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Abstract

The high electricity prices, falling PV installation costs, and high expectation on PV en-
ergy to be, together with wind energy, the main pathways to reach the European Net Zero
Emission (NZE) goal by 2050, is causing increasingly larger amounts of PV installations
worldwide. This high PV penetration and the nature of solar energy can overload and
imbalance the grid network with large amounts of surplus PV energy generated at certain
times of the day and year when the PV generation exceeds the electricity demand. In this
context, self-consumption solutions have to be found that enable consuming most of the
generated PV energy while still covering a large share of the electricity demand. One of
these possible solutions is the implementation of energy sharing in residential PV energy
communities (ECs), which is a currently researched novel concept already suggested by
the EU directives [1]. Energy sharing among prosumers in an EC scheme improves energy
efficiency over having individual buildings with no energy sharing. Taking advantage of
the multiple tilts and orientations of the different buildings forming the EC enhances even
more the energy efficiency by matching even further the PV generation with the load con-
sumption (load-match). This is something rarely studied by the scientific community.

In this report a PV sizing optimization model is developed in Excel. The model uses as
input PV generation data from the software SAM and load consumption data from the
software Load Profile Generator. The data obtained from these two softwares is inputted
in Excel. Excel is used to define and solve the sizing optimization problem. The Excel
solver "GRG Nonlinear with multistart" is used to find the optimal PV capacities for cer-
tain battery capacity sizes and energy goals based on self-consumption metrics, such as the
self-consumption rate (SCR), the self-sufficiency rate (SSR) and the energy balance index
(EBI). The model is validated by comparing its results with results from the software SAM
and by using two different optimization solver algorithms in Excel: "GRG Nonlinear with
multistart" and "Evolutionary". The model is specifically applied to an upcoming residen-
tial PV EC formed by 100 households in Harstad, Norway [2]. Results show that an optimal
EC PV sizing must consider all possible surfaces with different orientations and tilts. While
a tilt of 60° is dominant (among 0°, 20°, 40° and 60°) due to the specific Nordic location, all
different orientations considered (E,W,S,N) are used for optimal PV installation. High lev-
els of electricity demand coverage (high SSR) are achieved with relatively low PV capacities
on high PV output orientations, such as south, but when a considerably high load-match
has been achieved for the PV energy produced from these high PV output orientations, it is
reasonable to cover the remaining electricity demand with PV energy from north and west
orientations, causing small amounts of surplus energy (high SCR).
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1 Background

1 Background

1.1 Climate change and electrification

Climate change refers to the long-term alteration of global weather patterns, primarily
caused by human activities such as the burning of fossil fuels and deforestation, which re-
lease large amounts of greenhouse gases (GHG) into the atmosphere. These emissions trap
heat and contribute to the warming of the planet, leading to significant implications for our
planet, including rising sea levels, increased frequency and intensity of natural disasters, and
disruption of ecosystems and wildlife. In addition to these environmental impacts, GHG
emissions also have severe consequences for human health, such as respiratory illnesses from
air pollution and exposure to toxic substances. While climate change has been occurring
for many years since the start of the Industrial Revolution in the 19th century, it has accel-
erated significantly in recent decades, as observed in Figure 1. This is due to a combination
of factors, including population growth, increased industrialization and higher standards
of living. These factors have caused a rapid increase in GHG emissions from human ac-
tivities, making the need to take action against climate change more urgent than ever before.

Figure 1 shows the clear correlation between the rise of carbon dioxide (CO2) levels, main
GHG contributor to global warming, and the increase in global temperature, since 1880
through 2012. While there is a clear long-term global warming trend due to GHG emis-
sions, especially from 1980 on, some years do not show a temperature increase relative to
the previous year, and some years show greater changes than others. These year-to-year
fluctuations in temperature are due to natural processes, such as the effects of El Nino, La
Nina, and volcanic eruptions [3].
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Figure 1: Global annual average temperature (blue and red columns) and CO2
concentration (dark blue line) since 1880 through 2012. Red bars show temperatures
above the long-term average, and blue bars indicate temperatures below the long-term
average [3].

Figure 1 shows data until 2012. However, the situation has not improved in the last decade.
Despite the last two years (2021 and 2022) not ranking among the five warmest years
on record, the 10 warmest years have all occurred since 2010, with the last nine years
(2014-2022) ranking as the nine warmest years on record [4]. Governments and organi-
zations around the world have recognized the urgent need to combat climate change and
have begun implementing policies and measures to address this global issue. The Paris
Agreement is an international treaty adopted in 2015 by 196 countries, with the goal of
limiting global warming to less than 2°C above pre-industrial levels and to pursue efforts
to limit the temperature increase to 1.5°C [5]. The Intergovernmental Panel on Climate
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Change (IPCC) has underlined that a warming of close to 2°C would still entail strong neg-
ative impacts for societies around the world so the current goal, agreed again in Glasgow at
COP26 in 2021 [6], is to limit the temperature increase to 1.5°C [7]. Policy and technology
changes since the Paris Agreement in 2015 have reduced the projected temperature rise, but
there remains a huge amount to be done, particularly in emerging market and developing
economies. It is reminded that this is a global issue.

The European Union (EU) has a strong influence on climate policies and has set ambitious
goals in recent years, which have been augmented several times. In January 2020, the
European Parliament introduced the European Green Deal, an action plan to boost the
efficient use of resources by moving to a clean, circular economy and to restore biodiversity
and reduce pollution [8]. The main goal of the European Green Deal is to become a global
economy with net-zero GHG emissions (NZE) by 2050. This is an ambitious goal deemed
as necessary to limit the temperature increase to 1.5°C. To this end, in June 2021 the Eu-
ropean Comission established a target reduction of 55% GHG emissions by 2030 compared
to 1990 levels, the so-called “Fit for 55” goal [9]. To date, over 90 countries and 78.7% of
global GHG emissions have committed to the NZE objective [10]. The goal pursues that all
countries in the world, not only European countries, reach NZE by 2050, but not necessar-
ily at the same time, neither the time frame for reaching NZE is the same for CO2 alone,
which is the main GHG, than for CO2 plus other GHG, such as methane, nitrous oxide and
fluorinated gases. However, it is clear that the chances of limiting global warming to 1.5°C
depend significantly on how soon action is taken.

The energy sector is responsible for a major part of the global GHG emissions, with energy-
related emissions evaluated at 33 Gt CO2., in 2021. CO2, stands for "Carbon Dioxide
Equivalent" and measures CO2 emissions plus all other GHG emissions. Within the energy
sector, the electricity (power) sector emitted 13 Gt CO2 emissions in 2021, which repre-
sents more than one-third of the global energy-related CO2 emissions. Figure 2 shows the
electricity mix in 2021. It is observed that it is mainly based on fossil fuels sources. The
EU has historically supported high renewable energy (RE) developments to tackle climate
change. The share of RE in the EU’s final energy consumption has been targeted to 45%
by 2030. In 2022, the REPowerEU has been proposed as a joint European action for more
affordable, secure, and sustainable energy to accelerate the energy transition and to secure
the EU’s energy supply and disconnect Europe from Russian gas and oil imports. REPow-
erEU includes short and medium-term milestones which aim at a full independence from all
Russian energy imports by 2027, given the ongoing conflicts in Ukraine and the EU’s stance
towards Russia. The plan would bring the total RE generation capacities to 1236GW by
2030, in comparison to the original “Fit for 55” 1067GW planned by 2030. This plan will be
paving the way for an era of RE at affordable prices while accelerating their development.
It aims at achieving energy savings, produce clean energy and diversify the EU’s energy
supply sources [11] [12].
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Figure 2: Energy sources used in electricity production in 2021 [11].
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Clean electricity from RE not only cuts emissions in the electricity sector itself but also
in other energy end-use sectors, such as space heating/cooling, transport or industrial pro-
cesses, as they look to electricity as the energy source alternative to fossil fuels. As a result,
electricity becomes the “new oil” in terms of its dominant role in final energy consumption.
This is why a huge overall increase in global electricity demand is expected over the coming
decades. The success of this electrification depends on modern electricity grid networks,
and their development requires long-term vision and planning. To ensure security of sup-
ply, grid development must be considered at the system level, taking account of increasing
electricity demand and rising levels of variable RE [12].

Global electricity generation increases over two-and-a-half-times from 2021 to 2050 in the
International Energy Agency (IEA) hypothetical NZE Scenario published in October 2022,
a narrow but achievable pathway for the global energy sector to achieve NZE by 2050. It
sees all countries contribute to this global goal, with advanced economies taking the lead and
reaching NZE well before emerging market and developing economies. The aforementioned
electrification of several end-use sectors raises the share electricity in final consumption
from 20% in 2021 to almost 30% in 2030, and more than 50% in 2050. RE rapidly becomes
the foundation of the global electricity sector in the NZE Scenario. The share of RE in
electricity generation rises from 28% in 2021 to over 60% in 2030, and nearly 90% in 2050.
Solar photovoltaic (PV) energy and wind energy are the leading means of cutting electricity
sector emissions: their global share of electricity generation increases from 10% in 2021 to
40% by 2030, and 70% by 2050, as shown in Figure 3 [12].

Installed capacity Electricity generation
= 40 < 30
g £
=]
£ 30 T /
v -] 20
3 g #
¥
= 20 £
10 rosspmurmmmpgrmmggrsssssssigffos sorensassarsssosess asss
10 - SR Y g
______-.—-—-7‘\
— T
2010 2021 2030 2040 2050 2010 2020 2030 2040 2050
M Solar PV Wind ¥ Hydro
Bioenergy and waste M Other renewables Nuclear
M Hydrogen and ammonia Fossil fuels with CCUS M Coal unabated
Natural gas unabated mOil M Batteries

Figure 3: Total installed capacity (left) and electricity generation (right) by source in the

NZE Scenario, 2010-2050. Total electricity generation nearly triples to 2050, with a rapid

shift away from unabated coal and natural gas to low-emissions sources, led by solar PV
and wind [12].

The NZE Scenario is an ambitious and possible pathway to reach NZE by 2050, but not
the only one. Published in April 2022, the third volume of the IPCC Sixth Assessment
Report deals with climate mitigation. Among the more than 1000 scenarios vetted by the
IPCC, only 16 achieved NZE by 2050, and are therefore comparable with the IEA NZE
Scenario. The IEA NZE Scenario entails very ambitious policies and measures to improve
energy efficiency and reduce energy demand, including through behavioural change. As a
consequence of this and the benefits of electrification, total final consumption is around
340 EJ in 2050, compared to around 460 EJ in the median IPCC scenario. Moreover, the
NZE Scenario sees the share of wind and solar in electricity generation reach over 70%
in 2050, compared to around 55% in the median IPCC scenario. Still, it is clear that
a clean electrification is absolutely central to the shift to a NZE economy and that the
implementation of solar PV and wind will be the cornerstones in the energy transition [12].
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1.2 PV market

A large PV share in the electricty mix can significantly reduce the emissions from power
generation. The global average carbon intensity of electricity was around 475 g CO2/kWh
in 2019 whereas for 1 kWh produced by PV the emitted CO2 considered on a life cycle
basis can be as low as 15g depending on technology and irradiation conditions. At the end
of 2021, the global PV installed capacity was 945GW. This capacity represents around 5%
of the global electricity production, as shown in Figure 2. As part of the aforementioned
REPowerEU plan, the EU Solar Energy Strategy’s aim is to boost the roll-out of PV energy.
This strategy aims to bring online over 320 GW of solar PV capacity by 2025, and almost
600 GW by 2030 [11].

Figure 4 shows the amount of cumulative PV installed per capita worldwide at the end
of 2021. In just a few years, Australia has reached the highest installed PV capacity per
inhabitant with 1011 W /cap, followed by The Netherlands with 818 W /cap, Germany with
718 W /cap, Japan with 622 W /cap and Belgium with 620 W/cap. As a comparison, since
500W represents the power of a large PV module, one can say that in some countries one
module per person has been installed. In terms of installed PV capacity, the ten first
countries cover around 78% of the global PV market. China covers more than one third
of the global market and has been in the first place year to year since 2013. Moreover,
the level of installations required to be included in the yearly top 10 (country wise) has
increased steadily: from 0,78 GW in 2014 to 1,6 GW in 2018, and around 3,5 GW in 2020
and 2021. This reflects the global growth trend of the solar PV market [11].
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Figure 4: PV penetration per capita in 2021 [11]

In the first years of this century, Europe led PV development for years and represented more
than 70% of the global cumulative PV market until 2012. PV systems were profitable due
to highly subsidized feed-in tariffs (FiTs) which were implemented to promote the ongoing
decarbonization. Several European countries experienced PV market booms caused by an
unpredictable and steep decrease of PV system costs and a not proper adjustment of FiTs,
which remained excessively high. This situation caused the market to grow out of control.
Unfortunately, these booms strained the subsidies budget and negatively affected the public
perception of PV. Most of these markets took years to recover and reexperience growth.
From 2013 to 2017, European PV installations decreased while there was rapid growth in
the rest of the world, mainly in Asia and the Americas. Therefore, many countries in Eu-
rope adopted the principle of decreasing FiT levels over time or introduced limited budgets
[13] [11].

However, since 2018 the situation improved gradually in most European countries and PV
installations rose in Europe. Falling PV systems installation costs, the increase in energy
costs in 2021 and 2022, specifically electricity prices, and the climate policies to reach NZE



1 Background

by 2050 have enhanced PV attractiveness in numerous countries. If high electricity prices
remain, the question of competitiveness will change completely as will the way to conceive
PV market support and policy framework. With no need of any support schemes, the PV
market potential looks virtually unlimited. However, targeted financial incentives are still
needed to overcome costs or investment barriers in specific countries or regions with weak
sunlight or low electricity prices. Predefined FiTs in centralized (utility-scale) PV are being
replaced in many countries by auctions with calls for tenders to propose the most compet-
itive PV electricity. Support for the distributed (residential and commercial) PV market
often relies on FiTs, which still supported half of these segments in 2021 (54%), even if
the trend leans towards lower FiTs [11]. In the distributed market, lower FiTs have come
together with a decrease in the net energy (energy generated minus energy consumed) me-
tering interval time, turning from longer periods, using the grid as an energy storage unit,
into an real-time metering scheme in most countries. The longer the metering period the
more likely is to compensate with own surplus PV energy the times with not enough PV
generation, not having to buy energy from the grid and hence increasing profitability.

The share of utility-scale still represented around 55% of cumulative installed PV capacity
in 2021. With the exception of the European market which incentivized residential seg-
ments from the start, initially most of the major PV developments in emerging PV markets
are coming from utility-scale PV. Utility-scale PV requires developers and financing insti-
tutions to set up plants in a relatively short time. This option allows the start of using
PV electricity in a country faster than what distributed PV requires. Moreover, tenders
are making PV electricity even more attractive in some regions. Economies of scale in
utility-scale PV outweigh the savings in transmission costs and the self-consumption possi-
bilities brought by distributed installations. However, both trends are compatible as some
policies were implemented recently in emerging markets to incentivize rooftop installations
and tenders for rooftop installations are being organized in several historical markets [11].

The European market has incentivized distributed residential segments from the start.
Almost 55% of the cumulative capacity installed in the EU at the end of 2021 were resi-
dential and commercial rooftop installations [11]. The importance of citizen involvement
in the transition of the energy sector towards a decentralized structure has been recog-
nized through different EU Directives, which include new rules that enable active consumer
participation (prosumer: producer and consumer), individually or through citizen energy
communities (CEC) in all markets, either by generating, consuming, sharing or selling elec-
tricity, or by providing flexibility services through demand-response and storage [14] [15].

1.3 High PV penetration

PV penetration is defined as the ratio between PV electricity production and the electric-
ity demand, typically in a country. PV penetration has increased considerably in many
countries in recent years and is expected to keep increasing, to reach NZE by 2050. PV
energy, similarly to most RE and unlike conventional fossil-fuel based energy, is highly un-
predictable and intermittent due to the weather variability. These two factors, high PV
penetration and high variability, cause large amounts of surplus PV energy, especially at
peak generation times [16] [17].

In this context, a robust and large grid network capacity is needed to store and transmit this
surplus energy. Besides grid capacity challenges, grid balancing challenges may also arise
since electricity supply needs to exactly match demand at all times (instantaneously) to
ensure system stability, avoiding voltage and frequency failures. In other words, exports of
solar power from multiple houses simultaneously pose a threat to distribution grids, poten-
tially giving rise to voltage violations (balancing issues) and line overload (capacity issues).
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For these two technical reasons [18] [19], together with the decreasing trend of FiTs [13],
the focus is no longer on maximizing PV production and using the public grid as a limitless
energy storage for surplus energy, but on matching the PV production profile to the load
consumption profile and self-consuming on-site and instantaneously the self-generated PV
energy, reducing the surplus energy [17]. In this context, 'profile’ does not refer as the total
amount of energy produced or consumed, but rather to the times of the day and year in
which this energy is produced or consumed. In recent years self-consumption regulations
are increasingly being implemented in different countries, especially in Europe; the aim is
to empower prosumers to play an important role in the energy transition to reach NZE by
2050 [11].

Although self-consumption schemes benefit grid operators by not having to deal with the
excessive balancing and capacity issues mentioned above, they will see their revenues and
therefore their capacity to invest and maintain the grid reduce significantly, as a result of
prosumers becoming semi-independent from the grid and not purchasing as much energy
from it. At the same time, since a 100% grid independence is difficult to accomplish, a
proper grid availability and maintenance is still needed by prosumers to use the grid as a
sink for surplus PV production and as a backup for periods of insufficient PV generation.
Therefore, together with the increasing self-consumption incentives, several countries are
also accounting for these prosumer’s saved grid-costs. The question of grid costs becomes
more important with the expected electrification and rising PV penetration and is already
leading in some countries to specific tariffs which are reducing the competitiveness of dis-
tributed PV installations and self-consumption. In particular, several countries discuss the
shift of grid costs from the traditional energy-based structure (price per kWh taken from
the grid) towards one that gives more weight to the fixed grid costs. Here, it is observed
how important it will be for the grid operators to know their real costs, which requires
reasonable long-term planning and a modern network with smart meters. Only with this
information grid operators will be able to invoice prosumers with a fair tariff depending on
their real use of the grids [11].

1.4 PV self-consumption mechanisms
1.4.1 Storage

Storage is a key element of a carbon neutral energy system relying on RE electricity. There-
fore, the European Commission actively supports energy storage through research and in-
novation funds. The adoption of batteries is on the rise in distributed PV as more and
more consumers are willing to maximise their self-consumption and to optimize their con-
sumption profile. Globally, the largest part of batteries sold are used for transportation in
Electric Vehicles (EVs), while stationary storage remains the exception and volumes remain
small. However, the rapid development of electric mobility is driving battery prices down
much faster than any could have expected in the stationary market alone. This could give a
huge push to the development of storage as a tool to ease PV installations in some specific
conditions [11].

Moreover, the fast development of EVs might change the landscape of distributed PV sys-
tems: some consider that storage development for PV electricity will be massively realized
through EVs connected to the grid during a large part of the day and therefore, will be able
to store and deliver energy to consumers at a larger scale than simple batteries. Clearly, PV
and EVs offer a potential synergy, with EV batteries absorbing surplus power from nearby
PV installations [19]. This vehicle-to-grid (V2G) concepts are being explored and tested in
several countries. However, despite their decreasing costs and subsidies in some countries,
battery storage is not yet economically viable in all countries. It is, therefore, questionable
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whether small-sized storage systems can already be operated economically without subsidy
programs [20]. Therefore, complementary solutions have to be found to deal with high PV
penetration.

The required electrification of space heating and cooling to achieve NZE by 2050 creates
new opportunities to use solar electricity for specific buildings appliances, increasing self-
consumption [13]. Among others, even if the solar electricity production is not directly
linked to consumption load in the case of space heating (space heating does not usually rely
on electricity as energy source), it is becoming a real source of interest to use surplus PV
electricity to feed electric domestic hot water tanks for instance. Hot water tanks can also
serve as storage and can be successfully combined with a heat pump [17]. Several Euro-
pean manufacturers of electric domestic hot water tanks are now offering specific electronic
devices to directly link extra PV production to an electric boiler. Another very promising
segment in the use of solar PV electricity is the use for cooling. Indeed, places where grid
stress is very present in summertime, benefiting from solar cooling and cooling thermal
storage based on surplus PV production can become a very powerful tool [11].

Curtailment refers to the reduction of RE generation during times of excess supply, result-
ing in wasted energy and decreased efficiency. It can be achieved through various technical
means. This is often seen as a last resort measure to avoid grid stability issues and is gen-
erally avoided unless absolutely necessary. However, oversizing PV systems and proactively
curtailing when there is surplus energy, a strategy known as "implicit storage", is a novel
solution to increase the self-consumption while still covering a large portion of the electricity
demand by solar PV. This is seen as a promising concept in IEA [16], providing examples
of implicit storage implementations, and stressing other important concepts to achieve high
levels of self-consumption, such as optimum blending of different RE sources (PV, wind and
hydro) that often exhibit complementary diurnal or seasonal generation profiles, as well as
demand flexibility via demand-side management (DSM), which involves shifting electricity
consumption (load shifting) to times when self-generated energy is available.

1.4.2 Energy sharing

In the traditional retail market structure, residential PV owners are only able to individu-
ally buy and sell energy with electricity retailers. This concept is known as a peer-to-grid
(P2G) system. Another possible solution to increase self-consumption is by sharing the
energy from different distributed PV systems, allowing the direct energy exchange among
different households, typically by means of a micro-grid and forming an energy community
(EC), following the scheme in Figure 5. This concept is known as a peer-to-peer (P2P)
trading system and is being investigated by numerous authors [21]| [20]. Depending on the
definition, the EC concept might also include the concept of collective self-consumption, in
which one or several PV systems feed collectively several consumers using a predefined split
key, typically in a multi-apartment building but also in distinct individual buildings. Here
no exchange of energy among the households really occurs, following a P2G mechanism,
but the households still share the collective (aggregated) PV generated energy, enhancing
energy efficiency. Collective self-consumption exists in Portugal, Spain, Austria, Canada,
Sweden, France, Switzerland, Germany or Italy to mention a few [11]. The EC concept
may refer rather to a P2P trading system. In a P2P trading system the list of buyers and
sellers might vary at different times of a day, which highly depends on the agents’ net energy
(energy generated minus energy consumed) and sharing prices, thereby creating a dynamic
and complex local market. P2P energy sharing is considered a promising mode for devel-
oping the energy market, while the fairness of revenue distribution and utility grid stability
is not widely concerned when implementing P2P energy sharing [22]. Recent real-world
projects already provide some understanding of the planning, operation, and dynamics of
ECs. Notable examples are Brooklyn Microgrid in the USA [23] [24], Quartierstrom in
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Switzerland [25] and SonnenCommunity in Germany [26].

The EU introduced the concept of ECs in its legislation in the "Clean Energy Package"
adopted in 2019 [15]. ECs have for its primary purpose to provide environmental, economic
or social community benefits to its members or shareholders or to the local areas where it
operates rather than to generate financial profits. This information is briefly summarised in
[27], where one can also find that the EU has launched an Energy Communities Repository
[28] and a Rural Energy Community Advisory Hub [29] in April 2022 and June 2022,
respectively. The aim of these platforms is to assist local actors and citizens willing to set
up an EC through technical and administrative advice, and encourage their development:
"Further spread the message of (rural) energy communities to EU policymakers and to
citizens across Europe, and thereby raise awareness at the EU level of the cruciality of rural
energy communities in the energy transition". The leverage of digital technologies allows
a more efficient coordination of the increasingly fluctuating and volatile energy supply in
distributed PV systems. Digital coordination mechanisms are key to manage the interaction
of electricity supply and demand. Digital technologies such as smart meters are necessary
for the measurement of the electricity flows that are provided to the coordination algorithm
[20].

Figure 5: Scheme of an energy sharing system in a neighborhood [30].

1.4.3 Tilt and orientation

Yet another complementary solution to increase self-consumption is by varying the incli-
nation (tilt angle) and orientation (azimuth angle) of the PV system, since the tilt angle
of a solar panel can shift production between summer and winter while the azimuth angle
shifts production throughout the day. For fixed angles without any solar tracking options
there is one angle combination (tilt and azimuth) that maximizes the total energy output
of a PV system throughout a year for a specific location [31]. Any deviation from this
angle combination will reduce the total output to a certain extent. As a rule of thumb,
the output maximizing azimuth is pointing south for the northern hemisphere and the tilt
angles are between the latitude of the location (¢) and ¢ - 15° with only minor losses in
total output (below 5%) in the area of £15° of the maximizing angle combination [32].
While the output maximizing angle combination is strictly an engineering issue that can
be determined for a certain location, it might not represent the maximum value from an
energy efficiency or economic perspective. The optimum angle combination depends on the
energy and economic values attributed to the self-consumed and surplus PV energy.

Until a few years ago, PV system owners were encouraged to maximize the energy output
of their PV systems to compensate with surplus PV energy the times with little or no PV
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generation. This was done via high FiTs and wide intervals of time to meter the net en-
ergy. However, as self-consumption schemes increase, the question arises whether an output
maximizing angle combination, often associated to large amounts of surplus energy, is still
preferred over one that enhances self-consumption. For instance, vertical PV facades will
produce relatively more power in winter and less in summer, and more in the early and late
hours of the day, when the sun is lower in the sky [33].

In reality, the variety of tilts and orientations in a certain building is limited. Moreover,
since any deviation from maximum-output angles shifts but reduces the total PV energy
output, more PV capacity might be required to achieve reasonable energy outputs, which
might also not be possible in an certain building due to a lack of available roof surface. In
this sense, an ideal building would have a spherical roof with unlimited surface. An EC may
allow for both more roof surface and a wider variety of tilts and orientations, approaching
this ideal individual building. This way the EC self-consumption benefits not only from
sharing the unavoidable surplus energy by aggregating the load profiles (load consumption
aggregation), but also from sharing the different available surfaces and reducing the surplus
energy (PV generation aggregation) [34].

1.5 Energy in Norway

As part of its Agreement on the European Economic Area (EEA), Norway participates in
the EU’s internal energy market and, therefore, cooperates closely with the EU on energy
and climate matters [35]. Norway has an agreement with the EU to participate in EU cli-
mate legislation for the period 2021-2030 and has committed to reduce emissions by at least
50% and towards 55% by 2030 compared to 1990 levels through its enhanced nationally
determined contribution (NDC) under the Paris Agreement [36]. In June 2017, the Norwe-
gian parliament adopted the Climate Change Act, which establishes by law Norway’s NDC
target as well as the target of becoming a low emissions society by 2050 [37]. In January
2021, Norway’s former government presented a white paper to the parliament describing
an economy-wide Climate Action Plan for 2021-2030. The main policy instruments in the
Climate Action Plan are GHG taxation, regulatory measures, climate-related requirements
in public procurement processes, information for the public on climate-friendly options,
financial support for the development of new technologies, and initiatives to promote re-
search and innovation [38].

Figure 6 shows an overview of the energy production, supply (production for domestic use)
and demand (supply minus losses) in Norway in 2020 by source and sector. Norway’s energy
demand is highly electrified: in 2020, electricity covered almost half (48%) of the country’s
total final consumption (TFC), the highest share among IEA member countries, followed
by oil (36%), bioenergy and waste (6.8%), natural gas (4.3%), and coal (2.1%). Moreover,
Norway has the highest share of RE in TFC among IEA member countries. In 2020, 61%
of TFC came from RE, while the IEA average was 13%. Renewables in 2019 provided 90%
of TFC in buildings, 71% in industry and 12% in transport. Norway also has the highest
shares of RE by sector (industry, transport, buildings) among IEA member countries. At
the same time, although fossil fuels accounted for only 52% of Norway’s energy supply in
2020, 93% of Norway’s domestic energy production consisted of natural gas and oil produced
in an environmentally conscious manner. The size of Norway’s energy surplus is significant.
In 2020, the country produced 10 times more oil and 21 times more natural gas than its
domestic needs, with an increasing trend over the past 20 years. Norwegian production of
natural gas covers approximately 3% of global demand (third-largest exporter, only behind
Russia and Qatar) while Norway’s oil production covers about 2% of global oil demand.
Russia’s 2022 invasion of Ukraine may provide an added incentive for Norway to continue
delivering crude to global markets and even increase output wherever possible, since it is
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an important contribution to global energy security by serving as a stable and predictable
supply [39].
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Figure 6: Overview of energy production, supply and demand in Norway, 2020 [39]. TES:
Total energy supply. TFC: Total final consumption. 1 Mtoe = 11,63 TWh. Norway
exports a large share of the energy it produces, mainly natural gas and oil, as mentioned
above. Almost all the electricity generation comes from renewable resources (mainly
hydro). Information about the Norwegian’s electricity system is given below.

Norway has an almost entirely renewables-based electricity system, with renewable resources
accounting for 98% of generation in 2020. In 2020, electricity in Norway was generated
mainly from hydro (92%), with some smaller shares of wind (6.5%) and natural gas (1.0%).
Other sources include very small shares of bioenergy and waste (0.28%), oil (0.14%), coal
(0.03%), and solar (0.02%). Electricity dominates demand in the residential sector (84%),
and covers almost half of the energy demand of the industry sector (45%). Together with
high and increasing levels of interconnection and integration, Norway provides the Nordic
region with a significant source of low-cost, highly flexible, renewable power. Moreover, as
electrification forms a central part of any country’s energy transition, Norway finds itself
in an enviable starting position. Given that nearly all electricity production comes from
hydropower and wind power and that Norway is highly electrified, renewables are not cur-
rently subject to special treatment or policies, but constitute a central component of the
country’s domestic energy system. Still, more electrification will be needed across sectors to
meet Norwegian climate targets, which will require additional renewable generation capac-
ity, such as continued expansion of hydro capacit, including upgrades of existing plants [39].

Norway’s industry and household electricity prices have been the lowest among its neigh-
bouring countries in past years. Nonetheless, the recent surge in electricity prices ex-
perienced over winter 2021-2022, led by price spikes in Europe, have raised the issue of
vulnerable consumers in the country. In December 2021, the government introduced a tem-
porary support scheme for households with an initial allocation of NOK 8.7 billion until the
end of March 2022. When the average spot price over a month exceeded 0.70 NOK /kWh,
the government covered 55% of the amount beyond this threshold up to a maximum of 5
000 kWh per month for households. In January, the government increased the coverage
rate from 55% to 80%. In March 2022, the support scheme was extended to March 2023,
and the coverage rate was raised to 90% for October, November and December 2022. This
extension is estimated to cost NOK 7.4 billion [39] [40]. The long-term power analysis pub-
lished by the Norwegian Water Resources and Energy Directorate (NVE) in October 2021
points to the fact that higher power prices than we have seen historically can be expected
in Norway in the future. This is due, among other things, to the fact that the exchange
capacity between the Nordics and Europe is increasing and that a persistently high CO2
price is expected in the years ahead. Power prices will increase towards 2030, but fall in
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the longer term as RE production in Europe increases [41].

Statnett is responsible for system operation and operational security as well as for devel-
oping measures to deal with highly strained supply situations. These are known as “SAKS
measures’, and their purpose is to reduce the likelihood of rationing. In its analysis for
2021-2026, Statnett assumes that Norwegian power system adequacy, although strained at
times, poses no risk of power rationing in the next five years. Through legislation, however,
Statnett is given an extended responsibility to continuously investigate and develop neces-
sary measures to ensure that supply and demand are balanced at all times, especially during
the winter season. Statnett is preparing changes to its operational model (Nordic Balancing
Model), also with the aim to prepare for expected greater shares of variable renewables on
the grid. In response, it has developed a plan of grid investments across the country of up
to NOK 100 billion by 2030 to handle the increased capacity with a 420 kV grid nationwide.
While flexibility in the national power system has historically been provided by abundant
dispatchable hydro generation, increased consumption in some important areas (including
the Oslo area) reduces the availability of this flexibility source. In the future, flexibility will
have to come from the demand side to ensure system balancing. Finally, it must be stressed
that Norway is the only country in the world where an advanced metering infrastructure for
hourly meter readings has been installed in all households and other measurement points
[39].

1.5.1 PV in Norway

Commensurate with the precipitous drop in the cost of installed PV systems, increasing elec-
tricity costs and climate concerns, solar systems are proliferating across northern regions,
where minimal irradiance and persistent snowfall in winter have traditionally inhibited so-
lar deployment. However, Nordic PV installations benefit from lower temperatures, a large
amount of reflected sunlight on the ground (albedo) due to snow and long periods of sun-
light in Summer, all of which enhance PV performance. Only PV systems with diverse
orientations, such as in ECs or equipped with solar tracking options, benefit fully from the
latter, since with fixed installations the Sun at times can be behind the PV modules. The
large amount of reflected light due to snow is further enhanced by the use of bifacial modules
in field applications, which are characterized by their ability to generate electricity from
both sides. The rapid growth of the bifacial PV market can be explained by the relatively
low cost of bifacial modules and their perceived advantages. Nowhere are those advantages
more apparent than in northern regions where snow may persist on the ground for months.
Another advantage of bifacial modules is that the backside does not get covered by snow,
so it is possible to produce even when the front side is shaded by snow. PV growth in
northern regions is expected to continue at a high rate. This anticipated growth has put
pressure on the solar industry to reduce snow shading and increase solar performance in
winter. To support those objectives, research is needed in five primary areas related to snow
soiling and PV performance: energy losses, performance modelling, system and component
reliability, design optimization, and operation and maintenance best practices [42].

Solar PV has been increasing in Norway, but does not form a significant share of the re-
newable electricity generation mix yet. A more detailed assessment of the competitiveness
of solar power without subsidies in the Norwegian context would help to clarify the role
that solar can play [39]. It is estimated that 45 MW of PV capacity was installed in 2021,
while the total PV generation capacity installed before 2021 was approximately 160 MW.
The moderate installation volume is due to a combination of very season dependent solar
resources in northern Europe, relatively low electricity prices in the summer season, and
moderate financial support. Norway has no defined goals when it comes to implementation
of PV technology, although direct support policies for PV installations exist. The public
agency Enova SF subsidized, until January 2022, up to 35% of the installation costs for
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grid connected residential PV systems at a rate of 7500 NOK per installation and 1250
NOK per installed kW rated capacity up to 15 kW. In early February 2022, these support
levels were increased to 2000 NOK per installed kW up to a maximum of 20 kW which will
positively impact the outlook for PV installations [43].

The Norwegian government projects electricity demand to grow to 159 TWh in 2030 and
174 TWh in 2040, while generation will grow to 166 TWh in 2030 and 184 TWh in 2040,
following Figure 7. The NVE expects that part of the growth in generation will come from
new hydro capacity, some of which is already under construction, as well as refurbishments
and upgrades to the country’s ageing fleet of existing hydro plants. While wind power will
see very modest growth through 2025 based on licences already issued, solar PV is expected
to see strong growth. The NVE expects offshore wind to only begin to make contributions
after 2030. Indeed, on 11 May 2022, the government presented a large-scale plan for offshore
wind, with a target of allocating areas for 30 GW of offshore wind capacity by 2040. This
corresponds to almost as much power generation capacity as in Norway today [39].
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Figure 7: Increase in electricity production in Norway 2021-2040 [41]. The future
renewable electricity generation mix is expected to be made up primarily of hydro, wind
and solar power. Yellow: Solar (PV) | Light blue: Off-shore wind | Green: On-shore wind

| Darker blue: Hydro.

With Norwegian climatic conditions and electricity generation costs, it is not foreseen that
large-scale PV plants connected to the transmission grid can be economically feasible. In
Norway, PV systems are predominantly installed on residential and commercial buildings.
There are already many examples of municipalities that have included PV as a part of
the energy system in public buildings. Some municipalities, including the capital Oslo, are
establishing policies for increasing PV installations in new and existing public buildings.
The transition from fossil fuels to electric energy in the transportation sector increases the
domestic demand for electricity. Long term this may indirectly stimulate PV investments
[44]. The Norwegian PV market is expected to continue its growth, but it is limited by the
fact that use of PV in practice is limited to (individual) self-consumption. If the concept
of self-consumption could be extended to consumption in neighbourhoods (allowing energy
sharing), the growth rate may increase [43].

12



2 Literature on PV energy communities

2 Literature on PV energy communities

A good review of social arrangements, technical designs and impacts of ECs, not only PV
ECs, is made by Gjorgievski et al. [21]. Here, four technology clusters are distinguished in
the existing literature: shared solar PV systems, community-owned storage, hybrid energy
systems and district heating and cooling. The design objectives are either economic, tech-
nical, environmental or social. This report focuses on a technical analysis of a PV EC, so
the literature mentioned below has been selected accordingly.

Most of the scientific literature that focuses on local PV energy sharing use either game
theory modelling (e.g. cooperative games, non-cooperative games and agent-based) or sys-
tem analysis modelling (e.g. mixed-integer linear programming). The game theoretical
approach has a strong practical relevance due to the modelling of detailed interrelations
between agents, whereas system analysis provides a global view on the specified problem.
A second classification can be done sorting the publications by the scope of the analysis
made. Here, the literature is mainly divided into energy sharing models and profit distri-
bution models (P2P energy trading market), mostly covered by game theoretical models,
and sizing models, mostly covered by system analysis modelling. The existing P2P trading
approaches can be generally adopted to two scenarios: decentralized P2P market, which
involve decision-making participants, and centralized P2P market, where participants are
not decision-makers and a market coordinator manages the EC coordination. Numerous
P2P trading models arise due to different degrees of effectiveness and fairness of the trad-
ing mechanism, potential applicability in real cases and confidentiality of the participants’
preferences. An increasing complexity of the EC market structure and decision-making
strategies is clearly observed in the research community.

Double-auction mechanisms wherein buyers of energy submit ‘ask’ prices and sellers sub-
mit ‘bid’ prices, are typically of most interest in decentralized P2P market models. He
and Zhang [45] propose a double-auction bidding mechanism that captures the interaction
within a community energy sharing market consisting of distributed solar power prosumers
and consumers. To determine the double-side auction market spot price, a non-cooperative
game is formulated among all participants involved in the community sharing. An iterative
algorithm is first designed to clear the market and mitigate the uncertainty in supply and
demand. Then, an adaptive pricing strategy is designed to assist agents better estimate the
market and predict the future price. Li and Ma [46] propose, using non-cooperative game
modelling, a bidding-based double-auction P2P electricity trading system that enables to
fairly distribute total profits obtained from P2P trading to each community house, and with
no need of complex trading strategies and learning abilities. Using an agent-based model,
Nuilez-Jimenez et al. [47] simulated the decision-making of nearly 5000 building owners in
a city district in Zurich, Switzerland, and assessed three locally relevant policy scenarios:
no community solar, community solar with adjacent buildings, and community solar with
buildings within a 100-meter radius. The findings demonstrate the potential of community
solar to accelerate PV adoption in cities and underscore the significant role of policy design
in achieving this goal.

Wang et al. [48] propose a centralized P2P energy trading model for residential households,
and the objective is to help the centralized market coordinator optimize the benefit of par-
ticipants under such a P2P market. To this end, a new mathematical model, including the
rules for buying and selling energy, is presented. In this model, a supply function bidding
mechanism is formulated to match the power supply imbalance and calculate the market-
clearing price. An optimization problem is formulated to identify the optimal strategies for
energy buying and selling, which consists of two parts: the first part is to maximize the
social welfare; the second part is to minimize the unfair benefit distribution that partici-
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pants can gain through P2P energy trading. Henni et al. [20] find questionable whether
inexperienced participants would understand the consequences of their participation and
their actions in an energy trading mechanism, even if the decisions are made by an intelli-
gent agent in a centralized P2P market. They propose an "agreed cost-sharing mechanism"
based on a fixed pricing approach to achieve a fair distribution of the profits generated
through the sharing economy. They further investigate the impact of prosumers’ and con-
sumers’ load profile patterns on the profitability of the sharing communities. Based on
these findings, they explore the potential to match and coordinate suitable communities
through a platform-based sharing economy model. Finally, they show that the selection of
suitable participants, based on load profile properties, can enhance the potential revenues
and also the incentive to participate in sharing local electricity. Zhao et al. [22] propose an
innovative energy management method integrating P2P energy sharing with demand-side
management (DSM), to achieve fair revenue distribution and stable interaction between
the community microgrid and the utility grid. Generally, residential electricity load can be
categorized into two types, i.e., basic load and flexible load. Flexible load refers to elec-
trical load with adjustable operating time or power without affecting the comfort of the
occupant, which is the basis for implementing DSM. An energy sharing coordinator acts
as the operator of the community and is in charge of establishing a uniform pricing and
energy allocation mechanism based on the ratio of supply to demand. Ali et al. [49] pro-
pose a peer-to-grid (P2G) energy trading combined with peer-to-peer (P2P) energy trading
scheme based on a cooperative game theoretical technique to optimize sizes of the gen-
eration resources and battery, and achieve maximum payoff from a networked microgrid.
The selected architecture consists of two microgrids in which both microgrids contain not
only solar panels, but also wind turbines and batteries to meet the requirements of the load.

Xu et al. [50] integrate a residential PV panels planning model with the energy sharing
mechanism. In their proposed model, all prosumer agents form a coalition to maximize
cooperatively their common benefits by operating their residential PV panels. They imple-
ment a novel two-stage game-theoretic framework of residential PV panels planning. In the
first stage, Stackelberg game theory is used to model the stochastic bi-level energy sharing
problem, which is solved by their own algorithm based solution method, so the optimal
installation capacity of residential PV panels can be obtained with uncertain PV energy
output, load demand, and electricity price. In the second stage, we develop a stochastic
programming-based optimal power flow model to optimally allocate residential PV panels
for all PV prosumers with minimum expected active power loss. Similarly, Yang et al.
[51] propose a novel two-stage optimization model of design and electricity dispatch strate-
gies for residential PV communities to operate electric vehicles’ charges. The first-stage
optimization aims to obtain the optimal capacities of PV and batteries. The second-stage
optimization optimizes the retailer’s hourly electricity prices and electricity dispatch strate-
gies, in which the Stackelberg game is performed between maximizing the retailer’s benefit
and minimizing the electricity cost of residential basic loads and vehicle charging loads.

Some publications disregard the trading business modelling and focus purely on the energy
sharing from a more electrically operative point of view. Lorenzo et al. [52] propose an
innovative system architecture based on a common dc bus that is used to deliver the energy
produced by the generator to different consumers, with the presence of a balance node used
to feed into the grid the in excess produced power. The system architecture supports only a
unidirectional power flow from the common generators to the users, avoiding any exchange
of power among the users and preventing them from supplying power into the grid, thus
complying with any regulation framework. Hutty et al. [19] consider the possible advan-
tages of a P2P energy market to complement PV generation and EVs, in the setting of a
community of households forming a grid-connected microgrid. The results show that P2P is
a very interesting innovation that could greatly assist the integration of a high penetration
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of PV and EVs in the built environment. It can enable significant gains in energy indepen-
dence (which should correspond to a reduction in emissions) and significant reduction of
household bills, especially when PV penetration is high. Zabihinia Gerdroodbari et al. [53]
use peer-to-peer data to propose a novel reactive power-based control strategy for single-
phase PV inverters to simultaneously improve voltage unbalance and voltage regulation in
low-voltage distribution networks.

Some publications disregard the interrelations between the agents within the EC and aim to
analyze the EC from a holistic approach, typically using system analysis modelling. This is
the approach targeted in this report. A good overview of the existing literature concerning
system analysis modelling is done by Mehta and Tiefenbeck [54]. Although the focus is on
individual PV generation and battery storage, Li [55] also investigates group battery opti-
mizations for communities with different consumption levels or with different energy demand
diversity to see their effects on optimal sizing and peak demands for aggregated PV-battery
system. The optimization does not only generate optimal battery and PV size but also
provides corresponding battery charge/discharge operations under a time-of-use electricity
tariff. Although individual optimal batteries can significantly reduce energy cost, a group
battery offers more value for cost saving, especially for groups with sufficient diversity in
their demand profiles. Fina et al. [56] analyze the profitability of shared, non-subsidized PV
systems’ usage in fictitious multi-apartment buildings in Austria. It compares the Austrian
results with those of Germany, where significantly higher retail electricity prices determine
the profitability benchmark. To that end, a multi-objective optimization model is developed
for the optimal dimensioning of PV systems and energy storage facilities in keeping with
different end user objectives, ranging from minimizing annual electricity costs to maximiz-
ing self-consumption. The results of this paper show that the economic viability of shared
PV systems strongly depends on the absolute value of the variable component of the retail
electricity price. For Germany, a country with a high retail electricity price (due to high
renewable energy surcharges), the concept is clearly profitable, whereas economic viability
is nonexistent or marginal in Austria. In Austria, no profitability is observed in case of
matching PV generation and loads for individual apartments, and a small cost-saving po-
tential is found in the case of aggregation of all apartments’ loads.

Heinisch et al. [57] develop and optimization model that minimizes the annual costs, includ-
ing investment costs, to investigate and compare the costs incurred by individual households
and households organized in electricity trading communities in seeking to attain greater
independence from the centralized electricity system. This independence is investigated
with respect to: (i) the potential to reduce the electricity transfer capacity to and from
the centralized system (increasing self-consumption) and (ii) the potential to increase self-
sufficiency. Utilizing measured electricity demand data for Swedish households, they show
that with a reduced electricity transfer capacity to the centralized system, already a com-
munity of five residential prosumers can supply the household demand at lower cost than
can prosumers acting individually. Grouping of residential prosumers in an electricity trad-
ing community confers greater benefits under conditions with a reduced electricity transfer
capacity than when the goal is to become electricity self-sufficient.

The optimal PV/BESS sizing in the P2P trading was performed by Yaldiz et al. [58] by
maximizing the return of PV and BESS to the users and the net profit after deducting their
costs. Users benefit from optimal PV and BESS sizing in terms of both social welfare and
economic profit. Capital, replacement and maintenance costs were taken into account for
precise sizing. Furthermore, the economic contribution of P2G and P2P energy exchange
situations were examined. The use of P2P energy trading has resulted in substantial bene-
fits for both prosumers and customers in the proposed scheme.
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Radl et al. [13] analyze different community configurations on costs and investments con-
sidering country specific conditions. Results show that renewable energy communities have
the potential to reduce electricity costs due to community investments and load aggre-
gation but do not necessarily lead to more distributed PV. Besides full-load hours, the
energy component of electricity tariffs has the highest impact on PV distribution. Self-
consumption oriented PV systems need high procurement prices to be competitive. Under
current market conditions, battery energy storage systems are rarely profitable for increas-
ing PV self-consumption but there is potential with power pricing.

Fina et al. [59] investigate the profitability and optimal installation capacities of PV sys-
tems for energy communities (ECs) in comparison to individual buildings. To gain a wide
spectrum of results, four characteristic settlement patterns with different building types
are defined, ranging from urban to suburban and historical to rural areas. Analytically,
a MILP model is developed to maximise the net present value (NPV). The results show
that the profitability of implementing optimally-sized PV systems increases when forming
ECs compared to the situation of considering buildings individually. Forming an EC is
most valuable for SFHs in rural areas, which can then profit from synergy effects between
different load profiles. Generally, PV system implementation is most profitable the more
heterogenous load profiles are considered. Participants providing large roof/facade areas
can significantly contribute to increasing the cost saving potential for the whole community.
This aspect is highly important when considering that some buildings might not have the
possibility of installing PV. Battery- and hot water storage which complement PV systems
and heat pumps can contribute to saving energy costs, if only marginally.

Freitas et al. [34] explore the combined effect of aggregating building demand, photovoltaic
generation and storage on the self-consumption of PV and its impact on the grid. In par-
ticular, its main goal is to evaluate to what extent the building integration of PV alone
avoids costs of extra storage while remaining profitable for users and innocuous for the grid.
The methodology considered that the PV systems placement is optimized using a genetic
algorithm for maximization of self sufficiency and minimization of net load variance on the
electricity grid, as well as a storage strategy for self-consumption maximization and another
for the minimization of net load variance. Findings confirm that the multitude of building
surfaces with different tilts and orientations in the urban environment translates into a
great PV potential that, if well used, results in a better demand—supply match. When the
placement of the PV systems is optimized by tilt and orientation, the aggregation of the
demand from different buildings and the PV systems improve that relationship, minimizing
storage needs. The results also show that, from the point of view of prosumers, investments
on PV may be viable with no or very small added storage capacity. But from the electricity
grid point of view, unmanageable net load variance and consequent costs could be mitigated
through higher storage capacities with proper management strategy.

Proper energy storage system design is important for performance improvements in solar
power shared building communities. Existing studies have developed various design meth-
ods for sizing the distributed batteries and shared batteries. The effect of storage is strongly
influenced by its sizing and operating strategy. Some of the publications mentioned below
consider energy storage in their system modeling. Huang et al. [60] integrate the considera-
tions of aggregated energy needs, local PV power sharing, advanced community control, and
battery storage sharing, which will be useful to optimize three functions (energy efficiency,
energy production and flexibility) in a positive energy district towards energy surplus and
climate neutrality.

This report focuses on a technical analysis, and hence disregards any economic, environ-
mental or social impacts that ECs may entail. Economic and environmental assessments are
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well covered in the existing literature, including some of the publications mentioned above,
but social concerns in ECs are very rarely investigated, so a couple of relevant publications
are mentioned next. Soeiro and Dias [61] collect data, using a survey on European coun-
tries, to study and to better understand what the citizen energy initiatives are, their main
features and the motivations of individuals to participate on it. The citizens participation
is a crucial point for the development of this type of communities. The main motivation for
participation in these communities seems to be concerns about environmental and climate
impacts. They find that the reason “lower energy costs” and “local income generation”, which
was forecasted as a relevant motivator, seems to be pointed out by the participants as one
of the least important factor. It is clear that citizen recognize that ECs add non-monetary
values to the communities in which they operate. Among these values are the promotion
of energy transition, energy guidance, and social and green action activities. Drawing on
data collected among 71 European RECs, Hanke et al. [62] investigate on the high expec-
tations set on RECs to become democratic, transformative and equity-enhancing actors for
a just transition. While some are interested in engaging in or already engage in energy
justice, others do not resonate with the energy justice concept. Consequently, referring
to RECs as equity-enhancing actors of a just transition and contributing to energy justice
must be done more carefully than is currently the case. Ideally, national legislation would
link enabling conditions for RECs to the requirement to engage in a social role. In conse-
quence, RECs would gain an advantage when engaging in activities linked to energy justice.
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3 Motivation and objectives

3.1 Motivation

In light of the expected high PV penetration to fight climate change and the increasing
electricity prices, energy communities (ECs) have become a promising topic withing the
energy field [1] [21]. A PV EC allow prosumers to share self-generated PV energy, increas-
ing self-consumption and energy efficiency compared to having PV on individual buildings
with no energy sharing. This is done via load aggregation, PV generation aggregation and
potential battery storage aggregation.

An increased self-consumption has three main consequences: improved grid stability, re-
duced carbon emissions and potential cost savings. By increasing the self-consumption,
there is less surplus energy fed-back to the grid (at peak generation times), preventing grid
operators from facing technical challenges associated with voltage and frequency violations
or line overloads, which entail extra reinforcement grid costs [18]. A higher self-consumption
may lead to less energy taken from the grid as well, which is typically generated using pol-
luting resources, such as fossil fuels. In this sense, ECs can help reduce carbon emissions
and mitigate the impacts of climate change [63]. A higher self-consumption may translate
into energy economic savings as well. Nonetheless, multiple variables play an important
role here, such as the distribution of profits, the value of electricity/grid costs (variable and
fixed) and the value given to the surplus PV energy (FiTs). Saving costs could be associated
with savings on the PV initial investment too, if the EC benefits from economies of scale
or if the increase in self-consumption allows for a lower installed PV capacity [13]. Some
other advantages can be found, such as community building. By coming together to form
a PV EC, members can build stronger social connections and foster a sense of community
around RE, which may promote the use of RE in society and raise awareness about the
importance of sustainability and environmental protection [61].

Many authors investigate possible operating models as well as the financial benefits of shar-
ing PV generation in ECs, but often disregarding the PV sizing optimization problem. In
February 2018, a multi-objective optimization model, focused on minimal annual electricity
costs and maximal self-consumption rate, is developed by Fina et al. [56] for the optimal di-
mensioning of PV systems, but it focuses on P2P trading only in multi-apartment buildings.
In September 2020, Xu et al. [50] include a PV planning in their model using a Stackelberg
game, and state: "Different from most works related to residential PV panels planning,
we innovatively integrate a residential PV panels planning model with the energy sharing
mechanism. To our best acknowledge, this has not been studied before. In this way, we
can improve economic benefits to PV prosumers and meanwhile facilitate the installation
of residential PV panels, which has practical significance." In September 2021, Yaldiz et al.
[58] develop an optimal PV /battery sizing model in a P2P context using a MILP-based
algorithm structure and state: "Optimal sizing in renewable energy and energy storage
systems in distributed grid systems was studied extensively. However, the existing studies
on optimal PVs and BESS sizing in the P2P energy market were limited". Yaldiz et al. [58]
mention the publication by Ali et al. [49], which optimizes sizes of different coupled genera-
tion resources (PV and wind turbines) based on a cooperative game theoretical technique,
as the only one considering PV sizing under a P2P context. The objective of the sizing
models in the three last mentioned publications above is maximizing the economic profit.

An EC may allow for both more roof surface and a wider variety of tilts and orientations.
Sharing the multiple roof surfaces in the EC can produce varying levels of energy at dif-
ferent times of the day and year, potentially increasing the EC self-consumption. This is
something very rarely investigated by the research community when tackling the PV /bat-
tery sizing optimization problem in an EC. This is addressed as future work by Awad and
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Giil [64]. Yang et al. [51] take into account the tilt of the PV modules in the first-stage of
their optimization model, which aims to obtain the optimal capacities of PV and batteries
minimizing investment cost. However, just one single possible tilt angle is considered. Fina
et al. [59] consider different orientations (south, east, north and west) and tilts (30° roofs
and 90° facades) in different EC different settlement patterns using a MILP optimization
model. However, the only objective is economic maximization. Freitas et al. [34] consider
the multiple orientations and tilts in two different ECs, concluding that a multitude of
building surfaces with different tilts and orientations in the urban environment translates
into a great PV potential that, if well used, results in a better demand-supply match. When
the placement of the PV systems is optimized by tilt and orientation, the aggregation of the
demand from different buildings and the PV systems improve that relationship, minimizing
storage needs.

3.2 Objectives

In general, just a few publications address the PV sizing problem in an EC context, which
introduces new challenges compared to installing PV on individual buildings due to the
existence of multiple orientations and tilts, which are somehow shared by the EC members
in terms of PV generation, and due to the existence of multiple load consumption profiles.
Taking full advantage of the available surfaces can improve the overall energy efficiency
of the EC by matching more accurately the PV generation to the load consumption pro-
file. The aim of this report is to provide technical advice to facilitate the decision-making
regarding the PV installation in a residential PV EC. A sizing optimization model is devel-
oped and applied to an upcoming residential PV EC formed by 100 households in Harstad,
Norway [2]. A projected view of this EC is observed in Figure 8.

Figure 8: Upcoming residential PV EC formed by 100 households in northern Norway
(Harstad, 68°N 16°E) [2].

Different tilts and orientations are considered in the model, as well as a battery storage
with different sizes, to find optimal system sizings that fit to different energy goals. To
this end, three softwares are used, as described by Figure 9: System Advisor Model (SAM),
Load Profile Generator and Microsoft Excel. SAM is used to calculate PV generated energy
for different orientations and tilt combinations. Load Profile Generator is used to generate
multiple load consumption profiles. The data obtained from these two softwares is inputted
in Excel. Excel is used to define and solve the sizing optimization problem. The Excel
solver "GRG Nonlinear with multistart" is used to find the optimal PV capacities for
certain battery capacity sizes and energy goals based on self-consumption metrics, such
as the self-consumption rate (SCR), the self-sufficiency rate (SSR) and the energy balance
index (EBI).
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Figure 9: Scheme of the methodology followed.

The model developed in Excel is validated in terms of inflows and outflows of energy
(to/from battery, to/from load, to/from grid) by comparing the model results with re-
sults from SAM, for arbitrary installed PV /battery capacities in the specific location. The
optimal PV capacities solutions provided by the "GRG Nonlinear with multistart" Excel
solver are validated by solving the optimization problem with another Excel solver, the
"Evolutionary" solver, which uses a totally different solving algorithm than "GRG Nonlin-

ear".

Before presenting in detail the methodology followed and the results, relevant theoretical
concepts are explained in the next chapter.
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4.1 Configuration of a PV system

The different components of a grid-connected residential PV system are shown in Figure
10. The PV panels (or modules) transform a certain amount of the solar energy into DC
electricity, which is then converted into "useable" AC electricity by means of an inverter.
To maximize the power output from the PV modules, a maximum power point tracker
(MPPT) has to be used, which may or may not be integrated on the inverter, depending on
the layout. Some of this converted electricity is utilized to power the loads, either directly or
by means of a battery storage, while the excess is fed-back into the utility grid. A meter is
installed to account how much excess energy is fed-back into the grid and how much energy
is taken from the grid. There are two main system layouts for residential PV systems with
battery storage; either AC coupled where the battery is connected via an inverter and a
charge regulator (controller) to the AC link of the PV system (scheme on the left), or DC
coupled where the batteries are connected to the DC link of the inverter (scheme on the
right) [17].

PV panel

J

PV panel
0 o
Charge
Battery 8! MPPT
regulator tracker
4

Charge MPPT tracker
regulator and inverter
and inverter [
1

=l )= Load
2

Grid Energy [\wn

meter |98 )= ‘Load

Figure 10: Simplified system layouts of AC coupled (left) and DC coupled (right)
grid-connected residential PV /battery systems [17].

4.2 Solar irradiance

The main angles that are relevant when determining the solar radiation on a solar module
or array are shown in Figure 11. The tilt (8) and orientation () of the module only depend
on the position of the module, which is typically fixed. The solar zenith angle (6.), the
solar altitude angle («) and the solar azimuth angle (;) only depend on the position of
the Sun, which varies with location and time. The incident angle (6) depends on both the
position of the modules and the position of the Sun, so this angle changes with location
and time as well.
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Figure 11: Key angles to determine the solar radiation [65].

The most relevant angle is the angle of incidence (), which is given by Equation 1:

cos(8) = cos(B)cos(0,) + sin(B)sin(0;)cos(vs — ) (1)

The total solar irradiance on a horizontal plane (GHI), as if the modules were placed flat
on the floor, can be calculated as the sum of a direct-beam radiation and a diffuse radiation
(Equation 2).

GHI = DNI x cos(6.) + DHI (2)

where DNI is the direct normal irradiance (irradiance on a perpendicular plane to the sun
rays) and DHI is the diffuse horizontal irradiance (irradiance scattered by the earth’s at-
mosphere). Typically, GHI, DNI and DHI can be found from historical measurements in
weather stations or from satellite data.

The total solar irradiance on the plane of array (Gpoq), understanding plane of array as the
plane where the modules are placed (considering the tilt and the orientation), is calculated
transposing GHI into the plane of array. The G, can be calculated as the sum of a direct-
beam radiation, a diffuse radiation and a ground-reflected (albedo) radiation, as Figure 12
shows.

. Diffuse radiation
Direct

radiation

Reflected
radiation
Ground % Pitched solar generator

Source: K Mertens: textbook-pv.org

Figure 12: Components of the solar radiation for a tilted module: direct-beam, diffuse and
ground-reflected radiation.

The direct-beam radiation is dependent on DNI and 6.
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The diffuse radiation can be calculated in different ways, all of which depend on at least
DHI and . The simplest way is by assuming that the diffuse radiation is uniformly dis-
tributed across the sky, following the Isotropic model [66]. In this model a ’sky view factor’
accounts for the diffuse radiation: (1 4 cosB)/2. This view factor ranges from 0.5 (5=90°,
vertical panel) to 1 (5=0°, flat panel). More complex and accurate transposition models
exist that account for the diffuse radiation differently. The HDKR model also assumes
isotropic diffuse radiation, but accounts for the higher intensity of circumsolar diffuse ra-
diation, which is the diffuse radiation in the area around the Sun [67]. The Perez model
uses a more complex computational method than the other two methods [68]. This model
differs from the Isotropic and HDKR models in that it uses empirical coefficients derived
from measurements over a range of sky conditions and locations instead of mathematical
representations of the sky diffuse components. It accounts for both isotropic and circum-
solar diffuse radiation, as well as horizon brightening [69].

The ground-reflected radiation, which can indeed be considered as a form of isotropic diffuse
radiation, is dependent on GHI, the albedo coefficient (p,), ranging between 0 and 1, and
a second ’sky view factor’: (1 — cosf)/2. This view factor ranges from 0 (5=0°, flat panel)
to 0.5 (8=90°, vertical panel).

The overall transposition equation according to the Isotropic model is given by Equation 3.
It can be pointed out that only the direct-beam radiation depends on 6. Indeed, if =0°
(flat module) Equation 3 becomes Equation 2 since 6 = 6, if =0°.

14c0s) | aprrap, x L20058)

Gpoa = DNI x cos(8) + DHI x 5

+GHI % pg x (3)

4.3 PV performance

When manufactured, each module is tested under standard test conditions (STC) to deter-
mine its performance characteristics. STC involve testing the module under an irradiance
of Gsrc = 1000W/m? with an incident light spectrum corresponding to an Air Mass value
of 1.5, both conditions together referred to as the AM1.5G spectrum. The G stands for
global and includes both direct and diffuse radiation. The test requires that the tempera-
ture of the module remains at Tspc = 25°C. The Air Mass (AM) is the path length which
light takes through the atmosphere before striking the Earth’s surface, normalized to the
shortest possible path length; that is, when the sun is directly overhead (see Figure 33 in
Appendix). The AM quantifies the reduction in the power of light as it passes through
the atmosphere and is absorbed by air and dust. It is directly related to the solar zenith
angle (6,) and solar altitude angle () through AM = 1/cos(6,) = 1/sin(as), so AM=1.5
corresponds to 6, = 48.2° or equally as = 41.8°. These standard testing conditions are
chosen because they represent the average conditions that occur at the Earth’s surface on
a clear day at noon. Six main parameters are measured under these STC conditions to
determine the module’s performance, which are typically given in the module data sheet
specifications: open-circuit voltage (V.27¢), short-circuit current (I57¢), maximum-point
voltage (V;51), maximum-point current (I57¢), maximum-point power (P52¢) and the
efficiency (n). The first five parameters are shown in Figure 13.
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Figure 13: I-V and P-V curve of a random PV module amd key parametres [70].

As shown, the power is the voltage times the current, so P, =Vpp*Lp. The units of power
are W (Watts) but when the STC maximum-point power (R;Z;“C) is considered the units
are typically Wp, where p stands for peak. The STC efficiency of the module (n°7¢) is
then calculated by the ratio between the maximum output power density of the module
(P3TC/A) and the input solar irradiance (Ggrc), following Equation 4.
pSTC
nsrc = ﬁ (4)
sTC

where A is the area of the module.

As mentioned above, these parameters appearing on the module’s datasheet are measured
under STC conditions, but a PV module is exposed to changing temperature and solar
irradiance conditions during operation, which makes the the values of voltage and current
vary, changing the output power Py,,.

In terms of temperature dependency, the voltage decreases significantly (linearly) with
increasing temperature whereas the current barely increases (linearly) with increasing tem-
perature. The power is the voltage times the current so it basically decreases with increasing
temperature. A simple way to account for the temperature dependencies is by considering
the temperature coeflicients provided by the manufacturer in the module’s datasheet, fol-
lowing Equations 5, 6 and 7. These temperature coefficients are typically a = 0.05%/°C,
B =-0.3%/°C and v = —0.4%/°C.

I(Thnoa) = Istc(1 + a(Tmoa — TsTc)) (5)
V(Tmoa) = Vsro (1 + B(Tmoa — TsTc)) (6)
P(Tnod) = Psrc (1 +Y(Tmoa — Tsrc)) (7)

where T),,4 is the temperature of the module. Some models exist to determine the mod-
ule’s temperature during operation, such as the NOCT model [71], the Heat transfer model
[72] or the Sandia temperature model [73], which are based on parameters like the plane-of-
array irradiance (Gpoq ), the air temperature, the wind speed, the transmittance-absorbtance
product, some parameters given by the module’s mounting configuration or some specifica-
tions given in the module’s datasheet [69].

In terms of solar irradiance dependency, the voltage barely increases (logarithmically) with
increasing irradiance whereas the current increases significantly (linearly) with increasing
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irradiance. The power is the voltage times the current, so it basically increases (linearly)
with increasing irradiance. The module’s efficiency, which describes ultimately the perfor-
mance of a module, maintains a strong dependency with temperature, based on how the
power decreases significantly with increasing temperature and is barely influenced by irra-
diance, since a change in the irradiance affects evenly the input and output power densities
(numerator and denominator) in the efficiency expression.

However, several assumptions lie behind this way of addressing the module’s dependency
with temperature and irradiance, which may be named as the STC module’s performance
model. The temperature coefficients provided in the datasheet («, 8 and ) lose accuracy
if the actual operating conditions deviate significantly from the STC conditions. Moreover,
the linear dependency of P,,, with irradiance is true as long as the irradiance is not too
low (below around 200W/m?). Below this irradiance value, P,,, decreases non-linearly
with decreasing irradiance, and hence the module’s efficiency is no longer uninfluenced by
irradiance.

More sophisticated and accurate module’s performance models exist, both based on theo-
retical and empirical approaches. The Sandia model is an example of an empirical model
that calculates module voltage and power at five points on the module’s I-V curve using
data measured from modules and arrays in realistic outdoor operating conditions [73]. The
theoretical models are typically based on diode equivalent circuits, more specifically on the
well-known Single-diode model described by Soto et al. [71]. The equivalent circuit for this
model is shown below in Figure 14.

CD Rsh %

Figure 14: Single-diode model equivalent circuit [74]. Ir: light current. Ip: diode current.
Iyp: shunt current. Rgj,: shunt resistance. Ry: series resistance. I: total current. V:
applied voltage.

This equivalent circuit is governed by five parameters, as described by Equation 8: the
modified diode non-ideality factor a, the light current I}, the reverse saturation current I,
the series resistance R, and the shunt resistance Rgj,.

V + IR, V + 1R,
W1t nfo (C58) ]
sh

These five parameters can be derived at STC from solving Equation 8 at certain I-V points
given by the module specifications provided on manufacturer data sheets. Some tools exist
that calculate these five parameters at STC, such as the Dobos calculator [75], an al-
gorithm developed for the California Energy Commission (CEC) six-parameter module’s
performance model, which is based on the five-parameter Single-diode-model. Auxiliary
equations, functions of both temperature and irradiance, are used to translate the five pa-
rameters at STC into non-STC operating conditions at every time step. Then an iterative
solving method (Newton Raphson for instance) finds the voltage and current values that
satisfy Equation 8, generating the non-STC IV curve, and extracting the maximum-power
point, i.e. Ppp=Vinp*Imp. Dobos and MacAlpine [76] state that the Single diode model is

25



4 Theory

a common way to represent the current-voltage (I-V) characteristic of a PV module, and
has been extensively documented in the literature as well as deployed in several commercial
software models in various forms (PVsyst, SAM, PV*SOL). However, they state as well that
the primary reason for the Single diode model’s inaccuracies emerges from the choices of the
auxiliary equations. They developed a ten-parameter model based on the five-parameter
Single diode model that presents an approach to improve prediction accuracy of the Single
diode model by leveraging test data collected according to the IEC-61853 standard, for
which the module is tested at multiple irradiance and temperature conditions, not only at
STC.

These module’s performance models take into consideration the light that is being ab-
sorbed into the module and effectively converted into electricity, and the light that is being
transmitted through the module and lost. This is numerically described by the module’s
efficiency (7). During operation, the light to be either absorbed or transmitted has to be not
reflected. Reflection losses, also known as incidence angle modifier (IAM) losses, are a type
of energy loss that occur in PV modules when sunlight hits the surface of the module at
an angle of incidence (6) other than perpendicular. Therefore, angles of incidence different
from 0 not only lead to less direct-beam solar radiation in the plane-of-array, as explained
in the solar models above (see Equation 3), but also cause more sunlight to reflect away
from the module’s surface. The amount of reflection losses depends on various factors such
as the angle of incidence, the type of module, and the anti-reflective coating (ARC) used
on the module’s surface. Under STC conditions, the incident light is perpendicular to the
module, leading to an angle of incidence equal to 0, so no reflection losses occur. This is
why reflection losses are not considered in the STC module’s performance model since it is
solely based on measurements taken under STC. Some sophisticated module performance
models such as the Single diode model or the Sandia model include an angle of incidence
assessment to adjust the direct-beam radiation to account for reflection loss.

4.4 PV performance in northern latitudes

In northern latitudes, deviations from STC are more frequent than in lower latitudes, mak-
ing it necessary to use a module’s performance model that accounts for these deviations.
These deviations pose both advantages and disadvantages in the PV performance, as ex-
plained below.

4.4.1 Snow

Snow has a positive effect on power generation as it increases the ground-reflected radia-
tion (albedo) significantly. While an albedo coefficient of 0.2 is assumed for most of the PV
system installed in urban environments [77], the albedo coefficients for fresh new snow, old
dirty snow and white ice are, respectively, 0.8-0.9, 0.6-0.7 and 0.4-0.5 [78]. The positive ef-
fect increases when the module tilt angle (3) increases, following the third term of Equation
3 [79]. However, snow adhesion to the module surface, also known as snow shading, causes
significant energy losses. Snow can persist on solar panels for days to weeks, depending on
prevailing climatic conditions and also on the design of the PV array. While more data are
needed to quantify losses regionally and globally, snow shading is clearly detrimental to PV
performance [42]. Moreover, heavy snow loads can lead to further energy loss by damaging
the modules due to its high weight or because of icing [79].

There are two primary mechanisms by which snow sheds from the module surface, melting
and sliding, though the two are interrelated. Snow sliding has been reported several times
as the most common cause of snow removal [79]. Snow sliding is generally triggered by a re-
duction in frictional forces, which may occur when a thin layer of melted snow forms at the
module surface or when the weight of the snow is sufficient to overcome surface resistance,
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causing detachment at the snow-substrate interface. Sliding can occur relatively quickly
thereafter, although it may be non-uniform if there is partial shading of the array. Sliding
can also occur at ambient-air temperatures below freezing if there is sufficient irradiance
for some melting to occur and depending on the tilt angle. Melting typically occurs when
the snow layer is thin and able to melt quickly as the air temperature rises to near or above
0°C, a process that is accelerated by high solar irradiance [42].

A key challenge to the deployment of PVs in snow-prevalent areas is predicting accurate
annual energy yields for PV systems, given the inherent intra- and inter-seasonal variability
of snowfall and the many factors that contribute to snow adhesion to modules. Several
attempts have been made to estimate yearly energy losses attributable to snow on PV
panels, but the published data reflect a limited number of sites, small study sizes, and
incomplete accounting of the variables that contribute to snow losses. Overall, there are
at least 11 models to quantify energy losses due to snow. Few comparative studies have
been performed. Some have been validated at multiple sites, often in the United States,
while others remain relatively untested. There is no consensus as to which model is most
accurate and more validation work is needed at different latitudes, tilt angles, and mounting
configurations [42].

Snow modelling can be divided into two branches: direct energy loss prediction, consisting
of stochastic and curve-fitting methods from historical data, and snow coverage prediction,
consisting of threshold-based and first principle methods. In the direct energy loss approach,
stochastic methods use only historical PV array output data, whereas curve-fitting methods
develop empirical correlations between array output and historical weather data, like in
the work made by Awad et al. [80]. By contrast, models that estimate energy losses by
predicting the shedding of snow from PV panels are more complicated, like in the work
made byMarion et al. [81]. Here, threshold models define physics limits that, if surpassed,
result in snow sliding off a module at a defined rate [42]. The Marion model is incorporated
into the National Renewable Energy Laboratory’s (NREL) System Advisor Model (SAM),
which is the PV software used in this report [82] [69].

4.4.2 Other aspects

High latitude sites often experience prolonged periods of weak or no sunlight during the
winter due to low solar altitudes. In addition, these low solar altitudes may lead to high
angles of incidence, depending on the position (orientation and tilt) of the module, causing
relatively large reflection losses. These two facts, especially the former one, decrease con-
siderably the sunlight absorbed by the PV module. Low irradiances decrease the module’s
output power (P,,p) not only because the trivial fact that less sunlight hits the surface, but
also because, as explained before, for irradiances below around 200 W/m?, very frequently
observed in a Nordic site, the linear relationship between power output and irradiance
breaks down. Therefore, the module’s efficiency (n), which remains roughly constant and
equal to the STC value with irradiance values above 200 W/m?, is reduced. Nevertheless,
the combined winter reductions due to angle of incidence and low light are generally only
3% or 4% of annual energy production because of the so much higher summer insolation.
This higher summer insolation is due to higher altitude angles and a larger solar azimuth
range compared to to winter months, resulting in long periods of sunlight, not observed in
lower latitudes. With fixed installations not all the direct insolation can be utilized, since
the sun at times can be behind the module [42]. This is why PV systems with solar track-
ers or diverse orientations/tilts, the latter potentially observed in ECs due to the variety of
houses, can make the most of this large range of the solar altitude and azimuth angles and
produce PV energy throughout the entire day and year.

Moreover, a cold climate is favourable for the PV performance, since it has been already
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mentioned that the efficiency of a PV module is enhanced by low temperatures. Finally,
frequent precipitation helps to avoid soiling of the modules, which is another energy loss
not mentioned so far that is especially detrimental in arid regions [83].

4.5 PV system analysis

The raise of prosumers, self-consumption trends and energy sharing mechanisms have
changed the way of designing and evaluating a PV system. Luthander et al. [17] iden-
tified in 2015 key technical indicators when self-consumption is aimed, as well as important
factors affecting self-consumption metrics. It could be stated that it was in 2015 when
self-consumption started to be of interest in the research community. Gjorgievski et al. [21]
identified in 2021 the indicators used to quantify the economic, environmental, technical
and social impacts of EC projects. It can be observed that the two main technical metrics
used by the researchers are the self-consumption rate (SCR) and the self-sufficiency rate
(SSR), while the main economic metrics are the energy bill savings and the total cost sav-
ings. Although SCR and SSR measure indirectly the grid stability, not much consensus is
observed in the EC research community when it comes to find an appropriate metric to
account for the grid stability. In terms of environmental analysis, the two main metrics
used are CO2 emissions savings and GHG emissions savings. The social aspect remains
rarely investigated regarding ECs.

4.5.1 Self-consumption and self-sufficiency

With no energy storage, the self-consumption (Eg¢) and self-sufficiency (Fgsgs) energy values
are the same and can be calculated using Equation 9. Egc and Egg are limited by whichever
of the load and the self-generated energy is the smallest.

Esc(t) = Ess(t) = min{Ejoada(t); Epy,gen(t)} 9)

where Fjoqq is the electricity demand and Epy,ger is the self-generated energy.

In the case of energy storage, Equation 9 splits into Equation 10 and Equation 11 since Fg¢
and Fgg are no longer the same. The battery charging is considered as self-consumption
energy while the battery discharging is considered as self-sufficiency energy. These equations
are taken from the modeling equations in the software Polysun [84].

ESC (t) = min{Eload(t) + Echg (t); EPV,gen (t)} (10)

ESS(t) = min{Eload(t); EPV,gen(t) + Edchg(t)} (11)

where E.pq(t) is the self-generated energy charged in the battery storage and Egeng(t) is
the energy discharged from the battery storage.

The SCR is defined as the share of self-generated energy that is self-consumed, either directly
or by means of previous storage, following Equation 12. Therefore, the complementary of
the SCR is the share of self-generated energy that is fed-back to the grid. The SSR is
defined as the share of electricity demand that is actually covered by self-generated energy,
following Equation 13. It gives an idea of the how relevant is the self-consumed energy in
the electricity demand. Therefore, the complementary of the SSR is the share of electricity
demand that is taken from the grid. Typically, for low installed capacities, the SCR is high
because most of the self-generated energy is self-consumed, but the SSR is low since the
self-consumed energy does not cover a significant share of the electricity demand. As the
installed capacity increases, more electricity demand is covered with self-consumed energy,
increasing the SSR, but because of the nature of solar energy (see Figure 15a), more excess
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energy also takes place, decreasing the SCR. Therefore, SCR and SSR are typically opposing
(see Figure 15b). The SCR gets lower and lower the more capacity installed, which typically
entails more surplus energy. However, the SSR does not increase endlessly if the capacity
increases. It reaches a maximum value when the maximum load-match has been achieved.
Here, more capacity only leads to more surplus energy, not to demand coverage. This
threshold value in SSR is not observed in the scheme of Figure 15b, but it is frequently
observed in the publications that use SSR as a PV performance metric, such as the work
made by Jiménez-Castillo et al. [85].
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Figure 15: None of the Y axis must be understood as fractions. On the left,
SCR=C/(B+C) and SSR=C/(A+C). Two mechanisms to enhance self-consumption are
shown: energy storage and load shifting. Other alternatives are implicit storage, energy

sharing or having multiple tilts/orientations. On the right, the Net Zero Energy Building
(Net ZEB) point is shown, for which SCR=SSR. This means that the self-generated
energy equals the electricity demand, but over the course of a certain time (e.g. 1 year),
allowing energy exchanges with the grid (imports or exports) when needed. This situation
must not be confused with a perfect load-match for every time slot, an ideal situation for
which SCR=SSR=100% and where no energy exchanges with the grid are needed,
achieving a complete independence from the grid.

The electricity provided by the grid is usually linked to fossil fuels and GHG emissions, so
a high SSR is convenient from an ecological perspective. On the other hand, large amounts
of energy fed-back to the grid (at peak generation times) leads to voltage violations and
line overload, so a high SCR is convenient for from a grid stability perspective. However,
because SCR and SSR are typically opposing, a trade-off between a high SSR and high grid
stability is therefore established [34]. From an economic perspective, a high SSR is conve-
nient since the self-generated PV energy is usually cheaper than the provided by the grid,
although this depends mainly on the amortization of the PV investment costs (pay-back
time). Whether a high SCR is convenient or not from an economic perspective depends on
the value given to the surplus energy, which is typically given by the FiTs [85]. The de-
creasing value given to the surplus energy, either by decreasing FiTs (mainly due to limited
public budget) or by ongoing economic penalties for low SCRs (mainly targeted to avoid
extra reinforcement costs in a high PV penetration context), suggests that a high SCR may
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also lead to economic benefits.

A SCR and SSR of to 100% means that the self-generated energy is exactly the same as
the self-consumed energy for each time slot, and this covers the whole electricity demand.
In this ideal scenario, no energy is either taken or fed-back to the grid. However, keeping
both rates at high values is challenging, especially in the high PV penetration scenario ex-
pected for the future. This can be achieved by the mechanisms introduced in Chapter 1.4,
such as storage with a smart operating management, implicit storage (PV oversizing and
curtailment of surplus energy), energy sharing (in ECs for instance), load-matching using
different tilts and orientations, demand flexibility (load shifting) or blending optimally PV
energy with other complementary renewable sources, such as wind energy. Another option
would be to increase the grid network capacity and balancing mechanisms to handle the
high PV penetration, but this is assumed to be excessively costly, in economic and planning
terms.

In Equation 12 and 13, the typical summation period is 1 year, which is sufficiently long to
take seasonal variations into account and to minimize the influence of short-term random
fluctuations in generation and demand. By doing long-term simulations, every time of
the year is simulated or measured. This is of high importance especially for countries at
high latitudes with a considerable seasonal variation in solar irradiation, which strongly
affects the PV production and thus the self-consumption. The present report uses hourly-
based meteorological data and load consumption data for availability and computation
reasons, but a larger time resolution (sub-hourly time-steps) is highly recommended when
self-consumption targets are aimed [17]. Otherwise the instantaneous peak variability of
the load consumption profiles and those of the PV generation profiles are smoothed and
hence disregarded. The load consumption profile typically causes a larger error in this sense
because it is more abrupt than the PV generation profile. The lower the time resolution,
the more unrealistically smooth become both profiles, increasing the load match and finally
leading to overrated values of SCR and SSR [85].

4.5.2 Grid stability

The energy exported to the grid (Ecsp) and imported from the grid (E;,,,) can be calculated
as:

Eezp(t) = EPV,gen(t) - ESC(t) (14)

Ezmp(t) = Eload(t) - ESS(t) (15)

As explained above, the SCR and SSR give an idea of the grid stability, but a metric is
needed that considers both the grid exports (like SCR) as well as the grid imports (like
SSR). The Energy balance index (EBI), expressed in Equation 16, is used by Hutty et al.
[19] to determine the grid stability. It is basically a measure of grid independence, penalising
both grid imports and exports. Ideally, EBI is equal to 100%, which only occurs in the
ideal scenario that SCR=SSR=100%. Similarly to SCR and SSR, a reasonable summation
period in Equation 16 is 1 year and the higher the time resolution the better to account
accurately for the peaks in energy imports and exports.

_ _ > Eimp(t) +> Eeo:p(t)
EBI(%) = |1 S OED N x 100 (16)

For clarification, linked to the idea explained in the caption of Figure 15, SCR, SSR and
EBI are metrics calculated from time-step-dependent values. Therefore, for example, if
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one calculates EBI for just a two time-step period, ¢t = 1 and t = 2, if Fj,,(1) = 10kWh
and E..,(2) = 10kWh, EBI is not 100%. This same concept applies as well for SCR
and SSR. Moreover, SCR, SSR and EBI take into consideration the ’relevance’ of each
time step. Therefore, for example, if Epy gen(l) = 5kWh and Egc(l) = 5kWh, and
Epv gen(2) = 10kWh and Esc(2) = 0kWh, SCR is not 50%. This same concept applies as
well for SSR and EBI. These are the two reasons why EBI can be considered somehow a
grid stability metric: because it considers the grid balance for each time step independently
and it considers how much the imbalance weighs.

4.6 Optimization problem

An optimization problem is a mathematical problem that aims to find the best solution
among all feasible solutions, where "best" is determined by a specific criterion or objective
function. The objective function represents the quantity to be optimized, and it depends
on a set of decision variables, which are the variables that can be adjusted to improve the
objective function. The constraints are the conditions that the problem must satisfy. All
solutions, optimal or not, that satisfy the constraints are encompassed in the so-called fea-
sible space.

The goal of an optimization problem is to find the values of the decision variables that
minimize or maximize the objective function while satisfying the constraints. The solution
to an optimization problem can be either a local optimal solution or a global optimal solu-
tion. A local optimal solution is a solution that is optimal in a certain region of the feasible
space but may not be the best solution overall. In contrast, a global optimal solution is a
solution that is optimal for the entire feasible space and provides the best possible value of
the objective function.

Relatively complex problems, such as the one tackled in this report, contain nonlinear and
sometimes non-smooth functions. A non-smooth function is not differentiable at one or
more points in its domain, or has a derivative that is not continuous at one or more points
in its domain. Non-smooth functions may exhibit abrupt changes or kinks, resulting in
non-differentiable or discontinuous points. Examples of non-smooth built-in functions in
Excel are ABS, MIN or MAX. The most common discontinuous built-in function in Excel is
the IF function. Among the three available optimization solvers in Excel, all developed by
Frontline Systems [86], two are capable of dealing with nonlinearities: "GRG Nonlinear",
meant for smooth problems, and "Evolutionary", meant for non-smooth problems. The
remaining solver, "Linear LP", is meant for linear optimization problems.

"GRG Nonlinear" looks at the gradient (slope) of the objective function as the decision
variables change to guide it towards a feasible and optimal solution. The algorithm cannot
determine in which direction the function is increasing (or decreasing) in discontinuous or
non-differentiable points in non-smooth functions. This is why "GRG Nonlinear" is not
meant for non-smooth problems. Additionally, the solution obtained with this algorithm is
highly dependent on the initial values of the decision variables and hence just a local optimal
solution may be found if the problem is smooth but non-convex, as shown in Figure 16a.
"GRG Nonlinear" includes a "multistart" option that can improve the prospects of finding a
globally optimal solution. The "multistart" option will automatically run the GRG method
from a number of starting points and will display the best of several locally optimal solutions
found as the probable globally optimal solution. Because the starting points are selected at
random and then “clustered” together, they will provide a reasonable degree of “coverage”
of the space enclosed by the bounds on the variables. A GRG algorithm in the EC field is
used by Awad and Giil [64] for instance.
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Figure 16: Scheme of the algorithms behind a Generalized Reduced Gradient (GRG)
solver and an Evolutionary solver [87].

"Evolutionary" uses genetic and evolutionary algorithms. A genetic algorithm is a type of
evolutionary algorithm. Both are inspired by natural selection and survival of the fittest
in the biological world. Once the initial generation is randomly populated with members
(sets of decision variables), the algorithm enters a loop that mimics the natural iterative
process of new generations replacing old ones, as shown in Figure 16b. For each generation,
based on natural selection, only the most "fit" member survives, but the other members
of the population are sample points in other regions of the search space, where a better
solution may later be found. Indeed, each generation is populated based on crossovers with
previous existing solutions, (intentional changes based on survival), but also on mutations
(random changes). This helps avoid becoming trapped at a local optimum, when an even
better optimum may be found outside the vicinity of the current solution. "Evolutionary"
is therefore more likely to find a globally optimum solution than "GRG Nonlinear" but is
a much slower solving method. While "GRG Nonlinear" can be certain of the "optimality"
of a certain solution by using gradient information, "Evolutionary" does not have any way
to test whether a solution is optimal or not more than comparing it with others. A genetic
algorithm in the EC field is used by Freitas et al. [34] for instance.

4.7 Roof pitch factor

The surface of a rectangular pitched roof, either single or doubled-pitched, can be deter-
mined using the so-called roof pitch factor, which is only dependent on the roof tilt (pitch)
angle, following Equation 17.

Roof pitch factor = R}:ffsr = coi 3 (17)

where [ is the roof tilt angle. The lengths of the rafter and run of a roof are shown in
Figure 17. Using this equation, the roof pitch factor values for some roof tilt (pitch) angles
are shown in Table 1.

Rise

Figure 17: Overview of the roof lengths required to calculate the roof pitch factor. The
roof tilt angle (3) is the angle between the rafter and the run [88].
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Table 1: Roof pitch factor values for various roof tilt angles.

Tilt | Roof pitch factor
0° 1

20° 1.02

40° 1.15

60° 2

The roof surface can be then calculated using Equation 18. Hence, if the ground area of a
certain building is known, the roof surface only depends on the roof pitch factor, which is
given for a certain roof tilt angle.

Roof surface = Roof pitch factor x Ground area (18)
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5 Methodology

The aim of this report is to provide technical advice to facilitate the decision-making regard-
ing the PV installation in a residential EC. A model is developed in Excel and validated,
and applied to a PV EC that will be built in Harstad, Norway [2]. More details about the
objectives are explained in Chapter 3.2, as well as a brief and panoramic description of the
methodology followed.

5.1 Weather data

The EC will be built in a specific address in Harstad, which is a municipality located in the
Troms og Finnmark county in Norway. The location of Harstad within the Nordic region
is shown in Figure 18.

Figure 18: The white area is the whole country of Norway. The arrow indicates the
location of Harstad (68°N 16°E), which is above the Arctic Circle.

1-year hourly PV solar radiation data (GHI, DNI and DHI) is downloaded from the Eu-
ropean tool Photovoltaic Geographical Information System ([89]: Typical Meterorological
Year (TMY) from PVGIS-ERA5 2005-2020). The ’Calculated horizon’ checkbox was kept
selected in this tool to consider the orography of the specific location, which has an alti-
tude of 20 m.a.s.l. This downloaded weather data also contains the hourly air temperature,
relative humidity, infrared (thermal) radiation, wind speed and air pressure.

Since the weather data from [89] does not include any snow depth data, this is downloaded
from [90] for a weather station located in Harstad Stadion. This weather station is very
close to the specific location (less than 10km) and is located at an altitude of 45 m.a.s.l.
Hourly snow depth data from the last 5 years (2019-2023, both included) is averaged and
added to the weather file (see Figure 19).
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Figure 19: Hourly snow depth data in a weather station located in Harstad Stadion [90].

The albedo coeflicient is not provided either in [89]. It is derived in an hourly basis by
assuming its value to be 0.65 when there is any snow (snow depth not equal to 0) and 0.2
when there is no snow (snow depth equal to 0). The value of 0.65 is estimated based on
the study made by Gardner and Sharp [78] while 0.2 is assumed for most of the PV system
installed in urban environments [77]. The resulting albedo coefficients are added to the
weather file.

5.2 Load consumption

Because the EC has not been built yet, no historic electricity consumptions of the house-
holds forming the EC exist. However, historic data of one household (the ’real’ household)
in the same neighborhood where the EC will be built is known. This household is 200m?
and is inhabited by a family of 2 adults and 2 children. The hourly load profile for the
last 3 years (2020, 2021 and 2022) is known. These three years are averaged and a ’real’
consumption profile is obtained.

The other 99 electricity consumption profiles (the EC is formed by 100 households) are
generated using the software Load Profile Generator [91]. This software allows to generate
individual and realistic load profiles for households. The software’s basic model is described
in Figure 20. Based on their Desires, Persons will select what to do in the Household de-
pending on the available Affordances (Activities). Desires have a certain weight and Persons
decide on which Affordance to choose based on what would give them the maximum im-
provement in well-being at each time step. The Affordances available depend on the Devices
available in the Household. Each Device use causes a certain energy use based on the Load
Type and the Time Profile. All these elements can be created and customized by the user,
but the software contains a large database for all elements. In the software 60 predefined
Households for Germany are included. The author states that the predefined Households
are based on a small survey, personal life experience, and statistical data in Germany and
that they reflect slightly idealized versions of real behavior in northern Europe.
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Figure 20: Interaction of key elements in Load Profile Generator. The Household is the
central element in the model where all these key elements are put together. The manual
can be found in Appendix B in [92].

The software allows to generate a large number of unique Households by creating Settle-
ments. The Household templates and Settlement templates provide a way to automatically
generate entire Settlements according to a number of rules to which the Households should
conform. The program either finds predefined Households that conform to these rules or
creates new ones. The program ensures that every Household is used only once in the
created Settlement. A Settlement is used to generate the remaining 99 electricity consump-
tion profiles (see Figures 21a and 21b). The decision-making internal time resolution in the
software is set to 1lmin, but the resulting electricity consumption profiles are obtained in
an hourly basis to match the weather data, which is also hourly.

The Settlement uses daily average air temperature and hourly solar radiation data (GHI)
as input. These are available from the downloaded weather file mentioned in Chapter 5.1.
The EC is expected to be occupied by Norwegian families (parents and children). A small
study is carried out with data from [93] (more specifically, Table no 06242) to estimate
how many children must live in each household. In Harstad’s county, Troms until 2019 and
Troms og Finnmark from 2020, in the last ten years (2012-2022), there were on average 21%
of children with no siblings, 45% children with one sibling, 25% children with two siblings,
7% children with 3 siblings, 2% children with 4 siblings and 1% children with 5 siblings or
more. The sum of these percentages values adds up 101% due to integer rounding. This
statistic data was used in the created Settlement, although for simplicity in the software,
the shares of children with 3, 4 and 5 or more siblings were added up (10%) and simulated
as multi-generational families with two children and two seniors.

The generated hourly-based 99 load consumption profiles and the 'real’ consumption profile
are added up to create an EC aggregated electricity consumption of 100 households. How-
ever, although the 99 generated profiles (peaks) are fairly realistic, their total consumption
values are not. This is why the previous aggregated EC consumption profile is scaled to the
monthly total consumption values of the ’real’ consumption times 100 (see Figures 21c and
21d). This is done using a scaling tool in SAM. The result is hence a final EC electricity
consumption formed by 100 different hourly load profiles (different hourly peaks) with same
total consumptions equal to the ’real’ consumption.
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(a) Day-averaged load profiles (before (b) Month-averaged load profiles (before
scaling). Blue lines: 99 generated load  scaling). Blue lines: 99 generated load
profiles. Dashed black line: averaged profiles. Dashed black line: averaged
load profile. Dashed gray line: ’real’ load load profile. Dashed gray line: 'real’ load
profile. profile.
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Figure 21: EC load consumption profiles.

5.3 PV generation

The models mentioned in this chapter have already been introduced in Chapter 4. The
PV electricity generation is calculated in SAM in kW h/m? units for each hourly time step
in the year and for each available orientation/tilt combination for potential PV installa-
tion in the EC. Since the EC is not built yet, the orientations and tilts considered are
various: tilt angles of 0°, 20°, 40° and 60° and orientation angles corresponding to the
four cardinal directions (north (N), south (S), east (E) and west (W)), leading to 13 possi-
ble combinations. It is reminded that if the tilt angle is 0°, no orientation can be considered.

To this end, the Perez model is selected in SAM to transpose the solar data from the
weather file into the plane-of-array diffuse radiation. The direct-beam and ground-reflected
radiation are calculated in SAM as described in Equation 3. The "CEC Performance Model
with User Entered Specifications" is selected in SAM as the module’s performance model
[69]. This six-parameter model allows the user to enter the module’s STC specifications
and uses the Dobos calculator to calculate the STC model parameters. This model takes
into consideration the reflection losses. The module STC specifications provided in the
manufacturer’s data sheet as well as the resulting module’s performance model parameters
are shown in Table 2.
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Table 2: Left: Module STC specifications from manufacturer’s data sheet [94]. Right:
Derived CEC model parameters at STC using Dobos calculator in SAM.

Vip | 34.17V

Tonp 9.95A

Py 340W a 1.64V
Ve 4241V I 10.88A
I 10.52A Iy 5.74E-11A
n 20.22% Ry 0.33 Ohm
o | 0.046%/°C R.n, | 89.20 Ohm
8 | -0.276%/°C adjust 12.65%
v | -0.381%/°C

A 1.68m?

The parameter adjust is not part of the five-parameter Single-diode model and is therefore
specific to the CEC model. a and S are adjusted by this parameter until v in the data sheet
matches the 7 predicted by the six-parameter CEC model [75].

The "CEC Performance Model with User Entered Specifications" uses the NOCT temper-
ature model to estimate the temperature of the module. To this end, it is required by SAM
to enter the "Array height", which is selected as "two stories or higher", and the Mounting
standoff, which is assumed to be "1.5 to 2.5 inches".

Snow coverage losses are included in the model using SAM’s snow model, which is based
on the Marion model (see Figure 22). It uses snow depth data from the input weather file,
and for time-steps with snow, estimates the percentage of the photovoltaic array that is
covered with snow based on the array’s tilt angle, plane-of-array irradiance, and ambient
temperature [69].
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Figure 22: Snow coverage index for the 4 tilts considered. An index of 1 means that the
PV module is fully covered with snow. The snow coverage index mean values are 0.59,
0.24, 0.19 and 0.18 for a tilt of 0°, 20°, 40° and 60°, respectively.

The soiling losses are assumed to be constant and equal to 1.5% based on the study made by
Pedersen et al. [83]. The values given by SAM for DC power loss (4.4%) and AC power loss
(1%) are maintained. A constant inverter efficiency of 96% is considered, based on the work
by Cillari et al. [95]. No further inverter modeling is considered for simplicity and because
the optimization solver used (explained later in Chapter 5.5) will iterate among multiple
PV capacities installed, and hence specifying inverter nominal or extreme voltage/current
values would lead to unrealistic clipping losses.
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Figure 23 shows the PV generation over a 1-year period for the 13 different orientation /tilt
combinations considered in the optimization problem. It is observed that steep tilts and
south and east orientations lead to a larger PV generation.

140
120
100
80
60
40
20
0

m60°S m40°S m60°E m40°E m20°S m20°FE m20°W

PV generation (kWh/m?)

mA40°W N60°WmH20°N m0°- m40°N m60°N

Figure 23: 1-year total PV generation. Nomenclature: for instance, "60° S" means a tilt
of 60° and a south orientation.

5.4 Battery energy storage

The battery modeling equations shown in this chapter, together with the equations de-
scribed in Chapters 4.5.1 and 4.5.2, define the energy inflows and outflows for each time-
step (to/from battery, to/from load, to/from grid) and the key performance metrics (SCR,
SSR and EBI). The battery capacity is inputted in the Excel optimization problem in
kW h/kWp units where kWp is the optimal PV capacity found by the Excel solver. Five

different battery sizes are considered, leading to five different scenarios: 0, 0.25, 0.5, 0.75
and 1 kWh/kWp.

The equations shown below describe the battery functioning and are inspired from the
modeling equations used in the softwares Polysun [84] and SAM [69]. It is assumed that
the battery is AC coupled, as shown in Figure 24. It is also assumed that it operates
at a constant (nominal) voltage with a non-smart management strategy. No thermal or
degradation losses are considered. It is reminded that the PV simulation period is 1 year
and the time resolution is hourly-based (8760 time-steps in the year).

| PV Array H Inverter l—b
ACto DC [+
DC to AC

Figure 24: Scheme of an AC coupled battery in a PV system. Blue: DC side. Red: AC
side. [69]. See also Figure 10.

<4 (rid

— Load
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A non-smart management strategy means that the battery is charged whenever there is
surplus PV generation in a given time step and is discharged whenever the PV generation
is not enough to cover the electricity demand, as described by Equations 19 and 20. If the
battery is fully charged and there is still surplus energy, this energy is fed-back to the grid.
If the battery is fully discharged and the electricity demand is not met, this energy is taken
from the grid. The battery cannot charge and discharge in the same time step.
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DC side: Echg7DC(t) = min{Enet(t)nchg; Echg,maw(t)} if Enet(t) >0 (19)

DC side: Edchg,DC(t) = min{fEnet(t)/ndchg; Edchg,mam(t)} if Enet(t) <0 (20)

where Epnct(t) = Epv,gen(t) — Eioad(t), Neng and n4cng are the charging/discharging efficien-
cies, and Echgmaz(t) and Eichgmae(t) are the maximum possible charge/discharge values,
described by Equations 21 and 22 (see Figure 25). The maximum charge/discharge occurs
for a certain time step when either (i) the maximum/minimum state of charge (SOC,q4z
and SOC,,;») has been achieved, or (ii) the maximum charging/discharging rate (Ccpy and
Clachg) has been achieved:

Echgn’na;ﬂ (t) = min{SOCmawcapbatt - ESOC(t - 1)7 Capbattcchg} (21)

Edchg,maz (t) = min{ESOC (t - ]-) - SOCmincapbatt; Capbattcdchg} (22)

where Cappay: is the battery capacity (in kWh), and Esoc(t) is the energy available in the
battery (in kWh), given by Equation 23. The SOC(t) itself, meaning the energy available
in the battery normalized to the battery capacity (in %), can be calculated by Equation 24.

Yy 3
SOCmax
SOC(t)
Capbatt
Cchg
Cdchg
SOCmin
\4

Figure 25: Scheme of some key parameters in the battery.

Esoc(t) = Esoc(t — 1) + Ecng,pc(t) — Edchg,pc (1) (23)
Esoc(t)

SOC(t) = ———= x 100 24

( ) Cappat ( )

The first time step (¢ = 1) is slightly different from all the rest since the term Esoc(t — 1)
in the previous equations is replaced by SOC;,;*Cappast, where SOC;,,; is the initial state
of charge (in %).

Equations 19 and 20 account for the DC side. The charging and discharging values for the
AC side are given by the charging/discharging efficiencies:

AC side: Ecng ac(t) = Ecng,pc(t)/Neng (25)

AC side: Egehg,ac(t) = Edchg, e (t)Ndehg (26)

The specific parameter values in the battery are given in Table 3.
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Table 3: Battery parameters, based on the work by Freitas et al. [34]. Five scenarios are
considered with different battery capacities, Cappass: 0, 0.25, 0.5, 0.75 and 1 kWh/EWp,
where kWp is the optimal PV capacity found by the Excel solver (see next chapter).

SOCin; 50%

SOCrin 10%

SOChax 95%

Cchg and Cdchg 0.5

Neng (AC to DC) and ngeng (DC to AC) | 95%

5.5 Optimization problem

The developed Excel optimization model uses as input: (i) the 1-year hourly PV generation
data extracted from SAM in kW h/m? units for each available orientation/tilt combination
for potential PV installation in the EC (see Chapter 5.3), and (ii) the l-year hourly EC
demand profile in kW h units generated with Load Profile Generator and scaled with SAM
(see Chapter 5.2). The hourly overall PV generation, i.e. considering all orientation/tilt
combinations, is obtained simply by adding up the contribution of each orientation/tilt
combination.

The battery model equations are included in the Excel model (see Chapter 5.4), as well
as the equations described in Chapters 4.5.1 and 4.5.2. These equations define the energy
inflows and outflows for each time-step (to/from battery, to/from load, to/from grid) and
the key performance metrics (SCR, SSR and EBI). The Excel solver is then run to find the
optimal roof surface area in m? that may be equipped with PV for each orientation/tilt
combination in order to maximize the objective functions, which are defined later in this
chapter. The resulting optimal PV area can be easily translated into PV capacity (in kWp
units) for the given 20.22% module efficiency (see Table 2) using Equation 4, or even into
equivalent number of houses (roofs) fully covered with PV, given the roof surface of 1 house,
which only depends on the tilt angle using Equation 18.

Two objective functions are considered: one that focuses on SCR and SSR (Equation 27),
and one that focuses on EBI (Equation 28). The latter simply maximizes EBIL. In the
former, instead of using SCR, and SSR as individual objective functions, the multi-objective
function shown in Equation 27 is chosen because SCR and SSR are by definition opposing
(see Figure 15b). The use of the weights a and b give a panoramic picture of the system
performance, considering multiple self-consumption possibilities. This facilitates the PV
sizing decision-making depending on the EC energy goals and requirements, which are
unknown.

fi=a-SCR+1b-SSR (27)

fo=EBI (28)

where a and b are the weights given to each metric in the optimization. These weights are
both between 0 and 1 and must add up 1, i.e. 0 < a,b <1 and a+b = 1. The a values
selected are 0, 0.25, 0.5, 0.75 and 1.

Table 4 shows an overview of all the different scenarios considered. For each of this scenarios
there are 13 decision variables, which are the PV installed capacity for the 13 orientation /tilt
combinations considered: tilt angles of 0°, 20°, 40° and 60° and orientation angles corre-
sponding to the four cardinal directions (north, south, east and west). The output results
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of each scenario is the optimal PV installed capacity and the performance metrics SCR,
SSR and EBI.

Table 4: All scenarios considered in the optimization problem.

a=025 a=0.25 a=025 a=025 a=0.25

a=05 a=05 a=05 a=05 a=05

=0. a=0.75 a=075 a=075 a=0.75
a=1 a=1 a=1 a=1

The only constraint of the problem is the roof surface available in m? units for each orienta-
tion/tilt combination. It is assumed that all households cover a rectangular ground area of
200m?, like the 'real’ household. The roof pitch factor for each tilt angle (see Chapter 4.7)
and the fact that the EC is formed by 100 households allows to define the roof availability
constraint.

It is clear the non-linearity and non-convexity of the objective functions, given the defi-
nitions of SCR, SSR and EBI (see Chapters 4.5.1 and 4.5.2), and the battery modeling
equations (see Chapter 5.4). The formulation of the problem includes Excel built-in func-
tions typical of non-smooth problems as well, such as MIN or IF, but the objective functions
themselves seems to be smooth with respect to the decision variables. The problem is solved
using the solver "GRG Nonlinear with multistart". However, the solver "Evolutionary" is
run for different scenarios to confirm that the solutions given by "GRG Nonlinear with
multistart" are reliable and not local optimal solutions. This analysis is done in Chapter
6.4, where a validation of the model developed and the optimization results is carried out.
The specific solver parameters selected in Excel are shown in Table 5. These parameters
are based on multiple trial and error attempts to determine which parameters lead to re-
liable and accurate PV optimal capacities. The population size is based on the number of
decision variables (13) multiplied by 10, as suggested by the developers of the Excel opti-
mization solvers, Frontline Systems, in [96] ("GRG" parameters) and [97] ("Evolutionary”
parameters).

Table 5: Excel solver parameters.

GRG | Evolutionary
Constraint precision | 0.001 0.001
Convergence 0.01 0.00001
Solving time 0.5h 1.5h
Population size 130 130
Mutation rate - 0.075 (default)
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6 Results discussion and validation

6.1 Results description

Before presenting and discussing the results, it must be highlighted that the installed PV
capacity is not shown in any figure in kWp or m? units, but in number of houses fully
covered with PV. This is intended to help interpreting the results. It is reminded that it
is assumed that all households cover a rectangular ground area of 200m?, like the ’real’
household. The roof pitch factor for each tilt angle (see Chapter 4.7) allows to calculate
the roof surface available for each house depending on the tilt angle of the roof. The area
of one PV module (see Table 2) allows to calculate the roof surface (in number of houses)
that is covered with PV. The goal of the Excel solver is to find the optimal PV capacity
for each orientation/tilt combination, for certain given energy goals (defined by f; and f3)
and certain battery capacity values.

Figures 26 and 27 are result of solving the optimization problem with f; as objective func-
tion, whereas Figure 28 is result of solving the optimization problem with fo as objective
function. Figures 29 and 30 are not result of solving the optimization problem, but figures
to have a better understanding of the other figures.

Since in f; the a values that are considered are 0, 0.25, 0.5, 0.75 and 1, the corresponding
b values are 1, 0.75, 0.5, 0.25 and 0, respectively. The graphs in Figure 26 are shown with
respect to these a values. Since f1 =a-SCR+b-SSR where 0 <a,b<landa+0b=1,
a =0 (b =1) means that the problem maximizes only SSR whereas ¢ = 1 (b = 0) means
that the problem maximizes only SCR. The a values between 0 and 1 (the b values between
1 and 0) give different weights to SCR and SSR. For instance, a = 0.5 (b = 0.5) give the
same weight to SCR than to SSR. Two graphs (left and right) are shown for each battery
capacity value in Figure 26. One graph (left) showing the the total installed PV capacity,
the SCR, the SSR and the EBI, and the other graph (right) showing the distribution of
orientation/tilts normalized to the total installed PV capacity. Since 5 different battery
capacity values are considered (0, 0.25, 0.5, 0.75 and 1 kWh/kWp), there are five couple
of graphs, a couple for each battery capacity. Note that the legend and caption of Figure
26 are one page below the graphs. The meaning of Figure 27 is to compare the outputs of
each scenario when changing the battery capacity. This comparison is not well observed in
Figure 26 because it shows separated graphs for different battery capacity values.

The way of showing the results when maximizing f, is different, as observed in Figure 28.
Since there are no weights considered in this objective function, the results are directly
shown with respect to the battery capacity values (whereas in Figures 26 and 27 the results
were shown with respect to the a values). It is kept in Figure 28 the fact of showing a
couple of graphs, one (left) with the total installed PV capacity, the SCR, the SSR and the
EBI, and the other graph (right) with the distribution of orientation/tilts normalized to
the total installed PV capacity.

Since the output results of each scenario (see Table 4) are the optimal PV installed capacities
for each orientation/tilt combination (decision variables) and the performance metrics SCR,
SSR and EBI (objective functions), the discussion of the results is divided in two parts:
one focused on the latter (Chapter 6.2) and one focused on the former (Chapter 6.3).
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Figure 26: The graphs in this figure are result of maximizing fi =a-SCR+b-SSR
where 0 < a,b < 1 and a + b = 1. Left column graphs: Total optimal installed PV
capacity (black curve, right axis), SCR, SSR and EBI (orange curves, left axis) with
respect to the a weight parameter for different storage capacities. Right column graphs:
Total optimal installed PV capacity (black curve, right axis) and distribution of the
orientation/tilt combinations covered with PV normalized to the total installed PV
capacity (colored stacked chart, left axis) with respect to the a weight parameter for
different storage capacities. The PV installed capacity, instead of being shown in kWp, is
shown in number of houses fully covered with PV. Nomenclature: for instance, "60° S"
means a tilt of 60° and a south orientation.
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Figure 27: The graphs in this figure are result of maximizing f; =a-SCR+b-SSR
where 0 < a,b <1 and a + b = 1. SCR, SSR, EBI and total optimal installed PV capacity
with respect to the a weight parameter for different storage capacities. The PV installed

capacity, instead of being shown in kW p, is shown in number of houses fully covered with
PV.
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Figure 28: The graphs in this figure are result of maximizing fo = FBI. Left graph:
Total optimal installed PV capacity (black curve, right axis), SCR, SSR and EBI (orange
curves, left axis) with respect to the battery capacity. Right graph: Total optimal PV
installed capacity (black curve, right axis) and distribution of the orientation/tilt
combinations covered with PV normalized to the total installed PV capacity (colored
stacked chart, left axis) with respect to the battery capacity. The PV installed capacity,
instead of being shown in kWp, is shown in number of houses fully covered with PV.
Nomenclature: for instance, "60° S" means a tilt of 60° and a south orientation.
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Figure 29: Daily (left graph) and monthly (right graph) averaged PV generation profiles
(blue curves) and EC aggregated load consumption profile (red curve) for all tilts
considered (0°, 20°, 40° and 60°) and the four different orientations considered (S,E,W
and N). The most preferred tilt angle by the solver, 60°, is shown in bold and in separate
graphs in Figure 34 in Appendix. Nomenclature: for instance, "60° S" means a tilt of 60°
and a south orientation.
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Figure 30: Evolution of SCR, SSR and EBI with total installed PV capacity for different
orientations (color code) and a tilt of 60°, which is the main tilt angle chosen by the
solver. Left graphs: No storage. Right graphs: Battery capacity of 1lkWh/kWp. In these
figures, for each orientation, PV is installed in just that orientation. The PV installed
capacity, instead of being shown in kW p, is shown in number of houses fully covered with
PV. Nomenclature: for instance, "60° S" means a tilt of 60° and a south orientation.

6.2 Discussion of SCR, SSR and EBI curves

The discussion starts with interpreting the curves from Figure 26a, which is the case of
maximizing f; with no battery storage. The total installed capacity decreases when a in-
creases. Increasing a means giving more weight to SCR in the optimization and less to
SSR. In other words, increasing a helps having less amount of surplus energy with respect
to the PV generated energy, increasing SCR, but also less amount of demand covered by
PV energy (since b decreases), decreasing SSR. This is why the SCR curve increases with a
and the SSR curve decreases with a. They way of increasing SSR is by increasing the total
installed PV capacity, whereas the way of increasing SCR is by decreasing the total installed
PV capacity, always considering optimal orientation/tilt combinations. Less PV capacity
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covers less demand, decreasing SSR, but ensures less amounts of surplus energy, increasing
SCR. If all the optimization weight is given to avoid surplus energy regardless of how much
demand is covered by PV energy, which is represented by a = 1, the solver chooses to install
almost no PV, to ensure that SCR is 100%. However, this means that SSR~0 since very
little demand is covered with PV energy, and EBI~0 since almost all demand is covered
with energy taken from the grid. However, SCR is 100% (or close) already for a values of
0.5. An a = 0.5 means that b = 0.5 as well (since a + b = 1), meaning that both SCR and
SSR are evenly maximized by the optimization algorithm. If all weight is given to cover
demand with PV energy regardless of how much energy is fed-back to the grid, which is
represented by a = 0, the solver chooses to cover all houses with PV. Nevertheless, this just
covers a ~33% of electricity demand with PV energy. Although different orientations and
tilts are considered, which enhances the load match, a higher SSR than ~33% is impossible
(with no storage), since the maximum load-match has been achieved. This threshold value
has been introduced in Chapter 4.5.1.

The SCR when a = 0 is very low, slightly above 20%. Moreover, it is rather unreal to
consider the possibility of covering all 100 houses with PV. A SCR of 20% means that 80%
of the PV energy is fed-back to the grid. As soon as the a value increases to 0.25, giving
some weight to self-consume the PV energy and not feeding so much energy back to the
grid, the solver chooses to install much less PV capacity, around 20 houses fully covered
with PV. At this point the SSR decreases from ~33% to 20%, but the SCR already rises
drastically above 80%. Moreover, it is observed that for a = 0.25 the EBI finds its maximum
value, representing the point of maximum independence from the grid and potentially the
best scenario in terms of grid stability. If the a value is further increased, to 0.5, the SCR
rises to almost 100%, but the SSR drops to around 15% and hence the EBI drops to a simi-
lar value than if @ = 0 because of the large amounts of energy taken from the grid (low SSR).

The two previous paragraphs were referring to Figure 26a. To discuss how having a battery
storage affects the results, it is maybe easier to look at Figure 27 than comparing Figures
26a, 26c, 26e, 26g and 26i, since these show the change in battery capacity in different
graphs, while Figure 27 shows the battery capacity increase in same graphs. In Figure 27,
it stands out the no storage scenario for a = 0.25. The drastic decrease in total installed PV
capacity (see Figure 27d) occurs from a = 0.25 to a = 0.5 if storage is considered whereas
in the case of no storage this drastic decrease occurs before, from a = 0 to a = 0.25. This
much lower installed capacity in the no storage case for a = 0.25 leads to a much higher
SCR (Figure 27a), but a much lower SSR (Figure 27b) and EBI (Figure 27c) than in the
case with storage. Storage allows for a larger installed PV capacity (indeed, all 100 houses
fully covered with PV) to increase SSR while maintaining acceptable levels of SCR, whereas
no storage requires to install small PV capacities (around 20 houses fully covered with PV)
to achieve acceptable levels of SCR, detrimental to SSR. This is simply because the battery
allows to store energy and hence to handle amounts of excess energy to meet the demand
that are directly fed-back to the grid in the no storage case. As mentioned before, covering
all 100 houses fully with PV may not be too realistic. An a = 0.5 allows for a reasonable
PV installed capacity in the storage case, around 20 houses fully covered with PV, which in-
creases to almost 100% the SCR, detrimental to SSR, that drops drastically to around 20%.

In general, Figure 27 shows that the system performance is better the larger the battery
capacity. It is observed how, for any a value, with increased battery capacity, the total
installed PV capacity increases in Figure 27d, as well the SSR and the EBI in Figures 27b
and 27c, respectively. It is interesting to see in Figure 27a how the SCR barely changes
with an increase in the battery capacity while the SSR does change in Figure 27b. This
is because the larger installed PV capacity with a larger battery capacity causes a larger
coverage of the electricity demand with PV energy (higher SSR) but also leads to more
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surplus energy, not so much as to decrease SCR, but enough to prevent it from increasing.
It is reminded that SCR represents the share of PV energy that is self-consumed. Despite
SCR remains constant with an increase in battery capacity, SSR increases with an increase
in battery capacity, reason for which EBI also increases with a battery capacity increase.
It can be observed as well that the increases in installed PV capacity, SSR and EBI are not
linear with the increase in battery capacity. The more battery capacity the less the increase
in system performance, as if there was a battery capacity threshold value from which the
system performance was not enhanced anymore. This battery capacity value seems to be
0.75 EWh/EWp. This can be attributed to a similar reason as the SSR threshold observed
in Figure 26: the battery helps for a better load-match, but there is always some electricity
demand that cannot be met by using reasonable amounts of battery capacities.

So far, the figures discussed (Figures 26 and 27) correspond to an optimization using f; =
a-SCR+b-SSR (with different weights) as the objective function . Figure 28 shows the
results when the objective function to be optimized is fo = EBI. It must be highlighted
that the X axis in this figure is no longer the a value, which is nonexistent in f5, but
the battery capacity values. If there is no storage, the combination of SCR and SSR that
lead to the highest EBI are ~60% and ~25%, respectively, leading to an EBI of almost
40%. When the battery capacity is 0.25 kWh/kWp, which is the smallest battery capacity
value considered, the solver decides to install more PV capacity, more than for any other
battery capacity value. Because of this, the lowest SCR is obtained for this battery capacity
value. This seems weird, but for this battery capacity value, the EBI value, which is the
objective function and the only metric that the solver cares about when maximizing fo,
behaves coherently with the rest of EBI values when the battery capacity is changed, which
adds coherence to the solution suggested by the solver. In general, the larger the battery
capacity, the larger EBI, but this increase is not significant: EBI is slightly below 40%
for no storage and only rises to 50% if the battery capacity is 1 k€Wh/kWp. This increase
observed in EBI is more due to an increase in SSR than in SCR, since SCR remains rather
constant (~60%) with a battery capacity increase. This was also observed in Figure 27,
when maximizing f1, and discussed in the previous paragraph.

6.3 Discussion of the distribution of orientations and tilts

The right column graphs of Figure 26 and Figure 28 show the distribution of orienta-
tion/tilts suggested by the solver for the maximization of f; = a- SCR + b -SSR and
fo = EBI, respectively. Before any further discussion about these graphs is done, it must
be observed that the solutions for @ = 1 in Figure 26 (right column graphs) are negligible.
For a = 1, the solver decides to install a very small PV capacity, close to 0, to ensure a SCR
of 100%. Since a = 1, b = 0, meaning that the solver just cares about maximizing SCR
regardless of how much electricity demand is covered by PV energy (SSR). In this scenario,
the solver finds difficulties to choose among the different orientations and tilts available for
PV installation, since any combination easily leads to a SCR of 100% (all PV energy is
self-consumed) if a very small PV capacity is installed. This does not occur for any other
a value since if a # 1 (b # 0), some weight is given to SSR and hence an optimal solution
(combination of orientations and tilts) exists. Therefore, the solutions for a =1 (b =0) in
Figures 26b, 26d, 26f, 26h and 26j can be ignored. It is still valuable to observe that the
solver decides to install very small PV capacities if a = 1, which was already mentioned in
Chapter 6.2 and adds reliability to the optimization algorithm.

In Figure 26 and Figure 28 (right column graphs) it can be observed that the solver generally
suggests the steepest tilt angle considered, 60°, and many different orientation combina-
tions. Because of the northern latitude, a steep tilt angle, such as 60°, leads to a larger
yearly PV generation and produces a more uniform PV profile throughout the year than
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lower tilt angles. The former can be observed in Figure 23 whereas the latter can be ob-
served in Figure 29b and more clearly in the work made by Awad et al. [98]. The low solar
altitudes observed in northern latitudes in Winter months are leveraged for PV generation
if a steep tilt is considered, enabling the low altitude sun rays hit the module’s surface. The
ground-reflected solar radiation, which is significant in northern latitudes during winter
months due to the continuous presence of snow on the ground, is larger for steeper tilts as
well (see Chapter 4.2). Snow coverage losses are also reduced the steeper the tilt angle, as
observed in Figure 22, which also helps increasing the PV generation.

Moreover, the more uniform PV generation throughout the year for steeper tilts is enhanced
because lower tilt angles produce more PV generation than steep tilts during Summer
months, due to the high solar altitudes and enlarged solar azimuth during these months
in northern latitudes. For steeper tilt angles and during summer months, the Sun is more
time 'behind’ the module’s surface than for lower tilt angles, reducing the PV generation.
This is observed in Figure 29b. All in all, the larger yearly PV generation due to a larger
PV production in Winter months and the more uniform PV profile throughout the year
make steep tilt angles to be preferred by the solver since the consumption load is clearly
much larger for Winter months than for Summer months, as observed in Figure 29b as well,
enhancing the load-match. All these reasons for which steep tilts are more convenient in
northern latitudes are observed and also described by Awad et al. [98].

Regarding the orientations chosen by the solver it is observed in Figure 26 (right column
graphs) that south orientation is the most prominent if @ = 0. An a = 0 means that the
solver tries to cover as much demand as possible with PV energy (maximizing SSR) regard-
less of the amount of surplus energy (represented by SCR, which is ignored if a = 0). If
a = 0 and there is no storage (Figure 26b), the south orientation is combined with east and
west, since just south leads to surplus energy that does not contribute to demand coverage.
The presence of storage (Figures 26d, 26f, 26h and 26j) allows to self-consume more of the
PV energy produced by south, which is the orientation that yields the highest PV pro-
duction (see Figure 23), contributing more effectively (with less PV capacity) to demand
coverage than east or west. This is why more and more is installed in south as the battery
capacity increases, to maximize SSR. North surfaces are totally disregarded by the solver
because it is the orientation that yields the lowest PV production. This previous analysis
was for a = 0. The following analysis is done for a > 0.

As the a value increases, and hence SCR starts having more and more weight in the op-
timization, the solver starts to reduce greatly the amount of modules placed in south ori-
entation, since it leads to too much surplus energy. West and north orientations start to
be prominent and combined with south orientation in the case of having a battery storage
(Figures 26d, 26f, 26h and 26j). If there is no storage (Figure 26b), the solver chooses not
to install in north (just a bit when a = 0.25), combining only south, east and west. Figure
29 and Figure 30 help understanding these solutions suggested by the solver. For practical
reasons, Figure 30 is only shown for a tilt angle of 60°, which is the main tilt angle chosen
by the solver, as discussed previously. Moreover, Figure 30 just shows results for no storage
and for a battery capacity of 1 kWh/kWp, instead for the five battery capacities considered
in the whole optimization problem. This is intended to help the understanding of the figures.

Figure 30 shows the evolution of SCR, SSR and EBI with PV capacity if this PV capacity
is installed solely in one orientation. It is observed how north oriented modules lead to
the highest SCR and the lowest SSR, both with and without storage. The lower SSR by
north orientation is simply because the PV production is lower, as observed in Figure 23.
However, most of this PV production is self-consumed, leading to small amounts of surplus
energy and hence higher levels of SCR. This fact is because the lower the PV production
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the more likely is that it covers some electricity demand without any excess energy, but
it is also attributed to the smoother PV production profile of north surfaces compared to
any other orientations, which can be observed in Figure 29a and Figure 29b. When the
SSR threshold levels (clearly observed in Figures 30c and 30d) are reached for high PV
output orientations, such as south, north surfaces offer the possibility to still cover the
remaining electricity demand (not covered by south PV production) with small amounts
of surplus energy, again, due to the smooth profile observed in Figure 29a and 29b. East
surfaces, although they cover electricity demand in early morning hours (unlike south), are
discarded by the solver to be combined with south orientation since it is a rather abrupt
profile as well, which leads to much surplus energy. West surfaces cover electricity de-
mand in later evening hours (unlike south) and is a much smoother profile than east, so are
chosen by the solver in many scenarios to be combined with south and north (see Figure 26).

With no battery storage (Figure 26b), the solver chooses not to install in north surfaces
probably because the SCR levels are not sufficiently high to counteract the low levels of
SSR (Figures 30a and 30c). However, having a battery storage (Figures 26d, 26f, 26h and
26j) rises the SCR and SSR levels for all orientations (Figures 30b and 30d). North surfaces
reach so high levels of SCR that the solver decides to install on this orientation, despite
the lower levels of SSR. This lack of SSR levels is covered with south-oriented modules.
West-oriented modules, which are in a middle-point between south and north in terms of
SCR and SSR, are frequently combined with south and north, as already mentioned in the
previous paragraph. It is interesting to see in Figure 30e how south and east lead to higher
levels of EBI, but only until a certain PV capacity (40-50 houses). This is because these
orientations yield a higher PV energy output which, for not too large PV capacities, is used
effectively to cover the electricity demand (high SSR) with not too much surplus energy
(high SCR). Since EBI penalises both grid exports and imports, aiming for high SCR and
high SSR levels, EBI levels are higher for these orientations until the mentioned PV capac-
ity. From this PV capacity on, the PV production from these orientations have achieved a
maximum load-match (SSR threshold), causing more and more surplus energy, while west
and north still contribute to electricity demand coverage with small surplus energy, because
of their lower PV production and also smoother PV production profile.

It is worth discussing why in Figure 26 in the case of storage (Figures 26d, 26f, 26h and 26j)
the orientations chosen by the solver are only south + north if @ = 0.25 whereas west is also
considered for higher a values. For a = 0.25 the solver decides to cover all houses with PV,
whereas from this a value on, the PV installed capacity decreases drastically to ensure high
values of SCR. If @ = 0.25 there is little or no PV capacity constraint to prevent SCR levels
from being low, hence a large PV capacity in north orientation is optimal since its smooth
PV production profile allows to cover fairly well the load consumption profile, achieving
high SSR levels while still achieving reasonable levels of SCR (according to a = 0.25). PV
production from south is still suggested to increase the SSR. But the fact that there is a
large PV capacity to ensure high SSR leads to large amounts of surplus energy (low SCR),
which is reasonable for the optimization algorithm since the weight given to SCR is just
a = 0.25. This same reasoning applies as well to the scenarios with storage in Figure 28,
when maximizing fo = EBI, where the solver does not suggest to cover all 100 houses
fully with PV, but around 60 houses, which is still a rather large PV capacity, large enough
to ensure that the low PV production by north surfaces is counteracted with a large PV
capacity (plus the contribution from the south-oriented modules). In this figure it is addi-
tionally observed how the installation in south increases as the PV capacity increases, since
the surplus energy produced by south can be handled with an increasing battery capacity
and be used to cover the electricity demand.

Back to Figure 26 in the case of storage (Figures 26d, 26f, 26h and 26j), when the a value in-
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creases from a = 0.25 on, giving more weight to SCR in the optimization, the solver decides
to decrease drastically the PV installed capacity, to around 20 houses fully covered with PV.
In this case, north and south are combined with other orientation/tilt combinations, mainly
with a tilt of 60° and a west orientation. This is because the low installed PV capacity to
ensure high levels of SCR enables to install PV on a higher PV output orientation than
north, whose energy production will be used for electricity demand coverage. This is why
for a > 0.25 (traduced into low installed PV capacities) the solver suggests west to join the
south -+ north orientation suggested if a = 0.25 (traduced into large installed PV capacities).

Finally, it is deemed very convenient to mention the work made by Freitas et al. [34], who
perform a very similar study to the one presented in this report. In an energy sharing
context, they develop a PV sizing approach that maximizes the SSR and minimizes the
‘net-load variance’, which is rather equivalent to the two objective functions considered in
this report, which maximize SSR and SCR using weights (f1), and maximize EBI (f2).
Under these optimization conditions, basically maximizing at the same time the electricity
demand coverage with PV energy and the grid stability, they find that north-west surfaces
are generously covered with PV and combined with other higher PV output orientations:
"Tt is worth noting that in both facades and rooftops the slots belonging to north-west
azimuths are fully occupied, which would be counter-intuitive if the adjustment of PV pro-
duction to the demand profile was not considered".

Their study is based in Lisbon, Portugal (38°N 9°W), which is a location at a much lower
latitude than the one considered in this report: Harstad, Norway (68°N 16°E). They argue
that the PV installation on north-west surfaces is useful because of the load-match and the
enlarged solar azimuth in Summer: "The fact that there is an increase in the electricity
consumption in the morning and in the late afternoon biases the optimal systems towards
such azimuths, so that high net load variance can be avoided and the PV produced electricity
be self-consumed. This is particularly relevant in the summer when the solar path is
enlarged and the sunshine rays can hit north facing surfaces in the blocks’ location". Indeed,
this fact is more noticeable the more northerly is the location, since the solar path is more
enlarged in Summer months the higher the latitude. However, although this is of course
a required condition for especially north surfaces to be valuable, it is not only about how
much the solar azimuth enlarges in Summer, but about the smoother PV production profiles
from north and west orientations than east and south. The higher SSR levels achieved with
the energy produced by the south surfaces for low installed capacities, combined with the
higher SCR levels achieved with the energy produced by west and north surfaces, can lead
to high levels of electricity demand coverage with PV energy (high SSR) and low surplus
energy (high SCR), enhancing the grid stability (high EBI).

6.4 Results validation

The results provided in Chapter 6.1 are subject to sources of error in two ways: first, in the
functioning of the Excel model itself, meaning the modeling equations that calculate the
inflows and outflows of energy (to/from battery, to/from load, to/from grid); second, in the
degree of accuracy of the solutions provided by the "GRG Nonlinear with multistart" when
solving the optimization problem to find the optimal PV capacities for each orientation /tilt
combination. This chapter aims to cover both aspects: Figure 31 covers the former and
Figure 32 covers the latter.

Figure 31 shows the relative difference in Egg between using the developed Excel model,
for a certain PV and battery capacities, and running SAM for the same PV and bat-
tery capacities. Egg represents the PV energy (AC energy) that is used to meet the load
consumption, either directly or through previous storage (see Equation 11). This relative
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difference is calculated for two different scenarios, meaning two different PV and battery
capacities, as described by Table 6. The first one, shown in blue color in Figure 31, cor-
responds to the optimal PV capacity solution when maximizing the objective function f;
with @ = 0.25 and a battery capacity of 1 kWh/kWp. The second one, shown in orange
color in Figure 31, corresponds to the optimal PV capacity solution when maximizing the
objective function fy and a battery capacity of 1 kWh/kWp. The optimal PV capacities
for these two scenarios are shown graphically in Figure 26j (for a = 0.25) and Figure 28b
(for 1 kWh/kWp), respectively.

Table 6: PV capacities from the Excel solver for the blue and orange scenarios shown in
Figure 31. Both scenarios have a battery capacity of 1kWh/kWp.

Blue scenario Orange scenario

60° South | 55.66 houses (4501.96 kWp) | 21.86 houses (1768.08 kWp)
60° North | 44.34 houses (3586.44 kWp) | 30.50 houses (2466.75 kWp)
20° East - 2.88 houses (123.82 kWp)

These PV /battery capacities lead in the Excel model to certain values of Esg for each
time step, which are then compared (via relative difference) to the Egg values calculated
by SAM when inputting in SAM the same PV and battery capacities. For both scenarios,
blue and orange, it is observed that the relative difference is very small for most of the 8760
hourly time-steps in the year. The mean relative difference (average value of the absolute
values of the 8760 relative differences) is only 0.10% for the blue scenario and 0.17% for the
orange scenario. These results, although they are just for two scenarios, show the rather
high reliability of the Excel model when computing the flows of energy, starting from a
certain installed PV /battery capacity and calculating the inflows/outflows of the battery,
the energy delivered to the loads and the energy imported/exported from the grid. Finally,
it must be noted that since SAM does not provide explicit values of Fgg, these have been
calculated by adding up two metrics: "Electricity to load from battery AC" and "Electricity
to load from system AC".
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Figure 31: Relative difference in Fsg between the Excel model and SAM results. Two
different scenarios are tested (see Table 4 for an overview of all scenarios).

Although the Excel model seems to be relatively reliable in terms of flows of energy, it is
still uncertain and more difficult to validate the reliability of the optimal solutions (PV
capacities) found by the "GRG Nonlinear with multistart" Excel solver, which is the one
used to obtain all results in Chapter 6.1. The Excel model has been developed progres-
sively, starting with just a few time-steps and decision variables to be able to determine at
first sight whether the optimal solutions found by the solver are reasonable or not. Several
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verification runs have been done when the model was fully completed as well.

The total PV capacity installed, SCR, SSR and EBI curves presented in Chapter 6.1 for the
different scenarios (increasing the a weight when maximizing f; or increasing the battery
capacity when maximizing f; or fo) seem to follow a fitness logic, as tried to explain when
discussing the results. Moreover, 30 different scenarios have been run to obtain all the
results presented in Chapter 6.1 (see Table 4 for an overview of all scenarios). For each of
these scenarios, the Excel solver is "reset" and run again. The "multistart" option starts
from different points (possible solutions) each time the solver is run. The fact that the
solver has been run multiple times (as a result of considering multiple scenarios), the "mul-
tistart" characteristics, and the fitness logic observed for the overall curves, add a certain
degree of reliability to the optimal solutions found by the solver.

If it is assumed that the total PV capacity installed, SCR, SSR and EBI curves are reliable,
it is likely that the the orientations/tilts suggested by the solver are reliable too. There are
some solutions suggested by the solver that are rather intuitive, such as the scenarios for
which the objective function is f; and a = 0, which means that all weight is given to cover
the demand with PV energy regardless of the excess energy. In Figure 26 (right graphs),
for @ = 0 and any battery capacity, the solver chooses to cover all houses with PV and
mostly or entirely in south with a tilt of 60°, which makes sense since it is the combination
that yields the largest PV output in kWh/m? (see Figure 23). Furthermore, again, for
a = 0 and any battery capacity, the PV installation in south with a tilt of 60° is more
dominant the larger the battery capacity, which is also rather logical since the larger the
battery storage capacity the easier becomes to self-consume the surplus energy from the
south-oriented modules. This is also observed in Figure 28b when maximizing fs.

The GRG solving method has the drawback of being easily trapped in local optimal solutions
as explained in Chapter 4.6. This issue can be considerably mitigated when using different
starting points, which Excel does by using the "multistart" option. In any case, six scenarios
have been run using the "Evolutionary" solving method, which uses a different, more reliable
but slower searching algorithm (see Chapter 4.6), to compare the results to those obtained
in Chapter 6.1, which are all result of using the "GRG Nonlinear with multistart" solving
method. The relative difference in SCR, SSR and EBI between solving these scenarios
with "GRG Nonlinear with multistart" and "Evolutionary" is shown in Figure 32. It is
observed that the optimal solutions found by Excel are similar regardless of which solving
method is selected, since the relative differences are not higher than 2.5% for any of the
six scenarios considered in Figure 32. These results show that two different optimization
solving algorithms lead to very similar results, which adds reliability to the results obtained
in Chapter 6.1.
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Figure 32: Relative difference in SCR, SSR and EBI between using the Excel solver
"GRG Nonlinear with multistart" (the one used to obtain all results in Chapter 6.1) and
the "Evolutionary" solver. Six different scenarios are tested (see Table 4 for an overview

of all scenarios).
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7 Conclusion and future work

7.1 Conclusion

In this report a PV sizing optimization model is developed in Excel, using as input PV
generation data from the software SAM and load consumption data from the software
Load Profile Generator. The Excel solver "GRG Nonlinear with multistart" is used to
find the optimal PV capacities for certain battery capacity sizes and energy goals based on
self-consumption metrics, such as the self-consumption rate (SCR), the self-sufficiency rate
(SSR) and the energy balance index (EBI). The model is applied to an upcoming residential
PV EC formed by 100 households in Harstad, Norway. The model developed is validated
in terms of inflows and outflows of energy (to/from battery, to/from load, to/from grid)
by comparing the model results with results from SAM, for arbitrary installed PV /battery
capacities in the specific location. The optimal PV capacities solutions provided by the
"GRG Nonlinear with multistart" Excel solver are validated by solving the optimization
problem with another Excel solver, the "Evolutionary" solver, which uses a totally different
solving algorithm than "GRG Nonlinear".

The following conclusions can be taken from this work:

e Optimal EC PV sizing must consider all possible surfaces with different orientations
and tilts. Due to the specific Nordic location, a steep tilt of 60° (among 0°, 20°,
40° and 60°) is preferred because it leads to a larger and more uniform PV produc-
tion throughout the year, larger than lower tilts in Winter and lower than lower tilts
in Summer, which matches better the load consumption profile. All different orien-
tations considered in the optimization problem (E,W,SN) are used for optimal PV
installation.

e South, west and east surfaces are frequently combined if there is no storage, whereas
north surfaces start to be used if there is battery storage, and combined with south
and west surfaces. A north orientation leads to much less PV generation but with a
much smoother profile, especially than south and east, but also than west. High levels
of electricity demand coverage (high SSR) are achieved with low PV capacities on high
PV output orientations, such as south, but when a considerably high load-match has
been achieved for the PV energy produced from these high PV output orientations,
it is reasonable to cover the remaining electricity demand with PV energy from north
and west orientations, causing small amounts of surplus energy (high SCR).

e Around 15-20 (out of the 100 forming the whole EC) houses with their roof fully
covered with PV seems to be optimal if the goal is to find an optimal balance be-
tween SCR and SSR. This PV capacity, with its respective optimal orientation/tilt
distribution, leads to an electricity demand coverage with PV energy (SSR) of around
15-20% and a self-consumption of the PV energy (SCR) close to 100%. If the goal is
to maximize the grid stability (EBI), around 40-60 houses with their roof fully covered
with PV seems to be optimal. This PV capacity, with its respective optimal orien-
tation/tilt distribution, leads to an EBI of around 40-50%. Here, the exact numbers
depend on the battery capacity and energy goals.

e Having a non-smart battery storage (charges whenever there is excess of PV energy
and discharges whenever there is lack of PV energy) rises the SSR and EBI levels
while keeping at similar levels the SCR. However, the increase in SSR and EBI is not
too large and it seems to reach a threshold for a battery capacity of 0.75 kW h/EW p.
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7.2 Future work

The work done in this report can be improved and extended in many different ways, such
as:

e Considering higher time resolution data than hourly would give more accurate results.
Jiménez-Castillo et al. [85] state: "In a household there may be high power fluctuations
which may last from a few seconds to a few minutes. If averaged, these fluctuations
may be flattened or they may even disappear if the recording interval is considerably
larger. However, it must be highlighted that the load consumption provided from
smart meters by most electricity distribution companies is generally between 15 min
and 1 h and it depends on the type of customers". Cao and Sirén [99] state: "When
using the coarser resolution, the averaging effect on both the generation and the
demand will cause the matching capability to be overestimated".

e Instead of generating load profiles, considering real load profiles would add reliability
to the results. Awad and Giil [64] state: "One of the primary challenges for design-
ing the solar PV system for future communities which are not built yet is that the
consumption data is not yet available". Fina et al. [59] state: "Although PV could in
principle be installed according to a larger plan that ensures that the resulting solar
electricity generation matches the demand profile of the PV host buildings, this is
a challenging task to realize because the consumer behavior cannot be trivially in-
ferred. Actual household consumption profiles are complex, featuring high variability
and many spikes, which are difficult to grasp and model in a fully reliable way".

e The battery model developed could be improved by considering for instance a de-
pendency between the battery operating voltage and the state of charge, leading to
storage losses that have been disregarded.

e Different smart operating management systems could be included in the battery
model, such as a load shifting strategy or one that maximizes self-sufficiency. The
battery was assumed to be non-smart. Huang et al. [60] state: "The effect of storage
is strongly influenced by its sizing and operating strategy".

e A PV inverter model could be developed as well to consider any thermal or clipping
losses for instance. The inverter has just been considered by using a constant operating
efficiency.

e The metric used to measure the grid stability, Energy Balance Index (EBI), defined by
Hutty et al. [19], could be enhanced by penalising more strictly the grid import/export
peaks. Freitas et al. [34] use, for instance, the root-mean-square deviation (RMSD)
of the 'net-load variance’ metric. The EBI metric was chosen mainly because it is a
percentage metric.

e Discrete numbers have been considered to create the different scenarios; for instance,
5 values for the a value (and hence same for the b value), 5 battery capacity values,
4 different tilt angles, 4 different orientation angles, etc. Considering more values for
each parameter or a range of values would give more accurate results.

e Using an alternate and more powerful optimization software than Excel [86] might
also be convenient, especially if the problem is extended with sub-hourly time-steps
or separate multi-objective functions.

It would be interesting and deemed as necessary to include economic metrics in the opti-
mization algorithm. This has not been done due to a lack of time to find realistic economic
data, as well as to perform a deep sensitivity analysis to cover different possible future
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economic scenarios. Henni et al. [20] state: "It is important to carefully choose the regula-
tory framework when investigating the potential benefits of a sharing economy model". PV
systems lifetimes are usually 25-30 years. Finding or making electricity prices predictions,
including feed-in tariffs to give economic value to surplus PV energy, for this much time is
challenging, as well as estimating other important economic parameters, such as the infla-
tion rate or the discount rate [13]. However, this study should be done to give an economic
perspective to complement the energy-related results found in this report.

The PV sizing optimization model developed has been specifically applied to an upcoming

EC in Harstad, Norway, but can be understood as a generic tool to optimize the PV sizing
in different locations and using different optimization objective functions and constraints.
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Appendix

Appendix

Figure 33: The blue color represents the atmosphere while the brown color represents the
Earth’s surface. In this figure 6 = 6, since the light hits an horizontal plane. The air mass
(AM) represents the proportion of atmosphere that the light must pass through before
striking the Earth relative to its overhead path length, so AM =Y /X = 1/cos(6,). Since
0,4+ as=90°, AM =Y/X = 1/sin(as) [100].

(a) (b)
0.06 7 0.04
—*—60"S Al —%—80"S
—8—60°E Ja 0.035 L\ —E8—80°E | | o5p
0.05F |—6—60°W A 600 . \ —6—60°W
- —F—60'N [ - = \ —F—80°N =
& Load R / Bl £ 003 Load =
k=] A o g \ 2
o= \ nc \ =
< 004 7\ LN ) £
= \ — S ‘goo0xs 1450 2
= s = ) =
= g £ \ / =
£ 008 / \ J;E; = o002 / 400 £
\ <
g e \ z 2 \ / £
2 / \ - § goois \ / ss0 2
S 0.02 / \ s 5 \ g
I \ A B
z . A\ 5 > 001 \ 300 §
{ \ o N y, g
0.01 \1200 )
\ 0.005 N\ / 250
™~ /
~
»*  —
oW=¥ %00 0 N 00
0 5 10 15 20 2 3 4 5 B 7 8 9 10 11 12

Hours in the day (h) Months in the year (1-12)

Figure 34: Daily (left graph) and monthly (right graph) averaged PV generation profiles
(blue curves) and EC aggregated load consumption profile (red curve) for a tilt of 60° and
the four different orientations considered (S,E,W and N). Nomenclature: for instance,
"60° S" means a tilt of 60° and a south orientation.
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