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Problem description

Lightweight UAVs have limited capacity for both high precision navigation hardware
and camera gimbals, making accurate georeferencing of both observations and the
UAV itself extremely challenging. Video depth estimation has the potential to solve a
range of challenges within navigation, localization, obstacle-avoidance and mapping of
the environment. Traditional methods for visual localization fail for many applications,
such aswhen navigating in non-urban environmentswhich have less distinctly textured
terrain.

Deep learning has demonstrated impressive results within self-supervised monocu-
lar depth estimation (MDE) for self-driving cars. Are similar results possible to achieve
for more challenging UAV drone footage of rural environments, and are they accurate
enough for navigation and localization through point cloud registration? While other
methods for navigation and localization have had large amounts of time and resources
to improve, it is interesting to start investigating this novel approach and see how
mature modern AI MDE models and ICP algorithms are for the task.

ii



Abstract

In recent years, Unmanned Aerial Vehicles (UAVs) have become increasingly prominent
for private, military, and industrial purposes, particularly in the areas of inspection
and observation. To do this, it is required that the drone knows its position, as well
as the location of observed objects. The objective of this thesis is to investigate an
alternate method of drone navigation and localization without the use of GNSS.

Generally, drones require the help of satellite signals for navigation, but certain
applications have higher accuracy requirements that cannot be met without the use of
additional expensive RTK equipment. Furthermore, reliance on GNSS makes drones
susceptible to interference from malicious actors who can disrupt satellite signals.
These problems emphasize the necessity for localization methods that are depend-
able and accurate without external support. While visual localization methods have
demonstrated high precision within localization, they face challenges in areas with few
distinctive landmarks. Additionally, there are also high demands of the age, lighting,
viewing angles, and season of the database to localize within, which poses a challenge
for their use. To address these issues, we propose a purely 3D-model based method of
localization, which does not rely on feature descriptors or even color. This method
could not only enable accurate navigation but also facilitate effective and precise
geolocalization of objects captured by the camera.

The method we propose involves employing monocular depth estimation coupled
with point cloud registration to situate the drone within a 3D-model of the area
accurately. Given the extensive research on deep-learning depth estimation in recent
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years, there may be a vast untapped potential for drone navigation and geo-localization
of drone observations. As we see very little research focusing on this use case for MDE,
we want to start investigating their effectiveness.

Improving on an effective self-supervised MDEmodel, we embed and train multiple
state-of-the-art depth estimation networks on our own UAV dataset consisting of
forested environments. Choosing the strongest performer, we attempt ICP point cloud
matching, both for estimating drone motion as well as localization within the 3D-
model of the area. Our results show the challenges of depth estimation from UAVs in
non-urban environments, as well as problems of localization within imperfect database
representations of an area.

iv



Sammendrag

I løpet av siste årene har ubemannede luftfartøyer (UAVer) blitt stadig mer tatt i bruk
for private, militære og industrielle formål, spesielt innen inspeksjon og observasjon.
For å kunne gjøre dette kreves det at dronen kjenner egen posisjon, samt plasseringen
av observerte objekter. Målet med denne masteroppgaven er å undersøke en alternativ
metode for dronenavigasjon og lokalisering uten bruk av GPS.

Droner bruker vanligvis satelitter for navigasjon, men av og til har man høyere
krav til nøyaktighet som ikke kan oppfylles uten å bruke dyrt RTK-utstyr. I tillegg er
avhengighet av GPS en risiko, siden ondsinnede aktører kan utnytte satelittjamming
for å stoppe dronene. Disse problemene nødvendiggjør lokaliseringsmetoder som er
pålitelige og nøyaktige uten GPS. Mens visuelle lokaliseringsmetoder kan gi presise
lokaliseringsestimater, har de problemer i områder med få særegne landemerker. I
tillegg er det også høye krav til databasen som brukes, for eksempel innen alder,
belysning, årstider, visningsvinkel, som kan være arbeidskrevende å oppfylle. For å
løse disse problemene foreslår vi en rent 3D-modell-basert metode for lokalisering,
som ikke er avhengig av bilde-features eller farger. Denne metoden vil ikke bare kunne
gi nøyaktig navigasjon og lokalisering dersom det virker, men også muliggjøre effektiv
og presis geolokalisering av observerte områder.

Metoden vi foreslår innebærer å bruke monokulær dybdeestimering kombinert
med punktskyregistrering for å plassere dronen i en 3D-modell av området. Gitt de
store framskrittene innen dyp-læring for dybdeestimering de siste årene så virker
det som om vi har et enormt potensial for å bruke dette innen drone-navigasjon og
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geolokalisering. Siden vi ser svært lite forskning som fokuserer på denne bruken av
KI-basert dybdeestimering, ønsker vi å begynne å undersøke effektiviteten til denne
metoden.

For å forbedre en effektiv selvledet dybdeestimering-modell, legger vi inn og trener
flere toppmoderne dybdeestimeringsnettverk med vårt UAV-datasett. Etter vi velger ut
den beste modellen, prøver vi ICP-punktskymatching, både for å estimere dronebeveg-
elser så vel som lokalisering innen 3D-modellen av området. Resultatene våre viser
utfordringene med dybdeestimering fra UAV-er, samt problemer med lokalisering
innenfor utdaterte og detaljfattige databaserepresentasjoner av et område.
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Chapter 1

Introduction

Drones are gradually becoming more and more prevalent in today’s society, both
for the average hobbyist as well as industry professionals. A vital part of a drone’s
operation is the navigation system responsible for finding its current position, which
is the focus of this Master’s Thesis. We propose a method involving deep learning
depth estimation and point cloud registration. This chapter outlines the motivation
and theoretical background, and gives a more detailed explanation of our method.

1.1 Motivation and Related Work

Today, drones usually rely on GNSS satellite signals as the key component of their
navigation. This generally works well for many forms of use, though there are some
instances where standard satellite-based navigation would not be sufficiently accurate,
requiring the additional aid of expensive RTK equipment. Furthermore, this depen-
dency is a drawback in situations where GNSS is not available, as well as representing
a significant vulnerability that malicious actors can exploit: Jamming satellite signals
can be an effective way to disable drones.

To circumvent this, there is a need for robust, cheap, and accurate localization methods
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to replace the role of GNSS, and this is the motivation for this thesis. A way of solving
this is to utilize Visual Localization: Using camera-observations to place yourself within
a database representation of an area. If you are able to spot an object and know its
position relative to yourself, it will theoretically let you place yourself very accurately
in the database, as well as geolocalize observed areas.

This project focuses on a variant of Visual Localization, though our approach is dif-
ferent from the traditional well-researched methods. Visual localization methods can
for instance involve image-retrieval within a large database, or sparse point matching
between extracted keypoints in the image and a 3D area-model, or other variants
[6]. Finding distinct features for generating good point-correspondences can be a
bottleneck in these visual localization pipelines, especially in monotonous terrain.
Figure 1.1 shows an example of matched point correspondences between two images
using SIFT, where the 30 strongest matches are included. We see that most of these 30
are far away from the camera, and there are even some point correspondences in the
sky. The areas closest to the camera are the clearest and most detailed, and one would
hope that this is where the strongest correspondences could be found, though they are
instead further away in sections with less detail.

If we only want to perform ego-motion estimation on sequential images, such as
the two images in the figure, we may use RANSAC to perform spatial verification
of the matched points to filter out erroneous correspondences and calculate relative
pose. However, in a different scenario, such as when performing absolute localization
with image retrieval, we are liable to experience geometric bursts [50], i.e. erroneous
matches with different scenes that pass spatial verification, because trees are generally
very similar. This problem can also occur when feature-matching with a 3D model
of the environment. Using the standard methods of localization, much work needs
to be done when constructing the database, for example needing images of the same
object from multiple angles[40]. Also, if the database is old or captured during different
seasons, localization using feature-matching is more prone to fail as the appearance of
the scene changes. Figure 1.2 shown an example of this happening, where the right
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image is during autumn and of a slightly different position and angle. While it may
be easy to match between two images taken seconds apart, as done in figure 1.1, it
can be much more difficult if the images are years apart, or if the database image is
of a significantly different angle or a different season[69]. The risk of creating false

Figure 1.1: SIFT matching between two images of
our dataset, where only the 30 strongest matches are
shown. While some matches are erroneous, most
seem correct.

Figure 1.2: SIFTmatching between two pictures only
a few meters apart but captured during different sea-
sons and at different angles, showing the challenge
of using feature-matching.

matches in monotonous terrain, as well as the work required to construct a good
database, is a large motivation for our approach. Instead of focusing on a set of point-
correspondences for the purpose of localization, we could attempt to match the entire
3D-structure of the images.

We see a potential for a good solution utilizing Monocular Depth Estimation(MDE),
which should not suffer from the same drawbacks of many visual localization methods.
While it is common for visual localization models to use both local features and a
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3D-model of the scene [67], our method will only involve 3D matching through point
cloud registration:

• Given an image of the area, generate a depth estimate of the scene

• Produce a 3D point cloud of the observed area using the estimated depth at each
pixel and the camera-parameters

• Using the 3D-model database, generate a point cloud from a known position
and match it with the MDE point cloud, giving a localization estimate.

This matching between the area-model and the point-clouds generated through the
depth estimates will make no use of local image descriptors nor even colors, and the
hope is that this will make it robust in areas with few distinct landmarks where tradi-
tional methods with feature detectors and descriptors might struggle. The database we
will use for localization is a six year old 3D-model captured from an airplane passing
above. This means that the model is built from only a single-angle viewing and is likely
heavily outdated, which would generally not be sufficient for generating databases for
other forms of visual localization[69].

While monocular depth estimation and point cloud registration are well researched
fields of study, the combination we are attempting has not seen much work. The usage
of MDE from UAVs is not the most prevalent, but there has been work done, such as for
collision avoidance[66]. Autonomous vehicle research is one of the largest fields where
MDE is being developed, and many AI depth estimation models are designed for those
datasets. One such dataset, KITTI, is commonly used for training and benchmarking
MDE models The specialization project I conducted during the latter half of 2022[49]
revealed that UAV-datasets pose a much more challenging depth-estimation problem
than KITTI, though it has been shown that these models can indeed be used as a base
for further developments to achieve good results from drones [36]. Fortunately, there
are also other models available which are not primarily designed for autonomous cars,
such as MiDaS [44] and M4Depth [15]. Since MDE models are achieving increasingly
impressive results on their respective datasets, we want to attempt to apply these to
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our drone data which could yield large advancements within drone navigation and
geolocalization.

Point cloud registration for the purpose of navigation is a well-researched use-case[43],
though it is typically used with laser-scanners instead of MDE, and more often with
ground vehicles instead of UAVs. The Iterative Closest Point (ICP) algorithm has long
been a staple for solving the registration problem, and we will utilize it in this thesis.

Despite this being a very active research field, with decades of research regarding
SIFT, SLAM, image-retrieval, etc., this approach to the visual localization problem
in drones is not much explored. To our knowledge, there are no published works
relating to it. There seems to be much untapped potential for this fundamentally
different approach given the advancements within monocular depth estimation, and
this makes it interesting to investigate if the models and methods are mature enough
for localization and navigation for UAVs.

1.2 Background

To ensure the reader can understand the problem we are attempting to solve, as well as
the techniques and considerations needed, we give background information pertaining
to the themes and theory utilized.

Since the thesis in large part consists of AI depth estimation, we briefly touch on
artificial neural networks before giving an outline of the process of monocular depth
estimation using deep learning, as well as introducing important neural network
architectures that form the foundation of the MDE models we use. Our plan is to
use self-supervision to train the neural networks. As such, we provide a detailed
explanation of the main self-supervised loss function we use: the photometric loss.
The localization step of our proposed method consists of point cloud registration, so
we introduce the general Iterative Closest Point algorithm.
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1.2.1 Neural Network Basics

In recent years, the field of machine learning has been increasingly dominated by
Artificial Neural Networks. A neural network consists of several layers of nodes with
connections between the nodes in each layer, and its purpose is to generate some
meaningful output by finding structures and relations from the input. An example
could be the estimated price of a house based on the size, number of rooms, location,
etc. The parameters of a neural network are the weights and biases. The output of
a node is determined by the weighted sum of its inputs in addition to its bias, which
is then optionally passed through an activation function (e.g Sigmoid). Activation
functions are necessary if the goal is to create a non-linear relation, otherwise we end
up with a purely linear function. The weights and biases are updated based on how
well accurate the network is in its prediction, which is measured by a loss function we
wish to minimize. The training of the network consists of using gradient descent of
the loss function, where gradients are calculated by a method called backpropagation.
We differentiate between three different types of layers in a neural network: the input
layer, the output layer, and the hidden layers. Input and output layers represent the
input data and outputted results respectively, while the hidden layers are in between
them and are not ”seen” from the outside. Further information on the design and usage
of neural networks can be found in the book by Szeliski [57], as well as several free
resources online.

Explanation of commonly used neural network terms the reader should be famil-
iar with:

• Fully Connected Neural Network(FCNN): All nodes share a connection with all
nodes in the next layer.

• Feedforward Neural Networks(FNN): All connections flow in the same direction;
no loops.

• Multilayer Perceptron(MLP): Somewhat ambiguous term in the litterature. Gen-
erally means a fully connected, feedforward neural network with at least one
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Figure 1.3: Example of an MLP with a single hidden layer. It also fulfills the criteria of
an FNN and an FCNN. Figure from Hassan et al. [22].

hidden layer. Figure 1.3 shows an example of a simple MLP.

• Linear Layer: Neural network with only an input and output layer, without
activation functions.

1.2.2 Monocular depth estimation (MDE)

In order to infer the 3D-geometry of a scene captured by a video, we need a way to
estimate depth at each of the pixels in the pictures. If we have multiple images of
the same scene, such as sequential images or images from different cameras, we can
apply Structure from Motion (SfM) [57, chapter 11]. First, you extract features and
match them between images to generate point correspondences, for example using
SIFT [33]. Then you apply SFM to calculate the 3D points as well as the relative pose
between the two images, though without knowing the true scale. The problem of scale
ambiguity is illustrated in figure 1.4. If you know the distance between the two frames
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Figure 1.4: Similar to Monocular Depth Estimation, SfM suffers from scale ambiguity.
There are an infinite number of different configurations that fit the observations in
the two images. Figure by Andreff et al. [1].

(often referred to as the baseline), you can find the true scale of the depth. However,
there are constraints on how accurate the depth estimates are based on the baseline be-
tween the images. Longer baselines are required for high accuracy at larger depths [52].

If the area has few distinct textures we might want to avoid having to match between
two images and instead try to infer the depth from a single image, which is known
as Monocular Depth Estimation (MDE). While this is a challenging task, the advances
of deep neural networks and continuously improving computational capabilities are
making such methods increasingly effective at estimating depth [37]. Monocular depth
estimation is difficult because there are an infinite number of 3D scenes that give the
same 2D-image (is that object far away and large, or close and small?), and because
you need to take into account global context for the entire image [38]. While the
SfM approach uses the scene shift between two images as the depth cue (also called
”disparity”), a deep neural network could be able to learn several cues, such as [58]:

• Texture gradient: Objects further away have less detailed surfaces.

• Linear Perspective: Parallel lines converge at the horizon at large distances.
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• Shades and Shadows: Objects casting shadows on others can reveal which
ones are close and which ones are far away.

The first step of any MDE model is to extract information from the image, commonly
referred to as ”features”. Older methods of monocular depth estimation could involve
using hand-crafted feature extractors [51], though they have been rendered obsolete
by deep convolutional neural networks that have been shown to have superior results
[4]. In addition to CNN feature extractors, there are also non-CNN types, such as the
Swin Transformer[31], which is a transformer[59] based feature extractor.
The next step of an MDE-model is to utilize the features in some way that yields an
estimate of the depth. There are many different ways to achieve this, and examples
include using several layers of additional convolutions and upsampling that yield a
per-pixel depth estimate (like U-Net [46], figure 1.5), or more sophisticated methods
such as utilizing Conditional Random Fields [64]. Obviously, there are many additional
tactics you could employ in your MDE-model, and we will see some of them later in
section 2.

While we generally talk about estimating depth, models often estimate inverse depth
instead. This has the benefit of being more easily able to represent large depth values,
such as one will get when the sky is included in the image. While a neural network
that directly estimates depth would need to output a value up to infinity, estimating
inverse depth allows you to represent it as zero instead. Additionally, inverse depth is
often used in the field of localization and navigation because it has better statistical
properties [9]. Borrowing from the field of stereo-vision, the term "disparity" is often
used instead of inverse depth [18]. While disparity technically refers to the scene shift
caused by motion between two images, it is inversely proportional to depth[20], which
is why it is sometimes used in articles regarding MDE.

There are two different ways to view the estimation problem: Either per-pixel regres-
sion, or per-pixel classification by discretizing the depth into several levels. Regression
is the most common method, since it is able to capture depth in finer detail than
the discretized case, but can be more difficult to train [16]. Discretization can yield
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Figure 1.5: The structure of U-Net [46]. Though initially created for biomedical image
segmentation, it can be used for monocular depth estimation as demonstrated by
Godard et al in their article on Monodepth2 [18]

better results and faster convergence, but the estimated depth image will be more
coarse depending on the discretization levels. It is also possible to combine these
two approaches [29]. The choice of approach will determine which loss functions
you can employ. An example of a loss-function for each is the mean square error
for regression and cross-entropy loss for classification, though it is common to have
more than one loss function [4]. Loss functions can be a major part of the design of
amachine learningmodel, andwewill see later that they can become quite complicated.

Monocular depth estimation is an actively researched field, having uses within for
example 3D-modeling, and autonomous driving. One of the main difficulties of monoc-
ular depth estimation is getting enough labeled data to train on, and for this reason,
many self-supervised methods have been developed. These methods usually employ
some sort of 3D-reconstruction to estimate the ground truth required for training or
utilize pairs of images in other ways[62]. In addition, other sensors such as the IMU
could be used for aid, as we will soon see.
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Figure 1.6: Example of the processing of an image from our dataset: Original image
on the left, followed by the output of three kernels (index 14, 26, 32) from the first
convolutional layer of ResNet18[24] to its right.

1.2.3 Convolutional Neural Networks (CNN)

As mentioned above, Convolutional Neural Networks are commonly used as the ”back-
bone”, sometimes also called the feature extractor or encoder, in many MDE models.
This is the part that first takes in the picture we want to estimate depth for, and consists
of several layers of convolutional filters with learnable parameters. The filter consists
of several kernels, and we see an example of the output from select kernels in the first
convolutional layer of a CNN in figure 1.6. From the figure, we see that it is not always
immediately clear what kind of feature a specific kernel is supposed to pick up on,
such as the first example (second image from the left), however in the second example
we see that it has detected the outline of the mountains in the distance. It is common
to use a variant of ResNet[24] as the backbone, such as ResNet18, which is used in the
figure.

CNNs typically also have other some sort of down-sampling layer, such as max-pooling,
between each convolutional layer [57, chapter 5]. This way we can get features of
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Figure 1.7: The architecture of VGG16, designed by Simonyan and Zisserman [55].
Note that this figure also shows features being fed into a FCNN for the purposes
of image classification, whereas we are generally interested in gathering features of
multiple resolutions. Figure from [39].

different resolution sizes as the original picture is propagated along the layers of
the CNN. As is the case with other neural networks, CNNs use activation functions
which are generally placed right after a convolutional layer. An example of a CNN
architecture is shown in figure 1.7

The cascading structure of the CNN, where the feature maps go from fine to coarse
because of the downsampling, means that the receptive fields of the features gradually
increase. Higher resolution features from the early layers contain information about
smaller sections of the image, i.e. a smaller receptive field. On the other end, the
lower resolution features represent larger parts of the image and have larger recep-
tive fields[34]. For our depth estimation usage, high-resolution features (for example
edges and corners) may be useful for estimating the depth of small objects or fine
details, while low-resolution features may describe object boundaries and scene layout,
which is very important for estimating the depth of larger objects or the overall struc-
ture of the image. Despite the CNN features covering multiple receptive fields, the
convolution-operation involves the features only interacting with their local neighbors
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as they propagate through the CNN. This means they can struggle to capture long-
range information in an image and are instead better at utilizing local information
[28]. This can be problematic for our depth estimation, where the entire context of the
image is important for inferring depth.

1.2.4 Transformers

First proposed by Vaswani et al. [60] for the purposes of Natural Language Processing
(NLP), the Transformer has since been used for various other tasks within the field of
artificial intelligence. The transformer works by utilizing the attention mechanism, the
concept of which is that some parts of the data are more important than others, and
should be paid more attention to. Attention has three inputs, the query, key, and value.
Sometimes the data used with a transformer needs to be converted to a numerical
vector-format, such as when working with written sentences. In this case, sentences
are transformed into ”tokens” and then converted to the correct dimension, 𝑑𝑚𝑜𝑑𝑒𝑙 . We
refer to this transformed data as embeddings, which is a representation of the data that
is compatible with the transformer model. In addition to this, positional encoding is
summed with the embedding and together they form the transformer input. Positional
encodings carry information about the position of the inputs, such as the order of
words in a sentence in the case of NLP. In the original transformer article, sinusoidal
signals based on input dimension and position are used.

The structure of the transformer is shown in figure 1.8. The transformer-layers are
repeated 𝑁 times sequentially, incrementally refining the results. The model has an
encoder-decoder structure, where the inputs are encoded, (on the left in 1.8) and then
fused together with the previous output of the transformer through cross-attention in
the decoder (on the right).

Attention (specifically: scaled dot-product attention) is calculated as:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉
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where Q is the query, K is the key, V is the value, and 𝑑𝑘 is the dimension of the key.
Generally, the input will be split up and processed by multiple attention modules
in parallel, known as multi-head attention. In the multi-head attention, the inputs
are divided by passing them through several parallel linear neural network layers
(i.e. no activation function) that split up the data to the parallel attention modules.
These neural networks are in essence learnable linear projections to the specified
dimensions of the queries, keys, and values. After concatenating the outputs from
the attention-heads, they are passed through a final FNN. Equation 1.1 displays the
structure of the Multi-Head Attention module. The weight matrices𝑊𝑄

𝑖
,𝑊 𝐾

𝑖 ,𝑊
𝑉
𝑖
,𝑊𝑂

represent the FNNs, where the first three are the projection-layers for each attention
head and the last one is the output-projection layer.

MultiHead(𝑄,𝐾,𝑉 ) = Concat (head1, . . . , headh)𝑊𝑂

where head𝑖 = Attention
(
𝑄𝑊

𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖

) (1.1)

The dimensions of the projection matrices depend on the dimension of the original
inputs 𝑑model, and the number of parallel heads ℎ you use, with the relation 𝑑𝑘,𝑣 =

𝑑model/ℎ.

𝑊
𝑄

𝑖
∈ R𝑑model ×𝑑𝑘 ,𝑊 𝐾

𝑖 ∈ R𝑑model ×𝑑𝑘 ,𝑊𝑉
𝑖 ∈ R𝑑model ×𝑑𝑣 ,𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑model

There are two general types of attention: self-attention and cross-attention. These
differ in the inputs they get, where a cross-attention module receives its query embed-
dings from a different source than the key and value. The multi-head self-attention
block of the transformer takes in embeddings as key, value, as well as query, while the
multi-head cross-attention in the decoder uses the output from the encoder as key and
value, but the query comes from the previous layer of the decoder. The cross-attention
serves the purpose of letting the transformer use information from past data along
with the current input.

Transformers nowadays have expanded further than the original from 2017, and
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Figure 1.8: The structure of the original transformer as introduced by Vaswani et al.
Encoder on the left, decoder to the right. For further detail, we refer to the article
”Attention Is All You Need”[60].
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we will see some transformer based models that are not of the same structure as the
original since they are not applied to NLP. Though they are not identical, they still use
a similar combination of attention-layers, feed-forward layers, and normalization &
addition layers.

1.2.5 Vision Transformer

An important transformer variant for our use case is the Vision Transformer (ViT)
[10], which was designed for the purpose of image classification. In order to apply
transformers to vision-related tasks, we need a way to generate embeddings from
images. A naive way would be to use each pixel in the image as tokens, though this
would be computationally intractable for larger images since the attention mechanism
has quadratic complexity with regard to the sequence length (number of tokens) [59].
Instead, Dosovitskiy et al. [10] proposed splitting the image into patches, which are
then flattened into vectors. Since the transformer uses a fixed latent vector size, the
flattened vectors are projected into the required dimension using a learnable linear
projection. The resulting projections are referred to as the image embeddings. Posi-
tional embeddings are added to the image emeddings, and together with an additional
classification token they are fed into the transformer. The classification token’s state
at the transformer’s output is passed through a classification head to generate the
predicted image class. The ViT architecture is intended to be as similar to the original
transformer as possible and is shown in figure 1.9.

This Vision Transformer was designed for image classification, but this image-patch
transformer framework often sees use as the replacement of the CNN backbone in var-
ious computer-vision tasks, including monocular depth estimation[70]. When a vision
transformer is applied as the encoder/backbone in this way, the image is sent through
the multiple sequential transformer-layers where sets of features can be extracted,
similar to how they are extracted from the multiple layers of a CNN[21]. In addition
to purely transformer-based computer vision architectures, hybrid models also exist,
where both transformers and CNNs are used. For example, convolutional layers can
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Figure 1.9: The structure of ViT [10]. Since the model was designed for image classifi-
cation, an additional embedding representing the image class is included in addition
to the nine image patches. Contrary to the original transformer model, this one does
not have a transformer decoder.

be used to generate features to use as embeddings for the transformers instead of the
image-patch method.

An important motivation for including CNNs is their strong capability of model-
ing local information, whereas the transformer is more liable to not capture local
information as well as it models the global context[70]. The attention mechanism of
the transformer is not bound by locality the same way a CNN is, since the multi-head
attention involves all tokens generated from the image. This means that a transformer-
layer has a global receptive field, letting it capture global information with only the
use of a single attention layer[28].

1.2.6 Point cloud registration (PCR)

The problem of matching two point clouds by estimating a rigid body transform (R, t)
that aligns the clouds is referred to as Point Cloud Registration. A common way to solve
this problem is by using the Iterative Closest Point (ICP) algorithm, as proposed by Besl
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& McKay [3] and Chen & Medioni [8]. This algorithm does not only apply to point
clouds, but also for example surfaces and lines. The ICP algorithm has seen widespread
use within computer vision and robotics and is being continuously developed to this
day [43].

1.2.6.1 Iterative Closest Point

The ICP algorithm can be separated into six stages, and variants of ICP can be classified
by which stages they affect [48]:

• Selection of points from each set,

• Matching points between the sets,

• Weighting the pairs,

• Rejecting some pairs

• Assigning error metric,

• Minimizing the error metric

A basic ICP algorithm for aligning point clouds 𝑷 and 𝑸 is as follows:

• Start with initial guess of (R0, t0)

• Apply the transform to 𝑷 and match each of the𝑁 points to the closest (euclidean
length) in 𝑸

• Minimize
∑𝑁
𝑖=1∥Rpi + t − qi∥2 w.r.t (R, t), where pi and qi are matched points,

• Set (Rnext, tnext) = (R, t)

• Start next iteration or terminate if the errormetric is small enough or is stationary,
or if the maximum number of iterations is reached.
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This version does not do any weighting or rejecting of point pairs, and is computation-
ally expensive for large point clouds since it uses all points. It also may struggle in
situations where the point clouds only have partial overlap, because many points will
not have a true match and there is no method of rejecting. Despite this, it will likely
converge successfully if the initial alignment is good and there is little noise. The min-
imization step can be solved analytically using Singular Value Decomposition(SVD) [56].

There are many point cloud registration libraries available that allow for many different
variants of the stages of ICP [25]. Some examples are:

Selection: Select all points, random sampling, or uniform sampling of the 3D-space to
capture the structure better. Another method is to perform ICP at multiple resolutions,
starting with sampling fewer points from the source cloud 𝑷 at first and ending with
all points at the final level. The intermediate pose estimates (R, t) are used as starting
poses at the next resolution level.

Matching: If the point clouds are from depth images, you could project 𝑸 to the
image plane where 𝑷 was generated from, and match based on distance in pixel-space
∥up − uq∥

Rejecting: Reject duplicated matches from 𝑷 to the same point qi in 𝑸 and only
retain the closest one. Another method is to use RANSAC [14]. Rejections schemes
are also called outlier filters, and are vital when the point clouds have errors or only
have partial overlap.

Error metric: The example used what is called the point-to-point error metric, but
there are also others, such as point-to-plane which estimates the surface normal at qi

as 𝑛𝑞𝑖 and incorporates it into the error:
∑𝑁
𝑖=1 ((Rpi + t − qi) · 𝑛𝑞𝑖 )2

Another variant is Generalized ICP (also known as plane-to-plane [53]), which utilizes
surface normals of both point clouds. Figure 1.10 shows a comparison between these
three variants. When working with structured environments, such as indoor scans,
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Figure 1.10: Visualization of different error metrics, courtesy of Holz et al [25]

incorporating surface normals into the error metric has been shown to give better
results [42].

1.2.7 Pinhole camera model and the photometric loss

Throughout this project, we use the Pinhole Camera Model to represent the relationship
between 3D points and the corresponding 2D-pixel points in the images. The pipeline
for calculating 2D-pixel points from 3D-world coordinates is [57, chapter 2]:

• Transform 3D points from world-frame to the camera-frame,

• project points to the image plane,

• convert to pixel coordinates.

The camera coordinate frame is defined with the z-axis pointing into the image with
origo at the camera aperture. The orientation of the x- and y-axis lie along the image
axes, i.e. the right-down-front configuration. The important takeaway is that the
z-coordinate represents depth. The image plane is defined as the plane at z=1 in the
camera frame, and projecting to it consists of dividing a 3D-point by its z-value, giving
the normalized camera coordinate x̄c. The relationship between the normalized camera
coordinate and pixel coordinates is defined by the Intrinsic Camera Matrix K:

ū = Kx̄c
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Here, 𝑢 and 𝑣 are the pixel-coordinates, and 𝑥 and 𝑦 are the camera coordinates
projected to the image plane.
Another common method of representing the relationship is[23]:

ũ = Kxc = 𝜋 (𝑥𝑐 ;K)
�̃�

𝑣

�̃�
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𝑌
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In this case, ũ is the homogeneous pixel coordinate and xc is the 3D-coordinate in the
camera frame (not normalized). The pixel coordinates 𝑢 and 𝑣 can be calculated by
dividing the homogeneous pixel coordinate ũ by its third component:

ū = 𝜓 (ũ) = 𝜓 (𝜋 (𝑥𝑐 ;K))
𝑢

𝑣

1


=

1
�̃�


�̃�

𝑣

�̃�


In our case, the K-matrix has been given without us needing to perform camera cali-
bration. For futher detail on the intrinsic camera matrix and camera projections, we
refer to the book by Szeliski [57].

In the process of projecting to pixel-coordinates, the depth in the image is lost. To
be able to return to 3D-points (hereafter called backprojection), we need to know the
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depth at each pixel. The backprojection is:

xc = 𝑧K−1ū = 𝜋−1 (ū, 𝑧;K) (1.2)

where xc is the 3D coordinate in camera frame and 𝑧 is the depth at pixel ū. Using this
equation, we can generate a point cloud from a depth image.

If we have two images A and B of the same scene, it is possible to find the map-
ping between each pixel in image A and image B by utilizing image-projection and
backprojection. The strategy is to backproject the pixels in image A, transform the
3D points from the camera frame of A to the camera frame of B, and project them to
pixel-coordinates in image B [19]:

ūb = 𝜓
(
𝜋
(
T𝑎→𝑏

(
𝜋−1 (ūa, 𝑧𝑎 ;K)

)
;K

) )
ūb = 𝜓

(
KR𝑏𝑎K−1ūa +

Ktb
a

𝑧𝑎

)
ūb = 𝒘

(
ūa, 𝑧,R𝑏𝑎, t

b
a,K

)
(1.3)

We refer to this mapping as the warping function, where T𝑎→𝑏 and
(
R𝑏𝑎, t𝑏𝑎

)
represent

the rigid body transform from camera frame A to B. Here we assume that both images
are taken with the same camera, meaning that they have the same intrinsic matrix K.
This function is the basis for the Photometric Loss, which compares quantities in each
pixel in the images to see how similar they are, for example by comparing color [26].
By minimizing the photometric loss, one can recover the relative motion between two
images in addition to depth in the scene. It can be formulated as:

𝐿visphoto =
∑︁
𝑖

L(𝐼𝑎 (u𝑖 ) , 𝐼𝑏
(
𝑤

(
u𝑖 , 𝑧𝑖 ,R𝑏𝑎, t

b
a

))
) (1.4)

where L is a comparison function, such as the L2-norm of the difference. For the pho-
tometric loss to work optimally, we have to assume a static scene, no lighting changes,



1.3. CONTRIBUTIONS 23

and that no objects are blocked from view in either image (occlusion). This entails
that all corresponding pixels look identical in both images, though these assumptions
typically do not fully hold in real-life datasets[54].

Using this loss/error function to estimate motion and 3D geometry is referred to
as a Direct Method, as opposed to Indirect Methods which instead find specific point
correspondences and minimize errors between observations and predictions (typically
pixel-positions through reprojections)[12]. Direct methods are generally preferred
in regions where it is difficult to generate and match keypoints between images, i.e.
monotonous, non-distincty textured areas [13].

It should be noted that the photometric loss optimization is an ill-posed problem[7]
since it will have many local minimums, as each pixel will have many different pose
and depth configurations that fit, similar to scale ambiguity in SfM (figure 1.4). An
important aspect of the photometric loss that is very relevant for us, is that if the
translation tb

a is zero, then the depth 𝑧𝑎 vanishes from the expression and is irrelevant
in the minimization. This means that non-zero translation is vital to be able to infer
depth, and larger translations are useful for accurate depth estimation as the depth
term becomes more significant in the loss.

1.3 Contributions

The primary contributions of the thesis are:

• Incorporation of advanced AI depth networks into a self-supervised MDE model

• Addition direct supervision to auxiliary networks to improve depth estimates

• Showcasing difficulties of performing depth estimation from drones in challeng-
ing non-urban environments and under more demanding drone maneuvering.

• Adding weighting schemes to an off-the-shelf ICP algorithm to test the effec-
tiveness of PCR for localization and navigation



24 CHAPTER 1. INTRODUCTION

We compare multiple depth networks against each other, all trained on a common
self-supervised framework. Seeking to improve the supervision of the self-supervised
framework, we apply additional direct supervision of the auxiliary networks with
readily available GPS data. Using a large supervised MDE model, we show that lever-
aging previous training and finetuning it on our own data using self-supervised depth
losses can give good results despite suboptimal training data. Overall, we showcase
the challenges of MDE from highly maneuvrable UAVs in low-texture environments
and contrast our own dataset with a previously successful attempt at depth estimation
on the UAVid-dataset[35]. To help localize the drone in our database model as well as
find the correct ego-motion, we add some simple weighting schemes to a publically
available ICP model, giving an increased likelihood of aligning important landmarks.

1.4 Outline

In chapter 2, we explain the various MDE models we will attempt to use in addition to
special considerations we made when implementing them, as well as detailing training
methodology.
Then, we motivate several changes we make to the self-supervised MDE-framework
we use as the foundation for all the depth models in section 4.1, before the depth
estimation results are shown and discussed.
Finally, point cloud matching results are shown and discussed at the end, in chapter 5.



Chapter 2

Model Overview

To be able to accurately localize using PCR, we need the depth estimates to be as
accurate as possible. In our attempt to attain good results, we will train and compare
four different depth estimation models:

• DynaDepth[65]

• ManyDepth[63]

• MiDaS[44][45]

• MonoViT[68]

The following is an introduction to these four models with a larger focus on the main
DynaDepth model, as well as the corresponding training and implementation details.
For further information regarding the structure of the respective neural network
models, we refer the interested reader to the original articles.

25
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2.1 DynaDepth

2.1.1 Model Information

One of the main challenges of AI computer-vision is that of data gathering. Specifically,
data-labeling, which can be a very challenging process depending on what kind of
labels are needed. Instead, we turn our gaze toward self-supervised MDE-models so
we can gather as much data as possible without worrying about generating depth
ground-truths. Ideally, we would want some self-supervised model that can overcome
the well-known issue of scale-ambiguity, and this is something that Zhang et al. [65]
have strived to achieve. Their work, DynaDepth, is a self-supervised MDE model based
on the highly influential Monodepth2 [18], and achieves state-of-the-art accuracy on
the KITTI dataset. Improving on Monodepth2, it incorporates IMU-data and an EKF-
framework yielding improved results and the ability to resolve the scale-ambiguity of
the MDE problem during training. The DynaDepth model consists of several parts:

• A neural network to predict inverse depth from an image at four scales.

• Three neural networks to estimate camera-centric gravity gc, velocity vc and
ego-motion (R̃, p̃) from images, denotedM𝑔, M𝑣 and M𝑝 respectively.

• An EKF to fuse the IMU-motion and the camera-based pose estimates to give an
updated estimate of the camera ego-motion.

Depth Network
DynaDepth uses a relatively simple neural network for inverse-depth prediction. Using
an encoder-decoder framework similar to UNet[46] (figure 1.5) with ResNet[24] as the
encoder, it generates predictions at four different scales, with image resolution halved
at each scale. This multi-scale depth-network decreases the chance of getting stuck at
local minima[18] and means that there will be four sets of depth-related losses.
The estimates are bound between 0 and 1 using a sigmoid function, and in order to
convert to depth, a maximum and minimum depth is used. The authors used 0.1m -
100m when training on KITTI, though you will need to supply your own depth-range
when training on different data.
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Pose, Gravity and Velocity Networks
M𝑔 takes in a single image and outputs the gravity vector in camera-frame. M𝑣

takes in two sequential images and predicts the velocity in camera-frame at the first
image. M𝑝 takes in two sequential images and outputs the relative poses between
them. Different from other models improving on the Monodepth2 groundwork, the
pose network also estimates variances of the 6-DOF motion, which is required for the
covariance matrix used in the Kalman filter.
These three networks have a simple structure, using ResNet as the encoder, followed
by four stages of convolutions and outputting values of the required dimensions.

IMU and the EKF
The IMU-data consists of acceleration and angular velocity measurements, and are
used to estimate the relative drone motion between images. A single training sample
consists of three sequential images from the dataset. The random shuffling of the
data during training means that it is challenging to continuously carry and update an
estimate of the velocity and gravity needed in the IMU motion dynamics. Instead, the
gravities and velocities are predicted from the frames in the training sample usingM𝑔

and M𝑣 . The motion between two frames is calculated from the estimated starting
velocity and the accumulated IMU data where the estimated gravity is accounted for.
Since the acceleration readings also capture the normal-forces counteracting gravity,
the gravity vector is needed to correct the IMU acceleration measurements. We will
refer to the estimated motion using IMU,M𝑔, and M𝑣 as the IMU-motion.
The EKF is used to fuse estimates from the pose-networkM𝑝 and the IMU-motion. The
camera-based pose estimate is used as the observation in the Kalman Filter update step,
where the network-predicted pose-covariances are also put to use. For information
on the camera-centric IMU motion dynamics, as well as the derived EKF-matrices, we
refer to the original DynaDepth article [65].

Losses
Intuitively, if you know how much the drone moves between each image, you can



28 CHAPTER 2. MODEL OVERVIEW

reason about the depth of each pixel by how much it is displaced. This principle is used
to create losses that do not require a depth ground truth and is where the photometric
loss (1.4) comes in.
The first of the losses presented in the paper, called the IMU Photometric loss, is shown
in figure 2.1.

𝐿𝐼𝑀𝑈
𝑝ℎ𝑜𝑡𝑜

=
1
𝑁

𝑁∑︁
𝑖=1

min
𝛿∈{−1,1}

L
(
𝑰
(
𝒚𝑖
)
, 𝑰 𝛿

(
𝑤

(
𝒚𝑖 , 𝑧𝑖 , R̂𝛿 , p̂𝛿 ,K

)))
,

L (𝑰 , 𝑰 𝛿 ) = 0.85
1 − SSIM (𝑰 , 𝑰 𝛿 )

2
+ 0.15 ∥𝑰 − 𝑰 𝛿 ∥1

(2.1)

The 𝛿 denotes whether we are comparing to the previous (𝛿 = −1) or next (𝛿 = 1) image
in the training sample, which is used for the ”per pixel minimum” trick proposed by
Godard et al in [18] which will combat situations where an object might be obscured
in either of the two neighboring images. K is the camera intrinsic matrix, (R̂𝛿 , p̂𝛿 ) is
the EKF pose estimate between image I and I𝛿 and 𝑧𝑖 is the estimated depth at pixel 𝒚𝑖 .
L is an image similarity function where SSIM is the structural similarity index[61].

In essence, the IMU photometric loss warps the 𝑁 pixels in the image to either the
previous or next in the sequence depending on which image has the least occlusion for
the pixel. This corresponds to min𝛿∈{−1,1} in the loss function, because the neighbor-
ing image with the lowest photometric error is considered the least occluded. When
the correct ego-motion and depth estimate is found, the photometric error will be
minimized.

The second loss proposed in the paper is shown in equation 2.2. It is called the
Cross-sensor Photometric Consistency Loss, and aims to align the EKF and Pose-net
estimated ego-motions by equalizing the warpings. As before (R̂𝛿 , p̂𝛿 ) is the ego-motion
estimate from the EKF, while (R̃𝛿 , p̃𝛿 ) is the ego-motion estimate from the Pose-net
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M𝑝 .

𝐿IMU-cons
photo =

1
𝑁
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L
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)))
(2.2)

This loss gives additional supervisory signals from the IMU to the various networks
involved, and together with 𝐿𝐼𝑀𝑈photo they serve the purpose of injecting the real scale
into the translation and depth estimates.

In addition to these losses, they also employ the disparity smoothness loss 𝐿𝑠 as
defined by Godard et al. [18], an 𝐿2-loss for the neural network predicted velocity and
gravity 𝐿𝑣𝑔, and a vision photometric loss 𝐿visphoto similar to 2.1 but instead using the
Pose-net M𝑝 predicted ego-motion. The total loss is then:

𝐿total = 𝐿
vis
photo + _1𝐿𝑠 + _2𝐿𝐼𝑀𝑈photo + _3𝐿IMU-cons

photo + _4𝐿𝑣𝑔 (2.3)

where _1,2,3,4 are weights determined empirically to be {0.001, 0.5, 0.01, 0.001}.

While the DynaDepth article is not clear on this, the 𝐿𝑣𝑔 losses are two separate
losses and are computed with the norm of the estimated velocity and gravity, not the
vectors. The velocity ground truth is the norm of the GPS-measurement of velocity,
and gravity ground truth is simply the gravitational acceleration 𝑔 ≈ 9.81.

As mentioned before, achieving the correct depth-scale from monocular images is
difficult, since there are an infinite number of 3D-scenes that can create the same
2D-image. However, the authors of DynaDepth have shown that by integrating the
IMU-measurements as they have, it is possible to achieve correct scale during training.
This is very important for our usage. If the scale of our depth is incorrect, then we
would either need to employ non-rigid point cloud registration by including scale as
an optimized variable, or manually adjust the scale ourselves. This complicates the
process, so we want the scale of the depth estimation to be as accurate as possible.
Since the scale is only inferred through the IMU-based losses, the scale is still unknown
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during test time, but so long as the test-set is similar to the training set, the scale
should hopefully be approximately correct.

DynaDepth inherits an auto-masking feature from Monodepth2 [18], which aims
to exclude certain pixels from the loss calculation. It works by setting the weight of pix-
els that remain sufficiently unchanged between two images to 0 in the loss-functions.
This could be the case for the sky, objects moving along with the camera, or situations
where the camera is stationary. While the depth-estimation network does not utilize
disparity shifts when generating a depth estimate (since it uses single images), the
disparity is important for loss-calculation. Even if we will always be able to create a
depth estimate, we might say that depth is unobservable for stationary pixels since we
cannot generate useful supervisory signals for the depth network with them. This is
why masking out such pixels in the loss-function is useful.

2.1.2 Implementation and Training Details

This model has several characteristics we are looking for to be able to use it for our
own purposes:

• It is self-supervised.

• It has been shown to give accurate results.

• It incorporates IMU data to infer true scale.

We use this model as the base for our work, as it should hopefully give us scale-aware
supervisory signals without needing data-labeling. It will serve as a foundation for
testing other depth estimation models in our search for accurate results. During further
use, we will maintain the auxiliary networks and the EKF as they are, but we may
substitute the depth encoder and/or decoder with alternative models.

For training, we use the Adam optimizer and a batch size of 8, with an initial learning
rate of 1e-4 which is decreased by an order of magnitude every 10 epochs. We trained
for 30 epochs, as was originally done for the KITTI, but saved the weights regularly
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throughout training. Observing the validation losses and depth error metrics, we
choose to use the model trained for 16 epochs, and will do the same for the other
models. We set the maximum and minimum depth to 5000m and 1m respectively. This
ensures the entire depth-range in the training images is able to be represented by the
depth network. The only data-augmentation used is color-jittering, where all three
images in a single training sample receive the same augmentation.

To reduce VRAM requirements and reduce training-time, we use ResNet18 for the
three backbones ofM𝑣 , M𝑔, and M𝑝 , as well as for the depth network. While larger
ResNet models might be more capable, the results in the DynaDepth article revealed
that the improvement of going from ResNet18 to ResNet50 was negligible. We instead
choose the smaller and less complex ResNet18.

2.2 ManyDepth

2.2.1 Model Information

A potential improvement we discussed during the Specialization Project, is finding
a way to incorporate multiple images in the depth estimation model. While stereo-
methods are not uncommon [4], we only have one camera to work with on our drone,
meaning that sequential images from the video-feed are what we can use. This means
that the relative pose between each frame has to be estimated in some way, and this
is already done for the purpose of calculating photometric losses during training in
the DynaDepth model. The authors of ManyDepth, Watson et al. [63], have already
developed one such depth estimation model. It builds on the Monodepth2[18] model
from 2019, the same as DynaDepth does. Using ManyDepth, we may be able to im-
prove performance by incorporating IMU-data into the depth estimator by fusing the
camera-based Pose-net motion with the IMU-motion through the extended Kalman
Filter.
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ManyDepth shares much of the same structure as DynaDepth, including using pho-
tometric losses with the per-pixel minimum trick, predicting depth at four different
scales, and more, though no IMU-data is used. This section will instead focus on the
depth estimator, which is what we are interested in.

Similar to the photometric loss, the depth estimator module of ManyDepth utilizes the
warping function (1.3). However, the warping is performed on the extracted feature
maps instead of the images themselves. In addition, the depth is discretized into a
set number of layers, and the warping is performed for each discrete depth level. An
𝐿1-error is computed between the warped and non-warped image for each depth level,
which are stacked into a cost volume. Intuitively, if a specific depth level 𝑑𝑖 is correct
for a part of the image, then the error in that part of the volume will be small. Thus,
the cost volume says something about the probabilities of which of the depth levels
𝑑1,...,𝑛 a part of the image belongs to. The cost volume along with the feature map
of the image is finally passed into a CNN encoder-decoder which performs per-pixel
inverse-depth regression. An overview of this process is shown in figure 2.1.

Before we are able to create the cost volume, the depth levels must be specified.
ManyDepth sets the number of discrete depth-levels as a hyperparameter and em-
ploys an exponential moving average of the maximum and minimum depths from a
single-image depth network (which we will introduce shortly). With a momentum of
0.99, the 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 parameters are updated based on the maximum and minimum
of the depth estimates averaged over the batch in each training step. The required
number of levels are generated linearly over the depth range.

While developing ManyDepth, it was revealed that the cost-volume method of gener-
ating dept estimates suffered greatly when observing non-static objects in the scene,
much more so than single-image depth estimators do. To remedy this, a single-
image depth estimator network is implemented in the model, which should not have
such large errors on moving objects. For this use, the original depth estimator from
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Figure 2.1: Overview of the multi-frame depth estimation model in ManyDepth[63].
The previous and current frames are passed through a CNN feature extractor, and the
absolute deviation of the warped and non-warped feature maps is constructed into a
cost-volume where each stack represents a depth level in the image. The cost-volume
along with the feature map of the current image are passed into an encoder-decoder
depth network for per-pixel regression of inverse depth at four different scales.

Monodepth2[18] is utilized, the same as outlined in section 2.1. The purpose of the
additional depth map is to give an indication of when this phenomenon is occurring,
and to instead make the model learn from the single-image depth estimate in that case.
This is done by creating a pixel-mask𝑀 , which indicates which regions of the image
have sufficiently differing estimates between the two depth estimators. It is defined as:

𝑀 = max
(
𝐷cv − �̂�𝑡
�̂�𝑡

,
�̂�𝑡 − 𝐷cv

𝐷cv

)
> 1

Here, �̂�𝑡 is the single-image depth estimate, and 𝐷𝑐𝑣 is the arg-min of the cost-volume,
i.e. the depth value that gives the lowest error when warping the features and not the
depth estimate 𝐷𝑡 itself. The masked areas are subject to a 𝐿1-loss, referred to as the
Consistency Loss:

𝐿consistency =
∑︁

𝑀
��𝐷𝑡 − �̂�𝑡 �� (2.4)

The gradients generated from this loss are blocked from reaching the single-image
depth network to ensure that it remains a teacher and the multi-image network is the
one learning.
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To ensure that the ManyDepth model is able to predict depth both at the start of
sequences, and when the vehicle is stationary, the cost volume is with a small proba-
bility randomly replaced with all zeroes, forcing it to only rely on information from
the current image to estimate depth, and not use the cost volume.

The total loss in ManyDepth is a combination of the photometric loss (1.4), the consis-
tency loss, and the disparity smoothness loss as defined by Godard et al. [18]. As with
DynaDepth, the smoothness loss 𝐿𝑠 is weighted with _ = 0.001. Since we have two
depth networks, we have two sets of photometric and disparity smoothness losses.
The mask 𝑀 is applied to the photometric loss from the multi-image network such
that it only attempts to minimize the photometric loss in pixels that are not covered
by the consistency loss 𝐿consistency. As such, the full loss of the Manydept model is:

𝐿total = (1 −𝑀) 𝐿vis, multi
photo +𝑀𝐿multi

consistency + 𝐿
vis, mono
photo + 0.001𝐿mono+multi

𝑠

2.2.2 Implementation and Training Details

To train ManyDepth, we embed it into the Dynadepth-framework. Two different
models are trained, which differ in the construction of the cost-volume:

• The standard way. Using theM𝑝 -estimated poses to generate the cost volume.

• Incorporating the IMU-data by using the EKF-poses to generate the cost volume.

Since ManyDepth utilizes two separate depth-networks, we apply the IMU-losses
twice, once for each of them. The IMU-warp loss 𝐿𝐼𝑀𝑈

𝑝ℎ𝑜𝑡𝑜
(2.1) is also affected by the

𝑀-mask the same way as the standard photometric loss, though the IMU-consistency
loss 𝐿IMU-cons

photo (2.2) is not. The velocity and gravity losses remain unchanged. The total
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combined loss is then:

𝐿total = (1 −𝑀) 𝐿vis, multi
photo + _2 (1 −𝑀) 𝐿IMU, multi

photo + _3𝐿IMU-cons, multi
photo +𝑀𝐿multi

consistency

+ 𝐿vis, mono
photo + _2𝐿IMU, mono

photo + _3𝐿IMU-cons, mono
photo

+ _1𝐿mono+multi
𝑠 + _4𝐿𝑣𝑔

(2.5)
where the weighting remains unchanged: _1,2,3,4 = {0.001, 0.5, 0.01, 0.001}.

Training hyperparameters are kept the same as with DynaDepth (2.1.2).

While ManyDepth uses 96 depth levels to generate the cost volume by default, we
slightly increase the number to 128, because of the larger depth-ranges on our dataset
compared to KITTI. We initialize the depth-range used to generate depth levels equal
to the depth range of the single-image network: 1m - 5000m.

2.3 MiDaS and the Dense Prediction Transformer

2.3.1 Model Information

As mentioned in the introduction of this thesis, many depth estimation models are
designed for use within the field of autonomous vehicle research. Contrary to the
previous two models, MiDaS is more of a universal MDE model, capable of achieving
good results on many types of images and having undergone extensive training on
large amounts of varied data. Additionally, MiDaS is originally supervised, while the
rest of the models we test are self-supervised. MiDaS is trained on twelve different
datasets, some simulated and some of them real-world data. The hope of this is that
biases that come with learning from a single dataset will be alleviated, but a challenge
when doing this is that the datasets have differing ground-truth representations:

• Absolute depth or its inverse, such as from LIDAR,

• depth with unknown scale, such as from SfM,
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• or disparity maps from multiple different stereo pairs, i.e. inverse depth with
differing and sometimes unknown scales

The main contribution of the authors in the MiDaS-article is the creation of losses
compatible with these different ground truth representations, and finding a way to
mix the datasets for the best outcome. The losses are computed in disparity space,
which generally has preferable numerical qualities as mentioned before. In addition to
the unknown disparity scales present in parts of the labeling, the images may have
gone through post-processing so the disparity maps have an unknown global shift.

In order to be able to compare the disparities for loss calculation, the prediction
and ground truth have their scale (s) and shift (t) aligned. They propose the following
estimators:

𝑡 (d) =𝑚𝑒𝑑𝑖𝑎𝑛(d), 𝑠 (d) = 1
𝑀

𝑀∑︁
𝑖=1

|d − 𝑡 (d) |,

and then change the prediction (d̂) and ground truth (d̂∗) to have zero translation and
unit scale:

d̂ =
d − 𝑡 (d)
𝑠 (d) , d̂∗ =

d∗ − 𝑡 (d∗)
𝑠 (d∗)

The losses from the MiDaS paper are not applicable to our data since we have no
labeling, and are not presented here. Instead, we will have to embed it into the self-
supervised framework of DynaDepth.

The network model itself is referred to as the Dense Prediction Transformer (DPT), and
is introduced in a separate article [45]. The DPT uses patch embedding of the image
following the ViT framework explained in 1.2.5. Using a transformer backbone with
multiple layers, transformer-outputs are extracted at four levels and reassembled into
an image-like form, which are then incrementally fused together and finally passed into
a disparity head which generates the predicted scale- and shift-invariant disparity map.
There are multiple different variants of MiDaS, which vary in which transformer model
they use. In addition to the image-patch embeddings, a ”readout”-token is included,
similar to the class-token in the image-classification usage. While this readout-token



2.3. MIDAS AND THE DENSE PREDICTION TRANSFORMER 37

Figure 2.2: Overview of DPT[45]. On the left we see the overall structure model,
including the image embeddings (with an additional readout token), transformer-
layers, reassembling and fusion blocks. The middle displays the reassembling block
where the embeddings are used to recreate the image-like feature maps. The right
shows the fusion of these feature maps.

does not have the same intuitive meaning and purpose as the classification token, it
improves performance by capturing and distributing global information in the trans-
former. An overview of the Dense Prediction Transformer is shown in figure 2.2.

Since there is an extra token not grounded in the image, the reassembling block
needs to reduce the number of tokens by one. This is done by concatenating the
readout-token to each of the image-tokens, and using an MLP to project to the correct
dimensions. This is referred to the ”Read” function in figure 2.2. These new tokens are
concatenated and go through spatial resampling to generate a feature map of varying
resolutions, with the feature maps being coarser at the deeper levels of the transformer.
The fusion block is based on RefineNet [30], which combines all the outputs from the
reassemble-blocks incrementally before the final prediction is generated by a convolu-
tional disparity head.
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2.3.2 Implementation and Training Details

As we saw during the specialization project[49], the pretrained MiDaS model is not
able to capture fine details in our images, only being able to capture larger features
such as different clusters of trees and being able to differentiate between foreground
and the sky. Despite originally being a supervised MDE model, we embed MiDaS into
the self-supervised framework of DynaDepth and attempt to train using the losses in
equation 2.3. MiDaS has several pre-trained variants available, which differ in what
kind of backbone they have. We will use the most accurate one as of MiDaS v3.1,
which employs a BEiT transformer[2].

To be able to perform the backprojections needed for calculating losses, we need
to convert the estimated disparities to depth. Since MiDaS works on scale- and shift-
invariant disparities, a simple inversion will not yield useful depths. The evaluation
code of MiDaS gives us a way of finding the scale and shift, though this requires a
depth ground truth.
After extracting approximate ground truth depth maps from one of the flights using
the area-model, we find an approximate scale and shift we apply to all predictions.
When training, we use pretrained auxiliary networks to give better supervisory signals
early on.

While Dynadepth normally runs with four scales of depth-predictions, MiDaS only
outputs one. We attempted to attach disparity-heads to each of the fusion blocks in
figure 2.2 to generate four predictions at different scales, though the three additional
predictions were unsurprisingly not very good. Only the one full-scale depth predic-
tion is properly pre-trained, and training the three others proved too challenging while
using the self-supervised framework of DynaDepth on this model with 345 million
parameters. It is well known that large models are more difficult to train, and adding
this multi-scale prediction to MiDaS proved to be infeasible for us.
Besides, this would inevitably disrupt the already effective network-weights of MiDaS,
which is contrary to our goal of leveraging the extensive training already performed.
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Instead, we move forward with only a single full-scale depth prediction.

We use the same hyperparameters as DynaDepth, except with a batch size of 4 because
of memory constraints. We also train another "fine-tuning" model, where we use a
learning rate of 5e-7, freeze the pre-trained pose-network, and only train for 4 epochs.

2.4 MonoViT

2.4.1 Model Information

While MiDaS/DPT uses a purely transformer based encoder, we mentioned earlier
that there are models which combine the usage of CNNs and transformers in their
encoder. MonoViT [68] is one such model. Instead of using the image patch method
as seen in ViT[10], the start of the encoder consists of passing the image through a
convolutional block generating feature maps of half the original height and width,
which is then passed through several encoder blocks consisting of both transformers
and convolutional layers. A figure of the model is shown in figure 2.3, and follows a
common encoder-decoder model which generates predictions at four different scales
with the image-size halved at each. As mentioned in earlier sections, CNNs are gener-
ally good at capturing local information, while transformers can do well at capturing
global information [70]. A combination of CNNs and transformers should, in theory,
be capable of capturing both global and local features of an image, potentially yielding
better depth predictions.

The joint transformer layer was first intruduced by Lee et al. [27] in their article
on MPViT, and works as follows:
Instead of a single fixed size patch embedding, convolutions of different kernel-sizes
(3x3, 5x5, 7x7) are used to create three different sets of embeddings, each able to
capture information at different receptive fields. These embeddings are passed to three
transformer-encoders and a convolutional block in parallel, where the embeddings
generated from the smallest kernel are shared by one of the transformer layers and the
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Figure 2.3: Overview of the multi-scale depth network of MonoViT[68]. Following an
encoder-decoder structure, the encoder sequentially generates feature maps of gradu-
ally decreasing resolution, and the decoder combines up-sampling, skip-connections
and disparity heads to generate inverse-depth predictions at four scales.

convolutional block. The outputs from these four blocks are concatenated and passed
through a 1x1 convolutional layer, allowing local and long-range features to interact
and fuse. This is then passed on to the next layer, which repeats the process. Figure
2.4 shows the structure of the joint CNN and transformer layer.

Like DynaDepth[65] and ManyDepth[63], MonoViT also builds on the self-supervised
framework of Monodepth2[18], meaning that a photometric loss with the per-pixel
minimum trick is used, similar to 2.1, but with a simple Pose-network instead of the
IMU-motion, as well as a disparity smoothness loss.

Contrary to the other transformer-based model we are testing, this one is signifi-
cantly smaller in terms of the number of parameters (345 million vs 28 million). The
self-supervised framework limits the complexity of the models we can utilize, meaning
we need to find a middle ground between strong network-capabilities and what we
can effectively train.
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Figure 2.4: The Joint CNN & Transformer layer as visualized by the original authors,
Lee et al. [27]. Three different sets of embeddings are created using convolutional
layers, and they are passed in parallel into the three transformer layers and the single
convolutional layer. The outputs are then concatenated and fused through a 1x1
convolution, outputting a feature map with half the original height and width.

2.4.2 Implementation and Training Details

Following the implementation of the MonoViT-authors, we use the AdamW optimizer
and apply a lower learning rate of 5e-5 to the MonoViT-encoder, and 1e-4 to all other
parameters. The learning rate scheduling-scheme is also changed: The learning rate
decays by a factor of 0.9 following each epoch. All other parameters are the same as
with DynaDepth (2.1.2).
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Chapter 3

UAV-dataset

Our dataset consists of five separate flights. Because of the small number of flights, we
use one of them as both the validation and test set, while the four others are used for
training. We trim the training set to remove sections that are unlikely to generate good
supervisory signals. This includes parts with rapid maneuvering and incidents of poor
and varying lighting conditions. Rapid maneuvers are too challenging to accurately
estimate poses for and cause motion blurring, which is problematic for the photometric
loss. Poor lighting conditions also raise issues:

• If compared frames have different lighting-conditions, this violates the assump-
tions of the photometric loss.

• If the foreground is too dark because of sun-glare, the details of the terrain
become very challenging to make out. This makes the depth estimation task
much more difficult and might make the photometric loss ineffective because
large sections of the image are very similar.

Examples of two images removed from the training are shown in figure 3.1. The first
one is removed because of the lighting conditions, and the other because of rapid
motions as we can infer from the motion blur. While the worst sections of maneuver-
ing and lighting were removed, parts of the remaining dataset have somewhat poor
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lighting and contain jerking motion adjustments and turns, because we do not want
to remove too much data.

As mentioned in section 1.2, non-zero translation is required to infer depth, and

(a) Lighting example (b) Motion example

Figure 3.1: Two examples of removed images from the dataset. a) is removed because
of poor lightning, and b) is removed because of the rapid drone rotation.

sections where the drone is stationary cannot give good supervisory signals to the
depth network. While DynaDepth incorporates an automasking-feature that blocks
out pixels that remain unchanged between images to remedy this problem, this is
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much less effective on our dataset. Our drone experiences some constant vibration
from the rotors, and we saw during the specialization project[49] that this hampers the
job of the automasker, which is not an issue for the car in the KITTI dataset. Because
of these problems with the automasker on our dataset, we cut out sections where the
drone is stationary, often during the start of a flight. After all the cuts, our dataset is
reduced from 33.747 to 19.817 images. For comparison, the commonly used training
section of the KITTI dataset consists of 45.200 images.

The test set is not trimmed in any way. Using the area model and the localization pro-
vided by the drone’s GPS-based navigation system, we extract a pseudo ground-truth
for the depth estimates on the test set, which we will use for validation during training
as well as a final evaluation of the depth estimates.

The datasets were captured during winter, which may cause issues since the snow-
covered ground is very low-texture and indistinct, making it hard for the models to
find the correct warping of the pixels as the photometric error will not change much
in those parts of the image. The same can be said for the sky. Still, the trees in the
images can be used for the alignment of the main image and the warped image. At
the same time, the forest is somewhat monotonous as well, though this is more of an
issue at a distance where the image is less detailed, and not as much up close. We have
made sure not to fly very high, though it might have been better to pitch the camera
down to not include as many objects in the distance as well as have less of the sky
present in the image.

There were some issues when capturing the data, with the sampling-rate of the IMU
and camera FPS varying throughout the flights. We experienced this during the spe-
cialization project[49] and assumed this had to do with the software being overloaded
and discarding some images and measurements. Because of this, we chose to discard
the old dataset. To address these problems in this Master’s Thesis, we captured new
data with reduced video-framerate, hoping that this would fix the issue. While this
did improve the situation, it did not completely fix it. We will later discuss the issues
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this will cause during training. An added benefit of the reduced FPS of the video is the
increased length of the translation between images, which is beneficial for training
since this makes depth easier to estimate using the photometric loss.

Before training, we undistort the images and resize them from 1080×1920 to 288×512.
The resizing maintains the original aspect ratio of the images to prevent stretching or
squeezing of the images:

1920
1080

=
512
288

= 1.777...

The image downsampling is done to speed up training and reduce memory require-
ments.



Chapter 4

Monocular Depth Estimation
Results and Discussion

In this chapter we will first outline some problems we experienced with the baseline
DynaDepth model, and explain what we did to address them. Then, we report on the
results of all the trained models from chapter 2 with these improvements included.
Following the results, we discuss various points related to the results, before we finally
decide which MDE model to use in the final part of the thesis regarding PCR.

4.1 Problems and Improvements to DynaDepth

During the specialization project[49] we found it more challenging to use our UAV-
dataset to train DynaDepth than KITTI was for the original authors. We hypothesized
that the increased freedom of movement of a drone compared to a car made the esti-
mates generated by the auxiliary networks (relative pose, gravity, velocity) much less
accurate than was desired.

Indeed, inspecting the estimated gravity vectors, we see that they are far off. For
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example, in figure 4.1, the gravity network yields an estimate sideways, which is obvi-
ously incorrect. We observe that the gravity networkM𝑔 converges to a seemingly
random fixed gravity estimate early on in training and outputs this gravity-vector
regardless of the image it receives. As mentioned in section 2.1, the gravity loss only
takes into account the magnitude, and not direction, of estimated gravity. The direction
of gravity would need to be inferred through the EKF-motion in the photometric loss
2.1. This is not sufficient for our data, and we instead propose using GPS orientations
during training to generate a good estimate of gravity for supervision. Doing this, the
gravity L2-loss will compare the vectors instead of only the magnitude.
Note: When we refer to GPS, we are using the corrected GPS-measurements that were
generated by the navigation system of the drone, which fuses GPS, IMU, altimeter, and
motor inputs.

The predicted velocity has some issues as well. While it is not possible for us to
know exactly what the velocity should be by looking at the images, we can intuit
that the velocities at consecutive frames should be similar as long as there are no
abrupt maneuvers. The following are two consecutive velocity estimates where the
drone is flying straight ahead, transformed to front-left-up orientation for ease of
interpretability:

V0 =


4.933

−0.499

−1.147


,V1 =


3.729

0.039

3.269


While M𝑣 has been able to learn that the drone moves forward in the x-direction, we
see some clear discrepancies in the other dimensions.
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(a) Image (b) Gravity vector

Figure 4.1: Example of erroneous gravity estimation on the test set. While the gravity
vector should point down, we see that the estimate points to the side.

In general, both the velocity and pose-networks, M𝑣 and M𝑝 , are biased in favor
of moving straight ahead since this is the case most of the time in the data. This is
much less of a problem if you are training on the KITTI-dataset which DynaDepth was
originally created for, since the car almost always moves forwards and does not need
to perform pitching and rolling maneuvers to change direction. Figure 4.2 shows an
extreme example of a drone maneuver where the drone turns while moving sideways,
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and the EKF and M𝑝 estimated motions struggle to follow the turn and movement.
This figure also shows the benefit of using IMU-measurements and not only relying
on deep learning, as the EKF-motion has an easier time following the rotation of the
drone.

Figure 4.2: Example of failed pose estimation because of a challenging drone maneuver.
This section was subsequently removed from training, as it was deemed to not generate
useful supervisory signals.

Since accurate motion-estimates are crucial to generate good supervisory signals
for the neural networks, we propose to add direct supervision onM𝑝 and EKF-motion
with GPS-based poses. Using measured GPS pose at image 𝑘 and 𝑘 + 1, the relative
motion in camera frame is calculated as:

T𝑔𝑝𝑠 = T𝑐𝑔T−1
𝑘

T𝑘+1T𝑔𝑐

The GPS uses the common front-left-up axis convention, while camera-frame is right-
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down-front. T𝑔𝑐 represents the transform between these coordinate frames, such that
the relative motion is represented in camera-frame. We create two MSE-losses with
T𝑔𝑝𝑠 , one comparing with the EKF, and the other comparing withM𝑝 , and add them
to the total loss of the various models with a weight of _𝑔𝑝𝑠 = 0.5:

𝐿𝑡𝑜𝑡𝑎𝑙 += 0.5MSE
(
T𝑔𝑝𝑠 ,T𝑝𝑜𝑠𝑒𝑛𝑒𝑡

)
+ 0.5MSE

(
T𝑔𝑝𝑠 ,T𝐸𝐾𝐹

)
We hope that this additional loss can improve both M𝑝 and M𝑣 to generate better
motion estimates, which in turn might yield better depth predictions. Adding direct
supervision on the translation also has the added effect of resolving the scale ambiguity,
though IMU-data plays an important role in that as well.

4.2 Depth evaluation on the test-set

When evaluating the depth accuracy, we limit ourselves to error computations for
depths within 200m in the ground truth, since we know that large depths are more
prone to be inaccurate. Additionally, we apply cropping of 5 pixels on the sides and 15
pixels on the bottom to avoid depth artifacts on the edges caused by the undistortion
performed on the images. We report RMSE along with some other commonly used
metrics as introduced by Eigen et al. [11]:

• AbsRel: Mean of absolute relative depth error, |�̂�−𝐷 |
𝐷

• SqRel: Mean of square relative depth error, (�̂�−𝐷)2
𝐷

• RMSLE: Root Mean Square Logarithmic (depth) Error

• 𝛿𝑖 : Proportion of pixels where𝑚𝑎𝑥
(
�̂�
𝐷
, 𝐷
�̂�

)
< 1.25𝑖 . Close to 1 is best.

To allow for depth evaluation, we use the pseudo ground-truth generated from area
model along with an estimated pose from the drone’s GPS-based navigation system.
This generated depth map will not be fully accurate, both because of limited detail
in the 3D-model, as well as some pose uncertainty. Similar to the original training
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images, the pseudo ground-truth is resized from 1080×1920 down to 288×512 to make
it compatible with the depth estimates.

Before evaluating an MDE model, it is necessary to resolve the scale-ambiguity of
the task. Despite incorporating both IMU and GPS data during training, we did not
manage to achieve the correct scale on the test-set. Following Godard et al. [18], we
apply median scaling, which consists of scaling the depth predictions such that the
median depth aligns with the median of the ground truth. We report the scale along
with the scaled error metrics averaged over the test-set in table 4.1, constrained to
within 200m. In the table, Dynadepth(w/o GPS) represents the baseline DynaDepth
model without our additions. Figure 4.3 shows a depth-prediction comparison between
the trained models, and an error map of the same scene is shown in figure 4.4.

Table 4.1: Scaled depth error metrics on the test-set, along with mean scale

MODEL Mean Scale ± 𝜎 AbsRel SqRel RMSE RMSLE 𝛿1 𝛿2 𝛿3

DynaDepth(w/o GPS) 0.890 ± 0.162 0.169 10.196 32.003 0.208 0.776 0.950 0.986
DynaDepth 0.870 ± 0.157 0.154 9.159 30.805 0.195 0.804 0.960 0.989
ManyDepth 0.871 ± 0.153 0.135 3.558 20.099 0.176 0.812 0.973 0.998
ManyDepth(EKF) 0.824 ± 0.150 0.130 3.041 19.047 0.170 0.812 0.981 0.999
MonoViT 0.808 ± 0.133 0.156 9.136 30.450 0.208 0.775 0.954 0.989
MiDaS 0.693 ± 0.155 0.128 3.208 20.124 0.176 0.814 0.970 0.996
MiDaS finetune 0.858 ± 0.179 0.107 2.265 16.319 0.144 0.881 0.986 0.998
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(a) Raw image (b) DynaDepth (c) ManyDepth(EKF)

(d) Monovit (e) MiDaS (f) MiDaS finetune

Figure 4.3: A comparison of five models evaluated on an image from the test set. For all
depth-images, we limit the color intensity of the image to 300m for ease of comparison
and to prevent the foreground from becoming too dark in some of them.
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(a) Pseudo ground-truth (b) DynaDepth (c) ManyDepth(EKF)

(d) Monovit (e) MiDaS (f) MiDaS finetune

Figure 4.4: Comparison of error maps after performing median scaling. Error com-
putation is limited to within 200m. The area model used to generate the pseudo
ground-truth is not completely accurate, nor is the estimated drone-position which
the depth image is generated from. As such, the error metrics reported in table 4.1
should be taken with a pinch of salt.
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4.3 Observations and Discussion

4.3.1 Depth Errors

A common erroneous result we observed for almost all trained models was the depth
estimated in the sky. Generally, the upper sections of the image are estimated as being
as close as the ground, though some parts of the sky have large estimated depths.
Since this affects all models, this indicates that this error is an effect of our supervisory
signals or the data, not of the depth networks themselves. It is not immediately clear
what could cause this. A possible explanation is that it might have to do with the fact
that no depth-estimate managed to change the photometric losses in those sections
significantly, so the initial estimates of depth from the start of training remained, and
those are generally low. This hypothesis is contradicted by the MiDaS training results.
The initial estimates of sky-depth at the start of our MiDaS-training is the maximum
depth possible, 5000m, since it is good at detecting the difference between foreground
and background. As training continues, this quickly degrades to the results we see in
our other trained models.

Inspecting the sky in some parts of our dataset might give an indication of the reason.
For example, in figure 4.5, the color of the snow-covered ground is somewhat similar
to the sky in the image. This can be a contributing cause of the problem seen in figure
4.3, where the large parts of the sky have similar depths as the ground. A compound-
ing factor is the aforementioned difficulties of finding the correct warpings in these
sections, as the photometric errors are likely to be small since neighboring pixels are
similar, though some changes in the moving clouds could confuse the situation. The
combination of similarities with the ground as well as poor supervisory signals can
explain these depth errors.
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Figure 4.5: Example of an image from the training set where we see that the snow-
covered ground has a very similar color to the clouded sky.

As mentioned in the previous section, we constrain the depth evaluation to within
200m. Depth estimation is inherently more difficult at longer ranges because of the
limited resolution and sensitivity of the camera, which causes degradation of details
in faraway sections of the image, though this degradation can be a depth-cue in and of
itself. As touched on in previous sections, disparity shifts between images are required
to infer depth. This means that objects that are far away are hard to calculate depth for.
This is represented in our models by the depth appearing inversely in the photometric
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loss. This means the impact depth has on the loss decreases as the depth increases. For
instance, the change when adjusting from 𝑧 = 3 and 𝑧 = 4 is much more significant
than from 𝑧 = 300 to 𝑧 = 400, making the exact depth harder for the photometric loss
to decide for faraway objects. This is exacerbated by the level of detail in the image
decreasing with increased depth, meaning that a slight pixel-warping error is less
significant. Since we are using gradient descent, the rotational part of the ego-motion
is much more impactful to adjust at these ranges, possibly making the depth converge
to lower values than it should. Figure 4.4 shows the trend of larger errors further
away from the camera, though as explained, the figure only shows results within 200m.

The depth error maps in figure 4.4 reveal some depth-artifacts for both DynaDepth
and MonoViT, where there are large errors on the section of trees to the right in the
image. It is not clear what could cause this error, though it may be tempting to blame
overfitting. As mentioned in chapter 3, our dataset is much smaller than KITTI. While
DynaDepth was originally trained for 30 epochs on KITTI, we reduced it to 16 on our
own data, since a smaller dataset reduces the number of epochs before we can expect
to see overfitting. These errors also appear at checkpoints early in training, indicating
that it may not be from overfitting, but rather having to do with poor supervision.
Figure 4.6 shows a similar error being present for DynaDepth and MonoViT at epoch
8. The aforementioned depth-sensitivity problems mean that the model overshooting
the depth severely in faraway sections is not heavily punished by the photometric loss,
as both the observed disparity shifts and the pixel warpings will be tiny regardless.
This means that the depth networks are not properly supervised to fix these depth
artifacts once they appear during training, and similar artifacts are also observed on
parts of the training set. This is even more likely to occur in monotonous low-texture
regions, where the photometric loss generally struggles since the disparity shift is less
apparent. In general, the large depths in our images mean that large parts of the image
do not provide good depth-network supervision through the photometric loss. Tilting
the camera further down when recording the data may have been a better choice, as
this would decrease the depths of the images.
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(a) DynaDepth (b) MonoViT

Figure 4.6: DynaDepth and MonoViT error maps at epoch 8, where we still observe
similar depth artifacts on the right as seen in figure 4.4.

Looking at some of the inverse-depth predictions during training, we can easily
see problems. The poor lighting and maneuvering make the self-supervised depth
estimation problem very challenging, as figure 4.7 reveals. While the image is shown
for DynaDepth, poor results are seen for the other MDE models as well, even for
MiDaS early in training. This means that the problem is not just from not being able
to generate useful supervision, but also because the image is hard to infer depth from.
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(a) Image (b) Inverse Depth

Figure 4.7: Example of poor results during DynaDepth training, indicating inadequate
supervision and a challenging estimation problem caused by the lighting and move-
ment.

4.3.2 Auxiliary Network Estimates

In addition to poor lighting and large depths, we assume a large problem of our training
is the difficulty in properly estimating ego-motion for use in the photometric loss.
The self-supervised framework was originally designed for use within the domain of
autonomous vehicles, where we have cars driving on roads. A drone allows for full
6-DOF maneuvers instead of the 3-DOF of the car, which are forward motion along
with sideways motion and yawing during turns. This means we have a much more
challenging estimation problem than what the Pose-netM𝑝 and velocity networkM𝑣
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were created for. Since DynaDepth implements a variant of the Pose-net that also
attempts to estimate pose-variances to use in the EKF, we can inspect the estimated
uncertainty of the pose predictions. While the authors of DynaDepth managed to
achieve low variance on the forward-component of the translation, we see high uncer-
tainty in all six degrees of freedom. The effect of this is that the EKF-motion is entirely
based on the IMU-motion, with little inclusion from the Pose-net M𝑝 .

Inspecting a comparison of the estimated drone motion between IMU and Pose-net
reveals that this may be the correct choice. Figure 4.10a shows a part of the estimated
motion on the training dataset. As we only estimate relative motion, we must manually
accumulate them together, which also means we drift over time. That is why we only
show a small section without significant maneuvers for this comparison. IMU-motion
is closer to the GPS, though it is a bit noisier, which makes sense as the IMU experi-
ences noise as well as significant vibrations from the drone rotors. There are also the
synchronization problems between the images and the IMU and GPS, which means the
first and last IMU-measurements between training images are not perfectly in synch
with the timestamps of the images. Though this ought to be a minor inconvenience
most of the time since there are usually many more measurements included such
that the overall cumulative motion is very close to correct. However, because of the
varying FPS of the camera and sampling rate of the IMU, there are some sections where
there are only two or three measurements recorded between the images, giving a less
accurate relative motion estimate.

Noisy IMU-motion can also be caused by difficulties in estimating the starting velocities
withM𝑣 . Since we have slightly varying FPS of our camera andM𝑣 has no information
about the timesteps, it is technically impossible for it to observe the velocity. The syn-
chronization problem is likely much more significant in regard to GPS-measurements
than the IMU. The GPS-measurements affect the velocity networkM𝑣 both through
velocity-magnitude supervision (part of 𝐿𝑣𝑔 in equation 2.3) as well as the EKF-motion
supervision, and the synchronization issues will make the supervisory signals less
accurate. Figure 4.8a show the velocity loss on the validation set during training. The
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losses still remain high and have some spiking, showing the difficulty in estimating
velocity.

While the velocity estimation struggles, the gravity estimates are a bit better as the loss
in figure 4.8b shows, even though it suffers the same synchronization issues. Still, the
improvement of adding supervision of the direction of gravity as outlined in section
4.1 quickly makes the gravity estimates better. Even if the generated ground truth
gravity is slightly wrong because of the delay between the image and GPS, as well
as some inevitable inaccuracies in the GPS-based orientation, it will still point in the
approximately correct direction, as opposed to what we saw in figure 4.1. Predicted
gravity after the change to the supervision is shown in figure 4.9.

(a) Velocity loss (b) Gravity loss

Figure 4.8: Gravity and velocity loss on the validation set during training of DynaDepth
with the added GPS supervision. As said in chapter 2, we originally trained for 30
epochs, but are using checkpoints at epoch 16 for evaluation.
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(a) Image (b) Gravity vector

Figure 4.9: Example of good gravity estimation on the test set after changing the
gravity loss. The drone is slightly pitched forward as it flies, which makes part of the
gravity vector point along the x-axis of the body, giving the positive x-value of the
gravity estimate.

It would be ideal if the visual information could smooth out the IMUmotion through
the Kalman filter, though this does not happen because of the aforementioned Pose-net
estimated variances. It is possible to manually adjust the IMU noise covariances to
be closer to the Pose-net as we did in figure 4.10b, but this did not show any clear
improvement of the depth estimates. The resulting motion estimates after our tuning
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make it seem like the IMU-motion is made to drift in the opposite direction of the
Pose-net, such that the EKF-estimate stays in between them and remains somewhat
similar to before our tuning. Since we saw no improvement, we stuck to the default
EKF-tuning when training the models in table 4.1.

(a) Default (b) EKF parameter tuning

Figure 4.10: Comparison of the Pose-net, IMU, and EKF motion trajectories in a small
section of the training data. While the Pose-net seems to underestimate the turning
of the drone and drifts early, the EKF motion is noisier though with less overall drift,
though the EKF drift in height is not as apparent from this viewing angle. a) shows
results using the default EKF parameters by Zhang et al. [65], where the EKF ignores
Pose-net. b) is of our own tuning by increasing the IMU noise covariance to be more
in line with the Pose-net covariance, such that the EKF incorporates visual data.

The motion estimates also raise the question of whether increasing the weighting
of the IMU photometric loss 2.1 in the total loss (equation 2.3) to _2 = 1 would be
better, though again, this gives negligible changes in the results, causing marginally
worse error metrics and no noticeable improvement when inspecting the depth images.
Figure 4.10 may be giving the false impression that just because EKF-motion appears to
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follow the GPS better, it is better than the Pose-net for the purposes of depth estimation
through the photometric loss. It is important to remember that the relative motion
is all we need, not the overall trajectory, and the noise we see in the EKF-motion
could mean that the relative motion error is larger than we assume. Inspecting the
GPS-based pose loss in figure 4.11 we see that they are both approximately the same.
From the motion comparison, it looks like while Pose-net consistently underestimates
the motion, the EKF/IMU-motion has consistent noise errors, yielding relative-pose
estimates that have similar levels of precision. The angle of the image also makes it
hard to see the drift in altitude for the EKF compared to GPS, and any drift in rotation
is not revealed from the trajectory, so the EKF-motion is less accurate than it looks.
The same holds true even with the EKF-tuning mentioned earlier.

(a) EKF pose loss (b) Pose-net pose loss

Figure 4.11: GPS-based pose MSE during training of DynaDepth

4.3.3 ManyDepth

While training ManyDepth we observed that the consistency loss (2.4) increased during
the course of training, seemingly struggling to decrease and converge. It seems that
the multi-image depth network, in large part, is pushed towards replicating the results
of the single-image network, though it still achieves superior results as seen in table 4.1.
Figure 4.12 shows the logged consistency loss during training of the ManyDepth(EKF)
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model.

Figure 4.12: ManyDepth consistency loss (equation 2.4) on the training set. This loss
grows much larger than all other losses, and does not have a downward trend.

The inclusion of the single-image depth network is supposed to combat the prob-
lems caused by moving objects in the scene, where the multi-image depth network
yielded very poor results, much more so than the standard mono-image network of
monodepth2[18]. This is not an issue in our dataset since we have completely static
scenes with no people or cars moving around. One might assume that disabling the
consistency loss might then be better, though in our testing, this caused deterioration
of the results. It is likely that the large depth deviations causing the large consistency
losses stem from poor single-image predictions in parts of the images (as seen in the
DynaDepth error-maps in figure 4.3b), with some addition from inaccuracies in pose
estimates used to generate the cost-volume. Still, we see an overall improvement in
the depth predictions, with more consistent estimates without as many artifacts as we
see with Dynadepth.

There is also a slight improvement when using the EKF-poses instead of the Pose-net
M𝑝 , though the scale is further off. As we see in table 4.1, the scale is more inaccurate
for the model using the EKF to generate the cost-volume. This is quite unexpected,
as we would assume adding scale-aware data directly into the depth estimator, and
not just through the supervisory signals (IMU-losses, 2.1, 2.2), would increase the
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scale-accuracy. The scale-awareness is bottlenecked by the velocity network since the
IMU only helps to find the change in velocity between the images, and not directly
resolving the scale-ambiguity of the translation, meaning the depths will also not be
scale-aware. Overall, the decreased scale-accuracy when using EKF-motion in the
ManyDepth depth network is likely related to the EKF-motion problems mentioned
earlier: IMU-noise, synchronization issues, and the velocity not being observable for
the velocity-network M𝑣 .

4.3.4 MiDaS

As we can see in table 4.1, MiDaS achieved the least accurate scale when trained
normally, i.e. not the finetuning way. It is possible that this is related to us having to
give MiDaS an approximate scale to start with. The pretrained pose network M𝑝 had
its own learned scale that likely was somewhat conflicting with MiDaS at the start,
and overall they ended up with a worse scale-results than the others. On the other
hand, when we froze the pose network in the finetune-training, MiDaS was forced
to learn a scale that was compatible with the Pose-net. As such, we see that ”MiDaS
finetune” has a more accurate scale in table 4.1.

An important metric not seen in table 4.1 is the distinctness and consistency of the
depth predictions. For instance, only the MiDaS-finetuning model manages to generate
a distinct outline of the lone tree and generally has less blurry predictions. This is not
the case for the other trained MiDaS model, which has much more blurry and indistinct
depth estimates, despite having comparatively good error metrics. As exemplified in
the error map (4.4e), the good error metrics are caused in large part by the indistinct
depth estimates fitting well with the ground, as well as not having any extreme depth
artifacts as we see with DynaDepth and MonoViT.

4.3.5 Incorporation of GPS pose supervision

While we see some small improvement when using GPS-supervision, one might expect
the motion estimation to be significantly better. We investigate the improvement
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by evaluating the GPS-pose losses on the two DynaDepth models trained with and
without the additional GPS supervision we described in section 4.1. As table 4.2 reveals,
the improvement for the Pose-net is small, and the EKF-motion is worse. However,
there is slightly less deviation of the pose-losses, which indicates that we managed
to improve the consistency of the estimates as there were fewer large motion errors.
The pose supervision on the EKF-motion was mostly intended to improve the velocity
networkM𝑣 , though the EKF MSE-loss on the test set indicates our failure. Though
as mentioned before, the varying FPS of the camera makes the velocity unobservable,
something that cannot be remedied nomatter how strong and precise the supervision is.

A possible explanation for the unimpressive motion improvement is that the mo-
tion between images is very small, meaning that the MSE-loss will be very small so
long as the pose estimates are not wildly inaccurate. A result of this is that the other
losses dominate the optimization steps. Figure 4.13 reveals that the trajectories drift
quite early, even with the very low pose-losses. We attempted to increase the weight
of the MSE-loss to address this, but this gave worse depth-results. This supervision is
not completely accurate, both because of the uncertainty of the GPS pose-estimates,
and also because of the aforementioned synchronization problems between the frames
and GPS-measurements. Images are matched with the most recent GPS-measurement,
and this delay is a source of inaccuracy, especially during fast maneuvers. This means
that the optimal motion for the GPS-losses is slightly different from the photometric
losses, and necessitates a somewhat low weighting of the GPS-pose loss so that these
errors don’t contribute to worse depth-estimates. The photometric losses are the only
ones related to depth, and ought to be the main losses to minimize.

We also hoped to see more accurate scales when adding GPS-supervision. IMU-
data plays a role in finding the correct scale, though less directly, as supervision of the
estimated translation of the drone ought to yield an even more accurate scale. However,
looking at table 4.1, this is not the case as the Dynadepth-model trained without our
proposed modifications has a slightly more accurate scale on the test set. However, it
should be said that the scale will be unobservable at test-time, since the scale is only
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Table 4.2: Average Pose-net and EKF-pose losses on the test set with and without the
additional GPS supervision in section 4.1.

MODEL Pose-net loss EKF-pose loss

No GPS 0.00596± 0.00714 0.00680± 0.00799
With GPS 0.00468± 0.00485 0.00721± 0.00700

Figure 4.13: Pose-net and EKF trajectories on the test set, with GPS supervision included.
As we see, the EKF-motion drifts a bit faster than the Pose-net. Since the flight contains
some stationary hovering, the forward motion bias of the velocity network and the
pose network makes it seem like the scale of the estimated trajectories is much larger
than the GPS, though it is not.
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inferred during training. If we instead inspect the scale on one of the training flights,
table 4.3, we see results more in line with what we expected. As DynaDepth already
does a good job of finding the scale, the improvement is not massive in absolute terms,
though the relative improvement is quite large. The standard deviation of the scale is
much larger than DynaDepth achieved on KITTI[65], which hints at the difficulty of
monocular depth estimation on our dataset.

Table 4.3: Average and standard deviation of the scale within 200m in one of the
training flights.

MODEL Scale Std

DynaDepth(w/o GPS) 1.0259 ± 0.191
DynaDepth 1.0038 ± 0.183

4.3.6 Effects of self-supervision

It is well known that self-supervision is a more challenging problem than supervised
learning[41], and this came to light when training MiDaS. While we have included di-
rect supervision of the auxiliary networks, the depth networks are still self-supervised.
As we explained in chapter 2, we had to perform some extra steps to be able to train
MiDaS on our own data using the self-supervised framework of DynaDepth. This was
to load pretrained weights and only perform a single scale depth prediction to ensure
we could leverage the training already performed on other datasets. Since the neural
network of MiDaS contains 345 million parameters, using self-supervision was a tall
order, though the extensive supervised training already performed let us achieve our
best results when finetuning on our own data.

It is not a coincidence that the largest neural network models gave us the most trouble,
since these are more demanding in terms of good supervision, which is harder to
generate using self-supervision [41] [38]. While a supervised MDE model can directly
apply supervision to the depth network, we use the ill-posed photometric loss[7] to
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generate supervision for multiple networks at the same time, and at the same time
trying to resolve the scale-ambiguity by including the IMU (equation 2.1 and 2.2). A
comparison of the parameters in the four different depth networks we have used is
shown in table 4.4. The larger number of parameters of MonoViT may have been its
downfall. While MiDaS was pretrained, MonoVit was not and did not significantly
surpass the relatively simple depth estimation network of DynaDepth.

The smallest depth network we trained was ManyDepth, which turned out to be
the second best w.r.t the error metrics. It also did not experience as many of the
seemingly random depth errors as DynaDepth and MonoViT did, as exemplified in
figure 4.4. This may be because of the reduced model complexity, but the parameter
difference with DynaDepth is small, so it is likely caused by the increased capabilities
gained when including more than a single image for depth estimation.

We could have generated the pseudo ground-truth for all of the training data, but since
we know it is somewhat inaccurate as exemplified by figure 4.4a, we decided to use
self-supervision despite the challenges it poses.

Table 4.4: Number of parameters in the respective depth networks

MODEL Parameters

DynaDepth 17.791.564
ManyDepth 17.388.532
MonoViT 27.870.108
MiDaS 345.014.441

4.3.7 Training Data

We have seen success in applying self-supervised MDE to UAV-datasets, such as the
work of Madhuanand et al. [36], who used the UAVid dataset [35]. However, inspecting
this dataset we see some quite significant changes which make it more ideal than ours
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for the purpose of self-supervised depth estimation:

• Mostly forward flying motion, with smooth maneuvering and mostly constant
elevation

• More consistent velocity

• Fixed FPS

• Urban environment with good lighting conditions

• Camera tilted down, yielding depth ranges in the images far smaller than ours

On the other hand, our dataset has:

• frequent motion adjustments, consisting of quick pitching and tilting jerks, as
well as altitude changes.

• Varying speed

• Slightly varying FPS of the camera and also varying sampling rate of the IMU

• The environment is of forested winter landscapes, with varying lighting condi-
tions.

• Depths up to thousands of meters.

It is clear that the UAVid dataset makes it much easier for a self-supervised model to
generate good supervisory signals since the job of the Pose-net and velocity network
is made much simpler. While our dataset can make the auxiliary networks better
because of the varying movement, this is not our goal, as we only need good depth
estimates. ManyDepth is an outlier in this sense, as the motion between frames is used
in the depth prediction, meaning that our dataset has an advantage in this case. As
touched on earlier, urban environments make the depth prediction task easier, since
there are more distinct colors and lines instead of the monotonous winter landscape
of our dataset. This is both a benefit for the depth networks themselves, as well as
for the supervisory signals since the warped image (1.3) is easier to align. It is also
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intuitively easier to predict depths in urban environments as there are more features
and objects, where, for example, observed sizes of things such as cars give strong depth
cues, whereas trees in rural environments can have largely varying heights making
for a more challenging MDE problem.

Even though the UAVid dataset is of a different environment than we are focusing
on, it would still be interesting to test our models with it, though we would need
access to more than just the images. We made an attempt to reach out to the curators
of the UAVid dataset to inquire about the camera intrinsics as well as IMU and GPS
measurements, though there was no response.

4.4 Chosen Model for PCR

Out of the trained models shown in table 4.1, we choose to use ”MiDaS finetune” for
attempting point cloud registration in the next chapter. This is because it has the lowest
depth errors, as well as less noisy depth estimates than the other models. In addition,
it does a relatively good job of keeping the ground flat (as seen in the error-map 4.4f),
which will be useful for registration.



Chapter 5

Point Cloud Registration

In this section, we perform point cloud registration for the purposes of estimating the
motion of the drone, as well as attempting to localize within the 3D-model. We will
use an off-the-shelf ICP algorithm and add our own simple weighting schemes, though
an entire Master’s Thesis could probably be written regarding finding the optimal
algorithm for this task.

5.1 Setup

The generated point clouds from the depth images are expected to have significant
errors caused by erroneous depth estimates. The 3D-area model is six years old, mean-
ing we have errors with some shrubbery and trees that have since disappeared still
being depicted in the model, while also having limited details since it was captured
from above by airplane without including multiple viewing angles.

A simple ICP implementation as outlined in section 1.2.6 is unlikely to achieve great
success, since there is no method of handling outliers and rejecting matches, which
is important when working with inaccurate clouds. There are implementations of
the ICP algorithms available from multiple libraries online, such as Pytorch3D or

73
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Open3D, though these can be quite simplistic. Instead, we will use a more advanced
ICP algorithm created by Birdal [5]:

• Sampling: Performs the ICP algorithm at 𝑖 = 10 hierarchy levels, with an
increasing number of samples from the source cloud following the pattern
𝑛𝑖 =

𝑛𝑡𝑜𝑡𝑎𝑙
2𝑖−1 (counting 𝑖 backwards). The resulting alignment at a hierarchy level

is used as initial alignment on the next level. Sampling of the source cloud
follows the geometrically stable sampling method by Gelfand et al. [17], while
all points of the target cloud are always used.

• Matching: A KD-tree search is performed to find a source-point’s nearest
neighbor in the target cloud based on euclidean distance.

• Weighting: No weighing is used.

• Rejecting: Duplicated matches are removed, and the lowest distance one is
retained. The standard deviation of the distances of the matched points is
robustly estimated using the median absolute deviation[47], and matches are
considered outliers and subsequently rejected if their distance is outside three
standard deviations of the median.

• Error metric: The Point-to-Plane error metric is used. To generate normals of
the clouds, we use the ten nearest neighbors for plane-fitting.

• Minimizing the error metric: A linear approximation as outlined by Low [32]
is used to minimize the point-to-plane error. This approximation allows the
problem to be solved in a single step as a simple linear least-squares problem.
The ICP iterations terminate when the change between iterations is sufficiently
small.

This ICP algorithm does not include a scale factor. We showed in chapter 4 that we
have some scale errors in our depth estimates. When generating point clouds, we apply
the median scaling with the pseudo ground-truth. While the clouds are originally
represented in camera-frame (right-down-front), we transform the registration results
to the front-left-up configuration for ease of interpretability.
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We choose two scenes to focus on, the first in figure 5.1 and the second in figure
5.2. In these figures, we also include the registration according to the GPS-based
relative motion between the scenes to act as a ground truth for comparison with our
results. The red cloud is the source cloud and represents the first image. The blue
cloud is the target cloud and represents the second image. This holds for all other
visualized clouds as well. For both scenes, there is a gap of four images in-between
to see more of a significant shift in the environment, though not far enough away to
make registration too challenging.

The first scene is intended to be relatively easy, as the lone tree on the left ought
to be a good object for precise motion estimation and localization. The second scene
is more challenging, consisting of the drone flying over the treetops. The generated
point clouds will have much more bumpy surfaces and are prone to getting the ICP
algorithms stuck at a local minimum.

For the first scene, we use a 175 meter depth limit for projecting the pixels to point
clouds, so some of the trees in the distance can be included. For the second scene, we
used a depth limit of 150 meters because we saw some obvious depth errors beyond
this limit. This makes the proposed method less universally usable, though we wish
to give the ICP algorithm the best chance possible to succeed for investigating the
potential of our approach. In addition, we ignore the top third of the depth image
to avoid erroneously backprojecting sky-pixels and crop the sides by 15 pixels. As
observed in the depth-error maps in figure 4.4f, there are some increased errors on the
sides of the images, and we wish to exclude them.

All point clouds are generated from images of resolution 288×512, i.e. the same
as the depth estimates. This means that we downsample the pseudo ground-truth
depth images from 1080×1920 to 288×512 before backprojecting (eq. 1.2). While some
information will be lost as a result of this downsampling, the database is already six
years out of date and has limited detail regardless, and the MDE-based point clouds will
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also lack fine details of the environment. The reduced number of points in the cloud as
a result of this downsampling has the beneficial effect of reducing the computational
complexity of the registration.
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(a) First Image (b) Second Image

(c) GPS Registration between predictions (d) GPS Registration with database model

Figure 5.1: Scene 1 focuses on attempting to get accurate registrations with the use of
a single tree as an easy object for matching. The red cloud is the source cloud, and the
blue cloud is the target cloud.
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(a) First Image (b) Second Image

(c) GPS Registration between predictions (d) GPS Registration with database model

Figure 5.2: Scene 2 is a more challenging situation where many trees are involved. The
red cloud is the source cloud, and the blue cloud is the target cloud.
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Adding to the ICP algorithm above, we will also test two weighting schemes:

• Normal-compatibility weighing,𝑤𝑖 = 𝑛𝑝,𝑖 · 𝑛𝑞,𝑖

• Cross-product with the averaged normal of the target cloud,𝑤𝑖 = 𝑛𝑞,𝑖 × 𝑛𝑞,𝑎𝑣𝑔

The normal compatibility reduces the weight of point matches with differing normals,
meaning that matches where the surfaces around the points differ are assumed to be
more likely to be erroneous.

Inspired by the normal-compatibility weighting, which uses the dot-product, we
implement a simple cross-product scheme for some specific parts of our dataset. It
consists of finding an average normal vector of the target cloud and setting the weight
of a matched pair as the cross-product between this average and the normal of the
matched point of the target. The reasoning is that sometimes, large parts of a cloud
are flat ground with few trees included. In this case, it is crucial to correctly align the
trees to find the true registration. However, the majority of points are on the ground,
such that the ICP algorithm prioritizes aligning the flat surfaces instead of the points
consisting of the trees. While using the point-to-plane error metric alleviates this
problem somewhat since it allows the algorithm to translate and rotate the surfaces
along each other without increasing the error [17], this proposed weighting scheme
can further address this issue. We only apply this to the first scene, as the second
scene does not consist of flat surfaces. This selective application of the weighting
scheme makes the algorithm unfitting for general use, but our goal is to investigate
the best-case potential of ICP for this task.

An important aspect to consider is that even if the estimated pose differs from the GPS
readings, this does not mean that the ICP algorithm failed to converge to the global
optimum. The ICP implementation might do the job perfectly, but if the generated
point clouds are inaccurate, the results may not align with the GPS. In addition, the
GPS pseudo ground-truth will be somewhat inaccurate. So while high-precision results
are unlikely, both because of MDE errors and the limited database details, we still hope
we can see some degree of success within localization and ego-motion estimation.
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5.2 Estimating ego-motion

Our first test consists of estimating drone ego-motion using the generated point clouds
from two images. Figure 5.3 shows registration results of the first scene using the three
weighting variants. As we see, only the cross-product weighting scheme manages to
align the lone tree to an extent. Unfortunately, the overall result is not at all close
to the GPS readings. With the other two registration attempts we barely see any
movement. We assume a large reason for this is that the ”ground” of the point clouds
is slightly curved and not as flat as they are in real life. While the point-to-plane error
metric allows for flat surfaces to glide along each other since only the point-distances
from the plane are minimized, the curved surfaces incentivize the algorithm to keep
the clouds right on top of each other such that the curve fits well. This systemic
problem of our depth estimator makes accurate motion estimation through ICP very
challenging. As we see in figure 5.3c, this can be alleviated with the proper weighing
scheme. The cross-product weighing scheme helps offset this issue, as matches to
points on the ground of the target cloud are weighted down. Unfortunately, the source
cloud moved too far, and we see a massive error in the y-axis translation. On the
other hand, some of the artifacts of the depth estimation can be useful for registration.
For instance, the trails of points around the lone tree in scene 1 give a good marker
for finding the rotational component of the pose, as we see them properly aligned
with the GPS-registration in figure 5.1c, though our registration failed in this regardless.

The trees in the rear of the cloud appear to cause issues for the registration, as they
are most visible in the target cloud where the drone has moved further ahead. This is
a common problem we will inevitably encounter when attempting this kind of task,
and should ideally be handled using rejection schemes since points not present in
both clouds are considered outliers. However, when both of the clouds are inaccurate
and noisy, it is much more challenging to detect these specific points as outliers and
subsequently ignore them. The cross-weighting registration (5.3c) shows that the
algorithm converged to aligning the rearmost trees quite erroneously as compared to
the GPS-registration.
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Overall, the estimated ego-motion is quite poor for scene 1, which is quite unfor-
tunate, as we had hoped this would be one of the easier situations.

We show the results of ego-motion estimation of scene 2 in figure 5.4. As mentioned
before, we do not attempt cross-product weighting since these clouds do not consist
of large flat surfaces. This is a much more challenging estimation problem because
the bumpy depth-surfaces of numerous treetops generate several local minima for the
optimizer to converge towards. The point-to-plane error metric is generally superior to
point-to-point, though the advantage is diminished in unstructured environments[42].
Point-to-plane works better for the first example when large parts of the cloud consists
of flat ground, and it is likely not much better than a point-to-point error metric in
this case. Somewhat surprisingly, the estimated motion compared to the GPS are not
clearly worse than in scene 1. The forward motion is captured quite well, and the
elevation to a lesser extent, though the other variables are much less accurate. It is
hard to say how good the registration is simply by looking at the point clouds since
the scene is very cluttered. The results of scene 1 look clearly wrong because of the
failure to align the tree, whereas it is difficult to say in scene 2.
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(a) No weighting (b) Normal-compatibility weighting

(c) Cross-normal weighting

DOF GPS (a) (b) (c)

𝜙(°) -0.390 0.145 0.043 -2.813

\ (°) -0.556 -2.321 -2.461 -1.255

𝜓 (°) -3.389 1.893 3.192 9.865

x(m) 2.533 2.507 2.818 5.424

y(m) -1.241 -3.026 -4.998 -23.293

z(m) 0.215 -3.909 -4.085 -2.546

(d) Motion comparison

Figure 5.3: Resulting ego-motion registration of the first scene. Observing the align-
ment in the table compared to GPS, it looks like ICP managed to correctly capture the
forward motion of the drone for a) and b) with only a slight inaccuracy, though the
five other degrees of freedom are incorrect. While c) has attempted to align the trees,
the overall registration is incorrect.
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(a) No weighting

(b) Normal-compatibility weighting

DOF GPS (a) (b)

𝜙(°) -0.070 1.912 2.056

\ (°) 0.138 -0.018 0.064

𝜓 (°) 0.088 0.371 0.359

x(m) 2.722 3.108 3.034

y(m) 0.059 -0.762 -0.783

z(m) 0.526 0.362 0.474

(c) Motion comparison

Figure 5.4: Ego-motion registration results of the second scene. Only the forward
motion and elevation change seem somewhat accurate, though it is very challenging
to make out the details of the registration. Results are also mostly unchanged when
using the normal-compatibility weighting.
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5.3 Localization

We make several attempts of matching with the area model. We perform the matching
the same way as in the previous section, but instead use the pseudo ground-truth
depth images to generate the target cloud. Should the registration succeed, we will
have found the drone position relative to a known position from which the target
cloud was generated. The first scene is shown in figure 5.5, and the second in figure 5.6.

When matching with the area model in scene 1, we see that the ICP algorithm has an
easier time aligning the lone tree. Unlike the predicted depth, the pseudo ground-truth
depth does not experience curvature in the ground. This lets the point-to-plane error
metric show its benefit of sliding the surfaces to allow for an attempted alignment
of the tree. Unfortunately, figures 5.5a and 5.5c show that the source cloud moved
too far, with a similar result as we saw in figure 5.3c. The normal-compatibility
weighting scheme showed some of the worst results yet, actively moving the trees
away from each other. A reason for this can be inferred in figure 5.7. The tree will
have very different normals in the target cloud compared to the source cloud, and this
means that the weighting will deprioritize aligning potential matched points of the tree.

As in the previous section on ego-motion, the two clouds of scene 2 are not easily
aligned. In fact, while most other registrations have correctly captured the forward mo-
tion of the drone, this registration does not do well in any of the six degrees of freedom.

None of the weighting schemes in the two scenes achieved great success compared to
the GPS-motion. As we have seen in the previous chapter, the pseudo ground-truth has
limited detail and is somewhat inaccurate. Additionally, none of the predicted depths
managed to generate clouds as jagged as the area model, and the trees are instead very
rounded and not straight. Inspecting figure 5.7, there is a clear difference in how a tree
is represented in the two point clouds. In light of this, it is unsurprising that the ICP
algorithm failed to find relative motion similar to the GPS. The skewed tree of the red
cloud is from the MiDaS depth prediction and can be caused by the fact that the drone
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looks downward at the tree. In figure 4.3f it looks like the tree is estimated as having
the same depth in the image at both the top and bottom, but it ought to be closer at
the top. There could also be a bias of the depth model generally assuming sections
closer to the bottom of the image to be closer.
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(a) No weighting (b) Normal-compatibility weighting

(c) Cross-normal weighting

DOF GPS (a) (b) (c)

𝜙(°) -0.390 6.175 7.464 2.551

\ (°) -0.556 -3.106 -3.201 -1.251

𝜓 (°) -3.389 11.838 -0.063 9.558

x(m) 2.533 5.797 2.512 2.773

y(m) -1.241 -30.583 2.611 -25.840

z(m) 0.215 -6.778 -3.940 -2.504

(d) Motion comparison

Figure 5.5: Attempted localization of the first scene. As we have seen with other ICP
runs, only the x-axis translation is mostly correct, with the exception of a). While it is
easier to align the tree when using the 3D model, the overall registration result is poor.
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(a) No weighting

(b) Normal-compatibility weighting

DOF GPS (a) (b)

𝜙(°) -0.070 -3.697 -5.888

\ (°) 0.138 -2.467 -0.757

𝜓 (°) 0.088 -1.452 -1.246

x(m) 2.722 -1.692 -1.489

y(m) 0.059 0.545 2.386

z(m) 0.526 -2.717 -1.057

(c) Registration comparison

Figure 5.6: Attempted localization of the second scene. The database model and the
point cloud generated by the depth estimate are significantly different, giving poor
localization results.
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Figure 5.7: Comparison of how the tree is modeled in the 3D database and how theMDE
model captures it. They are very dissimilar, causing the failure to use it as a distinct
landmark for localization, especially when using normal-compatibility weighting.

5.4 Overall results

Neither motion estimation nor localization saw much success, not even for the first
scene that was cherry-picked to hopefully be simple. Additionally, we made specific
choices to aid in improving chances of good alignments: manually selecting depth
levels for the two scenes instead of having a fixed one, and adding a simple additional
weighting scheme to only the first scene. These decisions were taken to find the
best-case scenario for our proposed method and to compensate for the off-the-shelf
ICP algorithm that was not specifically designed for the task, though it makes our
method less generalized.

As shown, neither the depth networks nor the area model has properly captured
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the structure of the trees correctly, and these discrepancies make it nearly impossible
to estimate the precise relative pose between the clouds, though some rough alignment
is possible, as seen in figures 5.3c, 5.5c and 5.5a. If a state-of-the-art visual localization
method were attempted with a similarly old and low-detailed database like ours, it
would likely have done poorly, perhaps even worse than ours.
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Chapter 6

Conclusion

As we have seen in this thesis, the task of self-supervised depth estimation from UAVs
is a challenging one. Using several state-of-the-art MDE models, we achieved varying
results, though none of them good enough to use for precise localization and naviga-
tion. While the results not sufficient to compete with GPS, we still see some promise
in being able to roughly align ourselves with a prominent landmark for localization.

All fault cannot be placed on the depth estimates, as the 3D-model had limited detail,
such that even a perfect depth prediction might not yield a precise estimate. So while
the results we achieved here with our approach were not very good, other visual local-
ization methods would likely have struggled if such an old and low-detail database
was used. In addition, the environment we were working with is known to be difficult,
which was why we wanted to investigate this unusual approach to visual localization
without feature descriptors and point matching.

Future work should consist of gathering more data that is of higher quality, i.e., good
lighting, smooth and simple movement, consistent FPS and sampling. Parameter-
tuning of the depth estimation models(loss-weighting, learning-rate, EKF-tuning, etc.)
may improve performance, though replacing the simple pose-estimation network with
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a better and pre-trained one could be a significant boon. The ICP algorithm has much
room for improvement, as optimizing ICP for large clouds of forested environments
with the presence of outliers and noise could be an entire Master’s Thesis by itself,
and we did not have much time to focus on it here. An alternate solution could be to
use an AI-based PCR model instead of only focusing on the ICP algorithm.

Despite the unimpressive results presented here, it is too early to conclude if this
approach is infeasible. While the field of visual localization has had decades of research
and optimization, our method is new and has much room for further improvement.
As deep learning continues to improve in this period of booming AI research, our
attempted localization pipeline can be revisited, as it seems current self-supervised
depth estimation networks are insufficient for the task.
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