the reservoir’s economic performance, consider different pricing for pro-
duction and injection wells. A more thorough understanding of the sensitivity
of NPV to pricing changes can be attained by evaluating various price scenarios,
allowing for improved risk management and decision-making.

Include abandonment prices in the NPV calculation: Include probable expendi-
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tures linked with abandonment activities in the NPV calculation. A more accurate
evaluation of the project’s total financial viability can be obtained by including
abandonment costs in the economic analysis, which guarantees that long-term li-
abilities are properly considered.

Examine CDF curve inflection points and plateau phases: Analyze the cumu-
lative distribution function (CDF) curves’ observed inflection points and plateau
phases in great detail. Investigate the fundamental causes and contributing ele-
ments of these patterns. The behavior of the reservoir can be better understood
by knowing what causes inflection points and plateaus. This knowledge can also
help make decisions about production plans and risk reduction techniques.
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A - PYTHON CODE

All code and latex-files used in this document are included in the Github repository
linked below. Further explanations are given in the readme-file.

5.1 Appendix A - 1: Sample Setup and Simulation run
Here is the Python code used for the calculations:

1
2
3 import s h u t i l
4 import random
5 import os
6 import numpy as np
7 from mul t i p ro c e s s i ng import Pool
8 import subproces s
9 from time import per f_counter

10 import pandas as pd
11 from tk i n t e r import t tk
12 import t k i n t e r as tk
13
14
15
16 de f run1 ( address ) :
17 ’ ’ ’ Function to run a d a t a f i l e in Ec l i p s e ’ ’ ’
18 subproces s . run ( [ ’ e c l run ’ , ’ e c l i p s e ’ , address ] )
19
20
21
22
23 c l a s s MyGUI:
24 de f __init__( s e l f ) :
25 s e l f . root = tk .Tk( )
26 s e l f . frame1 = s e l f . create_frame1 ( )
27 s e l f . frame2 = s e l f . create_frame2 ( )
28 s e l f . frame3 = s e l f . create_frame3 ( )
29 s e l f . s t a tu s_ labe l = tk . Label ( s e l f . root , t ex t=’ ’ )
30 #s e l f . frame4 = s e l f . create_frame4 ( )

38



CHAPTER 5. APPENDICES 39

31 #s e l f . frame5 = s e l f . create_frame5 ( )
32 #s e l f . add_logo ( )
33 s e l f . root . geometry ( ’ 500x700 ’ )
34 s e l f . root . t i t l e ( ’PPG’ ) # Set the window t i t l e
35 #s e l f . root . iconbitmap ( ’C: / Users / sarah /OneDrive/

Desktop/Thes i s /NTNU_logo_400x400 . i c o ’ ) # Set
the window icon

36
37 s e l f . e x c e l_ f i l e = None
38 s e l f . sheet_name = None
39 s e l f . sheet_data = None
40
41
42
43 de f create_frame1 ( s e l f ) :
44 frame1 = tk . Frame( s e l f . root )
45
46 #Frame t i t l e
47 s e l f . t i t l e 1_ l a b e l = tk . Label ( t ex t=’ Modifying ␣

r e a l i z a t i o n s ’ , f ont = ( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) , f g
=’#149998 ’ )

48 s e l f . t i t l e 1_ l a b e l . pack ( anchor=tk .CENTER, padx=5,
pady=5 ,)

49
50
51 # Label and entry f o r r e a l i z a t i o n s
52 s e l f . i r ange_labe l = tk . Label ( s e l f . root , t ex t=’ Enter

␣a␣comma−separated ␣ l i s t ␣ o f ␣ r e a l i z a t i o n s : ’ )
53 s e l f . i r ange_labe l . pack ( )
54 s e l f . i range_entry = tk . Entry ( s e l f . root )
55 s e l f . i range_entry . pack ( )
56
57 # Label and entry f o r BHP samples
58 s e l f . j r ange_labe l = tk . Label ( s e l f . root , t ex t=’ Enter

␣ the ␣number␣ o f ␣BHP␣ samples : ’ )
59 s e l f . j r ange_labe l . pack ( )
60 s e l f . j range_entry = tk . Entry ( s e l f . root )
61 s e l f . j range_entry . pack ( )
62
63 # Label and entry f o r the Lowest l im i t f o r BHP
64 s e l f . LL_label = tk . Label ( s e l f . root , t ex t=’ Enter ␣ the

␣ lowest ␣ l im i t ␣ f o r ␣BHP: ’ )
65 s e l f . LL_label . pack ( )
66 s e l f . LL_entry = tk . Entry ( s e l f . root )
67 s e l f . LL_entry . pack ( )
68
69 # Label and entry f o r the h i ghe s t l im i t f o r BHP
70 s e l f . HL_label = tk . Label ( s e l f . root , t ex t=’ Enter ␣ the
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␣ h ighe s t ␣ l im i t ␣ f o r ␣BHP: ’ )

71 s e l f . HL_label . pack ( )
72 s e l f . HL_entry = tk . Entry ( s e l f . root )
73 s e l f . HL_entry . pack ( )
74
75 #Creat the r e a l i z a t i o n s
76 s e l f . submit_button = tk . Button ( s e l f . root , t ex t=’

Create ␣ r e a l i z a t i o n s ’ , command=s e l f . run_function1
, f ont=( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) )

77 s e l f . submit_button . pack ( padx=10, pady=10)
78
79 re turn frame1
80
81
82
83 de f create_frame2 ( s e l f ) :
84 frame2 = tk . Frame( s e l f . root )
85 #Frame t i t l e
86 s e l f . t i t l e 1_ l a b e l = tk . Label ( t ex t=’Running␣Process ’

, f ont = ( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) , f g=’#149998 ’ )
87 s e l f . t i t l e 1_ l a b e l . pack ( padx=5, pady=5 ,)
88 frame2 . pack ( )
89
90 # Label and entry f o r maximum number o f p r o c e s s e s
91 s e l f . max_processes_label = tk . Label ( frame2 , t ex t=’

Maximum␣number␣ o f ␣ p r o c e s s e s : ’ )
92 s e l f . max_processes_label . pack ( pady=10)
93 s e l f . max_processes_entry = tk . Entry ( frame2 ) # f i x ed

va r i a b l e name
94 s e l f . max_processes_entry . pack ( pady=10) # f i x ed

va r i a b l e name
95
96 #button to run s imu la t i on s in p a r a l l e l
97 s e l f . submit_button = tk . Button ( frame2 , t ex t=’Run ’ ,

command=s e l f . run_function2 , f ont=( ’ Ca l i b r i ’ , 12 ,
’ bold ’ ) )

98 s e l f . submit_button . pack ( padx=5, pady=5)
99

100 re turn frame2
101
102 de f create_frame3 ( s e l f ) :
103 frame3 = tk . Frame( s e l f . root )
104 #Frame t i t l e
105 s e l f . t i t l e_ l a b e l = tk . Label ( t ex t=’ Gathering ␣&␣

Reading␣Output ’ , f ont=( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) , f g
=’#149998 ’ )

106 s e l f . t i t l e_ l a b e l . pack ( padx=5, pady=5)
107 frame3 . pack ( )
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108
109 #button to change RSM f i l e s to t ext f i l e s
110 s e l f . rename_button = tk . Button ( frame3 , t ex t=’Change

␣RSM␣ f i l e s ␣ format ’ , command=s e l f . rename_fi le ,
f ont=( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) )

111 s e l f . rename_button . pack ( pady=10)
112
113 #button to save product ion p r o f i l e s
114 s e l f . submit_button = tk . Button ( frame3 , t ex t=’ Save␣

product ion ␣ p r o f i l e s ’ , command=s e l f . run_function3
, f ont=( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) )

115 s e l f . submit_button . pack ( pady=10)
116
117 re turn frame3
118
119
120
121 #Function to change RSM extens i on to tex t
122 de f rename_fi le ( s e l f ) :
123 # Get the input va lue s from the entry f i e l d s
124 input_str = s e l f . i range_entry . get ( )
125 inpu t_ l i s t = input_str . s p l i t ( ’ , ’ )
126 inpu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in

inpu t_ l i s t ]
127 j range = in t ( s e l f . j range_entry . get ( ) )
128
129 # I t e r a t e over the input va lue s
130 f o r i in i npu t_ l i s t :
131 f o r j in range (1 , j r ange+1) :
132 my_file = f ’E: /OLYMPUS_{ i }/OLYMPUS_{ i }_{ j }/

OLYMPUS_{ i }/OLYMPUS_{ i } .RSM’
133 # Check i f the f i l e e x i s t s
134 i f not os . path . e x i s t s ( my_file ) :
135 # RSM f i l e doesn ’ t ex i s t , so pass and

go to the next one
136 cont inue
137 # Rename the f i l e by changing the extens i on

to ’ . txt ’
138 base = os . path . s p l i t e x t ( my_file ) [ 0 ]
139 os . rename (my_file , base +’_RSM’+ ’ . txt ’ )
140
141
142
143
144 # Function to copy f i l e s from the source address and

making new s e t s o f samples and r e a l i a z t i o n s based on
user input

145 de f run_function1 ( s e l f ) :
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146 # Get the input va lue s from the entry f i e l d s
147 input_str = s e l f . i range_entry . get ( )
148 inpu t_ l i s t = input_str . s p l i t ( ’ , ’ )
149 inpu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in

inpu t_ l i s t ]
150 j range = in t ( s e l f . j range_entry . get ( ) )
151 LL = s e l f . LL_entry . get ( )
152 HL = s e l f . HL_entry . get ( )
153
154
155 # I t e r a t e over the input va lue s
156 f o r i in i npu t_ l i s t :
157 f o r j in range (1 , j r ange+1) :
158 # Def ine the d i r e c t o r y paths
159 directory_path = f ’C: / Test2/OLYMPUS_{ i }/

OLYMPUS_{ i }_{ j } ’
160 os . makedirs ( directory_path , exist_ok=True )
161
162 # Copy source d i r e c t o r i e s to d e s t i n a t i on

d i r e c t o r i e s
163 s r c = f ’C: / Users / sarah /OneDrive/Desktop/

Test ␣3/OLYMPUS_{ i }/OLYMPUS_{ i } ’
164 dest = f ’C: / Test2/OLYMPUS_{ i }/OLYMPUS_{ i }_{

j }/OLYMPUS_{ i } ’
165 s h u t i l . copytree ( src , des t )
166
167 s r c = r ’C: / Users / sarah /OneDrive/Desktop/

Test ␣3/OLYMPUS’
168 dest = f ’C: / Test2/OLYMPUS_{ i }/OLYMPUS_{ i }_{

j }/OLYMPUS’
169 s h u t i l . copytree ( src , des t )
170
171
172
173
174 Row = 11
175 Column = 3
176 matrix = np . z e r o s ( [Row, Column ] )
177 #Write product ion years and BHP l im i t a t i o n s in a

matrix
178 f o r i in range (0 , Row) :
179 matrix [ i ] [ 0 ]= i+1
180 matrix [ i ] [ 1 ]=LL
181 matrix [ i ] [ 2 ]=HL
182
183
184 # Function to open the schadule f i l e and modify BHP

pre s su r e f o r product ion we l l s based on user
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input
185 de f r ep l a c e_ l i n e ( file_name , line_num , text ) :
186 # Read a l l l i n e s from the f i l e
187 l i n e s = open ( file_name , ’ r ’ ) . r e a d l i n e s ( )
188 # Replace the l i n e at the s p e c i f i e d l i n e number

with the g iven text
189 l i n e s [ line_num ] = text
190 # Open the f i l e in wr i t e mode
191 out = open ( file_name , ’w ’ )
192 # Write the modi f i ed l i n e s back to the f i l e
193 out . w r i t e l i n e s ( l i n e s )
194 # Close the f i l e
195 out . c l o s e ( )
196
197 # I t e r a t e over the input va lue s
198 f o r i in i npu t_ l i s t :
199 f o r j in range (1 , j r ange+1) :
200
201 f o r k in range (0 , 11) :
202 # Open the f i l e f o r read ing
203 with open ( f ’C: / Test2/OLYMPUS_{ i }/OLYMPUS_{ i }_{ j

}/OLYMPUS/OLYMPUS_SCH. INC ’ , ’ r ’ ) as my_file :
204
205 #read a l l l i n e s in a l i s t
206 keyword = ’WCONPROD’
207 l i n e s = my_file . r e a d l i n e s ( )
208 # I t e r a t e over the l i n e s in the f i l e
209 f o r l i n e in l i n e s :
210 # Check i f the keyword i s pre sent in the

l i n e
211 i f l i n e . f i nd ( keyword ) != −1:
212 kw_line=l i n e s . index ( l i n e )
213 we l l_ l ine=in t ( matrix [ k ] [ 0 ]+ kw_line )
214 with open ( f ’C: / Test2/OLYMPUS_{ i }/

OLYMPUS_{ i }_{ j }/OLYMPUS/OLYMPUS_SCH.
INC ’ ) as f :

215 pa r t i c u l a r_ l i n e = f . r e a d l i n e s ( ) [
we l l_ l ine ]

216 #Convert s t r i n g to array
217 x = pa r t i c u l a r_ l i n e . s p l i t ( )
218 # Generate a new random BHP value

with in the s p e c i f i e d l im i t s
219 bhp=in t ( random . uniform ( matrix [ k ] [ 1 ] ,

matrix [ k ] [ 2 ] ) )
220 #New BHP value as s t r i n g
221 x [4 ]= ’%s ’%bhp
222 #convert array to s t r i n g
223 x1=’ ␣ ’ . j o i n (x )
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224 x =f ’ ␣␣{x1}\n ’
225 # Cal l the r ep l a c e_ l i n e func t i on to

r ep l a c e the l i n e in the f i l e
226 r ep l a c e_ l i n e ( f ’C: / Test2/OLYMPUS_{ i }/

OLYMPUS_{ i }_{ j }/OLYMPUS/OLYMPUS_SCH
. INC ’ , we l l_l ine , x )

227
228 # Progres s window shows the load ing bar f o r

s imu la t i on s p a r a l l e l run
229 de f open_progress_window ( s e l f ) :
230 s e l f . progress_window = tk . Topleve l ( s e l f . root )
231 s e l f . progress_window . t i t l e ( ’ Progres s ’ )
232 s e l f . progress_window . geometry ( ’ 500x80 ’ )
233
234 s e l f . s t a tu s_ labe l = tk . Label ( s e l f . progress_window ,

t ext=’ Launching␣ Ec l i p s e ␣ in ␣ Pa r a l l e l ’ )
235 s e l f . s t a tu s_ labe l . pack ( )
236
237 s e l f . s t a tu s_labe l 2 = tk . Label ( s e l f . progress_window ,

t ext=’Wait␣ f o r ␣ the ␣bar␣ to ␣be␣ f i l l e d , ␣ then␣ c l o s e ␣ the
␣ p rog r e s s ␣window␣and␣ cont inue . ’ )

238 s e l f . s t a tu s_labe l 2 . pack ( )
239
240 s e l f . progress_bar = ttk . Progres sbar ( s e l f .

progress_window , l ength=200 , mode=’ determinate ’ )
241 s e l f . progress_bar . pack ( )
242
243 re turn s e l f . progress_window
244
245 # Function to update the load ing bar
246 de f update_progress ( s e l f , va lue ) :
247 s e l f . progress_bar [ ’ va lue ’ ] = value
248 s e l f . progress_window . update ( )
249
250 # Function f o r p a r a l l e l run in Ec l i p s e
251 de f run_function2 ( s e l f ) :
252 # Get the maximum number o f p r o c e s s e s from the entry

f i e l d
253 MAX_PROCESSES = in t ( s e l f . max_processes_entry . get ( ) )
254
255 # Get the i n i t i a l time
256 t0 = perf_counter ( )
257
258 # Open the p rog r e s s window and br ing i t to f r on t
259 s e l f . progress_window = s e l f . open_progress_window ( )
260 s e l f . progress_window . l i f t ( )
261
262 # Get the input va lue s from the entry f i e l d s
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263 input_str = s e l f . i range_entry . get ( )
264 inpu t_ l i s t = input_str . s p l i t ( ’ , ’ )
265 inpu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in inpu t_ l i s t ]
266 j range = in t ( s e l f . j range_entry . get ( ) )
267
268 # Generate the p a r a l l e l run input based on the input

va lue s
269 para l le l_run_input = [
270 os . path . j o i n ( f ’C: / Test2/OLYMPUS_{ i }/OLYMPUS_{ i }_{ j

}/OLYMPUS_{ i }/OLYMPUS_{ i } .DATA’ )
271 f o r i in i npu t_ l i s t
272 f o r j in range (1 , j r ange + 1)
273 ]
274
275 # Set the i n i t i a l va lue and maximum value o f the

p rog r e s s bar
276 s e l f . progress_bar [ ’ va lue ’ ] = 0
277 s e l f . progress_bar [ ’maximum ’ ] = len ( para l le l_run_input )
278
279 # Update the p rog r e s s window be f o r e s t a r t i n g the

c a l c u l a t i o n s
280 s e l f . progress_window . update ( )
281 # Star t the p a r a l l e l execut ion us ing a pool o f

p r o c e s s e s
282 with Pool ( p r o c e s s e s=min ( l en ( para l le l_run_input ) ,

MAX_PROCESSES) ) as pool :
283 r e s u l t s = [ ]
284 f o r i , _ in enumerate ( pool . imap_unordered ( run1 ,

para l le l_run_input ) ) :
285 r e s u l t s . append (_)
286 s e l f . update_progress ( i + 1)
287 # Update the s t a tu s l a b e l to i nd i c a t e the complet ion

time
288 s e l f . s t a tu s_ labe l . c on f i g ( t ex t=f ’ F in i shed ␣ in ␣{

per f_counter ( ) ␣−␣ t0 : . 2 f }␣ seconds ’ )
289
290
291 # Update the p rog r e s s window a f t e r the c a l c u l a t i o n
292 s e l f . progress_window . update ( )
293
294
295
296 de f run_function3 ( s e l f ) :
297 # Get input va lues from the entry f i e l d s
298 input_str = s e l f . i range_entry . get ( )
299 inpu t_ l i s t = input_str . s p l i t ( ’ , ’ )
300 inpu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in

inpu t_ l i s t ]
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301 j range = in t ( s e l f . j range_entry . get ( ) )
302
303 f o r i in i npu t_ l i s t :
304 f o r j in range (1 , j r ange+1) :
305 # Def ine the path to the RSM f i l e
306 rsm_f i l e = f ’E: /OLYMPUS_{ i }/OLYMPUS_{ i }_

{ j }/OLYMPUS_{ i }/OLYMPUS_{ i }_RSM. txt ’
307
308 i f not os . path . e x i s t s ( r sm_f i l e ) :
309 # RSM f i l e doesn ’ t ex i s t , so pass

and go to the next one
310 cont inue
311
312
313
314 # I n i t i a l i z e product ion p r o f i l e a r rays
315 produc t i on_pro f i l e = np . z e r o s (20)
316
317 with open ( rsm_fi le , ’ r ’ ) as f :
318 l i n e s = f . r e a d l i n e s ( )
319
320 f o r d in range (0 , 20) :
321 # Extract cumulat ive o i l

product ion data
322 keyword = ’FOPT’
323 kw_line = next ( ( index f o r ( index

, l i n e ) in enumerate ( l i n e s )
i f keyword in l i n e ) , None )

324 p r i n t ( f ’ kw_line : ␣{kw_line} ’ )
325 wanted_line = 2 + in t (0 ) +

kw_line
326 pa r t i c u l a r_ l i n e = l i n e s [

wanted_line ]
327 x = pa r t i c u l a r_ l i n e . s p l i t ( )
328 search_st r ing = ’ ∗10∗∗3 ’
329
330 i f any ( search_st r ing in element

f o r element in x ) :
331 wanted_line1 = 7 + d +

kw_line
332 pa r t i c u l a r_ l i n e = l i n e s [

wanted_line1 ]
333 x1 = pa r t i c u l a r_ l i n e . s p l i t ( )
334 produc t i on_pro f i l e [ d ] =

f l o a t ( x1 [ 8 ] ) ∗ 10∗∗3
335 #
336 e l s e :
337 wanted_line1 = 6 + d +
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kw_line
338 pa r t i c u l a r_ l i n e = l i n e s [

wanted_line1 ]
339 x1 = pa r t i c u l a r_ l i n e . s p l i t ( )
340 produc t i on_pro f i l e [ d ] = f l o a t

( x1 [ 8 ] )
341
342
343
344 # Create a DataFrame to s t o r e the

product ion p r o f i l e data
345 d f_o i l = pd . DataFrame ( data={ ’Year ’ :

range (1 , 21) , ’ cumulat ive ␣ o i l ␣
product ion (Sm3) ’ : p roduc t i on_pro f i l e
})

346
347 produc t i on_pro f i l e 1 = np . z e r o s (20)
348 with open ( rsm_fi le , ’ r ’ ) as f :
349
350 l i n e s = f . r e a d l i n e s ( )
351 f o r d in range (0 , 20) :
352 # Extract cumulat ive water

product ion data
353 keyword1 = ’FWPT’
354 kw_line1 = next ( ( index f o r (

index , l i n e ) in enumerate (
l i n e s ) i f keyword1 in l i n e ) ,
None )

355 #kw_line1 = next ( ( index f o r (
index , l i n e ) in enumerate (
l i n e s ) i f keyword1 in l i n e ) ,
None )

356 p r i n t ( f ’ kw_line1 : ␣{kw_line1} ’ )
357 wanted_line1 = 2 + in t (0 ) +

kw_line1
358 pa r t i c u l a r_ l i n e 1 = l i n e s [

wanted_line1 ]
359 x1 = pa r t i c u l a r_ l i n e 1 . s p l i t ( )
360 search_st r ing = ’ ∗10∗∗3 ’
361
362 i f any ( search_st r ing in element

f o r element in x1 ) :
363 wanted_line2 = 7 + d +

kw_line1
364 pa r t i c u l a r_ l i n e 2 = l i n e s [

wanted_line2 ]
365 x2 = pa r t i c u l a r_ l i n e 2 . s p l i t

( )
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366 #pr in t ( x )
367 produc t i on_pro f i l e 1 [ d ] =

f l o a t ( x2 [ 6 ] ) ∗ 10∗∗3
368 e l s e :
369 wanted_line2 = 6 + d +

kw_line1
370 pa r t i c u l a r_ l i n e 2 = l i n e s [

wanted_line2 ]
371 x2 = pa r t i c u l a r_ l i n e 2 . s p l i t

( )
372 #pr in t ( x )
373 produc t i on_pro f i l e 1 [ d ] =

f l o a t ( x2 [ 6 ] )
374
375
376 # Create a DataFrame to hold the

product ion p r o f i l e data
377
378 df_water = pd . DataFrame ( data={ ’Year ’ :

range (1 , 21) , ’ cumulat ive ␣water ␣
product ion (Sm3) ’ : p roduc t i on_pro f i l e 1
})

379
380
381 produc t i on_pro f i l e 2 = np . z e r o s (20)
382 with open ( rsm_fi le , ’ r ’ ) as f :
383 l i n e s = f . r e a d l i n e s ( )
384 f o r d in range (0 , 20) :
385 # Extract cumulat ive gas

product ion data
386 keyword1 = ’FGPT’
387 kw_line1 = next ( ( index f o r (

index , l i n e ) in enumerate (
l i n e s ) i f keyword1 in l i n e ) ,
None )

388 #kw_line1 = next ( ( index f o r (
index , l i n e ) in enumerate (
l i n e s ) i f keyword1 in l i n e ) ,
None )

389 p r i n t ( f ’ kw_line1 : ␣{kw_line1} ’ )
390 wanted_line1 = 2 + in t (0 ) +

kw_line1
391 pa r t i c u l a r_ l i n e 1 = l i n e s [

wanted_line1 ]
392 x1 = pa r t i c u l a r_ l i n e 1 . s p l i t ( )
393 search_st r ing = ’ ∗10∗∗3 ’
394
395 i f any ( search_st r ing in element
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f o r element in x1 ) :
396 wanted_line2 = 7 + d +

kw_line1
397 pa r t i c u l a r_ l i n e 2 = l i n e s [

wanted_line2 ]
398 x2 = pa r t i c u l a r_ l i n e 2 . s p l i t

( )
399 #pr in t ( x )
400 produc t i on_pro f i l e 1 [ d ] =

f l o a t ( x2 [ 6 ] ) ∗ 10∗∗3
401 e l s e :
402 wanted_line2 = 6 + d +

kw_line1
403 pa r t i c u l a r_ l i n e 2 = l i n e s [

wanted_line2 ]
404 x2 = pa r t i c u l a r_ l i n e 2 . s p l i t

( )
405 #pr in t ( x )
406 produc t i on_pro f i l e 1 [ d ] =

f l o a t ( x2 [ 6 ] )
407
408 # Create a DataFrame to hold the

product ion p r o f i l e data
409
410 df_gas = pd . DataFrame ( data={ ’Year ’ :

range (1 , 21) , ’ cumulat ive ␣ gas ␣
product ion (Sm3) ’ : p roduc t i on_pro f i l e 2
})

411
412
413 Proprof = f ’E: /OLYMPUS_{ i }/OLYMPUS_{ i }_{

j }/OLYMPUS_{ i }/ product ion_pro f i l e s_ { i
}_{ j } . x l sx ’

414
415 # Save product ion p r o f i l e s to an Excel

f i l e
416 with pd . ExcelWriter ( f ’E: /OLYMPUS_{ i }/

OLYMPUS_{ i }_{ j }/OLYMPUS_{ i }/
product ion_pro f i l e s_ { i }_{ j } . x l sx ’ ) as
wr i t e r :

417 df_water . to_excel ( wr i te r , sheet_name
=’Water ’ , index=False )

418 d f_o i l . to_excel ( wr i te r , sheet_name=’
Oi l ’ , index=False )

419 df_gas . to_excel ( wr i te r , sheet_name=’
Gas ’ , index=False )

420
421 # Read the Excel f i l e and perform
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c a l c u l a t i o n s

422 df = pd . read_excel ( Proprof , sheet_name=’
Oi l ’ )

423
424 # Calcu la te the yea r l y o i l product ion
425 year ly_oi l_product ion = df [ ’ cumulat ive ␣

o i l ␣ product ion (Sm3) ’ ] − df [ ’
cumulat ive ␣ o i l ␣ product ion (Sm3) ’ ] .
s h i f t ( f i l l _ v a l u e =0)

426
427 # Add the new column to the DataFrame
428 df [ ’ y ea r l y ␣ o i l ␣ product ion (Sm3) ’ ] =

year ly_oi l_product ion
429
430
431 # Write the DataFrame with the new

column to the same Excel f i l e and
shee t

432 with pd . ExcelWriter ( Proprof , eng ine=’
openpyxl ’ , mode=’ a ’ , i f_shee t_ex i s t s=
’ r ep l a c e ’ ) as wr i t e r :

433 df . to_excel ( wr i te r , sheet_name=’ Oi l
’ , index=False )

434
435 # Repeat the same s t ep s f o r water and

gas
436 df = pd . read_excel ( Proprof , sheet_name=’

Water ’ )
437
438
439 yearly_water_production = df [ ’ cumulat ive

␣water ␣ product ion (Sm3) ’ ] − df [ ’
cumulat ive ␣water ␣ product ion (Sm3) ’ ] .
s h i f t ( f i l l _ v a l u e =0)

440
441
442 df [ ’ y ea r l y ␣water ␣ product ion (Sm3) ’ ] =

yearly_water_production
443
444
445
446 with pd . ExcelWriter ( Proprof , eng ine=’

openpyxl ’ , mode=’ a ’ , i f_shee t_ex i s t s=
’ r ep l a c e ’ ) as wr i t e r :

447 df . to_excel ( wr i te r , sheet_name=’
Water ’ , index=False )

448
449 df = pd . read_excel ( Proprof , sheet_name=’
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Gas ’ )
450
451
452 yearly_gas_production = df [ ’ cumulat ive ␣

gas ␣ product ion (Sm3) ’ ] − df [ ’
cumulat ive ␣ gas ␣ product ion (Sm3) ’ ] .
s h i f t ( f i l l _ v a l u e =0)

453
454
455 df [ ’ y ea r l y ␣ gas ␣ product ion (Sm3) ’ ] =

yearly_gas_production
456 # Write the DataFrame to an Excel f i l e

and save i t
457
458
459 with pd . ExcelWriter ( Proprof , eng ine=’

openpyxl ’ , mode=’ a ’ , i f_shee t_ex i s t s=
’ r ep l a c e ’ ) as wr i t e r :

460 df . to_excel ( wr i te r , sheet_name=’Gas
’ , index=False )

461
462
463 r e s u l t s = {}
464
465
466 f o r l in i npu t_ l i s t :
467 f o r s in range (1 , j r ange+1) :
468 propro f2 =f ’E: /OLYMPUS_{ l }/OLYMPUS_{ l }_{

s }/OLYMPUS_{ l }/ product ion_pro f i l e s_ { l
}_{ s } . x l sx ’

469
470 i f not os . path . e x i s t s ( propro f2 ) :
471 # RSM f i l e doesn ’ t ex i s t , so pass

and go to the next one
472 cont inue
473
474
475
476 # Read the Excel f i l e and ex t r a c t the ’

o i l ’ shee t
477 df = pd . read_excel ( proprof2 , sheet_name=

’ Oi l ’ )
478
479 # Calcu la te the sum of the va lue s in the

’ o i l product ion ’ column
480 t o t a l_o i l = df [ ’ y ea r l y ␣ o i l ␣ product ion (

Sm3) ’ ] . sum( )
481
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482 # Store the r e s u l t in the d i c t i ona ry
483 name = ’OLYMPUS’+f ’_{ l }_{ s } ’
484 r e s u l t s [ name ] = 100∗( t o t a l_o i l /49000000)
485
486 # Create a new DataFrame from the

r e s u l t s d i c t i ona ry
487 new_df = pd . DataFrame . from_dict ( r e s u l t s ,

o r i e n t=’ index ’ , columns=[ ’ Recovery␣
f a c t o r ’ ] )

488
489 # Add a ’name ’ column
490 new_df [ ’name ’ ] = new_df . index . s t r .

r ep l a c e ( ’OLYMPUS_’ , ’OLYMPUS_’ , regex
=True ) . s t r . r ep l a c e ( ’ . x l sx ’ , ’ ’ , regex
=False )

491
492
493 # Write the new DataFrame to a new Excel

f i l e
494 output_file_name = ’E: /OLYMPUS_Recovery .

x l sx ’
495 new_df . to_excel ( output_file_name , index=

False , header=True )
496
497 # Read the data from the Excel f i l e
498 input_file_name = ’E: /OLYMPUS_Recovery .

x l sx ’
499 df = pd . read_excel ( input_file_name )
500
501 # Group the dataframe by the f i r s t part

o f the name ( i . e . OLYMPUS_{ i })
502 groups = df . groupby ( df [ ’name ’ ] . s t r . s p l i t

( ’_ ’ , expand=True ) [ 1 ] )
503
504 # Write each group to a separa t e shee t

in a new Excel f i l e
505 output_file_name = ’E: /

Recovery_separated . x l sx ’
506 with pd . ExcelWriter ( output_file_name ) as

wr i t e r :
507 f o r name , group in groups :
508 sheet_name = f ’OLYMPUS_{name} ’
509 group . to_excel ( wr i te r ,

sheet_name=sheet_name , index=
False )

510
511
512
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513
514 # Create an empty l i s t to s t o r e the dataframes

f o r o i l , water and gas product ion
515 o i l_d f_ l i s t = [ ]
516 water_df_l i st = [ ]
517 gas_df_l i s t = [ ]
518
519 f o r i in i npu t_ l i s t :
520 f o r j in range (1 , j range+1) :
521 propro f3 =f ’E: /OLYMPUS_{ i }/OLYMPUS_{ i }_{

j }/OLYMPUS_{ i }/ product ion_pro f i l e s_ { i
}_{ j } . x l sx ’

522
523 i f not os . path . e x i s t s ( propro f3 ) :
524 # RSM f i l e doesn ’ t ex i s t , so pass

and go to the next one
525 cont inue
526
527
528 # Read the o i l , water and gas

product ion data from the Excel f i l e
529 o i l_d f = pd . read_excel ( proprof3 ,

sheet_name=’ Oi l ’ )
530 oil_column_name = f ’ Oil_production_{ i }_{

j } ’
531 o i l_d f = o i l_d f . i l o c [ : , 2 ] . rename (

oil_column_name )
532 o i l_d f_ l i s t . append ( o i l_d f )
533
534 water_df = pd . read_excel ( proprof3 ,

sheet_name=’Water ’ )
535 water_column_name = f ’Water_production_{

i }_{ j } ’
536 water_df = water_df . i l o c [ : , 2 ] . rename (

water_column_name )
537 water_df_l i st . append ( water_df )
538
539 gas_df = pd . read_excel ( proprof3 ,

sheet_name=’Gas ’ )
540 gas_column_name = f ’Gas_production_{ i }_{

j } ’
541 gas_df = gas_df . i l o c [ : , 2 ] . rename (

gas_column_name)
542 gas_df_l i s t . append ( gas_df )
543
544
545 # Concatenate a l l o i l , water and gas

dataframes in to a s i n g l e dataframe
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546 o i l_d f_ f i na l = pd . concat ( o i l_d f_ l i s t , ax i s

=1)
547
548 water_df_final = pd . concat ( water_df_list ,

ax i s=1)
549
550 gas_df_f inal = pd . concat ( gas_df_l ist , ax i s

=1)
551
552 # Write the o i l , water and gas dataframes

to a new Excel f i l e
553 output_f i l e = f ’E: /

production_summary_OLYMPUS{ i } . x l sx ’
554
555
556 with pd . ExcelWriter ( output_f i l e ) as wr i t e r :
557 o i l_d f_ f i na l . index += 1
558 water_df_final . index += 1
559 gas_df_f inal . index += 1
560
561 # Write to Excel f i l e
562 o i l_d f_ f i na l . to_excel ( wr i te r ,

sheet_name=’ Oil_production ’ , index=
True )

563 water_df_final . to_excel ( wr i te r ,
sheet_name=’Water_production ’ , index
=True )

564 gas_df_f inal . to_excel ( wr i te r ,
sheet_name=’ Gas_production ’ , index=
True )

565
566
567
568
569
570
571
572 de f run ( s e l f ) :
573
574 # The ‘ run ‘ method i s a part o f a c l a s s and i s used

to s t a r t the main event loop o f the GUI
app l i c a t i o n .

575 # I t runs i n d e f i n i t e l y un t i l the GUI window i s
c l o s ed by the user .

576 s e l f . root . mainloop ( )
577
578
579 i f __name__ == ’__main__ ’ :
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580 gui = MyGUI( )
581 gui . run ( )
582 # This i s the entry po int o f the s c r i p t when i t i s run

as a standa lone program .
583 # I t c r e a t e s an in s t ance o f the ‘MyGUI‘ c l a s s and c a l l s

i t s ‘ run ‘ method to s t a r t the GUI app l i c a t i o n .
584 # The ‘ i f __name__ == ’__main__ ’ : ‘ c ond i t i on ensure s

that t h i s b lock o f code i s only executed when the
s c r i p t i s run d i r e c t l y ,

585 # and not when i t i s imported as a module .

5.2 Appendix A - 2: NPV Calculation and Result visual-
ization

1
2 import os
3 import numpy as np
4 import pandas as pd
5 import t k i n t e r as tk
6 import seaborn as sns
7 import openpyxl
8 import matp lo t l i b . pyplot as p l t
9 import re

10 from tk i n t e r import f i l e d i a l o g
11
12
13 de f NPV_summary( s e l f ) :
14 input_str = s e l f . i range_entry . get ( )
15 i npu t_ l i s t = input_str . s p l i t ( " , " )
16 i npu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in inpu t_ l i s t ]
17 j range = in t ( s e l f . j range_entry . get ( ) )
18 # Create a new workbook to s t o r e the r e s u l t s
19 result_workbook = openpyxl .Workbook ( )
20 resu l t_worksheet = result_workbook . a c t i v e
21
22 # Set the column header f o r the r e s u l t worksheet
23 resu l t_worksheet [ ’A1 ’ ] = ’Name ’
24 resu l t_worksheet [ ’B1 ’ ] = ’ Value ($M) ) ’
25
26 # I t e r a t e through the i npu t_ l i s t and proce s s each Excel

f i l e
27 f o r D in inpu t_ l i s t :
28 f o r M in range (1 , j r ange+1) :
29
30 dir_path =f "E: /OLYMPUS_{D}/OLYMPUS_{D}_{M}/

OLYMPUS_{D}"
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31
32 i f not os . path . e x i s t s ( dir_path ) :
33 # RSM f i l e doesn ’ t ex i s t , so pass and go

to the next one
34 cont inue
35
36 # Construct the f i l e path and load the Excel

f i l e
37 npv_file_path = f "{dir_path }/NPV_Calc_{D}_{M} .

x l sx "
38 i f not os . path . e x i s t s ( npv_file_path ) :
39 # RSM f i l e doesn ’ t ex i s t , so pass and go

to the next one
40 cont inue
41 npv_workbook = openpyxl . load_workbook (

npv_file_path )
42
43 # c o l l e c t the f i n a l NPV value
44 # Get the a c t i v e worksheet from the NPV

workbook
45 npv_worksheet = npv_workbook . a c t i v e
46
47 # Var iab le to s t o r e the l a s t non−zero c e l l in

the worksheet
48 last_non_zero_cel l = None
49
50 # I t e r a t e over rows in r e v e r s e order , s t a r t i n g

from the l a s t row
51 f o r i in range ( npv_worksheet .max_row , 0 , −1) :
52 # Get the c e l l at the l a s t column o f the

cur rent row
53 c e l l = npv_worksheet . c e l l ( row=i , column=

npv_worksheet . max_column)
54 # Get the value o f the c e l l
55 value = c e l l . va lue
56
57 # Check i f the value i s non−zero
58 i f va lue != 0 :
59 # Store the r e f e r e n c e to the l a s t non−

zero c e l l
60 last_non_zero_cel l = c e l l
61 # Exit the loop as we have found the

l a s t non−zero value
62 break
63 # Check i f a non−zero c e l l was found
64 i f last_non_zero_cel l i s not None :
65 # Get the value from the l a s t non−zero

c e l l
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66 value = last_non_zero_cel l . va lue
67
68
69 # Write the r e s u l t to the r e s u l t worksheet
70 name = f "OLYMPUS_{D}_{M}"
71 row = (name , va lue )
72 resu l t_worksheet . append ( row )
73
74 # Save the r e s u l t workbook to a f i l e
75 result_workbook . save ( ’E: /OLYMPUS_NPV. x l sx ’ )
76
77 # Write the DataFrame to the same Excel f i l e
78 input_f i le_path = ’E: /OLYMPUS_NPV. x l sx ’
79 df = pd . read_excel ( input_f i le_path )
80 df . to_excel ( ’E: /OLYMPUS_NPV. x l sx ’ , index=False , header=

True )
81
82 # Group the DataFrame by the second component o f the ’

name ’ column
83 groups = df . groupby ( df [ ’Name ’ ] . s t r . s p l i t ( ’_ ’ , expand=

True ) [ 1 ] )
84
85 # Write each group to a separa t e shee t in a new Excel

f i l e
86 output_file_name = ’E://NPV_separated . x l sx ’
87 with pd . ExcelWriter ( output_file_name ) as wr i t e r :
88 f o r name , group in groups :
89
90 # Create a shee t name f o r the cur r ent group
91 sheet_name = f ’OLYMPUS_{name} ’
92
93 # Write the cur r ent group to a new shee t in the

Excel f i l e
94 group . to_excel ( wr i te r , sheet_name=sheet_name ,

index=False )
95
96
97
98 c l a s s MyGUI:
99 de f __init__( s e l f ) :

100 s e l f . root = tk .Tk( )
101 s e l f . frame1 = s e l f . create_frame1 ( )
102 s e l f . frame4 = s e l f . create_frame4 ( )
103 s e l f . frame5 = s e l f . create_frame5 ( )
104 #s e l f . add_logo ( )
105 s e l f . root . geometry ( "900x700" )
106 s e l f . root . t i t l e ( "PPG" ) # Set the window t i t l e
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107 #s e l f . root . iconbitmap ("C:/ Users / sarah /OneDrive/

Desktop/Thes i s /NTNU_logo_400x400 . i c o ") # Set
the window icon

108
109 s e l f . e x c e l_ f i l e = None
110 s e l f . sheet_name = None
111 s e l f . sheet_data = None
112
113
114 de f create_frame1 ( s e l f ) :
115 frame1 = tk . Frame( s e l f . root )
116 frame1 . pack ( )
117
118 # F i r s t column
119 co l 1 = tk . Frame( frame1 )
120 co l 1 . pack ( s i d e=tk .LEFT, padx=10, pady=5)
121
122 s e l f . t i t l e 1_ l a b e l = tk . Label ( co l1 , t ex t="General ␣

Setup" , f ont = ( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) , f g=’
#149998 ’ )

123 s e l f . t i t l e 1_ l a b e l . pack ( anchor=tk .CENTER, padx=5,
pady=5 ,)

124
125 # Label and entry f o r i r ange
126 s e l f . i r ange_labe l = tk . Label ( co l1 , t ex t="Enter ␣a␣

comma−separated ␣ l i s t ␣ o f ␣ r e a l i z a t i o n s : " )
127 s e l f . i r ange_labe l . pack ( anchor=tk .W, padx=5, pady

=5 ,)
128 s e l f . i range_entry = tk . Entry ( co l 1 )
129 s e l f . i range_entry . i n s e r t ( tk .END, " 40 ,50 " )
130 s e l f . i range_entry . pack ( anchor=tk .W, padx=5, pady

=5 ,)
131
132 # Label and entry f o r j range
133 s e l f . j r ange_labe l = tk . Label ( co l1 , t ex t=’ Enter ␣ the ␣

number␣ o f ␣BHP␣ samples : ’ )
134 s e l f . j r ange_labe l . pack ( anchor=tk .W, padx=10, pady

=5, )
135 s e l f . j range_entry = tk . Entry ( co l 1 )
136 s e l f . j range_entry . i n s e r t ( tk .END, "1" )
137 s e l f . j range_entry . pack ( anchor=tk .W, padx=10, pady

=5, )
138
139 # Label and entry f o r pre product ion years
140 s e l f . we l l_ labe l = tk . Label ( co l1 , t ex t=’ Enter ␣ the ␣

number␣ years ␣ be f o r e ␣ s t a r t i n g ␣ the ␣ product ion : ’ )
141 s e l f . we l l_ labe l . pack ( anchor=tk .W, padx=10, pady=5 ,)
142 s e l f . wel l_entry = tk . Entry ( co l 1 )
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143 s e l f . wel l_entry . i n s e r t ( tk .END, "5" )
144 s e l f . wel l_entry . pack ( anchor=tk .W, padx=10, pady=5,

)
145
146 # Label and entry f o r product ion years
147 s e l f . pro_label = tk . Label ( co l1 , t ex t=’ Enter ␣ the ␣

number␣ o f ␣ product ion ␣ years : ’ )
148 s e l f . pro_label . pack ( anchor=tk .W, padx=10, pady=5, )
149 s e l f . pro_entry = tk . Entry ( co l 1 )
150 s e l f . pro_entry . i n s e r t ( tk .END, "25" )
151 s e l f . pro_entry . pack ( anchor=tk .W, padx=10, pady=5 ,)
152
153
154 # Second column
155 co l 2 = tk . Frame( frame1 )
156 co l 2 . pack ( s i d e=tk .LEFT, padx=10, pady=5)
157
158 s e l f . t i t l e 2_ l a b e l = tk . Label ( co l2 , t ex t="NPV␣ va lue s

" , f ont = ( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) , f g=’#149998 ’ )
159 s e l f . t i t l e 2_ l a b e l . pack ( anchor=tk .W, padx=10, pady

=5 ,)
160
161 # Label and entry f o r d r i l l i n g co s t
162 s e l f . d r i l l c o s t_ l a b e l = tk . Label ( co l2 , t ex t=’

D r i l l i n g ␣ co s t ␣ f o r ␣ product ion ␣ we l l s ($M) ’ )
163 s e l f . d r i l l c o s t_ l a b e l . pack ( anchor=tk .W, padx=10,

pady=5)
164 s e l f . d r i l l c o s t_en t r y = tk . Entry ( co l 2 )
165 s e l f . d r i l l c o s t_en t r y . i n s e r t ( tk .END, ’ 100 ’ )
166 s e l f . d r i l l c o s t_en t r y . pack ( anchor=tk .W, padx=10,

pady=5)
167
168 # Label and entry f o r p ip ing co s t
169 s e l f . p ipco s t_ labe l = tk . Label ( co l2 , t ex t=’ Piping ␣

co s t ($M) ’ )
170 s e l f . p ipco s t_ labe l . pack ( anchor=tk .W, padx=10, pady

=5)
171 s e l f . p ipcost_entry = tk . Entry ( co l 2 )
172 s e l f . p ipcost_entry . i n s e r t ( tk .END, "500" )
173 s e l f . p ipcost_entry . pack ( anchor=tk .W, padx=10, pady

=5)
174
175 # Label and entry f o r p ip ing years
176 s e l f . p ip t_labe l = tk . Label ( co l2 , t ex t=’ Piping ␣ years

’ )
177 s e l f . p ip t_labe l . pack ( anchor=tk .W, padx=10, pady=5)
178 s e l f . pipt_entry = tk . Entry ( co l 2 )
179 s e l f . pipt_entry . i n s e r t ( tk .END, "3" )
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180 s e l f . pipt_entry . pack ( anchor=tk .W, padx=10, pady=5)
181
182 # Label and entry f o r mani fo ld co s t
183 s e l f . mfcost_labe l = tk . Label ( co l2 , t ex t=’ Manifold ␣

co s t ($M) ’ )
184 s e l f . mfcost_labe l . pack ( anchor=tk .W, padx=10, pady

=5)
185 s e l f . mfcost_entry = tk . Entry ( co l 2 )
186 s e l f . mfcost_entry . i n s e r t ( tk .END, "200" )
187 s e l f . mfcost_entry . pack ( anchor=tk .W, padx=10, pady

=5)
188
189 # Label and entry f o r number o f mani fo lds
190 s e l f . mfnum_label = tk . Label ( co l2 , t ex t=’Number␣ o f ␣

mani fo lds ’ )
191 s e l f . mfnum_label . pack ( anchor=tk .W, padx=10, pady=5)
192 s e l f . mfnum_entry = tk . Entry ( co l 2 )
193 s e l f . mfnum_entry . i n s e r t ( tk .END, "3" )
194 s e l f . mfnum_entry . pack ( anchor=tk .W, padx=10, pady=5)
195
196 # Label and entry f o r f i x ed OPEX cos t
197 s e l f . OPEX_label = tk . Label ( co l2 , t ex t=’ Enter ␣ the ␣

OPEX’ )
198 s e l f . OPEX_label . pack ( anchor=tk .W, padx=10, pady=5)
199 s e l f . OPEX_entry = tk . Entry ( co l 2 )
200 s e l f . OPEX_entry . i n s e r t ( tk .END, "100" )
201 s e l f . OPEX_entry . pack ( anchor=tk .W, padx=10, pady=5)
202
203 co l 3 = tk . Frame( frame1 )
204 co l 3 . pack ( s i d e=tk .LEFT, padx=10, pady=5)
205
206 # Label and entry f o r o i l p r i c e
207 s e l f . o i l_ l ab e l = tk . Label ( co l3 , t ex t=’ Oi l ␣ p r i c e ( $/

Sm3) ’ )
208 s e l f . o i l_ l ab e l . pack ( anchor=tk .W, padx=10, pady=5)
209 s e l f . o i l_entry = tk . Entry ( co l 3 )
210 s e l f . o i l_entry . i n s e r t ( tk .END, "760" )
211 s e l f . o i l_entry . pack ( anchor=tk .W, padx=10, pady=5)
212
213 # Label and entry f o r gas p r i c e
214 s e l f . gas_labe l = tk . Label ( co l3 , t ex t=’ gas ␣ p r i c e ( $/

Sm3) ’ )
215 s e l f . gas_labe l . pack ( anchor=tk .W, padx=10, pady=5)
216 s e l f . gas_entry = tk . Entry ( co l 3 )
217 s e l f . gas_entry . i n s e r t ( tk .END, "76" )
218 s e l f . gas_entry . pack ( anchor=tk .W, padx=10, pady=5)
219
220 # Label and entry f o r water expenses
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221 s e l f . wcost_label = tk . Label ( co l3 , t ex t=’Water␣ co s t (
$/Sm3) ’ )

222 s e l f . wcost_label . pack ( anchor=tk .W, padx=10, pady=5)
223 s e l f . wcost_entry = tk . Entry ( co l 3 )
224 s e l f . wcost_entry . i n s e r t ( tk .END, "50" )
225 s e l f . wcost_entry . pack ( anchor=tk .W, padx=10, pady=5)
226
227 # Label and entry f o r i n t e r e s t r a t e
228 s e l f . i n t e r e s t_ l ab e l = tk . Label ( co l3 , t ex t=’ i n t e r e s t

␣ ra t e ’ )
229 s e l f . i n t e r e s t_ l ab e l . pack ( anchor=tk .W, padx=10, pady

=5)
230 s e l f . i n t e r e s t_ent ry = tk . Entry ( co l 3 )
231 s e l f . i n t e r e s t_ent ry . i n s e r t ( tk .END, "5" )
232 s e l f . i n t e r e s t_ent ry . pack ( anchor=tk .W, padx=10, pady

=5)
233
234
235 re turn frame1
236
237
238
239 # Frame f o r NPV button
240 de f create_frame4 ( s e l f ) :
241 frame4 = tk . Frame( s e l f . root )
242 frame4 . pack ( )
243 s e l f . NPV_button = tk . Button ( frame4 , t ex t="NPV␣" ,

command=s e l f . run_function4 , f ont=( ’ Ca l i b r i ’ , 12 ,
’ bold ’ ) )

244 s e l f . NPV_button . pack ( pady=10)
245 re turn frame4
246
247
248 # Frame f o r r e s u l t v i s u a l i z a t i o n
249 de f create_frame5 ( s e l f ) :
250 frame5 = tk . Frame( s e l f . root )
251 s e l f . t i t l e 1_ l a b e l = tk . Label ( t ex t="Result ␣

V i s u a l i z a t i o n " , f ont = ( ’ Ca l i b r i ’ , 12 , ’ bold ’ ) ,
f g=’#149998 ’ )

252 s e l f . t i t l e 1_ l a b e l . pack ( padx=5, pady=5 ,)
253 frame5 . pack ( )
254
255 s e l f . s e l e c t e d_ f i l e = tk . Str ingVar ( )
256 s e l f . s e l e c t e d_ f i l e_ l a b e l = tk . Label ( frame5 ,

t e x t v a r i a b l e=s e l f . s e l e c t e d_ f i l e )
257 s e l f . s e l e c t e d_ f i l e_ l a b e l . g r i d ( row=0, column=2 , padx

=10, pady=10)
258
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259 s e l f . s e l e c t ed_shee t = tk . Str ingVar ( )
260 s e l f . s e l e c t ed_shee t_labe l = tk . Label ( frame5 ,

t e x t v a r i a b l e=s e l f . s e l e c t ed_shee t )
261 s e l f . s e l e c t ed_shee t_labe l . g r i d ( row=1, column=2,

padx=10, pady=10 ,)
262
263 # cr ea t e widgets
264 s e l f . f i l e_ l a b e l = tk . Label ( frame5 , t ex t="Excel ␣ f i l e

: " )
265 s e l f . f i l e_but ton = tk . Button ( frame5 , t ex t=" Se l e c t ␣

f i l e " , command=s e l f . s e l e c t_ f i l e )
266 s e l f . shee t_labe l = tk . Label ( frame5 , t ex t="Sheet : " )
267 s e l f . sheet_var = tk . Str ingVar ( )
268 s e l f . sheet_dropdown = tk . OptionMenu ( frame5 , s e l f .

sheet_var , [ ] )
269 s e l f . sheet_dropdown . c on f i gu r e ( s t a t e=" d i s ab l ed " )
270 s e l f . seperated_NPV_button = tk . Button ( frame5 , t ex t=

"Seperated ␣NPV␣Plot " , command=s e l f .NPV_sep)
271 s e l f . seperated_RF_button = tk . Button ( frame5 , t ex t="

Seperated ␣RF␣Plot " , command=s e l f . RF_sep)
272 s e l f . total_NPV_button = tk . Button ( frame5 , t ex t="

Total ␣NPV␣Plot " , command=s e l f .NPV_tot)
273 s e l f . total_RF_button = tk . Button ( frame5 , t ex t="

Total ␣RF␣Plot " , command=s e l f . RF_tot )
274
275 # layout widgets
276 s e l f . f i l e_ l a b e l . g r i d ( row=0, column=0, padx=10, pady

=10)
277 s e l f . f i l e_but ton . g r i d ( row=0, column=1, padx=10,

pady=10)
278 s e l f . shee t_labe l . g r i d ( row=1, column=0, padx=10,

pady=10)
279 s e l f . sheet_dropdown . g r id ( row=1, column=1, padx=5,

pady=5)
280 s e l f . seperated_NPV_button . g r id ( row=20, column=1,

padx=20, pady=20)
281 s e l f . seperated_RF_button . g r id ( row=20, column=2,

padx=20, pady=20)
282 s e l f . total_NPV_button . g r i d ( row=20, column=3, padx

=20, pady=20)
283 s e l f . total_RF_button . g r i d ( row=20, column=4, padx

=20, pady=20)
284
285
286 re turn frame5
287
288 de f s e l e c t_ f i l e ( s e l f ) :
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289 s e l f . e x c e l_ f i l e = f i l e d i a l o g . askopenf i l ename (
f i l e t y p e s =[( "Excel ␣ f i l e s " , " ∗ . x l s x " ) ] )

290 i f s e l f . e x c e l_ f i l e :
291 s e l f . update_sheet_dropdown ( )
292 s e l f . sheet_dropdown . c on f i gu r e ( s t a t e="normal" )
293
294 # Add the f o l l ow i ng l i n e s to update the

s e l e c t e d f i l e l a b e l
295 s e l f . s e l e c t e d_ f i l e . s e t ( " Se l e c t ed ␣ f i l e : ␣" + s e l f

. e x c e l_ f i l e )
296
297 de f update_sheet_dropdown ( s e l f ) :
298 workbook = openpyxl . load_workbook ( f i l ename=s e l f .

e x c e l_ f i l e )
299 she e t s = workbook . sheetnames
300 s e l f . sheet_dropdown [ "menu" ] . d e l e t e (0 , "end" )
301 f o r shee t in she e t s :
302 s e l f . sheet_dropdown [ "menu" ] . add_command( l a b e l=

sheet , command=lambda s=shee t : s e l f .
s e l e c t_shee t ( s ) )

303
304 de f s e l e c t_shee t ( s e l f , sheet_name ) :
305 s e l f . sheet_name = sheet_name
306 s e l f . s e l e c t ed_shee t . s e t ( " Se l e c t ed ␣ shee t : ␣" +

sheet_name )
307
308 de f NPV_sep( s e l f ) :
309 i f s e l f . sheet_name and s e l f . e x c e l_ f i l e :
310 workbook = openpyxl . load_workbook ( f i l ename=s e l f

. e x c e l_ f i l e )
311 shee t = workbook [ s e l f . sheet_name ]
312 data = [ ]
313 f o r row in shee t . i ter_rows (min_row=2,

values_only=True ) :
314 data . append ( row )
315 # Create the f i r s t p l o t (KDE p lo t )
316 df = pd . DataFrame ( data , columns=["name" , "Value

($M) " ] )
317
318 # Create the f i r s t p l o t (KDE p lo t )
319 kde_plot = sns . d i s p l o t ( data=df , x="Value ($M)" ,

kind="kde" , he ight=6, aspect =1.4 ,
warn_singular=False )

320
321
322 # Create the second p lo t (ECDF p lo t )
323 ecdf_plot = sns . d i s p l o t ( data=df , x=’ Value ($M) ’ ,

kind=" ecd f " , he ight=6, aspect =1.4)
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324
325 # Create the d i r e c t o r y to save the p l o t s in , i f

i t doesn ’ t a l r eady e x i s t
326 i f not os . path . e x i s t s ( "my_plots" ) :
327 os . makedirs ( "my_plots" )
328
329 # Save the p l o t s in the ’my_plots ’ d i r e c t o r y
330 kde_plot . s a v e f i g ( f ’E: / my_plots/{ s e l f . sheet_name

}_NPV_sep_kde_plot . png ’ )
331 ecdf_plot . s a v e f i g ( f "E: / my_plots/{ s e l f .

sheet_name}_NPV_sep_ecdf_plot . png" )
332
333 de f RF_sep( s e l f ) :
334 i f s e l f . sheet_name and s e l f . e x c e l_ f i l e :
335 workbook = openpyxl . load_workbook ( f i l ename=

s e l f . e x c e l_ f i l e )
336 shee t = workbook [ s e l f . sheet_name ]
337 data = [ ]
338 f o r row in shee t . i ter_rows (min_row=2,

values_only=True ) :
339 data . append ( row )
340 # Create the f i r s t p l o t (KDE p lo t )
341 df = pd . DataFrame ( data , columns=["Recovery␣

f a c t o r " , "name" ] )
342
343 # Create the f i r s t p l o t (KDE p lo t )
344 kde_plot = sns . d i s p l o t ( data=df , x="Recovery␣

f a c t o r " , kind="kde" , he ight=6, aspect =1.4 ,
common_norm=False )

345
346
347 # Create the second p lo t (ECDF p lo t )
348 ecdf_plot = sns . d i s p l o t ( data=df , x="Recovery␣

f a c t o r " , kind=" ecd f " , he ight=6, aspect
=1.4 ,common_norm=False )

349
350 # Create the d i r e c t o r y to save the p l o t s in ,

i f i t doesn ’ t a l r eady e x i s t
351 i f not os . path . e x i s t s ( "my_plots" ) :
352 os . makedirs ( "my_plots" )
353
354 # Save the p l o t s in the ’my_plots ’ d i r e c t o r y
355 kde_plot . s a v e f i g ( f ’E: / my_plots/{ s e l f .

sheet_name}RF_sep_kde_plot . png ’ )
356 ecdf_plot . s a v e f i g ( f "E: / my_plots/{ s e l f .

sheet_name}RF_sep_ecdf_plot . png" )
357
358
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359 de f NPV_tot( s e l f ) :
360 i f s e l f . sheet_name and s e l f . e x c e l_ f i l e :
361 workbook = openpyxl . load_workbook ( f i l ename=s e l f

. e x c e l_ f i l e )
362 shee t = workbook [ s e l f . sheet_name ]
363 data = [ ]
364 f o r row in shee t . i ter_rows (min_row=2,

values_only=True ) :
365 data . append ( row )
366
367 # Create f i l t e r e d dataframe
368 f i l t e r e d_d f = pd . DataFrame ( data , columns=[ ’Name

’ , ’ Value ($M) ’ ] )
369 f i l t e r e d_d f [ ’OLYMPUS_I ’ ] = f i l t e r e d_d f [ ’Name ’ ] .

s t r . e x t r a c t ( r ’ (OLYMPUS_\d+) ’ )
370
371 # Create the KDE p lo t
372 kde_plot = sns . d i s p l o t ( data=f i l t e r ed_d f , x="

Value ($M) " , hue="OLYMPUS_I" , kind="kde" ,
he ight=6, aspect =1.4 ,common_norm=False )

373 kde_plot . s a v e f i g ( ’E: / my_plots/
NPV_OLYMPUS_sets_pdf . png ’ )

374 cdf_plot = sns . d i s p l o t ( data=f i l t e r ed_d f , x="
Value ($M) " , hue="OLYMPUS_I" , kind=" ecd f " ,
he ight=6, aspect =1.4 ,common_norm=False )

375 cdf_plot . s a v e f i g ( ’E: / my_plots/
NPV_OLYMPUS_sets_cdf . png ’ )

376
377
378
379 de f RF_tot ( s e l f ) :
380 i f s e l f . sheet_name and s e l f . e x c e l_ f i l e :
381 workbook = openpyxl . load_workbook ( f i l ename=

s e l f . e x c e l_ f i l e )
382 shee t = workbook [ s e l f . sheet_name ]
383 data = [ ]
384 f o r row in shee t . i ter_rows (min_row=2,

values_only=True ) :
385 data . append ( row )
386 # Create the f i r s t p l o t (KDE p lo t )
387 df = pd . DataFrame ( data , columns=["Recovery␣

f a c t o r " , "name" ] )
388 df [ ’OLYMPUS_I ’ ] = df [ ’name ’ ] . s t r . e x t r a c t ( r ’

(OLYMPUS_\d+) ’ )
389
390 # Create the KDE p lo t
391 kde_plot = sns . d i s p l o t ( data=df , x="Recovery

␣ f a c t o r " , hue="OLYMPUS_I" , kind="kde" ,
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he ight=6, aspect =1.4)

392 kde_plot . s a v e f i g ( ’E: / my_plots/
RF_OLYMPUS_sets_pdf . png ’ )

393
394 cdf_plot = sns . d i s p l o t ( data=df , x="Recovery

␣ f a c t o r " , hue="OLYMPUS_I" , kind=" ecd f " ,
he ight=6, aspect =1.4)

395 cdf_plot . s a v e f i g ( ’E: / my_plots/
RF_OLYMPUS_sets_cdf . png ’ )

396 #g = sns . FacetGrid ( df , c o l =’OLYMPUS_set ’ ,
col_wrap=3, he ight=4)

397
398 # Plot the PDF and ECDF f o r each OLYMPUS

se t in the FacetGrid
399 #g .map( sns . h i s t p l o t , ’ Recovery f a c t o r ’ , kde

=False , s t a t =’ dens i ty ’ , alpha =0.5 , c o l o r
=’b ’ , common_norm=False )

400 #g .map( sns . e cd fp l o t , ’ Recovery f a c t o r ’ ,
alpha =0.5 , c o l o r =’ r ’ , common_norm=False )

401
402 # Set t i t l e s f o r each p l o t
403 #f o r ax in g . axes . f l a t :
404 # ax . s e t_ t i t l e ( ax . g e t_ t i t l e ( ) . r ep l a c e ("

OLYMPUS_set = " , "OLYMPUS Set ") )
405
406 # Save the p l o t
407 #p l t . s a v e f i g ( ’E: / my_plots/

RF_OLYMPUS_sets_pdf_ecdf . png ’ )
408 #p l t . show ( )
409
410
411
412
413 de f browse_directory ( s e l f ) :
414 directory_path = f i l e d i a l o g . a s kd i r e c t o r y ( ) +’ / ’
415 p r i n t ( " Se l e c t ed ␣ d i r e c t o r y : " , d irectory_path )
416 s e l f . directory_path_var . s e t ( d irectory_path )
417
418
419
420
421
422 de f run_function4 ( s e l f ) :
423
424
425 input_str = s e l f . i range_entry . get ( )
426 inpu t_ l i s t = input_str . s p l i t ( " , " )
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427 inpu t_ l i s t = [ i n t (num. s t r i p ( ) ) f o r num in
inpu t_ l i s t ]

428 j range = in t ( s e l f . j range_entry . get ( ) )
429 f o r l in i npu t_ l i s t :
430 f o r s in range (1 , j r ange+1) :
431 dir_path =f ’E: /OLYMPUS_{ l }/OLYMPUS_{ l }_{ s }/

OLYMPUS/OLYMPUS_SCH. INC ’
432
433 i f not os . path . e x i s t s ( dir_path ) :
434 # RSM f i l e doesn ’ t ex i s t , so pass and

go to the next one
435 cont inue
436 with open ( dir_path , ’ r ’ ) as f :
437 text = f . read ( )
438 # matches "Prod_" fo l l owed by one or

more d i g i t s
439 pattern = r "PROD−(\d+)"
440
441 # f i nd a l l matches o f the pattern in the

text ( to ex t r a c t number o f product ion
we l l s )

442 matches = re . f i n d a l l ( pattern , t ex t )
443
444 i f matches :
445 last_match = matches [−1] # s e l e c t the

l a s t match
446 PROD_wells = in t ( last_match ) # convert

the s t r i n g to an i n t e g e r
447
448 e l s e :
449 p r i n t ( "No␣ product ion ␣ we l l ␣␣ found" )
450
451 with open ( dir_path , ’ r ’ ) as f :
452 text = f . read ( )
453 pattern = r "INJ−(\d+)" # matches "

Prod_" fo l l owed by one or more
d i g i t s

454
455 # f i nd a l l matches o f the pattern in

the text
456 matches = re . f i n d a l l ( pattern , t ex t )
457
458 i f matches :
459 # s e l e c t the l a s t match
460 last_match = matches [−1]
461 # convert the s t r i n g to an i n t e g e r
462 INJ_wells = in t ( last_match )
463
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464
465 fi le_name = f "E: /OLYMPUS_{ l }/OLYMPUS_{ l }_{ s

}/OLYMPUS_{ l }/ product ion_pro f i l e s_ { l }_{ s
} . x l sx "

466 i f not os . path . e x i s t s ( f i le_name ) :
467 # RSM f i l e doesn ’ t ex i s t , so pass and

go to the next one
468 p r i n t ( ’ f i l e ␣ doesnt ␣ e x i s t ’ )
469 cont inue
470
471
472 # se t the columns to ex t r a c t
473 #sheet1_columns = " year ly o i l product ion (

Sm3) "
474 #sheet2_columns = " year ly water product ion (

Sm3) "
475 #sheet3_columns = " year ly gas product ion (

Sm3) "
476
477 # Read the Excel f i l e i n to a d i c t i ona ry o f

DataFrames
478 d f_o i l = pd . read_excel ( fi le_name ,

sheet_name=["Oi l " ] )
479 df_gas = pd . read_excel ( fi le_name ,

sheet_name=[ ’Gas ’ ] )
480 df_water = pd . read_excel ( fi le_name ,

sheet_name=[ "Water" ] )
481
482
483 end_idx = in t ( s e l f . pro_entry . get ( ) )
484
485
486 df_oi l_dict = pd . read_excel ( fi le_name ,

sheet_name=["Oi l " ] )
487 d f_o i l = df_oi l_dict [ "Oi l " ]
488 end_idx = in t ( s e l f . pro_entry . get ( ) )
489 oi l_data = df_o i l . i l o c [ : end_idx , 2 ] . t o l i s t

( )
490
491
492 df_gas_dict = pd . read_excel ( fi le_name ,

sheet_name=["Gas" ] )
493 df_gas = df_gas_dict [ "Gas" ]
494 end_idx = in t ( s e l f . pro_entry . get ( ) )
495 gas_data = df_gas . i l o c [ : end_idx , 2 ] . t o l i s t

( )
496
497
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498 df_water_dict = pd . read_excel ( fi le_name ,
sheet_name=["Water" ] )

499 df_water = df_water_dict [ "Water" ]
500 end_idx = in t ( s e l f . pro_entry . get ( ) )
501 water_data = df_water . i l o c [ : end_idx , 2 ] .

t o l i s t ( )
502
503
504 prod_years = len ( o i l_data )
505
506
507
508 Row = prod_years + in t ( s e l f . wel l_entry . get

( ) )
509 Column = in t (16)
510
511
512 # I n i t i a l i z e the NPV ca l c u l a t i o n matrix
513 matrix = np . z e r o s ( [Row, Column ] )
514 N_wells = INJ_wells + PROD_wells
515
516 #Number o f product ion we l l s and i n j e c t i o n

we l l s , r e s p e c t i v e l y
517 temp=N_wells
518 Dr i l l i n g_co s t = in t ( s e l f . d r i l l c o s t_en t r y .

get ( ) )
519 Piping_cost = in t ( s e l f . p ipcost_entry . get ( ) )
520 piping_years = in t ( s e l f . pipt_entry . get ( ) )
521 N_manifolds = in t ( s e l f . mfnum_entry . get ( ) )
522 Manifold_cost = in t ( s e l f . mfcost_entry . get ( )

)
523 o i l_p r i c e = in t ( s e l f . o i l_entry . get ( ) )
524 gas_price = in t ( s e l f . gas_entry . get ( ) )
525 water_cost = in t ( s e l f . wcost_entry . get ( ) )
526 OPEX = in t ( s e l f . OPEX_entry . get ( ) )
527 r = f l o a t ( s e l f . i n t e r e s t_ent ry . get ( ) ) /100
528
529
530 # Add column names
531 column_names = [ ’ Year ’ , ’Number␣ o f ␣ we l l s ’ , ’

DRILLEX($M) ’ , ’ PipingEX ($M) ’ , ’ ManifoldEx
($M) ’ , ’OPEX($M) ’ , ’ OilProd (SM3) ’ , ’
WaterProd (SM3) ’ , ’GasProd (SM3) ’ , ’ OilRev (
$M) ’ , ’GasRev($M) ’ , ’WaterEx($M) ’ , ’CAPEX
($M) ’ , ’ Cashflow ($M) ’ , ’ Discounted ␣CF($M) ’
, ’ Cumulative␣CF($M) ’ ]

532 matrix_df = pd . DataFrame (matrix , columns=
column_names )
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533
534 f o r i in range (1 ,Row+1) : #Write year s in

the matrix
535 matrix [ i −1] [0]= i
536 f o r j in range (1 , 5 ) :
537 i f temp != 0 :
538 matrix [ i −1] [1]= j
539 temp−=1
540
541 matrix [ i −1 ] [ 2 ] = Dr i l l i n g_co s t ∗matrix [ i

−1 ] [ 1 ] # c a l c u l a t e DRILLEX
542 f o r k in range ( piping_years ) : #Piping

epend i ture in 2 years
543 matrix [ k ] [ 3 ] = Piping_cost
544
545 matrix [ 0 ] [ 4 ] = N_manifolds ∗

Manifold_cost
546
547 sum = matrix [ i −1 ] [ 2 ] + matrix [ i −1 ] [ 3 ] +

matrix [ i −1 ] [ 4 ] #Ca lcu la te CAPEX
548 matrix [ i −1 ] [ 12 ] = sum
549 sum = 0
550
551
552
553 # oi l_data_f la t = l i s t ( i t e r t o o l s . chain .

f rom_iterab le ( o i l_data ) )
554 f o r L in range ( i n t ( s e l f . wel l_entry . get

( ) )−1 ,Row) :
555 # pr in t ( o i l_data )
556
557 matrix [ L ] [ 6 ] = oi l_data [ L−i n t ( s e l f .

wel l_entry . get ( ) ) ] #Import
product ion p r o f i l e , product ion
s t a r t s at year 5

558 #pr in t ( o i l_data )
559 matrix [ L ] [ 7 ] = water_data [ L−i n t ( s e l f

. wel l_entry . get ( ) ) ]
560 matrix [ L ] [ 8 ] = gas_data [ L−i n t ( s e l f .

wel l_entry . get ( ) ) ]
561 matrix [ L ] [ 5 ] = OPEX
562
563
564 matrix [ i −1 ] [ 9 ] = matrix [ i −1 ] [ 6 ] ∗

o i l_p r i c e /(1000000)
565 matrix [ i −1 ] [ 10 ] = matrix [ i −1 ] [ 8 ]∗

gas_price / 1000000
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566 matrix [ i −1 ] [ 11 ] = matrix [ i −1 ] [ 7 ]∗
water_cost / 1000000

567 matrix [ i −1 ] [ 13 ] = matrix [ i −1 ] [ 9 ] +matrix
[ i −1 ] [ 10 ] − matrix [ i −1 ] [ 11 ] − matrix
[ i −1 ] [ 5 ] − matrix [ i −1 ] [ 12 ] #Calcu la te
the cash f low

568 matrix [ i −1 ] [ 14 ] = matrix [ i −1 ] [ 13 ] / (1+r
) ∗∗ i #Ca lcu la te d i scounted cash f low

569
570 matrix [ 0 ] [ 1 5 ]= matrix [ 0 ] [ 1 4 ] #Ca lcu la t e

cumulat ive d i scounted cash f low
571 negative_cash_flow = False # Flag

va r i a b l e to t rack negat ive cash f low
572
573
574 i f negative_cash_flow :
575 # Exclude the row with negat ive cash

f low from c a l c u l a t i o n s
576 matrix [ i + 1 ] [ 1 5 ] = 0 # Set the

cumulated cash f low o f the row to
0 or handle i t as d e s i r ed

577 f o r i in range (Row − 1) :
578 i f negative_cash_flow :
579 matrix [ i + 1 ] [ 1 5 ] = 0 # Replace

a l l numbers with zero
580 cont inue
581
582 matrix [ i + 1 ] [ 1 5 ] = matrix [ i ] [ 1 5 ] +

matrix [ i + 1 ] [ 1 4 ]
583 prepro = in t ( s e l f . wel l_entry . get ( ) )
584
585 i f i >= prepro and matrix [ i + 1 ] [ 1 3 ]

< 0 :
586 p r i n t ( "Negative ␣ cash ␣ f low ␣

encountered . ␣ Stopping ␣ the ␣
proce s s . " )

587 negative_cash_flow = True
588
589
590
591
592
593 matrix_df . to_excel ( f ’E: /OLYMPUS_{ l }/

OLYMPUS_{ l }_{ s }/OLYMPUS_{ l }/NPV_Calc_{ l }
_{ s } . x l sx ’ )

594 NPV_summary( s e l f )
595
596
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597
598
599
600 de f run ( s e l f ) :
601 s e l f . frame1 . pack ( )
602 #s e l f . frame2 . pack ( )
603 #s e l f . frame3 . pack ( )
604 s e l f . frame4 . pack ( )
605 s e l f . frame5 . pack ( )
606 #s e l f . frame . pack ( )
607
608 # Pack the logo Label widget to make i t v i s i b l e
609 #s e l f . l ogo_labe l . pack ( )
610 s e l f . root . mainloop ( )
611
612 i f __name__ == ’__main__ ’ :
613 gui = MyGUI( )
614 gui . run ( )
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5.3 Appendix B : Default input values

Input Value

Number of years before production 5

Number of production years 25

Drilling costs for production wells 100

Piping cost 500

Piping years 3

Manifold cost ($M) 200

Number of manifolds 3

OPEX (fixed) 100

Oil price ($/sm3) 760

Gas price ($/sm3) 76

Water cost ($/sm3) 50

Interest rate (%) 5

Table 5.3.1: Default input values
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5.4 Appendix C : PDF and CDF curves

PDF CDF

Figure 5.4.1: OLYMPUS 8 PDF and CDF

PDF CDF

Figure 5.4.2: OLYMPUS 14 PDF and CDF
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PDF CDF

Figure 5.4.3: OLYMPUS 22 PDF and CDF

PDF CDF

Figure 5.4.4: OLYMPUS 8 - 25 Samples PDF and CDF

PDF CDF

Figure 5.4.5: OLYMPUS 8 - 75 Samples PDF and CDF



76 CHAPTER 5. APPENDICES

PDF CDF

Figure 5.4.6: OLYMPUS 8 - 125 Samples PDF and CDF

PDF CDF

Figure 5.4.7: OLYMPUS 8 - 200 Samples PDF and CDF

PDF CDF

Figure 5.4.8: OLYMPUS 14 - 25 Samples PDF and CDF
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PDF CDF

Figure 5.4.9: OLYMPUS 14 - 75 Samples PDF and CDF

PDF CDF

Figure 5.4.10: OLYMPUS 14 - 125 Samples PDF and CDF

PDF CDF

Figure 5.4.11: OLYMPUS 14 - 200 Samples PDF and CDF
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PDF CDF

Figure 5.4.12: OLYMPUS 40 - 25 Samples PDF and CDF

PDF CDF

Figure 5.4.13: OLYMPUS 40 - 75 Samples PDF and CDF

PDF CDF

Figure 5.4.14: OLYMPUS 40 - 125 Samples PDF and CDF
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PDF CDF

Figure 5.4.15: OLYMPUS 40 - 200 Samples PDF and CDF

PDF CDF

Figure 5.4.16: OLYMPUS 45 - 25 Samples PDF and CDF

PDF CDF

Figure 5.4.17: OLYMPUS 45 - 75 Samples PDF and CDF



80 CHAPTER 5. APPENDICES

PDF CDF

Figure 5.4.18: OLYMPUS 45 - 125 Samples PDF and CDF

PDF CDF

Figure 5.4.19: OLYMPUS 45 - 200 Samples PDF and CDF
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5.5 Appendix D - 1: GUI of the first script

Figure 5.5.1: Graphical user interface of the first Python script
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5.6 Appendix D - 2: GUI of the second script

Figure 5.6.1: Graphical user interface of the second Python script

82



REFERENCES

[1] RB B Bratvold, SH H Begg, and Svitlana Rasheva. “A new approach to
uncertainty quantification for decision making”. In: SPE Hydrocarbon Eco-
nomics and Evaluation Symposium. SPE. 2010, SPE–130157.

[2] Gian Luigi Chierici and Gian Luigi Chierici. “Forecasting Well and Reservoir
Performance Through the Use of Decline Curves and Identified Models”. In:
Principles of Petroleum Reservoir Engineering (1995), pp. 231–253.

[3] Mike Christie, Vasily Demyanov, and Demet Erbas. “Uncertainty quantifi-
cation for porous media flows”. In: Journal of Computational Physics 217.1
(2006), pp. 143–158.

[4] Ralf Schulze-Riegert et al. “Multiobjective optimization with application to
model validation and uncertainty quantification”. In: SPE Middle East oil
and gas show and conference. OnePetro. 2007.

[5] Jan-Erik Vinnem, Willy Røed, et al. “Offshore Risk Assessment Vol. 1”. In:
Principles, Modelling and Applications of QRA Studies (2014).

[6] Ronald E Terry, J Brandon Rogers, and Benjamin Cole Craft. Applied
petroleum reservoir engineering. Pearson Education, 2015.

[7] Reza Yousefzadeh et al. “Uncertainty Management in Reservoir Engineer-
ing”. In: Introduction to Geological Uncertainty Management in Reservoir
Characterization and Optimization: Robust Optimization and History Match-
ing. Springer, 2023, pp. 1–14.

[8] Peter R Rose et al. Risk analysis and management of petroleum exploration
ventures. Vol. 12. American Association of Petroleum Geologists Tulsa, OK,
2001.

[9] John Fanchi. Integrated reservoir asset management: principles and best
practices. Gulf Professional Publishing, 2010.

[10] James V Wertsch. “BASIL BERNSTEIN, Pedagogy, symbolic control and
identity: Theory, research, critique. London (UK) & Bristol (PA): Taylor &
Francis, 1996. Pp. xiv, 216. Hbč 40.00, pbč 14.95.” In: Language in Society
27.2 (1998), pp. 257–259.

[11] Y Zee Ma. “Uncertainty analysis in reservoir characterization and manage-
ment: How much should we know about what we don’t know?” In: (2011).

83



[12] Roger Flage et al. “Concerns, challenges, and directions of development for
the issue of representing uncertainty in risk assessment”. In: Risk analysis
34.7 (2014), pp. 1196–1207.

[13] Guillaume Caumon and André G Journel. “A framework to assess global
uncertainty: development and case studies”. In: (2004).

[14] Athanasios Papoulis. “Ambiguity function in Fourier optics”. In: JOSA 64.6
(1974), pp. 779–788.

[15] Lester G Telser. “The Lognormal Distribution, J. Aitchison and JAC Brown,
Cambridge, England: Cambridge University Press, 1957, Pp. xviii, 176.” In:
American Journal of Agricultural Economics 41.1 (1959), pp. 161–162.

[16] Peter Cunningham and Steve Begg. “Using the value of information to deter-
mine optimal well order in a sequential drilling program”. In: AAPG bulletin
92.10 (2008), pp. 1393–1402.

[17] Reidar B Bratvold, J Eric Bickel, and Hans Petter Lohne. “Value of informa-
tion in the oil and gas industry: past, present, and future”. In: SPE Reservoir
Evaluation & Engineering 12.04 (2009), pp. 630–638.

[18] Heng Li, Pallav Sarma, and Dongxiao Zhang. “A comparative study of the
probabilistic-collocation and experimental-design methods for petroleum-
reservoir uncertainty quantification”. In: SPE Journal 16.02 (2011), pp. 429–
439.

[19] Linah Mohamed, Mike Christie, and Vasily Demyanov. “Comparison of stochas-
tic sampling algorithms for uncertainty quantification”. In: SPE journal 15.01
(2010), pp. 31–38.

[20] Yasin Hajizadeh. “Population-based algorithms for improved history match-
ing and uncertainty quantification of petroleum reservoirs”. PhD thesis.
Heriot-Watt University, 2011.

[21] Semyon Fedorov, Verena Hagspiel, and Thomas Lerdahl. “Real options ap-
proach for a staged field development with optional wells”. In: Journal of
Petroleum Science and Engineering 205 (2021), p. 108837.

[22] Guido Van Rossum and Fred L Drake. Introduction to python 3: python
documentation manual part 1. CreateSpace, 2009.

[23] Freddy H Escobar et al. “Pressure and pressure derivative analysis for lin-
ear homogeneous reservoirs without using type-curve matching”. In: Nigeria
Annual International Conference and Exhibition. OnePetro. 2004.

[24] RM Fonseca et al. “Overview of the olympus field development optimization
challenge”. In: ECMOR XVI-16th European Conference on the Mathematics
of Oil Recovery. Vol. 2018. 1. EAGE Publications BV. 2018, pp. 1–10.

[25] RM Fonseca, CR Geel, and O Leeuwenburgh. “Description of OLYMPUS
reservoir model for optimization challenge”. In: Integrated Systems Approach
to Petroleum Production. Netherlands (2017).

[26] Susana MG Santos, Ana Teresa FS Gaspar, and Denis J Schiozer. “Risk
management in petroleum development projects: Technical and economic
indicators to define a robust production strategy”. In: Journal of Petroleum
Science and Engineering 151 (2017), pp. 116–127.

84



[27] Charles V Millikan and V Sidwell. “Bottom-hole pressures in oil wells”. In:
Transactions of the AIME 92.01 (1931), pp. 194–205.

[28] George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer
Science & Business Media, 2013.

[29] Jun S Liu and Jun S Liu. Monte Carlo strategies in scientific computing.
Vol. 75. Springer, 2001.

[30] Ronald W Shonkwiler and Franklin Mendivil. Explorations in monte carlo
methods. Springer Science & Business Media, 2009.

[31] Werner Wetekamp. “Net Present Value (NPV) as a tool supporting effective
project management”. In: Proceedings of the 6th IEEE International Con-
ference on Intelligent Data Acquisition and Advanced Computing Systems.
Vol. 2. IEEE. 2011, pp. 898–900.

[32] Arnaud De Myttenaere et al. “Mean absolute percentage error for regression
models”. In: Neurocomputing 192 (2016), pp. 38–48.

[33] JR Etherington and JE Ritter. “The 2007 SPE/WPC/AAPG/SPEE Petroleum
Resources Management System (PRMS)”. In: Journal of Canadian Petroleum
Technology 47.08 (2008).

85


