

M
as
te
r’

s
th

e
si

s

Sivert Risa Angaard

Exploring machine learning in the design of
reinforced concrete beams.

I

MASTER’S THESIS 2023

SUBJECT AREA:
Machine learning in concrete
design

DATE:
11.06.2023

TOTAL NO. OF PAGES
 161

TITLE:

Exploring machine learning in the design of reinforced concrete beams

Utforsking av maskinlæring i dimensjonering av armerte betongbjelker

BY:

Christopher Ring-Tsingos Gulbrandsen Sivert Risa Angaard

SUMMARY:

This master’s thesis delves into the application of machine learning (ML) in the design of

reinforced concrete structures, focusing on three key tasks: anticipating capacity failure mode,

predicting load capacity, and cost optimization design. By employing ML classification

techniques to predict failure modes, regression techniques to estimate structural capacities,

and ML models to optimize cost in T-section design, this research reveals the potential of ML

in addressing complex structural design tasks. A significant part of the study is the digitization

of design rules from the European Standard EN 1992-1-1, which facilitates the creation of

several comprehensive datasets for model training.

The findings highlight the potential of ML in enhancing efficiency and decision-making in

structural engineering, while underscoring the need for cautious application given its impact

on structural safety. The thesis emphasizes the weight of dataset characteristics on ML model

performance and shows the importance of ML proficiency among practitioners. Further

exploration and incorporation of ML into education and the long-term growth of the structural

engineering field is encouraged.

II

Preface
This master’s thesis represents the culmination of our studies, marking the final stage of our

Master of Science Degree at the Norwegian University of Science and Technology (NTNU), within

the department of structural engineering. The research and preparation were undertaken from

January to June 11th, 2023.

Our academic journey has been profoundly shaped by our growing interest in structural

engineering, with a particular focus on the domain of concrete. Throughout our bachelor’s thesis,

we both engaged with the structural design of concrete, continually seeking methods to enhance

the efficiency of related calculations.

Our fascination was further fueled during a summer internship that introduced us to parametric

modelling. This experience was reinforced by a course in parametric design, where artificial

intelligence (AI) was introduced. Furthermore, we were part of the first cohort that had the

opportunity to select machine learning for our preliminary project, allowing us to conduct an in-

depth study of machine learning's application in structural engineering. This project provided us

with our initial understanding of the transformative potential of machine learning.

As we delved deeper into this field, we became aware that we were among the first in our faculty

to approach machine learning from this specific perspective. We also became increasingly aware

of the skills we needed to develop further in order to effectively incorporate machine learning

into structural engineering practices. Yet, given the significant rise in AI's popularity and its

potential to reshape various industries, we were excited by the challenge. We saw an opportunity

to explore machine learning as part of the day-to-day tasks of structural engineers, especially in

concrete design.

We would like to express our sincere gratitude to our supervisor, Daniel Cantero, for believing in

the project, and Muhammad Zohaib Sarwar, for providing valuable information regarding

machine learning.

Christopher Ring-Tsingos Gulbrandsen Sivert Risa Angaard

III

Abstract
In the era of digital transformation, Machine Learning (ML), a vital subset of Artificial Intelligence

(AI), has found its way into a variety of fields, including structural engineering. This master's

thesis explores the application and comparison of ML models in the design of reinforced concrete

(RC) beams, with a focus on three distinct, yet interconnected tasks: predicting the anticipated

capacity failure mode (Task 1), predicting capacities (Task 2), and cost optimization of T-section

design (Task 3). These tasks serve as gateways to understanding classification, regression, and

optimization techniques in ML, respectively.

Task 1 leverages ML classification techniques, providing an in-depth exploration of multiclass

classification models in assessing structural integrity and safety. Task 2 delves into regression

models, employing ML regression techniques for accurate structural capacity estimation in RC

beams, demonstrating the potential of these models in augmenting conventional capacity

prediction procedures. Task 3 employs a multivariate regression model trained on an optimized

dataset for predicting cost-effective designs, underscoring the potential of ML in optimizing

structural design. To execute these tasks, datasets were generated by digitally encoding design

rules from the European Standard EN 1992-1-1 (EC2).

MLP demonstrated good results in tasks 1 and 3, while SVR stood out as the overall top performer

in Task 2. Despite these promising findings across all tasks, the results were somewhat affected

by data characteristics, such as class imbalance, multicollinearity, heteroscedasticity, and

outliers, all of which impact the performance of ML models. Although we can confidently conclude

on the best-fitting models for the tasks, future work should focus on improving these models over

time. This could involve delving deeper into the challenges that we have identified, as well as

incorporating new, unseen experimental data. Such efforts will enhance the utility of these ML

models as practical tools for structural engineers.

This master's thesis, through a detailed literature review, the provision of comprehensive

documentation including scripts related to the models and dataset generation, as well as the

practical application of ML algorithms, provides a significant foundation for future exploration in

the intersection of ML and structural engineering. It promotes a data-driven approach to

understanding and designing structural systems and ensures that others can replicate and build

upon our study. Lastly, it encourages the integration of ML in structural engineering practices and

education, while highlighting the role of ML in addressing complex structural design tasks.

IV

Sammendrag
I den digitale transformasjonens æra, har maskinlæring, et lovende underområde av kunstig

intelligens, funnet veien inn i diverse fagfelt, inkludert bygg- og konstruksjonsteknikk. Denne

masteroppgaven utforsker bruken og sammenligningen av maskinlæringsmodeller i

dimensjonering av slakkarmerte betongbjelker, med fokus på tre distinkte, men sammenkoblede

oppgaver: predikering av forventet kapasitetsoverskridelse (Oppgave 1), predikering av

kapasiteter (Oppgave 2), og kostnadsoptimalisering av T-tverrsnitt (Oppgave 3). Oppgavene

fungerer som inngangsporter for å forstå klassifisering, regresjon og optimaliseringsteknikker

innen maskinlæring.

Oppgave 1 benytter seg av maskinlæringsklassifiseringsteknikker for å gi en grundig

undersøkelse av multiklasse-klassifiseringsmodeller. Disse modellene blir brukt for å vurdere

strukturell integritet og sikkerhet. Oppgave 2 fokuserer på regresjonsmodeller, og utforsker

tilhørende maskinlæringsteknikker for å estimere kapasitet i armerte betongbjelker. Oppgaven

illustrerer potensialet disse modellene har til å forsterke konvensjonelle metoder for estimering

av kapasitet. Oppgave 3 bruker en multivariat regresjonsmodell trent på et optimalisert datasett

for å predikere kostnadseffektive design. Dette understreker maskinlæringens potensial i

strukturell designoptimalisering. For å utføre oppgavene, ble datasett generert ved å digitalisere

dimensjoneringsregler fra den Europeiske Standarden EN 1992-1-1 (EC2).

MLP modellen viste gode resultater i oppgavene 1 og 3, og i oppgave 2 ble SVR den best

presterende modellen. Til tross for lovende resultater i alle oppgaver, ble resultatene noe

påvirket av datakarakteristikker som klasseubalanse, multikollinearitet, heteroskedastisitet og

avvikende observasjoner, som påvirket modellenes ytelse. Til tross for at vi med sikkerhet kan

identifisere modellene som var best egnet for de ulike oppgavene, bør fremtidig arbeid fokusere

på å forbedre dem over tid. Dette kan innebære en dypere undersøkelse av de identifiserte

utfordringene, samt trening på ny, usett eksperimentell data. Slike tiltak vil forbedre bruken av

disse modellene som praktiske verktøy for fagfeltet bygg- og konstruksjonsteknikk.

Gjennom detaljert litteraturgjennomgang og praktisk anvendelse av maskinlæringsalgoritmer,

gir denne masteroppgaven et betydelig grunnlag for fremtidig utforskning i skjæringspunktet

mellom maskinlæring og konstruksjonsteknikk. Videre fremmer den en datadrevet tilnærming til

forståelse og design av strukturelle systemer. Til slutt oppfordrer den til ytterligere integrasjon

av maskinlæring i både praksis og utdanning innen konstruksjonsteknikk, samt understreker den

viktige rollen maskinlæring vil få i å løse komplekse oppgaver i bransjen.

V

Content
MASTER’S THESIS 2023 ... I

Preface ... II

Abstract .. III

Sammendrag ... IV

Content .. V

List of Figures ..IX

List of Tables ..XI

1. Introduction .. 1

1.1. Background .. 1

1.2. Objective ... 1

1.3. Outline of this thesis .. 3

2. Theoretical Framework .. 4

2.1. Optimization .. 4

2.1.1. Trust-region method .. 5

2.2. Machine Learning .. 6

2.2.1. Learning processes ... 7

2.2.2. Classification .. 8

2.2.2.1. Decision Trees ... 8

2.2.2.2. K-Nearest Neighbors ... 11

2.2.3. Regression ... 15

2.2.3.1. Multiple Linear Regression ... 16

2.2.3.2. Support Vector Regression ... 17

2.2.4. Multilayer Perceptron .. 21

2.3. Hyperparameter tuning ... 28

2.4. Evaluation metrics ... 29

2.4.1. Evaluation metrics for classification algorithms ... 30

2.4.1.1. Confusion matrix ... 31

VI

2.4.1.2. Precision score ... 32

2.4.1.3. Recall score .. 32

2.4.1.4. Precision-Recall tradeoff.. 32

2.4.1.5. F1-score .. 33

2.4.1.6. Accuracy score ... 33

2.4.1.7. Macro and Weighted -average ... 33

2.4.2. Evaluation metrics for regression algorithms .. 34

2.4.2.1. Mean Squared Error and Mean Absolute Error .. 34

2.4.2.2. R-squared ... 35

2.4.2.3. Graphical analysis ... 36

3. Methodology .. 38

3.1. Research design and overall approach ... 38

3.2. Materials and software .. 39

3.3. Reflection and quality assurance ... 40

3.3.1. Validity .. 40

3.3.2. Generalizability ... 41

3.3.3. Replicability .. 42

4. Dataset generation for RC beam design ... 44

4.1. Limit state design of RC sections under bending .. 45

4.2. Task 1 and 2: Rectangular RC beams ... 46

4.2.1. Dataset generation for Task 1 and 2 ... 51

4.3. Task 3: RC T-section Optimization .. 53

4.3.1. Dataset generation for Task 3 ... 57

5. Task 1: Predicting anticipated failure mode ... 58

5.1. Data preprocessing .. 58

5.2. Hyperparameter tuning ... 62

5.2.1. DT .. 62

5.2.2. kNN ... 64

5.2.3. MLP ... 65

VII

5.3. Results... 69

5.3.1. Classification reports .. 69

5.3.2. Confusion matrices .. 70

5.3.3. Decision boundaries .. 71

5.4. Results after balancing with under-sampling .. 72

5.4.1. Confusion Matrices .. 73

5.5. Discussions ... 74

6. Task 2: Predicting capacities ... 80

6.1. Data preprocessing .. 80

6.1.1. Feature correlation .. 81

6.2. Hyperparameter tuning ... 85

6.3. Results... 87

6.3.1. Moment capacity prediction .. 87

6.3.2. Shear capacity prediction .. 89

6.3.3. Load capacity .. 90

6.4. Discussions ... 92

7. Task 3: Cost optimization ... 97

7.1. Data preprocessing .. 97

7.1.1. Dealing with outliers ... 99

7.1.2. Feature correlation .. 101

7.2. Hyperparameter tuning ... 102

7.3. Results... 104

7.3.1. Results on the preliminary dataset ... 104

7.3.2. Results after the removal of delta_lim and outliers.. 107

7.4. Discussions ... 109

8. Conclusions... 112

8.1. Limitations .. 114

8.2. Future work .. 115

9. References ... 116

VIII

10. Appendices .. 123

IX

List of Figures
Figure 1: Objective visualized ... 3

Figure 2: Yearly distribution of ML-related articles in structural engineering [1] 6

Figure 3: Summary of types of learning .. 7

Figure 4: Visualization of a DT [14] .. 8

Figure 5: An example [26] of kNN with k = 3 (solid line circle), k = 5 (dotted line circle) 12

Figure 6: Illustration of a best fitted line in linear regression [31] .. 16

Figure 7:Illustration of the principles of SVM [35] .. 18

Figure 8: Illustration of the principles of SVR [36] .. 18

Figure 9: Illustration of how the kernel trick is used [36].. 20

Figure 10: Processing neuron [1] ... 21

Figure 11: Network architecture [1] ... 22

Figure 12: Plot of Inputs vs. Outputs for logistic Sigmoid. [45] .. 25

Figure 13:Plot of Inputs vs. Outputs for reLu [45] ... 26

Figure 14:Visualization of different cases of learning rates [50]... 27

Figure 15: k-fold cross validation [60] ... 29

Figure 16: Binary classification problem (2x2 matrix) [63] .. 31

Figure 17: Example of multiclass classification problem (3x3 matrix) .. 31

Figure 18: Example of a predicted vs. actual value plot [69] .. 36

Figure 19: Visualization of a) ideal residual plot and b) suboptimal residual plot [71] 37

Figure 20: Methodology flow chart .. 38

Figure 21: a) Rectangular and T-beam section; b) strains at ultimate limit state and c) stresses at

ultimate limit state [76]. ... 45

Figure 22: Class distribution in the data set ... 58

Figure 23: Scatterplot of feature pairs .. 59

Figure 24: Linear and Nonlinear boundaries [82] ... 60

Figure 25: Plot of the learning curves over max depth .. 63

Figure 26: Plot of misclassification error over k .. 65

Figure 27: Signs of overfitting [83] .. 67

Figure 28: Training and Validation Metrics over Epochs ... 67

Figure 29: Impact of Learning Rates on Accuracy over Epochs ... 68

Figure 30: Decision boundaries for two pairs of features for a)kNN; b)MLP; c)DT 72

Figure 31: Relationship between the independent variables and the moment capacity 82

Figure 32: Relationship between the independent variables and the shear capacity 82

Figure 33: Relationship between the independent variables and the load capacity 82

https://studntnu-my.sharepoint.com/personal/crgulbra_ntnu_no/Documents/Masteroppgave/V2023_CG_SR_Inspera.docx#_Toc137339754

X

Figure 34: Correlation matrix for the independent variables and the moment capacity 83

Figure 35: Correlation matrix for the independent variables and the shear capacity 84

Figure 36: Correlation matrix for the independent variables and the load capacity 84

Figure 37: Learning curves for a) Moment capacity, b) Shear capacity, c) Load capacity 87

Figure 38: Illustration of the actual values and the predicted moment capacities for both the MLR

and the SVR model .. 88

Figure 39: Residual plots for the moment capacity predictions for the MLR model 88

Figure 40: Residual plots for the moment capacity predictions for the SVR model 89

Figure 41: Ilustration of the actual values and the predicted shear capacities for both the MLR and

the SVR model ... 89

Figure 42: Residual plots for the shear capacity predictions for the MLR model 90

Figure 43: Residual plots for the shear capacity predictions for the SVR model 90

Figure 44: Illustration of the actual values and the predicted load capacities for both the MLR and

the SVR model ... 91

Figure 45: Residual plots for the load capacity predictions for the MLR model 91

Figure 46: Residual plots for the load capacity predictions for the SVR model 91

Figure 47: Frequency and value of α -parameter and successful optimization convergences 97

Figure 48: Frequency and value of hf -parameter in dataset .. 99

Figure 49: a)Summary; b)Outliers that are outside of the upper and lower quartiles by 1.5 times

the interquartile range [87] .. 100

Figure 50: Box plots showing outliers for the entire dataset .. 100

Figure 51: Correlation matrix ... 101

Figure 52: Loss curves over Epochs... 103

Figure 53: Predicted vs. Actual and residual plot for b .. 105

Figure 54: Predicted vs. Actual and residual plot for bw .. 105

Figure 55: Predicted vs. Actual and residual plot for h .. 105

Figure 56: Predicted vs. Actual and residual plot for d .. 105

Figure 57: Predicted vs. Actual and residual plot for As ... 106

Figure 58: Predicted vs. Actual and residual plot for hf .. 106

Figure 59: Predicted vs. Actual and residual plot for cost .. 106

Figure 60: Predicted vs. Actual and residual plot for b after preprocessing 107

Figure 61: Predicted vs. Actual and residual plot for bw after preprocessing 107

Figure 62: Predicted vs. Actual and residual plot for h after preprocessing 107

Figure 63: Predicted vs. Actual and residual plot for d after preprocessing 108

Figure 64: Predicted vs. Actual and residual plot for As after preprocessing 108

Figure 65: Predicted vs. Actual and residual plot for cost after preprocessing 108

https://studntnu-my.sharepoint.com/personal/crgulbra_ntnu_no/Documents/Masteroppgave/V2023_CG_SR_Inspera.docx#_Toc137339800

XI

Figure 66: Predicted vs. Actual and residual plot for ℎ𝑓 after preprocessing.................................... 108

List of Tables
Table 1: Overview of the independent variables´ upper and lower limits and their ranges for the

datasets in Task 1 and 2 .. 51

Table 2: Definition of design variables ... 53

Table 3: KNeighborsClassifier Classification Report .. 69

Table 4: DecisionTreeClassifier Classification Report ... 70

Table 5: MLPClassifier Classification Report ... 70

Table 6: KNeighborsClassifier Confusion Matrix.. 71

Table 7: DecisionTreeClassifier Confusion Matrix ... 71

Table 8: MLPClassifier Confusion Matrix ... 71

Table 9: Sampling strategies for RUS .. 73

Table 10: KNeighborsClassifier Confusion Matrix after RUS .. 73

Table 11: DecisionTreeClassifier Confusion Matrix after RUS.. 73

Table 12: MLPClassifier Confusion Matrix after RUS ... 74

Table 13: Values of different measurements of the model’s accuracy in predicting moment

capacity .. 88

Table 14: Values of different measurements of the model’s accuracy in predicting shear capacity

 ... 89

Table 15: Values of different measurements of the model’s accuracy in predicting moment

capacity .. 90

Table 16: Evaluation metrics of MLP ... 106

Table 17: Evaluation of MLP after preprocessing .. 109

1

1. Introduction

1.1. Background

Traditional structural analysis and design methods can be time-consuming and overly complex

for practical implementation, especially when dealing with nonlinear systems. Herein lies the

appeal of Machine Learning (ML): it offers a promising alternative that can save significant time

and effort.

ML, widely recognized as the most successful branch of Artificial Intelligence (AI), has been

making waves across various fields, and structural engineering is no exception [1]. This progress

is driven by recent advances in ML techniques, improved computational capabilities, and the

availability of large datasets. This growing interest signals a shift towards a more data-driven

approach to understanding and designing structural systems. However, despite this increase, ML

remains somewhat enigmatic to many structural engineering students, largely due to limited

exposure and understanding. This thesis is presented as a springboard into this exciting

intersection between ML and structural engineering.

1.2. Objective

We aim to delve into three distinct, but interrelated tasks within the sphere of Reinforced

Concrete (RC) beam design. These tasks, while relatively straightforward from a structural

engineering perspective, provide a valuable opportunity to explore the intricacies of various ML

models and techniques.

Anticipating capacity failure mode (Task 1): This task introduces the concept of classification,

a central technique in ML. It leverages multiclass classification techniques to understand and

predict the anticipated failure mode among moment, shear and deflection in RC beams. While the

concept of anticipating failure modes is a fundamental aspect of structural engineering, applying

ML to this task allows for a deeper understanding of classification models and their applications.

This task addresses the need for identifying and predicting potential failure modes in RC

structures, which is a vital aspect of structural integrity and safety assessment.

Predicting moment, shear, and load capacity (Task 2): This task ventures into the realm of

regression, another fundamental ML technique. It employs ML regression techniques to

accurately estimate the structural capacities of RC beams. While load capacity prediction is a

2

standard procedure in structural engineering, using ML for this task provides an opportunity to

delve into regression models and their nuances. It focuses on the accurate estimation of structural

capacities - a key step in the design process that ensures structures are not only safe, but also

efficiently designed to manage anticipated loads.

To facilitate the learning process of the first two tasks, the design rules from the European

Standard EN 1992-1-1 (EC2) [2] concerning moment, shear, and deflection capacities of RC

structures have been digitally encoded using Python. This coding effort has enabled the

generation of a comprehensive dataset, capturing a wide range of design scenarios, upon which

the ML models can train. By translating these design rules into a machine-readable format, we

have not only produced a valuable resource for training ML models, but also opened a path for

automated design checks and optimizations, aligning with the digital transformation in the field

of structural engineering.

Cost optimization of T-Section design (Task 3): This task brings us into the area of

optimization, a primary goal in structural engineering. To ensure the dataset for Task 3 contains

optimized sections for the ML model to train on, an optimization process is performed based on

the EC2 design rules and current rules of practice. The ML model employed here is a multivariate

regression model, which is trained to predict cost-effective designs. This approach ensures that

the design is not only structurally sound and capable of withstanding the anticipated loads, but is

also cost-effective. By applying ML to this task, we can explore how ML can be used for

optimization problems, specifically in the context of cost optimization in structural engineering.

In essence, each of these tasks, while rooted in the practicalities of structural engineering, serves

as a gateway to a distinct aspect of ML. This approach enables a comprehensive exploration and

comparison of ML techniques within a practical and relevant context. It not only strives to identify

the best suited models for the given tasks, but also aims to demonstrate the potential of ML to

enhance structural engineering. The objective and the tasks that drive this investigation are

summarized below:

3

1.3. Outline of this thesis

The structure of this thesis follows a logical flow, sectioned into eight chapters, each following a

coherent narrative for the application of ML in the three tasks presented above. Beginning with

the theoretical framework in Chapter 2, we lay the foundation for understanding the principles

of optimization and ML concepts used in this thesis.

Our research methodology, including the various software and Python packages used to produce

the results, is discussed in Chapter 3. Chapter 4 sheds light on the conversion of EC2 design rules,

specifically those related to limit state design concerning moment, shear, and deflection, into a

machine-readable format. These transformed rules then serve as the foundation for generating

datasets for each of the three tasks. The datasets derived from these rules form the training data

for our ML models. An added layer of complexity is introduced for Task 3, where an optimization

process is employed in the dataset generation.

Subsequently, we delve into the three main tasks: anticipating failure mode (Chapter 5),

predicting capacities (Chapter 6), and cost optimization of T-section design (Chapter 7). Each task

leverages unique ML techniques, involves data preprocessing, hyperparameter tuning, and

analysis of results.

The thesis concludes with a summary of key findings (Chapter 8), followed by the limitations of

our current work and prospects for future research directions. Throughout, this thesis serves as

a comprehensive exploration of ML's application in structural engineering.

Figure 1: Objective visualized

4

2. Theoretical Framework
This chapter aims to give a thorough understanding of the fundamental ideas that guide our

model building, investigation, and discussion throughout this work. The chapter is segmented

into four main sections: Optimization, Machine Learning, Hyperparameter tuning and Evaluation

metrics, each containing several sub-sections to delve into specifics.

The first part focuses on optimization, specifically elaborating on trust-region methods. These

techniques are fundamental to the dataset generation of the optimization task (Chapter 4.3.1).

The second part introduces ML - the foundation of our predictive models. It presents an overview

of the learning process, then segues into specific ML techniques, namely Classification and

Regression, and the various models used in this thesis for each technique. Following this, the third

part focuses on the vital process of hyperparameter tuning. It digs into techniques such as

GridSearchCV and RandomSearchCV, which have been extensively employed in the thesis for the

calibration and optimization of machine learning models, as discussed in detail in Chapter 2.3. In

the last part, the primary emphasis lies on the key evaluation metrics employed for assessing the

performance of these models. Each category of ML techniques, be it classification or regression,

requires distinct metrics to provide a comprehensive understanding of the model's effectiveness

and suitability for the tasks.

2.1. Optimization

Optimization is a process that seeks to find the “best” solution from all feasible solutions [3]. In

structural engineering, this often involves determining the most effective design that also meets

structural requirements while minimizing costs and material usage.

Mathematically, structural optimization can be formulated as a problem of finding the minimum

or maximum of an objective function, subject to a set of constraints. The objective function

represents the parameter that we wish to optimize, such as minimizing the total weight of a

structure, or maximizing its load-bearing capacity. The constraints represent the limitations or

requirements that the design must meet. These could include physical constraints (like the

strength of available materials or geometrical restrictions), regulatory constraints (such as design

rules), or practical constraints (like budget and time limitations).

5

2.1.1. Trust-region method

One fundamental approach to solving optimization problems is through iterative methods. A

prominent example of these methods is the trust-region method. In Task 3 (Chapter 7), this

approach was effectively utilized to navigate the presented optimization issue. In this technique,

a trust-region is established around the current estimate of the optimal solution. This region is

where the model is considered a reliable approximation of the objective function, hence the term

“trust-region”. The size of the region is dynamically adjusted based on the quality of the model's

approximation of the objective function [4]. The method measures the agreement between the

model and the objective function, using a ratio of the difference in their values at the current and

next step. When the model's approximation is good, indicated by a ratio close to 1, the trust-region

is expanded, allowing the algorithm to explore a larger portion of the solution space in the next

iteration. Conversely, when the model approximation is poor, reflected by a ratio close to 0 or

negative, the trust-region is contracted to take a more cautious step in a smaller portion of the

solution space. If the ratio is neither close to 1 nor close to 0, indicating satisfactory agreement,

the size of the trust-region remains unchanged for the next iteration [5].

Real-world optimization problems frequently involve various limitations. In our T-section cost

optimization task, we impose physical constraints, including geometrical properties, capacity,

and material limitations. These conditions necessitate the use of constrained optimization. In this

approach, we aim to minimize the cost, serving as our objective function, within the set of feasible

solutions dictated by these constraints.

A common algorithm to solve this kind of problem is the trust-region constrained algorithm, often

abbreviated to the trust-constr method, which combines the trust-region concept with

constrained optimization. It incorporates two sub-methods: the Byrd-Omojokun Trust-Region

SQP (BTR-SQP) method and the Trust-Region Interior-Point (TR-IP) method [6]. The BTR-SQP

method, primarily used when dealing with equality constraints, can be interpreted as a sequential

quadratic programming method with a trust region. The algorithm simplifies the optimization

problem into smaller unconstrained trust region subproblems, which are easier to solve [7]. In

essence, it takes advantage of quadratic programming efficiency in exploring the solution space

while maintaining the trust-region concept [5].

However, when the problem includes inequality constraints (such as Eq. (47) in Chapter 4.3), the

trust-constr method transitions to using the TR-IP method. This technique is well-equipped for

handling inequality constraints by transforming the original problem into a series of equality-

constrained problems. It introduces slack variables to convert inequality constraints into

6

equalities and employs a barrier function to penalize solutions violating the constraints. Similar

to the BTR-SQP method, it also employs the trust-region concept to dynamically adjust the search

region based on the progress of the optimization [8] [9].

In the context of ML-model training, optimization is used to modify the model's parameters in

order to reduce a loss function, which measures the difference between the predictions made by

the model and the actual data. Typically, this is accomplished using an iterative method, like

gradient descent, where the model parameters are gradually adjusted in the direction that

minimizes the loss function.

2.2. Machine Learning

ML equips computers with the ability to make predictions using predefined datasets and

algorithms. While its inception dates back to 1943, ML's significant evolution began in the 1990s,

establishing it as a powerful AI tool. It has been utilized to tackle a variety of intricate real-world

problems, ranging from speech and image recognition to traffic prediction, autonomous vehicles,

and medical diagnostics, among others [1].

Figure 2: Yearly distribution of ML-related articles in structural engineering [1]

In recent years, the field of structural engineering has experienced a notable increase in the

application of ML, as demonstrated by the exponential growth in the number of related

publications produced annually in Figure 2. This rapid progress can be ascribed to the ongoing

enhancements in ML algorithms, the rise in computational power, and the accessibility of newly

established databases.

7

2.2.1. Learning processes

ML is broadly categorized into three distinct learning processes: supervised learning,

unsupervised learning, and reinforcement learning. The primary difference between these

categories revolves around how they handle data, specifically whether the data is ”labeled” or

“unlabeled”. Labeled datasets consist of data points or samples that are associated with a known

outcome or target variable. For instance, in a supervised learning scenario such as classifying

emails, each email (data point) would have an associated label, i.e., “spam” or “not spam”.

In contrast, unlabeled datasets are comprised of data points that lack corresponding target

variables [10]. The outcomes or answers for these data points remain unknown. This type of data

is primarily used in unsupervised learning tasks, such as clustering and dimensionality reduction.

In these tasks, the algorithm's goal is to uncover underlying patterns, simplify the data, or extract

insight from the data, rather than making predictions about specific outcomes.

This thesis predominantly focuses on supervised learning, a process that utilizes labeled datasets

for training algorithms. It is an ideal methodology for regression and classification problems,

which constitute the core of our investigation [10]. To illustrate, in the context of our tasks, the

labeled data would include features of the RC beams along with their corresponding outcomes

like anticipated failure mode or load capacity.

Reinforcement learning, the third learning type, operates on a trial-and-error basis to train

algorithms [11]. The different learning processes are visualized below.

Figure 3: Summary of types of learning

8

2.2.2. Classification

Classification is a fundamental concept in the field of ML, aiming to categorize data points or

objects into predefined categories or classes based on their distinctive characteristics. This

process involves building models or algorithms that can learn from existing labeled data to make

predictions or decisions about new, unseen data [12]. Classification encompasses various

algorithms that are widely used in ML. Some of the most common classification algorithms

include Decision Trees, K-Nearest Neighbors and Neural Networks. Each, with its own strengths

and weaknesses, will be used to tackle Task 1 (Chapter 5).

2.2.2.1. Decision Trees

Decision Tree (DT) is a supervised learning technique that may be used for both classification and

regression problems, however it is most commonly utilized for classification. It is a tree-

structured classifier in which internal nodes contain dataset features, branches represent

decision rules, and each leaf node represents the outcome.

There are two nodes in a DT: decision nodes and leaf nodes. Decision nodes are used to make

decisions based on input data, while leaf nodes represent the predicted outcome or class label for

a given input, and do not contain any more branches. It is named a DT because, like a tree, it begins

with a “root node”, and then branches out to form a tree-like structure, as shown in Figure 4. A

DT asks a question and then divides into subtrees based on the answer (yes/no) [13].

Figure 4: Visualization of a DT [14]

9

Some advantages of employing DT [15] are:

• DTs exhibit an inherent capability to imitate human decision-making, enhancing their

comprehensibility. They project a structured, tree-like framework, providing an effective

visualization of the decision-making logic. The simplified decision-making process behind

Task 1 is visualized in Appendix E.

• DTs are capable of handling both numerical and categorical data in multi-output scenarios.

• The performance of DTs is not influenced by the nonlinear relationships between parameters.

• Compared to other algorithms, DTs require less data cleaning, as they can handle datasets

with potential errors and missing values.

Cons of employing DT [15]:

• There is a risk of creating overly complex trees that do not generalize the data well, a

phenomenon known as overfitting. Overfitting occurs when a model captures not only the

relevant patterns, but also the noise in the training data to the extent that it negatively impacts

the performance of the model on new data.

• DTs can be unstable because even small variations in the input can produce a drastically

different tree. This instability is indicative of high variance, which can, however, be reduced

by techniques like bagging and boosting.

• DT learners may create biased trees if some classes dominate in the dataset.

Many ML models rely on hyperparameters to optimize their predictive capabilities. They control

the behavior and performance of the model and are often adjusted through hyperparameter

tuning as showed in Chapter 2.3 and the “Hyperparameter tuning” section of each task. The

hyperparameters tuned in Task 1 and 2 will be those provided by Scikit-learn. An explanation of

what Scikit-learn is, can be found in Chapter 3.2. The hyperparameters that affect the DT [16] are:

Max depth

The max_depth parameter can be used to specify the maximum depth of our DT. Shallow decision

trees do not overfit the data in general, but they perform poorly (high bias, low variance). Deep

trees, on the other hand, tend to overfit and perform well (low bias, high variance) [17]. Ideally,

we are looking for a tree that is not so shallow that it has low performance, and not so deep that

it overfits the training dataset. We can anticipate that as the depth of the DT increases, the

performance of both train and test datasets will improve to a point, and then, as the tree becomes

10

too deep, it will begin to overfit the training dataset at the expense of lowering the performance

of the test set [17].

Minimum split samples

This parameter can contribute to minimizing overfitting by setting a minimum number of

samples for each internal node split, which is represented by min_samples_split. As previously

stated, each internal node is a question or test on a feature, and the branches that emerge from it

represent all potential responses to that question. The value specifies the minimum number of

samples necessary to divide a node. If a node's sample count is less than the parameter, the node

will not be split and will therefore become a leaf node. By increasing the min_samples_split value,

we may prevent overfitting to the training data by requiring that a node have a minimum number

of samples before it can be split, resulting in a simpler tree with less potential to overfit the data.

Setting this value too high, on the other hand, may result in underfitting, in which the model is

too basic and does not capture significant relationships in the data.

Minimum leaf samples

Min_samples_leaf parameter controls the minimum number of samples required to be at a leaf

node. Increasing min_samples_leaf can help prevent overfitting and improve generalization, but

may also reduce the model's ability to capture complex patterns in the data.

Max features

Another feature to consider is the max_features parameter. This specifies the maximum number

of features to consider when finding the optimum split at each node of the tree [18]. Max_features

is set to none by default, which means that all features are considered for each split. Considering

all features may result in overfitting, and to avoid this, we can adjust the parameter to a lower

value, which can improve model generalization by limiting the number of features considered in

each split. Values such as log2 or sqrt of the total number of features in the dataset are frequently

employed and provide a good compromise between model complexity and generalization

performance.

Criterion [19]

The final parameter to consider is criterion, which assesses the quality of a split. The two most

popular criteria used by scikit-learn are gini and entropy. The gini (Gini Impurity) quantifies the

likelihood of incorrect classification if a label is assigned randomly to any data point within the

dataset. It achieves its lowest value, 0, when all instances within a node correspond to a single

target category. Consequently, no further splitting is required for such a node. Therefore, feature

11

splits yielding a lower gini are preferred as they drive the decision tree towards optimal

classification. The gini is calculated as:

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑(𝑝𝑖)2

𝑛

𝑖=1

 (1)

where the probability of choosing an item with label 𝑖 is 𝑝𝑖 .

Entropy is a metric indicating the level of disorder or randomness in the relationship between

features and the target variable. The feature yielding lower entropy is chosen for the optimal split.

Entropy reaches its maximum when the probability of both classes is identical, signaling a high

degree of disorder. Conversely, when entropy is at its minimum (0), it signifies a pure node,

indicating no disorder or a clear distinction between classes. The entropy is calculated using the

following formula:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑛

𝑖=1

 (2)

where, as before, 𝑝𝑖 is the probability of class 𝑖.

Entropy is more complex as it makes use of logarithms as seen in Eq. (2) and can therefore be

more computationally expensive than the gini. There is ongoing debate about which metric is

superior, with some studies, such as the one conducted by Laura Elena Raileanu and Kilian Stoffel

[20], suggesting that they typically yield similar results. However, certain experiments [21] [22]

have concluded that entropy is indeed more effective when dealing with unbalanced datasets.

2.2.2.2. K-Nearest Neighbors

The k-nearest neighbor (kNN) algorithm is a well-known and widely used method for

classification because of several interesting features, including good generalization and easy

implementation. Although simple, it is known to be capable of achieving results comparable to

those of much more complex algorithms [23]. It is a type of instance-based learning, which means

that it does not construct a general internal model, but simply stores instances of the training

data. In other words, all computation is deferred until it is asked to make predictions on new

unseen data [24].

12

KNN classification works by identifying the k-nearest data points (that is, the closest neighbors)

in the training dataset to the new data point for which we want to make a prediction. To predict

the class label for the new data point, the algorithm then uses the class label most common among

its k-nearest neighbors [25].

Figure 5: An example [26] of kNN with k = 3 (solid line circle), k = 5 (dotted line circle)

Figure 5 depicts an example of kNN implementation for a case with two classes. Each feature in

the two-dimensional feature space in which the samples are placed is of one dimension. The

objective is to categorize the new data point represented by a green circle into the two classes,

which are symbolized by triangles and blue squares, respectively. Given that there are two

triangles and only one square in the inner circle produced by k = 3, the new data point is assigned

to the red triangles. If k = 5, it is assigned to the blue squares since now there are three squares

and only two triangles.

As can be seen, this algorithm uses distance for classification, so if the features have different

physical units or scales, normalizing the training data can greatly improve the accuracy [10]. On

the contrary, DT as seen in Chapter 2.2.2.1 works by splitting the data based on the feature values,

so the scale of the features does not matter. Some of the advantages of kNNs [27] include:

• Ease of implementation: The algorithm is straightforward and easy to understand. It does not

require any complex mathematical equations and has few hyperparameters.

• Does not require an explicit training face. Since it does not require a training period, it is

significantly faster compared to other ML algorithms. It simply memorizes the training data

and uses it to make predictions on new unseen data. Because of this, it can add new data

without affecting the accuracy of the algorithm, as the algorithm can adapt to new data

without having to retrain the model.

13

The disadvantages of kNNs [27] consist of:

• Sensitivity to noisy data, meaning a lack of robustness against outliers, missing values and

inconsistencies that do not follow the expected pattern of the dataset. Especially outliers can

skew the distance calculations and lead to incorrect results. Per definition, an outlier is an

observation that is “different from or inconsistent with the rest of the data” [28].

• Tendency to make slow predictions when given a large amount of data or a large number of

input variables, as it can become computationally expensive to search through all the training

examples to find the nearest neighbors.

• Curse of dimensionality: The algorithm is known to perform poorly when given high-

dimensional data inputs. This is sometimes referred to as the peaking phenomenon [29],

where after the algorithm reaches the optimal number of features, additional features cause

a rise in the number of classification errors. In other words, as the number of features

increases, the amount of data needed to obtain accurate predictions increases exponentially.

The hyperparameters of kNN are the number of neighbors (k), the weighted function, and the

distance metric (p) [27].

Value of k

In kNN, k refers to the number of nearest neighbors that are used to make a prediction for a new

data point. Defining k can be a balancing act, as a higher value of k will result in a less distinct

decision boundary and can reduce overfitting, but it can also lead to less accurate predictions for

more complex datasets. A lower value of k will result in a more complex decision boundary and

can increase overfitting but may also lead to more accurate predictions for complex datasets.

KNN ties in classification can occur when the value of k is even and the number of neighbors that

belong to different classes is equal. This can lead to ambiguity in the classification result, as there

is no clear majority class. Therefore, it is recommended to have an odd number for k to ensure

that there cannot be an equal number of neighbors belonging to different classes.

Distance metric [13]

The distance metric is used to calculate the distance between data points and is defined by the

distance function in the form of the Minkowski metric described in Eq. (3).

14

𝐷(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑘

𝑖=1

)

1
𝑝

 (3)

Where 𝐷 is the distance between instances 𝑥 and 𝑦.

Since the dataset contains only continuous input features (Chapter 4.2.1), we will be looking at

the following popular distance metrics:

• p = 1, is equivalent to using the Manhattan distance, which calculates the distance between

real vectors based on the aggregate of their absolute differences. This is beneficial for datasets

with varied feature scales, as it does not overly emphasize features with larger variances by

avoiding the squared differences between feature values.

𝐷(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 (4)

• p = 2, results in the Euclidean distance being utilized, computed as the square root of the sum

of the squared differences between a new (𝑥) and an existing point (𝑦). This is fitting for

datasets with similar feature scales, as the larger variances in feature values contribute more

due to the squared differences in the distance computation.

𝐷(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|2

𝑘

𝑖=1

 (5)

Weight function [30]

The weight function in the kNN algorithm is used to assign weights to the nearest neighbor based

on their distance from the new data point. The most frequently used weight functions are uniform

weighting and distance weighting.

Uniform weighting assigns equal weight to all nearest neighbors, no matter how far they are from

the new data point. This can be useful when all neighbors are equally important for making a

15

prediction. When dealing with imbalanced datasets, assigning equal weights to all instances may

lead to poor classification performance on the minority classes.

On the other hand, distance weighting assigns higher weight to the nearest neighbors and lower

weight to the ones farther away. The weights are therefore used in a way that scales the

contribution of each class instance to the final prediction. By assigning higher weights to the

minority classes their importance increases, leading to improved performance on the minority

classes.

Algorithm [30]

The algorithm parameter in scikit-learn’s implementation of kNN provides three different

algorithms for finding the nearest neighbors:

• Brute force algorithm (brute) computes the Euclidean distances between the new data point

and all points of the training set to find the nearest neighbors. Brute may be the most accurate

method due to the consideration of all data points and is most suitable for small datasets or

when the number of features is low.

• K-dimensional Tree (kd_tree) rearranges the whole dataset in a hierarchical binary tree

structure and searches for the nearest neighbors by traversing through the tree. This

algorithm is faster than brute force when the dataset is large, and the number of features is

high.

• Ball tree (ball_tree), is also a hierarchical data structure similar to kd_tree and is particularly

useful, and has shown to outperform other algorithms, when dealing with high dimensional

data. However, it may not perform as well with lower-dimensional data.

• Auto in scikit-learn will decide the most appropriate algorithm based on the values passed to

fit the method. One can access the chosen algorithm by printing knn_clf._fit_method.

2.2.3. Regression

In the field of ML, regression analysis operates as a predictive modeling technique designed to

investigate the relationship between a dependent (target) and independent variable(s) (input

variables). This technique aims to predict a continuous outcome [10], which refers to a target

variable that has the potential to assume any value within a specific range, as opposed to discrete

categories. The method is particularly applicable when the output is quantitative [10] such as in

our research, where we apply it to predict the moment, shear, and load capacity of a RC beam, or

the value of design variables in a T-section. Several regression techniques exist, with Linear

16

Regression and Support Vector Regression being particularly prominent due to their efficacy and

widespread use.

2.2.3.1. Multiple Linear Regression

Linear Regression (LR) is a widely employed and straightforward technique in regression,

making it the most utilized method in predictive analysis. The goal of LR analysis is to identify a

line that best fits the data points. When performing an LR analysis, we plot various lines and then

choose the one that best matches the data points. At the heart of the relationship between the

variables and the outcome lies the equation of a straight line, 𝑦 = 𝑎𝑥 + 𝑏. The ideal coefficients a

and b are computed to establish this line. The relationship between the dependent and

independent variable can be visually represented using a simple x-y coordinate system, as

demonstrated in Figure 6.

Figure 6: Illustration of a best fitted line in linear regression [31]

While simple LR can map a relationship between two variables, Multiple Linear Regression (MLR)

can handle systems where the dependent variable is influenced by more than one independent

variable. The MLR model is represented as follows [32]:

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ . 𝑏𝑛𝑋𝑛 + 𝜀

where,

Y is the dependent variable

𝑎 is the y-intercept (the value of Y where X=0)

𝑏1, 𝑏2, … 𝑏𝑛 are the coefficients of the independent variables

𝑋1, 𝑋2, … 𝑋𝑛 are the independent variables

ε is the error term

17

Some advantages of employing MLR are [33]:

• MLR's mathematical formula is relatively simple to comprehend and interpret. As a result, the

algorithm is simple to learn.

• MLR, with its straightforward procedure, can yield sufficiently accurate results.

• Compared to other complicated methods, these models can be trained quickly and effectively

even on systems with less computational capability.

• Finding the nature of the relationship between variables is frequently done using LR, which

almost perfectly fits linearly separable datasets.

Some disadvantages of employing MLR are [33]:

• The MLR method assumes the independent variables are independent of each other, which is

not always the case.

• MLR may occasionally suffer from underfitting, a situation where the ML model fails to

capture the underlying complexity of the data accurately.

• Since the majority of naturally occurring phenomena are nonlinear, the linear regression

technique cannot adequately fit complicated datasets since it assumes that the input and

output variables have a linear relationship.

• Due to its sensitivity to outliers in the data, MLR can severely degrade performance and

produce models with low accuracy, as it affects the slope of the regression line drastically.

As for hyperparameters, MLR does not typically involve hyperparameter tuning. The coefficients

in MLR are not considered hyperparameters but parameters of the model. They are determined

by the model during training, usually via a method (cost function) like least squares, where the

model minimizes the sum of the squares of the differences (residuals) between the predicted and

actual values [34]. The residuals’ properties are reviewed in detail in Chapter 2.4.2.3.

2.2.3.2. Support Vector Regression

A sort of regression analysis called Support Vector Regression (SVR) was developed using the

Support Vector Machine's (SVM) underlying concepts. Therefore, understanding the fundamental

idea of an SVM is essential to understanding how SVR works. SVM is a very effective and well-

liked method due to its precision and simplicity, and is usually employed for classification issues.

The fundamental principle of the SVM method is to separate different sets of data features,

referred to as vectors, and then locate an ideal separating hyperplane that has a greatest margin,

18

as illustrated in Figure 7. Support vectors, which affect the hyperplane's position and orientation,

are the data points found on the margins. In other works, SVM uses support vectors to optimize

the margin [1].

Figure 7:Illustration of the principles of SVM [35]

For regression issues, SVR uses the same principle as SVM. The SVR algorithm uses LR to identify

a function that, within a decision boundary, best fits data points. The hyperplane with the greatest

number of data points within a threshold value is the best fitted line, as shown in Figure 8. Finding

a separating hyperplane is unachievable since data in the majority of real-world applications

cannot be separated in a linear fashion. In this instance, a kernel function and penalty parameter

are used [1].

Figure 8: Illustration of the principles of SVR [36]

19

SVRs share the same advantages and disadvantages as SVMs. Some of the advantages [37] are:

• They are effective in high dimensional spaces, meaning they perform well when each

datapoint has many attributes, making it suitable for datasets with many features, or

sections with many properties, as in our case.

• They tend to not overfit when dealing with noisy datasets and are less sensitive to outliers

compared to other regression algorithms.

• SVRs can provide good results with limited information and work well with unstructured

data.

• With a convenient kernel solution function, SVRs can solve complex problems.

Some of the disadvantages of SVRs [37] are:

• Selecting the right kernel function for SVR can be challenging and may require expertise and

experimentation.

• Due to the complexity of the model and the lack of explainable reports, SVRs can sometimes

be difficult to interpret.

• When the dataset is large, the training time can be inefficient.

The hyperparameters of SVR are the Kernel function, the regularization parameter (C), the margin

of tolerance (𝜀), the degree (for polynomial kernel) and gamma (𝛾) (for RBF kernel).

Kernel function

Several methods, such as logistic and linear regression, can process and categorize data exhibiting

linear behavior. However, SVRs extend this capability by effectively handling data that

demonstrates substantial nonlinearity. SVRs may successfully handle complicated, multi-

dimensional data thanks to the application of kernel functions, which transform the original

nonlinearly separable data into a new space where the data are linearly separable. We refer to

this as the “kernel trick” and is illustrated in Figure 9. The performance of SVR models is greatly

influenced by the choice of kernel function, with radial basis function, linear, and polynomial

kernels being the most commonly used [1].

20

Figure 9: Illustration of how the kernel trick is used [36]

The three kernels are explained as follows [1]:

• Linear kernel (linear): Dot product between two observations.

• Polynomial kernel (poly): Allows curved lines in the input space.

• Radial basis function (rbf): Creates complex regions in the feature space.

Epsilon (ε)

This parameter determines the size of the 𝜀-insensitive zone, as seen in Figure 8. It serves as a

specification for the desired accuracy and can be thought of as the width of the tube around the

hyperplane. A smaller 𝜀 results in a narrower tube and vice versa. Within this tube, no penalty is

given to errors, which allows the model to disregard small fluctuations and noise in the data [38].

Regularization parameter (C)

The C-parameter regulates the “penalty” for each misclassified datapoint. In essence, it balances

between correctly classifying the training samples and optimizing the margin of the decision

function. A smaller C-value implies reduced penalties and consequently, an increased occurrence

of misclassifications. However, this also translates to a wider margin for the decision boundary.

On the contrary, larger values of C lead to narrower margins, which could trigger overfitting.

Nonetheless, it is important to note that while lower C-values might facilitate a broader margin,

it also runs the risk of underfitting the data [12].

Gamma (𝜸)

This parameter is used in nonlinear SVRs with rbf kernels. It defines how far the influence of a

single training example reaches. Low values mean far, and high values mean close.

When 𝛾 is set to scale, the value of 𝛾 is computed as 1/(n_features * X.var()), where n_features is

the number of features in the dataset and X.var() is the variance of the data. This setting

21

essentially scales the influence of individual data points based on the variability of the dataset. It

tends to work well when the range of values in different features varies considerably.

If 𝛾 is set to auto, it uses 1/n_features as the value of 𝛾. This setting simplifies the influence of

individual data points to be inversely proportional to the number of features. It is a simpler option

and may be more appropriate for datasets where the features are relatively homogenous [39].

Degree

Refers to the degree of the polynomial kernel function poly [38].

2.2.4. Multilayer Perceptron

As observed in the study by Huu-Tai Thai [1], the development of processing power has made

Artificial Neuron Networks (ANN) particularly well-liked in the structural engineering field.

Neurons comprising a single layer are termed Single-Layer Perceptrons (SLP). As depicted in

Figure 10, each neuron processes data by multiplying input values (𝑥𝑖) with their corresponding

weights (𝑤𝑖) and adding a bias (𝑏) which is iteratively adjusted to diminish the discrepancy

between the predicted and actual outputs. The activation function then decides if the neuron

should forward its output to the succeeding layer (output layer 𝑦), based on the result of the input

summation. This process is typically accomplished using backpropagation, an algorithm that

calculates the gradient of the error with respect to each weight in the network and uses it to

update the weights [40].

Figure 10: Processing neuron [1]

22

An SLP alone has limited capability to surpass other ML methods, thus multiple neurons are

integrated to form a Neural Network (NN). The advanced configuration, now known as a

Multilayer Perceptron (MLP), is a type of feedforward artificial NN that comprises a minimum of

three node layers; these include an input layer, one or multiple hidden layers, and an output layer

(Figure 11). The input layer accepts the feature-representing input data and relays it to the

hidden layers, where linear and nonlinear transformations are performed to derive relevant

features from the input data. The output of the hidden layers is then forwarded to the output

layer, which contains nodes that correspond to the predicted classes. Notably, each node, except

for the input nodes, is a neuron that uses a nonlinear activation function.

Figure 11: Network architecture [1]

An MLP's architecture will change based on the task it is intended to solve. The number of nodes

in the input and output layers is determined by the dimensions of the input and output data,

respectively, while the number of hidden layers and the number of nodes in each hidden layer is

typically found by trial and error or through a more systematical search with techniques like grid

search or random search (explained in Chapter 2.3). As will be demonstrated in this thesis, MLPs

can effectively serve the purpose of both regression and classification tasks.

Some of the advantages of MLP [40] include:

• Capability to learn nonlinear models, which can capture complex relationships between the

input and the target variable, making them suitable for real-world problems where the

underlying relationships may not be linear. The ability comes from the application of

nonlinear activation function in each neuron.

23

• Capability to learn models in real time (on-line learning). The model updates its parameters

incrementally, as it receives new data samples without having to retrain the model from

scratch. This can be an important feature in cases where the model needs to continuously

adapt to new data in real-time.

Some of the disadvantages [40] of MLP include:

• MLP requires several hyperparameters such as the number of hidden neurons, layers, and

iterations, which must be tuned in order to achieve better performance for the specific task.

Selecting optimal values for these hyperparameters is often challenging and requires a

combination of trial and error, intuition, and expertise.

• MLP is sensitive to feature scaling, hence the scale and distribution of the input features can

have a big impact on how well it performs. The weights and biases of the neurons are updated

during training using an optimization algorithm. The optimization algorithm adjusts the

weights and biases of the neurons in an attempt to minimize the error between the predicted

output of the MLP and the true output. However, if the input features have different scales or

distributions, the optimization algorithm may take longer to converge or may possibly fail to

converge. This is due to the fact that features with larger scales or ranges can dominate

throughout the optimization process, causing oscillations or slower convergence. Therefore,

it is important to preprocess the input data by scaling the features to improve stability and

convergence.

• A MLP with hidden layers typically has a non-convex loss function, meaning that it has

multiple local minima. During training the MLP aims to identify the set of weights that

minimizes the loss function during training. However, since the loss function is non-

convex, different weighting schemes can provide similarly low loss function values. Different

random weight initializations can therefore result in varying validation accuracy.

There are several crucial parameters to consider and tune when creating an MLP classifier to

improve its performance, such as:

Number of hidden layers

The number of layers is a critical parameter in an MLP model, as it heavily affects how well the

model can learn and generalize. Increasing the number of hidden layers can improve the model's

ability to learn complex nonlinear relationships in the data. However, adding too many hidden

layers can lead to overfitting.

24

Number of neurons in hidden layers

As for the number of hidden layers, the number of neurons in each layer can affect how well an

MLP can learn and generalize. The model’s ability to learn complex patterns will increase as the

number of neurons is increased, but it can also lead to overfitting.

Activation function

The activation function, also known as the transfer function (𝑓), maps the weighted sum of the

inputs to an output value (see Figure 10), and introduces nonlinearity into the network [41].

Without an activation function, MLPs would be equivalent to a linear model, which only model

linear relationships. Although various layers may use different activation functions, all hidden

layers typically use the same function, while the output layer normally uses a different activation

function from the hidden layers. This function is based upon the type of prediction required by

the model. In the realm of NNs, numerous activation functions are available. However, the scope

of this thesis is restricted to the most commonly employed activation functions, which are

detailed below. These chosen functions not only hold significant relevance in the field but are also

available as options in the Scikit-learn package. It is worth noting that a more extensive list of

activation functions can be found in the Keras API, although we limit our focus to those

compatible with Scikit-learn for this thesis. Detailed insights on Scikit-learn and Keras packages,

as well as their roles and applications in this research, are provided in Chapter 3.2

The Logistic Sigmoid function takes a real-valued-input and squashes it between 0 and 1. The

larger the input, the closer the value will be to 1, whereas the smaller the input, the closer the

output will be to 0 [42] [43]. When the input values are too high or too low, the function saturates

at 0 or 1, with a derivative extremely close to 0, which can significantly slow down the learning

process [44]. The mathematical representation is as follows:

 𝑓(𝑥) =
1.0

1 + 𝑒−𝑥
 (6)

25

Figure 12: Plot of Inputs vs. Outputs for logistic Sigmoid. [45]

The tanh activation function is quite similar to the sigmoid activation. The function squashes the

real-valued-input between -1 and 1, providing a zero-centered output which can make learning

for the next layer easier [46]. The larger the input, the closer the output value will be to 1, whereas

the smaller the input, the closer it will be to -1. However, like the sigmoid functions, tanh also

suffers from the vanishing gradient problem where the gradients become very small if the input

is far from 0. The mathematical representation is:

𝑓(𝑥) = tan(𝑥) =
sin(𝑥)

cos (𝑥)
=

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7)

The ReLu activation function takes a simple form: for an input value 𝑥, if 𝑥 is positive, it returns 𝑥,

and if 𝑥 is negative, it returns 0. This means that it effectively “rectifies” inputs to be non-negative

[43]. It is commonly used in the hidden layers of NNs because it has overcome some of the

limitations of popular activation functions such as the Sigmoid and Tanh, as it has shown to be

less susceptible to vanishing gradients that prevent deep models from being trained.

The vanishing gradients problem describes the situation where the gradients of the loss function

become very small as they backpropagate through the layers of the network. As they become very

small, their products become even smaller and approach zero for the earlier layers. Because of

this, the weights in the network's earlier layers are updated with very small increments, causing

them to learn very slowly or not at all [47]. Although important to have in mind, the likelihood of

encountering the vanishing gradient problem in a network with just three and two hidden layers,

as used in Task 1 and 2 (Chapter 5.2.3 and 7.2), is low. The ReLu function is calculated and plotted

as follows:

 𝑓(𝑥) = max (0, 𝑥) (8)

26

Figure 13:Plot of Inputs vs. Outputs for reLu [45]

The Softmax activation function is commonly used in the output layer of multiclass classification

tasks. It takes a vector of arbitrary real-valued scores and squashes it to a distribution of values

between 0 and 1 that collectively sum to 1 [48]. The output of the Softmax function can be

interpreted as probabilities for each class in a multi-class problem, and the class with the highest

probability can be selected as the prediction.

𝑓(𝑥) =
𝑒𝑥

∑ 𝑒𝑥
 (9)

Learning rate

The learning rate determines the step size for updating the model’s weight during training and

controls in that way the rate of speed at which the model learns. A high learning rate can lead to

faster convergence, but it can also cause the model to converge too quickly, resulting in a

suboptimal solution and unstable training. A learning rate that is too low can ensure stable

training, but can cause the learning process to be too slow or get stuck [49].

The range of values to consider for the learning rate is typically less than 1 and greater than 10−6

[49]. A visualization of how different learning rates affect learning can be shown in Figure 14.

27

Figure 14: Visualization of different cases of learning rates [50]

Optimizers

Optimizers are algorithms that update the weights of the network during training with the

intention of minimizing the loss function.

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (lbfgs) is an optimizer in the family of quasi-

Newton methods [40]. Lbfgs is a good choice for small datasets and networks, where it can

converge quickly in a single batch [51] due to its memory limitations.

Stochastic Gradient Descent (sgd) is a widely used optimization algorithm for training MLPs.

Every iteration, sgd randomly selects batches of data and adjusts the weights depending on the

gradients computed from these batches. It can be a good choice for large datasets as it reduces

the high computational burden, achieving faster iterations in exchange for a lower convergence

rate [52].

Adaptive Moment Estimation (adam) is a popular stochastic gradient-based optimization

algorithm especially used for training deep NNs, including MLPs [53]. The optimizer is really

efficient when working on large problems involving large datasets or many parameters as it

requires less memory [54]. Adam is proposed as the most efficient stochastic optimization since

it inherits the strengths of the Root Mean Square prop and the gradient descent with momentum

algorithms [53].

28

Epochs

The number of epochs represent the number of times the learning algorithm will work through

the entire training dataset. An epoch is comprised of one or more batches. The number of epochs

is often high, allowing the model to run until the error has been minimized sufficiently [55].

Batches

The batch size is a hyperparameter that defines the number of samples to be processed in each

iteration. In an iteration, the optimizer uses these samples to compute the gradient of the loss

function and update the weights of the network [56]. Smaller batch sizes allow for more frequent

network weight updates, potentially speeding up convergence. Conversely, larger batch sizes

offer more data-parallelism which in turn improves computational efficiency and scalability [57].

2.3. Hyperparameter tuning

Hyperparameter tuning is a very important step in the ML process, and it involves finding the

optimal set of hyperparameters that give the best model result on a given dataset. Grid search

and random search are the two most common methods used for hyperparameter tuning and will

be used in all models as the hyperparameters are not known in advance. Both methods involve

specifying a range of values for each hyperparameter and searching for the optimal combination

within that range.

In sci-kit’s GridSearchCV [58] and RandomsearchCV [59] a validation set is created as a part of the

cross-validation process. The training set is divided into k folds during the grid search, and a

model is trained on k-1 of these folds before being evaluated on the remaining fold, which serves

as the validation set. This process is repeated k times so that each fold is used as the validation

set once. The average performance across all folds is then used as the evaluation metric for that

set of hyperparameters. The set of hyperparameters that produced the best performance in the

validation sets is chosen as the final set after all hyperparameters have been evaluated. The

process is depicted below in Figure 15.

29

Figure 15: k-fold cross validation [60]

Grid search on the one hand will systematically try out every combination of hyperparameters,

whereas random search will randomly sample hyperparameters from a predefined search space.

The grid search can therefore be more computationally expensive and is better suited for small

search spaces. In contrast, random search is more computationally efficient and suitable for large

search spaces, having improved exploratory power.

Bergsta and Bengio [61] suggested that for most datasets only a few of the hyper-parameters

really matter. While grid search and random search are considered robust tools for

hyperparameter tuning, there is a prevailing consensus within the ML community that these

techniques should not be used in isolation. Employing multiple strategies is recommended to help

identify crucial hyperparameters, safeguard against overfitting and inform a more discerning

decision on the optimal values tailored to a specific dataset. For a comprehensive exploration of

these strategies and their application, refer to the "Hyperparameter tuning" sections in Chapters

5.2, 6.2 and 7.2 for each respective task.

2.4. Evaluation metrics

It is very important to be able to evaluate the performance of the classification models to reliably

use them for solving real-world structural problems. For each task, performance metrics are used

to assess how well ML models perform. They help us understand the strengths and limitations of

these models when making new predictions. In this chapter, the evaluation metrics which are

chosen and used will be reviewed.

30

2.4.1. Evaluation metrics for classification algorithms

The performance metrics we will be looking at include accuracy, precision, recall and f1-score

[62]. Before explaining the various metrics we use to evaluate a classifiers performance, it is

important to understand key terminologies such as true positives, false positives, true negatives

and false negatives:

• True Positive (TP): Measures the degree to which the model predicts the positive class

correctly. For instance, in a classification problem with classes A and B where the goal is to

predict class A correctly, then true positives are the number of instances of class A that the

model predicted correctly as class A. TP are relevant because they indicate how well our

model performs on positive instances [62].

• False Positive (FP): FP occurs when a model incorrectly predicts that an instance belongs to

a class when, in fact, it does not. FP are problematic as they can lead to poor decision-making.

In some cases, FP can be desirable. For example, if our problem instead classified if a beam

failed or not, it would be better to err on the side of caution and have a few FPs than to miss

the beams that have failed [62]. However, in our application, where the goal is to predict the

anticipated failure mode, it is important to try to keep the FP as low as possible.

• True Negatives (TN): TN are the instances that the model correctly predicts as negative. They

are important to measure how well a classification model is performing. For instance, if the

model is predicting whether a section fails or not because of shear, a TN would be when the

model predicts that the section will not fail because of shear and the section indeed does not

fail because of shear. In general, a high number of TN indicates that the model performs well

[62].

• False negatives (FN): A FN occurs when the model predicts an instance as negative, when in

fact it is positive [62]. For the example of classifying if a beam fails or not, FNs would be very

costly as the model would for the given sections fail to identify that the beam is at risk of

failing. As FNs are often more consequential than FPs, it is important to take them into account

when evaluating the performance of the classification model.

TP, FP, TN and FN should be used collectively to compute metrics such as accuracy, precision

recall and F1-score.

31

2.4.1.1. Confusion matrix

The confusion matrix is used to evaluate the performance of a classification model by comparing

its correct and incorrect class predictions. It is especially useful because it gives a better idea of

the model’s performance than classification accuracy does, as the latter does not give any

information about the misclassified instances. The size of the confusion matrix is NxN, where N is

the number of target classes. The matrix for a binary classification problem would look like Figure

16.

Figure 16: Binary classification problem (2x2 matrix) [63]

A well performing model has high TP and TN rates, while low FP and FN rates. The confusion

matrix plays a crucial role in evaluating the model’s performance when handling imbalanced

datasets. For a multiclass classification problem, the confusion matrix is extended to include more

rows and columns for each class label. The figure below demonstrates what the components of

such a matrix would look like for the moment class.

Figure 17: Example of multiclass classification problem (3x3 matrix)

32

2.4.1.2. Precision score

The model precision score measures the proportion of true positive predictions out of all positive

predictions. It answers in other words the question “what proportion of positive identifications

was actually correct?” and is also known as positive predictive value [62]. It can be thought of as

a measure of quality or correctness. The precision metric is affected by the class distribution,

meaning it is very useful for measuring the prediction success when the dataset is imbalanced.

Mathematically, the precision score can be expressed as:

Precision Score =
TP

𝐹𝑃 + 𝑇𝑃
 (10)

From the above formula, one can quickly notice that the value of FP impacts the precision score.

Thus, if a high precision score is important for the classification requirements, models with lower

FP values would be vital.

2.4.1.3. Recall score

The model recall score measures the proportion of true positive predictions out of all actual

positives that exist within a dataset. It answers the question “what proportion of actual positives

was predicted correctly?”. The metric is also called sensitivity or the true positive rate [62]. The

higher the recall score, the better the model performs at identifying both positive and negative

instances. Mathematically, the recall score can be expressed as:

Recall Score =
TP

FN + TP
 (11)

From this formula one notices that the value of FN impacts the recall score. Thus, while building

a predictive model, one should focus on keeping the number of FN as low as possible to get a good

recall score.

2.4.1.4. Precision-Recall tradeoff

The precision-recall tradeoff is a common issue that arises when trying to evaluate the

performance of a classification model. Precision is a metric that measures the proportion of TP

predictions made and is useful for evaluating the model’s ability to avoid FP. Recall on the other

hand, measures the proportion of TP instances that were correctly predicted, and is a useful

metric for evaluating the model’s ability to avoid FN. Generally, increasing one of the two metrics

will decrease the other, because precision and recall are inversely related. So, a model with good

33

precision will make few FP predictions, but will probably also miss some TP, and vice versa.

Therefore, the appropriate balance between precision and recall will depend on the problem’s

requirements and goals, as well as the characteristic of the dataset [62].

For the example of identifying beams that will fail, optimizing for recall will help to minimize the

chance of not detecting a beam that fails. However, this comes at the cost of predicting failure in

a beam for which capacity can withstand the load. Optimizing for precision would help predict

more accurately if the beam is going to fail or not. However, this would come with the cost of

missing failure in some beams.

2.4.1.5. F1-score

Model F1-score assesses the model score as a harmonic mean of precision and recall score. The

metric gives equal weight to both the precision and recall for measuring the performance of the

model in terms of accuracy, making it an alternative to the accuracy score, which we will look at

below. It is useful in a scenario where one tries to optimize both precision and recall, but does not

want to rely solely on either [62]. However, though F1-score balances precision and recall, it is

not a perfect solution as it can be difficult to determine the optimal balance between the two

metrics for a given application. Mathematically, the F1-score can be expressed as:

F1 Score =
2 ∗ Precision Score ∗ Recall Score

Precision Score + Recall Score
 (12)

2.4.1.6. Accuracy score

The model accuracy metric is defined as the ratio of TP and TN to all positives and negative

observations. In other words, it measures the proportion of correct predictions out of the total

number of predictions. One should be cautious relying on accuracy score alone when evaluating

the model performance as it does not consider the relative importance of different types of errors

such as FN or FP. The accuracy metric is also not reliable for models trained on imbalanced

datasets. For instance, if the dataset consists of 95% of class A, the accuracy of the classifier will

likely be very high as it will correctly predict class A most of the time. A better classifier that deals

with the class imbalance will most likely exhibit a worse accuracy score.

2.4.1.7. Macro and Weighted -average

In multi-class classification performance evaluation, macro and weighted average are two

common ways to aggregate the evaluation metrics.

34

Macro-averaging

Calculates the metric independently for each class and then takes the average across all classes.

This way each class is given equal importance regardless of its frequency in the data. This is useful

for when the dataset is imbalanced, as it ensures that the model’s performance is evaluated for

each class equally and can help identify classes that the model struggles to classify correctly.

Weighted-averaging

Calculates the metric for each class, then multiplies it by a corresponding weight before including

it in the average calculation. The weights are determined based on the frequency at which the

classes occur. This can provide a more accurate representation of the model’s performance on

the dataset as a whole.

In conclusion, when working on an imbalanced dataset where the classes are equally important,

the use of macro average would be a good choice, while if the performance of the minority class

is not that important by assigning greater contribution to the majority classes, weighted average

is preferred [64].

2.4.2. Evaluation metrics for regression algorithms

A set of evaluation metrics has been employed to assess the performance of our regression

algorithms. These metrics serve as a tangible measure of the predictive capabilities of our models.

2.4.2.1. Mean Squared Error and Mean Absolute Error

A key metric in regression is the Mean Squared Error (MSE), a loss function that measures the

average of squared differences between the predicted and actual values. Given its

straightforwardness and popularity, MSE is often utilized for error estimation in regression tasks.

The mathematical formulation is shown below [65]:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑖 − 𝑟𝑖)2

𝑛

𝑖=1

 (13)

where,

𝑛 is the total number of observations (data points)

𝑟𝑖 is the actual value of an observation

𝑝𝑖 is the predicted value

35

Notably, the MSE always remains non-negative due to the squaring operation, which significantly

weighs outlier predictions with large errors, proving useful in outlier detection. However, MSE

might not always provide a perfect reflection of the model's performance. A single significant

prediction error can sometimes obscure the true performance, as it may contribute heavily to the

overall error estimate [65]. Therefore, it is ideal to use MSE when large errors bear more

importance than smaller ones.

An alternative error estimation function, Mean Absolute Error (MAE), addresses some drawbacks

of using MSE. One significant advantage of MAE is that it is less sensitive to outliers than MSE due

to linearly weighing the errors, rather than squaring them. This means the MAE provides a

consistent measure of model error, which is beneficial in scenarios where extreme errors are not

significantly more critical than smaller ones. The mathematical formulation is shown below [66]:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑝𝑖 − 𝑟𝑖|

𝑛

𝑖=1

 (14)

However, the MAE does not explicitly prioritize large errors. In some situations, this could be a

disadvantage, as substantial errors are treated equivalently to minor ones. As such, MAE is

typically a useful metric in many contexts but may be less effective where substantial errors have

far greater implications. Using both MSE and MAE together can provide a comprehensive

perspective on model performance, as each metric highlights different aspects of prediction

errors. This complementary use helps to identify the model's strengths and weaknesses more

effectively.

2.4.2.2. R-squared

R-squared, also known as the coefficient of determination, measures the proportion of the

variance in the dependent variable that can be explained by the independent variables in a

regression model. It is a useful metric for assessing how well the model fits the data. An R-squared

of 1 indicates that all changes in the dependent variable are completely explained by changes in

the independent variable(s). Conversely, an R-squared of 0 indicates that none of the variability

in the dependent variable can be explained by the independent variable(s). The mathematical

formulation is [67] [68]:

𝑅2 = 1 −
∑ (𝑟𝑖 − 𝑝𝑖)2𝑛

𝑖=1

∑ (𝑟𝑖 − 𝑟̅)2𝑛
𝑖=1

 (15)

36

where,

𝑟̅ is the mean (average) of all actual values

However, it is important to note that adding more independent variables to the model can

artificially inflate the R-squared value, even if those variables do not contribute to the model's

predictive accuracy.

2.4.2.3. Graphical analysis

While the measures above are significant, they may not encapsulate the full story of model

performance. Complementary to these metrics, graphical analyses can reveal underlying trends

and patterns not immediately evident in numerical results. In tasks 2 and 3 (Chapter 5 and 6), we

have utilized such visual explorations to enhance our understanding and interpretation of the

model's outcomes, thereby offering a more comprehensive evaluation.

The deviations between the predicted and actual values for a test set can be graphically

represented as shown in Figure 18. The black line signifies an ideal scenario, where predicted and

actual values align perfectly. For these plots, a model's performance can be interpreted by how

closely the data points cluster around the ideal line. Individual data points, denoting the predicted

values, are superimposed on the same line for the SVR and MLR models, to clearly showcase the

differences and variations unique to each algorithm. This visual representation effectively

supplements our understanding of the discrepancy between predicted and actual values, thereby

enhancing our performance evaluation.

Figure 18: Example of a predicted vs. actual value plot [69]

The final step in our evaluation involves examining the residual plots. Residuals, defined as the

difference between the actual and predicted values, are graphically represented against the ideal

line, which denotes a residual value of zero. A critical purpose of these plots is to detect potential

37

anomalies and assess the performance of the regression model. Specifically, they can reveal

heteroscedasticity (non-constant variance in the error terms), identify outliers, and check the

linearity and independence assumptions associated with most linear regression models [70].

Each data point on these plots can exhibit both positive and negative residual values, indicating

underprediction or overprediction by the model, respectively. It is important to note that perfect

prediction is a rarity due to the inherent randomness and unavoidable inaccuracies in real-world

data. Therefore, optimal regression models aim to capture major trends and predictive

information in the dataset, leaving only small, independent, and normally distributed residuals.

In a well-performing residual plot, the data points are symmetrically scattered around the ideal

line and in close proximity to it, indicating the randomness of the residuals and the model's

success in capturing the key information in the data. Conversely, a plot exhibiting patterns in the

residuals or a concentration of residuals in certain areas could point to a model that has failed to

capture some inherent patterns in the data.

The figures below illustrate the difference between an ideal and a suboptimal residual plot. Figure

19a showcases an ideal scenario where the data points are evenly distributed around the ideal

line. In contrast, Figure 19b depicts a less optimal situation, where the majority of data points lie

above the x-axis, indicating a systematic underprediction by the model.

 a) b)

Figure 19: Visualization of a) ideal residual plot and b) suboptimal residual plot [71]

If a model underestimates an observation, the model estimate will be smaller than the actual

value. The residual, which is the actual observation value minus the model estimate, will

consequently be positive (over the x-axis). On the contrary, when the model overestimates the

observation, the residual will be negative (under the x-axis).

38

3. Methodology

3.1. Research design and overall approach

In this master’s thesis, we aim to explore the potential of ML as a useful tool in the design of RC

structures, with a focus on rectangular and T-section beams. The research comprises three main

tasks, each addressing different aspects of simply supported RC beam design: (1) predicting

anticipated capacity failure mode, (2) predicting load capacity, and (3) cost optimization of T-

section design.

Although three different tasks, the flow of our research methodology can be summarized in the

following flow chart in Figure 20.

Figure 20: Methodology flow chart

The flowchart begins with the concrete design and dataset generation for each task. An additional

step is added to Task 3 which cost-optimizes the T-section design during the data generation.

39

After preprocessing and feature selection, the data is split into training and test sets. The next

step in the process is to determine if our task has target variables. Upon confirming the existence

of target variables for all tasks, we were able to proceed with supervised machine learning

models. Based on the nature of the target variable (continuous or discrete), the appropriate

machine learning models (regression or classification) are selected and hyperparameters are

tuned. The models are then tested using the test data, and their performance is evaluated using

relevant metrics. If the results are not satisfactory, the process iterates, returning to

preprocessing, feature selection, and hyperparameter tuning. This iterative process continues

until satisfactory results are achieved, after which the results are discussed, concluding the

research process. The flowchart illustrates the systematic and iterative nature of our research

methodology, highlighting the critical decision-making steps and the importance of model

evaluation and improvement.

Our research can be characterized as a combination of applied, exploratory and quantitative. It is

applied in nature as it addresses practical problems in structural engineering and aims to enhance

engineering practices using ML techniques. The research is exploratory, particularly given that

we had no prior experience in ML and limited understanding of python, before undertaking the

thesis. This lack of prior knowledge adds an element of exploration, as we navigated through

various ML models and techniques, while seeking to uncover new insights and understandings

that can contribute to future research direction in the field of structural engineering, but also

provide a foundation for subsequent studies. Lastly, the research is quantitative, relying on

unchanging numerical data, employing quantitative methods such as ML methods and

performance metrics, to draw conclusions from the data.

3.2. Materials and software

The calculations used to produce the datasets are based on the rules specified in EC2 and EN

1990: Eurocode - Basis of structural design (EC0) [72]. All the numerical analyses were

performed using python in the Spyder environment [73]. The ML models were implemented

using Scikit-learn [74] and TensorFlow with the API Keras [42]. In this research, the

SciPy.optimize [75] module was utilized for generating the dataset for the optimization task.

Various Python packages have also been used for different tasks, such as:

• Visualization: Seaborn, Yellowbrick, Matplotlib and Dtreeviz

• Preprocessing: Imbalanced-Learn (imblearn) and Pandas

• Calculations: NumPy, Math and Statsmodels

40

Spyder

Spyder is a free and open-source scientific environment specifically designed for engineers and

data analysts. It offers an intuitive interface, excellent visualization and debugging capabilities,

seamless integration with popular libraries, and an active community for support.

Scikit-learn

Scikit-learn (formerly scikits.learn and also known as sklearn) is an open-source Python library

that provides a wide range of tools for ML and statistical modeling. It includes algorithms for

classification, regression, clustering, dimensionality reduction, and model selection, as well as

preprocessing functions and evaluation metrics. Scikit-learn is largely written in python and built

on NumPy, SciPy and Matplotlib.

Keras

Keras is an open-source, high-level API written in Python. It serves as an interface for the

TensorFlow platform and primarily focuses on deep learning and NNs. Keras includes numerous

implementations of commonly used NN building blocks, such as layers, objectives, activation

functions, and optimizers.

SciPy.optimize

SciPy.optimize is a module within the SciPy library that offers a variety of functions for optimizing

objective functions, either through minimization or maximization, with the ability to handle

constraints. The module includes solvers for a wide range of problems, including nonlinear

problems, linear programming, constrained and nonlinear least-squares, root finding and curve

fitting.

3.3. Reflection and quality assurance

3.3.1. Validity

In the context of our research, validity is defined as the degree to which our methodologies,

models, and findings accurately reflect the real-world situations they intend to simulate or

predict. It is crucial to the overall strength of our study and concerns the credibility and integrity

of our findings. For our thesis, we consider validity in several key aspects:

• Consistency with established standards: Our research adheres to established EC2 and EC0

design rules, ensuring that our methodologies align with recognized standards in the field of

structural engineering. This provides a solid foundation for the validity of our work.

41

• ML models: The validity of our ML models is demonstrated through their ability to effectively

predict outcomes on unseen data. This is evaluated using well-established metrics, as

outlined in Chapter 2.4, and through the comprehensive analysis presented in Chapters 5, 6,

and 7.

• Rapidly evolving field: Machine Learning is an ever-evolving discipline, with new

methodologies, algorithms, and libraries being developed and updated regularly. While this

dynamism could potentially challenge the longevity of our work's validity, we have taken

steps to use the most current and widely accepted methods and tools at the time of our

research. We also provide thorough documentation and transparency in our use of these tools

to ensure validity.

• Secondary analysis of design rules: In the optimization part of our study, we conducted a

secondary analysis of the paper by Fedghouche [76]. This approach saved considerable time,

allowing us to focus on the ML analysis of the data it produced. While the adoption of these

design rules from a secondary source could be viewed as a potential threat to validity, we

consider the robustness and credibility of the original source sufficient to uphold the validity

of our work.

• Coding practices: As beginners in coding, our primary focus was to ensure that the code

functioned as intended and produced the desired results. However, given our relative

unfamiliarity with coding, we have not prioritized the optimization or efficiency of the code.

3.3.2. Generalizability

A key concern of quantitative research is the extent to which findings can be generalized beyond

the context of their study -in other words, whether the research has sufficient external validity

[77]. In the context of our thesis, the generalizability might be considered in terms of the following

aspects:

• Applicability of design rules: The design rules and principles used to generate the various

datasets are based on EC2 and EC0. While this ensures that the data is reliable, consistent,

and applicable to a wide range of scenarios in structural engineering, it also introduces a

certain degree of restriction. The applicability of our findings is primarily confined to contexts

and regions where European standards are implemented. Therefore, the generalizability of

our research to scenarios or regions that employ different design standards may require

additional considerations or adaptations.

42

• Transferability to other structures: Although our study focuses on rectangular and

T-sectioned RC-beams, the ML methodologies and principles are applicable to other types of

structures.

• Diversity of the datasets: The more diverse a dataset is, the more generalizable our results

are likely to be. However, due to computational limitations, we had to enforce restrictions on

the range of properties for the sections, setting lower and upper boundaries. In context,

generating the dataset for the optimization task took approximately four hours. While this

process could potentially be expedited through various cloud services, access constraints

prevented their use in this thesis. The lower bound limitations are likely representative of

lower scale structures such as residential buildings or small commercial buildings, while the

upper bound limits have been set to encapsulate the characteristics of beams found in larger

scale structures, including high-rise buildings, bridges, and other major infrastructural

projects.

For the cost optimization of Task 3, the cost ratios seen in Chapter 4.3 are the ones proposed

by Fedghouche (2018) [76], and may be different depending on the geographical location,

economic situation, or specific project requirements.

While we believe that the diversity of the data adequately represents a substantial range of

cases, we acknowledge that it may not cover all possible scenarios. The specific limits and cost

ratios applied in the tasks are detailed in Chapter 4, and can be readily adjusted in the code

of Appendices A2 and I, to accommodate unique project requirements. Despite the noted

constraints, we maintain confidence in the generalizability of our study given the breadth of

conditions encapsulated within our data boundaries.

• Model performance on unseen data: Although the ML models are trained on a specific

dataset, they should perform reasonably well on new, unseen data. The results in Chapters 5,

6 and 7, as well as the steps taken to hinder overfitting, suggest that the models have learned

general patterns and principles that apply beyond the specific examples they were trained on.

3.3.3. Replicability

Replicability is an important aspect of scientific research and refers to the ability of independent

scientists to reproduce each other’s experiments. Even though the datasets are not provided in

the thesis, this research has taken some steps to ensure that others can replicate our study, or

even build upon it.

43

• Data generation: The underlying design rules and methodologies, as well as detailed

explanation of how the datasets were created are outlined throughout the thesis.

• Exact parameter settings: The composition and settings of the model's hyperparameters

are thoroughly discussed within the thesis. Additionally, boundary conditions and

restrictions are also covered and can be viewed in the accompanying Python scripts, which

are included in the Appendix, for increased transparency and accessibility.

• Evaluation metrics: Chapter 2.4 provides a clear definition and explanation of the

performance metrics used in the assessment of our models.

• Software and libraries: The specific software tools and libraries used in this study are

detailed, enabling others to replicate or build upon our results using the same resources.

• Randomness in ML models: ML models often incorporate elements of randomness. This

randomness can lead to variations in model performance even when trained on the same

data. To mitigate the impact of this, we used fixed seeds for the random number generators

in our code to ensure that our results could be reproduced exactly. However, because ML

models often rely on optimization algorithms, they do not always find the exact same solution

in every run, even with the same initial conditions. Therefore, the precise outcomes may not

be identically reproducible in every replication attempt. It is therefore important to interpret

the results in terms of their general trends and comparative performances rather than

focusing solely on specific numeric values.

44

4. Dataset generation for RC beam design
In this section, we will provide a comprehensive overview of the design rules and processes that

were employed to create the datasets for each of the three tasks in this research. Central to this

is the utilization of the Python scripts in Appendices A and I. Understanding the quality of the

datasets is crucial, as the performance and outcomes of the algorithm’s heavily rely on the data

on which they are trained on. Our research utilizes a total of four datasets:

• One for Task 1, where the primary output is the anticipated failure mode.

• Three for Task 2, with primary outputs being moment capacity, shear capacity, and load

capacity.

• One for Task 3, where the primary outputs are the design variables and cost of optimal

sections.

The appropriate sample size for a dataset is a topic that sparks much debate. The subjective

nature of the decision, along with constraints tied to the availability of samples, makes it a

complex issue. As suggested by [78], the minimum sample size for general engineering problems

should be 3-20 times the number of variables involved. In the context of ML regression, it has

been recommended that the sample size should be 10 times the number of independent input

variables [10].

Balancing the representation of a broad range of cross-sections against the feasibility of

experimental data, we chose to use 400, 600, and 378 training samples for Tasks 1, 2, and 3,

(Chapters 5, 6 and 7) respectively. This decision aimed to create a reasonable yet diverse range

of samples for training our ML models.

Given the relatively lower computational time required for generating samples for Tasks 1 and 2,

we leveraged the opportunity to test the predictability of the ML models on approximately 1500

unseen sections, thereby offering a robust representation of the models' generalizability.

Consequently, the data division for training and testing for Tasks 1 and 2 followed a 20-80 and

30-70 ratio respectively.

Contrastingly, Task 3's dataset generation, which included an optimization process, was more

computationally intensive. We managed to produce a total of 540 sections and subjected the ML

model to 162 unseen sections for testing and evaluation. This 70-30 data division, a common

45

practice when training algorithms, ensures a robust training process while providing a

meaningful set of data for testing and validation.

In the next chapters, the EC2 design rules used to generate the datasets for Task 1 and Task 2 will

be presented, focusing on rectangular, simply supported RC beams. We will then describe how

the input data was adjusted to suit the requirements of regression and classification tasks. Finally,

the design rules and optimization process used to create the dataset for Task 3 will be shown,

which focuses on T-sections for simply supported RC beams.

4.1. Limit state design of RC sections under bending

EC0 and EC2 form the foundation for the design rules utilized in constructing the datasets.

Ultimate Limit State (ULS) was employed for designs requiring the analysis of bending moments

and shear forces, while Serviceability Limit State (SLS) was used for designs related to deflection

assessment. In the context of ULS, we employed the load factors as defined in sections 6.10a and

6.10b of EC0, opting for the worst-case scenario. Conversely, for the SLS, a uniform load factor of

1.0 was applied across all loads. A long-term perspective was used to calculate the deflection, and

a 𝜓-value of 0.3 was applied. In compliance with EC2, the assumptions for the limit state of a

typical reinforced beams are depicted in Figure 21a-c.

Figure 21: a) Rectangular and T-beam section; b) strains at ultimate limit state and c) stresses at ultimate

limit state [76].

𝜀𝑠 and 𝜀𝑐𝑢3 as shown in Figure 21b’s linear strain diagram represents the steel strain and the

ultimate strain in concrete under compression, respectively. The parameter α indicates the

relative depth of the compressive zone, and the plastic neutral axis is situated at a distance of αd

46

from the upper fiber. In the uniformly distributed stress diagram, shown in Figure 21c, 𝑓𝑐𝑑 is the

design value of concrete compressive strength.

According to EC2, the option to work with a rectangular stress distribution is available, by

introducing the factors λ and η for the depth of the compression zone and design strength,

respectively. Both λ and η factors have a linear dependency on the characteristic strength 𝑓𝑐𝑘, as

described in the following equations [2]:

λ = 0,8 +
fck − 50

400
 (16)

η = 1,0 +
fck − 50

200
 (17)

These equations are applied for 50 ≤ 𝑓𝑐𝑘≤ 90 MPa, while λ = 0.8 and η = 1.0 for 𝑓𝑐𝑘≤ 50 MPa. 𝐹𝑐

and 𝐹𝑠 represent the resultants of internal forces in the section and reinforcing steel, respectively.

The design yield strength of steel reinforcement is defined as 𝑓
𝑦𝑑

. Moreover, in accordance with

EC2 provisions, steel strain is considered unlimited [76]. The maximum elastic strain 𝜀𝑦𝑑

corresponding to design yield strength of steel reinforcement can be defined from the

relationship 𝜀𝑦𝑑 = 𝑓
𝑦𝑑

/𝐸𝑠, where 𝐸𝑠 denotes the elasticity modulus of steel. For the optimal

utilization of steel in this task, the strain must always be greater than or equal to the elastic limit

strain.

4.2. Task 1 and 2: Rectangular RC beams

Bending moments often pose a weakness for beams, particularly those with large spans and small

heights, as they can lead to catastrophic failures. The bending moment (𝑀𝐸𝑑) for a simply

supported beam is located at the midspan and is calculated as:

𝑀𝐸𝑑 =
𝑞 𝐿2

8
 (18)

Where q is the total load in ULS per meter and L is the beam’s length.

The moment capacity calculation, as outlined in Sørensen’s book [79], is based on the calculations

from EC2. The balanced reinforcement amount is calculated as:

47

𝐴𝑠𝑏𝑎𝑙 =
𝑓𝑦𝑑 𝐴𝑠

λ 𝑛 𝑓𝑐𝑑 𝑏 𝑑 𝛼𝑏𝑎𝑙
 (19)

where,

𝛼𝑏𝑎𝑙 =
𝜀𝑐𝑢

𝜀𝑐𝑢 + ε𝑦𝑑

 (20)

It is important to determine whether the cross section is over or under -reinforced, to calculate

the moment capacity. To do so, we calculate the balanced reinforcement in Eq. (19) and compare

it to the input reinforcement of the section. If the cross section is under-reinforced, 𝛼 is calculated

as:

𝛼 =
𝑓

𝑦𝑑
𝐴𝑠

λ 𝑛 𝑓
𝑐𝑑

 𝑏 𝑑
 (21)

And if the cross section is over-reinforced, 𝛼 is calculated as follows:

𝛼 =

−(𝐸𝑠 𝐴𝑠 𝜀𝑐𝑢) ± √(𝐸𝑠 𝐴𝑠 𝜀𝑐𝑢)2 − 4 (λ 𝑛 𝑓
𝑐𝑑

 𝑏 𝑑) (−𝐸𝑠 𝐴𝑠 𝜀𝑐𝑢)

λ 𝑛 𝑓
𝑐𝑑

 𝑏 𝑑

(22)

Since the 𝛼 for over-reinforced cross sections is calculated using the quadratic formula, two

solutions arise. In the script we ensure the correct value is selected by requiring it to be greater

than 𝛼𝑏𝑎𝑙 and less than 1.0. The moment capacity (𝑀𝑅𝑑) is then calculated as:

𝑀𝑟𝑑 = 0,8 𝛼 (1 − 0,4 𝛼) 𝑓𝑐𝑑 𝑏 𝑑2 (23)

Beams that are relatively short in length tend to have shear forces as a weak point when it comes

to failure. In a simply supported beam, the shear force (𝑉𝐸𝑑) in each cross section is calculated as:

𝑉𝐸𝑑 =
𝑞 𝐿

2
 (24)

48

In determining the shear capacity, we calculate both the concrete shear capacity (𝑉𝑅𝑑𝑐) and the

shear reinforcement capacity (𝑉𝑅𝑑𝑠). This is done because, in some instances, the concrete's

inherent strength can exceed the capacity provided by the shear reinforcement. The concrete

shear capacity is calculated as follows:

𝑉𝑅𝑑𝑐 = 𝐶𝑟𝑑𝑐 𝑘 (100 𝜌
𝑙
𝑓

𝑐𝑘
)

1
3 𝑏 𝑑 (25)

with a minimum of

𝑉𝑚𝑖𝑛 = 0,035 𝑘
3
2 𝑓

𝑐𝑘

1
2 (26)

The shear reinforcement capacity is calculated as the lowest value of Eq. (25) and (26):

𝑉𝑅𝑑𝑠 =
𝐴𝑠𝑤_𝑑𝑖𝑣_𝑠

100
 𝑧 𝑓𝑦𝑑 cot(𝜃) (27)

𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝑎𝑐𝑤 𝑏 𝑧 𝑣1
𝑓

𝑐𝑑

cot(𝜃) + tan(𝜃)

(28)

where 𝜃 is assumed to be 90 degrees for vertical stirrups.

Reinforced concrete beams naturally exhibit deflection over time. This deflection, if excessive, can

not only be visually off-putting, but also cause discomfort to occupants and potentially damage

supported structures. Therefore, it is crucial to manage and control deflection carefully. The long-

term behavior of these beams is influenced by factors such as flexural cracking, thermal effects,

and deflections caused by shrinkage and creep. However, for the scope of this thesis, the influence

of thermal effects has been excluded, and we have assumed a concrete class S. The research has

factored in deflection control at mid-span, as an essential aspect of RC design. The maximum

allowed deflection is set as:

𝑤𝑎𝑙𝑙𝑜𝑤𝑒𝑑 =
𝐿

250
 (29)

Where L is the span of the beam.

49

Shrinkage, expressed as a percentage, refers to the proportional change in length per unit length.

It comprises two components - an autogenous part:

𝜀𝑐𝑎 = 𝛽𝑎𝑠 𝜀𝑐𝑎,𝑖𝑛𝑓 (30)

and a drying-induced part:

𝜀𝑑𝑠 = 𝛽𝑑𝑠 𝑘ℎ 𝜀𝑐𝑑0 (31)

where,

𝜀𝑐𝑎,𝑖𝑛𝑓 = 2,5 (𝑓
𝑐𝑘

− 10) (32)

 𝜀𝑐𝑑0 = 0,85 ((220 + 11 +· 𝑎𝑑𝑠1) 𝑒
−𝑎𝑑𝑠2·

𝑓𝑐𝑚
𝑓𝑐𝑚𝑜 𝛽

𝑅𝐻
 (33)

The two parts are then added together in order to find the curvature due to shrinkage as shown

below:

𝜅𝑠 = (𝜀𝑑𝑠 + 𝜀𝑐𝑎) 𝜂 𝐴𝑠
𝑒

𝐼
 (34)

The moment of inertia (I) is calculated as:

𝐼 =
𝑏 ℎ3

12
+ 𝐴𝑐 (𝑎 −

ℎ

2
)

2

+ 𝜂 𝐴𝑠 𝑒2 (35)

where,

𝑎 =
𝐴𝑐 0,5 ℎ + 𝜂 𝐴𝑠 𝑑

𝐴𝑐 + 𝜂 𝐴𝑠
 (36)

Finally, the deflection due to shrinkage can be found as:

𝛿𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 =
𝜅𝑠 𝐿2

8
 (37)

50

Creep is the time-dependent deformation due to persistent loads. It requires the calculation of an

average modulus of elasticity (E-modulus). This E-modulus accounts for both the immediate and

delayed effects of bending moments. It is determined using the short-term and long-term parts of

the bending moments along with their respective short-term and long-term E-modulus, as shown

in the following formula:

𝐸𝑚 =
𝑀𝑔1 + 𝑀𝑔2 + 𝑀𝑔3

𝑀𝑔1

𝐸𝑐𝐿1

+
𝑀𝑔2

𝐸𝑐𝐿2

+
𝑀𝑔3

𝐸𝑐𝑚

(38)

The calculations proceed by assuming a cracked cross section (State 2), which requires the use of

specific formulas. Following a series of computations, the contributions of the concrete and

reinforcement to the modified moment of inertia are represented as 𝐼𝑐1 and 𝐼𝑠1, respectively.

These values are used to calculate the long-term stiffness:

𝐸𝐼 = 𝐸𝑚 𝐼𝑐1 + 𝐸𝑠 𝐼𝑠1 (39)

Finally, the deflection due to creep can be calculated as:

𝛿𝑐𝑟𝑒𝑒𝑝 =
(5 (𝑔

1
+ 𝑔

2
) 𝐿4)

384 𝐸𝐼
 (40)

To ensure that the dataset comprises only cross sections with permissible configurations, it is

crucial that they meet the minimum requirements for shear and longitudinal reinforcement

according to EC2. The minimum longitudinal reinforcement is calculated according to Eq. (41).

𝐴𝑠𝑚𝑖𝑛 = maximum of 0,26
fctm

fyk
 b d and 0,0013 b d (41)

Regarding the minimum shear reinforcement, the script compares the shear reinforcement of

each cross section with both the maximum allowed stirrup spacing and the required amount of

shear reinforcement per meter. The maximum spacing is calculated as per the following formula:

𝑠𝑚𝑎𝑥 = minimum of s1 and s2 (42)

where,

51

𝑠1 = 0,6 𝑑 (1 + cot(𝛼)) (43)

𝑠2 = minimum(𝑑, 600) (44)

Another important consideration in creating a dataset with realistic and feasible cross sections is

ensuring sufficient space for the longitudinal reinforcement within the cross section. For instance,

placing 4000 𝑚𝑚2 of rebar within a 100x100 section would be impractical and would skew the

thesis results. To address this issue, the script implements certain limitations. First, to simplify

the script, a maximum of six rebars with diameters ranging from 16-32 𝑚𝑚 is set. The script

associates different ranges of reinforcement amounts with appropriate rebar diameters. If the

spacing in the width is insufficient, the script organizes the rebars into two layers in the vertical

direction. If the cross section still lacks sufficient space, it is deemed unsuitable for the dataset.

Required space in the width with one and two layers is calculated based on the rules of EC2 where

minimum distance between rebars, the diameter of the longitudinal and shear reinforcement and

the concrete cover are considered.

4.2.1. Dataset generation for Task 1 and 2

The datasets made for Tasks 1 and 2 (Chapters 5 and 6) were formatted as a CSV file with six

columns, five of which represent independent variables and one the dependent variable. The

independent variables fluctuate within their respective ranges, resulting in a wide variety of cross

section combinations in the datasets. Table 1 displays the independent variables together with

their upper and lower bounds. All other variables, not included in the datasets but necessary for

calculating values within them, are assigned fixed values. These can be adjusted by the user in the

script of Appendix A1. For instance, 𝑓𝑐𝑘 is utilized to calculate the moment capacity, while 𝐸𝑐 is

used to determine the deflection due to creep.

Table 1: Overview of the independent variables´ upper and lower limits and their ranges for the datasets in

Task 1 and 2

Variable Range Increment Size

𝐴𝑠 Longitudinal reinforcement amount (𝑚𝑚2) 100-4825 100

𝐿 Span of beam (𝑚) 1-12 1

b Width of cross section (𝑚𝑚) 100-1000 100

h Height of cross section (𝑚𝑚) 100-1500 100

Asw_div_s Shear reinforcement amount in (𝑚𝑚2/𝑚) 0,1-2 0,1

52

The independent variables in the CSV file are As, L, h, b, and Asw_div_s. The datasets' dependent

variables are selected based on the tasks' intended findings, which are moment capacity, shear

capacity, load capacity, and the anticipated failure mode.

The creation of the CSV files was accomplished through a series of steps. Initially, all the checks

and formulas associated with Chapter 4.2 were transformed into functions. These functions were

then compiled into a separate Python file (Appendix A1). This approach not only conserved space

but also facilitated cleaner setup, allowing for the reference of that file whenever the various

functions were needed.

Furthermore, cross sections were created, for which a separate file was established (Appendix

A2). This file allows the user to easily adjust various fixed input variables such as 𝑓𝑐𝑘 and 𝐸𝑐 . The

minimum and maximum values of the independent variables, along with their interval sizes, are

also stored in this file. These input variables form the foundation and ensure the diversity of the

datasets.

The construction of the dataset itself takes place after these variables. The script first creates an

empty list, then uses several "for-loops" to append cross sections, each with a unique combination

of independent variables. The final and most crucial component of the dataset, the dependent

variable, is then found.

For the two datasets in Task 2, which contain shear and moment capacity, the script simply

iterates through the list of created cross sections, extracts the variables needed for the specific

function (shear capacity or moment capacity), and adds the value to a new empty list. However,

to calculate the load capacity, the script needs to iterate through a “for-loop” with an increasing

applied live load, as most cross sections do not fail solely due to self-weight.

This principle also applies to the dataset in Task 1, where the anticipated failure mode for each

cross section is determined by the utilization ratio that first reaches 1.0, whether it is the shear,

bending, or deflection ratio. It is important to highlight that all cross sections across all four

datasets incorporate functions associated with design rules regarding rebar spacing and

minimum reinforcement.

Finally, once all the necessary data for the datasets has been compiled into lists, another Python

file is employed (Appendix A3). This file retrieves these lists from the previous files and utilizes

the pandas library to generate a CSV file. Given the selected range and interval sizes of the

53

independent variables, approximately 678,000 cross sections were created. However, as the

desired number of cross sections for training is around 500, it was essential to significantly

reduce the size of the CSV file. Consequently, another Python file was created (Appendix A4) to

randomly delete cross sections until the total count in the dataset was reduced to 2001. This

random deletion ensured that the dataset did not exclusively lose cross sections from either the

beginning or the end, but rather distributed the deletion throughout the dataset.

4.3. Task 3: RC T-section Optimization

The design variables selected for the optimization of T-sections are presented in Table 2.

Table 2: Definition of design variables

Design variables
Lower

bound

Upper

bound

b Effective width of compressive flange 100 3000

𝑏𝑤 Web width 100 1500

h Total height L/16 1500

d Effective depth 0,9h 0,9h

ℎ𝑓 Flange depth 150 15001

𝐴𝑠 Area of tension reinforcement 100 10000

α Relative depth of compressive concrete zone 0.1 𝛼𝑙𝑖𝑚2

The objective function for the cost optimization comprises the costs of concrete, steel and

formwork per unit length of the beam. This function can be defined as:

𝐶0

𝐿
= 𝐶𝑐 (𝑏𝑤 ℎ + (𝑏 − 𝑏𝑤) ℎ𝑓) + 𝐶𝑠 𝐴𝑠 + 𝐶𝑓 [𝑏 + 2ℎ] → 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (45)

Where
𝐶0

𝐿
 is the total cost per unit length, while 𝐶𝑠, 𝐶𝑐 and 𝐶𝑓 are the unit costs of steel, concrete

and formwork, respectively. The cost function to be minimized can be written as follows:

1 Assuming the maximum flange depth is limited by the total depth

2 Determined based on empirical data for the type of steel (S500, S400) and concrete (C70/85, C20/25)

[76], defined in Appendix I

54

𝐶 =
𝐶0

𝐶𝑐 𝐿
= 𝑏𝑤 ℎ + (𝑏 − 𝑏𝑤) ℎ𝑓 + (

𝐶𝑠

𝐶𝑐
) 𝐴𝑠 + (

𝐶𝑓

𝐶𝑐
) [𝑏 + 2ℎ] → 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (46)

The formulation of the cost function, the values of the cost ratios 𝐶𝑠/𝐶𝑐 and 𝐶𝑓/ 𝐶𝑐, as well as most

of the following constraints are as proposed by Fedghouche (2018) [76].

As in any optimization problem we are also going to introduce some design constraints which are

defined in accordance with EC2, including the nonlinear ultimate behaviors of concrete and

reinforcing steel, as well as current practices rules. Nonetheless, the suggested formulations can

be altered to accommodate for different design codes with minimal modifications. To ensure that

the external moment applied on the beam does not exceed the resisting moment provided by the

cross-section, the following inequality is defined:

𝑀𝐸𝑑 ≤ η fcd (𝑏 − 𝑏𝑤) ℎ𝑓 (𝑑 − 0,5 ℎ𝑓) + η λ f𝑐𝑑 𝑏𝑤 𝑑2 𝛼 (1 − 0,5 λ α) (47)

To ensure equilibrium between the internal forces and thereby that the structure remains stable,

we will use the formulation in Eq. (48). This ensures that the structure can safely withstand the

applied loads without experiencing excessive deformations or failure.

𝛼 = (
𝑓𝑦𝑑

𝑓𝑐𝑑
) (

𝐴𝑠

η λ b𝑤 𝑑
) −

(𝑏 − 𝑏𝑤) ℎ𝑓

λ bw 𝑑
 (48)

Furthermore, it is important to ensure that the steel reinforcement falls into the minimum and

maximum steel reinforcement percentage, to prevent brittle failure, and control cracking. The

formulations for this are:

𝐴𝑠

𝑏𝑤 𝑑
≥ 𝜌𝑚𝑖𝑛 (49)

𝐴𝑠

𝑏𝑤 ℎ + (𝑏 − 𝑏𝑤) ℎ𝑓
≤ 𝜌𝑚𝑎𝑥 (50)

In Eq. (47), (48) and (49), it is assumed that the neutral axis is positioned under the beam flange

which ensures that the section behaves as a T-beam shown in Figure 21. To ensure that the strain

compatibility between steel and concrete is maintained, to prevent excessive deformations and

ensure that the structure behaves as a composite material under applied loads, we will use the

following formulation:

55

𝜀𝑐𝑢3 ((
1

𝛼
) − 1) ≥

𝑓𝑦𝑑

𝐸𝑠
 (51)

By fulfilling constraint (52), the design can avoid the need for compression reinforcement, which

can lead to additional complexity and costs. Moreover, compression reinforcement is typically

not required in the design of T-beam sections [76].

λ α (1 − 0,5 λ 𝛼) ≤ 𝜇limit (52)

𝜇limit is the limit value of the reduced moment and is provided as a threshold to determine if the

T-beam design can avoid the need for compression reinforcement. The value varies depending on

the combination of steel reinforcement grade and concrete strength class.

 To ensure that the external shear force is smaller than the resisting shear force, we define the

following inequality:

𝑉𝐸𝑑 ≤ 𝑉𝑅𝑑,max = 𝑣1

𝑓𝑐𝑑 𝑏𝑤 𝑧

𝑡𝑔(𝜃) + cotg(𝜃)
 (53)

where,

𝑣1 = 0,6 (1 −
𝑓𝑐𝑘

250
) (54)

𝑧 = 0,9𝑑

(55)

and θ is the angle between concrete compression and the main chord. To ensure that the

deflection constraint is satisfied, the following formulation is used:

5 𝑞 𝐿4

384 𝐸𝑐𝑚 𝐼𝑐
≤ 𝛿𝑙𝑖𝑚 (56)

where according to Sørensens’ book [79]:

𝜌 =
𝐴𝑠

𝑏𝑤𝑑

(57)

56

𝐼𝑐 = ξ
 bw (𝛼 𝑑)3

3
+ η ρ (1 − α)2 𝑏𝑤 𝑑3

(58)

Lastly, to ensure that the optimal solution adheres to some physical limitations, the following

geometric design variable constraints including rules of practice are introduced:

ℎ ≥
𝐿

16
 (59)

𝑑

ℎ
= 0,9 (60)

0,2 ≤
𝑏𝑤

𝑑
≤ 0,5 (61)

𝑏 − 𝑏𝑤

2
≤

𝐿

10

(62)

𝑏

ℎ𝑓
≤ 8 (63)

ℎ𝑓 ≥ ℎ𝑓,𝑚𝑖𝑛 (64)

𝑏

𝑏𝑤
≥ 3 (65)

ℎ𝑓,𝑚𝑖𝑛 was set to 150mm.

Mathematically, the minimum cost design optimization problem can now be formulated as “find

the design variables 𝑏, 𝑏𝑤, 𝑏, 𝑓, 𝑑, ℎ𝑓, 𝐴𝑠 and α in Table 2, that minimize the cost function defined

in Eq. (46) subjected to the design constraints given in Eq. (47) through Eq. (65)”.

57

4.3.1. Dataset generation for Task 3

The optimization code that was written for this task (Appendix I) generates a dataset of optimized

RC T-beams used to train a ML model. The dataset was saved in a CSV file with the following

columns: fck, fyk, q, g, L, VEd, MEd, delta_lim, b, bw, h, d, hf, As, alpha, cost, and success. The

algorithm used for optimization is the trust-constr method, which is a trust-region algorithm for

constrained optimization (Chapter 2.1.1). It is the most versatile constrained minimization

algorithm implemented in SciPy and is suitable for large-scale problems [80]. The trust-constr

method stands out as particularly appropriate for our task due to its flexibility and robustness in

handling both equality and inequality constraints, which are present in our case. Furthermore,

this method is proficient at handling nonlinear optimization challenges [81], which are

predominant in most of the constraints we are dealing with in this task. A defining feature of the

method is its ability to adjust the trust-region according to the progress of the optimization. This

can lead to more efficient exploration of the solution space, potentially reducing the time required

for dataset generation. The maximum iterations for each section were set to 5000. The x-

tolerance, which is the tolerance for the change in the design variables between consecutive

iterations, and the g-tolerance, which is the tolerance for the gradient of the objective function,

were both set to 1e-5. When the tolerances are not changing significantly, further iterations are

unlikely to produce substantial improvements in the solution and the algorithm will terminate

the search.

The dataset was generated for various combinations of concrete strengths (20, 70 MPa), steel

reinforcement yield strengths (S400, S500), load values (5-30 kN) and span lengths (5-20 m). For

each combination, the script optimizes the design variables as detailed above, and subsequently

stores them in the CSV file along with the corresponding cost and the success status of the

optimization process.

58

5. Task 1: Predicting anticipated failure mode

In this section, we aim to investigate the effectiveness of three distinct ML algorithms for

predicting the anticipated failure mode of an RC beam using previously unseen data on its

properties. The task is framed as a classification problem, as it involves predicting a categorical

variable, i.e., the anticipated failure mode. The goal of the ML model is to map the properties of

the beam (input features) to the anticipated failure mode (target variable). The target variable is

divided into one of three classes, corresponding to one of three failure modes (bending, shear and

deflection), making this a multiclass classification task.

This problem is well-suited for supervised learning as the dataset is labeled, consisting of the

properties of an RC beam and the corresponding anticipated failure mode.

5.1. Data preprocessing

When using classifiers for a multiclass classification task, it is important to preprocess and

prepare the dataset appropriately. First let us look at the number of instances of each class in the

dataset in Figure 22.

Figure 22: Class distribution in the data set

The dataset is quite imbalanced with the moment class dominating the beam’s reason of failure.

This suggests that in the process of iterating through different beam geometries and

reinforcement configurations, the moment capacity was reached and exceeded first more

frequently than the other capacities. The imbalance is likely due to the nature of the design space

we have explored with the increase of the beam’s properties. As we know, the different failure

59

modes are affected by different factors, and the proportions of the beam sections we have

generated are making certain types of failures more probable.

In general, a simply supported beam under uniformly distributed load would be more susceptible

to bending moments. The deflection capacity is important, but often less critical than the moment

and shear capacities in RC design. In addition, the L/250 limit is relatively conservative, making

the beam less likely to fail due to deflection. The large moment frequency reflects that moment

failure is the most common concern in the design and analysis of these beams.

By plotting the scatterplots of the features and the classes seen in the figure below, we can get an

important insight into the relationship between the features and the target variable.

Figure 23: Scatterplot of feature pairs

A careful examination of the second row reveals that the moment class is notably dominant when

L and h values are elevated, while 𝐴𝑠 exhibits a lower value. When h is comparatively smaller, as

seen in the L-h and h-𝐴𝑠 diagrams, deflection class unsurprisingly takes over as the prevailing

60

failure mode. As displayed in the L-h and L-b diagrams, if the beam's length is relatively modest,

shear capacity becomes the primary failure mode. Lastly, a glance at the L-Asw_div_s graph

illustrates an increase in shear failure modes as Asw_div_s decreases. The feature

interrelationships highlighted are more discriminative in the scatterplot, leading to enhanced

cluster separation for different classes. This is likely due to these feature combinations being

intricately tied to the beam's behavior and performance, hence wielding a significant influence

over the beam's overall classification.

The scatterplots that exhibit a mixing of classes signify that the interactions between the features

are not as directly influential or strong in determining the failure classification. For example,

Asw_div_s is a significant parameter influencing the beam's shear capacity. However, its

correlation with most other features is not as robust or transparent, implying it may not be

adequate to explain the failure mechanism independently. Moreover, the relationship between

𝐴𝑠 and b did not result in any instances of shear failure, but mixed moment and deflection class

instances. This suggests that the association between the longitudinal reinforcement and the

beam's width has more bearing on moment and deflection capacities rather than the shear

capacity.

Referring to Figure 23, it is noticeable that in feature relationships like L-𝐴𝑠, we can draw a clear

line, segregating the moment class from the shear class. This scenario introduces the concept of

a linear decision boundary. However, in most relations, the same technique would not separate

the classes, hinting at a nonlinear relationship between features and classes. Simply put, the data

does not allow for linear separation within the given feature space, as depicted in the figure

below.

Figure 24: Linear and Nonlinear boundaries [82]

The algorithms chosen for this task, as explained in Chapter 2.2.2 and 2.2.4, are adept at managing

the dataset's inherent nonlinearity.

61

The diagonal plots display the histograms of individual features, demonstrating each feature's

distribution across the dataset. As seen in Figure 23, the shear and deflection classes largely

coincide with the moment class. This overlapping indicates that data points for shear and

deflection classes are not readily distinguishable from the moment class based on the available

features. This situation could lead to increased model complexity to accommodate for the difficult

separation of classes, and more ambiguous decision boundaries. To mitigate this challenge, we

will adjust the scoring method to accommodate the imbalance, use performance metrics such as

the F1-score, implement deep learning with a neural network, and finally apply undersampling

techniques to counter the imbalance and overlap within the dataset.

Notably, we expect MLP to deliver superior performance given its track record of success in

diverse classification tasks, especially when substantial amounts of training data are available [1].

The robustness of MLPs in managing complex nonlinear relationships, as explained in Chapter

2.2.4, is anticipated to effectively tackle the issues of class overlap and class distinction present

in the dataset. Conversely, the kNN algorithm, detailed in Chapter 2.2.2.2, may be least suited for

this task due to its sensitivity to noisy data, outliers, and high computational burden when dealing

with large datasets. Furthermore, it could potentially falter when handling the high

dimensionality of the data and the overlap of classes.

Lastly, we will prepare our features differently based on the requirements of each specific ML

algorithm. For the kNN algorithm we will normalize the features. Normalization scales the

features to fall within a range of [0,1]. This also ensures that all features contribute equally to the

distances computed by the kNN algorithm, preventing features with larger magnitudes from

dominating, as detailed in Chapter 2.2.2.2.

On the other hand, for the DT algorithm, we will not apply any scaling to the features. This is

because DTs are not sensitive to the scale of input features. They make splits based on conditions,

not distances, and thus are unaffected by the scale of the features. This property allows us to

interpret the feature importance more intuitively when using DTs.

When it comes to the MLP, we will standardize the features. Standardization transforms the

features to have a mean of 0 and a standard deviation of 1. This ensures that all features

contribute on a similar scale, which is important for the gradient descent algorithm utilized by

MLP for learning the optimal weights. Features with larger scales can result in longer training

times and potentially prevent the model from learning effectively. Furthermore, standardization

might be preferred in many cases, especially when using activation functions that assume input

62

values centered around 0, such as sigmoid or tanh. These activation functions are optimized for

inputs in this range, which can substantially enhance the learning process and the model's overall

performance.

5.2. Hyperparameter tuning

For the grid and random search, we selected f1_macro as the scoring criterion, which specifies the

metric that will be used to evaluate the performance of the model for each combination of

parameters. This enables us to care for the performance on all three classes equally. The reason

for not choosing accuracy as the scoring criterion is due to the overweight of the moment class in

our dataset. The optimal parameters chosen in that case would favorize the majority class as

predicting it correctly would still give a high accuracy score.

5.2.1. DT

Our grid search identified the optimal hyperparameters for the DT classifier as follows:

• Criterion: entropy

• Max Depth: 6

• Max Features: sqrt

• Min Samples Leaf: 3

• Min Samples Split: 1

Given our specific task of classifying the anticipated failure mode in RC structures with a dataset

consisting of 5 features, 1 target variable, and a sample size in the thousands, the chosen

hyperparameters for the DT make a lot of sense.

The selection of entropy as the splitting criterion is well-aligned with our multiclass problem. As

an effective measure of impurity in the input set, entropy can effectively distinguish between our

three classes. This selection also corresponds with observations made during our data

preprocessing stage (Chapter 5.1), which highlighted a nonlinear relationship between the

features and classes. The entropy criterion is capable of handling such nonlinearity. Opting for

entropy over the gini may also serve to confirm that the increased complexity of entropy makes it

better suited for handling imbalanced datasets, as discussed in Chapter 2.2.2.1.

63

With a relatively small number of features, sqrt and log2 would result in considering roughly

similar numbers of features at each split, so the difference might not be substantial. In any case,

defining max features will help mitigate overfitting, a major disadvantage of DTs.

Minimum samples per leaf are chosen as 3. This restriction prevents the model from making

decisions based on individual instances, thereby avoiding overfitting and aiding in the generation

of smoother predictions. However, setting minimum samples required to split an internal node

to 1 may potentially lead to overfitting as each sample could become a split point. This is a point

of caution as it could lead to high variance, a drawback of DTs. The complexity between the

features, as discussed in the preprocessing stage, may have forced the value down. Yet, given the

large sample size, the impact can most likely be mitigated.

The model's max depth is set to 6. Given our 5 features, this depth is adequate for capturing

interactions without leading to an overly complex or overfit model. The decision is in line with

the considerations discussed for avoiding overfitting (Chapter 2.2.2.1).

To further strengthen our assurance of avoiding overfitting, we compared the training and test

accuracy at different depths. In this case, we can observe an increase in accuracy on the training

dataset up to a point with a tree depth of around 9 to 10 levels where the tree perfectly fits the

dataset. The comparison of the training and test scores in Figure 25 reveals that, up to a tree depth

of 6, the accuracy on the test set improves with each depth increase, after which it starts to

worsen. This is something we would expect to see in an overfitting pattern and aligns with the

expectations discussed in the max_depth parameter of Chapter 2.2.2.1. We would therefore

choose a depth of 6 where the best performance, with an accuracy of 0.89, was achieved.

Figure 25: Plot of the learning curves over max depth

64

5.2.2. kNN

The grid search algorithm identified the following as the optimal hyperparameters for the kNN

classifier:

• Algorithm: auto

• Number of Neighbors (k): 15

• Power parameter for the Minkowski metric (p): 1

• Weights: distance

Considering the findings from the grid search, the chosen hyperparameters align well with the

dataset at hand, given the specific characteristics of the kNN algorithm. The auto algorithm

enables the model to adapt to the training data's structure and select the most effective method

for finding nearest neighbors. As revealed upon accessing the chosen algorithm (as explained in

2.2.2.2), the kd_tree was selected for our specific dataset. The kd_tree algorithm, as previously

explained, is generally more efficient than the brute method when dealing with larger datasets.

Conversely, the ball_tree method is known to not perform as well with low-dimensional data like

ours. Therefore, it is reasonable that kd_tree was chosen as the preferred method for this specific

case.

The Minkowski distance metric with a power parameter of 1, equivalent to Manhattan distance,

proves beneficial in handling varied feature scales in our data. As the model aims to predict failure

modes in RC beams, such versatility helps accommodate the wide range of cross section

specifications present in the dataset.

The weight parameter has been set to distance, implying that nearer neighbors contribute more

heavily to the prediction of a new instance. Given our task's multiclass nature and apparent class

imbalance, this strategy amplifies the influence of minority classes in the vicinity of the new

instance, potentially boosting our model's performance on these underrepresented failure

modes.

However, the number of nearest neighbors set to 15 raises some questions given its relatively

high value. A larger k can smooth out the decision boundary, reducing the risk of overfitting.

Nevertheless, it may also oversimplify the model and reduce the precision of predictions,

especially in complex or noisy datasets. Since our data does exhibit some degree of noise and class

overlap, as evidenced by the scatterplot analysis, the choice of k warrants further investigation.

65

In order to make a more informed decision on the optimal k-value, we will use the elbow method,

which involves plotting the misclassification error against different values of k and visually

identifying the “elbow”. This point corresponds to the optimal k-value where the misclassification

error is minimized.

Figure 26: Plot of misclassification error over k

As seen in the figure above, the best parameter for k coincides with the one found by GridsearchCV

and is 15, with the lowest misclassification error of 0.106. As the k increases or decreases, the

misclassification error has a slight increase. Therefore, the optimal value in this case for k is

indeed 15. As explained in Chapter 2.2.2.2 we also do avoid ties as the selected k is an odd number.

5.2.3. MLP

For the MLP classifier, due to the extensive number of parameters and vast search space, a

random search approach was employed to identify the optimal hyperparameters. The results are

as follows:

• First layer (Input): 200 neurons with tanh activation function

• Second layer: 100 neurons with tanh activation function

• Third layer: (Output): 3 neurons with softmax activation function

In addition, the following settings were applied:

• Optimizer: lbfgs

• Learning rate: 0.001.

66

• Loss function: log_loss

• Training Configuration: The model was trained for 300 epochs with a batch size of 256.

• Alpha = 0.1

Some things to note: For multi-class classification tasks, the MLP classifier automatically uses the

softmax function as the output activation. It also uses log-loss (or cross-entropy loss) as the loss

function when the output activation is softmax. Lastly, the MLPClassifier implements L2

regularization, which is controlled by the hyperparameter alpha. This introduces a penalty on the

size of the weights in the network, encouraging the model to keep them small. This can help

prevent overfitting by adding a cost to the loss function for complexity, making the model simpler

and more robust to noise in the training data. These behaviors are hard-coded and cannot be

directly changed, but they follow best practices for the given task.

The chosen hyperparameters for the MLP are consistent with the requirements of our task and

dataset. Its architecture, with three layers (first layer with 200 neurons, second layer with 100

neurons, and third layer with 3 neurons), is a considerable number given we have only 5 input

features, enabling the network to effectively learn and capture any complex, nonlinear

relationships. The tanh activation function in the input and hidden layers enables the MLP to

model nonlinearities while ensuring a zero-centered output. The output layer uses the softmax

function, a suitable choice given our three-class classification problem, as it can provide class

probabilities. The optimizer, lbfgs, is a good choice for our small dataset, allowing for a quick

convergence in a single batch due to its memory limitations.

The reason for referring to the dataset as small in this context, as opposed to when using the kNN

algorithm above, is because the size consideration of the dataset depends on the specific

algorithm in question. When we talk about a "small" dataset in the context of the MLP model and

the lbfgs optimizer, it is relative to the typical dataset sizes that deep learning models are often

trained on, which can range from thousands to millions of examples.

The learning rate of 0.001 was set, ensuring a balance between stable training and convergence

speed. The log_loss function is appropriate for our multiclass classification task. The MLP's

training configuration of 300 epochs and a batch size of 256 ensures multiple passes over the

dataset, allowing for a more robust model. Lastly, an alpha of 0.1 is chosen to prevent overfitting

by adding a penalty to the loss function.

67

However, further tests on the number of epochs and learning rates might be beneficial. It is

possible that different epoch numbers might yield better results due to the potential overfitting

or underfitting of our current setup. Similarly, the learning rate affects how quickly or how well

our model can find a solution. By conducting further tests on learning rates, we may find a value

that allows our model to learn and generalize better from our data.

We see by studying the loss curves in Figure 28 that we do reach convergence, without actually

overfitting, which typically will look like displayed in Figure 27. What this means is that we try to

make sure that we do not reduce the training error at the expense of the test error.

Figure 27: Signs of overfitting [83]

Figure 28: Training and Validation Metrics over Epochs

68

In our case, we observe quite a long plateau on both the validation accuracy and validation loss,

and can therefore stop early, since we effectively gain no more improvements after approximately

300 epochs. We do also see that the loss continues to decrease as the validation loss stays the

same, which leads to an increase in the gap between the losses and a potentially higher risk of

overfitting after 300 epochs. The plots suggest that the number of hidden layers and neurons

selected are effective, as the graphs exhibit a satisfactory rate of increase and decrease, plateau

appropriately after a sufficient number of epochs, and display minimal oscillation.

The learning rate parameter is one of the keys to building an optimal NN [84], and can be studied

in detail by plotting the training or test score for different learning rates as done in the figure

below.

Figure 29: Impact of Learning Rates on Accuracy over Epochs

During training, it is evident that a learning rate of 1.0 is not optimal. If we lower the learning rate

to 0.01, the score increases from 0.6 to 0.94, but the problem with this learning rate is that as the

epochs increase it becomes almost constant. The choice falls between the learning rate of 0.1 and

0.001, with the latter covering more data points, thus taking more time to achieve the results

compared to the first one [84]. After trying both, we found that the learning rate of 0.1 gives the

best performance and corresponds with the rate found by the random search. We found similar

patterns on the validation set.

69

5.3. Results

This chapter presents the outcomes of Task 1, which was centered around predicting the

anticipated failure mode in the dataset. The goal of this task was to employ various ML techniques

to accurately categorize each section according to its corresponding anticipated failure mode. The

results provide an in-depth examination of the predictive power and accuracy of these models for

this task.

5.3.1. Classification reports

In this section, we present the classification reports for each of our models. These reports focus

on essential evaluation metrics, namely precision, recall, and F1-score, which are explained in

detail in Chapter 2.4.1. Additionally, we analyze the macro-averaged and weighted-average

scores, also discussed in Chapter 2.4.1. Support indicates the number of instances available for

each class in the test set, offering insights into the sample size and significance of the results. The

color spectrum provides a quick visual indication of model performance, with dark red signaling

high performance and pale yellow indicating low performance.

Table 3: KNeighborsClassifier Classification Report

 Precision Recall F1-score Support

Moment 0.89 0.96 0.92 926

Deflection 0.80 0.65 0.72 130

Shear 0.95 0.81 0.87 345

Accuracy 0.89 1401

Macro avg 0.88 0.81 0.84 1401

Weighted avg 0.89 0.89 0.89 1401

70

Table 4: DecisionTreeClassifier Classification Report

 Precision Recall F1-score Support

Moment 0.88 0.90 0.89 926

Deflection 0.76 0.72 0.74 130

Shear 0.81 0.78 0.79 345

Accuracy 0.85 1401

Macro avg 0.82 0.80 0.81 1401

Weighted avg 0.85 0.85 0.85 1401

Table 5: MLPClassifier Classification Report

 Precision Recall F1-score Support

Moment 0.95 0.98 0.96 926

Deflection 0.92 0.88 0.90 130

Shear 0.97 0.91 0.94 345

Accuracy 0.95 1401

Macro avg 0.95 0.92 0.94 1401

Weighted avg 0.95 0.95 0.95 1401

5.3.2. Confusion matrices

In line with the explanations provided in Chapter 2.4.1, we present the confusion matrices for

each ML model. These matrices provide a detailed breakdown of the model's classification

performance, enabling a closer examination of the predicted and actual class labels. The same

color spectrum is used here as in the classification reports, although dark red now represents

1000 instances, while pale yellow represents 1 instance.

71

Table 6: KNeighborsClassifier Confusion Matrix

True

class

Moment 889 21 16

Deflection 45 85 0

Shear 66 0 279

 Moment Deflection Shear

 Predicted classes

Table 7: DecisionTreeClassifier Confusion Matrix

True

class

Moment 833 27 66

Deflection 28 102 0

Shear 43 0 302

 Moment Deflection Shear

 Predicted classes

Table 8: MLPClassifier Confusion Matrix

True

class

Moment 905 10 11

Deflection 15 115 0

Shear 30 0 315

 Moment Deflection Shear

 Predicted classes

5.3.3. Decision boundaries

Visualizing decision boundaries helps us understand how classifiers distinguish between classes

in a feature space, revealing their complexity and decision-making strategies. However, it

becomes challenging when the number of features exceeds two, limiting visual representation.

To address this, we reduced the dataset's dimensionality by fitting the classifier to a single pair

of features at a time. We focus our analysis on two specific pairs: shear reinforcement over the

length (upper row, Figure 30), and length over the height (lower row, Figure 30).

72

It is important to note that optimal parameters found in Chapter 5.2 for the full dataset, may not

be suitable for the reduced dataset. Additionally, visualizing decision boundaries for feature pairs

does not fully capture the model's complexity on the entire test set, as other features contribute

to improved performance.

a) b) c)

Figure 30: Decision boundaries for two pairs of features for a)kNN; b)MLP; c)DT

5.4. Results after balancing with under-sampling

For the implementation of the RandomUnderSampler (RUS) we used our own sampling strategies,

which allowed us to tailor the under-sampling process to the specific characteristics of our

dataset. By using a more targeted approach, we were able to preserve important instances in the

majority class while still balancing the class distribution. This resulted in an increase in overall

performance compared to using the default sampling strategies provided by scikit-learn. We

experimented with different sampling strategies for each model through trial and error, refining

the optimal hyperparameters after each alteration. By doing so, we were able to achieve better

performance and generalize better to new and unseen data. The specific sampling strategies used

on the training set for each model are listed below:

73

Table 9: Sampling strategies for RUS

Model Sampling strategy (instances)

 Moment Deflection Shear

kNN 250 67 153

DT 140 67 100

MLP 100 67 110

5.4.1. Confusion Matrices

In this section we present the updated confusion matrices, which showcase the results of applying

RUS to the dataset. By examining these matrices, we can easily observe any changes in the models'

ability to accurately predict class labels, and gain a clear understanding of the impact of RUS on

their performance.

Table 10: KNeighborsClassifier Confusion Matrix after RUS

True

class

Moment 849 30 47

Deflection 25 104 1

Shear 34 0 311

 Moment Deflection Shear

 Predicted classes

 Table 11: DecisionTreeClassifier Confusion Matrix after RUS

True

class

Moment 833 27 66

Deflection 28 102 0

Shear 43 0 302

 Moment Deflection Shear

 Predicted classes

74

 Table 12: MLPClassifier Confusion Matrix after RUS

True

class

Moment 825 39 62

Deflection 4 126 0

Shear 14 0 331

 Moment Deflection Shear

 Predicted classes

5.5. Discussions

In Task 1, we first examined the performance of KNeighborsClassifier, DecisionTreeClassifier, and

MLPClassifier on an imbalanced dataset for predicting the anticipated failure mode in RC beams.

Given the risk of model bias towards the moment class as the majority class with 380 training

instances, compared to deflection class with 67 instances and shear class with 153 instances, we

used strategies to mitigate this imbalance. Utilizing the macro average f1-score as the metric for

hyperparameter tuning proved effective in enhancing model performance across all classes, as

showcased by the promising results in Chapter 5.3. This, coupled with metrics such as individual

class f1-scores and confusion matrices, provided a well-rounded assessment of the classifiers'

performance.

The classification reports reveal that among the three models evaluated, the MLP classifier

outperforms the rest with the highest macro average f1-score of 0.94. This confirms our

assumptions about the robustness of MLPs expressed in the preprocessing stage and is consistent

with the theoretical advantages of MLPs. Their ability to model complex nonlinear relationships

through their nonlinear activation functions, makes them suitable for complex datasets, reflecting

their superior performance in balancing precision and recall across all classes, even in the

presence of an imbalanced dataset.

The kNN classifier follows with a score of 0.84, and the DT classifier trails with a score of 0.81.

This finding is somewhat surprising since we expected the kNN classifier to perform worse

overall due to its sensitivity to inconsistencies and class overlap.

Despite the kNN classifier performing better overall than the DT classifier, the DT shows a higher

f1-score for the deflection class, suggesting a more balanced precision-recall performance for this

75

specific class. A closer examination of the confusion matrices of the DT and kNN classifiers does

indeed uncover a larger number of deflection class misclassifications in the kNN model as

opposed to the DT (45 vs. 28). This highlights the need to consider multiple evaluation metrics

when assessing classifiers, as each offers a unique perspective on performance. The kNN

classifier, despite a higher misclassification rate for the deflection class, outperforms the DT

classifier on the shear and moment classes, making it overall perform better in terms of

classifying across all classes, and is more effective in predicting the anticipated failure mode in

the dataset.

However, it is important to note that the performance of the two algorithms may vary depending

on the dataset. Because their performance is quite similar, it is difficult to conclusively determine

which of them will perform better on new unseen data. We can, however, draw some conclusions

on the algorithm’s performance by looking at their decision boundaries.

The MLP classifier stands out in its ability to decipher complex, nonlinear decision boundaries, as

reflected in the smooth boundaries we observe in Figure 30b. This is a testament to its ability to

leverage the tanh activation function that introduces nonlinearity into the learning process.

Crucially, its capacity to discern class instances intermingled within clusters of another class

showcases its superior skill in unravelling intricate feature relationships, outperforming both the

kNN and DT classifiers.

Contrastingly, the kNN classifier's decision boundaries (Figure 30a), while smooth, closely follow

the data's local structure. This highlights the algorithm's reliance on proximate training instances

for new sample classification, as mentioned in the disadvantages of the kNN classifier. This

becomes a challenge when handling deflection class instances that are scattered among other

classes, especially in moment, as they do have some structural similarities. In response, the

algorithm classifies them as moment, thereby boosting its performance for that class. However,

this compensation leads to more misclassifications of the scattered minority class.

On the other hand, the DT classifier takes a different approach by partitioning the feature space

into regions to build a global model. Each decision (i.e., each node) in the tree corresponds to a

binary decision based on a single feature, resulting in an "axis-aligned" decision boundary that

aligns with the axes of the feature space.

However, this axis-aligned nature of decision boundaries in the DT model may restrict its ability

to identify complex nonlinear relationships compared to the kNN and MLP [12]. In cases where

76

the relationship between features and labels is not well-represented by a series of "if-then"

decisions along the feature axes, a DT may struggle to accurately model that relationship. While

this partitioning technique can handle scattered instances within the deflection class, it falls short

in decoding the complex, nonlinear relationships of this set. This explains why kNN outperforms

DT in classifying shear and moment classes, being able to distinguish these two classes more

effectively.

Drawing from the data processing findings in Chapter 5.1, it is noteworthy to revisit the interplay

between different features and their respective bearing on failure modes. The scatterplot

observations suggest that width and shear reinforcement combinations lead to class mixing,

indicating a weak or indirect correlation between these two features and the failure modes when

paired with most other features.

When looking at the significance of these features in terms of structural mechanics, we notice that

height has a direct proportionality to the shear capacity of a beam. Conversely, shear

reinforcement and width each contribute to a separate aspect of the shear capacity – the shear

reinforcement capacity and the concrete shear capacity, respectively. This further complicates

the interpretation of the role of shear reinforcement and width in determining the shear capacity,

as their relative contributions can vary depending on the specific conditions and characteristics

of the beam.

The moment capacity, on the other hand, directly correlates with width and the square of effective

depth. As a result, the effective depth has an exponential impact on moment capacity, whereas

width affects it linearly. The shear reinforcement does not influence the moment capacity at all.

In the case of deflection capacity, it is solely dependent on beam length, thereby excluding the

role of width and shear reinforcement. When assessing the acting forces, as seen in Eq. (18) and

(24), beam length emerges as the only contributing factor to both the shear and moment. For

deflection, although both width and effective depth are involved, the latter usually has a more

significant impact due to its cubic relationship in the second moment of area calculation.

Reflecting on this, we find that the role of shear reinforcement is quite limited, contributing solely

to the shear reinforcement capacity. Conversely, width presents a more substantial role, but due

to the complexity of the formulas in which it appears, its contribution may not correlate strongly

with specific failure modes, resulting in class mixing in the scatterplots. Furthermore, it is evident

that other factors such as beam length and height can often dominate the influence of width and

77

shear reinforcement, making it harder to discern clear correlations between these features and

failure modes when other variables are at play.

The MLP classifier's proficiency in discerning complex relationships, as discussed in Chapter

2.2.4, complements the intricate feature correlations observed in the scatterplot analysis

exceptionally well. Its ability to classify instances where the correlation between features and

failure modes is weak or indirect, such as the combination of width and shear reinforcement,

contributes to its superior performance.

In contrast, the kNN classifier, which relies heavily on local feature relationships for decision

making, may struggle when such relationships are not straightforward, as is the case for width

and shear reinforcement.

Lastly, the DT classifier's method of partitioning the feature space aligns with the significant

impact of features like beam length and effective depth on different failure modes. Its

performance, while trailing behind MLP and kNN overall, is indicative of its ability to leverage

these clearer relationships. However, the scatterplots underline the existence of complex feature

interactions which might be challenging for DT to capture accurately, hence the lower

performance for shear and moment classes.

The RUS technique was employed to address the class imbalance issue of the dataset. After

applying RUS, the confusion matrices, as seen in Chapter 5.4.1, for all three models showed

notable improvements in classification performance, especially for the deflection and shear

classes. The number of TP for these classes increased, demonstrating that the classifiers were

better equipped to handle the previously underrepresented classes. While the RUS technique

successfully improved the classification performance for deflection and shear classes, the

moment class's performance remained relatively stable or slightly decreased across the models.

However, this trade-off is considered acceptable as the primary goal was to enhance the model's

performance for the underrepresented classes, which was achieved.

The results are as expected, since removing information from the majority class would make it

harder for the models to predict. Another alternative was using oversampling of the minority

class. In our situation however, the class boundaries of the deflection class were not clear, so

applying oversampling might have been less effective compared to under-sampling the majority

class as done here. The reason for this is that oversampling such as SMOTE, generates synthetic

samples by interpolating between instances of the minority class, and when class boundaries are

78

not well-defined, this interpolation process may generate samples that are very close to or within

the regions of other classes, resulting in further class mixing and potentially poorer classifier

performance.

In the context of this problem, the practical comparison of the three algorithms reveals the

potential of ML as a tool for anticipating capacity failure in an RC beam. DT provided a fast and

easily interpretable model, with the distinct advantage of being able to visualize decision-making

processes as demonstrated in Appendix E. This transparency not only aids in understanding the

model's predictions, but also helps to build trust in the model's outcomes, which is crucial given

the high stakes associated with structural engineering decisions. Visualization aids in

understanding the interrelationships and relative importance of different attributes, thus

enabling a more intuitive grasp of complex engineering scenarios. This can facilitate the

communication to individuals without technical expertise. They also need less data cleaning,

which can make the overall process of anticipating failure modes more time efficient.

However, an observed instability in the model performance scores when running it multiple

times, even with the same fixed random seed, raises concerns regarding its consistent application.

This could be due to one of the key disadvantages of the DT in which small variations can produce

drastically different trees. This inconsistency can be problematic in structural engineering, as we

do rely heavily on accuracy and predictability to ensure safety and functionality. In addition, the

DT model's instability might make it more challenging to explain and justify decisions to

stakeholders.

Therefore, while the interpretability and visual decision-making process of DT are advantages in

the structural engineering context, its inconsistency in performance could hinder its wider

acceptance and application. Careful considerations and supplementary stability-enhancing

methods like the ones mentioned in the drawbacks of the DT model in Chapter 2.2.2.1, will be

required to address this issue.

The kNN classifier demonstrated considerable potential. Its relatively high score in our multiclass

problem, coupled with the intuitive simplicity of its implementation and minimum need for

hyperparameter tuning, makes it a strong contender for certain applications within this field. It

could, for example, provide a quick and efficient method for preliminary estimations, or serve as

an accessible entry point for professionals looking to integrate ML methods into their work.

79

However, despite its simplicity and high performance, the kNN classifier has a number of

limitations that may reduce its suitability for some structural engineering applications. The local

nature of the classifier's decision-making process can make it less effective in scenarios where

relationships between features and outcomes are complex, nonlinear, or otherwise not easily

captured by proximity alone. This was evident in the way the kNN classifier handled instances

from the deflection class that were scattered among instances from other classes, especially

moment. Additionally, the varying scales and units of features necessitate careful normalization,

adding complexity to kNN's implementation. Performance can also degrade with high-

dimensional data, common in this field, due to the "curse of dimensionality" and data sparsity.

Additionally, kNN's reliance on a training instance dataset might lead to high computational costs,

especially with large datasets typical in structural engineering, potentially making it impractical

in these situations.

While the MLP classifier necessitated greater and more complex hyperparameter tuning, its

robust performance substantiated its reputation as a versatile tool adept at handling complex

data patterns. This robustness makes it suitable for structural engineering, even when dealing

with complex datasets and intricate feature relationships, as it can effectively balance precision

and recall across all classes. However, its "black-box" nature could pose interpretability and

explanatory challenges, particularly for non-experts.

80

6. Task 2: Predicting capacities
In this section, our objective is to evaluate the performance of various ML algorithms in predicting

the moment capacity, shear capacity, and load capacity for a simply supported RC beam using

unseen data on its properties. This task is framed as a regression problem, as it involves

predicting continuous variables, i.e., the capacity values. The goal of the ML model is to map the

properties of the beam (input features) to the respective capacities (target variables).

This problem is suited for supervised learning, given that the dataset is labeled, comprising the

properties of an RC beam and the corresponding capacities. The evaluation metrics being used

are explained in Chapter 2.4.2.

6.1. Data preprocessing

The quality of datasets directly influences the performance of the algorithms, making their

assessment a critical aspect of this thesis. If the datasets are found to be lacking, appropriate

measures must be taken to resolve this.

For the first and second subtasks of Task 2, where the moment and shear capacity serve as the

dependent variables, the datasets seem to be well-suited. Despite the broad range of values in the

dataset, the data exhibits logical relationships that align with our understanding of structural

mechanics, which is crucial for the validity of our analysis. For instance, we observe that cross

sections with larger heights and greater amounts of longitudinal reinforcement tend to have

higher moment capacity. This relationship is consistent with the principles of structural

engineering, where larger cross-sectional areas and increased reinforcement contribute to higher

load-bearing capacity. Moreover, the datasets do not contain any apparent anomalies that would

suggest data entry errors or other issues.

In the third subtask, where the load capacity is predicted, the dataset presents a challenge due to

the presence of instances where the self-weight of the beam is enough to exceed its load capacity.

In these cases, the external load is effectively zero. This can pose a challenge for the MLR

algorithm, as it assumes a linear relationship between the independent and dependent variables.

When the live load is zero, this relationship may not hold, leading to inaccurate predictions.

On the other hand, SVR is more flexible and can handle nonlinear relationships better. SVR uses

a technique called the kernel trick, explained in Chapter 2.2.3.2, that allows it to fit a linear

81

regression into a transformed space, making it more robust and capable at modeling complex,

nonlinear relationships.

Zero values in the dataset can also pose other challenges for both models. These issues arise due

to the sparse nature of the data, skewed distribution, scaling issues, and potential impact on

model interpretability. However, we expect SVR to handle these issues better than MLR due to its

ability mentioned above and its robustness to outliers, as presented in 2.2.3.2.

Addressing this issue is not straightforward. One potential solution could be to remove entries

with a load value of 0, but this approach could introduce bias to the dataset. Specifically, it would

exclude cross sections that fail solely due to their self-weight, which are valid and important

scenarios in the context of structural engineering. These instances represent real-world

situations where a structure fails under its own weight without any additional load, and excluding

them from the dataset would limit the model's ability to accurately predict these cases. An

alternative approach to address this issue could be to transform the problem into a binary

classification task, where 0 signifies that the beam is incapable of supporting a given load, and 1

indicates that it can. This could potentially be expanded to include multiple load levels.

Despite the potential challenges that this dataset weakness could pose, it has been decided to

maintain the current state of the data. The primary reason for this decision is the realistic

representation of the cross sections.

6.1.1. Feature correlation

To gain a deeper understanding of how each feature in the datasets influences the outcome, we

have developed plots that illustrate the relationship between each independent and dependent

variable across the entire dataset. These plots are crucial for identifying trends, assessing

linearity, and determining the significance of each independent variable. It is important to note

that these plots are based on the actual dependent variables, not the predicted ones. Therefore,

the relationships depicted are entirely accurate, making these plots an important analytical tool

for data analysis.

82

Figure 31: Relationship between the independent variables and the moment capacity

Figure 32: Relationship between the independent variables and the shear capacity

Figure 33: Relationship between the independent variables and the load capacity

Upon examining the influence of independent variables on moment capacity in Figure 31, it

becomes evident that the amount of longitudinal reinforcement and height exhibit a nearly

perfect linear relationship with moment capacity. Conversely, the width demonstrates a

somewhat nonlinear behavior, while the length and shear reinforcement amount seem to have

negligible impact.

83

In Figure 32, which explores the effect of independent variables on shear capacity, the shear

reinforcement amount and height display the anticipated linear relationship. However, the width

and amount of longitudinal reinforcement exhibit nonlinear behavior.

Figure 33 clearly illustrates the relationship between independent variables and load capacity.

The length demonstrates a strong relationship with a decreasing trend, while the longitudinal

reinforcement amount and width display a pronounced nonlinear behavior with increasing

values. Interestingly, the shear reinforcement seems to maintain a weak linear relationship with

load capacity, while the height exhibits a slight stronger linear relationship.

The above assertions are further substantiated by examining the correlation matrix for the

independent variables and moment capacity, as depicted in Figure 34. In this matrix, 1 and -1

represent perfect linear and inverse linear correlation, respectively. The height and amount of

longitudinal reinforcement show strong positive correlations with moment capacity, with

correlation values of 0.77 and 0.61 respectively, although there may be some nonlinearities as

the values are not exactly 1. The length and shear reinforcement, with values close to 0, suggests

negligible impact on the moment capacity. Despite contributing less than height and longitudinal

reinforcement, the width still demonstrates a certain degree of influence on the moment capacity.

Figure 34: Correlation matrix for the independent variables and the moment capacity

When analyzing the correlation matrix for prediction of the shear capacity (Figure 35), it is clear

that height has a strong linear behavior towards the dependent variable, with a score of 0.8.

Surprisingly, the shear reinforcement only gets a score of 0.38, which is lower than first

84

anticipated when looking at the relation between the independent variables and the outcome in

Figure 32. Similar to the prediction of moment capacity, the width also exhibits a modest linear

correlation of 0.32 when predicting shear capacity.

Figure 35: Correlation matrix for the independent variables and the shear capacity

Examining the correlation matrix for the independent variables and load capacities (Figure 36),

the results range from 0.16 to 0.30, with the exception of length, which presents a value of -0.6.

This suggests that length exhibits a degree of inverse linear behavior, while the other variables

predominantly demonstrate nonlinear behavior. Notably, the height, with a value of 0.3, appears

to exhibit modest linear behavior.

Figure 36: Correlation matrix for the independent variables and the load capacity

85

Another important observation from examining the correlation matrices is the absence of strong

correlations between the independent variables in any of the datasets. This characteristic aligns

well with the MLR, which, as discussed in 2.2.3.1, inherently assumes minimal correlation

between independent variables.

Lastly, as explained in Chapter 2.2.3.2, SVR is distance-based and uses a kernel function, which is

sensitive to the range of the input data. Therefore, we are going to standardize the features when

using the algorithm. Although MLR theoretically does not need feature scaling, it is generally

advisable to perform it in regression analysis.

6.2. Hyperparameter tuning

In Task 2, we carefully adjusted the hyperparameters of our predictive models, utilizing

RandomSearchCV for a comprehensive search.

The model predicting moment capacity was optimally tuned with the following parameters:

• Kernel type: Radial basis function (rbf)

• Gamma: 0.1

• Epsilon: 0.01

• Regularization parameter (C): 200

For shear capacity prediction, RandomSearchCV determined the following hyperparameters as

optimal:

• Kernel type: Radial basis function (rbf)

• Gamma: 0.1

• Epsilon: 0.01

• Regularization parameter (C): 600

Finally, in terms of load capacity prediction, the model demonstrated its best performance with

these parameters:

• Kernel type: Radial basis function (rbf)

• Gamma: scale

• Epsilon: 0.01

• Regularization parameter (C): 800

86

The chosen hyperparameters for each model, as tuned through random search, are well-suited

for this task for a number of reasons. In all models, the rbf kernel was selected. As we discussed

in Chapter 2.2.3.2, the rbf kernel allows for complex, nonlinear decision boundaries, making it

well-suited for our task given some of the complex relationships we have observed in the data.

Additionally, the chosen values for the 𝛾 parameter, which controls the "reach" of each training

instance in the rbf kernel, indicate a balance between bias and variance. In the cases of moment

and shear capacity prediction, a 𝛾 of 0.1 was chosen. This suggests that the models benefit from a

moderate level of complexity, which aligns with our understanding of these structural mechanics

phenomena. However, in the case of load capacity prediction, the 𝛾 was set to scale, adjusting its

value based on the variability of the dataset. This could be an indication of a more intricate

nonlinear relationship between features and the target variable, potentially reinforcing our

suspicions of some of the challenges attached to predicting the load capacity discussed in the

preprocessing stage.

The 𝜀 parameter, set to 0.01 in all cases, denotes a narrow margin of tolerance for errors,

suggesting a high level of precision is necessary in our capacity predictions.

The regularization parameter C, which controls the trade-off between achieving a low training

error and a low testing error, was set differently for each task. This indicates that the balance

between model complexity and generalization varies across the tasks, possibly reflecting the

different degrees of complexity in the relationships that these models are trying to capture.

Looking at the selected values for C on a general basis, it can be inferred that these values are

relatively high. This suggests that the models for these tasks are complex and fit the training data

quite closely. It is therefore important to further assess the potential for overfitting.

To do so, we plot the learning curves for each model. These curves are particularly important in

SVR algorithms as they provide insights into how well the model is learning and generalizing to

unseen data. A typical learning curve for the SVR with a rbf kernel shows that the training score

remains high regardless of the training set's size, while the test score increases with the size of

the training dataset, eventually plateauing. This plateau indicates that adding more training data

may not significantly improve the model's generalization performance [85].

87

a) b) c)

Figure 37: Learning curves for a) Moment capacity, b) Shear capacity, c) Load capacity

In our models, the moment capacity prediction plateaus, while both shear and load capacity

continue to rise. This suggests that we could potentially improve the shear and load capacity

models' performance by increasing the number of samples. Regarding the proximity of the cross-

validation score to the training score, the 𝑀𝑅𝑑 ends nearly at the same point, while there is a slight

gap for 𝑉𝑅𝑑 and a larger one for load. This gap, however, does not compromise the models'

performance as the cross-validation scores continue to increase while the training scores remain

relatively constant. Thus, our models demonstrate a good balance between bias and variance,

effectively handling both underfitting and overfitting scenarios.

6.3. Results

This chapter presents the findings of Task 2, focused on predicting moment capacity, shear

capacity, and load capacity using MLR and SVR models. Each capacity prediction will be evaluated

using tables that feature the metrics MSE, MAE, and R-squared, which are described in detail in

Chapter 2.4.2. Alongside, plots will be provided that illustrate the predicted versus actual values

for both models. Furthermore, residual plots for each model will be depicted to assess the

accuracy and consistency of the predictions. This comprehensive analysis aims to showcase the

potential of these regression models in accurately predicting the capacities of RC rectangular

beams.

6.3.1. Moment capacity prediction

In this section, we will present the results derived from the prediction of the moment capacity,

alongside an evaluation of the performance of the regression models used in this task.

88

Table 13: Values of different measurements of the model’s accuracy in predicting moment capacity

 MLR SVR

Mean squared error (MSE) 53731.24 244.15

Mean absolute error (MAE) 172.72 10.56

R-squared 0.87 0.99

Figure 38: Illustration of the actual values and the predicted moment capacities for both the MLR and the

SVR model

Figure 39: Residual plots for the moment capacity predictions for the MLR model

89

Figure 40: Residual plots for the moment capacity predictions for the SVR model

6.3.2. Shear capacity prediction

This section will present the results from the shear capacity predictions, along with an analysis

of the performance of the regression models.

Table 14: Values of different measurements of the model’s accuracy in predicting shear capacity

Metric MLR SVR

Mean squared error (MSE) 39514.95 6391.16

Mean absolute error (MAE) 153.34 36.46

R-squared 0.88 0.97

Figure 41: Ilustration of the actual values and the predicted shear capacities for both the MLR and the SVR

model

90

Figure 42: Residual plots for the shear capacity predictions for the MLR model

Figure 43: Residual plots for the shear capacity predictions for the SVR model

6.3.3. Load capacity

This section will present the results from the load capacity predictions and the performance of

the regression models.

Table 15: Values of different measurements of the model’s accuracy in predicting moment capacity

Metric MLR SVR

Mean squared error (MSE) 107575.9153 7852.494

Mean absolute error (MAE) 209.73 47.98

R-squared 0.48 0.96

91

Figure 44: Illustration of the actual values and the predicted load capacities for both the MLR and the SVR

model

Figure 45: Residual plots for the load capacity predictions for the MLR model

Figure 46: Residual plots for the load capacity predictions for the SVR model

92

6.4. Discussions

In Task 2, we evaluated the performance of MLR and SVR models for predicting the moment,

shear, and load capacities in RC beams. Regarding the predictions for the moment capacity, there

are some discrepancies in quality between the two models. The SVR model, with an impressive

R-squared score of 99%, outperforms the MLR model with a score of 87%. As random errors are

expected to occur, this high R-squared score suggests that the SVR model has very good predictive

power, able to explain a large proportion of the variance in the moment capacity using the beams

properties. Additionally, despite the MLR model having a much higher MAE value of 173

(indicating larger residuals compared to a value of 11), its R-squared score is still within

acceptable limits.

Given that the MSE squares the residuals, the metric tends to inflate larger errors, leading to high

MSE values as explained in Chapter 2.4.2.1. These values might not intuitively align with the

model performance, particularly when examining the residual plots (Figure 39 and Figure 40),

which show outliers but not of an extremely large scale. Consequently, the MSE is considered a

less desirable metric in this scenario. Despite this, it is notable that the SVR model has a

significantly lower MSE than the MLR model, which suggests better management of larger

discrepancies.

The U-shaped distribution observed in the MLR residual plot reinforces our understanding of

nonlinearity, as discussed in Chapter 6.1, during the preprocessing stage. The inherent linear

assumption in MLR's algorithm restricts its capability to effectively capture and represent these

nonlinear trends between the dependent and independent variables of the dataset. Contrastingly,

the SVR model, a more flexible and adaptable approach, is designed to handle nonlinear

interactions via its kernel function, as explained in Chapter 2.2.3.2. This design proves to be

advantageous in our case, as is reflected in superior R-squared and MAE values when compared

to the MLR model. Further reinforcing our assertion of non-linearity is the correlation matrix

(Figure 34) and the successful application of the rbf kernel, as discovered through our random

search.

The independent variables’ influence on the moment capacity, as showed in Figure 31, can be

used to provide some clarity on the almost linear behavior of variables like height and

longitudinal reinforcement amount. An increase in either of these parameters invariably leads to

a larger capacity.

93

Conversely, explaining the more nonlinear behavior of width presents more of a challenge. One

way is to look at its interactions with other independent variables. For instance, the correlation

between width and longitudinal reinforcement amount is 0.42, and between width and shear

reinforcement is 0.27. However, a more intuitive explanation emerges when we look at formula

(23) in Chapter 4.2, used for calculating moment capacity. Initially, an increase in width

contributes to a larger capacity, reflecting a linear relationship. However, beyond a certain point,

further widening does not enhance capacity. This could be due to the self-weight of the beam

increasing with width, counterbalancing the increased capacity.

The squared d term in the moment capacity formula of Eq. (23) might be why the same

phenomenon is not observed with height. This squaring results in the capacity increasing

significantly more than the self-weight with rising height, explaining the linear relationship

between height and capacity. The correlation matrix also displays this, where the height and the

width have a correlation value of 0.77 and 0.3, respectively, towards the moment capacity.

Regardless of these interactions, it is essential to recognize that calculating moment capacity is

inherently a nonlinear problem. This explains why the SVR consistently outperforms the MLR in

our analyses. It is also important to note that the residual plots for the SVR model during the

calculation of moment capacity paint a rather satisfactory picture. Here, the data points are

mostly randomly scattered along the zero-line, indicative of a well-fitted model, although a few

outliers are present (see Figure 40). We can view this as a healthy model characteristic, showing

that the SVR model can indeed handle the nonlinear aspects of this problem efficiently as

expected.

Analysis of the evaluation metrics for the shear capacity prediction in Chapter 6.3.2 reveals a

similar narrative. The R-squared value of the MLR model in this case is 88%, while the R-squared

value of the SVR model is 97%. Additionally, the MAE is 153 as opposed to 36, which denotes

larger residuals for the MLR model. It is plausible that the prediction of the shear capacity is a less

nonlinear problem than the prediction of the moment capacity, given that the difference in

performance for the two algorithms is smaller here than when predicting moment capacity.

Inspecting the predicted vs. actual graph for both models in Figure 41 reveals the SVR model

adhering more closely to the perfect-prediction line, compared to the MLR model. This

discrepancy becomes more noticeable after 1500 kN, where the MLR model starts to

underpredict values significantly. Upon further examination of the residual plots shown in Figure

42 and Figure 43, the limitations of the MLR model are highlighted. At the same time, the SVR

94

model shows reliable predictions within the 0-600 kN range, encompassing the majority of the

cross sections. Beyond this range, the residuals increase proportionally with the shear capacity,

implying a slight degree of heteroscedasticity.

Heteroskedasticity is a complicated issue that can surface in regression models, particularly when

there is a substantial difference between the smallest and largest values in a dataset [86] - just

like in our case, due to the broad ranges we have set. This condition violates the assumption of

homoscedasticity, or constant variance, a prerequisite for LRs using ordinary least squares. When

the variability of errors is high in certain areas, the model might struggle to provide a good fit.

Despite SVR not assuming homoscedasticity, it may still be influenced by these high-error regions

during the training process. As a result, the model tends to perform more accurately for cross-

sections with lower shear capacities. However, as the capacity increases, the errors may also

grow, leading to heteroskedastic residuals, which can explain the lower performance here

compared to moment capacity prediction.

Despite the high residuals for larger shear capacities, the good R-squared value is likely due to

these extremes pertaining to a small number of cross sections. Therefore, it is sensible to propose

the SVR as a tool because of the model's reliable performance within the 0-600 kN range where

most cross sections are found, but acknowledge it struggles beyond that.

The U-shaped distribution in the MLR residual plot once again indicates the model's failure to

capture the expected nonlinear patterns, as seen in Figure 42. However, this U-shaped trend is

less pronounced than in the moment predictions, which strengthens the assumption that this

problem involves a higher degree of linearity, and could explain why the MLR model performs

marginally better when computing shear capacity as opposed to moment capacity.

In our analysis of feature correlation, we noted a modest linearity in the relationship between

shear reinforcement amounts and beam width towards shear capacity, reflected by the

correlation values of 0.38 and 0.32, respectively. Upon examination, this may be attributed to the

intricate interactions of variables in shear capacity calculation. While shear reinforcement and

width indeed enhance a beam's shear resistance, they do not always linearly increase shear

capacity. This could be due to the presence of other significant variables such as the beam height,

which demonstrates a high correlation of 0.8 and can dilute the effect of other parameters.

Furthermore, the transition between the two mechanisms governing shear capacity (Eq. (25) and

(27)) could contribute to the observed nonlinearity. The lower correlation of the longitudinal

reinforcement (0.28) indicates that its direct impact on shear resistance is less pronounced. This

95

is logical as the primary role of longitudinal reinforcement is to counteract the tensile forces

produced by bending moments in a beam, not necessarily to resist shear forces. Moreover, an

increase in longitudinal reinforcement might lead to a shift in the shear failure mode of the beam,

introducing a more complex interaction. Conversely, length does not directly impact the outcome

as it mainly affects load distribution rather than shear capacity itself.

Predicting load capacity is a complex task that involves taking into account bending moments,

shear forces, deflections, and capacities. This additional layer of complexity makes it more

challenging than predicting shear and moment capacity alone. Furthermore, the task requires

accounting for varying lengths, which were not previously used in calculating moment and shear

capacity.

The MLR model, due to its assumption of linear relationships, shows high-amplitude negative

values that are not present in the dataset, that has a minimum live load of 0. This confirms our

concerns regarding the 0 live load present in the dataset, as discussed in the preprocessing step.

The MLR model attempts to fit a straight line and fails to account for scenarios where the self-

weight of the beam exceeds its load capacity, resulting in negative predictions. There is

considerable variation in the residuals, suggesting that the model tries to accommodate outliers,

leading to a regression line that does not accurately represent the majority of data points. Outliers

can significantly affect the slope and y-intercept of the line, leading to a lower R-squared value.

Figure 45 further demonstrates the inability of the MLR model to capture all nonlinearities, as

evidenced by the formation of a steep U-curve.

On the other hand, the SVR model exhibits a high R-squared value of 96%, indicating accurate

load prediction capability. However, Figure 44 reveals some discrepancies in its predictions.

While the majority of load capacity predictions fall within the range of 0 to 1000 kN (similar to

shear capacity), the SVR model struggles to accurately predict values beyond this range.

Examining the residual plot in Figure 46, it becomes clearer that the SVR model performs well up

to a value of approximately 600 kN, but shows greater deviation and heteroscedasticity for the

same reasons as for shear, beyond that range. Some instances of negative load predictions can be

observed in the SVR model, although not as prevalent as in the MLR model.

The correlation matrix in Figure 36 highlights the significant role of the length feature, showing

an inverse correlation with load capacity. Other independent variables exhibit nonlinear

behavior. The substantial degree of nonlinearity in the problem explains the poor performance

96

of the MLR model and the superior performance of the SVR model, as indicated by the R-squared

values.

Outliers were not specifically addressed in this task, but considering the high precision of the SVR

model, the influence of outliers on the model's performance seems relatively small. This is

consistent with the inherent benefits of SVR models, as discussed in Chapter 2.2.3.2, where they

are noted for their resilience against outliers, also reducing the effects of heteroscedasticity.

To summarize, the SVR model performed admirably in all subtasks of Task 2, achieving an R-

squared value of 96% or higher. However, it should be used cautiously, as its performance may

falter within specific ranges for shear and load capacity, as evidenced by the residual plots and

comparison graphs. On the other hand, the MLR model exhibits reasonable accuracy in predicting

moment and shear capacity but is currently unsuitable for estimating load capacity.

Ultimately, the selection of the algorithm in Task 2 hinged on the nonlinear nature of the problems

at hand, making the SVR model the superior choice overall. Especially when just one of the models

can handle nonlinearities, it is simpler to understand the distinctions between the models than it

was for Task 1.

Given its performance metrics, MLR might serve as a simpler, more interpretable model for initial

insights or for cases where computational resources are limited. However, for complex, non-

linear structural engineering problems like the ones discussed, the SVR model, despite being

harder to interpret due to its complexity and less transparent reports, stands out. Its robust

performance provides a promising tool for predicting moment, shear, and load capacities of RC

beams. This advantage, in context of this task, tends to overshadow its limitations, marking it as

a good choice for predicting capacities of RC beams. However, careful interpretation and

validation of results are crucial, especially for predictions in the higher range of shear and load

capacities.

97

7. Task 3: Cost optimization
This section aims to explore the potential of ML as a tool for minimizing the cost of simply

supported, reinforced ordinary and high-strength concrete T-beams. The cost of construction

materials is predominantly determined by the cross-sectional dimensions of the T-beam, the

formwork, and the unit costs of concrete and steel reinforcement.

Based on the nature of the dataset, our problem can be described as a multivariate regression

problem. We are trying to predict multiple continuous target variables (b, bw, h, d, As, hf, cost)

using a set of input features (fck, fyk, q, g, L, VEd, MEd, delta_lim). As proven in the classification

Task 1, a NN, specifically a MLP, can handle complex, nonlinear relationships between input and

output variables, and is what we will be using for this task. Additionally, it would be interesting

to explore how this NN model handles regression problems. For this task, TensorFlow was

utilized with the API Keras, as it offers more flexibility and user configuration options compared

to scikit-learn when it comes to building and customizing MLP models.

7.1. Data preprocessing

One crucial step in data processing is the identification and management of missing or corrupted

data, formatting inconsistencies, and data errors.

Upon examining the dataset, it becomes evident in Figure 47 that 76 instances were marked as

unsuccessful, which is not surprising given the numerous parameter combinations. The

optimization algorithm failed to find a feasible solution for some sections that satisfy all the

constraints, resulting in an unsuccesfull optimization.

Figure 47: Frequency and value of 𝛼 -parameter and successful optimization convergences

98

Another reason for the algorithm not converging for some sections could be the termination

criteria. The algorithm will stop after 5000 iterations even if a better solution might still be

available. When the tolerances are met, the algorithm will assume that it has converged to a

solution and therefore also stop, leading potentially to premature termination. Lower tolerance

and higher iteration values mean that the algorithm will continue searching for a better solution.

However, it is important to balance the need for accuracy with the need for computational

efficiency, ensuring that the algorithm does not waste too much time searching for a solution

when it already has found one, or when the search for one is unlikely to improve upon further

iterations.

Some sections also although converging, assigned the value 0.0 to 𝛼. This would imply that there

is no concrete in compression, which is not realistic for RC concrete beams under loading. It is

important to note that the 𝛼 value had a lower bound of 0.1 defined. This can happen due to

numerical imprecisions, meaning that rounding errors could lead the algorithm to converge for

an 𝛼 value close to 0 even though the lower bound was set to 0.1. Another reason might be that it

converged to a suboptimal solution that satisfies the termination criteria but not all the

constraints. In this case the algorithm posts success, even though the returning 𝛼 is incorrect or

not optimal.

In addressing the issues above, the decision to remove them from the dataset resulted in a

reduction from 540 to 402 instances. By eliminating instances that do not meet the optimization

or structural criteria, the remaining data becomes more representative of feasible design

solutions. The drawback to this approach is that it may lead to a narrower scope of analysis,

excluding potentially some design scenarios that could have provided some valuable insight to

the ML model’s training.

Lastly, looking at the height of the flange, we see that the optimization algorithm used the lower

bound, which in this case was set to 150 mm in all but one optimized section. One possible

explanation is that the objective function is designed to minimize cost. A smaller flange height

corresponds to reduced material usage and subsequently a lower cost, making it a more attractive

choice for the cost function. Finally, the initial guess which also was set to 150mm, might

inadvertently have biased the optimization process towards this lower bound solution.

99

Figure 48: Frequency and value of ℎ𝑓 -parameter in dataset

The lack of diversity in the feature can result in the MLP being unable to capture meaningful

patterns or relationships between the feature and other features or target variables, leading to

poorer generalization. It will also increase the complexity of the model, without providing any

additional information that may improve the performance. Because of its redundancy, it may be

beneficial in this case to remove it from the input features from a ML or feature selection

perspective. However, in the context of our problem, doing so would remove one of the design

variables.

Lastly, as described in the preprocessing of Task 1, the features of the dataset are standardized to

ensure that all features contribute on a similar scale.

7.1.1. Dealing with outliers

Box plots are a type of chart that visualizes the distribution of numerical data, including quartiles

(or percentiles) and averages, highlighting skewness and dispersion in the data. The five-number

summary displayed by box plots includes the minimum score, lower quartile (Q1), median, upper

quartile (Q3), and maximum score. Additionally, box plots depict the interquartile range (IQR),

which represents the middle 50% of scores. These can be seen in Figure 49a. In our case the box

plots are particularly useful for showing the outliers within our dataset. When reviewing a box

plot, outliers can be identified as data points that lie outside the whiskers of the box plot, as seen

in Figure 49b.

100

a) b)

Figure 49: a)Summary; b)Outliers that are outside of the upper and lower quartiles by 1.5 times the
interquartile range [87]

The boxplots in Figure 50 reveal the presence of outliers in some of the features within the

dataset, especially in 𝑉𝐸𝑑, 𝑀𝐸𝑑 , 𝐴𝑠 and cost. Outliers can negatively impact the performance of a

machine learning model, as the model may attempt to fit these outliers, leading to overly complex

models and overfitting to the training set. Consequently, this results in reduced performance and

weaker generalization capabilities when encountering unseen data. To mitigate this issue, a

viable approach could involve defining an appropriate whisker region and eliminating data points

that fall outside this region. Subsequently, comparing the model's generalizability before and

after the removal of outliers can help assess the effectiveness of this solution.

Figure 50: Box plots showing outliers for the entire dataset

101

It is important to note that since the dataset was built on values that were optimized through a

series of constraints before being passed to the dataset, the outliers are characterized as natural,

meaning they are most likely not artificial (due to error) and removing them would remove

valuable information.

7.1.2. Feature correlation

In the context of regression analysis, it is also important to examine multicollinearity.

Multicollinearity occurs when two or more independent variables are highly correlated, making

it challenging to estimate the individual effects of each variable on the target variable [88]. This

issue can result in inflated standard errors, complicating the interpretation of coefficients and

their significance [89]. Although in the case of nonlinear models, such as NNs, multicollinearity

tends to not be problematic [90], it remains essential to investigate the relationships between

input features to ensure optimal model performance and interpretability.

To identify the presence of multicollinearity in our data, we can examine the correlation matrix,

a table that presents the correlation coefficients between every pair of variables in our

multivariate dataset. The higher the correlation coefficient between one input variable and

another, the more multicollinearity exists. High correlations (close to 1 or -1) indicate strong

associations and suggest that these two variables convey similar information, introducing

overlapping information to the analysis [89].

Figure 51: Correlation matrix

Upon analyzing the correlation matrix in the figure above, we observe a perfect correlation

between 𝐿 (span of the member) and delta_lim (deflection limit). This is because the two variables

have an exact linear relationship (delta_lim = L/250). To mitigate the effects of multicollinearity

between these two variables, one could consider removing delta_lim. Another pair of variables

with high correlation are 𝑀𝐸𝑑 (bending moment) and 𝑉𝐸𝑑 (shear force). Their high correlation

can be attributed to their shared dependence on the same variables (𝑞, 𝑔, and 𝐿) and the similarity

of their formulas. In this case, we could consider removing one, or both of these variables.

102

In the context of optimizing T-sections, these high correlations can hinder our ability to discern

the individual contribution of each variable to the overall performance of the structure.

Addressing multicollinearity issues can enhance the interpretability and reliability of the

regression model, resulting in a more comprehensive understanding of how each variable affects

the optimization process. Furthermore, it is essential to consider the primary goal of the analysis.

If the main objective is to predict or forecast the response variable, as in our study, high

multicollinearity will not pose a significant problem, as multicollinearity does not reduce the

predictive power or reliability of the model, at least within the sample dataset [91]. However, if

the goal is to understand the individual effects of each independent variable on the response

variable, addressing multicollinearity becomes crucial.

7.2. Hyperparameter tuning

In Chapter 2.2.4, a detailed explanation of the hyperparameters can be found. In the

hyperparameter tuning process, the random search method aided in determining the following

optimal parameters for the MLP:

• First layer (Input): 1500 neurons with relu activation function

• Second layer: 400 neurons with relu activation function

• Third layer: 600 neurons with relu activation function

• Fourth layer (Output): 6 neurons with linear activation function

In addition, the following settings were applied:

• Optimizer adam

• Learning rate: 0.0001.

• Loss Function: mean_absolute_error

• Training Configuration: The model was trained for 300 epochs with a batch size of 64.

The chosen hyperparameters for the MLP model seem to be quite suitable for the task at hand.

First, the structure of the model, with three hidden layers and 1500, 400, and 600 neurons

respectively, is a good choice given the number of features and the complexity of the task. The

relu activation function for the hidden layers is beneficial as it introduces nonlinearity into the

model, enabling it to capture complex relationships between the features and target variables.

103

The linear activation function at the output layer is appropriate for a regression problem like this,

where we are trying to predict continuous target variables.

The adam optimizer is often a solid choice for training MLPs due to its efficiency and low memory

requirements, particularly when dealing with large datasets or many parameters. The chosen

learning rate of 0.0001, although on the lower end, can ensure stable training but might also slow

down the learning process.

In the context of a design problem, using MAE as both the loss function and evaluation metric

might be more appropriate. This is because MAE offers a more interpretable value and is less

sensitive to extreme values or outliers, which is advantageous considering the presence of some

outliers in our dataset. Alternative methods that exhibit robustness against outliers include the

Median Absolute Error, Huber Loss, Quantile Loss, and Tukey's Biweight Loss. Although these

methods are not explored in this thesis, their employment is recommended when dealing with

the presence of outliers in datasets.

The model was trained for 300 epochs with a batch size of 64. These are reasonable choices given

the size of the dataset, but it could be beneficial to further investigate the impact of the number

of epochs on the training and validation loss, as the model could potentially benefit from more

epochs. Similarly, adjusting the learning rate and observing its impact on the model's

performance could also be informative.

Figure 52: Loss curves over Epochs

Based on the observations of the loss curves in the figure above, it appears that the model is

learning effectively during the initial few epochs, as evidenced by the steep decrease in both

104

training and validation losses. The fact that the training loss is ever so slightly lower than the

validation loss suggests that the model is slightly overfitting to the training data, albeit to a very

small extent. This is a common phenomenon in ML since the model learns to perform on the

training data. The gap seems also to decrease with the number of epochs which indicates that the

model is still improving its generalization performance as the training progresses. This as well as

the constant small gap is a positive sign, as it suggests that the model is not overfitting

significantly and is able to perform well on unseen data. After trying different combinations, 300

epochs gave the best results when accounting for computational time and performance.

After adjusting the learning rates, we also found that the learning rate value of 0.0001 gave the

smoothest curve, while higher learning rates made the loss curves oscillate as large weight

updates caused the model to overshoot optimal values, as explained in Figure 14.

7.3. Results

This section presents the findings of Task 3, which focused on optimizing the cost of T-sections in

the dataset. The objective of this task was to utilize a range of ML approaches to accurately predict

the design variables and minimize the cost associated with each T-section. The results offer a

detailed analysis of the effectiveness and precision of MLP models in optimizing T-sections based

on cost, while maintaining the required structural integrity and standards.

7.3.1. Results on the preliminary dataset

First, we will present the immediate results of our model's predictions focusing on the

comparison between the predicted and actual values for each design variable. Graphical

representations of these comparisons will be provided, alongside residual graphs, to give a clear

visualization of the model’s prediction accuracy, and to highlight any potential discrepancies in

the data. We will also examine key performance metrics such as MSE, MAE and R-squared

(Appendix J4) to evaluate the accuracy and reliability of our models. These metrics provide both

a numerical and graphical representation of how closely our predictions align with the actual

data. All these metrics, along with the rationale behind their use, are thoroughly explained in

Chapter 2.4.2.

This raw look at the model's performance will help to establish a foundational understanding of

its initial predictive capabilities before any optimizations are implemented.

105

Figure 53: Predicted vs. Actual and residual plot for b

Figure 54: Predicted vs. Actual and residual plot for 𝑏𝑤

Figure 55: Predicted vs. Actual and residual plot for h

Figure 56: Predicted vs. Actual and residual plot for d

106

Figure 57: Predicted vs. Actual and residual plot for 𝐴𝑠

Figure 58: Predicted vs. Actual and residual plot for ℎ𝑓

Figure 59: Predicted vs. Actual and residual plot for cost

 Table 16: Evaluation metrics of MLP

Metric MLP

Mean squared error (MSE) 853975.64

Mean absolute error (MAE) 229.88

R-squared 0.84

107

7.3.2. Results after the removal of delta_lim and outliers

By removing the outliers (Appendix J3), as well as the feature delta_lim, we aimed to improve the

reliability of our model's predictions and mitigate the impact of multicollinearity on our model's

stability and interpretability. The IQR multiplier was set to 1.8 to determine the acceptable range

for each variable, and we filtered the data by removing any datapoints that fall outside that range.

Being able to adjust whiskers by choosing a higher multiplier helped retain more data points, as

they do represent valuable information. These approaches are anticipated to enhance the overall

performance of the model, ensuring more robust and consistent results in capturing and

predicting the underlying patterns within the data. The dataset now has 382 samples.

Figure 60: Predicted vs. Actual and residual plot for b after preprocessing

Figure 61: Predicted vs. Actual and residual plot for 𝑏𝑤 after preprocessing

Figure 62: Predicted vs. Actual and residual plot for h after preprocessing

108

Figure 63: Predicted vs. Actual and residual plot for d after preprocessing

Figure 64: Predicted vs. Actual and residual plot for 𝐴𝑠 after preprocessing

Figure 65: Predicted vs. Actual and residual plot for cost after preprocessing

Figure 66: Predicted vs. Actual and residual plot for ℎ𝑓 after preprocessing

109

 Table 17: Evaluation of MLP after preprocessing

Metric MLP

Mean squared error (MSE) 315433.96

Mean absolute error (MAE) 170.73

R-squared 0.85

7.4. Discussions

In Task 3, we created an MLP model, which demonstrated solid performance in predicting T-

section design variables as shown in Chapter 7.3.1, efficiently capturing the complex relationships

between input features and targets. The predicted vs. actual plots above highlight this

competency, with most predictions aligning closely with the dotted line, signaling an accurate

reflection of actual values. Further confirmation of the model's effectiveness comes from the

residual plots above, where the majority of residuals are randomly distributed around the zero

line, implying random model errors. Upon evaluating the model's performance metrics, we

observed a MAE of 230 and an R-squared of 0.84, which, considering the scales of the target

variables (Table 2), are indicative of a satisfactory predictive performance.

However, the presence of outliers in the input features and target variables as seen in Chapter

7.1.1, and the residuals in Chapter 7.3.1, signifies the potential for a disproportionate influence

on the model's outcomes due to these extreme values, otherwise known as "leverage points". It is

noteworthy, though, that these outliers do not significantly deviate from the general trend in the

predicted vs. actual plots, suggesting that the model adequately predicts design variables for

these datapoints too.

Despite the reassuring model performance, certain residual plots exhibit a slight skewness and a

small majority of datapoints located below the zero line, particularly for 𝐴𝑠, b, and cost. This

indicates a tendency of the model to overestimate the design variables slightly [92] [93], possibly

due to the influence of outliers. From a design perspective, erring on the side of caution is

common when designing structures. However, given our objective to maximize prediction

precision in this scenario, we proceeded to remove outliers, an approach aimed at enhancing the

generalizability of our model. This resulted in improved MSE and MAE metrics, while maintaining

similar R-squared values, affirming model performance enhancement.

Mild heteroscedasticity was noticeable in the data, particularly in residual plots for 𝑏𝑤, h, and d,

with data points initially having a larger range and then converging. As explained in the

110

discussion part of Task 2, heteroskedasticity is common when there is a broad range of values in

the model, as is the case in our task due to the large span of design variable values and its high-

dimensionality. Furthermore, the data was produced using an optimization algorithm, which

might carry certain biases. These biases could affect the distribution of data points, possibly

leading to heteroskedasticity. Despite potentially impacting the MLP model performance, MLP

models are typically robust to heteroscedasticity, given their ability to learn complex, nonlinear

relationships and adjust input variable weights accordingly, as explained in Chapter 2.2.4.

Nevertheless, heteroscedasticity may influence the training process and model generalizability,

warranting the use of robust evaluation metrics like MAE and R-squared, as discussed in Chapter

2.4.2. We attempted to mitigate heteroscedasticity using log and Box-Cox transformations, but

found outlier removal more effective in reducing its effect, as demonstrated in Chapter 7.3.2's

residual plots.

Correlation between the features h and d, illustrated in their similar plots, is expected due to their

inherent relationship in the optimization process. Multicollinearity, a topic broached in Chapter

7.1.2, led us to experiment with removing 𝑀𝐸𝑑, 𝑉𝐸𝑑, and delta_lim in various combinations.

Interestingly, omitting only delta_lim yielded superior MLP model performance, suggesting that

despite their high correlation, 𝑀𝐸𝑑 and 𝑉𝐸𝑑 still contribute valuable information to the model's

predictive power. Upon removing delta_lim and outliers via the IQR method, we achieved the

lowest MSE and MAE values, thereby enhancing prediction accuracy.

As discussed in Chapter 7.1, the optimization algorithm led to a lack of diversity in the flange

height feature (ℎ𝑓), resulting in the lower bound value being used in most cases. Consequently,

the model was not able to predict the ℎ𝑓 value of 152 mm, skewing the residual plot and

underestimating it. Due to the limiting variability in the feature, the model is not able to generalize

to new data points with different ℎ𝑓 values. We therefore can assume that the model has a limited

understanding of the effect of the input features on the ℎ𝑓 , resulting in a decrease of accuracy. It

would therefore be appropriate to gather additional data points with a wider range of flange

heights to improve the model's performance, while maintaining the design significance of the ℎ𝑓

parameter. To achieve a more accurate and reliable model that maintains its relevance to real-

world T-section design, it is recommended to revisit the optimization, collect more diverse data

points with different flange heights and retrain the model.

Our goal was to maximize prediction precision for optimized design variables of new T-sections,

necessitating the minimization of average prediction error magnitudes. While the final model

111

displayed strong performance in this regard, interpretation of the results should be made with

caution, owing to the multicollinearity presence and limited diversity of the ℎ𝑓 target variable in

the training set.

A more extensive dataset would dilute outlier impact, enhancing model robustness. Yet, this

would not inherently mitigate collinearity, as many variables are intrinsically related. Further

collinearity mitigation could benefit from exploring alternatives like dimensionality reduction

techniques (e.g., PCA) or regularization techniques (e.g., Ridge or Lasso).

The MLP model exhibits suitability for structural optimization due to its ability to effectively

capture complex relationships between variables and provide robust performance, even with

challenging characteristics of the dataset, such as heteroscedasticity and outliers. Its ability to

learn nonlinear models allows it to handle real-world problems where the underlying

relationships are not linear. Moreover, its real-time learning capability, where the model

parameters can be incrementally updated as it receives new data, is a significant advantage in

situations where the model needs to adapt continuously to new information.

The application of MLP in these types of tasks, while promising, comes with its set of complexities.

Firstly, tuning hyperparameters such as the number of hidden layers, neurons, and iterations can

pose a significant challenge. These hyperparameters greatly influence the model's performance,

but finding the optimal values often requires substantial computational resources and expertise,

potentially slowing down the optimization process. Secondly, MLP's sensitivity to the scale and

distribution of input features requires careful feature scaling for optimal performance,

necessitating an additional preprocessing step. Additionally, MLP's non-convex loss function

introduces unpredictability due to possible convergence to sub-optimal solutions, potentially

requiring multiple training runs or advanced optimization techniques.

112

8. Conclusions
This thesis explored the application of ML techniques, specifically supervised learning, within the

realm of structural engineering, focusing on the design of RC beams. The investigation was

organized around three distinct tasks, each selected to necessitate different key elements of ML

for their resolution. This allowed for a comprehensive exploration of ML's various facets,

providing valuable insights into the benefits and implications of incorporating ML in structural

engineering practice.

Task 1 utilized ML classification techniques - MLP, kNN, and DT classifiers - to identify the

anticipated capacity failure mode in RC beams. The MLP classifier demonstrated superior

performance in balancing precision and recall across all classes in an imbalanced dataset. The

kNN and DT classifiers also offered promising results, with unique strengths and weaknesses in

handling specific classes. Despite the challenges posed by the imbalanced dataset, the strategic

use of the macro-average f1-score for hyperparameter tuning proved effective. This task

underscored the importance of considering multiple evaluation metrics, understanding

structural significance of features, and addressing class imbalance.

In Task 2, the focus shifted to regression models for predicting moment, shear, and load capacity

in RC beams. The SVR model excelled in precision, even in the presence of outliers and

heteroscedasticity. On the other hand, the MLR model performed well for predicting moment and

shear capacity but struggled with load capacity due to its inability to handle nonlinearities. The

SVR model's superior performance can be attributed to its ability to handle nonlinear

interactions. However, it should be used with caution in certain ranges of shear and load capacity.

This task showed how regression models can augment traditional prediction methods in

structural engineering. It also highlighted the need to choose the right ML algorithm based on the

specific problem, demonstrating how versatile ML can be in tackling various issues within

structural engineering.

Task 3 delved into the realm of optimization in structural engineering, leveraging an optimized

dataset to train a ML model for predicting cost-effective designs. Despite challenges such as

outliers, mild heteroscedasticity, and multicollinearity, the MLP model demonstrated robust

performance in predicting T-section design variables. The task highlighted the need for diverse

data points, particularly for the flange height feature ℎ𝑓 , to improve model generalizability. This

task underscored the potential of ML in optimizing structural design and demonstrated how ML

113

can be used to automate and streamline complex design processes, reducing the time and effort

required while maintaining sufficient accuracy.

At the heart of these tasks were digitized adaptations of the EC2 design rules concerning moment,

shear, deflection capacities, as well as common practices. This transformation facilitated the

generation of comprehensive datasets, effectively guiding the ML models to navigate and learn

from a myriad of design scenarios. Consequently, the derived ML models underscored the

importance of digital transformation in structural engineering, paving the way for automated

design checks and optimization.

Despite the promising results, our models are not without their limitations. However, the

thorough documentation presents an opportunity for further refinement. Our research aids the

choice of algorithm for tasks that fall into the explored ML categories, through a comprehensive

literature review and practical application of ML algorithms. The developed ML models

demonstrated their potential as tools for structural engineers, as they provide a starting point for

optimization and can serve as potential indicators of structural failure. Moving forward, the focus

would involve selecting a specific model and enhancing it over time, through continual

adjustments and exposure to new, unseen data. Consistent performance of the model can deem

it a reliable tool for structural engineering purposes.

We wish to highlight the potential of the MLP model, which we employed in both multivariate

regression and multiclass classification tasks, in this regard. Its adaptability, precision, and real-

time learning capability hold considerable promise for structural optimization. MLP's ability to

adjust to dynamic environments, where structural conditions can change over time and new

findings in structural engineering need to be incorporated, is valuable.

The effectiveness of ML-based prediction models is heavily influenced by the attributes of the

training datasets utilized. While assembling data for these datasets, we focused on structural

significance, but learned that it is crucial to understand how dataset characteristics, such as

multicollinearity, heteroscedasticity, and outliers, can impact various ML models. As such, ML

methods should be employed cautiously as tools for structural analysis and design, by individuals

that are familiar with ML, given the paramount importance of structural safety in these tasks. This

necessitates that structural engineers and practitioners acquire a foundational understanding of

ML to effectively develop and validate their ML-based predictive models. In the long term,

integrating basic ML-related subjects into civil and structural engineering university curricula

could foster and advance the application of ML within the structural engineering community.

114

8.1. Limitations

Though the approach presented in this paper shows potential, there also exist several limitations,

which are listed below:

• Data limitations: The research relies on synthetic data generated from known principles and

Eurocode design rules. While this ensures control and consistency, it may not fully capture

the variability present in real-world, experimental data. Additionally, there is no widely

accepted rule to determine the sample size of the training set, and while the number of

training samples used in this study was deemed sufficient based on the guidelines presented

in Chapter 4, a larger sample size could potentially lead to increased model accuracy,

especially for Task 3.

• Scope of the problem: The study focuses on rectangular and T-sectioned RC-beams,

primarily dealing with uniaxial bending. It also concentrates on a limited set of checks, namely

deflection, shear, and moment capacity. Furthermore, the applicability of the specific models

developed in this study to more complex problems, such as members subjected to biaxial

bending or torsional forces, remains untested.

• Computational limitations: The computational resources available for this study have

restricted the size of the datasets and the complexity of the models trained. This could have

impacted the models' performance and the generalizability of the results.

• Choice of algorithm: In this study, we selected and evaluated a range of renowned ML

algorithms and found that, for our specific tasks, the MLP yielded the best results for the

classification task, and SVM excelled in the regression Task 2. Nevertheless, it is important to

acknowledge that there are numerous other algorithms such as Ridge and Lasso Regression,

or Gradient Boosting Regressors for regression tasks, and Random Forests for classification

tasks that were not explored in this study. These untested algorithms may potentially offer

superior performance or provide additional insights. Therefore, the chosen algorithms in this

thesis should not be regarded as definitively the best options; there may exist other

algorithms better suited to the problem that were not considered in this study.

• Model interpretability: One inherent limitation of many ML models, including those used in

this study, is a lack of transparency or interpretability. Often, these models function as "black

boxes", proficient at predicting outcomes but providing little insight into the underlying

processes that lead to these predictions. Despite our best efforts to visualize and interpret the

results, this lack of explicability can impede the broader acceptance and application of these

models, especially in fields like structural engineering where a deeper understanding of the

underlying mechanisms is often essential.

115

8.2. Future work

Considering the limitations discussed above, the successful application of machine learning in

structural engineering will benefit from further research. Potential areas for exploration include

the following:

• Data: A worthwhile future direction would be to incorporate actual experimental data into

the training sets. This would also give a more realistic picture of the number of data points

that can be produced in practice, to train a model.

• Problem: To take the most advantage of the ML models, the methodologies developed in this

thesis could be applied in some not well-resolved problems of structural engineering, like RC

members subjected to biaxial bending and tortional forces. The mechanisms of these

problems are rather complex, so ML could prove to be a powerful tool in solving them, as they

avoid the mechanism-driven numerical models and directly give the results.

• Model explanation: To make ML models more persuasive, it is important to find ways to

enhance the model explanation further, perhaps through the development and integration of

explainable AI techniques, to foster greater trust and acceptance among professionals in the

field.

• Computational power: As the models become more complex and the datasets larger, the

need for increased computational power grows. Future work could investigate the use of

higher-capacity hardware, distributed computing, or cloud-based solutions for data storage

and processing. This would not only enable the handling of larger datasets, but also

potentially improve the efficiency of the model training process.

• Algorithm selection and optimization: As previously noted, the choice of learning

algorithms for ML applications is abundant, and the optimal choice tends to be dependent on

the specific task at hand. This presents a challenge in identifying the most suitable algorithm

for a given task, particularly within the domain of structural engineering. Therefore, a

significant direction for future work would be to propose a unified methodology for

identifying the best-suited algorithm for specific applications in structural engineering. Our

research has laid a broad foundation for future exploration in this field. Going forward, it

would be useful to select a specific task or problem from this domain, and concentrate on

developing and refining the ML algorithm that we have pinpointed as the most suitable for

that particular task.

116

9. References

[1] H.-T. Thai, "Machine learning for structural engineering: A state-of-the-art review,"

Structures, vol. 38, pp. 448-491, 2022.

[2] European Committee for Standardization, Eurocode 2: Design of concrete structures -

Part 1-1: General rules and rules for buildings, Brussels, Belgium: CEN, 2004.

[3] E. K. Chong and S. H. Zak, An introduction to optimization, vol. Fourth edition, New

Jersey: OHN WILEY & SONS, INC., PUBLICATION, 2013, p. 642.

[4] Y.-x. Yuan, "A Review of Trust Region Algorithms for Optimization," ICM99: Proceedings

of the Fourth International Congress on Industrial and Applied Mathematics, 09 1999.

[5] J. Nocedal and S. J. Wright, Numerical optimization, vol. Second edition, New York:

Springer Science+Business Media, LLC, 2006, p. chapter 4.

[6] scipy, "docs.scipy," 20 12 2022. [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#

:%7E:text=and%20lower%20bounds.-,Constrained%20Minimization,-

Method%20COBYLA%20uses. [Accessed 14 05 2023].

[7] M. Lalee, J. Nocedal and T. Plantenga, "On the Implementation of an Algorithm for

Large-Scale Equality Constrained Optimization," SIAM Journal on Optimization, vol. 8,

no. 3, pp. 682-706, 1998.

[8] R. H. Byrd, J. C. Gilbert and J. Nocedal, "trust region method based on interior point

techniques for nonlinear programming," Math. Program, vol. 89, p. 149–185, 2000.

[9] R. H. Byrd, M. E. Hribar and J. Nocedal, "An Interior Point Algorithm for Large-Scale

Nonlinear Programming," IAM Journal on Optimization, vol. 9, no. 4, pp. 877-900, 1999.

[10] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, vol. 2nd ed, New York: Springer, 2009.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed ed., MIT

Press, 2018.

[12] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.

[13] K. Sotiris, "Supervised Machine Learning: A Review of Classification Techniques,"

Informatica, vol. 31, pp. 249-268, 2007.

[14] JavaTpoint, "JavaTpoint," [Online]. Available: https://www.javatpoint.com/machine-

learning-decision-tree-classification-algorithm. [Accessed 02 2023].

117

[15] O. M. Lior Rokach, "Decision Trees," The Data Mining and Knowledge Discovery

Handbook, vol. 6, pp. 165-192, 01 2005.

[16] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html.

[Accessed 02 2023].

[17] J. Brownlee, "machinelearningmastery," 27 November 2020. [Online]. Available:

https://machinelearningmastery.com/overfitting-machine-learning-models/.

[Accessed 02 2023].

[18] R. G. Mantovani, T. Horváth, R. Cerri, S. B. Junior, J. Vanschoren and A. C. P. d. L. F. d.

Carvalho, "An empirical study on hyperparameter tuning of decision trees," 2018.

[19] O. M. Lior Rokach, "Classification Trees," in The Data Mining and Knowledge Discovery

Handbook, New York, Springer, 2005.

[20] L. E. Raileanu and K. Stoffel, "Theoretical comparison between the Gini Index and

Information Gain criteria," Annals of Mathematics and Artificial Intelligence, vol. 41, p.

77/93, 2004.

[21] D. Kaplan, "enjoymachinelearning," EML, 10 2022. [Online]. Available:

https://enjoymachinelearning.com/blog/gini-index-vs-entropy/. [Accessed 06 2023].

[22] S. Kamperis, "ekamperi.github," 13 04 2021. [Online]. Available:

https://ekamperi.github.io/machine%20learning/2021/04/13/gini-index-vs-entropy-

decision-trees.html. [Accessed 01 2023].

[23] S. S. Mullick, S. Datta and a. S. Das, "Adaptive Learning-Based k-Nearest Neighbor

Classifiers With Resilience to Class Imbalance," IEEE Transactions on Neural Networks

and Learning Systems, pp. 1-13, 2018.

[24] Z. Shi, "Improving k-Nearest Neighbors Algorithm for Imbalanced Data Classification,"

IOP Conference Series: Materials Science and Engineering, vol. 719, no. 1, 2020.

[25] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/neighbors.html. [Accessed 03 2023].

[26] A. AnAj, Artist, KnnClassification.svg. [Art]. Wikipedia commons, 2007.

[27] i. V. Degtyarev and K. D. Tsavdaridis, "Buckling and ultimate load prediction models for

perforated steel beams using machine learning algorithms," Journal of Building

Engineering, vol. Volume 51, 2022.

[28] S. Vijendra and P. Shivani, "Robust Outlier Detection Technique in Data Mining: A

Univariate Approach," Computer Vision and Pattern Recognition, 2014.

118

[29] C. Sima and E. R. Dougherty, "The peaking phenomenon in the presence of feature-

selection," Pattern Recognition Letters, vol. 29, no. 11, pp. 1667-1674, 2008.

[30] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/neighbors.html#. [Accessed 03 2023].

[31] V. Kanade, "spiceworks," 3 april 2023. [Online]. Available:

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-

regression/. [Accessed 02 2023].

[32] A. Gupta, A. Sharma and A. Goel, "Review of Regression Analysis Models," International

Journal of Engineering Research & Technology, vol. 6, no. 8, 2017.

[33] M. A. Iqbal, "Application of Regression Techniques with their Advantages and

Disadvantages," p. 17, september 2021.

[34] scikit-learn developers, "scickit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/tutorial/statistical_inference/supervised_learning.html#linear-

regression. [Accessed 04 2023].

[35] "javatpoint," [Online]. Available: https://www.javatpoint.com/machine-learning-

support-vector-machine-algorithm. [Accessed 02 2023].

[36] A. Sethi, 24 april 2023. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-

for-machine-learning/. [Accessed february 2023].

[37] N. C. Berke Akkaya, "Comparison of Multi-class Classification Algorithms on Early

Diagnosis of Heart Diseases," in y-BIS 2019 Conference: ISBIS Young Business and

Industrial Statisticians Workshop on Recent Advances in Data Science and Business

Analytics, Istanbul, Turkey, 2019.

[38] scikit-learn developers, 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVR.html. [Accessed april 2023].

[39] scikit-learn developers, 2023. [Online]. Available: https://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.html#:~:text=Intuitively%2

C%20the%20gamma%20parameter%20defines,the%20model%20as%20support%20

vectors. [Accessed april 2023].

[40] s.-l. developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/neural_networks_supervised.html. [Accessed 03 2023].

[41] C. M. Bishop and G. Hinton, Neural Networks for Pattern Recognition, New York: Oxford

University Press, 1995, p. 92.

119

[42] Keras developers, "Keras," 2023. [Online]. Available:

https://keras.io/about/#:~:text=Keras%20is%20the%20high%2Dlevel,solutions%20

with%20high%20iteration%20velocity.. [Accessed 05 2023].

[43] J. Lederer, "Activation Functions in Artificial Neural Networks: A Systematic Overview,"

Computing Research Repository, 2021.

[44] L. Ven and J. Lederer, "Regularization and Reparameterization Avoid Vanishing

Gradients in Sigmoid-Type Networks," CoRR, 2021.

[45] J. Brownlee, "Machine Learning Mastery," 22 01 2021. [Online]. Available:

https://machinelearningmastery.com/choose-an-activation-function-for-deep-

learning/. [Accessed 04 2023].

[46] C. E. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, "Activation Functions:

Comparison of Trends in Practice and Research for Deep Learning," CoRR, 2018.

[47] R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training Recurrent Neural

Networks," Computing Research Repository, 2012.

[48] TensorFlow Authors, "keras," 2015. [Online]. Available:

https://keras.io/api/layers/activations/#softmax-function. [Accessed 05 2023].

[49] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[50] J. Jordan, "jeremyjordan," 01 03 2018. [Online]. Available:

https://www.jeremyjordan.me/nn-learning-rate/. [Accessed 03 2023].

[51] D. C. Liu and J. Nocedal, "On the limited memory BFGS method for large scale

optimization," Mathematical Programming, vol. 45, no. 1, p. 503–528, 1989.

[52] O. B. Leon Bottou, The Tradeoffs of Large Scale Learning, Red Hook, NY: Curran

Associates Inc., 2007, p. 161–168.

[53] S. Ruder, "An overview of gradient descent optimization algorithms," 2017.

[54] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in International

Conference on Learning Representations, 2014.

[55] J. Brownlee, "Machinelearningmastery," 10 08 2022. [Online]. Available:

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/.

[Accessed 05 2023].

[56] TensorFlow, "tensorflow," 20 05 2023. [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/Model?version=nightly#fit.

[Accessed 05 2023].

120

[57] A. Devarakonda, M. Naumov and M. Garland, "AdaBatch: Adaptive Batch Sizes for

Training Deep Neural Networks," CoRR, 2017.

[58] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html.

[Accessed 02 2023].

[59] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.ht

ml. [Accessed 02 2023].

[60] K. Zakka, "github," 13 July 2016. [Online]. Available:

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/#more-on-k. [Accessed

03 2023].

[61] J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," The

Journal of Machine Learning Research, vol. 13, p. 281–305, 2012.

[62] A. Kumar, "vitalflux," Data Analytics, 17 March 2023. [Online]. Available:

https://vitalflux.com/accuracy-precision-recall-f1-score-python-

example/#What_is_Precision_Score?utm_content=cmp-true. [Accessed 02 March 2023].

[63] A. Suresh, "Analytics Vidhya," 17 November 2020. [Online]. Available:

https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5.

[Accessed March 2023].

[64] A. Hooshmand, "Accurate Diagnosis of Cancer by Machine Learning Classification of the

Whole Genome Sequencing Data," 2020.

[65] V. Plevris, G. Solorzano, N. P. Bakas and M. E. A. Ben Seghier, "Investigation of

performance metrics in regression analysis and machine learning-based prediction

models," in 8th European Congress on Computational Methods in Applied Sciences and

Engineering, Oslo, Norway.

[66] A. Botchkarev, "Evaluating Performance of Regression Machine Learning Models Using

Multiple Error Metrics in Azure Machine Learning Studio," SSRN Electronic Journal,

2018.

[67] scikit-learn developers, "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.r2_score.html. [Accessed 05

2023].

[68] wikipedia, "Wikipedia," 03 04 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2. [Accessed

05 2023].

121

[69] "stackoverflow," april 2021. [Online]. Available:

https://stackoverflow.com/questions/39208718/predicted-vs-actual-plot. [Accessed

02 2023].

[70] J. Jobson, Applied multivariate data analysis, New York, NY: Springer, 1999.

[71] U. Gohar, "towardsdatascience," 05 03 2020. [Online]. Available:

https://towardsdatascience.com/how-to-use-residual-plots-for-regression-model-

validation-c3c70e8ab378. [Accessed 04 2023].

[72] European Committee for Standardization, EN 1990: Eurocode - Basis of structural

design, Brussels, Belgium: CEN, 2002.

[73] spyder, [Online]. Available: https://www.spyder-ide.org/.

[74] scikitt-learn, [Online]. Available: https://scikit-learn.org/stable/.

[75] SciPy.optimize, [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/optimize.html.

[76] F. Ferhat, "Design Optimization of Reinforced Ordinary and High-Strength Concrete

Beams with Eurocode2 (EC-2)," in Optimum Composite Structures, Rijeka, IntechOpen,

2018.

[77] A. Bryman, Social Research Methods. 5th ed, London, England: Oxford University Press,

2015, p. p. 144.

[78] D. J. Mundfrom, D. G. Shaw and T. L. Ke, "Minimum Sample Size Recommendations for

Conducting Factor Analyses," International Journal of Testing, vol. 05, no. 02, pp. 159-

168, 2005.

[79] S. I. Sørensen, betongkonstruksjoner, trondheim: fagbokforlaget, 2013.

[80] SciPy. [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#

:%7E:text=and%20lower%20bounds.-,Constrained%20Minimization,-

Method%20COBYLA%20uses.

[81] N. Andrei, "Sequential Quadratic Programming. In: Modern Numerical Nonlinear

Optimization," in Modern Numerical Nonlinear Optimization, Cham, Springer

International Publishing, 2022, pp. 521--567.

[82] A. Kumar, "vitaflux," 31 07 2022. [Online]. Available: https://vitalflux.com/how-know-

data-linear-non-linear/. [Accessed 05 2023].

[83] F. Dernoncourt, "datascience.stackexchange," 2017.

122

[84] S. Mehta, "analyticsindiamag," 26 July 2022. [Online]. Available:

https://analyticsindiamag.com/why-should-the-learning-rate-always-be-low/.

[Accessed March 2023].

[85] scikit-learn developers , "scikit-learn," 2023. [Online]. Available: https://scikit-

learn.org/stable/auto_examples/model_selection/plot_learning_curve.html. [Accessed

05 2023].

[86] CFI Team, "corporatefinanceinstitute," 07 05 2023. [Online]. Available:

https://corporatefinanceinstitute.com/resources/data-science/heteroskedasticity/.

[Accessed 06 2023].

[87] S. Mcleod, "simplypsychology," 17 05 2023. [Online]. Available:

https://www.simplypsychology.org/boxplots.html. [Accessed 04 2023].

[88] A. HAYES, "investopedia," 25 02 2023. [Online]. Available:

https://www.investopedia.com/terms/m/multicollinearity.asp. [Accessed 05 2023].

[89] A. Siegel, Practical Business Statistics, vol. 7th, Academic Press, 2016.

[90] R. D. D. Veaux and L. H. Ungar, "Selecting models from data. Lecture Notes in Statistics,

vol 89," in Multicollinearity: A tale of two nonparametric regressions, Bew York,

Springer, 1994, p. 393–402.

[91] "Wikipedia," 05 06 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Multicollinearity. [Accessed 05 2023].

[92] Khan Academy, "khanacademy," 2022. [Online]. Available:

https://www.khanacademy.org/math/statistics-probability/describing-relationships-

quantitative-data/regression-library/a/introduction-to-residuals. [Accessed 05 2023].

[93] Khan Academy, "khanacademy," 2022. [Online]. Available:

https://www.khanacademy.org/math/ap-statistics/bivariate-data-

ap/xfb5d8e68:residuals/e/residual-plots. [Accessed 04 2023].

123

10. Appendices
The accompanying appendices to this thesis are available digitally and can be accessed upon

request. Please feel free to contact either the authors or the Norwegian University of Science and

Technology (NTNU) for access to these materials.

A1 - Functions used for dataset generation for Task 1&2

A2 - Dataset creation script for Task 1&2

A3 - CSV-file script for Task 1&2

A4 - CSV-file shorten script for Task 1&2

B1 - kNN model for Task 1

B2 - Hyperparameter tuning of kNN

C1 - DT model for Task 1

C2 - Hyperparameter tuning of DT

D1 - MLP model for Task 1

D2 - Hyperparameter tuning of MLP

D3 - Random Under Sampler for Task 1

E - Visualization & Metrics for classification

F - MLR model for Task 2

G1 - SVR model for Task 2

G2 - Hyperparameter tuning of SVR

H - Visualization & Metrics for Regression

I - Code related to dataset generation for Task 3

J1 - MLP model for Task 3

J2 - Hyperparameter tuning of MLP

J3 - Removal of outliers for Task 3

J4 - Metrics for regression Task 3

