
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Vegard Øyre
Lars Olav S. Toppe

Integrating Finite Element Method
with Solid Elements in Algorithms-
Aided Design for the Conceptual
Phase of Projects

Master’s thesis in Civil and Environmental Engineering
Supervisor: Associate Professor Marcin Luczkowski
Co-supervisor: PhD Candidate Sverre Magnus Haakonsen and
Research Scientist August Johansson
June 2023

Vegard Øyre
Lars Olav S. Toppe

Integrating Finite Element Method
with Solid Elements in Algorithms-
Aided Design for the Conceptual Phase
of Projects

Master’s thesis in Civil and Environmental Engineering
Supervisor: Associate Professor Marcin Luczkowski
Co-supervisor: PhD Candidate Sverre Magnus Haakonsen and
Research Scientist August Johansson
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering
NTNU- Norwegian University of Science and Technology

MASTER THESIS 2023

SUBJECT AREA:

Structural Engineering

DATE:

09/06/2023

NO. OF PAGES:

viii + 90

TITLE:
Integrating Finite Element Method with Solid Elements in Algorithms-Aided
Design for the Conceptual Phase of Projects

Integrering av Elementmetode med Volumelementer i Algorithms-Aided Design for
Konseptfasen av Prosjekter

BY:

Lars Olav Toppe
Vegard Øyre

RESPONSIBLE TEACHER: Associate Professor Marcin Luczkowski.

SUPERVISORS: Associate Professor Marcin Luczkowski, PhD Candidate Sverre Magnus Haakonsen and
 Research Scientist August Johansson.

CARRIED OUT AT: Department of Structural Engineering, Norwegian University of Science and Technology.

SUMMARY:
This thesis investigates the potential of using the Finite Element Method (FEM) with solid elements in the
conceptual project phase. Through the Algorithm-Aided Design (AAD) environment Grasshopper from the
Computer-Aided Design application Rhinoceros, the opportunities of achieving results comparable with the
commercial FEM software Abaqus are explored.

Two main methods for solving structural FEM problems are developed in the Grasshopper environment. One
method solves the problem by matrix algebra, where two different FEM plugins are developed. The first
plugin is developed entirely by the authors of this thesis, while the other plugin named FErret is already
constructed, and thus developed further. The expansion of the second plugin involves the implementation of
orthotropic materials, as well as facilitating interaction between parts and materials in one single model.
For the second method, which utilizes Partial Differential Equations (PDEs), a plugin is developed to examine
if there lies a larger potential for this approach to the problem. The plugin utilizes already existing code inside
the FEniCSx platform but is to be considered new in the Grasshopper environment.

Both developments of FErret and FEniCSx reveal promising results. FErret can solve Finite Element
problems that combine interacting components of both isotropic and orthotropic materials. On the other hand,
FEniCSx demonstrates remarkable potential with a commendably low time consumption while maintaining a
high level of accuracy. For both plugins, the meshing procedure of the geometry stands out as the most
challenging problem for efficiently achieving satisfactory results.

Generally, utilizing FEM within an AAD environment during a project’s conceptual phase can significantly
enhance the efficiency and accuracy of the process. FEM can aid in decision-making inside an environment
where geometries and properties are easily and rapidly modified while providing satisfactory results for
complex problems in real-time.

ACCESSIBILITY

OPEN

Preface

This thesis marks the completion of our Master of Science degree in Structural Engineering at the
Department of Structural Engineering at the Norwegian University of Science and Technology.

Our thesis is motivated by the shared interest in enhancing collaboration between architects and
engineers, aiming to make them work closer in the design process. Through the Minor program in
Architecture at NTNU, we have both gained a deeper understanding of the importance of creating
structures that unite structural functionality and visual form. We hope this thesis can contribute to
designing secure and meaningful constructions in the future.

Acknowledgments

Our supervisor, Marcin Luczkowski, and co-supervisors, Sverre Magnus Haakonsen and August
Johannson, deserve our sincere appreciation for their invaluable guidance throughout the comple-
tion of our master’s thesis. We extend our gratitude to the Minor program team and the Conceptual
Structural Design Group at NTNU for their inspiring lectures and courses, which have significantly
contributed to our understanding and passion for the subject.

Lastly, we would like to express our appreciation to the teachers, fellow students, friends, and
family for engaging in meaningful discussions and providing motivation throughout our years at
NTNU. The exchange of ideas and perspectives within the academic community has played a
crucial role in our personal and intellectual growth.

Trondheim
June 9, 2023

Lars Olav S. Toppe Vegard Øyre

iii

Abstract

This thesis investigates the potential of using the Finite Element Method (FEM) with solid ele-
ments in the conceptual project phase. Through the Algorithms-Aided Design (AAD) Environ-
ment Grasshopper from the Computer-Aided Design application Rhinoceros, the opportunities of
achieving results comparable with the commercial FEM software Abaqus are explored. The thesis
contains six case studies targeted to resolve the following research question.

What are the opportunities and challenges associated with implementing Finite Element Method
analysis using solid elements during the conceptual phase of projects, through the use of an

Algorithms-Aided Design environment?

To answer the research question, two main methods of solving structural FEM problems are de-
veloped and applied in the six case studies. One method solves the problem by matrix algebra,
where two different FEM plugins are developed for the Grasshopper environment. The first plu-
gin is developed entirely by the authors of this thesis, while the other plugin, FErret, is already
constructed and thus developed further. The expansion of the second plugin involves the imple-
mentation of orthotropic materials, as well as facilitating interaction between parts and materials
in one single model.

For the second method, which utilizes partial differential equations to solve the problem, another
plugin is developed to investigate if there lies a larger potential for this approach to the prob-
lem. The plugin utilizes existing code inside the FEniCSx platform but is considered new in the
Grasshopper Environment.

Both developments of FErret and FEniCSx reveal promising results. FErrret can solve Finite Ele-
ment problems that combine interacting components of both isotropic and orthotropic materials.
On the other hand, FEniCSx demonstrates remarkable potential with a commendably low time
consumption while maintaining high accuracy. For both plugins, the meshing procedure of the
geometry stands out as the most challenging problem for efficiently achieving satisfactory results.

Generally, utilizing FEM within an AAD environment during a project’s conceptual phase can
significantly enhance the efficiency and accuracy of the process. FEM can aid decision-making in
an environment where geometries and properties are easily and rapidly modified while providing
satisfactory results for complex problems in real-time.

v

Sammendrag

Denne masteroppgaven utforsker potensialet i å bruke Elementmetoden (FEM) med volumele-
menter under den konseptuelle fasen i et prosjekt. Ved hjelp av Grasshopper, et Algorithms-Aided
Design (AAD)-verktøy som en integrert del av det dataassisterte konstruksjonsprogrammet Rhino-
ceros, undersøkes mulighetene for å oppnå resultater som er sammenlignbare med den kommer-
sielle FEM-programvaren Abaqus. Masteroppgaven inneholder seks case-studier med målsetting
om å besvare følgende problemstilling.

Hva er mulighetene og utfordringene knyttet til implementering av Elementanalyse med
volumelementer under konseptfasen i prosjekter, gjennom bruk av et Algorithms-Aided

Design-miljø?

For å besvare problemstillingen er to hovedmetoder for å løse konstruksjonsrelaterte FEM-problem
utviklet og brukt i de seks case-studiene. I den ene metoden baserer løsningen seg på matriseop-
erasjoner, der to programvareutvidelser er utviklet for Grasshopper-miljøet. Den første utvidelsen
er utviklet av oppgavens forfattere i sin helhet, mens den andre utvidelsen, kalt FErret, er allerede
etablert og derfor kun videreutviklet. Denne videreutviklingen omhandler implementering av or-
totrope materialer, samt tilrettelegging for samspill mellom forskjellige deler og materialer i en og
samme modell.

Den andremetoden bruker partielle differensialligninger for å løse problemet. En programvareutvidelse
er utviklet for å kartlegge potensialet for denne måten å håndtere problemet på. Denne utvidelsen
bruker allerede eksisterende programvarekode innen FEniCSx-plattformen, men betraktes som ny
innen Grasshopper-miljøet.

Videreutviklingen av både FErret og FEniCSx viser lovende resultater. FErret er i stand til å løse
FEM-problemer som kombinerer komponenter bestående av både isotrope og ortotrope materialer.
På den andre siden viser FEniCSx et bemerkelsesverdig potensial med imponerende lav tidsbruk
til et høyt nøyaktighetsnivå. For begge utvidelsene er prosedyren for å lage et godt mesh av geo-
metrien den største utfordringen for å oppnå et tilfredsstillende resultat på en effektiv måte.

Bruken av FEM i et AAD-miljø under konseptfasen av et prosjekt kan utvilsomt øke effektiviteten
og nøyaktigheten av prosessen. FEM kan bistå i avgjørelser gjennom et miljø der geometri og
egenskaper enkelt lar seg endre samtidig somman oppnår tilfredsstillende resultater for komplekse
problem i sanntid.

vii

Glossary

AAD Algorithms-Aided Design, is the use of algorithms to create, modify, analyze,
and optimize a design.

BC Boundary Conditions are necessary constraints for solving the structural prob-
lem.

BREP Boundary REPresentations represents geometry by defining the boundaries of
its volume.

CAD Computer-Aided Design uses computer software to create a design.
DOFs Degrees Of Freedom are the independent variables that define the position and

possible motion of a system.
FEA Finite Element Analysis is an analysis using the Finite Element Method to ob-

tain the results of a problem.
FEM Finite ElementMethod is amethod of dividing a structure into smaller parts and

solving differential equations numerically to obtain the solution to the problem.
GH Grasshopper is a visual programming language inside the Rhinoceros CAD

software.
HEX8 Hexehedral element with 8 nodes.
HEX20 Hexehedral element with 20 nodes.
IDE Integrated Development Environment is an application that provides help to

the programmer to create software code efficiently.
PVW Principle of Virtual Work is a method that utilizes hypothetical displacements

to obtain the behavior of a structure.
TET4 Tetrahedral element with 4 nodes.
TET10 Tetrahedral element with 10 nodes.

viii

Table of Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Question . 3

1.3 Structure of the Thesis . 3

2 Theory 4

2.1 Finite Element Method . 4

3 Software 15

3.1 Rhino Grasshopper . 15

3.2 Visual Studio . 15

3.3 Visual Studio Code . 16

3.4 Abaqus/CAE . 16

3.5 Ubuntu . 16

4 Methods 17

4.1 Plugin for 8-node Hexahedral Solid Elements 17

4.2 Plugin for Hexahedral and Tetrahedral Solid Elements 22

4.3 Development towards Orthotropic Materials . 28

4.4 Development towards Combining Materials . 29

4.5 Development of FEniCSx . 30

5 Case Studies 36

5.1 Case Study 1: Verifying the PreFErret Plugin 36

5.2 Case Study 2: Verifying the Development towards Orthotropic Materials 41

5.3 Case Study 3: Verifying the Development towards Combining Materials 48

5.4 Case Study 4: Analyzing Timber Elements from 3D-scanned House with FErret . 56

5.5 Case Study 5: Verifying the Implementation of FEniCSx in Grasshopper 66

5.6 Case Study 6: Analyzing Complex Geometry with FEniCSx 73

ix

6 Discussion 82

6.1 FErret and FEniCSx . 82

6.2 Meshing Challenges . 85

7 Conclusion 87

8 Further work 88

Bibliography 89

Appendix 90

A GitHub Repositories 90

B Videos 90

x

1 Introduction

This thesis is written for the Conceptual Structural Design Group at NTNU. CSDG’s research is
based on the collaboration and working methods between architects and structural engineers dur-
ing the design process. The group highlights that conceptual structural design should do more than
just safely carry loads. The structures should also be meaningful, beautiful, and engaging. The
objective of this master thesis is to develop solutions that enhance the level of detail in the struc-
tural design during the conceptual phase. This could help create structures that integrate structural
functionality and visual form into a meaningful, engaging whole.

1.1 Background

The traditional approach to project resolution involves the architect being responsible for design
while the engineer is assigned calculations. The engineer’s role is to ensure the feasibility of the ar-
chitect’s output and suggest modifications if necessary. Throughout the project phase, the architect
sends design solutions to be verified by the engineer. In return, the engineer performs calculations
and provides updated information. This iterative exchange of information continues during the pro-
ject. Figure 1.1.1 illustrates the typical relationship between cost and design freedom during the
design process. In the early stages, minimal effort has been invested in the project. Consequently,
the costs of making changes are minimal, allowing for greater design freedom. However, as the
project progresses, the cost of making changes increases, reducing the possibility of making modi-
fications. Such a design methodology leads to projects where time and budget constraints limit
the architect’s and the engineer’s ability to create solutions that unify architectural and structural
design well.

Figure 1.1.1: Relationship between cost and design freedom in a project (Synthesis, 2021).

In typical projects, the willingness to explore new ideas and make significant changes is often
greater when they can be easily implemented. One solution to address this is the creation of a di-
gital prototype. Two possible production methods for generating digital prototypes are Computer-
Aided Design (CAD) and Algorithms-Aided Design (AAD). These methods are described in the
following.

1

Computer-Aided Design
CAD is software specifically designed for drawing and documentation in both 2D and 3D design,
incorporating photorealistic rendering techniques that enable the simulation of real-world func-
tionality. This significantly enhances documentation accuracy, automates the processes, facilitates
rapid modifications, handles complex geometries, and promotes easier collaboration with partners
(Suzuki, 2021). In the early stages, quickly adjustable models can be produced, allowing for rapid
generation of multiple design proposals. Consequently, architects and engineers can collaborat-
ively work on the design, resulting in solutions that integrate architecture and construction better.
However, a challenge with this method is that design solutions need to be transferred to Finite
Element Analysis (FEA) software to conduct calculations. Constructing a FEM model can be
time-consuming, making the design process somewhat cumbersome when utilizing CAD.

Algorithms-Aided Design
AAD has gained popularity as a method for producing digital prototypes over the last few years.
With AAD, the traditional graphical representation of a design is transformed into an algorithm
that can generate the design. Instead of manually drawing lines and objects fixed in their assigned
positions, they can be created and modified in real-time by adjusting the parameters of the al-
gorithm’s input. This modeling approach enables the rapid generation of numerous design propos-
als. Moreover, solutions must not necessarily be finalized, as they can be easily modified later by
adjusting the input parameters (Tedeschi, 2014). By transitioning from a manual design approach
to an algorithmic-based approach, it is natural to consider incorporating Finite Element Analysis
(FEA) into the design process. Shifting the entire design methodology to an AAD environment
can enhance the efficiency of the design while also opening possibilities for improved solutions.

For AAD-based FEA, existing software is already available, primarily developed based on beam
and shell elements. Beam elements are suitable for modeling columns, beams, and trusses, while
shell elements workwell for planar and curved surfaces such as walls, slabs, and roof constructions.
However, beam and shell elements have limitations regarding highly complex geometries. If a
connection or a 3D-scanned object with irregularities on its surface should be modeled correctly,
solid elements are required. The challenge with solid elements is that they can be computationally
costly, especially as the mesh becomes finer or when higher-order elements are used. In an AAD
environment, it is crucial for information and calculations to be updated in real-time. Developing
FEA software within the AAD environment or transferring data from the AAD environment to
an FEA program and then back to the AAD environment are possible solutions for implementing
solid elements.

2

1.2 Research Question

This master’s thesis aims to answer the following research question:

What are the opportunities and challenges associated with implementing Finite Element Method
analysis using solid elements during the conceptual phase of projects, through the use of an

Algorithms-Aided Design environment?

By exploring this research question, we aim to find a solution that enhances efficiency and work-
flow during the conceptual phase of a project. By examining different approaches for integrating
FEA and AAD environments, we seek to develop a program capable of performing detailed FEM
modeling with various material properties in real-time. This advancement would improve the col-
laboration between architects and engineers during the design phase, allowing both parties to have
a more significant stake in decision-making processes. Additionally, it would enable more accurate
FEM analyses of 3D-scanned models and provide correct material behavior in the connections of
a structure. Consequently, reclaimed material documentation would improve, and the possibility
of building more complex geometries will be more achievable.

To address the research question, a FEM plugin for solid elements needs to be developed within
an AAD system such as Grasshopper (GH). To handle various geometries, the program should be
capable of managing both hexahedral and tetrahedral elements with shape functions of different
orders. To account for different materials and their interactions, the programmust incorporate vari-
ous material properties as input, and the individual building components should be distinguishable
in the analysis. Exploring different solvers, such as direct and multigrid solvers, is necessary to
determine which approach can provide real-time analysis results.

1.3 Structure of the Thesis

This master’s thesis is based on case studies that explore the research question. The thesis begins
with an introduction to relevant theory in Finite Element Method (FEM). The subsequent section
describes the various programs used to develop the solver. Section 4 offers a detailed explanation
of the structure and architecture of the software created by the authors of this thesis. This includes
the first version of the FEM plugin for 8-node elements called PreFErret, further development
of the existing plugin FErret, and the newly implemented integration of FEniCSx as a plugin in
Grasshopper. All codes can be found on GitHub through a link provided in Appendix A, while
Appendix B provides links to YouTube videos illustrating the case studies. Section 5 presents six
case studies using the software, including a brief discussion of each case. Finally, the discussion
and conclusion section brings together all the elements of the thesis in relation to the research
question. Additionally, this section features a segment where auditors share their recommendations
for future work.

3

2 Theory

2.1 Finite Element Method

2.1.1 Introduction

FEM is a numerical method that makes it possible to approximate the load responses for differ-
ent structures. By dividing the geometry into smaller pieces, it is possible to find solutions for
complex geometry. These systems are often impossible to solve with analytical formulations. The
smaller pieces are called elements, and by dividing the structure into such elements, it is possible
to approach a good representation of the real response. Four well-established elements are com-
monly used today: beam, shell, plate, and solids. This thesis will focus on isotropic and orthotropic
materials solved with solid elements. The theory section will explain general concepts for Finite
Element Modelling. Then the theory for solid elements will be presented with the help of an eight-
noded hexahedral element for both isotropic and orthotropic materials. In this section, the book
about Finite Element Analysis by Kolbein Bell is used as reference (Bell, 2013).

Assumptions

Some basic assumptions are needed to describe the physical world using mathematical formula-
tions. In FEM calculations, all materials are assumed to be elastic and homogeneous, and the
structural response can be determined by linear theory with satisfying accuracy. Linear theory is
based on two basic assumptions (Bell, 2013, s.17):

• ”The displacements are so small that we can, with sufficient accuracy, base both equilibrium
and kinematic compatibility on the original, undeformed geometry.”

• ”All materials are linearly elastic, i.e., the relationship between stress and strain is linear and
reversible. ”

Using the Principle of Virtual Work (PVW)makes it possible to formulate the relationship between
force, displacement, and stress. PVW states that a mechanical system is in static equilibrium if
virtual work done by the external forces δWext are equal to the virtual work of the internal forces
δWint. A consequence of the assumptions above is that PVW has unlimited validity.

2.1.2 FEM Procedure

Discretization

The FEM method divides structures into more minor elements, as mentioned in the introduction.
Each element consists of a certain number of nodes, where the number and placement of nodes de-
pend on the type of element. The nodes work as the connection between the neighboring elements
and make the model connectivity. This gives compatible elements and ensures the entire model is
connected without gaps or overlaps.

4

Stiffness Relation
The relationship between loads and displacements is the basis of the FEM method. By solving
Equation 2.1.1, the displacements are obtained.

Kr=R (2.1.1)

The equation consists of the global stiffness matrix K, the nodal displacement r, and the applied
load vector R. The obtained nodal displacements can further be utilized to calculate the structure’s
strains and stresses.

Shape Functions
The displacement within the elements is described by interpolating the nodal displacements. The
interpolation is done using shape functions. These functions have to fulfill certain requirements to
give valid results, which are described in the book of Kolbein Bell (Bell, 2013):

• The continuity principle requires a continuous displacement over the elements. The highest-
order differential equation in the FEM solution is denoted m, and the shape functions and
their derivativesmust be continuous functions up to and including the degree ofm-1 along the
entire boundary between neighboring elements. This requirement is calledCm−1 continuity.

• The completeness principle requires that the shape function is able to describe the rigid body
movements of the element correctly. This means that a pure rigid body movement should
not cause any stress in the element and must be able to represent a state of constant stress
within the element.

The mathematical notation of the shape functions is N, which determines the variation of displace-
ments within an element. The shape functions are structured in vectors and matrices as shown in
Equation 2.1.2 and 2.1.3.

N(x, y, z) = [N1(x, y, z) N2(x, y, z) ... Nnd
(x, y, z)] (2.1.2)

, where

Ni =

Ni1 0 · · · 0

0 Ni2 · · · 0
...

...
0 0 · · · Ninf

 (2.1.3)

The total number of nodes is given by nd, while nf is the number of degrees of freedom (DOFs).
In a model based on solid elements, the number of DOFs in each node will be three since these
elements only account for the motion of translation in the three directions.

5

By utilizing the shape functions, it is possible to calculate the displacements by Equation 2.1.4.

u(x, y, z) =
nd∑
i=1

Ni(x, y, z)ri = N(x, y, z)re (2.1.4)

, where ri is the displacement of node i described by the three DOFs:

ri =

r1r2
r3

 (2.1.5)

By multiplying nf ·nd, the total number of DOFs is achieved. It is worth mentioning that the shape
function is equal for all the DOFs, i.e., Ni = Ni1 = Ni2 = Ni3.

Stiffness Matrix

From the principle of virtual displacement, the local stiffness matrix can be defined as follows:

ke =
∫
Ve

BT cB dV (2.1.6)

, where B is the strain matrix and, defined as the derivative of the shape function B = ∆N. The
material matrix is represented by c.

The local stiffness matrix above is only related to one element. To achieve the global solution,
it is necessary to assemble all the local stiffness matrices into one global stiffness matrix. The
assembling is done by constructing a connectivity matrix a for all elements. The matrix describes
the relationship between the nodes’ local and global positions. The global stiffness matrix is then
constructed as shown in Equation 2.1.7.

K =

ne∑
k=1

aTe keae (2.1.7)

Support Conditions

To get a solution in the FEM analysis, at least all rigid body motions need to be prevented. This has
to be ensured to avoid a singular stiffness matrix that can not be inverted. The solution is to intro-
duce support conditions in the nodes. These conditions may be set as fixed, i.e., the displacements
in the nodes are zero or given with a specific stiffness. The simplest way to include the support
conditions is to predefine them before the global stiffness matrix is inverted. If the displacement
of the nodal DOF is set to zero, the program can be more efficient by reducing the global stiffness
matrix and the global load vector as shown in Equation 2.1.8.

6

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

r1

0

r3

r4

 =

R1

R2

R3

R4

 →

K11 K13 K14

K31 K33 K34

K41 K43 K44

r1r3
r4

 =

R1

R3

R4

 (2.1.8)

Loading Conditions

The external loading of a system can be both point loads and surface loads. The point loads are
deconstructed and applied directly to the respective DOFs to build the load vectorR. For the surface
load, the load definition can be done in two ways. The simplest way is to divide all the structural
members into many small elements and lump the loads into equivalent forces. Here the load is
applied directly to the nodes as for the point loads. The second method is based on PVW, which
aims to construct a consistent nodal load vector S0. External work W is a result of nodal loads
S0 moving over the nodal displacements v. This is equal to the total work done by the distributed
load F and Φ when the system is moving through the displacement field u=Nv. See the following
equations for a mathematical description.

W = vTS0 = −
∫

V uTFdV −
∫
SΦ

uTΦdS (2.1.9)

S0 = −
∫
V
NTFdV −

∫
SΦ

NTΦdS = S0F + S0Φ (2.1.10)

S = kv+ S0 (2.1.11)

Equation 2.1.10 illustrates how the nodal loads are divided into the contribution from body forces,
S0F , and the contribution from surface traction, S0Φ. To account for external action between the
element nodes, the consistent nodal vector can be applied as shown in Equation 2.1.11.

Note that when lumping surface loads, it is necessary to use a fine mesh. This can result in longer
computational time. Additionally, this method is only suitable for linear elements with corner
nodes. When dealing with higher-order shape functions, it is advisable to utilize consistent nodal
loads.

2.1.3 Isoparametric Mapping

A problem with hexahedral and tetrahedral elements is that they are not well-suited when the ele-
ment sizes vary and have irregular boundaries. The solution to this problem is isoparametric map-
ping. For an arbitrary element, the natural coordinates (ξ, η, ζ) are generally curvilinear in the
physical coordinate space (x, y, z). Normalizing the curvilinear coordinates makes it possible to
perform all mathematical operations on the simplest possible geometry, as shown to the right in
Figure 2.1.1.

7

Figure 2.1.1: Isoparametric mapping of an eight-node hexahedral element.

Themapping creates an unambiguous and reversible relation from the physical coordinates (x, y, z)
to the corresponding natural coordinates (ξ, η, ζ) for an arbitrary point inside the element. With
this relationship established, the shape functions, as well as the derivation and integration, can be
expressed with normalized natural coordinates as shown in Equation 2.1.12. This is the same shape
function described in Equation 2.1.2. Thus it also has to fulfill Cm−1 continuity (Bell, 2013).

Ngi =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi) (2.1.12)

where are ξi, ηi and ζi representing the natural coordinates of node i.

By using the interpolation function above for the geometry and the field variable, the element
becomes isoparametric. This also implies that the relationship from Equation 2.1.4 still applies.
However, when elements are mapped, determining the B-matrix becomes less trivial. To solve the
derivation of N, the chain rule in Equation 2.1.13 has to be used.

∂Ni

∂x
=

∂Ni∂ξ

∂ξ∂x
+

∂Ni∂η

∂η∂x
+

∂Ni∂ζ

∂ζ∂x
(2.1.13a)

∂Ni

∂y
=

∂Ni∂ξ

∂ξ∂y
+

∂Ni∂η

∂η∂y
+

∂Ni∂ζ

∂ζ∂y
(2.1.13b)

∂Ni

∂z
=

∂Ni∂ξ

∂ξ∂z
+

∂Ni∂η

∂η∂z
+

∂Ni∂ζ

∂ζ∂z
(2.1.13c)

The equations above include components from the inverse Jacobian matrix. In FEM terminology,
the Jacobian matrix is usually defined as in Equation 2.1.14.

J =
∂(x, y, z)

∂(ξ, η, ζ)
=

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (2.1.14)

8

To calculate the Jacobian matrix, the explicit relationship between the physical and natural co-
ordinates must be formulated. This is done by expressing the element geometry as an interpolation
between the different nodal points as shown in Equation 2.1.15.

x =
∑
i

Ngixi = Ngx, y =
∑
i

Ngiyi = Ngy, z =
∑
i

Ngizi = Ngz, (2.1.15)

By utilizing the inverse Jacobian matrix, the B-matrix can be calculated. For a hexahedral, this
matrix is a 24x6 matrix and is shown in a compact format in Equation 2.1.16.

Bi =

Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

Ni,y Ni,x 0

0 Ni,z Ni,y

Ni,z 0 Ni,x

(2.1.16)

In the equation above, Ni,x, Ni,y, Ni,z corresponds to the partial derivative of Ni with respect to
x, y, z, respectively. To calculate the derivatives, Equation 2.1.17 is employed.

Ni,x

Ni,y

Ni,z

 = J−1

Ni,ξ

Ni,η

Ni,ζ

 (2.1.17)

The relations abovemake calculating the local stiffnessmatrix possible, as defined in Equation 2.1.18.

ke =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT cB|J| dξdηdζ (2.1.18)

2.1.4 Numerical Integration

For several elements, especially isoparametric elements, it may be difficult and sometimes im-
possible to calculate the analytical expressions for equations similar to Equation 2.1.18. Numerical
integration is therefore needed to establish a solution. In FEM solvers, it is most common to use the
Gaussian quadrature rule. The rule makes it possible to fit and integrate a polynomial of degree
2n−1 exactly. Here n is the number ofGauss points in each direction. By evaluating the weighted
integrands in predefined Gauss points, the integral is determined as shown in Equation 2.1.19.

I =

∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ζ)dξdηdζ =

n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkf(ξ, η, ζ) (2.1.19)

9

In Table 2.1.1, the predefined Gauss points with the corresponding weights are listed. The rule
yields for all directions. Thus, the values in the table will apply for both ξi, ηi, and ζi. The eight-
noded hexahedral element will need n = 2 Gauss points in each direction to provide the exact
solution for the local stiffness matrix ke. From Table 2.1.1, ξ = η = ζ = ±1/

√
3 should be

chosen with the belonging weights wi = wj = wk = 1.

±ξi Nr. Gauss points wj

0 n = 1 2.000000
1/

√
3 n = 2 1.000000√
0.6

0.000000 n = 3
5/8
8/9

0.861136
0.339981 n = 4

0.347855
0.347855

Table 2.1.1: Gauss points and weights

2.1.5 Stress and Strain Relation

The strains can be calculated after the global displacement r is established according to Equa-
tion 2.1.1. This is done by multiplying the B-matrix with the global displacement r as shown in
Equation 2.1.20.

εεε =
[
εx εy εz γx γy γz

]T
= ∆u = Br (2.1.20)

To calculate the stresses, Hooke’s law is used, expressed in Equation 2.1.21. This law defines a
linear relationship between stresses and strains for linearly elastic materials.

σσσ =
[
σx σy σz τxy τyz τzx

]T
= Cεεε (2.1.21)

In Hooke’s law, C represents the material matrix. This unique matrix will be described in Sec-
tion 2.1.6.

It is worth noticing that when the stiffness matrix is calculated using numerical integration, the
calculated strains and stresses are evaluated at the Gauss points. Therefore, extrapolation must
be performed to obtain the strains and stresses in the nodal points as shown in Figure 2.1.2. The
shape function is once more used to approximate the average values in the nodes. A new set of
coordinates have to be introduced for this to be done. Specific nodal points must be utilized for the
shape function to equal one of the Gauss points. Using n = 2 Gauss points, the equation shown in
Equation 2.1.19 includes the following numerical values.

k = m = l = 1 and ξ = η = ζ = 1 → k = ξ
√
3 m = η

√
3 l = ζ

√
3 (2.1.22)

10

The extrapolated stresses are defined in (2.1.23), where Nα is the shape function that corresponds
to the Gauss points in terms of the coordinates k, m and l. σσσextr gives the stresses in the desired
places.

σσσextr =

n∑
i=1

Nασα (2.1.23)

, where
Nα =

1

8
(1 + kαk)(1 +mαm)(1 + lαl) (2.1.24)

Figure 2.1.2: Extrapolation of Gauss points for an eight-node hexahedral element seen from bellow

With Figure 2.1.2 as a reference, the coordinates for, e.g., node 1, become k = −
√
3, m =

√
3

and l = −
√
3.

2.1.6 Materials

As mentioned in the introduction, this thesis will contain several case studies to test if the FEM
solvers are working sufficiently. These studies include isotropic and orthotropic materials that
differ in stiffness, strength, and general structure. This section contains essential definitions needed
in the FEM solver for these different classifications of materials. Both materials are assumed to
be linearly elastic. Thus, Hooke’s law gives the general relation between strains and stresses.
This relation is shown in Equation 2.1.25 and 2.1.26, where C is the material matrix, and S is the
compliance matrix.

σ = Cϵ (2.1.25)

ϵ = Sσ (2.1.26)

11

Isotropic Materials

Isotropic materials are materials where all planes are planes of material symmetry. By definition,
isotropy means that the material properties are independent of the direction. There are only two
independent constants associated with these types of materials and 12 nonzero terms in the material
matrix C (Staab, 2015). These constants are the Elasticity modulus E and the Poisson’s ratio ννν.
The material matrix C and its compliance matrix S is shown in Equation 2.1.27-2.1.28.

σx

σy

σz

τxy

τyz

τzx

= E

(1+ν)(1−2ν)

1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0
1
2(1− 2ν) 0 0

Sym. 1
2(1− 2ν) 0

1
2(1− 2ν)

εx

εy

εz

γx

γy

γz

(2.1.27)

εx

εy

εz

γx

γy

γz

=

1

E

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

σx

σy

σz

τxy

τyz

τzx

(2.1.28)

The most common yield criterion for metallic materials is the von Mises yield criterion, expressed
in Equation 2.1.29. The criterion makes it possible to compare the stress in the material to the yield
stress (Cook and Malkus, 2002).

σm =

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ2xy + τ2yz + τ2zx)

2
(2.1.29)

Orthotropic Materials

An orthotropic material has two or three mutually orthonormal planes of symmetry (Malo, 2021).
Timber is an example of a material with these properties, which differs from the isotropic material
steel, whose properties are equal in all directions. As the material’s properties depend on the load
directions, more engineering constants must be defined to determine the response. Thematrices are
further derived with their components in equations (2.1.30) to (2.1.31). Several elasticity moduli E,
Poisson’s ratios ν, and shear moduli G must be known to determine the solution. Either destructive
or non-destructive testing of the relevant material obtains these engineering constants.

12

σ11

σ22

σ33

σ23

σ31

σ12

=

1−ν23ν32
E2E3D

ν21+ν31ν23
E2E3D

ν31+ν21ν32
E2E3D

0 0 0
1−ν13ν31
E1E3D

ν32+ν12ν31
E1E3D

0 0 0
1−ν12ν21
E1E2D

0 0 0

G23 0 0

Sym. G13 0

G12

ϵ11

ϵ22

ϵ33

γ23

γ31

γ12

(2.1.30)

, where

D = 1
E1E2E3

∣∣∣∣∣∣∣
1 −ν21 −ν31

−ν12 1 −ν32

−ν13 −ν23 1

∣∣∣∣∣∣∣ = 1
E1E2E3

(1− 2ν21ν13ν32 − ν23ν32 − ν12ν21 − ν13ν31) (2.1.31)

ϵ11

ϵ22

ϵ33

ϵ23

ϵ31

ϵ12

=

1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12
E1

1
E2

−ν32
E3

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

σ11

σ22

σ33

σ23

σ31

σ12

(2.1.32)

The following relation in Equation 2.1.33 is utilized to manipulate the matrices to become sym-
metric about the diagonal. This relation is a prerequisite for the equations above.

vij = vji ·
Eii

Ejj
(2.1.33)

2.1.7 Higher-Order Shape Functions

For the theory presented above, an eight-noded hexahedral element has been used to describe the
procedures in FEM for solid elements. This element gives a small number of DOFs but has some
limitations that can cause big errors. Two important ones for the described theory section are listed
below.

1. The element cannot be used to model beam action exactly due to the linear order of the shape
functions.

2. Straight element edges also introduce spurious shear strains since the element cannot de-
scribe curvature exactly. Thus, shear locking appears, which results in the elements acting
stiffer than the actual behavior.

13

To overcome these problems, one solution is to reduce the element size. However, spurious strains
will still occur. A better solution is introducing the 20-noded serendipity hexahedral element,
shown in Figure 2.1.3. Including a mid-node enables the description of curved edges, making it
more suitable for accurately representing beam action. Thus, the serendipity element has 60 DOFs
in contrast to the 24 DOFs in the eight-node element. By this, converging toward a solution using
fewer elements is possible. Nevertheless, it should be noticed that employing 20-noded elements
also leads to a larger stiffness matrix and increased computational time (Mathisen, 2021). The
modifications that have to be applied in the FEM solver to use the 20-noded serendipity hexahedra
elements are described in the following.

The procedure within the FEM solver does not change when a higher-order element is applied,
but to be able to describe the element edges, a new set of shape functions have to be established
(Zienkiewicz and Taylor, 2013). These shape functions are shown in Equation 2.1.34.

Figure 2.1.3: Isoparametric mapping of a 20-node serendipity hexahedral element

Ni =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ξiξ + ηiη + ζiζ − 2) for i = 1...8 (2.1.34a)

Ni =
1

4
(1− ξ2)(1 + ηiη

2)(1 + ζiζ
2) for i = 9, 11, 13, 15 (2.1.34b)

Ni =
1

4
(1 + ξiξ

2)(1− η2)(1 + ζiζ
2) for i = 10, 12, 14, 16 (2.1.34c)

Ni =
1

4
(1 + ξiξ

2)(1 + ηiη
2)(1− ζ2) for i = 17...20 (2.1.34d)

When the higher-order shape functions are set, n = 3 Gauss points will be required in all three
directions to achieve full integration. This corresponds to a total of 27 sampling points, as defined
in Table 2.1.1 (Cook and Malkus, 2002).

14

3 Software

This thesis utilizes several software from different developers. The most dominating software is
Grasshopper. It was chosen as the desired AAD environment due to the authors’ experience, as it is
an intuitive, robust, and powerful application. Also, the possibility of making new components was
significant. To create new components the IDEVisual Studio was well suited for its well-developed
and seamless process of making new components. This choice led to using Visual Studio Code
as a code editor to develop code quickly. For comparing the results obtained from Grasshopper,
a well-known commercial FEM software was preferable to benchmark the results against. Due
to the authors’ previous experiences with the software and its well-known robustness, versatility,
stability, and speed, the choice landed on Abaqus. For the case studies related to the FEniCSx
platform, Ubuntu was introduced, which is an operating system based on Linux. All the software
mentioned above are further elaborated in the following.

3.1 Rhino Grasshopper

Grasshopper is a parametric modeling tool offering a visual programming interface inside the
Rhinoceros software. This interface allows dragging wires to connect various components; the
fantasy is the only limit for what one can make. The geometry scripted in Grasshopper is visualized
in Rhino, and the opportunity of parameterization enables the possibility to make rapid changes
with the resulting geometry updating simultaneously in Rhino. In addition, the use of algorithms
helps the developers overcome the limitations of traditional CAD software and reach a level of
complexity and control beyond the manual human ability (Tedeschi, 2014). However, as the script
for a given geometry might be more comprehensive to establish in Grasshopper than modeling in
regular CAD software, it should be considered whether parameterization is needed. If needed, the
investment in time to establish a well-functioning script in Grasshopper will probably give severe
benefits when modifications must be made. Only some parameters need to be changed instead of
modeling the whole geometry from scratch. This benefit shows the massive advantage of utilizing
parameterization in the design process. However, it should not be used regardless of the project
since some problems might be solved more efficiently in other ways (SimplyRhino, 2023).

3.2 Visual Studio

Tomake components in Grasshopper, Microsoft’s Visual Studio is well suited to use. This powerful
source code editor enables building and debugging the code in Grasshopper right from the editor.
So-called IDEs make it possible to write and develop software. The Visual Studio IDE provides,
among other things, compilers, code completion tools, and graphical designers, making it more
comprehensive than most IDEs on the market (Microsoft, 2023b). As the Grasshopper environ-
ment is based on the programming language C#, this is the language that is used for making com-
ponents for the plugins. C# is an object-oriented programming language provided by Microsoft.
It is based on C++ but includes elements from Visual Basic and Java (Nätt, 2023).

15

3.3 Visual Studio Code

For solving tasks with plain code in either Python or C#, Visual Studio Codewill be used. This code
editor supports operations like debugging, task running, and version control, aiming to provide a
quicker editor for less complex workflows (Microsoft, 2023a).

3.4 Abaqus/CAE

The Finite Element Modeling software Abaqus is used to verify the results from the plugins in
Grasshopper. With this software, one can quickly create and edit geometry and meshing with
specific loads and supports and visualize the results from the finite element analysis provided by
Abaqus(Simulia, 2023). By choosing the same elements with equal properties as the ones used
in the plugins, the credibility of the plugins can be evaluated, as well as discovering errors along
the way. Evaluating the results from Abaqus/CAE as the solution, the error of the plugins can be
measured, giving a sense of the accuracy of the own-developed software. If the results from the
plugins are similar to the Abaqus solution for simple geometries, there are reasons to believe the
plugin will perform well for more complex cases.

3.5 Ubuntu

Ubuntu Desktop is developed by Canonical and is a so-called Linux distribution. It is among the
most popular distributions due to its user-friendly interface and ease of use. Ubuntu is an operating
system developed from the Linux kernel, and it is open-source and free to use. Ubuntu enables
the execution of software developed for the Linux operating system on PCs that use the Windows
operating system, utilizing a docker development environment (Ubuntu, 2023). This approach is
used to execute the FEniCSx code.

16

4 Methods

4.1 Plugin for 8-node Hexahedral Solid Elements

The following plugin, from now on called PreFErret, is a FEM solver developed by the authors for
the 8-node trilinear element, also called the 8-node brick element. This element designated Hex8,
is formulated as an isoparametric element in the plugin, enabling the irregular shape of the Hex8,
as described in 2.1.2. The plugin contains five components; Element, Support, Load, Assembly
and Solver. These are described in the next section. Further, specific classes are defined to store
the necessary information and bring it through the process to the solver. The classes may have
multiple so-called constructors which take different arguments for different use of the classes. The
constructors enable the user to set and fetch properties from the class. These classes are described
in Table 4.1.1.

Class Arguments Description

ElementClass Point3D,
MeshFace

The ElementClass stores the nodes for the given ele-
ment, in addition to its faces.

SupportClass Point3D The SupportClass holds the support point with its global
coordinates.

LoadClass Point3D,
Vector3D

The LoadClass contains information about the point
where the load acts, as well as a vector describing the
magnitude and direction of the load.

AssemblyClass
ElementClass,
SupportClass,
LoadClass

The AssemblyClass contains the information from the
classes above, collecting all the information before the
solver.

Table 4.1.1: Custom classes made in the plugin for Hex8 elements.

4.1.1 Component: Element

The Element component takes a mesh as an input and gives an ElementClass as output. The mesh
is deconstructed to fetch the vertices from the faces of the mesh. As some vertices from a face
coincide with vertices from other faces, a selection process is run to achieve a list with eight unique
points. To ensure that the points are numbered in the same order as the nodes for the isoparametric
element, the points are sorted based on their global coordinates. The sorted list of points is then
used to construct an ElementClass, which is returned as the output of the component. If there are
several elements, this process is done multiple times, and a list of ElementClasses is returned.

Figure 4.1.1: Workflow in the Element component.

17

4.1.2 Component: Support

With one or multiple points as input, the Support component returns either a single SupportClass
or a list of SupportClasses as output. To ensure the correct support description, if there should be
a case with no points as input, the component returns an empty list if a null check is passed. For
simplicity, the support condition for this plugin is fixed in all directions in the given node if the
node is chosen as a support point. In other words, the three DOFs in the node are set to zero.

Figure 4.1.2: Workflow in the Support component.

4.1.3 Component: Load

The load component is similar to the Support component but holds one more input parameter. With
both points and vectors as inputs, the component constructs LoadClasses, which are returned as
outputs.

Figure 4.1.3: Workflow in the Load component.

18

4.1.4 Component: Assembly

The assembly component gathers all the information from the three previous components to prepare
for the solver. It takes ElementClasses, SupportClasses, and LoadClasses as inputs and returns an
AssemblyClass as output.

Figure 4.1.4: Workflow in the Assembly component.

4.1.5 Component: Solver

The Solver Component stands for most of the computations in this plugin. It takes an Assembly-
Class from the Assembly Component as input and returns the results in terms of displacements as
output. The solver is made using the material properties of steel, with Young’s modulus of 210
000 MPa and Poisson’s ratio of 0.3. A bunch of methods is made to achieve a smoother and more
readable script by calling these methods from the main code. These are described in the follow-
ing part, starting with a brief introduction of the methods’ arguments in Table 4.1.2. Finally, an
illustration of the workflow of the component is provided.

Argument Description
Points Nodes in the global system.

PointsNat Nodal coordinates in the natural coordinate system. Nodes of the isopara-
metric element.

ξ, η, ζ Coordinates in the natural coordinate system.
Loads LoadClasses containing placement, magnitude, and direction of the loads.

C-matrix The C-matrix containing the material properties for computation of the
stiffness matrix.

Numb The number of unique nodes multiplied by DOFs in each node, which in
this plugin is three DOFs.

K The global stiffness matrix.
R The global load vector.
SupPts The points where support is applied.
Size The number of unique nodes.
ndNodes List of unique points for the system.
El List of all the elements in the system, in ElementClass format.
PointA, PointB Two points to be checked whether they are equal or not.
BREP Boundary representation.
BC Boundary Condition.

Table 4.1.2: Arguments used in the methods.

19

GetJacobi(Points, ξ, η, ζ): The 3x3 Jacobi matrix is computed in this method, according to the
theory in 2.1.3. Derivations were calculated by hand to reduce computational time since the de-
rivatives are demanding to compute in coding.

Returns: J =

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

JacobiDet(Points, ξ, η, ζ): Calculates and returns the determinant of the Jacobi Matrix. The
determinant is needed for calculating the stiffness matrices. It can also be used to verify the Jacobi
Matrix, as the sum of the eight determinants should be equal to the box’s volume.

Returns: J = |J| =

∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣∣∣∣∣∣∣
NiXis(PointsNat, ξ, η, ζ): Calculates the derivatives of the shape functions with respect to ξ.

Returns: [N1,ξ, N2,ξ, .., N8,ξ]

NiEtas(PointsNat, ξ, η, ζ): Calculates the derivatives of the shape functions with respect to η.

Returns: [N1,η, N2,η, .., N8,η]

NiZetas(PointsNat, ξ, η, ζ): Calculates the derivatives of the shape functions with respect to ζ.

Returns: [N1,ζ , N2,ζ , .., N8,ζ]

fi(Points, PointsNat, ξ, η, ζ, C-matrix): The method calculates the functions which are to be
summed to achieve the stiffness matrix by use of numerical integration. Firstly, the derivatives
of the shape functions are calculated, now with respect to the cartesian coordinates, as described
in Equation 2.1.17 by using Ni,ξ, Ni,η and Ni,ζ . Further, the 6x24 B-matrix is constructed by
placing the elements from Equation 2.1.17 into the correct rows and columns, as shown in Equa-
tion 2.1.16. The B-matrix is then transposed and used to multiply the matrices BTCB. Finally,
the resulting matrix from this multiplication is multiplied with the Jacobi Determinant from the
JacobiDet method to achieve the integral described in Equation 2.1.19.

Returns: fi (ξ, η, ζ) = BTCB|J|

LoadVec(Points, Loads, Numb): In this method, the load vector is constructed. By comparing the
points where the load acts with the point list for the box nodes, the load magnitudes are applied to
the corresponding nodes and DOFs in the load vector.

Returns: R

20

ReduceK(Points, K, SupPts): To account for the support points, in addition to reducing compu-
tational time, the global stiffness matrix is reduced in accordance with the global coordinates of
the support points. For the points where support has been applied, the rows and columns for the
corresponding DOFs are removed.

Returns: K_r

ReduceR(Points, R, SupPts): With the same arguments as for ReduceK, the load vector is also
reduced similarly. As the operations are now acting on a vector, the rows for the corresponding
DOFs are removed at the same indexes as in ReduceK.

Returns: R_r

ReducePoints(Points, SupPts): To account for the deleted rows and columns inK andR, the point
list has to be reduced correspondingly to ensure that the correct rows and columns are removed.

Returns: Points_r

GetConnectivity(Size, ndNodes, el): Connectivity needs to be established between local and
global coordinates to use the plugin for multiple elements. This way, the stiffness matrix can
be established for the whole system by assigning every DOF to the correct place in the global sys-
tem according to each element’s placement. This is done by comparing the nodes in each element
to the global nodes, achieving the indexes in the global system corresponding to the indexes in the
local systems. The connectivity is returned and later used to construct the global stiffness matrix.

Returns: ConMatrix

DistPoint(PointA, PointB): To compare the similarity between two points, this method checks
the distance between two points, A and B. Since the accuracy of coordinate placements is not
exact, a small tolerance is added to ensure that similar points are found, even though the numerical
description of the coordinates is not exactly equal. The method returns true if the points are equal
and false if not.

Returns: True/False

Main code: From the inputs of the solver component, the properties of the elements, supports, and
loads are gathered. The nodes of the elements run through a process of finding the unique points
in a global sense. The natural coordinates are defined with a specific order, reflected in every
element, as mentioned about the Element Component. Further, the C-matrix is defined. In this
plugin, steel is used as material, and the properties are explicitly defined with Young’s modulus of
210 000 MPa and a Poisson’s ratio of 0.3. Preparing for the numerical integration of the stiffness
matrix, the Gauss points are defined using a 2x2x2 Gaussian quadrature rule. With this rule, the
weights wi, wj and wk in Equation 2.1.19 are all equal to unity, as Table 2.1.1 shows.

By implementing the connectivity, the local stiffness matrices are now calculated and placed where
they belong in the global stiffness matrices. Using the reduced global stiffness matrix and load
vector, the displacements are calculated by solving for r in Equation 2.1.1: r = K−1R. Finally,
the nodal displacements are returned as output from the Solver Component.

Returns: r

21

Figure 4.1.5: Workflow in the Solver component.

4.2 Plugin for Hexahedral and Tetrahedral Solid Elements

To achieve higher accuracy in the computations than the 8-node solid elements provide for complex
geometries, the 4-node tetrahedral elements, abbreviated TET4, can be used. These elements are
less costly in a computational sense, as the stiffness matrix will be smaller due to the lesser amount
of DOFs. An already existingGrasshopper plugin for both tetrahedral and hexahedral elements was
developed by Marcin Luczkowski and Sverre Magnus Haakonsen. The plugin, called FErret, will
be described similarly to the plugin for 8-node solid elements. This plugin contains similar com-
ponents as the PreFErret plugin, named FEM_BoundaryCondition, FEMLoad, FEMMaterial,
NEW_FEMSolver andMeshPreview. In the same way as PreFErret, the FErret plugin contains
several classes to store the relevant information for the solver. These classes are described in
Table 4.2.1. In addition to the linear elements of the HEX8 and TET4, quadratic elements like the
HEX20 and TET10 can be used. These higher-order elements, described in 2.1.7, are preferable
when calculating shapes subjected to bending or generally when a solution with a higher level of
accuracy is required. However, due to a problem in the FErret solver while this thesis is being writ-
ten, these higher-order elements are not available to use for obtaining reliable results. Therefore,
the work in this thesis connected to the FErret plugin is limited to the linear elements of HEX8 and
TET4.

22

Class Arguments Description

Element

Nodes, Connectiv-
ity, Type, Id,
ElementMesh,
TypologyVertices

Stores the important features about the elements and con-
structing the elements’ faces and meshes.

Material

YoungModulus,
PoissionRatio,
YieldingStress,
Weight

Stores the material properties, and calculates the C-matrix.

Node
GloablId, Coordin-
ate, BC_U, BC_V,
BC_W, Type

Categorizes the nodes into corner, edge, face, and interior
nodes. Stores the information about each node.

Support Position, Tx, Ty, Tz Contains the position of the support points, and which
DOFs that are restrained and not.

TempFE_Mesh

MeshList, Mesh-
Nodes, MeshEle-
ments, Sigma_ii,
NodalMisesStresses,
MisesStresses, dU,
dV, dW, Material

Contains the results from the solver, preparing them for pre-
view.

FEM Contains functions to calculate shape functions and natural
coordinates.

FEM_Matrices
Contains functions to calculate the Jacobi determinant and
the stiffness- and element matrices, as well as reducing the
matrices according to BCs.

FEM_Utility Contains functions to prepare and execute most of the cal-
culations to be used in the solver.

FEMLogger Logging files meanwhile the process is running.

GrahamScan Contains functions to execute Graham scan based on either
mesh or points.

Table 4.2.1: Custom classes made in the FErret plugin.

4.2.1 Class: FEM_Utility

As the FEM_Utility class is such a central part of the plugin, this class is described in the following
section. The class contains a bunch ofmethods that are doingmost of the calculations and arranging
the process leading to the analysis results.

AddMidEdgeNodes(Mesh): As the mesh is described similarly for the 8-node elements, the mid-
side nodes have to be added for the element to become a 20-node element. This method also adds
this mid-side node for tetrahedral elements. If the mesh consists of 4-node tetrahedral elements,
the resulting mesh will be represented by 10-node tetrahedral elements.

Returns: MeshList

ElementsFromMeshList(MeshList, PointList, ElementList): Local and global IDs, and the ele-
ment type are assigned to the elements. From these IDs, the connectivity for the nodes is developed.
As the method is of type void, it returns no value but updates the elements with their properties.

23

GetMeshNodes(MeshList): When the plugin uses a series of points describing the mesh, there
must be no point duplicates to ensure the calculations are done correctly. With a certain threshold
value to retrieve duplicates even if the points are not equally described, the method returns a list
of points consisting of unique points.

Returns: UniquePoints

GetBodyForceVector(Material, ElementList, NumberGlobalNodes, Logger): To include the self-
weight of the model, this method calculates the force that arises due to gravity, i.e., the body force.

Returns: BodyForce

GetGaussPointMatrix(Order, ElementType): Depending on the element type and element order,
this function calculates the Gauss Points in terms of local coordinates. These points are to be used
in the numerical integration to achieve the displacements in the solver.

Returns: GaussNaturalCoordinates

GetShapeFunctions(ξ, η, ζ, ElementType): Depending on the element type and element order,
this function calculates the shape functions based on the natural coordinates ξ, η, ζ .

Returns: [N1, N2,..,Ni]

PartialDerivativeShapeFunctions(ξ, η, ζ, ElementType): Depending on the element type and
order, this function calculates the shape functions’ derivatives based on the natural coordinates.

Returns: [Ni,ξ, Ni,η,Ni,ζ]

DisplacementInterpolationMatrix(ShapeFunctions, dofs): Thismethod returns amatrix contain-
ing the shape functions on the diagonal, preparing it to be multiplied with the load vector in the
correct format.

Returns: InterpolationMatrix

CalculateDisplacementCSparse(K_Global, R_Global, BCs, Logger): By taking the boundary
conditions into account, the displacements are calculated by manipulating the K- and R-matrices
to express the restrained motion, and then solving Equation 2.1.1: r = K−1R.

Returns: r

CalculateElementStrainStress(Element, Displacement, Material, Logger): This component cal-
culates the stresses and strains for an element based on the material properties and displacements.

Returns: [ElementStrain, ElementStress]

CalculateGlobalStress (ElementList, Displacement, Material, Logger): Based on the element
stresses and strains, this method calculates the stresses and strains in a global sense. The method
returns the nodal stresses for each direction and the Mises stress for both nodes and elements.

Returns: [GlobalStress, MisesStress, ElementMisesStress]

SortedVerticesGraham(Mesh): This method sorts the mesh vertices to ensure the correct nodes
are represented in calculations. It is important that the nodes in each element are sorted in the
correct and consistent order. The method for sorting the vertices is the Graham Scan.

Returns: SortedVertices

24

4.2.2 Component: FEM_BoundaryConditions

Describing the support condition for the model, this component takes seven inputs; A mesh de-
scribes the geometry to which the boundary conditions are applied. Either a set of points or surfaces
is given to define the points or area the geometry should be given boundary conditions at. An in-
teger value is the fourth input to define whether the type of support is a point or surface. The three
last inputs describe which DOFs are locked and which are not, with one input for each direction.
For the given mesh, the component uses the method GetMeshNodes from the FEM_Utility class
to determine the nodes that should be defined as support points. If the support type is a surface, the
component considers the points included in this surface area. In the end, the component outputs a
list of SupportClasses, ready to be taken into the calculations in the solver.

Figure 4.2.1: Workflow in the Boundary Conditions component.

4.2.3 Component: FEMLoad

The inputs for the FEMLoad component are quite similar to the ones for FEM_BoundaryConditions
consisting of a list of meshes, a number defining the load type, points for point loads, surface for
surface loads, and a vector describing the load’s magnitude and direction. The component utilizes
methods from the GrahamScan and FEM_Utility classes to define the load vector. This vector
is given as an output, in addition to the list of points where the load is applied and values of the
resultant load and load area.

25

Figure 4.2.2: Workflow in the Load component.

4.2.4 Component: FEMMaterial

Young’s modulus, Poisson’s ratio, yielding stress, and material weight are the parameters given as
input to the component to describe the material of the model. These properties are used to make a
material class which is returned as the only output from the component.

Figure 4.2.3: Workflow in the Material component.

4.2.5 Component: NEW_FEMSolver

The NEW_FEMSolver is the main component in this plugin. It takes geometry mesh, element
order, loads, boundary conditions, and the material as the inputs and returns the analysis results as
the output. As most of the calculations are done in methods inside the class FEM_Utility, the solver
component mostly arranges the parameters used for the calculations in the methods. The results
are gathered and organized, while the FEMLogger class monitors the time used on the primary
operations. As outputs, the solver gives the displacements in the three cartesian axis directions,
the Mises stresses in both nodes and elements, the log list from the FEMLogger class, the analyzed
mesh, and the unique nodes within the mesh. From these outputs, the displacements and stresses
can be evaluated at the desired node by using the values with assistance from the node list, as these
contain the corresponding indexes. The results can be visualized by connecting the analyzed mesh
to the last component of the plugin, the MeshPreview.

26

Figure 4.2.4: Workflow in the Solver component.

4.2.6 Component: MeshPreview

In addition to the analyzed mesh, the component takes in an integer for the user to specify the type
of results to preview. The last of the three inputs is a scaling factor to scale the results to a more
convenient size for visualization of the results. The component computes a deformed mesh, and
through a coloring algorithm, the result values are represented by a colored mesh, showing how
the displacements, stresses, and utilizations change throughout the model. As output, the deformed
geometry and the deformed mesh are returned.

Figure 4.2.5: Workflow in the Mesh Preview component.

27

4.3 Development towards Orthotropic Materials

The FErret plugin is developed based on isotropic materials, i.e., the properties of the model are
independent of the direction. To develop the plugin to handle orthotropic materials, the solver
needs to take care of these direction-dependent properties. To achieve this, the material class
and component described in 4.2 must be modified. These developments made by the authors are
described in the following, summarized in the end in a flowchart illustrating the changes.

4.3.1 Developing Class: Material

At first, the authors developed a new class based on the original Material class. The new class
was customized for orthotropic materials, with all the engineering constants that follow, and re-
turning the C-matrix for this material, see Section 2.1.6. However, as the FErret plugin relies on
the Material component, this new class would not be compatible with the rest of the code without
manipulating several classes and components. Therefore, the original Material class was instead
modified to include the orthotropic case. This was done by introducing subclasses, one for isotropic
materials and one for orthotropic materials, both based on the mother class Material. By utilizing
different constructors, the correct material subclass would be chosen based on the parameters in
the class, as these differ for the two cases. In this way, the correct material class is defined, and
the C-matrix from either Equation 2.1.27 or Equation 2.1.30 is returned for the material given as
input.

4.3.2 Developing Component: FEMMaterial

To fully implement the orthotropy, a new component was developed. While the original FEMMa-
terial component only has one single Young’s modulus and one Poisson ratio, the new component
must take in parameters for three Young’s moduli, three Poisson ratios, and three shear moduli.
Making this component is regarded easier for both the developers and users to work with, as it will
be easy to distinguish between the materials. The new component, FEMMaterialOrto, is made
with the abovementioned inputs, including the inputs yielding stress and weight from the original
component. The process is similar to the FEMMaterial component for making a material class,
which is then returned as the output.

28

Figure 4.3.1: The change from Material component to Material Ortho component.

4.4 Development towards Combining Materials

Structures are in general consisting of multiple materials working together. Therefore, it would
be preferable to be able to represent this interaction between materials with different properties in
the model analysis. To be able to combine different materials in the same model, the development
of the FErret plugin was taken further. The way the FErret plugin originally was developed, it
was restricted to using only one material for the whole model. The following section describes
the changes in the FErret plugin script to implement this possibility of combining materials in one
model.

4.4.1 Component: FEM Part

A new component was made to achieve the correct structure with meshes and materials, named
FEM Part. The inputs of this component are a mesh list and a list of the material for each part.
The mesh list is structured so that the meshes of the structure that should be considered together
as a part are gathered into one branch. Therefore, this branch structure represents the parts the
structure consists of. Further, the component creates a material list with branches corresponding

29

to the parts in the mesh lists. Finally, this material list and the mesh list are returned, representing
each element in the structure together with the specific material properties for the element.

Figure 4.4.1: The Part component structures the materials to the desired format.

4.4.2 Component: Part FEM Solver

Tomake the solver compatible with the new structure in the material input, the authors changed the
NEW_FEMSOLVER component from taking in one material item to taking in a whole material
list. This list corresponds to the list of meshes the solver takes in, which again represents the
elements in the global mesh. In this way, each element can be assigned a particular material. Since
the material properties are used to construct local stiffness matrices representing each element,
the correct global stiffness matrix would be possible to construct out of the local matrices, each
representing a specific material. The processes in the Part FEM Solver work in the same manner
as the NEW_FEMSOLVER, but this new component was made to save the original script. Thus,
the workflow of this component is not illustrated here; see Figure 4.2.4 for reference.

In addition to the FEM solver, some classes in the FErret plugin had to be manipulated to work
with the new list structure of the materials instead of the single-item structure. FEM_Matrices was
developed to FEM_Matrices_Part, and FEM_Utility was developed to FEM_Utility_Part. The de-
velopments involved changing variables and functions to handle lists and not only an item. Loops
were utilized to ensure that the correct material was connected to the correct mesh and, thereby,
the correct element in the structure. With these changes, all calculations regarding elements are
done, taking their corresponding material into account.

4.5 Development of FEniCSx

An extensively time-consuming procedure within FEM analysis involves constructing and solving
the matrices outlined in the Theory section. In both the PreFErret and FErret solvers, maintaining
low computational time is challenging when the mesh is refined. Here, the global K-matrix is
established and calculated by looping over the elements individually and then solving by using a
direct solver. To solve the time-consuming issue, the open-source computing platform FEniCSx is
used. The platform has a large community surrounding it, but the University of Cambridge is the
primary developer. With FEniCSx, scientific models described by Partial Differential Equations

30

(PDEs) are easily solved. The software translates them into efficient FEM code and solves the
resulting linear system of equations, making the process efficient and accurate. All the components
in the FEniCSx platform are fundamentally designed for parallel processing. This also means that
instead of a direct solver, the program uses a much better approach, namely a multigrid solver. This
framework allows for quick prototyping of FEM formulations and solvers on laptops, workstations,
and high-performance computers (FEniCS, 2021).

One of the key advantages of FEniCSx is that its packages are structured in a manner that ensures
the code closely aligns with the theoretical formulations. This approach makes the program more
recognizable to users and lowers the barrier for constructing their own PDE solver, for instance,
making a FEM solver for 2D and 3D geometries. To illustrate the close correspondence between
code and theory, the fundamental elasticity equations are presented alongside a corresponding FEn-
iCSx code in the following (Alnæs et al., 2015). To describe small elastic displacements of a body
Ω, the equations are written as follows:

−∇ · σ = f in Ω, (4.5.1)

σ = λtr(ε)I + 2µε, (4.5.2)

ε =
1

2
(∇u+ (∇u)T). (4.5.3)

The stress tensor, represented by σ, determines the distribution of internal forces in a material.
Body force per unit volume is denoted by the variable f. The material’s elasticity in the domain
of Ω is defined by the parameters λ and µ. The identity tensor, represented by I, maintains the
direction of a vector and alters its magnitude by a factor of 1. To calculate the diagonal elements’
sum in a tensor, one can utilize the trace operator marked as tr. Additionally, the symmetric tensor
ϵ measures the rate of material displacement, considering its intensity and orientation. Lastly, the
displacement vector field, known as u, illustrates the motion of points within the material. By
combining these equations, the stresses can be determined.

σ = λ(∇ · u)I + µ(∇u+ (∇u)T). (4.5.4)

1 def sigma(u):
2 return lambda_*nabla_div(u)*Identity(d) + 2*mu*epsilon(u)

Listing 4.5.1: Defining the stress function in Python.

In order to successfully solve the partial differential equation (PDE), it needs to be formulated in
a variational form. This form can be summarised using the following functions:

a(u, v) = L(v) ∀v ∈ V̂ , (4.5.5a)

a(u, v) =

∫
Ω
σ(u) : ∇v dx = λ(∇ · u)I + µ(∇u+ (∇u)T), (4.5.5b)

L(v) =

∫
Ω
f · v dx+

∫
∂Ω

T · v ds. (4.5.5c)

31

1 #Define variational problem
2 u = Trialfunction(V)
3 d = u.geometric_dimension() #space dimension
4 v = TestFunction(V)
5 f = Constant((0, 0, -rho*g))
6 T = Constant((0, 0, 0))
7 a = inner(sigma(u), epsilon(v))*dx
8 L = dot(f, v)*dx + dot(T, v)*ds

Listing 4.5.2: Defining the variational problem in Python.

If ∇v is expressed as a sum of symmetric and anti-symmetric parts, the unsymmetrical part will
be canceled out in the product of σ(u) : ∇v. By replacing ∇u with the symmetric gradient ϵ(u),
the variational form can be written more naturally considering elasticity problems.

a(u, v) =

∫
Ω
σ(u) : ε(v) dx, (3.28) (4.5.6)

ε(v) is the symmetric part of∇v given by:

ε(v) =
1

2
(∇v + (∇v)T). (4.5.7)

1 def epsilon(u):
2 return 0.5*(nabla_grad(u) + nabla_grad(u).T)

Listing 4.5.3: Defining the strain function in Python.

1 #Compute solution
2 u = Function(V)
3 solve(a == L, u, bc)

Listing 4.5.4: Solves the PDE in Python.

Naturally, more information must be defined for the solver to function properly. The complete
Python code is available in Appendix A.

The code for FEniCSx has been developed for C++ and Python language but is only available for
Linux operation systems. Since the authors are using Windows, the program is run using a docker
development environment running Ubuntu. The FEniCSx-plugin collects data from Grasshopper,
sends it to the FEniCSx-program for calculation, and then brings the results back to Grasshopper
for visualization. The plugin contains five components; InfoLBC, Load, Collect Data, FEniCSx
Solver and Results. A brief description of how data is collected, transported, and calculated is
shown in the following sections.

32

4.5.1 Component: InfoLBC

The InfoLBC component takes all the nodes from the mesh, a BREP representing the BC-zone, and
BREPs representing the loading zone as input. The nodes are further denoted as vertices. As output,
the component gives the nodeinfo list, a list of BC points, and lists of different loading points. The
nodeinfo list contains tags that provide information about the use of the different vertices in the
calculation. This method minimizes the information that is transported to the FEniCSx Solver.
Since many meshing tools give duplicated vertices as output, these duplicates are removed. Then
the code loops through all the BC- and Load-BREPs, and check if the vertices are lying inside.

Figure 4.5.1: Workflow in the InfoLBC component

4.5.2 Component: Load

The Load component takes in a set of numbers representing loading in the x, y, and z-direction for
up to 4 different loads. The output is a list of vectors describing the loads ready to be transported
to the FEniCSx Solver.

Figure 4.5.2: Workflow in the Load component

33

4.5.3 Component: Collect Data

The Collect Data component takes the vertices and connectivity list from the meshing tool, the
nodeinfo list from InfoLBC, and LoadInfo from Load as input. Inside the component, the four
different lists are written to a text file on the computer. The tag number is written together with its
belonging point. As output, the component gives a bool and the time to write the files. The bool
is set to true if the code is completed and ensures that the FEniCSx Solver reads the text files after
they have been filled with information.

Figure 4.5.3: Workflow in the Collect Data component

4.5.4 Component: FEniCSx Solver

In the FEniCSx Solver component, all the information sent to the text files in the Collect Data
component is used. When the component gets the true boolean, it starts a Python compiler running
through Ubuntu. This program first collects the lists of connectivity, vertices, node info, and load
info. Then the vertices are mapped from Grasshopper numbering to FEniCSx numbering. To solve
the static linear elasticity problem, a smoothed aggregation algebraic multigrid solver is used. A
near-nullspacewhich is the operator’s nullspace in the absence of boundary conditions, is required.
Consequently, a so-called PETscNullSpace object is built. For this solver, the null space is spanned
by three translation modes and three rotation modes (FEniCS, 2023). Then the mesh is built again
using the connectivity and the vertices collected from the text files.

The code is now made for tetrahedral elements with quadratic shape functions, but the shape func-
tion order or element type can easily be changed in the code. Further, the material properties, loads,
boundary conditions, stress function, and the different function spaces are defined. The model is
then assembled, and the partial differential equations are solved. This gives functions for the stress
field, displacements, and for instance, the possibility of calculating the von Mises stress. The res-
ults are then mapped back to Grasshopper numbering and stored in text files. The component has
the boolean and a SolverInfo as output. The boolean is set to true if the code is completed. The
SolverInfo gives information about, among other things, the number of nodes, matrix size, and the
solver’s computational time.

34

Figure 4.5.4: Workflow in the FEniCSx solver component

4.5.5 Component: Results

This component also inputs the boolean and starts if the bool is true. Inside the component, the
calculated information is collected. The vertices are also brought as input. By adding the displace-
ments to the points, the displaced points are obtained, representing the deformed geometry. The
three displacement components, u, v, w, the von Mises stress, and the displaced points are given
as output.

Figure 4.5.5: Workflow in the Results component

35

5 Case Studies

In this section, the six case studies are presented. Each case study is generally presented before the
methodology for obtaining the desired structural problem is provided. Further, the results from the
particular case study are presented and shortly discussed. For this thesis, displacements and stresses
are the evaluated parameters. The stresses are in general assessed in terms of von Mises stress as
defined earlier in Equation 2.1.29. To obtain fully comparable results, self-weight is excluded from
the analyses for all case studies. For each case, a flowchart illustrating the Grasshopper script is
provided. Figure 5.0.1 explains the color codes that are used for these charts. The discussion
section for this thesis provides the overall discussion of the outcome from the six case studies; see
Section 6.

Figure 5.0.1: Color codes for the flowcharts presented in the case studies.

5.1 Case Study 1: Verifying the PreFErret Plugin

To confirm the method used for developing the PreFErret plugin, a benchmark is done to obtain
comparable results for comparison with the commercial software Abaqus. Displacement in the
vertical direction is the parameter evaluated in this benchmark. This parameter is chosen as this
is the most significant displacement pattern due to loads working in the negative z-direction. In
addition, since strains and stresses are dependent on displacements, this parameter is considered
the most crucial to perform a benchmark on.
A comparison between themaximum displacements is added to account for eventual problemswith
node sorting for the PreFErret plugin. Here, the mesh structure and the number of elements are
equal in PreFErret and Abaqus. This will work as a confirmation of the magnitude of displacement
if the values in the specific nodes do not match.

The chosen geometry in the benchmark is a cubic cantilever with one point load at each of the two
upper corners on the opposite side from the fixed surface, as illustrated on Figure 5.1.1.
Key values for the geometry and the load are presented in Table 5.1.1. This geometry is chosen to
make a consistent mesh with cubic elements. In the same table, the material properties are listed.
These values represent the isotropic material steel.

36

Width Height Length
∑

Force Youngs’ Modulus Poisson’s ratio
1 000 mm 1 000 mm 1 000 mm 20 kN 210 000 N/mm2 0.3

Table 5.1.1: Geometry, load and material properties for Case Study 1.

Figure 5.1.1: Geometry and load case for Case study 1.

5.1.1 Method

Grasshopper

For the Grasshopper script used in this benchmark, the geometry is firstly made by standard
Grasshopper components. A box is constructed with the desired width, height, and length in-
puts. This box is then used in a cluster code developed by the authors. This cluster code repeats
the box in the desired amount of times in each of the three directions, simultaneously as the size
is decreased to still fulfill the overall measurements for the model. This way, a regular mesh com-
patible with the PreFErret plugin is easily made.
Further on, this mesh is deconstructed to obtain its vertices. These vertices are then evaluated to
state which points should be defined as load points and fixed points. These points are then sent to
the Load and Support components, respectively. The element component takes in the mesh and is
then connected to the PreFErret Solver and the Load and Support components. From the solver,
the results in terms of displacement are processed. The values are sorted to obtain the extreme val-
ues. In addition, the displacements are evaluated at the desired index to compare to the coinciding
points to evaluate the displacements at a particular vertex on the meshed geometry. For a detailed
description of the entire setup, please refer to the GH file in Appendix A.

37

Figure 5.1.2: Flowchart of Grasshopper script for Case Study 1.

Abaqus

To obtain the same geometry in Abaqus, a rectangle of 1x1 meter was drawn and then extruded 1
meter in the z-direction. Subsequently, the material of steel, the support condition, and the load
case were defined. The linear hexahedral element called C3D8 was used in Abaqus to obtain
similar behavior of the elements. For mesh creation, one meshing was done to create a highly
dense mesh to obtain numerical solutions as accurately as possible. This mesh was the base for
evaluating the convergence of the displacement results obtained from Grasshopper as the mesh
was gradually refined. Afterward, for comparing the maximum stresses, the meshing was done in
the same manner as in Grasshopper to achieve comparable results.

5.1.2 Results

For the analytical solution, due to the height-to-length ratio of the beam exceeding the ratio of
1/10, shear deformations have to be taken into account. Therefore, the Timoshenko beam theory is
necessary to calculate this solution. The formula in Equation 5.1.1 calculates the analytical solution
for a cantilever beam subjected to a point load.

wmax =
PL

κGA
+

PL3

3EI
= −0.000671mm (5.1.1)

• P = 20kN, representing the point loads acting on the beam.

• L = 1 000mm, representing the length of the beam.

• κ = 10(1+ν)
12+11ν , the Timoshenko shear coefficient.

• G = 81 000MPa, the shear modulus.

• A = b · h = 1 000 000mm2, the cross-sectional area.

• E = 210 000MPa, the Young’s modulus.

• I = b·h3

12 , the second moment of area for the cross-section, where b and h represents the
height and the width.

38

The results from the displacement benchmark for the three nodes at the end of the beam are presen-
ted in Table 5.1.2. From the benchmark of the maximum displacements of the beam, these results
are presented in Table 5.1.3. Both benchmarks are illustrated in Figure 5.1.3 and Figure 5.1.4. The
term error in the results is referred to the errors between the obtained solutions. Both the errors
between the two numerical solutions and the errors between the numerical and analytical solutions
are measured. The definitions of the absolute and relative errors are given in Equation 5.1.2 be-
low, where X denotes the relevant variable for error measurements. The case of comparing the
two numerical solutions is presented in this equation, but the same procedure applies to comparing
the numerical methods and the analytical solution. The other case studies will use this method of
computing the error. Thus, the definition is not repeated.

Absolute error = XFErret −XAbaqus

Relative error =
(
XFErret −XAbaqus

XAbaqus

)
× 100

(5.1.2)

Point of FEM Number of Displacement Error from Error from
Measurements Solver Elements [mm] Abaqus Sol. Analytical Sol.

Abaqus 39 783 -0.000586 – 85.1E-06

8 -0.000418 168E-06 253E-06

PreFerret 64 -0.000678 -91.7E-06 -6.56E-06
512 -0.000653 -66.7E-06 18.4E-06
4 096 -0.000483 103E-06 188E-06

Point of FEM Number of Displacement Error from Error from
Measurements Solver Elements [mm] Abaqus Sol. Analytical Sol.

Abaqus 39 783 -0.000566 – 106E-06

8 -0.000211 355E-06 460E-06

PreFerret 64 -0.000204 362E-06 467E-06
512 -0.000160 406E-06 511E-06
4 096 -0.000153 -964E-06 -859E-06

Point of FEM Number of Displacement Error from Error from
Measurements Solver Elements [mm] Abaqus Sol. Analytical Sol.

Abaqus 39 783 -0.000565 – 106E-06

8 -0.000104 461E-06 567E-06

PreFerret 64 0.0000800 645E-06 751E-06
512 -0.0000620 503E-06 609E-06
4 096 -0.0000550 510E-06 616E-06

Table 5.1.2: Benchmark of displacements in z-direction for three node positions.

39

FEM Solver 2x2x2 4x4x4 8x8x8 16x16x16
Abaqus [mm] 0.00121 0.00216 0.00406 0.00785
PreFErret [mm] 0.00109 0.00229 0.00423 0.00829
Absolute error [mm] -0.00012 0.00013 0.00017 0.00044
Relative error [%] -9.69 6.06 4.18 5.57
Time usage PreFErret [s] 0.004 0.112 43.8 30 244

Table 5.1.3: Benchmark of maximum displacements in z-direction for certain mesh divisions.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

·10−4

Number of Elements

D
is
pl
ac
em

en
t[
m
m
]

Displacement

Displacement at top node
Displacement at middle node
Displacement at bottom node
Abaqus solution top node

Abaqus solution middle node
Abaqus solution bottom node

Analytical solution

(a)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−100

−50

0

50

100

150

Number of Elements

Er
ro
r[
%
]

Displacement Error

Error from Abaqus, top node
Error from Abaqus, middle node
Error from Abaqus, bottom node

Error from Analytical solution, top node
Error from Analytical solution, middle node
Error from Analytical solution, bottom node

(b)

Figure 5.1.3: Comparison of displacements and errors compared to Abaqus and analytical solution.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

1

2

3

4

5

6

7

8

9
·10−3

Number of Elements

D
is
pl
ac
em

en
t[
m
m
]

Displacement

Maximum displacements in Abaqus
Maximum displacements in PreFErret

(a)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−10

−8

−6

−4

−2

0

2

4

6

Number of Elements

Er
ro
r[
%
]

Displacement Error

Error from Abaqus solution

(b)

Figure 5.1.4: Comparison of displacements and deviations from the Abaqus solution.

40

5.1.3 Discussion

From Table 5.1.2, it is clear that the displacements from PreFErret are at a reasonable and expec-
ted level. Even though the absolute errors are minor, the relative errors will be quite large as the
displacements are small for this load case. For the upper node, the displacement converges some-
what towards the solution from Abaqus but also goes beyond this value. Two mesh structures give
excellent values compared to the analytical solution, but this trend is inconsistent. For the middle
node, the displacements are most accurate at the coarsest mesh and seem to converge to a specific
value quite lower than both the Abaqus and analytical solution. This development also occurs for
the lower node. In other words, PreFErret does not give a good solution for displacements in the
nodes, as these appear neither stable nor converged. The possibility of mistakes in sorting the ele-
ments’ nodes may lead to this result. Therefore, looking at the maximum displacement benchmark
in Table 5.1.3 is a better way to confirm the results from this plugin. However, this method is ir-
relevant for comparison to the analytical solution due to singularities that appear by defining point
loads at particular nodes.

The displacements were more comparable when the meshes in PreFErret and Abaqus were sim-
ilar. For the coarsest mesh, the solution from PreFErret was the stiffest one. However, the Abaqus
solution was the stiffest for the other mesh sizes. The error’s absolute value decays for each mesh
refinement, from 9.69% to 5.57 %, with a slight exception for the 8x8x8 mesh. However, as these
relative displacement errors are quite low, these results are evaluated as able to confirm the PreFEr-
ret computations. The problem seems to be about getting complete coherence between the nodes
and their displacement values. In addition, the PreFerret shows a high increase in computational
time with mesh refinement. The plugin requires hours to compute the solutions for a relatively
small number of elements. A study to find the errors and possible improvements should be done.
Still, the authors proceed to the already-made FErret plugin to solve the more significant problems
related to this thesis’ research question.

5.2 Case Study 2: Verifying the Development towards Orthotropic Materials

To assess the effectiveness of incorporating orthotropic materials into FErret’s development, a case
study on the displacement of a timber cantilever beam is being conducted. A series of measure-
ments are done to evaluate how the solution converges as the mesh is refined. Refining the mesh
should reduce the errors and converge towards the solution obtained in Abaqus, where a highly
dense mesh is used. The displacements are measured at a point on the bottom end of the beam, as
this is the spot where the displacements will be the largest. The point is located in the middle of
the width of the beam.

The geometry in this case study, shown in Figure 5.2.1, is a more traditional cantilever beam with
a slender shape and a rectangular cross-section, but with the same length as in the first case study.
The grain direction of the timber spans along the longitudinal direction of the beam. Therefore,
this high and slender cantilever shape is desirable to highlight the material’s strong direction. The
geometry and load values are presented in Table 5.2.1. As the material for this case study is timber,
the orthotropic material requires more engineering constants to be determined. These constants are
given in Table 5.2.2 and represent typical values for a Nordic Spruce (Malo, 2021). An illustration

41

of the longitudinal (L), radial (R), and tangential (T) directions are shown in Figure 5.2.2. The
illustration also defines the correlation between the axis systems L, R, and T, and 1, 2, and 3,
where the latter system is used further in this thesis.

Figure 5.2.1: Geometry and load case for Case Study 2.

Width Height Length
∑

Force Boundary Condition
200 mm 400 mm 1 000 mm 20 kN Fixed

Table 5.2.1: Geometry and load values for Case Study 2.

E11 E22 E33 v12 v13 v23 G12 G13 G23

10 000 800 400 0.5 0.6 0.6 600 600 30

Table 5.2.2: Material properties for Case Study 2.

Figure 5.2.2: The three orthogonal axes in timber: Longitudinal, Radial, and Tangential.

As timber properties vary significantly between the axes, it is desirable to be able to set the dir-
ections of the material. Manipulating the stiffness matrices with rotational matrices goes beyond
the scope of this thesis. However, the opportunity of determining the strong axis should be con-
sidered. In other words, the user should be able to decide if the model spans along either the x-, y-
or z-axis. Even though it is quite a limited choice to be restricted to these orthogonal axes, some
additional freedom is provided. The transformation also works as a confirmation of the theory in
Equation 2.1.33. As the solver interprets the x-axis as the main axis, the 1-direction is set along
the x-axis by default. Suppose it is desirable to model the beam along, e.g., the y-axis. In that case,

42

the relation between the Poission’s ratios can be utilized to manipulate the material properties so
that the solver interprets the y-axis as the strong axis. This transformation example is shown in
Table 5.2.3.

Exx Eyy Ezz vxy vxz vyz Gxy Gxz Gyz

E11 E22 E33 v12 v13 v23 G12 G13 G23

10 000 800 400 0.5 0.6 0.6 600 600 30
↓ Transforming y-axis to strong axis ↓

E22 E11 E33 v21 = v12 · E22
E11

v23 v13 G12 G13 G23

800 10 000 400 0.04 0.6 0.6 600 600 30

Table 5.2.3: Example of how the material properties can be manipulated to change the direction
of the strong axis, here along the y-axis.

5.2.1 Method

Grasshopper

A flowchart for the GH file of Case Study 2 is provided below. Two different BREPs have been
created for this benchmark to compare the results. One method involves creating the entire geo-
metry in a BREP, which is directly inputted to the chosen meshing tool. For hexahedral elements,
the SimplyfyMesh-component is used to make the mesh. For the tetrahedral elements, Tetrino is
used. This results in a free mesh where the element size and orientation vary significantly. There
are also more nodes along the geometry’s outer edges than the interior. The second alternative
involves a custom code that iterates a desired number of hexahedral boxes in the x, y, and z dir-
ections to represent the geometry. The division is based on dimensions in each direction and the
desired number of subdivisions.

For the hexahedral element, these BREPs are sent through the SimplyfyMesh-component to make
the mesh. For the tetrahedral ones, the list of BREPs is inputted to Tetrino, where six tetrahedral
elements are generated per hexahedral BREP. The mesh is extracted from the chosen meshing tool
and input into FEM Load, Boundary On Points, MaterialOrtho, and FEM Solver. The vertices
of the mesh are also extracted from Tetrino. The load and boundary points are picked with a
small code in Grasshopper, and assigned to the FEM Load and Boundary On Points, respectively.
Subsequently, all the information is passed into FErret FEM Solver, which calculates the solution.
For a detailed description of the entire setup, please refer to the GH file in Appendix A. A video
visualizing this case study is available at YouTube, see Appendix B.

Figure 5.2.3: Flowchart of Grasshopper script for Case Study 2.

43

https://www.youtube.com/watch?v=07PgDBP4aLc

Abaqus

As the mesh structure is challenging to obtain identically in both Grasshopper and Abaqus, the
authors chose to create a model in Abaqus consisting of a highly dense mesh to compare with
the results from Grasshopper. Similarly to the first case study, the Abaqus solution was used to
compare the results from Grasshopper while the mesh was gradually refined. The procedure in
Abaqus was, therefore, quite similar to before. However, a new material had to be defined. The
timber was described with the nine parameters from Table 5.2.2. Further, the main axis was defined
along the longitudinal direction of the beam, and from there, the procedure was equal to the one in
Case Study 1. The mesh comprises 57 682 elements.

5.2.2 Results

As in Case Study 1, the beam’s height-to-length ratio exceeds 1/10. Thus, shear deformations
must be considered to calculate the analytical solution to the structural problem. To calculate the
displacement at the end of the beam, Equation 5.2.1 is used. The equation is equal to the one in
Case Study 1, but since the material is now timber, some variable values have changed and are
listed below.

wmax =
PL

κGA
+

PL3

3EI
= −1.11520mm (5.2.1)

• P = 20kN, representing the point loads acting on the beam.

• L = 1 000mm, representing the length of the beam.

• κ = 10(1+ν)
12+11ν , the Timoshenko shear coefficient.

• G = G12 = 600MPa, the shear modulus.

• A = b · h = 80 000mm2, the cross-sectional area.

• E = E1 = 10 000MPa, the Young’s modulus.

• I = b·h3

12 , the second moment of area for the cross-section, where b and h represents the
height and the width.

The benchmark results are provided in Table 5.2.4 and Table 5.2.5. Displacement patterns from
Grasshopper and Abaqus are illustrated in Figure 5.2.6. The results are also presented by the
graphs in Figure 5.2.4 and Figure 5.2.5. In the graphs, one can see the convergence behavior of the
displacements and errors, as well as the increase of computational costs as the number of elements
increases. The errors are defined in the same way as in Case Study 1, refer Equation 5.1.2.

In Table 5.2.6, the results from the change in direction of the strong axis are presented, here along
the y-axis. A video illustrating the procedure of modifying the strong axis is available at YouTube,
see Appendix B.

44

https://www.youtube.com/watch?v=8plN5ai6GMs

Number of Displ. Error from Relative Error from Relative FErret
Elements [mm] Abaqus Solution Error [%] Analytical solution Error [%] Time [s]

48 -0,939 62.2E-03 -6,21 176E-03 -15,8 0,0330
60 -0,941 60.0E-03 -5,99 174E-03 -15,6 0,0510
88 -0,971 30.6E-03 -3,05 145E-03 -13,0 0,0680
195 -0,986 14.8E-03 -1,48 129E-03 -11,6 0,194
384 -0,995 6,29E-03 -0,628 120E-03 -10,8 0,550
504 -1,000 0.929E-03 -0,0928 115E-03 -10,3 0,780
1 200 -1,008 -7.13E-03 0,712 107E-03 -9,59 3,05
1 848 -1,010 -8.51E-03 0,850 106E-03 -9,46 6,56
2 496 -1,011 -10.3E-03 1,03 104E-03 -9,30 11,1
3 332 -1,012 -11.0E-03 1,10 103E-03 -9,23 18,9
4 320 -1,013 -11.5E-03 1,15 103E-03 -9,20 34,0

Table 5.2.4: Displacements for mesh consisting of hexahedral elements. Compared to the solution
from Abaqus with dense mesh giving a displacement w = -1.0016mm.

Number of Displ. Error from Relative Error from Relative FErret
Elements [mm] Abaqus Solution Error [%] Analytical solution Error [%] Time [s]
288 -0,837 165E-03 -16,4 279E-03 -25,0 0,0890
528 -0,899 102E-03 -10,2 216E-03 -19,4 0,252
2 304 -0,953 47.8E-03 -4,77 162E-03 -14,5 2,54
4 032 -0,979 22.3E-03 -2,23 136E-03 -12,2 6,94
5 940 -0,986 15.5E-03 -1,55 130E-03 -11,6 14,3
7 200 -0,991 10.1E-03 -1,01 124E-03 -11,1 20,0
10 296 -0,995 6,29E-03 -0,628 120E-03 -10,8 40.0
12 960 -0,998 2,79E-03 -0,279 117E-03 -10,5 62,3
14 976 -1,001 0.317E-03 -0,0317 114E-03 -10,3 80,7
20 580 -1,003 -1,83E-03 0,182 112E-03 -10,1 152
23 520 -1,003 -1,71E-03 0,171 112E-03 -10,1 199

Table 5.2.5: Displacements for mesh consisting of tetrahedral elements. Compared to the solution
from Abaqus with dense mesh giving a displacement w = -1.0016mm.

Figure 5.2.6: Displacement pattern for Case Study 2.

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

·104

−1.1

−1.05

−1

−0.95

−0.9

−0.85

Number of Elements

D
is
pl
ac
em

en
t[
m
m
]

Displacement

TET4 elements in FErret
HEX8 elements in FErret
Dense mesh in Abaqus
Analytical solution

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·104

−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Number of Elements

Er
ro
r[
%
]

Displacement Error

Error from Abaqus solution, TET4 elements in FErret
Error from Abaqus solution, HEX8 elements in FErret
Error from analytical solution, HEX8 elements in FErret
Error from analytical solution, TET4 elements in FErret

(b)

Figure 5.2.4: Comparison of displacements and errors from Abaqus and analytical solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

20

40

60

80

100

120

140

160

180

200

220

Number of DOFs

Ti
m
e
[s
]

Computational Time

TET4 elements in FErret
HEX8 elements in FErret

Figure 5.2.5: Computational time as a function of the number of DOFs in the system.

Number of elements x-axis y-axis
288 -0.837 -0.837
4 032 -0.979 -0.979
10 296 -0.995 -0.995
23 520 -1.003 -1.003

Table 5.2.6: Comparison of displacements with the strong axis spanning along the x- and y-axis.

46

5.2.3 Discussion

The results above regarding displacements will be used to evaluate the solidity of the development
of the FErret plugin for handling orthotropic materials. Due to the difference in the number of
nodes between the hexahedral and the tetrahedral elements, the FErret plugin could not handle as
many hexahedral elements as tetrahedra. There are some limitations in the C# language, in this
case, related to exceeding the maximum length of an array. Therefore, there is a maximum amount
of DOFs the plugin can handle due to this limitation. However, the trend is similar for the two
benchmarks. The solution from FErret converges towards the Abaqus solution from the upper side
and goes a bit beyond. The errors are minor in both an absolute and relative sense, with relative
errors of 1.15% for the hexahedra and 0.17% for the tetrahedra. Comparing the results for the
same number of elements for the two-element geometries, the hexahedra are more accurate but at
a higher cost in a temporal sense. The hexahedra need about 34 seconds to provide the results,
while the tetrahedra only need about seven seconds for the same amount of elements.

The graphs show these behaviors with clearly converging curves, especially for the tetrahedra.
Despite the relatively low number of elements for the hexahedral mesh, it is clear that the solution
converges towards a number a bit lower than what the tetrahedral gives. The tetrahedra create a
solution that nearly aligns with the line for the Abaqus solution with a dense mesh. It is also worth
noticing that a satisfactory value for the displacements is found for both element geometries for
an element number significantly less than the largest amounts used in this benchmark. Only 384
elements are needed for the hexahedra to obtain a solution with a relative error of less than one
percent. Similarly, for the tetrahedra, a mesh containing 7200 elements gives a solution with a
relative error of one percent compared to the Abaqus solution.

The time consumption for these numbers of elements is 0.55 and 20 seconds, respectively. This
shows that the hexahedra are far more efficient for computing the solution, as the convergence rate
is clearly larger than for the tetrahedra. However, if the goal is to achieve the most accurate solution
possible, tetrahedra should be used, but they comewith a significant computational cost. Compared
to the analytical solution, the displacements from both the FErret solution and the Abaqus solution
converge to a value about 10% lower. This behavior might be explained by the complexity of the
timber, as more material properties than the ones defined in the strong direction will influence how
the beam deflects. This could explain the slightly conservative solution obtained by the analytical
method.

For the rotation of the strong axis presented in Table 5.2.6, the result is capable of confirming
the theory in Equation 2.1.33, as well as the method described in Table 5.2.3. With exactly equal
displacement values for the two measurements, it is clear that there is an opportunity of choosing
which axis the orthotropic material should span along. This makes the plugin more suitable and
versatile as the user is not restricted to modeling the structure along one specific axis. This find-
ing opens an opportunity of expanding the potential of the FErret plugin, which is presented and
discussed further in the main discussion of this thesis.

47

5.3 Case Study 3: Verifying the Development towards Combining Materials

To verify that the method in 4.4 works, a steel dowel is inserted into a timber beam with the same
geometry used in Case Study 2. Two point loads are applied to each side of the dowel, intending
to stretch the timber beam along its grain direction. The geometry and load case are illustrated in
Figure 5.3.1 and listed in Table 5.3.1. The material properties for both the timber beam and the
steel dowel are listed in Table 5.3.2. For simplicity, the contact property between the dowel and the
timber is considered glued in this case study. In other words, there is complete interaction between
the two parts.

Figure 5.3.1: Geometry and load case for Case Study 3.

Beam Beam Beam Dowel Dowel ∑
ForceWidth Height Length Radius Length

200 mm 400 mm 1 000 mm 50 mm 400 mm 10 kN

Table 5.3.1: Geometry and load values for Case Study 3.

E11 E22 E33 v12 v13 v23 G12 G13 G23 Edowel vdowel

10 000 800 400 0.5 0.6 0.6 600 600 30 210 000 0.3

Table 5.3.2: Material properties for the timber beam and the steel dowel in Case Study 3.

48

Some approximations had to be made to obtain full compatibility between the two parts regarding
meshing. A small script was made to define which part of the global mesh represents the dowel
and which part represents the timber beam. An integer value is given as a parameter for this script
to decide how strictly the elements should be chosen. This integer represents how many of the
element’s nodes should be inside the dowel’s volume to be considered part of the dowel mesh.
This means that if the input is the number 1, only one node from any element must be inside the
volume representing the dowel to be considered part of the dowel mesh. On the other side, if the
integer is 3, three nodes from an element must be inside this volume for the element to be included
in the dowel mesh. This integer value has to be chosen by evaluating the resulting dowel.

An example is illustrated in Figure 5.3.2 with various values for this integer. The elements cannot
precisely represent the cylinder using the Iguana plugin, but the representation is acceptable by
refining the mesh. However, with the Tetrino plugin, the elements perfectly represent the cylinder
by setting the input integer to 3. This variation in dowel representation is illustrated in Figure 5.3.2
and Figure 5.3.3, where the integer parameter is denoted i. Due to problems with the Tetrino
meshing method, Iguana is chosen with a mesh size of 25, and the integer is set to 1 to represent
the dowel preferably. This gives a slightly larger dowel, but as the dowel is relatively smaller than
the timber part, this is evaluated as acceptable.

49

Figure 5.3.2: Approximation of the dowel volume with Iguana.

Figure 5.3.3: Approximation of the dowel volume with Tetrino. Mesh size is constant for the three
dowels.

50

5.3.1 Method

The benchmark is based on comparisons between the model from FErret and the model with a
dense mesh from Abaqus. The displacements and stresses are the parameters used for comparison.
For the displacements, three points on the tip of the beam are chosen to obtain the variation on the
end face. Two points in the middle of the beam’s cross-section are selected for the stresses, about
500mm and 100mm inside the beam from the fixed support. This point is determined to obtain
comparable results from the interior of the beam.

Grasshopper

Figure 5.3.4 shows the process in the Grasshopper script to obtain the results in this case study.
The main difference from the previous processes is the definition of parts for the timber beam and
steel dowel. This results in a different data structure going through the process, handled with new
components as introduced in Section 4.4. For the Grasshopper model, the two parts are defined in
a way that makes them fully interact, like they in practice were glued. For a detailed description
of the entire setup, please refer to the GH file in Appendix A.

Figure 5.3.4: Flowchart of Grasshopper script for Case Study 3.

Abaqus

The mesh settings in Abaqus were chosen to gain the best results possible with a reasonable com-
putational time. The quadratic tetrahedral element C3D10 was used, with an approximate element
size of 15mm for the timber part and 10mm for the steel dowel. Smaller elements in the dowel are
preferable for achieving more accurate results at a lower computational time. A constraint property
of type Tie was introduced in the Abaqus model to obtain a connection between the timber beam
and the steel dowel. The mesh in this case study comprises 130 895 elements.

51

5.3.2 Results

Displacements

Unlike the structural problems in the two first case studies, obtaining an analytical solution to the
situation in this case study is not readily done. Therefore, a model from Abaqus with a highly
dense mesh is used as a reference for the displacement measurements. Due to the load direction
along the x-axis, the displacement in the x-direction is evaluated in this section since the ones in
the y- and z-direction will be minimal.

In Table 5.3.3, the results from the analysis in FErret are compared with the solution gained from
Abaqus. The node position is given for each comparison, as well as the absolute error, as defined
by Equation 5.1.2, between the FErret solution and the Abaqus solution. These results are also
presented visually in Figure 5.3.5, while the displacement patterns are illustrated in Figure 5.3.6.

Point of FEM Number of Displacement Absolute Relative
Measurements Solver Elements [mm] Error [mm] Error [%]

Abaqus 130 895 0.00509 – –

319 0.00726 0.00217 42.7
FErret, 3 059 0.00570 0.000609 12.0
Iguana mesh 9 668 0.00575 0.000658 12.9

23 918 0.00542 0.000334 6.57

Point of FEM Number of Displacement Absolute Relative
Measurements Solver Elements [mm] Error [mm] Error [%]

Abaqus 130 895 0.0140 – –

319 0.00913 -0.00489 -34.9
FErret, 3 059 0.00984 -0.00418 -29.8
Iguana mesh 9 668 0.0103 -0.00376 -26.8

23 918 0.0106 -0.00338 -24.1

Point of FEM Number of Displacement Absolute Relative
Measurements Solver Elements [mm] Error [mm] Error [%]

Abaqus 130 895 0.00510 – –

319 0.00744 0.00234 45.9
FErret, 3 059 0.00578 0.000680 13.3
Iguana mesh 9 668 0.00577 0.000669 13.1

23 918 0.00540 0.000306 6.00

Table 5.3.3: Benchmark of displacements in the x-direction for three node positions.

52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−2

Number of Elements

D
is
pl
ac
em

en
t[
m
m
]

Displacement

Displacement at top node
Displacement at middle node
Displacement at bottom node
Abaqus solution top node

Abaqus solution middle node
Abaqus solution bottom node

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

−40

−30

−20

−10

0

10

20

30

40

50

Number of Elements
Er
ro
r[
%
]

Displacement Error

Error top node
Error middle node
Error bottom node

(b)

Figure 5.3.5: Comparison of displacements and errors compared to the Abaqus solution.

Figure 5.3.6: Displacement pattern for Case Study 3.

53

Stresses

All six stress components are compared to obtain the most comparable numbers between FErret
and Abaqus. These components are the three normal stresses σx, σy, and σz , as well as the three
shear stresses σxy, σxz , and σyz . The stresses are further denoted according to the main axes as S11,
S22, S33, S12, S13 and S23, respectively. The results are presented in Table 5.3.4 and Table 5.3.5
for stresses 50mm and 100mm inside the beam, respectively.

FEM Solver Node Position S11 S22 S33 S12 S13 S23

FErret (48, 109, 200) 128E-03 0.896E-03 1.98E-03 -0.00505E-03 -0.0510E-03 -0.0230E-03
Abaqus (51, 102, 198) 133E-03 3.71E-03 2.74E-03 -0.0517E-03 0.110E-03 0.00374E-03
Abs. error -4.62E-03 -2.81E-03 -0.767E-03 0.0466E-03 -0.161E-03 -0.0267E-03
Rel. error [%] -3.47 -75.8 -28.0 -90.2 -147 -715

Table 5.3.4: Stresses 50mm into the beam from the fixed support. The results are provided with
both absolute and relative errors.

FEM Solver Node Position S11 S22 S33 S12 S13 S23

FErret (106, 109, 209) 130E-03 -0.0570E-03 0.337E-03 0.0160E-03 -0.560E-03 -0.0520E-03
Abaqus (101, 102, 195) 136E-03 1.36E-03 0.850E-03 0.00414E-03 0.217E-03 0.00713E-03
Abs. error -5.77E-03 -1.41E-03 -0.513E-03 0.0119E-03 -0.831E-03 -0.0591E-03
Rel. error [%] -4.23 -104 -60.3 287 -307 -830

Table 5.3.5: Stresses 100mm into the beam from the fixed support. The results are provided with
both absolute and relative errors.

The stress maps are shown in Figure 5.3.7 for the three normal stresses to confirm the stress dis-
tribution throughout the model. The figures to the left are from the FErret analysis, while those to
the right are from Abaqus.

54

Figure 5.3.7: Stress distributions for the normal stresses.

55

5.3.3 Discussion

From the benchmark on both displacements and stresses, it is clear that the FErret plugin is able to
analyze a structural problem that includes more than one material after the development in this case
study was done. The results are not equal, which is not expected due to the challenges in repres-
enting the individual parts of the mesh, as mentioned above. The displacement values are clearly
converging towards solutions quite close to the solution obtained with Abaqus. The nodes on the
top and bottom of the beam show quite precise and similar values, which reflects the symmetry in
the structure about the middle of the beam height.

However, it is worth noticing that the relative error is larger for the mid-node. This is also visible
in Figure 5.3.6, where it is clear that the dowel deforms the middle of the beam to a larger extent
in the Abaqus model. This could be due to the interaction definitions between the timber beam
and the steel dowel. As explained in Section 5.3.1, the FErret model defines the parts as fully
interacted, while in the Abaqus model, the timber beam is defined as a constraint for the dowel to
move. This can lead to different behaviors around the dowel, as all the timber around the dowel
will restrain the load in the FErret model, while for the Abaqus model, only the part of the timber
subjected to compression will be restraining the motion. This would lead to higher displacements
around the dowel for the Abaqus model, which matches well with the results. It also explains the
slightly higher displacements at the top and bottom nodes for the Ferret model; as for this model,
the displacements are distributed more evenly over the beam.

For the stresses, there are good correlations between the dominating stresses, here mainly in the
x-direction. As the other stresses are so small, the errors are comparably high even though the
absolute error is low. In addition, the selected points are a source of error since the coordinates do
not coincide due to the different mesh structures inside the volumes. As seen on both Figure 5.3.6
and 5.3.7, the displacement and stress patterns are quite similar for the solutions from the two
different finite element solvers. This is a good indication that the FErret plugin correctly calculates
the overall behavior of the structure.

By this, it seems that the challenge to improve this development is the meshing. Representing the
parts more precisely will improve the quality of the solution. The problems related to the meshing
will be further discussed in the main discussion section of this thesis. A video of the structure from
this case study is available at YouTube, see Appendix B.

5.4 Case Study 4: Analyzing Timber Elements from 3D-scannedHousewith FErret

The environment has become an important topic related to climate and CO2 emissions. Human-
induced climate change is now a higher priority on the political agenda because we are concerned
about its effects. The government’s main objective is for Norway to become carbon-neutral by
2030. This will pose significant challenges for all sectors of society (TreFokus, 2017). In 2020 the
European Union required that 70% of all construction industry waste should be material recycled,
a goal that is hard to accomplish. Today this industry is responsible for 25% of all waste in Norway,
and approximately 40% of this is reclaimed in new materials (Laake, 2020). Reclaiming materials
presents several challenges, including establishing an inventory of available reusable materials,

56

https://www.youtube.com/watch?v=E1HQ_i6ECAA

determining their suitability for specific constructions, assessing their capacity, and communicating
the effect of reusing materials. Several solutions are made to accomplish this challenge.

The case study presented in this section is based on an under-development housing project. It is
a small two-story building built only from reclaimed timber elements. The design and analysis of
the highly unique structure required bespoke computational methods, which creates an interactive
process between architecture and structural timber engineering. The project is called Sletteløkka
and will be constructed in the autumn of 2023.

To select the reusable timber elements, an algorithm is made that takes in a list of 3D-scanned ob-
jects and saves their length and cross-section area. The elements from the building are also inserted
as an input, where the component iterates through the bank of 3D-scanned elements and returns
the elements that have or could have the desired length and cross-section. The cross-sections in
the structural model are then updated, and Karamba 3D is utilized to analyze the structure.

The paper about this concept is not yet published but is scheduled for publication at the WCTE
conference in June 2023. The solution could be improved since the cross-section of the reclaimed
material is not fully used. By identifying the smallest cross-section area of the 3D-scanned beam,
this area is added to the structural model. A more accurate approach is, therefore, to add the actual
geometry and do the structural calculations using FErret. This also reduces the design time, as the
model can be automatically updated as structural elements are replaced with reused components.

Adding FErret to the given algorithm enables a much more detailed design process where all the
imperfections can be considered. The 3D-scanned geometry can be opened in Rhino and con-
nected to FErret in Grasshopper. In this way, the capacity of various building components can
be evaluated, and new solutions using reused materials can be tested to meet the current building
requirements. In this case study, the building from the paper is used to test how FErret handles
3D-scanned elements. A 3D model of the structure is shown in Figure 5.4.1(a).

Figure 5.4.1: Illustration of test-object

57

To illustrate the solution’s effectiveness, a deformed building component has been selected, marked
in green in the model. The beam has been rotated and tested as a column. This makes it possible
to test it in compression to enable a straightforward assessment of displacement and stress distri-
bution. Hereafter, the building component will be referred to as a column. Figure 5.4.1(b) shows
the setup for the experiment.

Due to some irregularities at the top and bottom of the column, the ends of the column are cut.
At the bottom of the column, all end vertices are constrained in x, y, and z directions to represent
fixed support. At the top, the column is loaded with point loads at all end vertices. These loads
together correspond to 10 kN. For comparison purposes, a perfect column is also modeled and
shown to the right in figure 5.4.1(b). The green sphere in the middle of both columns shows
the measurement point for displacement and stresses. Properties regarding geometry, load case,
boundary conditions, and material used in this case study are summarized in Table 5.4.1 and 5.4.2.

Width Height Length
∑

Load Boundary Condition
178 mm 178 mm 5 122 mm 10 kN Fixed

Table 5.4.1: Geometry for the perfect column, and load and boundary conditions for both columns.

E11 E22 E33 v12 v13 v23 G12 G13 G23

10 000 800 400 0.5 0.6 0.6 600 600 30

Table 5.4.2: Material properties for Case Study 4.

5.4.1 Method

Grasshopper

Figure 5.4.2: Flowchart for modeling the three different columns.

A flowchart for generating the three different columns is illustrated in Figure 5.4.2. The input to the
Grasshopper script is the selected mesh from the 3Dmodel and a given number of planes. Utilizing
this data, several intersection lines are generated between the 3D-scanned column and the specified
number of planes in the input. This information calculates the area at each intersection point and

58

the cross-section’s centroid. By examining numerous intersection points and creating a polyline
along the column center, the length can be determined, and the average area of the 3D-scanned
column can be calculated. Using the optimization tool Galapagos in Grasshopper, the lengths of
the cross-section are set to be as close as possible to the average area of the 3D-scanned column.
With this information, the two perfect columns with structured and free meshing can be generated.

The custom code created for Case Study 2 is utilized for the structured mesh. The boxes’ size and
number are adjusted based on the cross-section, length, and input subdivision. For the 3D-scanned
column, the BullAnt plugin in Grasshopper is used, which converts the input mesh into a BREP.
The same setup as in Case Study 2, illustrated in Figure 5.2.3, is used for the remaining part.

Due to the difficulty in quality assuring the results obtained from analyzing the 3D-scanned column,
a benchmark has been conducted on the perfect column. This analysis aims to assess the accuracy
and performance of themeshing tool Tetrino. This also allows for verification that the experimental
setup yields sensible solutions. An Abaqus model has been created to evaluate the solutions com-
puted by the FErret. Various types of mesh from Tetrino are illustrated in Figure 5.4.3.

Figure 5.4.3: Free meshing and structured meshing using Tetrino.

The 3D-scanned column has a highly variable surface, which poses a challenging task for the
meshing tools. As mentioned in Case Study 2, fine meshes can result in such a large K-matrix
that the solver cannot calculate the solution due to a matrix size limitation. This makes controlling
the number of elements essential, especially with an uneven surface. Small openings and cracks
generate many elements and, therefore, many nodes. Iguana makes more similarly sized elements,
but it has proven difficult because it is hard to control the number of elements. It was, therefore
important to check that Tetrino gives reasonable results. Since mesh size and homogeneity can
affect results, it is important to test the level of deviation when Tetrino is used.

After the BREP is generated in the BullAnt-component, this geometry is further regenerated into
a tetrahedral mesh with four faces and four vertices. This mesh type is one of the two mesh types

59

that FErret accepts. Figure 5.4.4 shows some of the meshes and illustrates how Tetrino operates
on the geometry. When the number of elements is low, the geometry representation is somewhat
poor, and the volume deviates significantly. However, the meshing tool can capture tiny details as
the number of elements increases. To calculate the volume deviation, Equation 5.4.1 is used. For
a detailed description of the entire setup, please refer to the GH file in Appendix A.

Deviation =

(
VMesh − VBREP

VBREP

)
× 100 (5.4.1)

Figure 5.4.4: Difference in mesh

Abaqus

TheAbaqusmodel was createdwith the same geometry, load, and support conditions as inGrasshop-
per to generate the most similar model possible. A test run was performed to ensure convergence.
The favorable element was again a 20-node serendipity hexahedral element with reduced integra-
tion, known as C3D20R in Abaqus. This element was chosen for its excellent convergence ability
and to achieve the closest approximation possible to the actual solution. The mesh comprises 10
045 elements.

60

5.4.2 Results

Perfect column

In the following subsection, the results for the perfect column are displayed. Figure 5.4.5 shows
the colored displacement and stress map for the column calculated with free meshing and struc-
tured meshing in FErret and structured meshing in Abaqus. Figure 5.4.6 shows the error from the
Abaqus solution for structured- and freemeshing. To calculate the errors, the same definitions from
Equation 5.1.2 are used. In Table 5.4.3 - 5.4.6, more details for the results are given, such as the
number of elements, displacements, stresses and errors at the measurement point, and maximum
values.

Figure 5.4.5: Result from analyzing perfect column.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·104

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of Elements

Er
ro
r[
%
]

Error of Maximum Displacements

Structured meshing
Free meshing

Figure 5.4.6: Error from the numerical solution obtained with Abaqus. Tetrino is used for meshing
the free and structured meshes.

61

Number of Displacement in middle Displ. Error Maximum Displ. Maximum Displ.
Elements [mm] [%] [mm] Error [%]
168 -1.98 1.72 -4.04 -0.205
1 368 -2.03 -0.540 -4.04 -0.215
4 644 -2.00 0.930 -4.04 -0.151
11 040 -2.03 -0.771 -4.04 -0.0908
21 450 -2.02 -0.0692 -4.03 -0.0433

Table 5.4.3: Displacement results from the benchmark in the perfect column with a structured
mesh. Abaqus provides the solutions wmax = −4.032 mm and wmid.node = −2.0153 mm at the
measurement point.

Number of Stress in middle Stress Error Maximum Stress Maximum Stress
Elements [MPa] [%] [MPa] Error [%]
168 0.315 0.124 0.331 1.03
1 368 0.315 0.124 0.345 -2.96
4 644 0.315 0.124 0.349 -4.24
11 040 0.315 0.124 0.351 -4.75
21 450 0.315 0.124 0.351 -4.88

Table 5.4.4: Stress results from the benchmark in the perfect column with a structured mesh,
compared with the solution from Abaqus with a dense mesh. Abaqus provides the solutions
σV.M.max = 0.335MPa and σV.M.mid.node = 0.315MPa at the measurement point.

Number of Displacement in middle Displ. Error Maximum Displ. Maximum Displ.
Elements [mm] [%] [mm] Error [%]
162 -2.06 -2.21 -4.05 -0.388
1 324 -2.00 0.700 -4.07 -0.986
4 419 -2.02 -0.475 -4.06 -0.639
8 221 -2.01 0.454 -4.07 -0.866
11 957 -2.01 0.477 -4.06 -0.719

Table 5.4.5: Displacement results from the benchmark in the perfect column with a free meshing.
Abaqus provides the solutions wmax = −4.032 mm and wmid.node = −2.015 mm at the measure-
ment point.

Number of Stress in middle Stress Error Maximum Stress Maximum Stress
Elements [MPa] [%] [MPa] Error [%]
162 0.315 0.124 0.428 -27.9
1 324 0.315 0.123 0.925 -176
4 419 0.315 0.123 1.11 -230
8 221 0.315 0.124 1.33 -299
11 957 0.315 0.124 1.34 -301

Table 5.4.6: Stress results from the benchmark in the perfect column with a free meshing. Com-
pared with the solution from Abaqus with dense mesh. Abaqus provides the solutions σV.M.max =
0.335MPa and σV.M.mid.node = 0.315MPa at the measurement point.

62

3D-scanned column

The results from the analysis of the 3D-scanned column are presented below. Figure 5.4.7 shows
the colored displacement and stress map for the 3D-scanned column. Figure 5.4.8 displays the
displacement and stresses compared with the volume deviation. In Table 5.4.7 - 5.4.8, more details
for the results are given, including the number of elements, displacements, stresses, and deviations.
A video illustrating the results in this case study is available at YouTube, see Appendix B.

Figure 5.4.7: Stress and displacement of the 3D-scanned column.

Sample Number of Displacement in Maximum Volume Volume
Name Elements middle [mm] Displacement [mm] [mm3] Deviation [%]
M1 171 -2.92 -9.73 107E+06 30.90
M2 719 -2.97 -9.69 138E+06 10.78
M3 2 094 -2.61 -9.83 145E+06 6.54
M4 1 406 -2.68 -11.1 146E+06 5.99
M5 2 928 -2.19 -9.70 149E+06 3.72
M6 4 520 -1.29 -12.41 150E+06 3.14
M7 5 563 -1.44 -14.08 151E+06 2.50
M8 9 051 -1.04 -14.94 153E+06 1.54
M9 9 440 -1.59 -15.24 153E+06 1.57
M10 14 454 -1.79 -16.26 153E+06 1.01
M11 16 031 -1.82 -16.11 153E+06 1.02

Table 5.4.7: Displacements from analysis of 3D-scanned column.

63

https://www.youtube.com/watch?v=dIsUBiz2K_8

Sample Number of Stress in Maximum Volume Volume
Name Elements middle [MPa] Stress [MPa] [mm3] Deviation [%]
M1 171 0.425 1.75 107E+06 30.9
M2 719 0.292 1.59 138E+06 10.8
M3 2 094 0.257 1.54 145E+06 6.54
M4 1 406 0.264 1.65 146E+06 5.99
M5 2 928 0.235 1.63 149E+06 3.72
M6 4 520 0.145 1.72 150E+06 3.14
M7 5 563 0.129 1.68 151E+06 2.50
M8 9 051 0.173 1.95 153E+06 1.54
M9 9 440 0.0914 2.33 153E+06 1.57
M10 14 454 0.0714 2.13 153E+06 1.01
M11 16 031 0.0720 2.07 153E+06 1.02

Table 5.4.8: Stresses from analyzing 3D-scanned column

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

M1M2M3

M4

M5

M6

M7

M8
M9

M1O
M11

Deviation from actual geometry [%]

D
is
pl
ac
em

en
t[
m
m
]

Maximum Displacement of 3D-Scanned Column

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M1

M2

M3
M4

M5

M6
M7

M8

M9
M1O

M11

Deviation from actual geometry [%]

St
re
ss
[M

Pa
]

Stress in the middle of 3D-Scanned Column

(b)

Figure 5.4.8: Displacements and stresses for the 3D-scanned column.

5.4.3 Discussion

The benchmarking performed on the perfect column reveals that FErret performswell. The stresses
and displacements are of reasonable magnitudes, confirming that the test model works as it should.
However, the free and structured meshing results demonstrate that the meshing technique can sig-
nificantly influence the outcomes. This is evident in Figure 5.4.6, where the difference between
the FErret and Abaqus solutions converges toward zero for the structured mesh. At the same time,
it varies considerably for the free mesh. Nevertheless, the error is minimal and appears to converge
toward zero. The error is also clearly visible in Figure 5.4.5, where a stress concentration occurs
in the free mesh. This causes the column to deform to one side.

The structured mesh exhibits nearly uniform stresses throughout the column, and displacement
occurs only in the vertical direction. In Abaqus, structured meshing is also employed, but with

64

hexahedral elements. As a result, the stress distribution and displacement behavior are similar
to those observed in FErret’s structured mesh. Table 5.4.4 and Table 5.4.6 demonstrate that the
stresses at the middle of the column remain constant for the various meshes, aligning closely with
the results obtained from Abaqus. Based on the location of the measurement point, it is reasonable
that the stresses remain unchanged throughout this region, even if the mesh is modified.

The results from the 3D-scanned column also appear reasonable. Figure 5.4.7 displays concen-
trated stress at the bottom, whichmakes sense considering this area contains a cutout. The column’s
displacement is considerable, which could be attributed to imperfections that cause horizontal
forces to act upon it. This displacement leads to a more significant displacement in the vertical
direction at the top of the column. However, a challenge with the results lies in the difficulty of
determining the exact solution since it never converges. The cause of this issue is the meshing.
Figure 5.4.4 illustrates the challenge due to significant geometric variations resulting from differ-
ent mesh sizes. A coarse mesh produces an approximately rectangular column corresponding to a
solution that is likely far from the actual response. As the number of elements increases, the mesh
geometry approaches the actual geometry. Still, even though the volume discrepancy is negligible,
the solution does not flatten out completely.

It would be interesting to run a few solutions with volume deviation below 1% to observe if the
results deviate less. However, one of the challenges with FErret arises in this scenario, namely the
C# limitation on the size of the K-matrix. The solution may not converge entirely as it would for
simpler geometries since the meshing in Tetrino significantly affects the results, as discussed for
the perfect column above. Since loads are applied at the nodes, a denser mesh can potentially result
in a less favorable scenario. The cross-sectional geometry may become less evenly distributed than
desired. Consequently, the load distribution can becomemore eccentric for certain meshes, leading
to varying loads. An example of this challenge is illustrated in Figure 5.4.9.

Figure 5.4.9: Refining the mesh of the uneven cross-section leads to a less favorable load distri-
bution.

65

5.5 Case Study 5: Verifying the Implementation of FEniCSx in Grasshopper

Another benchmark was carried out to ensure the correct implementation of FEniCSx and its ability
to provide precise results. The cantilever from Case Study 2 was used. In the model, there are two
distinctions. Firstly, the applied load is represented as a surface load, and secondly, steel is chosen
as the material. These modifications were made as FEniCSx was primarily designed to work with
steel, and simulating surface loads is more manageable than point loads on this platform.

The geometry and details of the test model are provided in Table 5.5.1. Measurements have been
conducted to assess the solution’s convergence as the mesh transitions from coarse to fine. The
solution is compared against an analytical solution and a numerical solution conducted in Abaqus.
The experiment’s parameters of interest are being compared, being the maximum values of dis-
placement and von Mises stresses. Additionally, the information within the region enclosed by the
green sphere in Figure 5.5.1 is being examined. The interest surrounding FEniCSx primarily lies
in the speed of calculations, which is a significant concern in Case Study 2 as the mesh is refined.
Therefore, this information has also been extracted from the analyses.

Width Height Length
∑

Load Boundary Condition Youngs’ Modulus Poisson’s Ratio
200 mm 400 mm 1 000 mm 0.5 N/mm2 Fixed 210 000 N/mm2 0.3

Table 5.5.1: Dimensions, loads, boundary conditions and material properties for cantilever.

Figure 5.5.1: Test model for Case Study 5

66

5.5.1 Method

Grasshopper

Figure 5.5.2: Flowchart for Case Study 5.

Figure 5.5.2 shows a flowchart representing the GH file utilized for the cantilever using FEniCSx
as the solver. The geometry is constructed as a box, and Tetrino is employed as the meshing tool.
When it comes to transferring the mesh to the solver, the difference between FEniCSx and FErret
lies in their respective approaches. Instead of directly transferring the mesh from Tetrino to the
solver, the vertices and connectivity between them are selected.

The InfoLBC component is employed to determine the points serving as boundary conditions and
those subjected to loading. For this prototype, the solver has been designed to accommodate four
different loads and a single type of boundary condition. The component utilizes the vertex list and
the provided BREPs to determine the purpose of each point. The solver is currently designed only
for surface loads, as it defines an area surface based on the points included in the load BREP.

All information is written to a file and further imported into the FEniCSx program for computation.
The results are subsequently returned to the file and read by the Results component in Grasshopper.
To create a colored displacement and stress display, the mesh is reconstructed using the Construct
Mesh component in Grasshopper. The component takes the deformed points and a connectivity
list for the input faces. This connectivity information is retrieved from Tetrino and is reformatted
as Q[n1, n2, n3, n4]. To generate the colored pattern, the Gradient component from Grasshopper
is connected, where the desired values are normalized before inputting. For a detailed description
of the entire setup, please refer to the GH file in Appendix A.

As mentioned in Case Study 4, Tetrino creates an unstructured mesh, where element sizes and
orientations can vary significantly. Consequently, there are fewer nodes in the geometry’s central
region than the number of nodes present on the surface. The meshed cantilever is shown in figure
5.5.3.

67

Figure 5.5.3: Free meshing of geometry.

Abaqus

The Abaqus model is created similarly as in Case Study 2, but this time with steel as the material.
The support conditions remain the same, while the loading is now a surface load. A test run was
performed to ensure convergence. The favorable element was a 20-node serendipity hexahedral
element with reduced integration, known as C3D20R in Abaqus. This element was chosen for the
same reasoning as in Case Study 4. The mesh comprised 35 805 elements.

5.5.2 Results

Due to the height-to-length ratio of the beam exceeding 1/10, shear deformations must again be
considered. Timoshenko beam theory is, therefore, necessary to calculate the analytical solution.
The following, Equation 5.5.1 has been used.

wmax =
qL2

2κGA
+

qL4

8EI
= −0.06488mm (5.5.1)

• q = 100N/mm, representing the distributed load acting on the beam.

• L = 1 000mm, representing the length of the beam.

• κ = 10(1+ν)
12+11ν , the Timoshenko shear coefficient.

• G = 81 000MPa, the shear modulus.

• A = b · h = 80 000mm2, the cross-sectional area.

• E = 210 000MPa, the Young’s modulus.

• I = b·h3

12 , the second moment of area for the cross-section, where b and h represents the
height and the width.

68

Like the previous case studies, displacements and stresses have been extracted and illustrated in the
results. Maximum values and values within the green sphere are therefore listed. In Figure 5.5.4, a
comparison between colored displacement maps calculated using FEniCSx and Abaqus is presen-
ted. Figure 5.5.6 compares colored stress maps obtained from calculations performed with FEn-
iCSx and Abaqus.

Results from the benchmark are listed in Table 5.5.2, and plotted graphically in Figure 5.5.5. The
values are compared to the numerical solution in Abaqus and the analytical solution. Similarly,
the von Mises stress results are provided in Table 5.5.3 and Figure 5.5.7, but in this case only
compared with the Abaqus solution. To calculate the error from the analytical and Abaqus solution,
Equation 5.1.2 has been used.

Displacements

Figure 5.5.4: Colored displacement maps.

Number Displacement Displ. Error Maximum Max. Displ. Error Max. Displ. Error
of at Measurement from Abaqus Displacement from Abaqus from Analytical

Elements Point [mm] Solution [%] [mm] Solution [%] Solution [%]
457 -0.0640 -0.621 -0.0645 -0.601 -0.617
1 416 -0.0642 -0.357 -0.0646 -0.355 -0.370
3 263 -0.0643 -0.202 -0.0648 -0.185 -0.200
6 438 -0.0643 -0.109 -0.0648 -0.108 -0.123
11 076 -0.0644 -0.0466 -0.0648 -0.0462 -0.062
18 046 -0.0644 -0.0155 -0.0649 -0.0154 -0.0308
26 023 -0.0644 0.0000 -0.0649 0.0154 0.0000
41 932 -0.0644 0.0311 -0.0649 0.0308 0.0154

Table 5.5.2: Displacements compared to the solution obtained with Abaqus, as well as the analyt-
ical solution. Displacements at the measurement point, as well as maximum stresses, are evaluated.
Abaqus provides the solutions wmax = −0.06487 mm and wmp = −0.06439 mm.

69

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

−6.5

−6.48

−6.46

−6.44

−6.42

−6.4

−6.38

−6.36

·10−2

Number of Elements

D
is
pl
ac
em

en
t[
m
m
]

Displacement

Displacement at measurement point FEniCSx
Displacement at measurement point Abaqus

Max displacement FEniCSx
Max displacement Abaqus

Analytical solution

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Number of Elements

Er
ro
r[
%
]

Displacement Error

Error from numerical solution at measurement point
Error from Abaqus solution
Error from analytical solution

(b)

Figure 5.5.5: Comparison of displacements and errors from the numerical and analytical solutions.

Stresses

Figure 5.5.6: Colored stress map

Number of Stress at Measurement Stress Error from Maximum Maximum Stress Error
Elements Point [MPa] Abaqus Solution [%] Stress [MPa] from Abaqus Solution [%]
457 0.0465 156 11.3 -35.0
1 416 0.0248 36.6 12.9 -25.9
3 263 0.0176 -3.03 13.6 -22.0
6 438 0.0173 -4.90 16.8 -3.51
11 076 0.0174 -4.40 16.3 -6.40
18 046 0.0195 7.05 20.1 15.6
26 023 0.0183 0.771 23.2 33.5
41 932 0.0184 0.991 23.7 36.4

Table 5.5.3: Stresses compared to the solution obtained with Abaqus. Stresses at the measurement
point, as well as maximum stresses, are evaluated. Abaqus provides the solutions σV.M.max = 17.37
MPa and σV.M.mp = 0.01817MPa at the measurement point.

70

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

1

1.5

2

2.5

3

3.5

4

4.5

5
·10−2

Number of Elements

St
re
ss
[M

Pa
]

Stress

Stress at measurement point FEniCSx
Stress at measurement point Abaqus

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

−30

−20

−10

0

10

20

30

Number of Elements

Er
ro
r[
%
]

Stress error

Stress error at measurement point
Max stress error

(b)

Figure 5.5.7: Comparison of stress with corresponding errors from the solution obtained with
Abaqus.

5.5.3 Discussion

The implementation of FEniCSx has clearly been successful, as evidenced by the results presented
above. The solver provides solutions that closely resemble Abaqus’s numerical results while also
aligning with the analytical solution. The von Mises stresses are clearly converging, however, the
maximum stresses do not, as shown in (Figure 5.5.7b). This behavior is expected because stress
concentration increases as the mesh becomes finer, and the solution does not converge toward an
exact value. Variations in stress concentrations may also be a consequence of the meshing method.

As mentioned in previous case studies, Tetrino produces some free meshes where element size and
orientation may vary significantly. Each time the mesh is refined, a new mesh is generated with
varying sizes and orientations. This can affect stress distribution and result in varying maximum
stresses, as well as varying stresses in the region near the point of measurement.

It would have been preferable to perform the analysis with a structured mesh, as was done for
the perfect column in Case Study 4. However, the challenge lies in how the authors have built the
solver. Currently, vertices and connectivity are extracted from Tetrino and passed into the FEniCSx
solver instead of directly importing the mesh. The connectivity contains four connectivity numbers
per line and describes which vertices are used to build each element. To construct a perfect mesh,
the samemethod as in Case Study 4 would have to be used. Then the connectivity lines will contain
more than four connectivity numbers per line, creating difficulties in rebuilding the mesh within
the solver. This would require a significant amount of work for minimal benefit, considering the
results are already satisfactory.

Something exciting about the results from FEniCSx is the speed of the solver. This is illustrated
in Table 5.5.4 and Figure 5.5.8, where e.g. the finest mesh with a K-matrix size of 212 070x212
070 only takes 17.3 seconds. This includes everything that happens within the entire GH file. If
we only consider the time the solver takes from reading the file to writing the results, it only takes
13.8 seconds.

71

Number of elements 18 10 361 26 023 37 627
Number of DOFs 189 60 012 147 594 212 070
Total time[s] 2.20 4.40 10.3 17.3
FEniCSx-computation time[s] 0.897 4.00 9.30 15.7
Rebuild mesh in FEniCSx time[s] 0.00203 0.0198 0.0521 0.102
Assemble model time[s] 0.000825 0.194 0.494 0.758
Solver time[s] 0.00242 2.54 6.95 11.4
Total time in FEniCSx[s] 0.110 3.19 8.48 13.8
Write and read time[s] 0.134 0.286 0.712 1.11

Table 5.5.4: Time usage for different processes using FEniCSx as the solver in Grasshopper.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

2

4

6

8

10

12

14

16

18

Number of DOFs

Ti
m
e
[s
]

Time Usage of the Steps in the Process

Total time
FEniCSxSolver component time

Total time in FEniCSx
Total time to write and read the files

Figure 5.5.8: Time usage for the different processes in FEniCSx, as well as total time usage for
this solver.

The green graph in Figure 5.5.8 illustrates the time the FEniCSxSolver component uses for the
calculation, while the red graph shows the time used for FEniCSx outside Grasshopper to calculate
the solution. There is a consistent difference between the graphs throughout the benchmarking
process. The time difference primarily comes from the time it takes to start the FEniCSx file. The
slight irregularities in the graph can also be attributed to the component taking some time to receive
and pass on inputs.

One big challenge with the implementation is transferring information between the two programs.
The authors attempted a solution where data was stored in a cloud solution through Speckle, in
addition to a solution where it was only stored in the computer’s memory and then retrieved. Both
solutions presented issues due to a blockage that occurred in Ubuntu, so text files were chosen
instead.

The time it takes to transport all the information through text files is illustrated in the blue graph. It
shows that the solution has minimal impact on the overall speed, even with the finest mesh, which
involves writing 162 077 lines in the CollectData component. It is evident that if the geometry
becomes very large, the solution will increase the solver time, but it will still be low compared
to the time the solver takes to provide the solution. For visualization of the case study, a video
illustrating the problem is available at YouTube, see Appendix B.

72

https://www.youtube.com/watch?v=1oD-GON1vBE

5.6 Case Study 6: Analyzing Complex Geometry with FEniCSx

Given FEniCSx’s impressive track record regarding result convergence, managing largeK-matrices,
and computational speed, it would be prudent to explore its capabilities in handling complex geo-
metries. In Case Study 4, a two-story community building was used as a test object, where a
3D-scanned beam was subjected to compression. For the same project, a modern solution was also
made, as shown in Figure 5.6.1. All the model’s beams, columns, and bracings are new and free
of deformations and imperfections. The building material remains wood, but the joints are made
of steel and connected to the wood using dowels. Table 5.6.1 presents the relevant geometry, load,
boundary conditions, and material.

For this case study, a joint in the roof of the building has been selected, as it exhibits a more
interesting load-bearing behavior than the joints along the columns. The particular connector is
marked in green Figure 5.6.1. Details of the joint are presented in Figure 5.6.2.

Figure 5.6.1: 3D model of new house

Cross-Section
∑

Load Boundary Youngs’ Poisson’s
Wood (bxh) Condition Modulus Ratio

119 mm x 235 mm 20 kN Fixed 210 000 N/mm2 0.3

Table 5.6.1: Geometry for the timber, and loads, boundary conditions, and material properties for
steel connector.

73

Figure 5.6.2: Detailed model. Measurements are given in mm.

The model has been chosen to be simplified as this case study aims to test whether FEniCSx can
analyze and represent a complex loaded geometry. The reduced model is highlighted in green in
Figure 5.6.2. In reality, the joint consists of rafters and dowels, but an attempt has been made
to create a model that can provide the same response without including rafters and dowels in the
analysis. This has been done to reduce the model’s size and consequently decrease computational
time.

To replicate the loading conditions, it has been chosen to load the edge of the steel plate as shown
in Figure 5.6.3. The placement of this red zone will vary based on the directions of the applied
loads. Figure 5.6.4 illustrates a typical loading scenario for such a joint. The selected test model
is expected to yield a response similar to what such a model would provide.

Figure 5.6.3: Illustration of how loads and boundary conditions are applied.

74

Figure 5.6.4: Test model of steel connector with rafters.

5.6.1 Method

Grasshopper

Figure 5.6.5 illustrates the flowchart for the GH file of Case Study 6. The setup is very similar to
the setup in Case Study 5, with the only differences being the geometry to be analyzed, the location
of the load application, and the direction of the load. The geometry used in this case study is more
complex than in Case Study 5, requiring some preprocessing to make it compatible with meshing in
Tetrino. In Rhino, the geometry was defined as separate surfaces, resulting in a rectangular plate
composed of six surfaces. This posed a challenge and necessitated recreating the geometry. To
minimize challenges with Tetrino, the geometry was reproduced in Grasshopper. The model was
created as a solid and symmetrical BREP, resulting in a considerably better mesh. By doing so, the
model became fully parametric, allowing lengths, widths, thicknesses, and angles to be adjusted
by manipulating sliders. The number of dowels can also be chosen in this approach. Due to a large
number of elements, the dowels were decided to be left out of the model. For a detailed description
of the entire setup, please refer to the GH file in Appendix A.

Figure 5.6.5: Flowchart for Case Study 6.

Three load cases were conducted to observe how the connection behaves under different loads.
For each load case, three different meshes were used; coarse, medium fine, and fine. The adaptive
sizing in Tetrino is used, allowing mesh refinement in the zones where it is necessary. This was
to highlight the importance of accurately modeling the connections with a sufficient number of
elements. Figure 5.6.6 shows a picture of the coarse mesh.

75

Figure 5.6.6: Meshed steel connection

5.6.2 Results

An analysis was conducted on the given geometry, and vital parameters such as displacement, von
Mises stress, computational time, and the number of elements are extracted and presented in this
section. In this case study, the results are exclusively presented through images, as the intention
is to demonstrate that the solver can provide reasonable displacements and stress concentrations
for the given load cases and geometry. Each load case is analyzed with the tree meshes, where
meshing 1 corresponds to the coarse mesh, meshing 2 to the medium fine mesh, and meshing 3 to
the fine mesh. The results are presented for load cases 1-3, where the left side depicts the deformed
model with a color pattern illustrating absolute displacement calculated using Equation 5.6.1. The
right side illustrates von Mises stresses in the geometry. A purple sphere indicates the location
of maximum displacement, and an orange sphere represents the location of maximum von Mises
stresses. In addition, a video illustrating this case study is available at YouTube, see Appendix B.

r =
√
u2 + v2 + w2 (5.6.1)

76

https://www.youtube.com/watch?v=KpKBkenk07g

Figure 5.6.7: Load case 1.

77

Figure 5.6.8: Load case 2.

78

Figure 5.6.9: Load case 3.

79

5.6.3 Discussion

Through Case Study 6, FEniCSx is tested on a complex geometry that is highly relevant in every-
day engineering. The presented results demonstrate that the solver is capable of performing reas-
onable analyses of the geometry. Based on the load case, the response and the variation of results
with changes in mesh size are consistent with the authors’ expectations. When comparing dis-
placements and von Mises stresses a clear correspondence between stress concentration and large
displacements can be observed when comparing displacements and von Mises stresses.

In Load Cases 1 and 2, the displacement patterns show a high level of symmetry in their col-
oration. This is expected since Equation 5.6.1 calculates absolute values without differentiating
between positive and negative displacement. However, for load case 3, the symmetry seems to be
absent. This may seem strange as this load case involves symmetric loads moving toward each
other. The stress distribution map reveals inequality, with higher stress appearing on the left side.
Consequently, the nodal point deforms towards the right. Upon investigation, it was discovered
that this movement was due to the size of the loaded areas.

As previously stated, load zones are established by attaching tags to particular points. These points
are subsequently utilized to create a load region in the FEniCSx module. The issue arises when
the mesh is free and unsymmetrical. There may be a discrepancy in the number of points assigned
to different loading zones sent to the solver. Consequently, this leads to slightly different loaded
areas, which may produce an asymmetrical case. The various load zones for Case Study 3 are
illustrated in Figure 5.6.10 and numbered in Table 5.6.2. The table also shows that the loading
zone gets bigger every time the model is refined.

Figure 5.6.10: Showing the different loading zones that are modeled in the analysis

Load Area 1: Load Area 2: Load Area 3: Load Area 4:
Coarse mesh 147 mm2 121 mm2 130 mm2 167 mm2

Medium fine mesh 135 mm2 157 mm2 172 mm2 175 mm2

Fine mesh 196 mm2 180 mm2 194 mm2 191 mm2

Table 5.6.2: Areas for the different load areas.

80

According to the data presented in the table, the test model assumed by the authors is not func-
tioning precisely as intended. It is possible that including the complete model, with a load on the
end of the rafters, would result in a more evenly distributed load. However, this will not provide
a realistic solution since FEniCSx can only handle one material for the model. Thus, the plugin
is not able to represent the test model in Figure 5.6.4, and therefore not elaborated further in this
thesis.

81

6 Discussion

Based on the six case studies, the research question will be answered in the following. The section
is divided into two parts. Firstly, the implementation and development of the FEM solvers Pre-
FErret, FErret, and FEniCSx are discussed. In the second part, the discussion deals with the main
challenge of applying FEM solvers in the Grasshopper environment, which relates to the geomet-
ries’ meshing. The benefits and limitations of involving FEM in the conceptual phase through the
AAD environment will be discussed, as well as the further work that should be done to improve
the solutions developed in this thesis.

What are the opportunities and challenges associated with implementing Finite Element Method
analysis using solid elements during the conceptual phase of projects, through the use of an

Algorithms-Aided Design environment?

6.1 FErret and FEniCSx

The first impression of parametric modeling possibilities came with the development of the Pre-
FErret plugin in Case Study 1. Even though the plugin had some problems probably connected
to the coherence between result values and their respective nodes, it clearly showed the potential
of having a FEM solver inside an AAD environment like Rhino Grasshopper. The simple and
user-friendly layout of the software makes it easy, even for people unfamiliar with the program to
work with the FEM solver. Using sliders as parameters to define geometry, load, boundary condi-
tions, and material makes the modeling process way more efficient and readily done compared to
standard commercial FEM solvers like Abaqus.

The advantages of utilizing parametric modeling in the concept stage were further investigated
in Case Studies 2 and 3. In the first of them, the implementation of the material timber showed
that the FErret plugin could solve problems related to not only isotropic materials like steel. FErret
showed good results also when the structural problem consisted ofmore comprehensive orthotropic
materials likewood. With 384 hexahedral elements, FErret could provide a solution in 0.55 seconds
with less than one percent error compared to the commercial software Abaqus. Using tetrahedral
elements, the number of elements needed to obtain a relative error of less than 1 percent was
significantly higher. Nevertheless, the tetrahedra provided more accurate solutions as they enabled
many elements to be applied.

For now, the plugin has a limitation as it does not support structural elements with local axes
angeled to the global cartesian axes. This problem can be solved by introducing rotational matrices
to define the engineering constants correctly concerning the global axes. This problem is left out
for further work. However, the user can already define which global axis the main local axis should
be set along by transforming the Poisson ratios.

Another limitation that comes with the development from Case Study 2 is that the whole structural
model can only have one single direction for the strong axis in a global sense. This means that the
model cannot be, e.g., a frame containing beams and columns with the grain direction spanning
the components’ longitudinal direction. The following case study, which deals with splitting the
structural model into different parts, solves this problem and opens new possibilities for combining
parts with different material definitions and properties.

82

Illustrated by a loaded steel dowel inserted into a timber beam, Case Study 3 showed that the po-
tential of FErret was increased by implementing the use of parts in the global structural model. By
defining certain volumes as independent parts, the structure could be divided into several pieces,
each with its material properties. The results of the FE analysis were convincing, and the displace-
ment and stress charts showed that the overall behavior of the structural model was trustworthy.

The case study used two materials with highly different properties. Steel’s hard, ductile, heavy,
and stiff properties were combined with the softer, less ductile, and lighter timber material. By
combining these materials, the reliability of the results should be easy to evaluate as the strong
steel dowel should be less deformed than the softer timber. This behavior was confirmed by the
displacement plots, even though the steel dowels suffered from the singularity that appeared due
to point loads with some large displacements at those nodes in particular.

The implementation of parts enables the user to define every material that the parameters of iso-
tropic and orthotropic materials can represent. This means that the problemmentioned above about
modeling a frame containing beams and columns is solved by the opportunity of defining different
materials with their strong axis set along the desired global axis. In this way, even a 3-dimensional
frame can be modeled by defining three different timber material classes, each with its strong axis
defined along one of the x-, y-, and z-axes.

The developments of the FErret plugin in Case Study 2 and 3 has led to a plugin that is more solid
and general than before. The solver can now handle different parts consisting of different materials
that can be analyzed in interaction with each other. In other words, the plugin can now analyze
more realistic and comprehensive structural problems, as the fewest real-life structures consist only
of one material. Some of the potentials of the FErret plugin were explored in the following case
study, analyzing a timber element from an actual project in Oslo. The results showed to be reliable
and highly comparable to the solution obtained in Abaqus. This confirmed that the development of
FErret is also useful in real-life cases like reusing timber materials in constructing new buildings.

Despite the convincing results from the development of FErret, there are some problems when
modeling in Grasshopper with the PreFErret and FErret plugins, and those problems are related to
the meshing process of the geometry. These problems are discussed in the final part of the section.

In Case Study 5, a steel beam with the same dimensions as in Case Study 2 was benchmarked. The
analysis provided convincing results and showed that the FEniCSx environment was a powerful
and efficient solver for FEA problems. The impressive low time consumption of solving the PDEs
to obtain displacements and stresses was eye-opening. Computations were done in a few seconds
while still providing accurate results compared to the commercial software.

To get a better impression of the time usage, a small benchmark was done only considering the time
consumption in Abaqus and FEniCSx. This benchmark is illustrated in Figure 6.1.1 and clearly
shows the remarkable performance of FEniCSx. The solver uses significantly less time analyzing
and obtaining solutions than Abaqus. Nonetheless, it should be noted that Abaqus runs several
more complex computations than the FEniCSx at this stage. However, for the desired results to
evaluate at a conceptual stage, Abaqus provides a much more extensive and complete analysis
than what is probably necessary so early in the process. This finding is highly valuable, as both the
parametric design process and numerical computations are done faster with the FEniCSx solver

83

than in Abaqus. The low time consumption increases the possibility of providing accurate results
within a short amount of time. For meetings in the conceptual stage, this plugin can provide help
for decision-making efficiently and seamlessly.

0 0.5 1 1.5 2 2.5 3 3.5

·104

0

5

10

15

20

25

30

35

40

45

50

Nr. of elements

Ti
m
e
[s
]

Time usage in FEniCSx and Abaqus analyzing cantilever from Case Study 5

FEniCSx time
Abaqus time

Figure 6.1.1: Time usage for the two different FEM solvers Abaqus and FEniCSx.

In the development stage, there were discussions about whether to write the information in memory
or to file. As writing to memory provides quicker procedures, it requires more memory capacity,
as well as more challenging programming algorithms. As shown in Table 5.5.4, the write and read
time stands for less than 10% of the total time usage. This was evaluated as insignificant enough
to use the procedure of writing and reading to text files rather than writing to memory. However, it
should be noted that because of this choice, there is some potential to reduce the time consumption
for further improvements of the FEM solver.

While Case Study 5 worked as a standard benchmark for testing the accuracy and reliability of
the method, Case Study 6 uses this solver to analyze a real-life structural problem related to the
same project as in Case Study 4. This geometry is quite complex and requires a solver capable of
handling much larger meshes than what is achievable with FErret. Based on the analysis results,
it appears that FEniCSx-solver can accurately model complex geometry while maintaining a low
computational time. The promising results from this case study open up exciting possibilities for
the detailed design of joints. By employing optimization tools, various free-formed joints can be
tested, incorporating different dimensions, shapes, stiffness properties, dowels, etc. This allows
for the design of the optimal joint configuration for the given structure.

Unlike FErret, FEniCSx has so far been developed for one single material only and cannot handle
multiple materials simultaneously. In Case Study 6, the results were simplified to account for
wooden rafters and achieve the desired response. However, the test model did not perform as
expected. To achieve realistic results in this aspect, further software development is required.
FEniCSx encountered several challenges related to meshing, and the following section presents
the specific issues encountered in each case study.

84

6.2 Meshing Challenges

Three main meshing plugins are used in this thesis. Two of them are open-source applications
available for download from the internet, while the last one is a simple mesh algorithm made in
Grasshopper by the developers. The two open-source applications, Tetrino and Iguana, are the
dominating meshing methods used in this thesis, and both of them showed great potential but also
limitations.

Firstly, Tetrino was used in the case studies, but the problems with this plugin showed up quickly.
When meshing with Tetrino, the surface of the volume is divided into the desired mesh settings set
by the user. This structured mesh creates solid elements by connecting the surfaces through lines
between the meshed surfaces’ nodes. This method works fine for geometry with only one element
over the thickness, as the resulting mesh is structured and regular.

However, for meshes withmore than one element over the thickness, this meshingmethod becomes
problematic as the mesh gets irregular and somewhat chaotic. For this reason, it became hard to
obtain a mesh comparable to the mesh obtained in the commercial FEM software Abaqus. As the
geometries in the first two case studies of the thesis consisted of right prisms, it was possible to
use the authors’ own-developed meshing algorithm to obtain the desired mesh, with a structured
mesh also inside the volume.

Regarding Case Study 1, it was sufficient with this own-developed algorithm only, as the case dealt
with 8-node brick elements. For Case Study 2, the structured mesh was used as input to the Tetrino
plugin to obtain a tetrahedral mesh, now in a structured way due to the regularity obtained with the
first algorithm. After this improvement, the mesh was more reliable to provide good results.

Case Study 3 was the first case where the Iguana plugin was used. Inserting a steel dowel into the
timber beam was not a big problem for the Tetrino plugin. As seen on Figure 5.3.3, the Tetrino
plugin could define the steel dowel better than Iguana. Nevertheless, the Tetrino plugin created
a mesh not only consisting of 4-node tetrahedra but also some 5-node elements, which the FEM
solver does not support. As the dowel representation using Iguana was acceptable, though not
perfect, it was evaluated as the most usable meshing method to proceed with. The Iguana plugin
creates a more free and less structured tetrahedral mesh than Abaqus, so comparing solutions from
the two methods based on the mesh structure was not relevant. Solutions obtained from Abaqus
with a highly dense mesh of higher-order tetrahedra were used as references for the results obtained
from the FErret solver.

The tables and figures in Case Study 3 showed that the Iguana plugin was able to provide good
results through the FErret solver. Even though the mid-node results were more inaccurate than
the ones in the top and bottom nodes, this error is not evaluated as a problem mainly due to the
meshing, as mentioned above, but rather a question of interaction properties between the parts.
However, the different meshing structures will surely give some differences in the answers.

The main problem in Case Study 3 related to the meshing was representing the steel dowel pre-
cisely. Tetrino solved this problem easily, so it should be the preferable meshing algorithm in this
case. Therefore, in similar circumstances, the Tetrino meshing plugin would probably be the best
choice of meshing plugins, given that it creates mesh elements that the FEM solver supports. If

85

this is not the case, it could be investigated if the elements that are not supported can either be ma-
nipulated into a supported element or safely be removed from the mesh without causing problems
or unacceptable accuracy. This investigation is not done in this thesis but is encouraged as further
work if the issue remains relevant in future structural problems.

Case Study 4 was a structural problem where despite a challenging geometry, the Tetrino proved
to be the best alternative for meshing. Figure 5.4.4 showed that Tetrino was able to describe the
distorted and irregular shape of the reused timber element well when the element sizes were suf-
ficiently small. Due to the uneven surface, Iguana showed to be weaker than Tetrino in adjusting
the mesh size around these irregularities to represent the geometry efficiently and precisely.

For Case Study 5, the geometry was equal to the one in Case Study 2. Thus the same meshing
procedure was used for the same reasoning for that case. In Case Study 6, some problems with
Tetrino again occurred as the small cylindrical dowels required a large number of elements and
thus caused a significant increase in computational time. The solution of reducing the model to
only the significant parts solved the main issue, but in future problems, this might not be an al-
ternative. From the discussion above, it is clear that the meshing problems occur independently of
the FEM solver used, as the two last case studies use a rather different solver inside the FEniCSx
environment.

The work done in the case studies in this thesis clearly shows that the meshing procedure is a
large and vital part of the FE analysis. The time measurements during the case studies reveal that
Tetrino is the fastest meshing tool. It only uses around 3.4% of the total analysis time to mesh the
geometry. On the other hand, Iguana generates elements with relatively similar sizes but consumes
up to 35.3% of the total time for meshing.

86

7 Conclusion

To conclude the research question, the six case studies highlight the potential of implementing FEM
analysis using solid elements during the conceptual phase through using an AAD environment
like Grasshopper. As the first case study was rather an intro to the FErret solver, the following
two case studies focused on developing and improving this particular FEM solver. By enabling
the possibility of analyzing problems that contain several parts of both isotropic and orthotropic
materials, the plugin has become more general and flexible, as it can handle more realistic and
complex structural problems in future cases. This generality of the solver makes it more relevant
to utilize at meetings for decision-making during the conceptual phase of a project.

Two different methods were used in developing the plugins in the case studies. While FErret was
based on matrix algebra, FEniCSx solved PDEs to obtain the results in the FEM analysis. While
FErret has a wider range of applications, FEniCSx showed impressive accuracy and low time
consumption for relatively complex structural problems. Ultimately, both plugins have possible
improvements that would increase their potential even more.

The advantage of implementing FEM in such an early stage is that problems that traditionally
appear later in the project may be detected at an earlier stage, where it is easier and cheaper to make
the necessary changes. The case studies show that the FEM solver inside an AAD environment is
not necessarily quicker than the commercial software Abaqus. However, the development of the
FEniCSx solver has led to a plugin that provides the desired results quicker than the well-known
commercial software. With an adequately dense mesh, solutions can be obtained with acceptable
accuracy within a short amount of time. The parametric approach of the FEM solver enables the
user to easily change the geometry and conditions while retrieving updated results in real-time.

The most challenging part of the implementation of FEM in Grasshopper is the mesh procedure.
Multiple mesh algorithms have been utilized in this thesis. However, none of them are able to easily
construct a mesh of complex geometry that the FEM solver effectively interprets. Improvements
related to meshing tools can, for this reason, increase the process’s efficiency and accuracy, making
the potential even more remarkable.

87

8 Further work

As this is an early development of both FErret and FEniCsx, there are a few points that the authors
believe should be further investigated in order to achieve versatile and powerful plugins for use in
design in the future.

In FErret, the development of isotropic materials has progressed considerably, and this solver ap-
pears to perform well. However, for orthotropic materials, the solver requires further work to func-
tion effectively with real projects. The method employed by the authors, implementing different
parts, is suitable for simple systems where all elements act along the principal axes. However, com-
plications arise when introducing elements at an angle to the global axes. To resolve this problem,
it’s crucial to find a way to incorporate rotational matrices that accurately define the engineering
constants in relation to the global axes.

In addition, the FErret software faces a significant challenge due to the limitations imposed by the
C# programming language on matrix sizes. It is crucial to overcome this problem to analyze more
extensive problems, such as Case Study 6, with a satisfying mesh division. One solution to the
problem is to store the indices and the values of non-zero numbers instead of constructing the entire
matrix within the program. This approach could potentially manage larger matrices, but it may
come at the expense of higher computational processing. It may be beneficial to consider creating
and solving the matrices in a different programming language, as the limitations are imposed by
C# itself. If the problem is not resolved, it could become a significant obstacle, requiring the
implementation of alternative software like FEniCSx into the FErret plugin.

FEniCSx is still in its early development stages and has some notable limitations. Currently, it can
only handle one specific type of boundary condition, where all directions are restricted. However,
for the software to be useful in practical applications, it needs to be able to support a variety of con-
straints. For FEniCSx to fulfill the role of FErret, the solver must be enhanced to cover orthotropic
materials and allow for integrating several material types in one model.

Furthermore, there are significant limitations regarding the software’s ease of use when accessed
directly through Grasshopper. Currently, users are only able to choose geometry, loads, and bound-
ary conditions. However, determining material parameters and incorporating self-weight require
manual execution using separate code. The current input methodology, which involves vertices
and indices, should also be modified to enable direct mesh input. Thus, the possibility of connect-
ing multiple BREPs entities instead of a collection of all entities becomes feasible. As a result, the
software needs significant improvements to make it user-friendly and practical for use in profes-
sional settings on a daily basis.

Generating appropriate meshes is a significant challenge for both meshing programs. To make
Finite Element Analysis with solid elements accessible for everyday use in an AAD environment,
a meshing tool tailored explicitly for such software should be developed. This tool should be
capable of creating structured and unstructured meshes quickly and efficiently, enabling effective
analysis with low computational time.

88

Bibliography

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J.,
Rognes, M. E., &Wells, G. N. (2015). The fenics project version 1.5. Archive of Numerical
Software, Vol 3, Starting Point and Frequency: Year: 2013. https://doi.org/10.11588/
ANS.2015.100.20553

Bell, K. (2013). An engineering approach to finite element analysis of linear structural mechanics
problems. Fagbokforlaget.

Cook, R. D., & Malkus, D. S. (2002). Concepts and applications of finite element analysis 4th
edition. John Wiley; Sons, Inc.

FEniCS. (2021). Fenicsx. Retrieved 19th April 2023, from https://fenicsproject.org/
FEniCS. (2023). Elasticity. Retrieved 7th May 2023, from https : / / docs . fenicsproject . org /

dolfinx/v0.6.0/python/demos/demo_elasticity.html
Laake, K. (2020). Ngs løsninger gjør det mulig å nå eus krav om 70% materialgjenvinning. Re-

trieved 13th May 2023, from https://blogg.norskgjenvinning.no/losninger-som-gjor-
det-mulig-a-na-eus-krav-om-70-materialgjenvinning/

Malo, K. A. (2021). Anisotropy in wooden materials [lecture note]. TKT4212.
Mathisen, K. M. (2021). Finite element formulations for solid problems [lecture 16]. TKT4192.
Microsoft. (2023a). Visual studio code faq. Retrieved 19th April 2023, from https : / / code .

visualstudio.com/docs/supporting/FAQ/
Microsoft. (2023b).Visual studio: Ide and code editor for software developers and teams. Retrieved

28th February 2023, from https://visualstudio.microsoft.com/#vs-section/
Nätt, T. H. (2023). C#. Retrieved 28th February 2023, from https://snl.no/C%23/
SimplyRhino. (2023). Grasshopper for rhino 3d. Retrieved 28th February 2023, from https://

simplyrhino.co.uk/3d-modelling-software/grasshopper/
Simulia. (2023). Why abaqus? Retrieved 8th June 2023, from https://www.3ds.com/products-

services/simulia/products/abaqus/
Staab, G. H. (2015). Laminar composites. Butterworth-Heinemann.
Suzuki, E. (2021). What is cad (computer-aided design)? Retrieved 29th May 2023, from https:

//www.autodesk .com/products/ fusion- 360/blog/what- is - cad- computer - aided-
design/

Synthesis. (2021). What is the cost of change? Retrieved 29th May 2023, from https://www.
synthx.com/engineering-change-request/

Tedeschi, A. (2014). Aad - algorithms-aided design : Parametric strategies using grasshopper. Le
Penseur.

TreFokus. (2017). Hvorfor er tre et miljøvennlig byggemateriale. Retrieved 13th May 2023, from
http://www.trefokus.no/treveilederen/temaer/miljo-og-berekraft/hvorfor-er-tre-et-
miljovennlig-byggemateriale-/

Ubuntu. (2023). What is an ubuntu appliance. Retrieved 7th June 2023, from https://ubuntu.
com/appliance/about

Zienkiewicz, O., & Taylor, R. L. (2013). The finite element method: Its basis and fundamentals.
Butterworth-Heinemann.

89

https://doi.org/10.11588/ANS.2015.100.20553
https://doi.org/10.11588/ANS.2015.100.20553
https://fenicsproject.org/
https://docs.fenicsproject.org/dolfinx/v0.6.0/python/demos/demo_elasticity.html
https://docs.fenicsproject.org/dolfinx/v0.6.0/python/demos/demo_elasticity.html
https://blogg.norskgjenvinning.no/losninger-som-gjor-det-mulig-a-na-eus-krav-om-70-materialgjenvinning/
https://blogg.norskgjenvinning.no/losninger-som-gjor-det-mulig-a-na-eus-krav-om-70-materialgjenvinning/
TKT4212.
TKT4192.
https://code.visualstudio.com/docs/supporting/FAQ/
https://code.visualstudio.com/docs/supporting/FAQ/
https://visualstudio.microsoft.com/#vs-section/
https://snl.no/C%23/
https://simplyrhino.co.uk/3d-modelling-software/grasshopper/
https://simplyrhino.co.uk/3d-modelling-software/grasshopper/
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.autodesk.com/products/fusion-360/blog/what-is-cad-computer-aided-design/
https://www.autodesk.com/products/fusion-360/blog/what-is-cad-computer-aided-design/
https://www.autodesk.com/products/fusion-360/blog/what-is-cad-computer-aided-design/
https://www.synthx.com/engineering-change-request/
https://www.synthx.com/engineering-change-request/
http://www.trefokus.no/treveilederen/temaer/miljo-og-berekraft/hvorfor-er-tre-et-miljovennlig-byggemateriale-/
http://www.trefokus.no/treveilederen/temaer/miljo-og-berekraft/hvorfor-er-tre-et-miljovennlig-byggemateriale-/
https://ubuntu.com/appliance/about
https://ubuntu.com/appliance/about

Appendix

A GitHub Repositories

Project GitHub link Relevant Branch
PreFErret code github.com/vegardoyre/PreFErret.git Vegard_branch
FErret code github.com/marcinluczkowski/SolidFEM_FErret.git Master_Vegard_Lars
FEniCSx code github.com/augustjohansson/GH-FE.git develop_01
GH Case Study 1 github.com/vegardoyre/CaseStudies.git Case-Study-1
GH Case Study 2 github.com/vegardoyre/CaseStudies.git Case-Study-2
GH Case Study 3 github.com/vegardoyre/CaseStudies.git Case-Study-3
GH Case Study 4 github.com/vegardoyre/CaseStudies.git Case-Study-4
GH Case Study 5 github.com/vegardoyre/CaseStudies.git Case-Study-5
GH Case Study 6 github.com/vegardoyre/CaseStudies.git Case-Study-6

Table A.1: GitHub repositories for code and Grasshopper files used in the thesis.

B Videos

Filename Relevant Study Case Link
CaseStudy2.mp4 Case Study 2 youtube.com/watch?v=07PgDBP4aLc
CaseStudy2_Rotation.mp4 Case Study 2 youtube.com/watch?v=8plN5ai6GMs
CaseStudy3.mp4 Case Study 3 youtube.com/watch?v=E1HQ_i6ECAA
CaseStudy4.mp4 Case Study 4 youtube.com/watch?v=dIsUBiz2K_8
CaseStudy5.mp4 Case Study 5 youtube.com/watch?v=1oD-GON1vBE
CaseStudy6.mp4 Case Study 6 youtube.com/watch?v=KpKBkenk07g

Table B.1: Videos visualizing the case studies in the thesis.

90

	Introduction
	Background
	Research Question
	Structure of the Thesis

	Theory
	Finite Element Method

	Software
	Rhino Grasshopper
	Visual Studio
	Visual Studio Code
	Abaqus/CAE
	Ubuntu

	Methods
	Plugin for 8-node Hexahedral Solid Elements
	Plugin for Hexahedral and Tetrahedral Solid Elements
	Development towards Orthotropic Materials
	Development towards Combining Materials
	Development of FEniCSx

	Case Studies
	Case Study 1: Verifying the PreFErret Plugin
	Case Study 2: Verifying the Development towards Orthotropic Materials
	Case Study 3: Verifying the Development towards Combining Materials
	Case Study 4: Analyzing Timber Elements from 3D-scanned House with FErret
	Case Study 5: Verifying the Implementation of FEniCSx in Grasshopper
	Case Study 6: Analyzing Complex Geometry with FEniCSx

	Discussion
	FErret and FEniCSx
	Meshing Challenges

	Conclusion
	Further work
	Bibliography
	Appendix
	GitHub Repositories
	Videos

