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SUMMARY: 

The construction industry significantly contributes to global greenhouse gas emissions and environmental degradation 

through its current practices. The predominant approach of producing, using, and disposing of construction materials 

leads to high operational energy consumption and CO2 emissions. The extraction and processing of raw materials further 

contribute to these emissions. With the projected growth in construction output, there is an urgent need to find solutions 

that reduce the production of new materials and minimise greenhouse gas emissions.  

 

Reusing components in new constructions reduces the demand for new materials, conserves resources, and minimises 

the environmental impact associated with material extraction and production. However, the reuse of structural elements 

in construction projects faces challenges due to the lack of comprehensive inventories of available reusable materials 

and the inconvenient process of acquiring associated data. To address these challenges, this master's thesis proposes a 

method that utilises IFC files from existing buildings to extract information for a material database. These materials are 

then placed in a database and evaluated based on predefined requirements to identify suitable replacements for 

integration into new structures. This is achieved by the use of Grasshopper. Additionally, a thorough structural analysis 

is performed directly from the IFC model to ensure the structural integrity of constructions using reused materials. This 

method integrates the structural analysis seamlessly into the same software used for matching elements through the use 

of Grasshopper. This facilitates efficient decision-making throughout the design process and encourages a more 

sustainable construction practice. Reusing components in new constructions reduces the demand for new materials, 

conserves resources, and minimises the environmental impact associated with material extraction and production. 

 

Two comprehensive case studies have been conducted to assess and evaluate the functionality, strengths, and 

weaknesses of the proposed method. The findings from the case studies confirmed that the method presented in this 

master's thesis has significant potential for the efficient reuse of structural elements. A successful material data 

extraction was performed based on IFC files, laying the foundation for a comprehensive database of reusable elements. 

An effective mapping process between elements was conducted with the objective to create a predefined structure with 

the use of reused materials while reducing the cut waste. In Case Study 1 and Case Study 2, the predefined structure 

successfully fulfilled the demand for approximately 90% and 70% of elements, respectively, given a specific inventory 

of reusable materials. The case studies proved a reduction of two and seven times the GWP and an increase of cost of 

13% and 33%. Through a structural verification conducted using an implemented FEM analysis, it is evident that the 

utilisation of reused elements in the predefined structures is justified in terms of maintaining structural integrity. 
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Sammendrag

Bygg- og anleggsindustrien bidrar betydelig til globale klimagassutslipp og miljøforringelse gjennom sine
nåværende praksiser. Den dominerende bruk-og-kast tilnærmingen til byggematerialer fører til et høyt ener-
giforbruk og høye utslipp. Med en ventet vekst i byggeproduksjon og derav økt press på materialutvinning-
og produksjon, er det er stort behov for å finne mer bærekraftige løsninger som kan lette trykket på en stadig
økende material etterspørsel.

Gjenbruk av byggematerialer i nye konstruksjoner kan bidra til å redusere presset på utvinning og produks-
jon av nye materialer. Likevel, blir gjenbruk svært litt gjennomført i praksis i byggebransjen. Dette skyldes
blant annet mangelen på tilstrekkelig god nok kartlegging av eksisterende bygg. Denne masteroppgaven
foreslår en metode som bruker IFC filer fra eksisterende bygninger for å hente ut informasjon om tilgjen-
gelige gjenbrukbare byggematerialer. Informasjonen om materialene blir plassert i en database som videre
brukes for å evaluere en implementering av elementet i et planlagt prosjekt. Videre blir en grundig struk-
turell analyse utført av konstruksjonen som blir konstruert av gjenbrukbare elementer for å sikre strukturell
integritet. Metoden er basert på en kombinasjon av Python og Grasshopper kode, hvor sistenevne muliggjør
visuell fremstilling av resultatene, samt strukturell analyse, på samme plattform. Delmetodene innlemmes
i samme programvare, og øker dermed effektiviteten gjennom hele designprosessen. Dette kan bidra til å
legge til rette for en mer bærekraftig byggepraksis.

To omfattende case-studier er gjennomført for å vurdere funksjonaliteten, styrkene og svakhetene til den
foreslåtte metoden. Resultatene fra case-studiene bekrefter at den presenterte metoden har betydelig po-
tensial for å fremme effektiv gjenbruk av bygningsmaterialer. En vellykket uthenting av strukturelle ele-
menter ble utført basert på IFC-filer, og dannet grunnlaget for en omfattende database med gjenbrukbare
elementer. En effektiv kartleggingsprosess av elementer ble gjennomført med mål om å finne strukturelt
tilfredsstillende kvaliteter for gjenbruk i en forhåndsdefinert struktur. I Case Study 1 og Case Study 2 fikk
den forhåndsdefinerte strukturen dekke behovet for omtrent 90% og 70% av elementene, henholdsvis, gitt
en spesifikk database av tilgjengelige og gjenbrukbare elementer. Case-studiene viste en reduksjon på to og
syv ganger GWP (Global Warming Potential) og kostnadsøkning på 13% og 33%. En strukturell verifisering
ble gjennomført i en FEM analyse, som viste at bruken av de gjenbrukte materialene i den forhåndsdefinerte
strukturen var berettiget.
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Abstract

The construction industry significantly contributes to global greenhouse gas emissions and environmental
degradation through its current practices. The predominant approach of producing, using, and disposing of
construction materials leads to high operational energy consumption and CO2 emissions. The extraction and
processing of raw materials further contribute to these emissions. With the projected growth in construction
output, there is an urgent need to find solutions that reduce the production of new materials and minimise
greenhouse gas emissions.

Reusing components in new constructions reduces the demand for new materials, conserves resources, and
minimises the environmental impact associated with material extraction and production. However, the reuse
of structural elements in construction projects faces challenges due to the lack of comprehensive inventories
of available reusable materials and the inconvenient process of acquiring associated data. To address these
challenges, this master’s thesis proposes a method that utilises IFC files from existing buildings to extract
information for a material database. These materials are then placed in a database and evaluated based
on predefined requirements to identify suitable replacements for integration into new structures. This is
achieved by the use of Grasshopper. Additionally, a thorough structural analysis is performed directly
from the IFC model to ensure the structural integrity of constructions using reused materials. This method
integrates the structural analysis seamlessly into the same software used for matching elements through the
use of Grasshopper. This facilitates efficient decision-making throughout the design process and encourages
a more sustainable construction practice. Reusing components in new constructions reduces the demand
for new materials, conserves resources, and minimises the environmental impact associated with material
extraction and production.

Two comprehensive case studies have been conducted to assess and evaluate the functionality, strengths, and
weaknesses of the proposed method. The findings from the case studies confirmed that the method presented
in this master’s thesis has significant potential for the efficient reuse of structural elements. A successful
material data extraction was performed based on IFC files, laying the foundation for a comprehensive
database of reusable elements. An effective mapping process between elements was conducted with the
objective to create a predefined structure with the use of reused materials while reducing the cut waste. In
Case Study 1 and Case Study 2, the predefined structure successfully fulfilled the demand for approximately
90% and 70% of elements, respectively, given a specific inventory of reusable materials. The case studies
proved a reduction of two and seven times the GWP and an increase of cost by 13% and 33%. Through
a structural verification conducted using an implemented FEM analysis, it is evident that the utilisation of
reused elements in the predefined structures is justified in terms of maintaining structural integrity.
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1 Introduction

The "2022 Global Status Report for Buildings and Construction" by the United Nations Environmental Pro-
gram, highlights that approximately 37% of global operational energy and process-related CO2 emissions
can be attributed to the building and construction industry [38]. This significant environmental impact is
partly driven by load-bearing systems, encompassing various stages such as material extraction, production,
construction, and demolition [11]. Currently, structural elements in buildings are predominantly designed
for single-use purposes, leading to a substantial amount of waste generation at the end of their life cycle.
Only a small fraction of materials are recycled, thereby intensifying emissions and aggravating the strain
on material demand. Given the projected growth in construction output in the years to come, it has become
critical to promote the efficient utilisation of materials and promote a transition towards a circular economy.

It is evident that there is great potential within the construction industry to develop practical methods that
can retrieve, test and implement reused materials. There is a need for a comprehensive tool that integrates
all aspects of the design process, making it more time- and cost-effective. To optimise the processes in-
volved in reuse projects, the existence of comprehensive material databases is fundamental. Such databases
would ideally encompass all available structural elements that may be reused, providing valuable informa-
tion regarding their location and properties. This would facilitate the process of finding suitable structural
elements for incorporation into new structures.

The process of efficiently mapping available supply materials and determining their placement in new con-
struction can be accomplished through the utilisation of digital tools. By employing Computer-Aided
Design (CAD) software in combination with an Industry Foundation Class (IFC) file, the entire work-
flow of mapping supply materials and identifying suitable locations for their installation can be effectively
optimised. As an IFC represents a digital twin of a building, the file format includes extensive inform-
ation regarding the structural elements. Information within such a model can be extracted and lay the
groundwork for a comprehensive database representing available supply materials. The utilisation of CAD
software, such as Grasshopper, allows for further mapping and analysis of a reuse structure.

The aim of this master’s thesis is to introduce a method that encourages the reuse of materials in new
structures. The method involves evaluating these materials and identifying suitable matches for integration
into new constructions based on their specific requirements. Subsequently, a comprehensive structural
analysis is conducted to validate the structural integrity of the new construction. The primary objective of
this thesis is to facilitate more efficient retrieval and incorporation of reusable materials into new buildings,
driven by the motivation to mitigate environmental impact.
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2 Background

2.1 Circular Construction: Reuse of Structural Elements

The term circular construction, deriving from the concept of circular economy, refers to the strategy of re-
ducing the overall climate and environmental impacts by closing the building material loop [20]. This can
be obtained by implementing more sustainable practices in the construction sector such as using recycled
materials, components or whole building parts, rather than continuing the linear practice of "take-make-
consume-dispose" [37]. To achieve circular construction it is essential to consider how to maximise the
lifespan of materials and constructions at the very beginning of the design process. An example of such
a practice is Design for Disassembly (DfD). The objective of the design concept is to incorporate decon-
struction principles into the initial design of buildings, increasing the potential for recovering materials and
structural components when the construction reaches its end of life (EoL) [22]. Nevertheless, due to the
industry’s frequent construction and demolition activities, it becomes imperative to explore the potential
for maximising the reuse of building elements. Design for Reuse (DfR), involves integrating reclaimed
components into the design of new structures. This approach may include activities such as dismantling,
cleaning, testing, storing, and re-fabricating building components to prepare them for reuse [22].

Reuse and recycling are two important strategies in the construction industry for reducing waste, conserving
resources, and promoting sustainability. While both approaches contribute to minimising environmental
impact, there are distinct differences between reuse and recycling in terms of their processes and outcomes.
Reuse, in the given context, is defined as the reuse of an element without transformation [2]. This involves
extending the lifespan of building materials, components, or entire structures by giving them a new purpose
or function. It focuses on preserving the existing value of materials and preventing them from becoming
waste. Reuse can take various forms, such as salvaging and re-purposing materials from demolition sites,
utilising reclaimed or refurbished building components, or adapting existing structures for new uses [10].
Recycling, on the other hand, is based on breaking down materials into their raw components and creating
new products or materials. This can result in a gradual deterioration of their qualities, making them less
predictable and potentially compromising their safety when utilised in structures [3]. In contrast to reuse,
recycling generally entails a more resource-intensive process, making it a less sustainable option in many
cases.

Figure 2.1: Simplified illustration of the reuse cycle of structural elements.
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2.1.1 LCA

Life cycle assessment, LCA, is a methodology to quantify environmental impacts associated with all the
life stages of a product. An LCA encompasses a thorough evaluation of the energy and materials needed
throughout the entire value chain of a product, including its associated processes and services. By quanti-
fying all relevant emissions to the environment, this assessment enables informed and strategic sustainable
decision-making during the construction design process [32].

GWP, Global Warming Potential, is a widely used metric in the life cycle of a product, employed to compare
the warming potential of different greenhouse gases (GHG) in terms of equivalent CO2 emissions [36].
Hence, GWP functions as both an environmental impact indicator and a valuable tool for assessing the
efficacy of emission reduction measures, as well as guiding policy decisions pertaining to greenhouse gas
mitigation.

Two key life cycles that can be implemented in an LCA are the cradle-to-grave and cradle-to-cradle life
cycles. A cradle-to-grave assessment consists of mainly five stages: Extraction of raw materials (cradle),
transportation, manufacturing, use and disposal (grave) [16]. This correlates to a linear construction. A
cradle-to-cradle assessment considers the impact of the life of a product by replacing the disposal stage
with a recycling process, therefore representing a circular construction. The ultimate goal is no waste at the
end of the life cycle. This results in a reduction in the footprint of the product. An illustration cradle-to-
grace and cradle-to-cradle life cycle of a product are shown in Figure 2.2.

Figure 2.2: Life cycle of a product.

pre-defined

2.2 Reference Project: KA13

Kristian August Street 13 (KA13) is a pilot reuse building project located in the center of Oslo, Norway.
The office building was bought by Entra in 2016, who initiated the project in 2018. The goal of the reuse
project was to rehabilitate the existing property mass and use as many reused materials as possible for the
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extension of the building. The building was completed in 2021 and has a reuse rate of close to 80%, and
with this is called "Norway’s most ambitions reuse construction project". The collected materials for reuse
originated from over 25 different buildings. The data and details in this section are based on the experience
rapport, "Erfaringsrapport ombruk: Kristian Augusts gate 13", provided by Entra ASA [15].

57 ton steel elements were collected for the project whereas 45 ton were actually used. The total steel used
in the project was 64 ton, where 45 ton were reused elements. The collection of steel elements was sorted
based on origin and properties and placed into test groups. Each element was tested with a UCI Hardness
Tester to verify homogeneity in the batches. The chemical composition of the elements was also examined
by the use of Optical Emission Spectrometry. One element from each test group underwent destructive
tensile strength and impact resistance testing.

The cost of the reused steel in the project was approximately 100 NOK/kg. This cost includes the search for
the materials, purchase, dismantling, scanning and testing, storage, transport and assembly. The price for
new steel at the time of the project was set to 67 NOK/kg, making the reused steel 49 % more expensive.
The cost associated with project management and structural consulting was not included. It is estimated
that these processes took twice as long as if new elements of optional profiles and dimensions could be
used.

It is estimated that the emission saving in the project was around 110 ton CO2 equivalents, by using reused
steel elements rather than new ones. This corresponds to a total emission saving of 97 %. The processes
associated with the highest contribution of the emissions are associated with the cutting and sandblasting of
elements.

The reuse project posed challenges related to the extraction of structural elements, referred to as a "treasure
hunt", encompassing various aspects such as their origin, transportation, storage, testing, and documenta-
tion. The design phase was significantly delayed due to these challenges, as the process of gathering these
materials proved to be more time-consuming. This, in turn, posed challenges in maintaining financial con-
trol, as the costs associated with procurement, logistics, documentation, processing, and assembly became
unpredictable.

In comparison to the use of raw elements, the processes related to reused elements lead to a substantially
greater investment of time. This also led to challenges in keeping control financially, as the price of pro-
curement, logistics, documentation, processing and assembly was unpredictable.

Studying a project that has already been executed, such as the KA13 project, provides numerous advantages
in the context of exploring the reuse of structural elements. Gaining insights from the construction industry,
evaluating success, identifying areas for improvement, benchmarking opportunities, and validating research
contribute to a more comprehensive understanding of the challenges, outcomes, and best practices associ-
ated with incorporating reused materials in construction projects.

The pilot project intensified the initiative to enhance the documentation of existing structural elements for
the purpose of reuse in future projects. It is evident that this development will make the reuse of elements
more efficient and cost-saving in the years to come. The versatility of building materials will undoubtedly
represent a significant milestone in the journey towards a sustainable and circular economy.
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3 Theory

3.1 Computer Aided Design (CAD)

Computer-Aided Design (CAD), refers to the utilisation of computer-based software to assist in various
design processes. CAD software empowers designers and engineers to create precise and detailed 2D
drawings and realistic 3D models of their envisioned products. With its intuitive interface and powerful
tools, CAD software enables professionals to efficiently explore, modify, and optimise designs, fostering
innovation and enhancing productivity in various industries.

3.2 Building Information Modeling (BIM)

BIM is a digital representation of the physical and functional attributes of a structure. It serves as a collab-
orative information repository that provides reliable data throughout the entire lifespan of a facility, starting
from its initial conception until its eventual demolition.

3.3 Industry Foundation Classes (IFC)

Industry Foundation Classes (IFC) is an open international standard (ISO 16739-1:2018) managed by the
nonprofit and neutral organisation buildingSMART [6]. The schema is a standardised, digital description of
the built asset used in BIM for the exchange of digital building data between software programs. The IFC
schema describes the physical components of a building, mechanical and electrical systems, and manufac-
tured products. In addition, the schema can describe abstract structural analysis models, energy analysis
models, cost breakdowns, work schedules and more [6]. With this versatility, IFC provides a comprehensive
and efficient solution for managing building information and supporting collaborative workflows across the
entire construction process.

3.3.1 IFC formats

The data from an IFC schema can be encoded in various formats, such as STEP, XML and JSON, each
having trade-offs of software support, scalability, and readability. STEP Physical Format (IFC-SPF) has the
extension “.ifc” and is the most widely used format for IFC. IFC-SPF is based on ISO 10303-21, a standard
for clear text representation of EXPRESS language. The standard allows the product data described in
EXPRESS to be transferred between computer systems [4].

3.3.2 IFC Specifications

Currently, the most commonly supported versions of Industry Foundation Classes are IFC2X3 (ISO stand-
ard since 2005) and IFC4 (ISO standard since 2013). The latest ISO improved standard is IFC4.0.2.1, and
was approved in 2018. A full overview of the IFC specifications can be found on buildingSMART‘s website
[5].

Further, in this thesis, the IFC Specification being referenced is the Industry Foundation Classes 4.0.2.1
Version 4.0-Addendum 2- Technical Corrigendum 1 [7].
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3.3.3 IFC entity hierarchy

In the IFC schema, the building model information is organised into a collection of entities, a class of
information defined by common attributes and constraints within the building and has the prefix "Ifc" in
front of it. The entities in the IFC schema are organised into a hierarchy. This structural system defines a
set of parent-child relationships, where each child entity inherits properties and attributes from its parent
entity. The IFC hierarchy is based on the concept of generalisation and specialisation, where more specific
entities are derived from more general ones.

The IFC hierarchy is designed to provide a structured and organized way of representing building informa-
tion within an IFC schema. By defining relationships between entities in such a way, it becomes possible to
create complex building models with a high degree of accuracy and detail. This also enables interoperabil-
ity between different software platforms and applications, allowing building information to be shared and
exchanged across different stakeholders in the construction and building management industries.

IfcBeam entity

An IfcBeam is defined as a horizontal, or nearly horizontal structural member able to withstand load primar-
ily by resisting bending. It is not required for such a member to be load-bearing. An illustration of the
IfcBeam entity inheritance is shown in Figure 3.1.

Figure 3.1: IfcBeam entity inheritance.

IfcColumn entity

An IfcColumn is defined as a vertical, or nearly vertical, structural member often aligned with a structural
grid intersection The structural member transmits the weight of the structure above to other structural ele-
ments below through compression. It is not required for the IfcColumn to be load-bearing. An illustration
of the IfcColumn entity inheritance is shown in Figure 3.2.

Figure 3.2: IfcColumn entity inheritance.
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IfcSlab entity

An IfcSlab is defined as a structural component in a building that normally encloses a space vertically. The
IfcSlab may serve as a floor, lower support, or as the ceiling, upper support, in the core of the construction.
The flooring and roofing in the upper finish and the ceiling and suspended ceiling in the lower finish are
considered to be coverings and not slabs. An illustration of the IfcSlab entity inheritance is shown in
Figure 3.3.

Figure 3.3: IfcSlab entity inheritance.

3.3.4 IFC attributes

Each IFC entity has a set of IFC attributes describing the entities characteristics and served as the entities
main identifiers. The number of attributes for an entity is specified in the IFC Specification. Amongst others,
they may be the GlobalId, which is required, the OwnerHistory, Name and Description. The attributes are
consistent throughout the data exchange and cannot be edited by the end user.

The GlobalId, also referred to as a Globally Unique Identifier (GUID), ensures that all instances of an object
in an IFC file can be uniquely identified. The data type is an auto-generated 128-bit number [8]. The GUID
assigned to each object remains constant throughout the lifespan, ensuring consistency across the entire
software world. The GUID attribute can therefore be used for various purposes such as tracking changes,
identifying linked objects, and referencing objects.

3.3.5 IFC properties

The IfcPropertySet is a container including properties within a property tree. Properties that are related
may be grouped into the same property set, Pset for short, and can be assigned to an IFC entity. If the
property set is defined in the IFC Specification, it has the prefix "Pset_". Within the property set, there
may be several properties that describe the entity further. An example of this is "Pset_BeamCommon"
which is a common property set of all IfcBeam occurrences. Within this property set there is the property
"LoadBearing" indicating if the object is intended to carry loads. This property name is consistent in all
IFC files.

3.3.6 IFC quantities

IFC quantity is information that can be quantified, such as length, area, volume, weight or time. Similarly to
the IFC properties, the quantities have a name and value and are grouped into quantity sets. If the quantity
set is defined in the IFC Specification, it has the prefix "Qtos_", short for Quantity Take-Off. An example
of this is the quantity set "Qto_BeamBaseQuantities". This provides the base quantities common for all
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the IfcBeam occurrences. Quantities within this set are length, cross section area, outer surface area, gross
surface area, net surface area, gross volume, net volume, gross weight and net weight.

3.3.7 Relationships

The IfcRelationship is an abstract and standardised representation of all objectified relationships within the
IFC format. This approach involves storing relationship-specific properties directly within the relationship
entity itself. Relationships play a crucial role in capturing the connections, dependencies, and associations
between different elements and components within the IFC model. The IfcRelationship entity inheritance
is illustrated in Figure 3.4.

Figure 3.4: IfcRelationship entity inheritance.

IfcRelAssociates

The IfcRelAssociates relationship represents an association relationship within the IFC schema. It is used to
establish connections between objects and external sources of information, such as classifications, libraries,
or documents. IfcRelAssociates does not imply any dependency between the associated objects. A sub-type
of the IfcRelAssociates is the IfcRelAssociatesMaterial.

3.3.8 IfcSpatialStructureElement

A spatial structure is used in the IFC schema in order to organise a building project. IFC uses a spatial
hierarchy in order to organise and position its physical entities within the project. The structure breaks
down the project into smaller parts based on location: many parts make up the whole. As defined in the IFC
Specification, a spatial structure element, IfcSpatialStructureElement, are the elements that make up the
spatial structure. IfcRelContainedInSpatialStructure is used in the structure in order to assign an element,
such as IfcBeam or IfcColumn, to a certain level of the spatial structure. An element can only be contained
within one spatial structure element and exactly which level it should be assigned to might vary depending
on the project and region.

There are four spatial structure elements to which an element can be assigned to: to a site as IfcSite, to a
building as IfcBuilding, to a storey as IfcBuildingStorey and to a space as IfcSpace. The highest level of
the spatial structure is IfcProject. All spatial structure elements have to be associated with either another
spatial structure element or the IfcProject by using the IfcRelAggregates. IfcRelAggregates is a 1-to-many
relationship used to create a connection between the different levels of the spatial elements applied to sub-
types of physical objects. The aggregation relationship has the attributes "RelatingObject", representing the
whole within the whole/part relationship, and "RelatedObject", representing the parts within the whole/parts
relationship.
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3.3.9 Location

The location of a project site can be found by using the IfcSite entity. A site is defined in the IFC Specific-
ation as an area of land where the construction is to be/has been completed. The entity may include the
definition for a single geographic reference point for the site.

The IfcSite entity contains the attributes listed in Listing 1.

#IfcSite= [id, type , GlobalId , OwnerHistory , Name , Desciption , ObjectType ,
ObjectPlacement , Representation , LongName , CompositionType , RefLatitude ,
RefLongitude , RefElevation , LandTitleNumber , SiteAddress]

Listing 1: The IfcSite attributes.

The attributes "RefLatitude" and "RefLongitude" of IfcSite return the compound measure IfcCompound-
PlaneAngleMeasure. This provides the plane angle in degrees (D), minutes (M), seconds (S) and millionth-
seconds (MS) of arc. The global positioning can be found by using WGS84 (World Geodetic System 1984)
with longitude and latitude coordinates. An illustration of the procedure of finding the coordinates of an
IfcSite is given in Figure 3.5. These coordinates found in the WGS84 represent the point (0,0,0) for the
local placement of the IfcSite. The longitude and latitude values can be converted from a degree-minute-
second-microsecond format to decimal degrees (DD) by converting the minutes, seconds and microseconds
to degrees as shown in Equation (3.1).

DD = D+
M
60

+
S

3600
+

MS
3600×1000000

(3.1)

Figure 3.5: Procedure of finding the longitude and latitude coordinates of IfcSite.

IfcPostalAddress is defined as an address for delivery of paper-based mail and other postal deliveries" and
has the attributes as given in Listing 2.

#IfcPostalAddress= [id , type , Purpose , Description , UserDefinedPurpose ,
InternalLocation , AddressLocation , PostalBox , Town , Region , PostalCode , Country
]

Listing 2: The IfcPostalAddress attributes.
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3.3.10 Exporting as IFC

There are several IFC-certified software that can be used for the exportation of an IFC file, thereof Autodesk
Revit, Tekla Structures and ARCHICAD, Allplan and MagiCAD [23]. Different software applications may
structure and organise the exported IFC file in slightly different ways. These differences can impact how
the IFC file is interpreted and utilised by other software or systems.

In the IFC model, an IFC entity refers to a uniquely defined object. The allocation of specific default
attributes and dependencies within the IFC is determined by the assignment of the entity and type definition.
Depending on these factors, the entity is equipped with predefined characteristics that establish its properties
and relationships within the broader context of the IFC model [1]. Choosing the correct entities during the
creation of an IFC file is therefore crucial when exporting the file. For example, if a beam is not assigned to
the IfcBeam entity, the attributes required to describe the element clearly are not assigned. This may cause
an incorrect interpretation of the element.

When creating an IFC file, numerous decisions must be made by the creator. Amongst others, this includes
the assignment of property sets. The creator needs to decide whether to activate the exportation of IFC
common property sets to ensure that the default properties defined in the IFC Specification are included in
the exported file. Additionally, the exportation of base quantities also requires a decision from the creator.
It is important to note that the IFC exporter exclusively transfers valid property and quantity values. In
addition, the creator has the opportunity to define the level of detail within the file, which significantly
affects both the file size and its interpretation. The level of detail for geometrical elements may therefore
vary between different files.

3.4 Structural Optimisation

Optimisation refers to acquiring the best outcome under specific conditions [35]. In the field of civil engin-
eering, structural optimisation has become a central tool for the development of sustainable and efficient
designs. When dealing with structural optimisation, generally the aim is to find an optimal layout of struc-
tural components under prescribed conditions [29]. What is defined as the optimal layout is dependent
on the desired objectives. The process, therefore, involves handling trade-offs between competing object-
ives, such as strength, weight, cost and safety. In structural optimisation with raw materials, the structural
elements may be fabricated according to the optimal design. However, when dealing with structural optim-
isation using reused materials, a limited number of elements are available, each with predefined dimensional
and mechanical properties. The optimal design of such a structure, therefore, includes an additional con-
straint. An alternative formulation of the optimisation problem in the context of reusing structural elements
involves optimising the use of the available stock elements to meet the requirements of a predefined struc-
ture. The optimisation objective may entail minimising the amount of cut waste, i.e., unused material from
the stock, or maximising the coverage of demand elements by utilising the available stock elements.

3.4.1 Form-fitting strategy

The process of form-fitting can be defined as finding good "fits" between a finite inventory of available
structural elements and a desired structural form [9]. The report categorises the process into three main
methods: "growth", "attraction" and "fitting". Applying the "growth" method acquires adding elements to
one another sequentially to achieve a geometric fit. The "Attraction" method is based on adding elements
onto a target geometry and then attracting or pulling them together to achieve a geometric fit. The "Fitting"
method is based on replacing elements in a predefined structural geometry with elements from an available
inventory meeting the requirements of the predefined structure [9]. The latter is the approach that will be
used in this master thesis.
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3.4.2 Bin Packing Problem

The Bin Packing Problem (BPP) is a combinatorial optimisation method used in form-fitting. Given a stock
of bins with capacity C and n items with size 0 < si <C, where i=1, ...,n, the BPP attempts to pack all items
in a minimum amount of bins, so that the total size fit in the bins does not exceed the capacity. In terms of
computational complexity, the problem is NP-hard [14].

There has been developed different algorithms for bin packing, whereof First-fit (FF) and Best-fit (BF) are
two basic heuristics [9]. In FF the items are considered one by one and placed into the first bin they can
fit. In BF the items are placed into the bin which results in the lowest remaining capacity in that bin. The
quality, in terms of unused bin capacity, of both these solutions can be improved by pre-sorting the list of
items that are considered. This can be done by sorting the elements in descending order by size and is called
First-Fit Decreasing (FFD) or Best-Fit Decreasing (BFD). As the BP problems are NP-hard, the heuristic
algorithms are a good fit to execute this operation and achieve quality results. [26].

Figure 3.6: The First-Fit Decreasing Bin Packing Problem.

Bin packing problem in structural reuse of elements

A generalisation of the Bin Packing Problem can serve as a useful tool when studying the feasibility of
reusing a stock of structural elements in a predefined structure. The stock of available structural elements
are the items and the elements in the predefined structure are the bins. The constraints of the bins need to
be defined, and may, amongst others, include the length, weight, material or cross-section. If considering
the length of elements as the only constraint, in order for the items to fit in a bin, the length of the supply
element needs to be longer or equal to the length of the demand element. The supply element is cut so it
perfectly matches the demand length. The cut is placed back into the supply stock and may be used further
to meet the demand for another element.
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Figure 3.7: Bin packing problem for structural elements.

In the report "Form-Fitting Strategies for Diversity-Tolerant Design" by Bukauskas et al. [9], the per-
formance of First-Fit and Best-Fit heuristics applied to a basic form-fitting problem was studied. For each
algorithm, there were recorded results on the number of bins used to fit the items, the number of items
which were not successfully fitted, and the total waste length.

It was observed that the performance of First- and Best-Fit heuristic algorithms did not differ significantly.
The largest difference was related to the amount of waste material. The Best-Fit with minimising the
remaining length, Best-Fit with items pre-sorted by decreasing effect and minimising the remaining length,
and First-Fit with pre-sorting of items by decreasing effect and no sorting of bins were the best-performing
algorithms based on all three metrics[9]. The running time of these algorithms was not considered in this
study. However, this is an important aspect to consider if the algorithms will be used as a design tool.
Implementing simpler and faster algorithms can be advantageous in the early stages of design processes,
while slower and higher-quality algorithms can be advantageous in design refinement processes.
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4 Software

This chapter provides an overview of the software and tools employed in the course of this master’s thesis.

4.1 Visual Studio Code

Visual Studio Code is a simplified code editor that offers various development functionalities, including
debugging, task execution, and version control. It focuses on providing essential tools to facilitate a fast
code-build-debug process, while leaving more intricate workflows to comprehensive integrated develop-
ment environments (IDEs) like Visual Studio IDE.

4.1.1 IfcOpenShell

IfcOpenShell is an open-source software library for working with IFC files. Amongst other tools, the soft-
ware includes a C++ and Python API, making it possible to read, write, and manipulate IFC files program-
matically. It is widely utilised by software developers, researchers, and professionals in the architecture,
engineering, and construction industry. The libraries in IfcOpenShell have support for IFC2X3, IFC4 and
IFC4X3. Compatible formats include IFC-SPF, IFC-JSON, IFC-XML and IFC-HDF5. IfcOpenShell is
currently available for python version 3.6-3.11 [24].

Utility library

IfcOpenShell contains a utility library, providing a set of functions and tools for handling the information in
an IFC file. Amongst others, the tools may be used to collect unit information and to extract entity property
sets and quantity sets. The library includes shape processing features, reached though the shape-utility
functions, and can be used to retrieve volume, outer surface area, and extrusion in x-, y-, and z direction. A
full overview of the available utility functions and may be found in the IfcOpenShell 0.7.0 documentation
provided by the IfcOpenShell Contributors [24].

IfcPatch

IfcPatch is a component in the IfcOpenShell library that allows for the predetermined modification on an
IFC file. The modification is called an IfcPatch recipe and a full overview of the available recipes can
be found in the IfcOpenShell 0.7.0 documentation under IfcPatch ([25]). The "ExtractElements" recipe in
IfcPatch enables the selective extraction of specific elements from an existing IFC file, saving them as a
new IFC file. An example of how to use the "ExtractElements" recipe is also provided in the IfcOpenShell
0.7.0 documentation.

Introduction to IfcOpenShell in Python

Listing 3 introduces the implementation of IfcOpenShell in Python, showcasing the basic commands re-
quired for data retrieval and attribute access.

# import the IfcOpenShell library
import ifcopenshell
# load the IFC file and store it as a variable
f = ifcopenshell . open ( file_path )
# Retrieve all instances of IfcBeam
beams = f . by_type ( " IfcBeam " )
print ( beams )
# Retrieve a specific instance of IfcBeam
beam = beams [0]
print ( beam )
# Retreive the attributes and their names in the IfcBeam instance
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beam_info = beams [0]. get_info ()
print ( beam_info )
print ( beam_info . keys () )
# Retreive a specific attribute , e . g . GlobalId , of a specific instance
guid_beam = beam . GlobalId
print ( guid_beam )

Listing 3: Basic implementation of IfcOpenShell in Python.

4.2 Rhinoceros3D

Rhinoceros3D, or Rhino, is a 3D modelling and computer-aided design (CAD) software developed by
Robert McNeel & Associates. Rhino uses non-uniform rational B-splines (NURBS) to precisely model
geometry [34].

4.3 Grasshopper

Grasshopper is a visual programming and parametric modelling tool that runs within Rhino, also developed
by Robert McNeel & Associates. The interface is a graphical algorithm editor and enables the creation
of complex forms and the ability to generate alternative design rapidly without having any knowledge of
programming or scripting. Figure 4.1 illustrates how a line can be created in Rhino using Grasshopper com-
ponents. This type of visual programming is a "no-code" type of programming where codes are encrypted
into the components. The functionality of Grasshopper can be extended through, amongst others, the use
of Python or C# scripting to create custom components when desired functions are not available. These
components can then be added to Grasshopper as plugins [34].

Figure 4.1: Rhino space and Grasshopper components.

Food4Rhino is the official plugin community serviced by McNeel and the users of the website can here find
new Rhino plugins and Grasshopper Add-ons. In addition, the user may share their own applications and
contact other developers [28].

4.3.1 Data Tree

A Data Tree in Grasshopper is a hierarchical structure for the storage of data in nested lists, enabling
the storage of multiple lists within a single parameter. The structure of a Data Tree involves three main
components: paths, branches and items.

The paths in a Data Tree specify the location of a branch within the tree. This path is given by numbers
separated by brackets, for example {0;0;0}.The amount of numbers between brackets indicate the depth of
the tree. Each sub-branch inherits the path number of its parent branch. At each of the branches there may
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be stored a list of data items. Each data item is a part of one branch in the tree and has an index that specifies
its location within the branch. The structure can be visualised as a tree, hence, the name Data Tree. An
illustration of a Data Tree structure is given in Figure 4.2.

Figure 4.2: Example of a Data Tree structure.

The branch level A has path {0}, while the rightmost branch at branch level B has path {0;2}, where "0" is
inherited from branch level A. Connected to the path {0;2} is N=4 data items.

A practical example of the Data Tree structure can be the break down of a building into its different com-
ponents and sub-components. A building may consist of several floors, several rooms within each floor,
and several pieces of furniture within each room. In order to keep track of all the furniture within a specific
room, the data may be stored as a Data Tree.

4.3.2 Geometry Gym

Geometry Gym develops utilities and plugins for various software applications such as Rhino3D, Grasshop-
per, Revit, Tekla, Navisworks, and more. Geometry Gyms has developed an IFC plugin for Grasshopper
which allows for the import, export and modification of IFC files directly in the Rhino and Grasshopper
environment. This makes it possible to perform structural analysis on already designed structures [17].

4.3.3 Karamba3D

Karamba3D, is a parametric structural engineering tool embedded in Grasshopper. The tool allows for
the combination between parameterised geometric models, finite element calculations and optimisation
algorithms performed in frames, spatial trusses and shells [12].

In order for a finite element analysis to be performed on a model in Karamba3D, there are several com-
ponents that needs to be utilised. The "Assemble Model" component generates a finite element model.
To accurately represent a structure in Karamba, the geometry, loads, and supports must be defined in this
component. Further, the "Analyze" component computes the mechanical response of the model for a given
load case. The component does not account for changes in length along the axial or in-plane direction that
may occur as a result of lateral deformations. The "Analyze" component computes the model deformation,
maximum nodal displacement, maximum total force of gravity, and internal deformation energy of struc-
ture. In order to preview the model response, the "Model View" and "Beam View" component can be used.
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The "Model View" and "Beam View" components use the calculated model and allow the user to inspect
the current state of the model and its elements [12].

Preconditions embedded in Karamba3D is listed below.

• Materials are assumed to behave in a linear elastic manner.

• Karamba3D expects all force-definitions to be in kilo Newton.

• Calculation of utilisation of steel elements is based on EN 1993-1-1, i.e. Eurocode (EC) 3. It takes
into account buckling and lateral torsional buckling.

• Deflections are small as compared to the size of the structure.
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5 Method

This chapter aims to systematically explain the implemented method for matching demand elements in a
predefined structure to supply elements in a material database. The mapping is coupled with a structural
analysis. In order to present the information in a clear and understandable manner, simple 2D, self-drawn,
examples of structures are incorporated. Additionally, the workflows of the method are outlined to provide
a comprehensive understanding of the process.

The method is divided into four main parts including IFC Data Extraction (Section 5.1), Element Mapper
(Section 5.2), Visual Mapper (Section 5.3) and FEM Analysis (Section 5.4). Python in Visual Studio Code
is mainly used for IFC data extraction and is given in Appendix B, while element- and visual mapping and
the FEM analysis are developed in Grasshopper and is given in Appendix A. In addition, a supplementary
assessment is included to address the quantification of the environmental and financial impact associated
with reused and new elements (Section 5.5). An illustration of the method workflow is shown in Figure 5.1.

Figure 5.1: Method workflow.

5.1 IFC Data Extraction

In order to analyse the potential for structural reuse of elements given a predefined structure, a Python script
was developed in Visual Studio Code. The script extracts necessary data from IFC files for the purpose of
creating two DataFrames. One DataFrame with elements from a construction to be dismantled, and one
DataFrame with elements from a construction to be assembled. An illustration of the IFC Data Extraction
method workflow is shown in Figure 5.2.

The purpose of this script is to optimise the retrieval process of elements for future reuse projects by creating
a comprehensive inventory of available materials. By simply inputting an IFC file into the script, all relevant
information related to the available elements within the structure is efficiently retrieved. This retrieved
information can then be utilised to identify suitable elements for future structures and has the potential to
reduce the effort in mapping structural elements significantly.
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Figure 5.2: IFC Data Extraction workflow.

The method developed for Python-based IFC data extraction has been formulated through rigorous testing
of multiple IFC files. The objective of this testing phase was to create a generic code that could efficiently
handle diverse scenarios. To achieve this, the method was evaluated using a total of eight different IFC files,
consisting of four files sourced from the industry and four files that were self-created. By analysing and
assessing these varied files, the method aims to identify an optimal solution applicable to a wide range of
IFC data sets.

The script utilises the IfcOpenShell library to extract necessary data from an IFC file. The desired elements
to examine are the IfcBeams and IfcColumns. Once the data extraction is complete, the resulting Data-
Frames are exported to Excel. The necessary data to be extracted using IfcOpenShell for each element is
the name, GUID, length, cross section area, cross section name, material and location. Additionally, sup-
plementary information can be incorporated into the DataFrame to enrich the data set. This may include
element height, width and volume. An example of a DataFrame created using the IFC Data Extraction
method is shown in Figure 5.3.

Figure 5.3: IFC Data Extraction DataFrame example.

In the case of large IFC files, it may be beneficial to create a new IFC file with only the wanted elements,
e.g. IfcBeam and IfcColumn, by utilising IfcPatch. This new filtered IFC file should then be used as input
for when creating the DataFrame, to ensure compliance for later in the method. The code for this is given
in Appendix B.

5.1.1 Extracting quantities

If the quantity sets are stored in the IFC file, they can be extracted by using the element utility function
"ifcopenshell.util.element.get_psets". However, as the quantity sets are not required to be stored in the
model, this function may give the output of all, limited or no quantities. Instead, the extraction of quantities
is performed by utilising the shape utility function, "ifcopenshell.util.shape". Through the execution of
eight tests on various IFC files it was determined that the data presented in Table 5.1 is consistent across all
files. The values extracted was compared with the values obtained by reading the files in Solibri.

Assuming straight elements with a constant cross section along their length, it is a straightforward process
to calculate the cross section area given the volume and length of the element.

18



Table 5.1: Shape utility functions for the retrieval of length, height, width and volume for IfcBeam and
IfcColumn.

ifcopenshell.util.shape
get_x get_y get_z get_volume

IfcBeam length height width gross volume
IfcColumn height width length gross volume

5.1.2 Extracting cross section name

The retrieval of the cross section name is accomplished by calling on the attribute "ObjectType" for the
IfcBeam and IfcColumn entities. This attribute is used to store user-defined values for the sub-type IfcObject.
Alternatively, it has been observed that the cross section name is often stored under the property definition
"Reference" in the "Pset_BeamCommon" and "Pset_ColumnCommon" property sets.

5.1.3 Extracting material

The associated material of an element in an IFC file can be retrieved by using the element utility function
"ifcopenshell.util.element.get_material". This requires for the material data to be populated consistently
in the model. In order to create a more generic material retrieval code, the material is instead retrieved
by directly accessing the spatial structure and finding the relations of the element. To find the associated
materials, the script examines whether the element has any associations by checking the "HasAssociations"
attribute. If associations exist, the code proceeds to iterate through each association. For each association,
it checks whether it belongs to the IfcRelAssociatesMaterial type, which signifies a relationship between an
element and a material.

5.1.4 Extracting location

To retrieve the longitude and latitude coordinates of a site from an IFC file, the IfcSite entity is utilised.
By accessing the attributes "RefLongitude" and "RefLatitude" of the entity, the corresponding values are
extracted. To ensure compatibility with the global coordinate system, the extracted coordinates is then
converted to the WGS84 standard, by using Equation (3.1). Within the IfcSite entity, there is an attribute
called "SiteAddress", which corresponds to the IfcPostalAddress entity type. It is observed during the
creation of IFC files in Solibri that the address assigned to the structure is automatically associated with the
IfcPostalAddress entity as a default. It is important to note that this behaviour may vary depending on the
software used to generate the IFC file.

5.2 Element Mapper

The Element Mapper matches a stock of supply elements to a stock of demand elements based on defined
constraints. The objective of the method is to optimise the process of identifying suitable matches between
elements. The mapping is done through a Python script in Grasshopper using a first-fit strategy. The form-
fitting problem of this Grasshopper component can be compared to a generalisation of the Bin Packing
Problem described in Section 3.4.2. The supply elements represent the items, and the demand elements
represent the bins. The function of the Grasshopper component is to match supply elements with demand
elements, generating the minimum amount of cut waste based on length. It assumes that all available supply
elements are of sufficient quality and can be safely reused.
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5.2.1 Element Mapper: input

The Element Mapper component has three inputs, a supply DataFrame, a demand DataFrame and a boolean
toogle. The boolean toogle can be set to either True or False. The DataFrames each contain relevant
information about the elements in their corresponding structure, extracted as explained in Section 3.4.2.

Prior to DataFrames entering the Element Mapper, some additional operations are performed. The moment
of inertia is calculated by based on IFC geometry that is imported directly to Grasshopper and converted
to breps. This will be further explained in Section 5.4.1. The moment of inertia is found based on these
breps and their center lines. The orientation of the cross section plane is located. Curves are found from
the edges of the cross section. This geometry is the input of the "Area Moments" component that calculates
the moment of inertia about all its axes. The moment of inertia about the y-axis is added to the demand and
supply DataFrame for further use. The order of Grasshopper components used to find the moment of inertia
is presented in Figure 5.4.

Figure 5.4: Calculating moment of inertia with Grasshopper components.

In addition, curved elements are identified in order to prevent the matching of curved and straight elements.
This is achieved by using the Grasshopper component "ggIFC Decompose Extruded Area Solid" where the
IFC geometry is utilised. The operation removes the curved elements for the list of breps. The indexes
of the filtered out elements are used to remove the elements from the DataFrame as well. This ensures
correspondence between the DataFrame and its IFC geometry. DataFrame and IFC geometry now only
consist of straight elements.

Prior to connecting the DataFrames to the Element Mapper component, the sets are sorted based on their
element lengths. The demand DataFrame is sorted in decreasing order, while the supply DataFrame is
sorted in ascending order, making the algorithm at hand a First-Fit-Decreasing Bin Packing Problem. This
reordering is also applied to the IFC geometry data to assure compliance between the DataFrames and their
respective IFC geometry. This assures that the correct moment of inertia is assigned to the correct element
and that the indexes between the DataFrames and IFC geometry correspond in the further procedures, as
will be presented in Section 5.3 and Section 5.4. An illustration of the sorting of the elements is shown in
Figure 5.5. This sorting causes the elements to retrieve new indexes within Grasshopper. However, since
the DataFrames and IFC geometry are sorted based on the same condition, the element indexes will still
correspond to each other. Since the GUID of an element is associated with a specific element and not with
a specific index, this sorting does not cause problems in later tracking of the correct elements.
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Figure 5.5: Visualisation of the processing of demand and supply structures in Grasshopper prior to entering
the Element Mapper.

5.2.2 Element Mapper: matching conditions and process

A match between elements is found when the following property of the supply element is larger or equal
to the corresponding demand property: length, 80% of the cross section area and 80% of the moment of
inertia. In addition, the mapper only considers demand and supply elements that have assigned the material
"Steel". In order to explore the implication of resource optimisation, the cross section area and moment of
inertia requirement is set to 80% for a successful match. This criterion allows for greater design flexibility,
potentially leading to an increased number of matched elements and the potential for material optimisation.

The first demand element, i, is compared with the first supply element, j, from each sorted DataFrame. If
a match is not found, element i will be compared with element j+1, and so forth. Once a match is found
between a demand element i and a supply element, the algorithm proceeds to compare the next demand
element, i+1, with the remaining supply elements.

If the boolean toggle is set to False, the matched element in the supply list is deleted, regardless of how
much of the element was utilised. Each element in the supply list can therefore only be assigned to a single
element in the demand list. If the boolean toggle is set to True, the remaining length of the supply element
is updated in the supply list. If the demand and supply lengths are a perfect match, the supply element
is removed from the supply list. This allows multiple demand elements to be assigned to a single supply
element. In the further method, the boolean toggle is set to True.

5.2.3 Element Mapper: output

The output of the Element Mapper is the indexes of each demand element and its matching supply ele-
ment, with unmatched demand elements assigned a null value. Additionally, the component calculates
and provides volumes of matched supply elements, unmatched demand elements, and cut waste, which are
subsequently employed in the calculation of environmental and financial impact, as will be explained in
Section 5.5. Figure 5.6 provides a visual representation of matched and unmatched volumes and the res-
ulting cut waste. Notably, in the specific example being illustrated, all demand elements have successfully
found a match.
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Figure 5.6: Structure to the left illustrated the demand structure. Elements to the right are the available
supply elements. The colour-coding indicated matched, unmatched and cut waste volume.

The data structure of the Element Mapper output is changed through a C# component in Grasshopper. The
new mapping is stored as a Data Tree, where the paths are the supply element index and the items within the
branches are the corresponding matched demand indexes. If a supply element is utilised for several demand
elements, the demand element indexes will be placed under the respective path of the supply element index.
The supply and demand elements with no match are not included in the new Data Tree. This sorting of
indexes is shown in Figure 5.7.

Sorting the mapping indexes as a Data Tree offers several benefits, one of which is the ability to maintain
the index of each element for both demand and supply. This allows for the retrieval of the unique identifier
of any element from any part of the script. Another benefit of the use of a Data Tree is the possibility of
merging trees while remaining path indexes. It is then possible to work with separate paths of a Data Tree
based on, for example, a dispatch pattern. Operations can be performed on the respective paths and later
merged back together to the original Data Tree.

Figure 5.7: Sorting of element indexes in Grasshopper script following the Element Mapper.

The DataFrames created by the IFC Data Extraction are later utilised in the FEM analysis, which is further
explained in Section 5.4. In order to perform a FEM analysis in Karamba3D, it is necessary to define the
cross sections and material names of the elements. These property names in Karamba3D can be viewed
using the "Cross section Range Selector" and "Material Selection" components in Grasshopper. The object-
ive of the properties in the DataFrame is to match the respective presentation format in these components
exactly, enabling Karamba to interpret the properties correctly. If the properties retrieved in the IFC Data
Extraction, are not an identical match, these need to be manually edited.
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5.3 Visual Mapping

In order to perform a visual mapping of the elements, the element geometry from the demand and supply
IFC files is used as well as the output from the Element Mapper. The IFC geometry is sorted in compliance
with the result from the Element Mapper and C# script. The successfully matched supply elements are
flipped vertically to align with the same orientation and then positioned within a grid. The elements are
trimmed accordingly to the demanded length. The remaining length of the element marks the cut waste. The
demand and their corresponding matched supply elements are connected with a line. Figure 5.8 illustrates
this visual mapping, providing a clear representation of the placement of supply elements in relation to their
respective demand elements.

Figure 5.8: Visual mapping of demand and supply elements by using the Visual Mapper.

5.4 FEM Analysis

Following the successful matching of supply and demand elements, the demand elements are then replaced
with their respective supply counterparts. To ensure the structural integrity and safety of the construction
with the substituted elements, a structural analysis is conducted. The utilisation of FEM analysis within
Karamba3D offers significant potential to optimise the structural verification process in a reuse project.
This approach leverages the geometric data extracted directly from IFC files, offering a more efficient
alternative compared to constructing a model from the ground up using conventional FEM design tools.

To ensure a precise and effective structural analysis using Karamba3D, it is essential to establish the correct
assembly of the digital model. While importing an IFC file into Grasshopper provides the visual geometry
of the model, certain adjustments are required to accurately depict the elements for analysis purposes.

Utilising the Karamba components, the structural analysis provides visualisations of deformation, deflec-
tions, bending moments, axial forces, and shear forces. These visualisations enable a comprehensive un-
derstanding of the structural behaviour and aid in assessing the overall performance and safety of the con-
struction.

5.4.1 Establishing the analytical model

Import of IFC Geometry
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The imported IFC geometry data is used as a base for establishing the analytical model. The data is sorted
and converted to brep before further processing is performed. The breps are organised as a Data Tree with
the same ordering as the DataFrame from the Element Mapper.

Extracting center lines

To meet the requirements of Karamba3D, the elements within the demand structure need to be represented
by lines. This is done by deconstructing the breps and locating the end surfaces, cross sections, of each
brep. The center point of each surface is located, and the points are subsequently connected with a line.
The center lines are later assigned the appropriate properties, including cross section and material, based
on the outcomes obtained from the Element Mapper. This is done using the "Line to Beam (Karamba3D)"
component. This ensures that the elements are properly characterised and ready for the subsequent analysis.

Sorting based on level and orientation

To properly assign properties and loads to correct elements upon assembly of the model, the elements
are sorted based on level and orientation. Sorting based on level is done by evaluating the z-value of the
middle point of each line. The sorting is parametrically controlled through a "Number slider" component
that defines the z-value. The components "Cull Pattern" or "Dispatch Pattern" is used to extract or remove
desired elements from lists. An excerpt from the Grasshopper script performing this procedure is presented
in Figure 5.9. Sorting of orientation is done by evaluating the vectors and curves representing the center
lines and separating them based on their value. For example, a line representing a horizontal beam will
have an angle of 0.5π from the z-axis. The components behind this extraction are presented in Figure 5.10.
The same method is performed on the other lines, but with corresponding values to separate columns from
diagonals.

Figure 5.9: Grasshopper - sorting lines based on z-coordinate.

Figure 5.10: Grasshopper - sorting lines based on orientation.

Model consistency

Ensuring model consistency is important as Karamba3D requires the elements to intersect at all nodes.
If this requirement is not met, Karamba3D will interpret the elements as disconnected and the model will
provide inaccurate results during analysis. By examining the breps converted from the IFC geometry data, it
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appears visually in Rhino that the elements intersect. However, when utilising the center lines instead of the
breps, these represent the correct length but do not intersect. To establish connections, artificial members are
implemented. This involves locating the node at the desired intersection location and connecting the node-
point to the point of either the start or end of an element. The approach to locate the nodes is presented
in Figure 5.11. The input of the "Perp Frames" component is lines of all elements that potentially are
connected. The "Cull Duplicates" component allows for duplicate points to be removed from the list of
points. It is also possible to control the Tolerance of this. In the intersection point between two beams and
a column, there would originally be three points. Instead of creating three nodes, only one is created by
removing the duplicates within 80 cm, in this specific illustrated example.

Figure 5.11: Grasshopper - locating nodes with a Tolerance

The approach to creating the artificial elements is presented in Figure 5.12 and a visual representation of
an example of such elements is presented in Figure 5.13. The illustration shows how the artificial elements
represent an extension of the already present elements. The artificial elements are assigned high stiffness
and low mass to minimise their negative influence on the overall system response. This is done using
the cross section type Spring and assigning it a high rotational and transnational stiffness, as shown in
Figure 5.14. This created a weightless element that interferes minimum with the overall structural behaviour
of the assembled model.

Figure 5.12: Grasshopper - creating artificial elements.

(a) Before. (b) After.

Figure 5.13: Model before and after implementing artificial elements.
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Figure 5.14: Grasshopper - artifical elements cross section.

In IFC files, columns are commonly represented as continuous elements that extend through multiple levels,
with beams and other elements connected to them on each floor. While this representation aligns with
the physical intent, it is necessary to split the columns at the points where they are connected to other
elements in order to accurately depict the connections in Karamba3D. The same applies to other elements
that are modelled as continuous but are connected to different elements. Consequently, all lines are divided
into smaller segments based on the intersections with other elements. To achieve the desired outcome,
the process involves locating a point on the line that is in close proximity to the node representing the
intersection point. Subsequently, the curve is split based on the parameter associated with this point on
the line. The specific implementation of this approach is outlined in Figure 5.15. The parameter "Second
Number" will in this case define the allowed distance between the node and curve. The "Cull Patterns"
component will remove the parameters of the points that are not in close proximity to the node.

Figure 5.15: Grasshopper - splitting lines based on intersections.

Supports

When considering the supports for a structure in three-dimensional space, a body has six degrees of free-
dom, three translations and three rotations. For the accurate calculation of the deflected state in Karamba3D,
the supports need to be designed in a manner where no translations or rotations are possible without caus-
ing a reaction force. Supports are implemented in the model with the component "Support (Karamba3D)",
where the six degrees of freedom can be controlled. The component is depicted in Figure 5.16, configured
as a simply supported that is constrained against torsion.
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Figure 5.16: Simply supported supports in Karamba3D.

By default, all connections in Karamba are fixed unless otherwise specified. To create other types of connec-
tions the "Beam-Joint-Agent (Karamba3D)" component is utilised. This component enables control over
six degrees of freedom and allows the designer to assign the connection to specific members based on their
element identifiers. Using the component, it is possible to create pinned, semi-rigid, or rigid connections by
defining the inputs of the component. This flexibility allows designers to customise the connections accord-
ing to their specific requirements. Figure 5.17 shows how a "Beam-Joint-Agent (Karmaba3D)" component
represents a pinned connection where the rotational stiffness is high, meaning that the joint is restricted
against torsion.

Figure 5.17: Pinned joint connections in Karamba3D.

Load case

In order to obtain a realistic outcome from the analysis, appropriate loads need to be applied to the structure.
The magnitude of these loads can be adjusted by modifying the connected value parameter for that specific
load component. The application of loads varies depending on the desired or demanded conditions.

The loads are applied using the component "Loads (Karamba3D)" that can be assigned a Vector, Mesh, and
Element Identifiers. The Vector controls the magnitude of the load, while the Mesh parameter defines the
area of which the load will be distributed. By using the Element Identifiers parameter, the user can specify
the elements on which the assigned load will be applied.

Assembly

The model is assembled using the "Assemble Model (Karamba3D)" component by connecting all elements,
supports, joints and loads together.
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5.4.2 Analysis and results

For analysis purposes the "Analyze (Karamba3D)" component is employed to evaluate the model. Sub-
sequently, the results are visualised using the "Model View (Karamba3D)" component. This component
enables the visualisation of deformations, reactions, loads, supports, local axes, and joints. Section forces,
utilisation and deformation are displayed with the "Beam View (Karamba3D)" components.

5.5 Quantifying Financial and Environmental Impact

Quantifying the financial and environmental impacts of the structural element reuse process is crucial for
conducting a comprehensive evaluation of the implemented method in real-world scenarios. This assess-
ment examines trade-offs associated with executing such projects and establishes the foundation for de-
termining their financial and environmental pros and cons.

The environmental impact is measured in terms of Global Warming Potential, GWP. The following assump-
tions are made in the calculations for environmental impact and cost of reused and raw steel materials.

• The supply elements are cut at the demolition site.

• The transportation and other processing of the cut waste are not included in the calculations.

• The transportation of new elements from fabrication to the construction site is set to 100km.

• The structural integrity of supply elements after demolition is intact.

• The transport of elements to be reused is set to the distance between the demolition site and the
construction site.

When quantifying the environmental and financial impact, the values presented in Table 5.2 are used.

Table 5.2: Environmental and financial impact key numbers.

Unit Value
Steel GWP [30] [kg CO2 per m3] 9263
Steel reused GWP [21] [kg CO2 per m3] 278
Steel cost [15] [NOK per kg] 67
Steel reuse cost [15] [NOK per kg] 67
Steel density [EC3NS-EN1993-1-1:2005+A1:2014+NA:2015] [kg per m3] 7850
Transportation cost [19] [NOK per km per tonn] 4
Transportation GWP [31] [gram per tonn per km] 89.6
Valuation GWP [33] [NOK per kg CO2] 0.7

The methodology and assumptions employed to calculate the financial and environmental impact is a sim-
plified approach. The method does therefore not retrieve the precise values. Nonetheless, the obtained
results serve as an indicative measure of the potential realistic outcomes and are sufficient for the purpose
of this master’s thesis.
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6 Case Studies

In this chapter, two case studies are presented, offering a comprehensive examination of the method em-
ployed in each study and any modifications implemented throughout the process. To ensure the reliability
of the obtained results from the structural analysis, a comparative study is subsequently conducted. The aim
is to compare the results of the FEM Analysis made in Grasshopper with those obtained using a custom-
constructed model developed with conventional FEM design tools.

Additionally, a detailed discussion is carried out regarding the results obtained from the Element Mapper
and FEM Analysis, along with specific observations made during the testing phase. This discussion aims
to provide a deeper understanding of the applied strategies of the specific case and underlying assumptions,
thereby shedding light on the implemented strategies.

The "Original Structure" refers to the demand structure composed of the original cross sections and mater-
ials from the IFC file, while the "Reuse Structure" represents the updated structure with elements featuring
reusable materials, as determined by the Element Mapper. These definitions will be used further in the case
studies.

6.1 Case Study 1: Test Files

The first case study is based on two self-produced IFC files. They have been produced using Revit 2023 and
then exported to IFC2X3 format. Both structures are situated in different locations in Norway and consist
of the structural steel S275 and S355. The supply structure consists of 82 elements, while the demand
structure consists of 30 elements. All IfcBeams and IfcColumns in the files are straight elements with
typical dimensions expected for beams and columns. Figure 6.1 showcases the two structures, providing a
visual representation of their relative sizes. Both demand and supply structures are non-symmetrical.

Figure 6.1: Structures in Case Study 1. Supply structure to the left, demand structure to the right. Unit in
meters.

6.1.1 Case Study 1: IFC Data Extraction

The Python code developed in the IFC Data Extraction demonstrated satisfactory performance when ap-
plied to the two files created specifically for this case study. These test files effectively aligned with the
functionality of the implemented method. However, some observations were made during the extraction of
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the structure locations that shed light on an issue that may arise when handling IFC data structure and the
use of IfcOpenShell.

Cross section and material names

The extraction process effectively retrieved the cross section types and material information for all elements
within the demand and supply structures. Manual editing of the cross section names was performed to
ensure recognition in the "Cross Section Range" component in Karamba3D. All the required cross section
types and materials were already present in the database, but need to be formatted correctly to ensure
compatibility.

Location

It was observed during the creation of the IFC files in Revit that the address of the structure was automat-
ically associated with the IfcPostalAddress entity as a default. However, the sorting of the attributes within
the entity was not as expected. The attributes of the IfcPostalAddress entity are intended to be sorted as
mentioned in Section 3.3.9. The collected entity with associated attributes from the IFC files is given in
Listing 4, for the supply and demand structure, respectively.

#111= IFCPOSTALADDRESS (\$,\$,\$,\$,('Enter address here '),\$,'','H\X2\00F8\X0\
gskoleringen ','5','7034 Trondheim ');

#111= IFCPOSTALADDRESS (\$,\$,\$,\$,('Enter address here '),\$,'','Elizabeth ','
Stephansens vei 15','1433 \X2\00C5\X0\s');

Listing 4: The IfcPostalAddress of Case Study 1 for the supply and demand stucture respectivly. Collected
by opening the IFC files in Visual Studio Code.

In both IfcPostalAddress entities, the expected and actual positioning of the attributes do not correspond.
An examination was carried out to determine whether the expected attribute positioning was incorrect. This
involved accessing the attributes both by their names and by their positions in the attribute list. The results
obtained were consistent, leading to the conclusion that the default attribute assignment in Revit, does not
necessarily align with the expected sorting as given in Section 3.3.9.

To ensure a clear illustration of the previously explained problem, an example will be provided. There are
two ways to access the postal code information of the structure. One option is to use the attribute name
"PostalCode" of the IfcPostalAddress, while another is to retrieve it by accessing the attribute in position
seven. In the supply structure, calling the attribute name "PostalCode" returned "5", while position seven
returned "Høyskoleringen". The expected return was "7034". However, having access to the IfcPostalAd-
dress entity by using the command "get_info" as shown in Listing 3, the attributes assigned can be retrieved.
The desired information can be extracted by referencing the position within the entity. It is important to
note that this behaviour may vary depending on the software used to generate the IFC file.

Alternatively, manually adding the correct address into the Excel DataFrame is a simple solution.

6.1.2 Case Study 1: Element Mapper

The Element Mapper achieved a successful match for 28 out of the 30 elements in the demand structure,
resulting in an approximately 90% match. For this match, the demand structure utilised 28 elements from
the supply bank, indicating no supply element was used for more than one demand element. As a result,
the mapping produces a total cut-waste of 0.13 m3. Furthermore, the Reuse Structure obtained a volume
approximately 1.1 times larger volume than the Original Structure. Key results of the Element Mapper for
Case Study 1 are shown in Table 6.1.
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Table 6.1: Element Mapper results in terms of volume given in m3.

Volume [m3]
Total volume of Original Structure 0.46
Total volume of available supply elements 1.70
Volume of unmatched demand elements 0.03
Volume of total used supply elements 0.62
cut-waste volume 0.13
Utilised volume of supply in Reuse Structure 0.48
Reuse Structure 0.52

6.1.3 Case Study 1: Visual Mapping

Figure 6.2 provides a visual representation of the demand structure and the supply elements for Case Study
1. The colours assigned to the elements signify whether they are matched, not matched or cut-waste.
Figure 6.3 highlights the visual mapping between one demand element and its respective supply element
match. Figure 6.4 illustrates the visual mapping between all the matched demand and supply elements.
Only the matched supply elements are visualised in the figures. After a match is made between the demand
and supply elements, the cross sections are substituted accordingly. The new cross sections placed in the
demand structure are illustrated in Figure 6.5.

Figure 6.2: Supply elements and demand structure for Case Study 1. Match, no match and cut-waste
elements are highlighted. Relevant supply elements are visualised to the left.
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Figure 6.3: Visual mapping between one demand element and its respective supply element match.

Figure 6.4: Visual mapping between all matches of supply and demand elements using the Visual Mapper.
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Figure 6.5: The figures represent the matched elements in the demand structure with substituted and original
cross section, respectively.

6.1.4 Case Study 1: FEM Analysis

In the Reuse Structure, it is evident that all substituted elements possess equal or greater cross sectional
areas compared to the Original Structure. Additionally, all elements in the Reuse Structure have the same
structural steel as before.

To ensure a connection between all elements before assembling the model in Karamba3D, artificial elements
with spring cross sections are employed. The implementation of these is illustrated in Figure 6.6 and has
been connected to a "Pipe" component to highlight their presence. Further, the nodes connecting artificial
elements and beams are modelled as pinned, as explained in section Section 5.4.1. The model is subjected to
two loads: the gravity load and an additional dead load of 20 kN/m, with a load factor of 1.35. This results
in an additional dead load of 27 kN/m. This load is uniformly applied as a block load to all elements,
except for the artificial elements. The load application is shown in Figure 6.7. Based on the mass retrieved
from the "Assemble Model (Karamba3D)" component in Grasshopper, the Reuse Structure has a mass of
approximately 1.13 times larger than the original structure.

Figure 6.6: Artificial elements are implemented to ensure intersection between elements.
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Figure 6.7: Load application for Case Study 1. The assigned load consists of the gravity load and an
additional dead load of 27 kN/m, applied as a block load.

Results

The modification of cross sections presented several notable differences in the structural analysis. Firstly,
the Reuse Structure exhibits enhanced stiffness, leading to reduced deformation, as seen in Figure 6.8. The
deformation Display Scale set to 70, the Upper Result Threshold to 100 and Lower Result Threshold to 0.
The utilisation from the "ModelView" component, returning the utilisation in terms of the ratio between
the normal stresses and the yield stress for that specific material, is shown in Figure 6.9. As before, the
Upper Result Threshold is set to 100 and the Lower Result Threshold is set to 0. Higher maximum bending
moments are observed in the Reuse Structure, as seen in Figure 6.10 where the Section Force scale is set to
0.01. Table 6.2 presents the key findings of the analysis, highlighting the comparison between the Original
Structure and the Reuse Structure. The values for utilisation are found using the "Utilization of Elements
(Karamba3D)" component, which includes buckling according to Eurocode 3 [27].

(a) Original Structure. Maximum displacement= 1.20
cm.

(b) Reuse Structure. Maximum displacement= 0.94
cm.

Figure 6.8: FEM Analysis results, Deformation. Deformation Display Scale set to 70.
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(a) Original structure. (b) Reuse Structure.

Figure 6.9: FEM Analysis results, utilisation.

(a) Original structure. (b) Reuse Structure.

Figure 6.10: FEM Analysis results, Bending moments (My) in [kNm]. Section Forces scale set to 0.01.

Table 6.2: Key results obtained from the FEM Analysis of the Original and Reuse Structure.

Max Max Average Max bending Mass
displacement [cm] utilisation utilisation moment [kNm] [kg]

Original 1.20 0.78 0.39 84.14 3729.779028
Structure
Reuse 0.94 0.62 0.33 85.09 4219.764939
Structure

Supplementary analysis

Since the test files produced in Case Study 1 resulted in element substitutions with higher or equal cross sec-
tions than required, two additional analyses are performed: Test 1 and Test 2. The analysis aims to explore
the potential outcomes of element substitutions, specifically focusing on instances where the cross sections
are reduced. The intention behind performing these tests is to gain a more comprehensive understanding of
the implications associated with element substitution and consequences for structural performance.

In Test 1 the cross sections for the Reuse Structure are substituted manually by assigning all elements a new
cross section area between 80-100% of the Original Structure. The second analysis performed, Test 2, was
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performed by giving all elements their original cross sections except for three elements. These were given a
cross section between 80-100% of the Original Structure. The elements given a lower cross section area in
Test 2, are highlighted in Figure 6.11. Figure 6.12, Figure 6.13 and Figure 6.14 illustrates the deformation,
utilisation and moment distribution for Test 1 and Test 2. The settings for the display scales are as before.
It is observed that with lower cross section areas, the deformation and utilisation decrease. Additionally,
bending moments increase. Key results obtained from the FEM Analysis are shown in Table 6.3.

Figure 6.11: The highlighted elements have been given a new cross section area between 80-100% of the
original cross section area in Test 2.

(a) Test 1. Maximum displacement= 1.66 cm. (b) Test 2. Maximum displacement= 1.24 cm.

Figure 6.12: FEM Analysis results, deformation. Deformation Display Scale set to 70.
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(a) Test 1. (b) Test 2.

Figure 6.13: FEM Analysis results, deformation. Deformation Display Scale set to 70.

(a) Test 1. (b) Test 2.

Figure 6.14: FEM Analysis results, Bending moments (My) in [kNm]. Section Forces scale set to 0.01.

Table 6.3: Key results obtained from the FEM Analysis of Test 1 and Test 2 in Case Study 1.

Max Max Average Max bending Mass
displacement [cm] utilisation utilisation moment [kNm] [kg]

Test 1 1.66 1.03 0.56 83.41 3150.09959
Test 2 1.24 0.78 0.44 84.04 3579.96058

In all scenarios, the applied dead load of 27 kN/m remains constant, while the gravity load varies according
to the mass of the assembled elements. The findings reveal that an increase in mass resulting from larger
cross section areas in the Reuse Structure leads to higher bending moments. Similarly, Test 1, characterised
by smaller cross sections and thus lower mass, exhibits lower bending moments in the structure.

When decreasing the cross section areas in Test 1, the maximum and average utilisation increase. The
maximum utilisation of some elements in the structure exceeds one, meaning the respective elements have
exceeded their stress design capacity. The element substitution does therefore not fulfil structural require-
ments for this specific load case.

The effects of changing only three cross sections in Test 2 were minor for this case study. When some
elements in the structure get a different stiffness, the distribution of forces within the structure will sub-
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sequently change. However, given the relatively small changes in the element substitutions, this is not
reflected in the results of the deflection, average and maximum utilisation, and bending moments.

6.1.5 Case Study 1: Financial and environmental impact

The steel density is given in Table 5.2 and has a value of 7850 kg/m3. This is used in combination with
the results presented in Table 6.1 to calculate the volume and weight of the Reuse Structure. The result is
presented in Table 6.4.

Table 6.4: Weight and volume of the Reuse Structure consisting of reused and raw materials.

Reused material Raw material Total Reuse Structure Original structure
volume [m3] 0.48248 0.03509 0.51757 0.461856
weight [kg] 3787.468 275.4565 4062.9245 3625.5696

The structures in the test files are located at the coordinates given in Table 6.5, which are extracted from
the IFC file. The shortest distance by road between these locations is 521 km according to Google Maps
[Google.n.d.HgskoleringenMaps]. Furthermore, it is assumed that the raw materials have a transportation
length of 100 km from the fabrication site to the construction site, as stated in Section 5.5.Table 6.6 shows
the results in terms of GWP and cost for the Reuse Structure, consisting of both raw and reused materials. A
comparison between the Original and Reuse Structure in terms of total GWP and cost is shown in Table 6.7.

Table 6.5: Latitude and longitude coordinates of the demand and supply structure.

Latitude Longitude
Demand structure 59.6678390502778 10.7670049666667
Supply structure 63.4147377013889 10.4059600827778

Table 6.6: Use of raw and reusable material in Reuse Structure for Case Study 1.

Raw materials Reused materials
Production GWP [kg CO2] 325.04 134.13
Transportation GWP [kg CO2] 2.47 176.81
Production cost [NOK] 18 444.59 25 3760.36
Transportation cost [NOK] 110.18 7893.08
Valuation GWP [NOK] 229.25 217.65

Table 6.7: Financial and environmental impact of Case Study 1 for the Original and Reuse Structure.

Original Structure Reuse Structure
Production GWP [kg CO2] 4278.17 459.17
Transportation GWP [kg CO2] 32.49 179.27
Production cost [NOK] 242 913.16 272 215.94
Transportation cost [NOK] 1450.23 8003.26
Valuation GWP [NOK] 3017.46 446.91
Total GWP [kg CO2] 4310.65 638.44
Total cost [NOK] 247 380.62 280 666.11

6.1.6 Case Study 1: Discussion

In Case Study 1, a match of 28 out of 30 demand elements was achieved. A total cut-waste of 0.13 m3 was
produced. The Reuse Structure was calculated to be approximately 30 000 NOK more expensive than a
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structure made from only raw materials. The total GWP however is approximately 15% lower when using
reusable materials. From the results obtained in the FEM Analysis before and after element substitution,
the structural response of such a decision would not affect the structural integrity.

The method employed in the study exhibited highly efficient performance on the self produces IFC files. The
method returned the desired characteristics and properties. Further examination of the location assignment
should however be performed.

6.2 Case Study 2: Tennebekk and Buebygget

For the second case study, the IFC files for Tennebekk and Buebygget are utilised. Tennebekk is a bus
hall project consisting of 1410 IfcElements, whereas 113 are assigned to the IfcBeam and IfcColumn entity.
Buebygget is an office building of seven floors. The structure consists of 4600 IfcElements, whereas 2527
are assigned to the IfcBeam and IfcColumn entities. Both structures are located in Bergen. Tennebekk
and Buebygget are representing respectively the demand and supply structure. Both the IFC files originate
from Autodesk Revit 2023 (ENU) and are presented in IFC2X3 format. The structures are presented in
Figure 6.15, where their relative size is illustrated.

Figure 6.15: Structures in Case Study 2. Supply structure to the left, demand structure to the right.

6.2.1 Case Study 2: IFC Data Extraction

The IFC Data Extraction process for Case Study 2 brought forth various insights into working with IFC
files and the Python scripts interpretation of these files. It provided valuable perspectives on the challenges
and considerations associated with extracting data from IFC files within our specific context.

Cross section and material names

The extraction of cross sections from the IFC files was successful for both structures in Case Study 2.
However, the property names extracted are not included in the "Cross Section Range" component in Kara-
mba3D, therefore the DataFrame needed to be modified. In the cases where the cross section type is not
found in the database, a substitute is implemented. Table 6.8 provides an overview of the substitutions made
specifically for Tennebekk. Each individual cross section was carefully examined and assigned a substitute
with comparable properties to accurately represent the behaviour of the element.
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Table 6.8: Overview of the cross section substitutions manually performed for Tennebekk in order to comply
with available cross sections in Karmaba3D.

Cross section IFC file Cross section Karamba3D Count
HEA100 HEA100 12
HEA220 HEA220 6
HEA260 HEA260 1
HSQ285/330 HEA300 2
HEA320 HEA320 1
IPE270 IPE270 6
IPE400 IPE400 25
HUP 200x120x10 RHS 200x120x10 2
HUP 150x150x10 SHS 150x150x10 2
SHS180x10 SHS 180x10 29
VL 200x200x16 SHS 200x200x12 2
HUP 80x80x5 SHS 80x80x5 24
HUP 200x150X10 RHS 200x150x10 1

Total 113

Location

Buebygget and Tennebekk have the IfcSite entity as given in Listing 5 respectively. The entity is retrieved
by opening the IFC file in Visual Studio Code.

#217= IFCSITE('0 w2sGaZrz4fvFF21Cf8hu0 ', \#42, 'Default ', \$, \$, \#216 , \$, \$, .
ELEMENT., (42 ,24 ,53 ,508911), (-71,-15,-2429,-58837), 19619.9999999999 ,\$,\$);

#5105= IFCSITE ('05 dEApX5f0MeApve83GT71 ', \#20, 'Surface :1559047 ' , \$, \$, \#5104 ,
\#5100 , \$, .ELEMENT. (59 ,54 ,57 ,599999), (10 ,44 ,59 ,999999), 38600. , \$,\$);

Listing 5: IfcSite of Case Study 2 collected from opening the IFC file in IfcOpenShell. The entities are
given for the supply and demand structure respectively.

The resulting longitude and latitude coordinates for Buebygget are 42.414864 and -71.258072, coordinates
to an address in the USA. The resulting longitude and latitude coordinates for Tennebekk are 59.916, 10.75,
coordinates for an address in Oslo, Norway. Both of these coordinates are incorrect, as we know prior to
the data extraction that both structures should return a location in Bergen, Norway. One potential reason for
this deviation could be an incorrect assignment of the address for the IfcSite by the creator of the IFC file.
Alternatively, it is possible that no address was assigned to the entity, resulting in it being given a default
address instead.

The address retrieved from the IfcPostalAddress is Oslo, Norway for Tennebekk and Kronsparken, Bergen
for Buebygget. Buebygget has the correct address, while Tennebekk is in reality located in Tennebekk,
Bergen.

Extracting quantities

Noteworthy observations have been made regarding the quantities of non-typical beams and columns as-
signed to the entities IfcBeam and IfcColumn in Buebygget. Specifically, the observed lengths and volumes
obtained from the IFC Data Extraction and the IFC geometry exhibited a lack of correspondence. To shed
light on this issue, an example from Buebygget is provided.

It is observed that when importing IFC files into Grasshopper using the “ggIFC ReadFile” component, there
is a significant difference in the geometry obtained from the display of breps and data. This is illustrated in
Figure 6.16.
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(a) Buebygget IfcBeams and IfcColumns data. (b) Buebygget IfcBeams and IfcColumns breps.

Figure 6.16: Imported data and brep from Buebygget.

By looking at a specific element, the consequence of such a difference is observed. The element with GUID
0hSEg3wBj8c9CD2$Re070Q has the index 1562 in Grasshopper right after the importation of the file. The
element is a ground anchor of steel. Figure 6.17a highlights the geometry from the data for index 1562.
Figure 6.17b highlights a close-up of the brep for the same index.

(a) Buebygget data for index 1562. (b) Buebygget brep for index 1562.

Figure 6.17: Close up of IFC element 1562 viewed as data and brep.

The results obtained from the IFC Data Extraction for this given element is a length of approximately 15 m
and a volume of 20 m3. The lengths calculated in Grasshopper are based on the center lines of the breps
and volume is found by using the "Volume" component where the breps are the input. The length obtained
is 113 mm and the volume of approximately 0.002 m3. It is therefore clear that the IFC Data Extraction
calculates the quantities based on the data information and Grasshopper calculates the quantities based on
the brep information. This was only observed for non-typical beams and columns assigned to IfcBeams and
IfcColumns.

6.2.2 Case Study 2: Element mapper

Prior to the mapping of demand and supply elements, some elements are filtered out. Elements of insig-
nificant size are present in both Buebygget and Tennebekk represented as IfcBeams and IfcColumns. An
example of an element with this quality is highlighted in Figure 6.18. The matching between elements
of small volumes is not necessarily problematic for the Element Mapper, other than being an unrealistic
approach for reusing elements in real practice.
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(a) Small connecting element in Buebygget. (b) Small connecting element in Tennebekk.

Figure 6.18: Small connecting elements observed in Tennebekk and Buebygget.

The elements with a volume of under 0.005 m3 were removed from both Buebygget and Tennebekk. This
was done by utilising the brep obtained from the IFC files in Grasshopper. In addition, there are several
curved elements in Buebygget. These are removed from the list of breps using the component "ggIfc
Decompose Extruded Area Solid”, as explained in Section 5.2.1. Figure 6.19 shows the updated collection
of elements, excluding small and curved elements, to be examined further for mapping. However, the
elements represented in the figures may not possess the material type steel, and if so, they are excluded in
the Element Mapper.

(a) Relevant elements Buebygget. (b) Relevant elements Tennebekk.

Figure 6.19: Elements used in Element Mapper for Case Study 2.

There is a total of 101 in Tennebekk and 772 elements in Buebygget when looking at IfcBeams and Ifc-
Columns that exclusively possess a volume greater than 0.005 m3, exhibit straight characteristics, and have
been assigned steel material. These are the elements used for further mapping.

Two element mappings are performed in Case Study 2. Tennebekk represents the demand structure in
both mappings. The first mapping bases its results of the supply from the original Buebygget DataFrame,
Element Mapper with Buebygget cross sections. For the second mapping, the cross sections in the supply
DataFrame are substituted, making it represent a random supply bank, Element Mapper with random supply
bank. The visual mapping of elements and the FEM Analysis is only performed for the random supply bank.

Case Study 2: Element Mapper with Buebygget cross sections

The Element Mapper provided a successful match for 97 out of 101 elements in the demand structure. The
mapping process, therefore, produced approximately a 96% match of demand elements. The Reuse Struc-
ture utilised 89 elements from the supply bank, meaning eight supply elements fulfilled the requirements of
16 demand elements. As a result, the mapping process produces a total cut-waste of 1.31 m3. Furthermore,
the Reuse Structure obtained a volume of 7.88 m3, which is double the volume of the Original Structure.
Key results of the Element Mapper are shown in Table 6.9.
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Table 6.9: Results of Element Mapper for Case Study 2 with Buebygget cross sections.

Volume [m3]
Total volume of demand elements 3.59
Total volume of supply elements 39.03
Volume of unmatched demand elements 0.59
Volume of used supply elements 8.61
Cut-waste volume 1.31
Utilised supply volume in Reuse Structure 7.29
Reuse Structure 7.88

Case Study 2: Element Mapper with random supply bank To address the challenge of a large number of
elements in Buebygget and the unavailability of their cross section information in Karamba3D, a simplified
approach was adopted to perform the element mapping. New cross sections were assigned to elements,
not necessarily reflecting their original qualities in Buebygget. Some cross sections were given larger
properties, while others were assigned smaller properties. Consequently, the resulting DataFrame for the
supply elements does not represent the original DataFrame for Buebygget but rather resembles a random
supply bank. The total volume of the random supply bank is now 31.45 m3, while the total length of all
elements remains the same.

Since the moment of inertia is originally calculated using breps, this property does not correspond to the
property represented in the DataFrame anymore. Therefore, the moment of inertia is manually added to the
DataFrame to ensure that the associated properties of an element are accurately reflected.

The total number of IfcBeams and IfcColumns in the demand and supply IFC files that fulfil the requirements
to undergo matching is unchanged, meaning that there are 101 demand elements and 772 supply elements.
The Element Mapper provided a successful match for 71 demand elements, utilising 71 supply elements,
indicating that no supply element was used more than once. As a result, the mapping results in a total cut-
waste of 0.43 m3. Furthermore, the new structure obtained a volume of 5.27 m3 which is approximately 1.5
times larger than for the Original Structure. Key results of the Element Mapper are presented in Table 6.10.

Table 6.10: Element Mapper results for Case Study 2 with random supply bank.

Volume [m3]
Total volume of demand elements 3.59
Total volume of supply elements 31.45
Volume of unmatched demand elements 1.51
Volume of total used supply elements 4.19
Cut-waste volume 0.43
Utilised volume of supply in Reuse Structure 3.76
Reuse Structure 5.27

6.2.3 Case Study 2: Visual Mapping

Case Study 2: Visual Mapping with Buebygget cross sections

An illustration of the demand structure and supply element is shown in in Figure 6.20, with the colour of
the elements representing a match, no match and cut-waste as determined by the Element Mapper with
Buebygget cross sections. Mapping between one specific demand and supply element is shown in figure
Figure 6.21. Figure 6.22 illustrates the mapping between all matched demand and supply elements.
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Figure 6.20: Supply elements and demand structure for Case Study 2 with Buebygget cross sections. Match,
no match and cut-waste elements are highlighted. Relevant supply elements are visualised to the left.

Figure 6.21: Visual mapping between one demand element and its respective supply element match for
Case Study 2 with Buebygget cross sections.

Figure 6.22: Visual mapping between all matches of demand and supply elements by for Case Study 2 with
Buebygget cross sections.

Case Study 2: Visual Mapping with random supply bank
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The new manually assigned cross sections and associated properties assigned in the DataFrame, may not
align precisely with the actual cross sections of an element visual in Rhino. Nevertheless, this deviation
does not pose any issues as the sole purpose of the Visual Mapping is to visually represent the outcome of
the Element Mapper, without generating numerical results. The layout of the supply elements and demand
structure is shown in Figure 6.23. Figure 6.24 illustrates the mapping between one matched demand element
and its corresponding supply element, while Figure 6.25 illustrated all the matches. After a demand element
has been matched with a supply element, the cross sections are substituted. This is illustrated in Figure 6.26.
Figure 6.27 shows a close-up of the element substitution.

Figure 6.23: Supply elements and demand structure for Case Study 2 with random supply bank. Match, no
match and cut-waste elements are highlighted. Relevant supply elements are presented to the left.

Figure 6.24: Visual mapping between one demand element and its respective supply element match for
Case Study 2 with random supply bank.
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Figure 6.25: Visual mapping between all matches of demand and supply elements by using the Visual
Mapper for Case Study 2 with random supply bank.

Figure 6.26: The figures represent the matched elements in the demand structure with substituted and
original cross section, respectively, for Case Study 2 with random supply bank.

Figure 6.27: The figures represent a close-up for the matched elements in the demand structure with substi-
tuted and original cross section, respectively, for Case Study 2 with random supply bank.
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6.2.4 Case Study 2: FEM Analysis

To perform the structural analysis on Tennebekk before and after the substitution of elements, a few modi-
fications is done to the model. The six elements highlighted in Figure 6.28 are removed from the model
as these were found to be non-relevant for the load-bearing of the structure. This is further explained in
Section 6.3.

Figure 6.28: Removed elements from Tennebekk model.

The beams on the second floor in Tennebekk are interpreted as continuous when the IFC file is imported to
Grasshopper. To ensure realistic connections between beams and columns, the beams are split into smaller
segments. When this is done, all the elements are still represented under the same path, but with different
indices. The same splitting procedure is performed on the columns. In the cases where center lines do not
intersect, as described in Section 5.4.1, artificial elements are implemented. The model consists of a total
of 95 elements after the splitting process, disregarding the artificial elements.

The Tennebekk structure consists of several hollow cores. These hollow cores will in reality distribute
and transfer horizontal forces. As these are not a part of the FEM Analysis model, the distribution and
transfer of such forces need to be considered. Elements with spring cross sections are implemented across
the decks to simulate the function of hollow cores, resulting in better capture of the actual behaviour of the
frame. This is accomplished by utilising a range of integrated components in Grasshopper, that locate the
orientation of the center line axes of the beams and filter out those with the desired alignment. In this case,
it refers to the beams situated at the horizontally longest sides of the structural frame. These new elements
are connected to the intersection points between beams and columns. This can be seen in Figure 6.29.
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Perspective view. Aerial view, xy-plane.

Figure 6.29: Spring elements distributing horizontal forces in Tennebekk.

The spring cross sections are created using the "Cross Section (Karamba3D)" component which allows for
control of Ct and Cr, the translational and rotational stiffness respectively. The cross sections are restricted
against rotation but allowed translational movement. The spring cross section has no weight, minimising
the impact of the overall structural behaviour. The settings of the cross section are presented in Figure 6.30.

Figure 6.30: Spring cross section with high translational stiffness and low rotational stiffness.

Connections are modified by implementing beam joints at every relevant intersection point. This is done
using the Grasshopper components presented in Figure 6.31, where all start and end points of beam elements
are extracted. Duplicate points are removed before other non-relevant points are removed as well using "Set
Difference". The output points are assigned beam joints. The joints are free to rotate about its y- and z-axis.
Supports were designed as simply supported by restraining the translational movement, and rotation along
the z-axis.
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Figure 6.31: Locating points to locate beam joints.

The load cases and combination of loads used before and after substitution of cross sections, are presented
in Table 6.11 and Table 6.12, respectively. Loads were applied using the "Loads (Karamba3D)" compon-
ent. The settings applied were as followed: Type of load: MeshLoad Constant, Generation: Line loads,
Orientation: Global. The load is applied as a mesh using IfcSlab as a basis. The IfcSlab is converted from
IfcExtrudedAreaSolid to a brep. This is done using the "ggIFC ExtrudedAreaSolid" component. One brep
is created for the second floor and one for the roof. These are converted to meshes using the component
"Mesh Breps (Karamba3D)". To ensure proper distribution of weight and load application, it is essential
to separate the elements oriented in the x-direction from the others. This separation allows the load to be
correctly applied to these specific elements rather than affecting all the beams collectively. Consequently,
beams are sorted in lists based on their orientation, whether it is in the x-direction or the y-direction.

Table 6.11: Load cases for Case Study 2.

Load cases Value [kN/m2]
Applied self-weight 1.0
Live load 4.0
Snow load 1.4
Self-weight (+struc. dead load) 5.4

Table 6.12: Combination of load cases for Case Study 2.

No. Name Type Factor Load cases
1 ULS Ultimate 1.35 Applied self-weight

1.050 Live load
1.050 Snow load
1.350 Self-weight (+struc. dead load)

The model was subsequently assembled as described in Section 5.4.1. The cross sections and steel types
were extracted from the DataFrame and assigned to the correct "Line to Beam" component. The cross
section and steel-type data are sorted in the same order as the line elements, ensuring a smooth and seamless
assignment of these properties. An excerpt of the DataFrame with original and reuse cross sections is
presented in Figure 6.32.
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Figure 6.32: Part of the cross section DataFrame used for cross section assigning. Paths are represented
with curly brackets.

Results FEM Analysis

Key results from the structural analysis are presented in Table 6.13. The focus in this section will be on the
effect the substituted elements have on the overall structural behaviour. Further evaluation of the structural
integrity of the FEM model will be performed in Section 6.3.

Table 6.13: Key results obtained from the FEM Analysis of the Original and Reuse Structure.

Max Max Average Max bending Max axial Mass
displacement [cm] utilisation utilisation moment [kNm] force [kN] [kg]

Original 3.68 2.85 0.127 340 339 25931
Structure
Reuse 3.65 1.84 0.091 340 334 38750
Structure

The structural analysis reveals decreased utilisation in the Reuse Structure. The utilisation is presented
in Figure 6.33 in terms of the ratio between normal stresses and the yield stress for the specific material.
Upper Result Threshold is set to 100 and the Lower Result Threshold is set to 0. The decrease in utilisation
is expected as the Reuse Structure consists of elements with larger cross section areas and they will obtain
lower stresses. It is observed that the utilisation is above one, indicating that the elements exceed their stress
design capacity. This applies to several elements in both the analysis before and after substituting elements.
The reason for this can be pointed to the design of the FEM Analysis model, which will be discussed further
in the structural verification of the FEM Analysis in Section 6.3.
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Original structure. Reuse Structure.

Figure 6.33: FEM Analysis result, utilisation.

The maximum displacement is greatest for the Original Structure. This is not as expected as steel behaves
in a linear elastic manner, indicating an expected increase of deformation with the increase of load due
to increased weight. However, the difference is insignificant and does not affect the structural integrity
noteworthy.

Original structure, max = 3.68 cm, deformation
Display Scale set to 0.

Reuse Structure, max = 3.65 cm, deformation
Display Scale set to 0.

Original structure, deformation Display Scale
set to 36.

Reuse Structure, deformation Display Scale set
to 36.

Figure 6.34: FEM Analysis result, deformation.

Furthermore, the Reuse Structure exhibits similar bending moments as the Original Structure, as shown in
Figure 6.35. An increase in bending moments would not have been unrealistic as the weight of the structure
increased.
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Original structure, max = 340. Reuse Structure, max = 340.

Figure 6.35: FEM Analysis results, bending moments in [kNm]. Section Forces scale set to 0.016.

It is observed that maximum axial forces are lower in the Reuse Structure than in the Original structure.
Most columns in the Reuse Structure have greater cross section area and moment of inertia than in the
Original structure. This contributes to the distribution of axial forces over a greater area leading to a decrease
in axial stresses. This is however not the case for all columns. In the areas where there are no matched
elements and the original cross sections are used, there is minimum impact on the axial force distribution.
The axial force distribution is presented in Figure 6.36.

Original structure, max = 339. Reuse Structure, max = 334.

Figure 6.36: FEM Analysis results, axial forces in [kN]. Section Forces scale set to 0.43.

6.2.5 Case Study 2: Financial and environmental impact

The financial and environmental impact is calculated for the matches obtained from the Element Mapper
with random supply bank. The steel density, from Table 5.2, and results from Table 6.10, are used to
calculate the volume and weight of the Reuse Structure. This is presented in Table 6.14.

Table 6.14: Weight and volume of the Reuse Structure consisting of reused and raw materials for Study
Case 2 with random supply bank.

Raw material Reused material Total Reuse Structure Original structure
volume [m3] 1.5066 3.327118 5.265094 3.589327
weight [kg] 11 826.81 26 117.8763 41 330.9879 28 176.21695

Tennebekk and Buebygget are both located in Bergen in Norway. As mentioned in section Section 6.2.1,
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the coordinates in their corresponding IFC file imply otherwise. Therefore, the transportation distance from
the demolition site to the construction site is added manually. The shortest distance by road between these
locations is approximately 9 km according to Google Maps [18].

Table 6.15: Use of raw and reusable material in Reuse Structure for Case Study 2 with random supply bank.

Raw materials Reused materials
Production GWP [kg CO2] 13 955.6358 924.938804
Transportation GWP [kg CO2] 105.9682 21.06
Production cost [NOK] 792 396.27 1 749 897.712
Transportation cost [NOK] 4730.724 940.24
Valuation GWP [NOK] 9843.1228 662.199

Table 6.16: Financial and environmental impact from Case Study 2 with random supply bank.

Original Structure Reuse Structure
Production GWP [kg CO2] 33 247.6859 14 880.5746
Transportation GWP [kg CO2] 254.458 127.0782
Production cost [NOK] 1 887 806.536 2 542 293.982
Transportation cost [NOK] 11 270.486 5670.964
Valuation GWP [NOK] 23 451.5 10 505.32
Total GWP [kg CO2] 33 502.1439 15 007.6528
Total cost [NOK] 1 922 528.522 2 558 470.271

6.2.6 Case study 2: Discussion

Observations from Case Study 2 prompted valuable insights into handling IFC files from the construction
industry for reuse projects. These findings have contributed to a deeper understanding of the challenges and
considerations associated with utilising IFC data in real reuse projects.

The IFC Data Extraction proved to be effective for Case Study 2, successfully extracting the desired quant-
ities and properties, with the exception of the location information. However, during the analysis of the
IFC files a specific noteworthy observation was made. This was the assignment of non-typical beams and
columns to the IfcBeams and IfcColumns entities. As a consequence, the quantities obtained in the IFC
Data Extraction did not correspond to the values obtained in Grasshopper. This issue was resolved by fil-
tering out the small elements in Grasshopper based on their volume. Although these excluded elements had
large volumes in the DataFrame, they possessed small volumes in Grasshopper, leading to their exclusion.
Consequently, this issue did not cause wrongful mapping of elements. However, it raises the question of
potential inconsistencies that may exist in other IFC files.

Several of the utilised cross sections in Buebygget were unavailable in the "Cross Section Range" database
in Karamba3D. Random cross sections were assigned to these elements, transforming the supply bank of
Buebygget to a random supply bank. The objective of the case studies is to compare two structures rather
than precisely matching real structures, as Tennebekk and Buebygget. It is therefore justifiable to edit
the cross sections for the most efficient testing of the method. In the future development of the methods
presented in this thesis, it is essential to utilise the correct cross section areas. This can be achieved by
creating custom cross sections that accurately represent the properties of the elements and incorporating
them into the Karamba3D software. By employing these custom cross sections, it ensures precise and
reliable results that align with the characteristics of real structures.

As indicated in Table 6.9, the Reuse Structure achieved using Buebygget cross sections exhibits a total
volume that is more than twice that of the Original Structure. Likewise, the Reuse Structure employing the
random supply bank shows a volume 1.5 times that of the Original Structure, as demonstrated in Table 6.10.
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Upon analysing the elements in Tennebekk, it was noted that several brace elements were replaced with
elements possessing significantly larger cross sections. Since Buebygget did not have brace elements similar
to those in the Original Structure, there were limited alternatives available for substitution. Due to the
absence of an upper limit requirement for cross section area in the script, there is no mechanism preventing
or addressing this issue. However, if desired, an upper limit can be incorporated into the Element Mapper.

The total GWP linked to the Original Structure was more than twice the amount compared with the Re-
use Structure, suggesting a significantly more sustainable solution. However, in terms of cost, the Reuse
Structure was approximately 635 000 NOK more expensive. This cost difference is caused by the increased
weight of the Reuse Structure. The structure had approximately 1.5 times larger volume compared to the
Original Structure, leading to an increase in self-weight of around 13 tons.

As stated in Section 5.5, it is important to acknowledge that the method used to calculate the financial
and environmental impact is a simplified approach. Amongst others, specific simplifications are made to
transportation distances. In a practical reuse scenario, considerations may encompass not only the trans-
portation of materials from the demolition site to the construction site, but also transportation to and from
the fabrication site and, potentially, to and from an intermediate storage facility. Nevertheless, despite these
simplifications, the obtained results still provide valuable insights into the potential consequences of the
reuse process.

The FEM Analysis provided valuable insight into the structural behaviour of the Reuse Structure compared
with the Original Structure. The structural integrity was not significantly affected by the substitution of
elements. However, a few anomalies were observed, which can be attributed to the design of the FEM
Analysis model rather than the substitution of elements.

6.3 Verification of FEM Analysis

The following section presents a comparison between the model created using IFC in Grasshopper as the
base, and a conventionally developed model using other FEM design tools. The comparison is based on
results from the FEM Analysis on Tennebekk and a structural analysis report provided by COWI. This report
will further be referred to as the Calculation Report. The primary objective is to highlight the significant
differences and potential strengths and weaknesses of modelling with IFC as the base in Grasshopper. The
significance of this component lies in its ability to facilitate an analysis based on geometry extracted from
IFC files in a more efficient manner, compared to constructing an analysis model from the ground up.

6.3.1 Modelling

The Calculation Report presents an analysis conducted on a model with modified cross sections. Hence, the
same modifications are made to the FEM Analysis model to ensure the utmost similarity between the two.
The model is modified to have the cross section types as presented in Table 6.17. All cross section types
used in the Calculation Report is found in the "Cross Section Range Selector" component in Grasshopper,
except for the custom-made "DR 26-290" cross section. The respective elements were assigned the cross
section type HEA300 instead. All elements in the Calculation Report have the material type steel S355.
This is not the case in the IFC file as 11 elements are assigned the steel type S235. This is subsequently
changed for the modified model as well.
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Table 6.17: Substituted cross sections in modified model.

Cross section Calculation Report Cross section FEM Analysis Count
KKR 180x180x10 SHS 180x10 27
KKR 80x80x5 SHS 80x5 26
DR 26-290 HEA300 2
IPE400 IPE400 25
IPE270 IPE270 22
HEA220 HEA220 6
KKR 150x150x10 SHS 150x10 2

TOTAL 110

According to the Calculation Report, the columns in the structure are modelled as continuous beams from
bottom to top, and are simply supported. The beams have two nodes and are connected to the columns
with pinned connections. The bolts between the hollow cores and the beams on the second floor, as well as
between the roof and the beams on the roof level, serve as bracing elements. These bolts transfer the bending
moments as shear forces in the compression zone. The diagonal members are modelled as brace elements
and are simply supported. The node between two diagonals is modelled as clamped and functions as a
beam element. To ensure that the brace elements only experience tension stresses, they are assigned defined
plastic capacities. For compression, the plastic capacity is set to 0, while it is infinite for tension. This
enables the brace elements to behave in a plastic manner if subjected to compression. The software used
for analysis employs non-linear calculations to determine if a load should be transferred to the diagonals
or not. The roof is modelled using a "Cover" element, and vertical weight is applied on top of this cover.
To distribute horizontal forces to the diagonals, a "Diaphragm-Rigid Membrane" is implemented. This
function does not have any weight or vertical stiffness but possesses infinite horizontal stiffness, ensuring
the forces are distributed based on the relative stiffness of the structure [13].

The FEM Analysis incorporates the loads as specified in the Calculation Report. The load case used in the
conducted analysis is presented in Table 6.18. The load combinations applied in the Ultimate Limit State
(ULS) are given in Table 6.19. The load is applied through the use of meshes in Grasshopper, similarly to
what was done in the previous analysis in Case Study 2, Section 6.2.4. Additionally, a mesh is created for
the wind load in order for the load to be most accurately applied. The wind load mesh is created manually
using the "4Point Surface" component. The basis for this is the top and bottom points in the two outer
columns on the side of the structure where the wind load is simulated. These points are extracted and
provided as input data for the component. Subsequently, the surface is converted to mesh using "Mesh
Breps (Karamba3D)".

Table 6.18: Load case in the Verification of FEM Analysis of Tennebekk.

Load cases Value [kN/m2]
Applied self-weight 1.0
Live load 4.0
Snow load 1.4
Wind 2.0
Self-weight (+struc. dead load) 5.4
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Table 6.19: Load combinations in the Verification of FEM Analysis of Tennebekk.

No. Name Type Factor Load cases
1 ULS, wind Ultimate 0.900 Applied self-weight

0.000 Live load
0.000 Snow load
1.500 Wind load
0.900 Self-weight (+struc. dead load)

2 ULS, no wind Ultimate 1.35 Applied self-weight
1.050 Live load
1.050 Snow load
1.350 Self-weight (+struc. dead load)

To properly assign loads to the correct elements, the beams and columns are sorted accordingly into
Columns Wind, Column No Wind, Beams First Storey, Beams Second Storey, Bracing Compression and
Bracing Tension. In addition, beams are sorted based on their orientation as described in Section 6.2.4.
This is done by accessing the correct paths belonging to each element. This method of locating elements is
possible due to the Data Tree structure that is implemented from the beginning of the script.

In the Calculation Report the loads was applied on all elements except for one are, this is illustrated in
Figure 6.37. This was not taken into account in the FEM Verification model, hence potentially leading to
somewhat different results.

Figure 6.37: Load application on second floor in the Calculation Report [13].

6.3.2 Results

Key results from the FEM Analysis of modified Tennebekk are presented in Table 6.20. Load combination
number one is further referred to as LC1, and load combination number 2 is referred to as LC2.

Table 6.20: Key results obtained from the Verification of FEM Analysis of Tennebekk for LC1 and LC2.

Max Max Average Max bending Max axial Max torsional
displacement [cm] utilisation utilisation moment [kNm] force [kN] moment [kNm]

LC1 3.3 2.98 0.079 181 240 45
LC2 4.6 2.73 0.093 424 382 -

The deformation of LC1 is presented in Figure 6.38. The maximum displacement in LC1 can be observed
in the column on the right side of the figure, with translation in the horizontal direction. In the structures
to the left, the deformation is shown only in terms of colour display, while in the structure to the right, the
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structure is visually deformed. The deformation Display Scale is set to 36, Upper Result Threshold is set to
100 and Lower Result Threshold is set to 0.

Deformation Display Scale set to zero. Deformation Display Scale set to 36.

Deformation Display Scale set to zero.
Seen in the yz-plane.

Deformation Display Scale set to 36.
Seen in the yz-plane.

Figure 6.38: Deformation in LC1 in the Verification of FEM Analysis of Tennebekk. Upper Result
Threshold is set to 100 and Lower Result Threshold is set to 0.

The deformation when LC2 is applied is presented in Figure 6.39. A particularly large displacement is
observed on one of the beams located in the middle of the structure. This was not observed in the Calculation
Report. However, this particular element does not intend to be a load-bearing element, even though it is a
part of the analysis. In the Calculation Report, this element was not applied load, while in this case study
the load was applied on all beam elements.
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Deformation Display Scale set to zero. Deformation Display Scale set to 36.

Deformation Display Scale set to zero.
Seen in the yz-plane.

Deformation Display Scale set to 36.
Seen in the yz-plane.

Figure 6.39: Deformation in LC2 in the Verification of FEM Analysis of Tennebekk. Upper Result
Threshold is set to 100 and Lower Result Threshold is set to 0.

Moment about y- and z-axis, in addition to axial force distribution is presented in Figure 6.40 for LC1
and LC2. The greatest moment occurred when LC2 was applied. The maximum moment is found in the
mid-span of the beam located in the middle of the structure, Mmax = 424 kNm.

Moment diagrams, axial forces and displacement of the model presented in the Calculation Report is presen-
ted in Appendix C for comparison.
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My LC1, scale=0.016 My LC2, scale=0.016

Mz LC1, scale=0.016 Mz LC2, scale=0.016

Nx LC1, scale=0.40 Nx LC2, scale=0.40

Nx LC1, scale=0.40 Nx LC2, scale=0.40

Figure 6.40: Results from the Verification of FEM Analysis of Tennebekk.
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6.3.3 Discussion

The main differences between the FEM model in Karamba3D and in the Calculation Report is how the
intersections, diagonal members, and hollow cores are modelled. In addition the on the second floor in is
applied slightly different in the Calculation Report and in the Karamba3D model.

The Calculation Report designed the hollow cores and roof by using "Cover" and "Diaghragm- Rigid Mem-
brane". This function was in Karamba3D modelled with the implementation of horizontal elements with
spring cross sections. The elements with spring cross sections introduced stiffness and allowed for the
horizontal forces to be effectively transmitted from the columns to the beams in the structural frame. The
diagonal horizontal members provided additional stability by distributing the forces to areas with brace
elements. These serve the same purpose as the diagonals in a truss system, thereby providing additional
restraint, see principle in Figure 6.41. By incorporating elements with spring cross sections, the structural
behaviour was better captured, as the horizontal force transmission was accounted for, without explicitly
modelling the hollow cores. It provides a practical approximation of the behaviour of the structure under
wind load, allowing for a more comprehensive analysis and evaluation of its performance. Even though the
maximum horizontal displacement in the verification analysis was greater than for the Calculation report,
the method served well as an alternative.

Figure 6.41: Truss system principle.

Using spring connections or elements with spring cross sections in Karamba3D allows for great control of
flexibility and movement at the connection point of the elements. The stiffness of the spring determines the
level of restraint and the amount of displacement allowed. Parametrically controlling this value allows for
easy adaption and design of connections. This was sufficiently utilised to develop the artificial elements.
Rigid links were modelled as springs with high stiffness. The artificial members with their assigned infinite
rotational and translational stiffness allow for moments and forces to be sufficiently transferred, without
contributing to any additional effect on the structural behaviour. The implementation of artificial elements
as rigid links sufficiently connected elements from the IFC file that did not intersect when imported to
Grasshopper. The effect of the artificial elements is illustrated in Figure 6.42.
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Bending moment distribution from point load. Shear force distribution from point load.

Figure 6.42: Rigid links are modelled as springs with infinite stiffness to transfer forces between elements
that have no connection when extracted from IFC.

During the process of obtaining a connected model from IFC to Karamba3D, the columns was split in areas
were beams intersect. This splitting does however not affect the structural behaviour of the column, as
default settings in Karamba3D create fixed connections unless specified otherwise as mentioned in Sec-
tion 5.4.1. This will apply to all connections between artificial elements and their respectively connected
beams or columns, and for columns that are split at intersection points. The fully fixed connections will
restrict all degrees of freedom making them unable to rotate or translate at these locations. As a result, all
forces are transferred and therefore representing a continuous column.

The beam joints creates pinned connections, as implemented in the Calculation Report. By connecting
these at all nodes were beams intersect with columns, similar connections as in the Calculation Report is
achieved. The principle of implementing beam joints are illustrated in Figure 6.43 where a simple frame is
uniformly loaded.

Figure 6.43: The effect of fixed and pinned connections on moment diagram.

In the Calculation Report, only two brace elements were designed to handle compression forces. While the
remaining 24 brace elements were allowed tension forces. This constraint was not taken into consideration
in this FEM Verification. Hence, compression forces occurred in more than two brace elements. Most of
the brace elements did however only take tension. The maximum axial force when wind load was applied,
occurred in one of the diagonal members as presented in Figure 6.40.

The occurring compression forces in the brace elements could be assessed by manipulating the cross sec-
tions to achieve a lower moment of inertia and hence making the element more prone to buckling. This
would limit the element from distributing force, and buckle instead. The cross section of these typical
qualities are circular non-hollow ones. This could serve a similar purpose as applying plastic qualities to
members that experience compression, as in the Calculation Report.

The FEM Verification Analysis showed generally similar results as the Calculation Report, indicating that
the same abilities were assigned in Karamba3D as in the software used in the Calculation Report. However,
improved modelling of brace elements would likely improve the similarity further.
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7 Discussion

The following chapter presents a comprehensive discussion encompassing various observations and reflec-
tions made during the development of the proposed method. These insights shed light on important aspects
and may be valuable for further understanding and refinement of the method.

The IFC files used in Case Study 1 were specifically customised for this master’s thesis, with a clear un-
derstanding of their intended purpose. In Case Study 2, two IFC files from the construction industry were
employed. The IFC Data Extraction demonstrated satisfactory performance in both case studies. It success-
fully collected the desired quantities and properties of elements from IFC files using IfcOpenShell, with
the exception of the location of the structure in Case Study 2. However, observations from the case studies
and prior testing of IFC files have revealed notable inconsistencies in their data structure. Variations in
naming conventions, data structures, and relationships between elements pose challenges in constructing a
generic script that can seamlessly extract the desired information from all IFC files. Encouraging a more
standardised data structure in IFC files, regardless of company procedures or software utilised, will enhance
the efficiency of information extraction.

The IFC Data Extraction shows considerable potential and could be further developed to handle a supply
bank containing elements from various buildings, rather than being limited to a single building as it currently
is. This concept of creating a comprehensive material database holds great potential for streamlining the
process of mapping elements, leading to substantial time- and effort-savings in future reuse projects.

The creation of the DataFrame is performed using the IfcOpenShell library in Python, which is continu-
ously being developed and improved. While this development ensures advancements in functionality, it
also presents certain challenges. The frequent updates and improvements imply that the documentation
may not always be comprehensive or up-to-date, making it difficult to find solutions to specific problems.
Additionally, due to the evolving nature of IfcOpenShell, new issues and challenges often arise that have not
yet been addressed or resolved by the development team. To overcome these difficulties, seeking assistance
from online forums and discussion boards was an essential part of the extraction process. Engaging with
the community and exchanging knowledge and experiences with other users proved invaluable in finding
workarounds and solutions to issues that may not have official documentation available.

The development of the Element Mapper aimed to utilise the established Bin Packing Problem to address
multiple aspects of the reuse problem. In a potential further development of the method, notable improve-
ments to the optimisation algorithm should be examined. The current bin packing algorithm in the Element
Mapper aims to reduce the cut waste material in terms of length rather than volume. To enhance the func-
tionality of the method, it is advisable to include the consideration of volume-based cut waste in the mapping
process. Additionally, exploring optimisation objectives such as waste reduction, cost minimisation, or a
balanced combination of both, would provide valuable insights into the trade-offs involved. Furthermore, it
would enable a more comprehensive analysis of the methods’ performance and the relevance for application
in the construction industry.

In Case Study 2, it was observed that the elements used in the Reuse Structure resulted in a significantly
larger volume. Currently, the Element Mapper does not have an upper limit for matching elements based
on their cross section properties. This implies that a smaller element can be paired with a significantly
larger element in relation to cross section area. As a result, the overall weight of the structure may increase
significantly, leading to higher costs and a greater environmental impact in terms of GWP rather than if
smaller cross sections would have been used. To address this issue and optimise the outcomes in terms of
cost, GWP, and material waste reduction, it is recommended to further investigate the incorporation of an
upper limit for the cross section area.

To significantly enhance the applicability of the presented reuse method in real projects, it would be es-
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sential to expand the range of cross section types available in Karamba3D. This is necessary in order to
assure accurate results in the structural analysis. The production of a shared database or a Grasshopper
plugin containing custom-made cross sections, should ideally be created and shared within the Grasshopper
community. This collaborative approach will contribute to streamlining the process and reduce the overall
workload of incorporating custom cross sections.

Grasshopper demonstrates its efficiency as a valuable tool in the development of establishing a reuse method
of structural elements based on IFC files. As the environment is integrated with the CAD application
Rhino, this offers a visual interface that improves comprehension and visualisation of the structure. Using
an IFC-based structural analysis in Karamba3D, introduced an effective method of performing a structural
analysis without having to build the model up from scratch. This can be time-consuming and is currently
the common practice in structural engineering. The analysis model from Karamba3D was compared with a
calculation report of the same structure in order to verify the implemented method. The findings highlight
that the IFC-based model performed similarly to the results obtained in the Calculation Report. However,
certain adjustments were required in the assembled model within Karamba3D. This method presents a
promising avenue for conducting accurate structural analyses using IFC in a more generic manner.
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8 Concluding remarks

This master’s thesis proposes a method for effectively reusing structural elements in construction projects.
The method utilises IFC files to extract information on available building materials and identifies suitable
integration into new structures based on predefined requirements. The structural integrity of the construc-
tions using reused elements is ensured through a thorough structural analysis performed on an IFC-based
model in Grasshopper.

The two comprehensive case studies conducted in this master’s thesis have provided valuable insights into
the functionality and effectiveness of the proposed method. The successful extraction of material data from
IFC files has facilitated the creation of a comprehensive database of reusable elements. The mapping pro-
cess between elements has demonstrated the ability to create predefined structures by utilising a substantial
portion of reused materials while reducing cut waste.

Furthermore, the implementation of structural analysis in Karamba3D has confirmed the preservation of
structural integrity when incorporating reused elements for the case studies. The results obtained from
the analysis were compared to an external calculation report. With the level of accuracy achieved, the
implemented method has demonstrated significant potential in simplifying the analysis process by directly
utilising IFC files.

Overall, the findings of this master’s thesis demonstrate that the proposed method offers a viable approach to
reusing structural elements in construction projects. By reducing the demand for new materials, conserving
resources, and minimising environmental impacts, this method contributes to the goal of achieving a more
sustainable construction industry. Additionally, the methods introduced show great potential in streamlining
the design process of future reuse projects, making such a choice more favourable in terms of time- and cost-
effectiveness. Through further research and implementation of these methods, a more circular economy can
be promoted within the construction sector.

64



Bibliography

[1] Autodesk Inc. Revit IFC manual. Detailed instruction for handling IFC files. 2018. URL: https :
//damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213_IFC_Handbuch.pdf.

[2] I. Bertin et al. ‘Construction, deconstruction, reuse of the structural elements: The circular economy
to reach zero carbon’. In: IOP Conference Series: Earth and Environmental Science. Vol. 323. 1.
2019. DOI: 10.1088/1755-1315/323/1/012020.

[3] Jan Brütting, Gennaro Senatore and Corentin Fivet. ‘Optimization formulations for the design of low
embodied energy structures made from reused elements’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 10863 LNCS. 2018. DOI: 10.1007/978-3-319-91635-4{\_}8. URL: https://link.springer.
com/chapter/10.1007/978-3-319-91635-4_8.

[4] buildingSMART International. IFC Formats. 2023. URL: https : // technical . buildingsmart . org/
standards/ifc/ifc-formats/.

[5] buildingSMART International. IFC Specifications Database. 2023. URL: https://technical.buildingsmart.
org/standards/ifc/ifc-schema-specifications/.

[6] buildingSMART International. Industry Foundation Classes (IFC). 2023. URL: https://technical.
buildingsmart.org/standards/ifc/.

[7] BuildingSMART International Ltd. Industry Foundation Classes 4.0.2.1. 2020. URL: https://standards.
buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/.

[8] buildingSMART International Ltd. IFC GUID. URL: https://technical.buildingsmart.org/resources/
ifcimplementationguidance/ifc-guid/.

[9] Aurimas Bukauskas et al. ‘Form-Fitting strategies for diversity-tolerant design’. In: Proceedings of
IASS annual symposia. Vol. 2017. 17. 2017.

[10] Gaochuang Cai and Danièle Waldmann. ‘A material and component bank to facilitate material recyc-
ling and component reuse for a sustainable construction: concept and preliminary study’. In: Clean
Technologies and Environmental Policy 21.10 (2019). ISSN: 16189558. DOI: 10.1007/s10098-019-
01758-1.

[11] Catherine De Wolf. ‘Low Carbon Pathways for Structural Design: Embodied Life Cycle Impacts of
Building Structures’. PhD thesis. 2017.

[12] Clemens Preisinger. ‘Linking Structure and Parametric Geometry’. In: Architectural Design 83 (2013),
pp. 110–113. URL: https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1564?src=getftr.

[13] COWI. Tennebekk buss hall Calculation Report. Tech. rep. Bergen, 2023.

[14] Mauro Dell’Amico, Fabio Furini and Manuel Iori. ‘A branch-and-price algorithm for the temporal
bin packing problem’. In: Computers and Operations Research 114 (2020). ISSN: 03050548. DOI:
10.1016/j.cor.2019.104825.

[15] Entra. Erfaringsrapport ombruk KA13. Tech. rep. 2021.

[16] European Environment Agency. cradle to grave. URL: https://www.eea.europa.eu/help/glossary/
eea-glossary/cradle-to-grave.

[17] GeometryGym. URL: https://geometrygym.wordpress.com/.

[18] Google. Kronstad, Bergen til Tennebekk, 5171 Bjørndalstræ - Google Maps. URL: https://www.
google . com/maps/dir/Kronstad , +Bergen/Tennebekk , +5171+Bj%C3%B8rndalstr%C3%
A6 / @60 . 3753687 , 5 . 2162278 , 12z / data = !4m14 ! 4m13 ! 1m5 ! 1m1 ! 1s0x463cf94c19ffbe19 :
0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!
2m2!1d5.246889!2d60.363472!3e0?entry=ttu.

65

https://damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213_IFC_Handbuch.pdf
https://damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213_IFC_Handbuch.pdf
https://doi.org/10.1088/1755-1315/323/1/012020
https://doi.org/10.1007/978-3-319-91635-4{\_}8
https://link.springer.com/chapter/10.1007/978-3-319-91635-4_8
https://link.springer.com/chapter/10.1007/978-3-319-91635-4_8
https://technical.buildingsmart.org/standards/ifc/ifc-formats/
https://technical.buildingsmart.org/standards/ifc/ifc-formats/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/
https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/
https://doi.org/10.1007/s10098-019-01758-1
https://doi.org/10.1007/s10098-019-01758-1
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ad.1564?src=getftr
https://doi.org/10.1016/j.cor.2019.104825
https://www.eea.europa.eu/help/glossary/eea-glossary/cradle-to-grave
https://www.eea.europa.eu/help/glossary/eea-glossary/cradle-to-grave
https://geometrygym.wordpress.com/
https://www.google.com/maps/dir/Kronstad,+Bergen/Tennebekk,+5171+Bj%C3%B8rndalstr%C3%A6/@60.3753687,5.2162278,12z/data=!4m14!4m13!1m5!1m1!1s0x463cf94c19ffbe19:0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!2m2!1d5.246889!2d60.363472!3e0?entry=ttu
https://www.google.com/maps/dir/Kronstad,+Bergen/Tennebekk,+5171+Bj%C3%B8rndalstr%C3%A6/@60.3753687,5.2162278,12z/data=!4m14!4m13!1m5!1m1!1s0x463cf94c19ffbe19:0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!2m2!1d5.246889!2d60.363472!3e0?entry=ttu
https://www.google.com/maps/dir/Kronstad,+Bergen/Tennebekk,+5171+Bj%C3%B8rndalstr%C3%A6/@60.3753687,5.2162278,12z/data=!4m14!4m13!1m5!1m1!1s0x463cf94c19ffbe19:0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!2m2!1d5.246889!2d60.363472!3e0?entry=ttu
https://www.google.com/maps/dir/Kronstad,+Bergen/Tennebekk,+5171+Bj%C3%B8rndalstr%C3%A6/@60.3753687,5.2162278,12z/data=!4m14!4m13!1m5!1m1!1s0x463cf94c19ffbe19:0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!2m2!1d5.246889!2d60.363472!3e0?entry=ttu
https://www.google.com/maps/dir/Kronstad,+Bergen/Tennebekk,+5171+Bj%C3%B8rndalstr%C3%A6/@60.3753687,5.2162278,12z/data=!4m14!4m13!1m5!1m1!1s0x463cf94c19ffbe19:0x392be3a8a92fdbde!2m2!1d5.3448942!2d60.3771533!1m5!1m1!1s0x463cfb9feffd2eb7:0x1990fc1b19cc9f30!2m2!1d5.246889!2d60.363472!3e0?entry=ttu


[19] Grønland Stein Erik. ‘Kostnadsmodeller for transport og logistikk’. In: (2022). URL: https://www.
toi.no/getfile.php?mmfileid=73913.

[20] Linnea Harala et al. ‘Industrial ecosystem renewal towards circularity to achieve the benefits of reuse
- Learning from circular construction’. In: Journal of Cleaner Production 389 (Feb. 2023), p. 135885.
ISSN: 0959-6526. DOI: 10.1016/J.JCLEPRO.2023.135885.

[21] Vilde Høydal and Hanna Walter. ‘Ombruk av byggematerialer og - produkter i et bærekraftper-
spektiv’. PhD thesis. NTNU, 2020.

[22] Eleni Iacovidou and Phil Purnell. Mining the physical infrastructure: Opportunities, barriers and
interventions in promoting structural components reuse. 2016. DOI: 10.1016/j.scitotenv.2016.03.
098.

[23] IFC Certified Software - buildingSMART International. URL: https ://www.buildingsmart .org/
compliance/software-certification/certified-software/.

[24] IfcOpenShell Contributors. IfcOpenShell 0.7.0 documentation. 2022. URL: https://blenderbim.org/
docs-python/index.html.

[25] IfcPatch - IfcOpenShell 0.7.0 documentation. URL: https://blenderbim.org/docs-python/ifcpatch.
html.

[26] Eg Coffman Jr, M.R. Garey and Ds Johnson. ‘Approximation algorithms for bin packing: A survey’.
In: m (1996). ISSN: 1098-6596. URL: https://www.labri.fr/perso/eyraud/pmwiki/uploads/Main/
BinPackingSurvey.pdf.

[27] Karamba3D. Karamba3D. 2022. URL: https://manual.karamba3d.com/3-in-depth-component-
reference/3.3-cross-section/3.3.3-spring-cross-sections.

[28] McNeel Europe. food4Rhino. 2023. URL: https://www.food4rhino.com/en.

[29] Linfeng Mei and Qian Wang. Structural optimization in civil engineering: A literature review. 2021.
DOI: 10.3390/buildings11020066.

[30] Norsk Stål AS. Norsk stål. 2022. URL: https://www.norskstaal.no/.

[31] Norwegian Institute of Bioeconomy Research Norwegian Environment Agency Statistics Norway.
‘Greenhouse Gas Emissions 1990- 2018, National Inventory Report’. In: (). URL: https://www.
miljodirektoratet.no/globalassets/publikasjoner/m1643/m1643.pdf.

[32] Martin N. Nwodo and Chimay J. Anumba. A review of life cycle assessment of buildings using a
systematic approach. 2019. DOI: 10.1016/j.buildenv.2019.106290.

[33] OECD. Organisation for Economic Co-operation and Development. URL: https://www.oecd.org/
norway/.

[34] Robert McNeel & Associates. Rhinoceros. 2023. URL: https://www.rhino3d.com/.

[35] Shahrzad Saremi, Seyedali Mirjalili and Andrew Lewis. ‘Grasshopper Optimisation Algorithm: The-
ory and application’. In: Advances in Engineering Software 105 (2017). ISSN: 18735339. DOI: 10.
1016/j.advengsoft.2017.01.004.

[36] Patricia Schneider-Marin and Werner Lang. ‘Environmental costs of buildings: monetary valuation
of ecological indicators for the building industry’. In: International Journal of Life Cycle Assessment
25.9 (2020). ISSN: 16147502. DOI: 10.1007/s11367-020-01784-y.

[37] A. van Stijn et al. ‘A Circular Economy Life Cycle Assessment (CE-LCA) model for building com-
ponents’. In: Resources, Conservation and Recycling 174 (2021). ISSN: 18790658. DOI: 10.1016/j.
resconrec.2021.105683.

[38] United Nations Environment Programme. Global Status Report for Buildings and Construction.
Tech. rep. 2022. URL: www.globalabc.org..

66

https://www.toi.no/getfile.php?mmfileid=73913
https://www.toi.no/getfile.php?mmfileid=73913
https://doi.org/10.1016/J.JCLEPRO.2023.135885
https://doi.org/10.1016/j.scitotenv.2016.03.098
https://doi.org/10.1016/j.scitotenv.2016.03.098
https://www.buildingsmart.org/compliance/software-certification/certified-software/
https://www.buildingsmart.org/compliance/software-certification/certified-software/
https://blenderbim.org/docs-python/index.html
https://blenderbim.org/docs-python/index.html
https://blenderbim.org/docs-python/ifcpatch.html
https://blenderbim.org/docs-python/ifcpatch.html
https://www.labri.fr/perso/eyraud/pmwiki/uploads/Main/BinPackingSurvey.pdf
https://www.labri.fr/perso/eyraud/pmwiki/uploads/Main/BinPackingSurvey.pdf
https://manual.karamba3d.com/3-in-depth-component-reference/3.3-cross-section/3.3.3-spring-cross-sections
https://manual.karamba3d.com/3-in-depth-component-reference/3.3-cross-section/3.3.3-spring-cross-sections
https://www.food4rhino.com/en
https://doi.org/10.3390/buildings11020066
https://www.norskstaal.no/
https://www.miljodirektoratet.no/globalassets/publikasjoner/m1643/m1643.pdf
https://www.miljodirektoratet.no/globalassets/publikasjoner/m1643/m1643.pdf
https://doi.org/10.1016/j.buildenv.2019.106290
https://www.oecd.org/norway/
https://www.oecd.org/norway/
https://www.rhino3d.com/
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1007/s11367-020-01784-y
https://doi.org/10.1016/j.resconrec.2021.105683
https://doi.org/10.1016/j.resconrec.2021.105683
www.globalabc.org.


Appendix

A Grasshopper Files

A case1_mapper_and_fem_analysis.gh

B case2_mapper_buebygget_cross_section.gh

C case2_mapper_random_cross_section.gh

D case2_fem_analysis.gh

E verification_fem_analysis.gh

F Python component in Grasshopper, Element Mapper

""" Provides a scripting component.
Inputs:

demand: testsetste
y: The y script variable

Output:
a: The a output variable """

__author__ = "Eier"
__version__ = "2023.02.01"

import rhinoscriptsyntax as rs
import ghpythonlib.treehelpers as th
import Rhino

""" METHODS """

def tree2lol(input_tree):
# https :// developer.rhino3d.com/guides/rhinopython/grasshopper -datatrees -and -

python/ ]
lol =[]
for i in range(input_tree.BranchCount):

sublist = []
branchPath = input_tree.Path(i)
branchList = input_tree.Branch(i)
for j in range(branchList.Count):

sublist.append(branchList[j])
lol.append(sublist)

return lol

def lol2tree(input_lol):
# https :// developer.rhino3d.com/guides/rhinopython/grasshopper -datatrees -and -

python/
tree = th.list_to_tree(input_lol , source =[0 ,0])
return tree

""" INPUT """

# Turn to list of lists
demand_list = tree2lol(demand)
supply_list = tree2lol(supply)
supply_list_original = tree2lol(supply)
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# Add original index (branch path) because later we delete some
[demand_list[i]. append(i) for i in range(len(demand_list))]
[supply_list[i]. append(i) for i in range(len(supply_list))]
[supply_list_original[i]. append(i) for i in range(len(supply_list_original))]
a = lol2tree(demand_list)

""" CALCULATION """

mapping_id = []
logs = []

total_length_demand = 0 #Total length of all demand elements (matched and unmatched
)

total_volume_demand= 0 #Total volume of all demand elements (matched and unmatched)

total_length_supply = 0 #Total length of all supply elements (matched and unmatched
)

total_volume_supply= 0 # Total volume of all supply elements (matched and unmatched
)

matched_length_demand = 0 #Total length of demand elements that have matched
unmatched_length_demand= 0 #Total length of demand elements that have not been

matched

matched_volume_demand = 0 #Total volume of demand elements that have matched
unmatched_volume_demand =0 #Total volume of demand elements that have not been

matched

matched_length_supply = 0 #The total length of all supply elements that have been
matched (includes the cut_waste)

total_used_volume_supply = 0 #The total volume of all supply elements that have
been matched (includes the cut_waste)

no_match_indices = []
matched_indices =[]
used_supply_indices = []
duplicate_indexes =[]

nr_demand_elements =0
nr_supply_elements =0

#Total demand length and volume
for i in range(len(demand_list)):

if demand_list[i][5]==" Steel":
nr_demand_elements +=1
total_length_demand +=int(demand_list[i][0])
total_volume_demand +=int(demand_list[i][0]* demand_list[i][1]) *(10**( -9))

#Total supply length and volume
for j in range(len(supply_list)):

if supply_list[j][5]==" Steel":
nr_supply_elements +=1
total_length_supply +=int(supply_list[j][0])
total_volume_supply +=int(supply_list[j][0]* supply_list[j][1]) *(10**( -9))

#Matching process
for i in range(len(demand_list)):

match=False
for j in range(len(supply_list)):
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if demand_list[i][0] <= supply_list[j][0] and 0.8*( demand_list[i][1]) <=
supply_list[j][1] and demand_list[i][5]== supply_list[j][5]==" Steel"
and 0.8*( demand_list[i][8]) <= supply_list[j][8]:
match=True
mapping_id.append(supply_list[j][-1])
matched_length_demand +=int(demand_list[i][0])
matched_volume_demand +=(int(( demand_list[i][1])*( demand_list[i][0])))

*(10**( -9))
unique_indices=set([index for index in mapping_id if index is not None

])
dup_indexes =[index for index in mapping_id if mapping_id.count(index) >

1 and index is not None]
duplicate_indexes=list(set(dup_indexes)) #gives us the indexes in the

supply list of the elements used for more than one demand element.
used_supply_indices = (unique_indices)

break

if match:
if plural_assign:

logs.append ("#"+ str(i)+" Found element #"+str(j)+" and utilized only "+
str(demand_list[i][0]/1000) +"m of "+str(supply_list[j][0]/1000) +"m
.")

supply_list[j][0] = supply_list[j][0] - demand_list[i][0]
matched_indices.append(demand_list[i][-1])

else:
print ("null")
del supply_list[j]
logs.append ("#"+ str(i)+" Found element #"+str(j)+" and utilized fully.

Demand: L="+ str(demand_list[i][0]/1000) +"m.")
else:

unmatched_length_demand +=int(demand_list[i][0])
print ("null")
mapping_id.append(None)
unmatched_volume_demand +=(int(( demand_list[i][1])*( demand_list[i][0])))

*(10**( -9))
no_match_indices.append(demand_list[i][-1])
logs.append ("#"+ str(i)+" Not found. Demand: L="+str(demand_list[i][0]/1000)

+"m.")

matched_demand_lengths =[]
cut_waste_length= []
cut_waste_volume =[]

for j in range(len(supply_list)):
matched_demand_length=sum(demand_list[i][0] for i in range(len(demand_list)) if

mapping_id[i]== supply_list[j][-1])
matched_demand_lengths.append(matched_demand_length)

for i in range (len(supply_list_original)):
if (matched_demand_lengths[i] != 0):

cut_waste_length.append(supply_list_original[i][0] - matched_demand_lengths
[i])

else:
cut_waste_length.append (0)

for i in range(len(supply_list_original)):
cut_waste_volume.append(cut_waste_length[i]* supply_list_original[i

][1]*(10**( -9)))

69



#Total cut -waste
total_cut_waste_volume=sum(cut_waste_volume)
total_cut_waste_length=sum(cut_waste_length)

for k in used_supply_indices:
matched_length_supply +=int(supply_list_original[k][0])
total_used_volume_supply +=(( int(supply_list_original[k][1]))*(int(

supply_list_original[k][0])))*(10**( -9))

nr_used_supply_elements=len(unique_indices)
nr_matched_demand=len(matched_indices)

""" OUTPUT """

mapping_id = lol2tree(mapping_id)

B Visual Studio Code

A IFC Data Extraction

#IFC Data Extraction

#Import packages
import pandas as pd
import ifcopenshell
import ifcopenshell.geom
import ifcopenshell.util.unit
import ifcopenshell.util.shape
import ifcopenshell.util.element

#Store IFC file as a variable
ifc_file = ifcopenshell.open(r"ifc_path.ifc")

#Settings
settings=ifcopenshell.geom.settings ()
settings.set(settings.DISABLE_OPENING_SUBTRACTIONS , True)

#Units
unit_scale=ifcopenshell.util.unit.calculate_unit_scale(ifc_file)

global_unit_assignments = ifc_file.by_type (" IfcUnitAssignment ")
global_length_unit = [u for ua in global_unit_assignments for u in ua.Units if u.

is_a() in ('IfcSIUnit ', 'IfcConversionBasedUnit ') and u.UnitType=='LENGTHUNIT
'][-1]

#print(global_length_unit)

global_volume_unit = [u for ua in global_unit_assignments for u in ua.Units if u.
is_a() in ('IfcSIUnit ', 'IfcConversionBasedUnit ') and u.UnitType=='VOLUMEUNIT
'][-1]

#print(global_volume_unit)

global_area_unit = [u for ua in global_unit_assignments for u in ua.Units if u.is_a
() in ('IfcSIUnit ', 'IfcConversionBasedUnit ') and u.UnitType=='AREAUNIT '][-1]

#print(global_area_unit)

global_mass_unit = [u for ua in global_unit_assignments for u in ua.Units if u.is_a
() in ('IfcSIUnit ', 'IfcConversionBasedUnit ') and u.UnitType=='MASSUNIT '][-1]

#print(global_mass_unit)
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#Extract IfcBeams and IfcColumns
LB_elements = []
for element_type in ['IfcBeam ','IfcColumn ']:

LB_elements.extend(ifc_file.by_type(element_type))

quantites =[]
for element in LB_elements:

elem = ifcopenshell.geom.create_shape(settings , element)

#psets = ifcopenshell.util.element.get_psets(element , qtos_only=True) #quantity
sets

#psets = ifcopenshell.util.element.get_psets(element) #property sets

#Quantites
volume=ifcopenshell.util.shape.get_volume(elem.geometry)
x=ifcopenshell.util.shape.get_x(elem.geometry) /unit_scale
y=ifcopenshell.util.shape.get_y(elem.geometry) /unit_scale
z=ifcopenshell.util.shape.get_z(elem.geometry) /unit_scale

guid=element.GlobalId
name=element.Name
owner_history=element.OwnerHistory
moment_of_interia=float("nan")
object_type=element.ObjectType

#Material
#material=ifcopenshell.util.element.get_material(element , should_skip_usage=

True)
#material_name=material.Name

material = None
if element.HasAssociations:

for association in element.HasAssociations:
# Check if the association is of type IfcRelAssociatesMaterial
if association.is_a(" IfcRelAssociatesMaterial "):

# Get the associated material
if association.RelatingMaterial:

if hasattr(association.RelatingMaterial , "Name"):
material = association.RelatingMaterial.Name

break

if element.is_a(" IfcBeam "):
cross_section_area =( volume/ x) *1000 #m^2
length= x #mm
height= z #mm
width= y #mm

elif element.is_a(" IfcColumn "):

cross_section_area =( volume/z) *1000 #m^2
length= z #mm
height=y #mm
width= x #mm

#GEOLOCATION
postal_address=ifc_file.by_type (" Ifcpostaladdress ")
site=ifc_file.by_type (" IfcSite ")
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for j in postal_address: #Note: The name of the attribute may not neccessarily
correspond to the string or value attached
region = j.Region if hasattr(j, "Region ") else None
addresslines = j.AddressLines if hasattr(j, "AddressLines ") else None
country = j.Country if hasattr(j, "Country ") else None
postal_code = j.PostalCode if hasattr(j, "PostalCode ") else None
postal_box = j.PostalBox if hasattr(j, "PostalBox ") else None
town= j.Town if hasattr(j, "Town") else None

#address_attributes=postal_address [0]. get_info ().keys()
#site_attributes=site [0]. get_info ().keys()

location =[region , postal_code , country]
location_str =",". join(location)

"""
if all(item is None for item in location):

location_str = "" # Assign an empty string if all elements are None. No
location assigned.

else:
location_str = ",".join(str(item) if item is not None else "" for item in

location)
"""

for s in site:
long = s.RefLongitude if hasattr(s, "RefLongitude ") else None
lat = s.RefLatitude if hasattr(s, "RefLatitude ") else None
elev = s.RefElevation if hasattr(s, "RefElevation ") else None
ad = s.SiteAddress if hasattr(s, "SiteAddress ") else None

if long:
long_float = long [0] + (long [1] / 60) + (long [2] / 3600) + long [3] /

(3600 * 1000000)

if lat:
lat_float = lat[0] + (lat [1] / 60) + (lat[2] / 3600) + lat [3] / (3600 *

1000000)

#Add desired quantites and properties to the DataFrame
element_dict ={" Guid": guid , "Name": name , "Material ": material , "Length [mm]":

length ," Height [mm]": height , "Width [mm]": width ,"Cross section area [m
^2]": cross_section_area , "Volume [m^3]": volume , "Cross section name":
object_type ," Location ": location_str , "Latitude ":lat_float , "Longitude ":
long_float}

quantites.append(element_dict)

elements_df = pd.DataFrame(quantites)

#Export DataFrame to Excel
elements_df.to_excel(r"desired_excel_pat.xlsx")

B IfcPatch

import ifcopenshell
import ifcpatch

ifc_path = r"C:\Users\elisemun\Documents\GitHub\vsc_test \18030 _Modell_RIB_Som
Bygget.ifc"

ifc_file = ifcopenshell.open(ifc_path)
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output = ifcpatch.execute ({
"input": ifc_path ,
"file": ifcopenshell.open(ifc_path),
"recipe ": "ExtractElements",
"arguments ": [". IfcBeam |. IfcColumn"],

})
ifcpatch.write(output , "Desired_name_of_new_IFC.ifc")
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C Excerpt from Calculation Report

My LC1 Mz LC1

Nx LC1 Nx LC2

Nx LC1 Displacement, LC1

Figure C.1: Results from the Calculation Report.
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