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Abstract

In bridge engineering it is important to understand how wind affects bridges in order to
obtain safe bridge designs. This is especially important for long-span bridges which are
more prone to wind induced dynamic response. In this thesis the wind induced dynamic
response of the H̊alogaland Bridge have been studied and calculated both in time and
frequency domain. By assuming an aeroelastic system the calculations can be performed
in both domains which is useful for comparing and verification of the results. The time
domain response was performed with 20 time series simulations of the wind field generated
by the Monte Carlo method. The time and frequency response were successfully obtained
and coincided with a fairly high accuracy.

In addition to the wind induced dynamic response, the flutter stability have been calculated
and an extreme value analysis of the response have been performed. The critical mean
wind velocity was obtained from the eigenvalue analysis of the state space model of the
equation of motion and found to be 80.69 m/s.
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Sammendrag

I bruteknikk er det viktig å forst̊a hvordan vind p̊avirker bruer for å kunne lage trygge
bruer. Det er spesielt viktig for lange bruer ettersom de er mer utsatt for vindindusert dy-
namisk respons. I denne oppgaven har vindindusert dynamisk respons av H̊alogalandsbrua
blitt studert og beregnet i tids- og frekevensplanet. Ved å anta et aeroelastisk system kan
beregningene bli utført b̊ade i tids- og frekvensplanet som gjør at løsningene kan sam-
menlignes og verifiseres. Tidsplansløsningen ble beregnet med 20 tidsseriesimuleringer av
vindfeltet ved bruk av Monte Carlo metoden og ga tilfredstillende samsvar med frekvens-
plansløsningen.

I tillegg til vindindusert dynamisk repsonse ble flutter stabiliteten bergenet og ekstrem-
verdianalyse av den dynamiske responsen ble gjennomført. Den kritiske middelvinden
ble funnet gjennom eigenverdianalyse av tilstandsmodellen av bevegelsesligningen og ble
funnet til å være 80.69 m/s.
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1 Introduction

As bridges become longer they are more susceptible to wind induced dynamic response
and it is important to understand how the wind affects the bridges and how the wind
induced response can be calculated. The goal of this thesis is to present theory that
are not presented in any existing courses at the Department of Structural Engineering
at NTNU, and implement the theory in order to calculate the dynamic response of the
H̊alogaland Bridge both in time and frequency domain. In addition to the wind induced
dynamic response, extreme value analysis of the response and stability limit of the system
is investigated. The focus is on this new theory and it is assumed that the reader has a
good understanding of the topics taught in the courses TKT4201 Structural Dynamics 1
and TKT4108 Structural Dynamics 2.

The contents of this thesis is presented in a systematic manner. First is the theoretical
background, describing how the bridge is affected by the wind, the dynamic response
in frequency and time domain, flutter stability and extreme value analysis. In the next
chapter the methodology is presented, describing how the theory was implemented in order
to obtain the buffeting response, stability limit and estimates of the extreme response, as
well as a short introduction of the H̊alogaland Bridge and its dynamic properties. The
next chapter presents all the results obtained followed by a discussion of the results and a
conclusion of the thesis.
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Figure 1: Aerodynamic forces acting on the cross section of the H̊alogaland Bridge [1]

Figure 2: Coordinate system

2 Theoretical background

This chapter presents the theoretical background of wind induced dynamic response cal-
culations in time and frequency domain, in addition to flutter stability and extreme value
analysis of the dynamic response. The theory presented follows the so-called strip theory,
which commonly used for long slender line-like structures. It is appropriate to apply the
strip theory to the H̊alogaland bridge as it is a long suspension bridge with a relatively
constant cross section. In strip theory it is assumed that the wind loading acts as a con-
centrated force on a given section along the longitudinal direction. The shear centre of
the cross section is commonly used as the reference point for the load. In order to obtain
the forces acting on the cross section it is necessary to understand how the wind load is
modelled.

2.1 Modelling of the wind load

Wind is the most contributing factor to the dynamic response of the H̊alogaland Bridge,
other factors such as contributions from traffic and seismic loading are neglected for the
purpose of this thesis. Since wind is the lead causing effect of the dynamic response it is
important to look at how the wind load is defined and calculated in order to calculate the
dynamic response of the bridge.

Wind loading is most commonly evaluated in wind engineering today by the use of the Alan
G. Davenport Wind Load Chain [2]. The wind load chain describes how the wind loading

3



Figure 3: Davenport’s wind load chain [4]

is a combined effect of the local wind climate, exposure, the aerodynamic properties of
the structure and potential wind-induced resonant vibrations. The local wind climate
must be described with statistical properties and the terrain roughness and topography
surrounding the structure influences the local wind exposure. Davenport also recognised
that there must be a clear criterion for judging the consequences of the wind action e.g.,
structural integrity and serviceability considerations for the users of the structure [3]. The
wind load chain is illustrated in Figure 3.

Wind is a chaotic process, attacking a structure from all direction. The wind velocity
vector U is defined as [5]

U(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉(𝑥, 𝑦, 𝑧) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤(𝑥, 𝑦, 𝑧, 𝑡), (2.1)

where 𝑉 is the mean wind velocity over a given time interval 𝑇 (usually equal to 10 minutes
in bridge design) 𝑢, 𝑣 and 𝑤 is the turbulence components in the y-, x- and z-direction,
respectively. The global coordinate system of the structure is shown in Figure 2. As seen
from Eq. (2.1) the wind vector is defined with respect to 𝑥, 𝑦, 𝑧 and 𝑡, meaning that it
is defined in all of space and in time, this applies for the turbulence components as well,
but not for the mean wind velocity which is only dependent on the spatial coordinates.

Two assumptions that are often made in bridge design are that the wind field is homo-
geneous and stationary. Assuming a homogeneous wind field implies that the probability
distribution describing the wind field does not vary along any of the spatial coordinates.
This is a fair assumption as weather conditions surrounding most civil engineering struc-
tures are considered homogeneous enough [5]. There may, however, be problems with the
homogeneity if the wind field is influenced sufficiently by the surrounding terrain. The
wind velocity generally increases with the height above ground. The wind is then stronger
at the top of the towers than at the bridge deck which does not conform with homogeneity.
However, in this thesis, all calculations are done purely on the bridge deck, towers, hangers
and cables are neglected and the assumption of a homogeneous wind field is therefore ap-
propriate. The assumption of a stationary wind field means that the statistical properties
is invariant with respect to time, i.e. the probability distribution describing the wind field
is equal for any time interval. The stationary assumption will generally not hold true for
sufficiently long time series. The wind field is henceforth assumed to be stationary and
homogeneous.

Because of the chaotic nature of the wind, it is assumed that the wind vector is perpen-
dicular to the longitudinal direction of the bridge with zero angle of attack as shown in
Figure 1. The velocity vector can then be simplified to [5]

U(𝑥, 𝑡) = 𝑉 + 𝑢(𝑥, 𝑡) + 𝑤(𝑥, 𝑡). (2.2)
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The wind vector gives rise to the wind load components 𝑞𝑦, 𝑞𝑧 and 𝑞𝜃, also shown in Figure
1. These load components give rise to the corresponding displacements and rotations and
are defined as positive in the same direction as the force components. The load components
can be split into a mean and a fluctuating part [5]

q(𝑥) + q(𝑥, 𝑡) = ©­«
𝑞𝑦(𝑥)
𝑞𝑧(𝑥)
𝑞𝜃(𝑥)

ª®¬ + ©­«
𝑞𝑦(𝑥, 𝑡)
𝑞𝑧(𝑥, 𝑡)
𝑞𝜃(𝑥, 𝑡)

ª®¬ , (2.3)

u(𝑥) + u(𝑥, 𝑡) = ©­«
𝑢𝑦(𝑥)
𝑢𝑧(𝑥)
𝑢𝜃(𝑥)

ª®¬ + ©­«
𝑢𝑦(𝑥, 𝑡)
𝑢𝑧(𝑥, 𝑡)
𝑢𝜃(𝑥, 𝑡)

ª®¬ , (2.4)

where q(𝑥) and u(𝑥) are the mean load and response vector, respectively. These terms are
invariant to time, i.e. the structure is in a state of static loading and subsequently exhibits
static response. q(𝑥, 𝑡) and u(𝑥, 𝑡) is describing the fluctuating load and response. The
static part is not of any interest in the buffeting response and flutter stability calculations
and is therefore neglected henceforth.

2.1.1 Buffeting load

When the air flow is exhibiting turbulence, the structure is subjected to a fluctuating
pressure load. This load is commonly known as buffeting load in aerodynamics engineering
and is written as

qbuff = B𝑞v (2.5)

where v is the turbulence vector and B𝑞 is the buffeting load matrix defined as [5]

B𝑞 =
𝜌𝑉𝐵

2

©­­«
2(𝐷/𝐵)𝐶𝐷 ((𝐷/𝐵)𝐶′

𝐷
− 𝐶𝐿)

2𝐶𝐿 (𝐶′
𝐿
+ (𝐷/𝐵)𝐶𝐷)

2𝐵𝐶𝑀 𝐵𝐶′
𝑀

ª®®¬ , (2.6)

where 𝐶𝑛 𝑛 ∈ {𝐷, 𝐿, 𝑀} are the force coefficients at the mean angle of attack, while 𝐶′
𝑛

𝑛 ∈ {𝐷, 𝐿, 𝑀} are the derivative of the force coefficients at the mean angle of attack.
𝐷, 𝐿 and 𝑀 signifies the drag, lifting and pitching moment, respectively. However, as
the buffeting load matrix is derived from the assumption of quasi-steady wind loads, it
is common to add admittance functions [5] to each element in the buffeting load matrix
such that Eq. (2.6) can be rewritten as

B𝑞(𝜔) =
𝜌𝑉𝐵

2

©­­«
2(𝐷/𝐵)𝐶𝐷𝐴𝑦𝑢(𝜔) ((𝐷/𝐵)𝐶′

𝐷
− 𝐶𝐿)𝐴𝑦𝑤(𝜔)

2𝐶𝐿𝐴𝑧𝑢(𝜔) (𝐶′
𝐿
+ (𝐷/𝐵)𝐶𝐷)𝐴𝑧𝑤(𝜔)

2𝐵𝐶𝑀𝐴𝜃𝑢(𝜔) 𝐵𝐶′
𝑀
𝐴𝜃𝑤(𝜔)

ª®®¬ , (2.7)

where 𝐴𝑚𝑛(𝜔) 𝑚 ∈ {𝑦, 𝑧, 𝜃}, 𝑛 ∈ {𝑢, 𝑤} are the cross sectional admittance functions,
developed by Sears [6] and later made more practical, by e.g. Liepmann [7]. The admit-
tance functions are filter functions that filters the load contribution for higher frequencies
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[5]. For the sake of simplicity, all admittance functions are set equal to one and Eq. (2.6)
will be the buffeting load matrix that is used in further calculations.

Another loading phenomenon that may occur is vortex shedding. Vortex shedding is an
important part of bridge design. However, it occurs for reasonably low wind velocities
while buffeting and motion induced forces occur for higher velocities. Therefore, it is
common to calculate the response for the different effect separately [5]. Vortex shedding
will not be discussed further.

2.1.2 Wind turbulence characteristics

In order to design the bridge it is necessary to obtain wind field characteristics which
can help describe the loading on the structure. As wind is a fluctuating and irregular
(random) process it is best to treat it as a stochastic process and look at its statistical
properties. This is useful for enabling the use of auto-spectral and cross-spectral density
functions (the auto- and cross-spectral density is also known as the power spectral density).
Different spectra have been created over time by e.g. Davenport [8], Kaimal et al. [9],
Solari [10] and von Karman [11] to name a few. They are all empirical formulations of
the power spectra and have their strengths and weaknesses. Another formulation for the
power spectra is given by the Norwegian Public Roads Administration (NPRA), namely
the N400 Handbook [12] developed for engineering of public bridges in Norway. The power
spectra chosen for this thesis is according to the N400 as it is the reigning design standard
in Norway.

The auto-spectral density 𝑆𝑖(𝑛) of the turbulence components 𝑢, 𝑣 and 𝑤 is given by the
following equation from N400

𝑛𝑆𝑖

𝜎2
𝑖

=
𝐴𝑖 𝑛̂𝑖

(1 + 1.5𝐴𝑖 𝑛̂𝑖)5/3
for 𝑖 = {𝑢, 𝑣, 𝑤} (2.8)

𝑛̂𝑖 =
𝑛𝑥𝐿𝑖(𝑧)
𝑣𝑚(𝑧)

(2.9)

where 𝑛 is the frequency in Hz, 𝜎𝑖 is the standard deviation of the turbulence component 𝑖,
𝑥𝐿𝑖 is the integral length scale, 𝑣𝑚(𝑧) is the mean wind velocity over a statistical averaging
period of 10 minutes at a vertical distance 𝑧 above the terrain. The coefficients 𝐴𝑖 are
given as: 𝐴𝑢 = 6.8, 𝐴𝑣 = 9.4 and 𝐴𝑤 = 9.4.

The cross-spectral density of the turbulence component 𝑖1 and 𝑖2, 𝑆𝑖1 𝑖2 , is given on the
normalised form

Re
[
𝑆𝑖1 𝑖2(𝑛, Δ𝑠 𝑗)

]√
𝑆𝑖1 · 𝑆𝑖2

= exp

(
−𝐶𝑖 𝑗

𝑛Δ𝑠 𝑗

𝑣𝑚(𝑧)

)
(2.10)

where Δ𝑠 𝑗 is the horizontal or vertical distance between the considered points along the
respective axes. 𝑖1, 𝑖2 ∈ {𝑢, 𝑣, 𝑤}, being the turbulence components and 𝑗 ∈ {𝑦, 𝑧}
denote the spatial direction. The decay coefficients 𝐶𝑖 𝑗 have the corresponding values:
𝐶𝑢𝑦 = 𝐶𝑢𝑧 = 10.0, 𝐶𝑣𝑦 = 𝐶𝑣𝑧 = 𝐶𝑤𝑦 = 6.5 and 𝐶𝑤𝑧 = 3.0. The N400 also state that the
turbulence components 𝑢 and 𝑤 is to be used for calculations regarding horizontal bridge
elements, while for vertical elements the turbulence components 𝑢 and 𝑦 should be used.
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The bridge deck is the element of interest in this thesis. Therefore, only the turbulence
components 𝑢 and 𝑤 will be used in further calculations. The turbulence vector then
reads:

v =

(
𝑢

𝑤

)
. (2.11)

2.1.3 Self-excited forces

When the bridge is exposed to the wind loading, it is put into motion. The motion of
the bridge gives rise to what is called motion induced forces, also known as self-excited
forces and was first introduced in bridge engineering by Scanlan and Tomko [13]. The
self-excited forces can be written as [1][14]

qse(𝑥, 𝑡) = Cae(𝑉, 𝜔)¤u(𝑥, 𝑡) +Kae(𝑉, 𝜔)u(𝑥, 𝑡), (2.12)

Cae =
𝜌𝐵2

2
𝜔

©­«
𝑃∗
1 𝑃∗

5 𝐵𝑃∗
2

𝐻∗
5 𝐻∗

1 𝐵𝐻∗
2

𝐵𝐴∗
5 𝐵𝐴∗

1 𝐵2𝐴∗
2

ª®¬ , (2.13)

Kae =
𝜌𝐵2

2
𝜔2 ©­«

𝑃∗
4 𝑃∗

6 𝐵𝑃∗
3

𝐻∗
6 𝐻∗

4 𝐵𝐻∗
3

𝐵𝐴∗
6 𝐵𝐴∗

4 𝐵2𝐴∗
3

ª®¬ , (2.14)

qse =
(
𝑞se,𝑦 𝑞se,𝑧 𝑞se,𝜃

)𝑇
, (2.15)

u =
(
𝑢𝑦 𝑢𝑧 𝑢𝜃

)𝑇
. (2.16)

Here, Cae and Kae are known as the aerodynamic damping and stiffness matrix, 𝜌 is the
air density, 𝐵 is the cross sectional width of the bridge deck, 𝜔 is the circular frequency
and 𝑃∗

𝑛, 𝐻
∗
𝑛, 𝐴

∗
𝑛 𝑛 ∈ {1, 2, ..., 6} are the dimensionless aerodynamic derivatives. 𝑞se,𝑦

and 𝑞se,𝑧 are the self-excited forces in the transverse and vertical direction while 𝑞se,𝜃 is
the self-excited torsional load. u is the displacement along the axis of the corresponding
self-excited force and is positive in the same direction as the corresponding force. By
introducing the self-excited forces, the equation of motion reads:

M¥u(𝑡) + (C − Cae) ¤u(𝑡) + (K −Kae) u(𝑡) = qbuff(𝑡), (2.17)

where M, C and K are the mass, damping and stiffness matrix and qbuff is the buffeting
load. Note that the aerodynamic damping and stiffness matrices are frequency dependent.
This implies that the equation of motion contains both time and frequency dependent
terms, which creates some challenges in solving the equation of motion. The following
sections will show how the equation of motion can be solved, both in time and frequency
domain, in order to obtain the buffeting response.
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2.1.4 Aerodynamic derivatives

The dimensionless aerodynamic derivatives are characteristic cross sectional properties
where 𝑃∗

𝑛 is related to the horizontal loading while 𝐻∗
𝑛 is related to the vertical loading

and 𝐴∗
𝑛 is related to the torsional loading, this can readily be seen by looking at each

row of Eq. (2.12). The aerodynamic derivatives are found experimentally through wind
tunnel testing. The section model used in the wind tunnel testing is (usually) quite small
compared to the full-scale bridge and the results obtained from the wind tunnel test is
not directly applicable for the full-scale bridge. Because of this it is necessary to work
with dimensionless variables which are applicable regardless of section width or the mean
wind velocity. The dimensionless aerodynamic derivatives are therefore a function of the
reduced velocity, which is defined as the mean wind velocity divided by the product of the
section width and the circular frequency: 𝑉̂ = 𝑉/(𝐵 · 𝜔).

2.2 Buffeting response in frequency domain

In order to carry out the buffeting response calculations in the frequency domain, it is
necessary to transfer the equation of motion entirely to frequency domain. But first, by
introducing the modal transformation, the response u(𝑥, 𝑡) can be written as a product
of the mode shapes Φ(𝑥) and the generalised coordinates 𝜼(𝑡) such that

u(𝑥, 𝑡) = Φ(𝑥)𝜼(𝑡). (2.18)

By utilising the modal transformation, the frequency domain representation of the equa-
tion of motion subjected to self-excited forces and buffeting loads, can be found by applying
the Fourier transformation to the equation of motion. The frequency domain representa-
tion of the equation of motion then reads as follows [14]

M̃G¥𝜼(𝜔) +
(
C̃ − C̃ae(𝑉, 𝜔)

)
G ¤𝜼(𝜔) +

(
K̃ − K̃ae(𝑉, 𝜔)

)
G𝜼(𝜔) = Gq̃buff(𝜔), (2.19)

M̃ =

∫ 𝐿

0

Φ𝑇MΦ𝑑𝑥, (2.20)

C̃ =

∫ 𝐿

0

Φ𝑇CΦ𝑑𝑥, (2.21)

K̃ =

∫ 𝐿

0

Φ𝑇KΦ𝑑𝑥, (2.22)

C̃ae =

∫ 𝐿

0

Φ𝑇CaeΦ𝑑𝑥, (2.23)

K̃ae =

∫ 𝐿

0

Φ𝑇KaeΦ𝑑𝑥, (2.24)
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Gq̃buff =

∫ 𝐿

0

Φ𝑇(𝑥)B𝑞(𝜔)G𝑣(𝑥, 𝜔)𝑑𝑥, (2.25)

where M̃, C̃ and K̃ are the modal mass, damping and stiffness matrices, respectively,
while C̃ae(𝑉, 𝜔) and K̃ae(𝑉, 𝜔) are the modal aerodynamic damping and stiffness matrix,
respectively. G𝜼(𝜔) and Gq̃buff(𝜔) are the Fourier transform of the generalised response
and buffeting load, respectively and G𝑣(𝑥, 𝜔) is the Fourier transform of the turbulence
components 𝑢 and 𝑤:

G𝑣(𝑥, 𝜔) =
(
𝐺𝑢 𝐺𝑤

)𝑇
. (2.26)

The cross-spectral density of the generalised buffeting load can be found by taking the
Fourier transform of the cross-correlation function (see e.g. [15] for procedure) of the
generalised buffeting load which reads as follows [14]

Sq̃buff(𝜔) =
∫
𝐿

∫
𝐿

Φ𝑇(𝑥1)B𝑞(𝜔)S+𝑉 (Δ𝑥, 𝜔)B
𝑇
𝑞Φ(𝑥2)𝑑𝑥1𝑑𝑥2, (2.27)

S+𝑉 (Δ𝑥, 𝜔) =
(
𝑆+𝑢𝑢(Δ𝑥, 𝜔) 𝑆+𝑢𝑤(Δ𝑥, 𝜔)
𝑆+𝑤𝑢(Δ𝑥, 𝜔) 𝑆+𝑤𝑤(Δ𝑥, 𝜔)

)
, (2.28)

where 𝑆+𝑛𝑚(Δ𝑥, 𝜔) 𝑛, 𝑚 ∈ {𝑢, 𝑤} are the one-sided cross-spectral densities of the turbu-
lence components along the structure. The co-spectra of 𝑢 and 𝑤 is often neglected, e.g.
[5][16][17][18] and the effects of the co-spectra have been studied by Øiseth et al. [19] and
shown that the contribution from the co-spectra was relative small. However, it was noted
that there are uncertainties in the modelling of the wind field and that the importance of
the co-spectra may increase for long-span bridges where the natural frequency are lower.
For the purpose of this thesis the cross-spectra of the turbulence components are assumed
negligible, Eq. (2.28) then reads

S+𝑉 (Δ𝑥, 𝜔) =
(
𝑆+𝑢𝑢(Δ𝑥, 𝜔) 0

0 𝑆+𝑤𝑤(Δ𝑥, 𝜔)

)
. (2.29)

The cross-spectral density of the response at a given point 𝑥𝑟 along the structure can be
calculated with the following equation [20]

S𝑅(𝜔, 𝑥𝑟) = Φ(𝑥𝑟)H𝜂(𝜔)Sq̃buff(𝜔)H𝑇
𝜂 (𝜔)Φ(𝑥𝑟) (2.30)

here H𝜂(𝜔) is the frequency response matrix of the equation of motion in generalised
coordinates defined as

H𝜂(𝜔) =
[
−𝜔2M̃ + 𝑖𝜔

(
C̃ − C̃ae(𝑉, 𝜔)

)
+

(
K̃ − K̃ae(𝑉, 𝜔)

)]−1
(2.31)

where 𝑖 denote the imaginary unit.
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2.3 Buffeting response in time domain

Calculating the buffeting response in the time domain is commonly carried out when
nonlinearities must be considered [21], as there are difficulties in applying them in the
frequency domain analysis. Even though there are no such nonlinearities accounted for in
this thesis and the fact that frequency domain analysis is less computationally expensive
than the time domain analysis, it is still useful to perform the time domain analysis in
order to compare the results obtained in both domains.

2.3.1 Self-excited forces in time domain

As seen from Eq. (2.12), the self-excited forces are functions of the spatial coordinate
corresponding to the longitudinal direction of the bridge and time, while the aerodynamic
damping and stiffness matrices are dependent on the mean wind velocity and frequency.
This means that Eq. (2.12) is only valid for one single-frequency harmonic motion. This
can, however, be overcome by introducing the principle of superposition. Eq. (2.12)
can then be extended to any periodic or aperiodic motion by applying Fourier integral
representation [1]

Gq = F(𝜔)Gu(𝜔), (2.32)

F(𝜔) = 1

2
𝜌𝑉2 ©­«

𝐾2(𝑃∗
1𝑖 + 𝑃∗

4) 𝐾2(𝑃∗
5𝑖 + 𝑃∗

6) 𝐾2𝐵(𝑃∗
2𝑖 + 𝑃∗

3)
𝐾2(𝐻∗

5𝑖 + 𝐻∗
6) 𝐾2(𝐻∗

1𝑖 + 𝐻∗
4) 𝐾2𝐵(𝐻∗

2𝑖 + 𝐻∗
3)

𝐾2𝐵(𝐴∗
5𝑖 + 𝐴∗

6) 𝐾2𝐵(𝐴∗
1𝑖 + 𝐴∗

4) 𝐾2𝐵2(𝐴∗
2𝑖 + 𝐴∗

3)
ª®¬ , (2.33)

where Gu(𝜔) are the Fourier transformation of the self-excited forces and the response,
respectively. F(𝜔) is the frequency response matrix which contains the transfer functions
defined in terms of the aerodynamic derivatives and is a function of the reduced circular
frequency of motion 𝐾 = (𝐵 · 𝜔)/𝑉. The transfer functions are treated as continuous
functions [1].

The self-excited forces in the time domain can be found through Eq. (2.32) by the use
of the convolution theorem. The convolution theorem states that a multiplication in
frequency domain is equal to a convolution in time domain [22]. Subsequently, the time
domain representation of Eq. (2.32) can be written as [23]

qse(𝑥, 𝑡) =
∫ ∞

−∞
f (𝑡 − 𝜏)u(𝑥, 𝜏)𝑑𝜏 (2.34)

where f is the matrix containing the aerodynamic impulse-response functions and is obtain
by the inverse Fourier transform of the aerodynamic transfer functions in matrix F(𝜔).

2.3.2 Curve fitting of the aerodynamic derivatives

As mentioned earlier, the aerodynamic derivatives are found through wind tunnel testing
and are only known at a limited number of reduced velocities. Curve fitting is there-
fore necessary in order to obtain continuous aerodynamic functions. Note that the curve
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fitting function must be appropriate for the inverse Fourier transform in order to ob-
tain f . The following rational function have been used frequently in the literature (e.g.
[1][14][23][24][25][26][27])

F(𝜔) = 1

2
𝜌𝑉2

(
a1 + a2

𝑖𝜔𝐵
𝑉

+ a3

(
𝑖𝜔𝐵
𝑉

)2
+
𝑁−3∑
𝑙=1

a𝑙+3
𝑖𝜔𝐵/𝑉

𝑖𝜔𝐵/𝑉 + 𝑑𝑙

)
=

1

2
𝜌𝑉2

(
a1 + a2𝑖𝐾 + a3 (𝑖𝐾)2 +

𝑁−3∑
𝑙=1

a𝑙+3
𝑖𝐾

𝑖𝐾 + 𝑑𝑙

)
.

(2.35)

Here a𝑖 𝑖 ∈ {1, 2, ..., 𝑁} and 𝑑𝑙 𝑙 ∈ {1, 2, ..., 𝑁 − 3} are frequency independent matrices
and coefficients that need to be determined through curve fitting. a1 represent non-
circulatory static aerodynamics, a2 represent the aerodynamic damping while a3 represent
the additional aerodynamic mass, which is normally negligible [27], a3 is assumed negligible
from here on out. The rational terms containing a𝑙+3 and 𝑑𝑙 represent the unsteady part
of the self-excited forces.

By looking at the real and imaginary part of the transfer functions in Eq. (2.33) it
can be seen that the real and imaginary part of the transfer functions correspond to the
aerodynamic derivatives in the aerodynamic stiffness and damping matrix, respectively
(see Eq. (2.12)). It is therefore convenient to write Eq. (2.35) in terms of the real and
imaginary part of the rational functions on the following form

Re(F(𝜔))
1
2𝜌𝑉

2𝐾2
= 𝑉̂2

©­­­­«
a1 +

𝑁−3∑
𝑙=3

a𝑙+3
1[(

𝑑𝑙𝑉̂
)2

+ 1

] ª®®®®¬
, (2.36)

Im(F(𝜔))
1
2𝜌𝑉

2𝐾2
= 𝑉̂

©­­­­«
a2 + 𝑉̂2

𝑁−3∑
𝑙=3

a𝑙+3
𝑑𝑙[(

𝑑𝑙𝑉̂
)2

+ 1

] ª®®®®¬
. (2.37)

Looking at Eq. (2.35) it can be noted that a nonlinear curve fitting is needed. Finding
proper coefficients for the rational functions and deciding how many terms to include can
be a tricky process if the experimental data describing the aerodynamic derivatives is
only known for a limited range of reduced velocities. This is because the entire frequency
domain is needed when taking the inverse Fourier transform [28]. This implies that ex-
trapolating out of the known range of reduced velocities may be problematic as it can
yield unrealistic values. It can therefore be convenient to force the curves to quasi-steady
asymptotes [24]. Algorithm 1 have been recommended in order to determine the unknown
coefficients [28]

Having obtained the rational function through curve fitting, the inverse Fourier transform
can be applied to Eq. (2.35) and inserted it into Eq. (2.34). This renders the following
expression for the self-excited forces
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Algorithm 1 Curve fitting

Step1: Make an initial guess for 𝑑𝑙 and use linear regression to find a𝑖
Step2: Use nonlinear regression to optimise 𝑑𝑙 and use linear regression to find a new
coefficients for a𝑖
Step3: Perform nonlinear regression to determine all coefficients 𝑑𝑙 and a𝑖 using the
results from the previous step as an initial guess

qse(𝑥, 𝑡) =
1

2
𝜌𝑉2

(
a1u(𝑥, 𝑡) +

𝐵

𝑉
a2 ¤u(𝑥, 𝑡) +

𝑁−3∑
𝑙=3

a𝑙+3

∫ ∞

−∞

(
u(𝑥, 𝑡) − 𝑑𝑙𝑉

𝐵

∫ 𝑡

−∞
𝑒−

𝑑𝑙𝑉

𝐵 (𝑡−𝜏)u(𝑥, 𝜏)𝑑𝜏
))

(2.38)

By transforming the system into generalised coordinates, the generalised self-excited forces
can be written as the following

q̃se(𝑡) =
∫ 𝐿

0

Φ𝑇(𝑥)qse(𝑥, 𝑡)𝑑𝑥

= ã1𝜼(𝑡) + ã2𝜼(𝑡) + 𝒁̃(𝑡)
(2.39)

ã1 =
1

2
𝜌𝑉2

∫ 𝐿

0

Φ𝑇a1Φ𝑑𝑥, (2.40)

ã2 =
1

2
𝜌𝑉2

∫ 𝐿

0

Φ𝑇a2Φ𝑑𝑥 (2.41)

𝒁̃(𝑡) = 1

2
𝜌𝑉2

∫ 𝐿

0

𝑁−3∑
𝑙=3

Φ𝑇a𝑙+3Φ ·
∫ ∞

−∞

(
𝜼(𝑡) − 𝑑𝑙𝑉

𝐵

∫ 𝑡

−∞
𝑒−

𝑑𝑙𝑉

𝐵 (𝑡−𝜏)𝜼(𝜏)𝑑𝜏
)

(2.42)

𝒁̃ can be expressed in terms of a matrix multiplication such as

𝒁̃ = 𝑸𝑿 (2.43)

𝑸 = (̃a4 ã5 . . . ã𝑁 ) (2.44)

𝑿 =

(
x𝑇1 x𝑇2 . . . x𝑇𝑁−3

)𝑇
(2.45)

x𝑙 =

(
𝜼(𝑡) − 𝑑𝑙𝑉

𝐵

∫ 𝑡

−∞
𝑒−

𝑑𝑙𝑉

𝐵 (𝑡−𝜏)𝜼(𝜏)𝑑𝜏
)
. (2.46)

The convolution integral in Eq. (2.46) is a computationally expensive calculation and it is
advantageous to create a state-space model in order to avoid calculating the convolution
integral, this has been shown by e.g [1][16].
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2.3.3 State-space representation of the equation of motion

This section describes the steps needed to create a state space model which can be used to
calculate the buffeting response. Starting with the derivative of Eq. (2.46) and utilising
partial integration of the convolution integral, it can be shown that the derivative of Eq.
(2.46) reads

¤x𝑙 = 𝜼(𝑡) − 𝑑𝑙𝑉

𝐵
x𝑙 . (2.47)

Writing Eq. (2.47) on matrix form and moving everything over to the left hand side of
the equation renders the following expression

𝑩 ¤𝑿 + 𝑫𝑿 − 𝑬 ¤𝜼 = 0, (2.48)

𝑩 =

©­­­­«
I

I
. . .

I

ª®®®®¬
, 𝑬 =

©­­­­«
I
I
...

I

ª®®®®¬
, 𝑫 =

𝑉

𝐵

©­­­­«
𝑑1I

𝑑2I
. . .

𝑑𝑁−3I

ª®®®®¬
, (2.49)

where I is the identity matrix and each I has the same number of rows and columns as
there are generalised coordinates. The equation of motion in generalised coordinates reads

M̃¥𝜼(𝑡) + C̃ ¤𝜼(𝑡) + K̃𝜼(𝑡) = Q̃tot(𝑡), (2.50)

Q̃tot(𝑡) = q̃buff(𝑡) + q̃se(𝑡). (2.51)

Inserting the generalised self-excited forces from Eq. (2.39) with the matrix notation in
Eq. (2.43) into the equation of motion in Eq. (2.50) yields the following equation of
motion

M̃¥𝜼(𝑡) +
(
C̃ − ã2

)
¤𝜼(𝑡) +

(
K̃ − ã1

)
𝜼(𝑡) −𝑸𝑿 = q̃buff(𝑡). (2.52)

By pre-multiplying with the inverse of the generalised mass matrix M̃−1 in Eq. (2.52), the
equation, together with Eq. (2.48) can be expressed as the following state space model

©­«
¤𝜼
¥𝜼
¤𝑿

ª®¬ +
©­­«

0 −I 0

M̃−1
(
K̃ − ã1

)
M̃−1

(
C̃ − ã2

)
−M̃−1𝑸

0 −𝑬 𝑫

ª®®¬
©­«
𝜼
¤𝜼
𝑿

ª®¬ =
©­«

0

M̃−1q̃buff(𝑡)
0

ª®¬ . (2.53)

Eq. (2.53) can be solved by discretisation of the state space model (see e.g. [29]). A
general state space representation for a linear system can be written as [29]

¤x(𝑡) = A𝑐x(𝑡) + B𝑐u(𝑡)
y(𝑡) = C𝑐x(𝑡) +D𝑐u(𝑡)

(2.54)
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where x, u and y are known as the state, input and output vector, respectively. A𝑐, B𝑐, C𝑐

and D𝑐 are known as the state, input, output and feedthrough matrices. The sub index 𝑐
denotes that this is a continuous system in time. However, we are usually working with
discretised models and discretised time steps Δ𝑡, and therefore, in need to represent the
state space model in discretised time. The continuous state space model can be transform
to the following discretised model assuming zero-order hold [29]

¤x𝑘+1 = A𝑑x𝑘 + B𝑑u𝑘

y𝑘 = C𝑑x𝑘 +D𝑑u𝑘
(2.55)

A𝑑 = 𝑒A𝑐Δ𝑡, B𝑑 = [A𝑑 − I]A−1
𝑐 B𝑐, C𝑑 = C𝑐, D𝑑 = D𝑐 (2.56)

where 𝑘 denotes the current time increment 𝑡𝑘 . Now, applying the state space representa-
tion of the equation of motion in Eq. (2.53) to the aforementioned discretised state space
model, Eq. (2.55), the following yields true

¤x𝑘+1 = A𝑑x𝑘 + B𝑑q̃buff,𝑘

y𝑘 = C𝑑x𝑘
(2.57)

A𝑐 = −
©­­«

0 −I 0

M̃−1
(
K̃ − ã1

)
M̃−1

(
C̃ − ã2

)
−M̃−1𝑸

0 −𝑬 𝑫

ª®®¬ , B𝑐 =
©­«

0

M̃−1

0

ª®¬ , C𝑐 = I (2.58)

where y𝑘 =
(
𝜼𝑇
𝑘

¤𝜼𝑇
𝑘

𝑿𝑇
𝑘

)𝑇
and the matrices A𝑑, B𝑑 and C𝑑 can be established through

Eq. (2.56). The buffeting response can be obtained through this state space model by
calculating the generalised response 𝜼 and pre-multiplying with the mode shapes Φ. How-
ever, the generalised buffeting load must be properly defined before the calculations can
be carried out. The buffeting load is dependent on the buffeting load matrix and the tur-
bulence components. The buffeting load matrix have been defined previously (Eq. (2.6)).
The turbulence components can be obtained through simulated time series.

2.3.4 Time series simulations

By utilising the Monte Carlo method, as done by e.g. [1][24][30][31][32], the wind field
characteristics can be used to create a simulated wind field which describes the turbulence
along the bridge. The simulated time series for a turbulence component 𝑥 ∈ {𝑢, 𝑣, 𝑤} at
a point 𝑚 along the bridge reads [5]

𝑥𝑚(𝑡) =
𝑚∑
𝑛=1

𝑁∑
𝑗=1

��𝐺𝑚𝑛(𝜔 𝑗)
�� · √2Δ𝜔 · cos

(
𝜔 𝑗 · 𝑡 + 𝜓𝑛𝑗

)
(2.59)

where 𝜓𝑛𝑗 ∈ [0, 2𝜋] is an arbitrary phase angle, 𝜔 𝑗 is the frequency segment 𝑗 and
Δ𝜔 = 𝜔 𝑗+1 − 𝜔 𝑗 is the distance between two frequency segments. 𝐺𝑚𝑛(𝜔 𝑗) corresponds to
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Figure 4: Simulated fluctuating wind velocities at the quarter-span (1) and midspan (2)
over a 600 s window; 𝑢 denoting the along-wind turbulence component while 𝑤 denote
the vertical turbulence component.

the elements of the matrix 𝑮(𝜔) at frequency segment 𝑗. An example of simulated time
series of the turbulence components 𝑢 and 𝑤 at two points along the bridge is shown in
Figure 4. 𝑮(𝜔) denote the Cholesky decomposition [33] of the cross-spectral density of
the turbulence components, S(𝜔), along the bridge. The Cholesky decomposition have the
property that S(𝜔) = 𝑮(𝜔)𝑮𝐻(𝜔) where 𝑮 is a lower triangular matrix and 𝐻 denotes
the Hermitian transpose. A 𝑛x𝑛 lower triangular matrix has (𝑛2 − 𝑛)/2 zero entries and
therefore reduces the number of calculations needed by the same amount, which is why
Cholesky decomposition is frequently used, see e.g. [1][24][32][34][35][36].

The inner sum of Eq. (2.59) can rewritten on exponential form by the use of Euler’s
formula:

𝑥𝑚(𝑡) = Re
©­«
𝑚∑
𝑛=1

𝑁∑
𝑗=1

��𝐺𝑚𝑛(𝜔 𝑗)
�� · √2Δ𝜔 · 𝑒𝜓𝑛𝑗 𝑒 𝑖𝜔𝑗 ·𝑡ª®¬ (2.60)

Again by looking at the inner sum, the inner sum can be recognising as the inverse discrete
Fourier transform of |𝐺 |

√
2Δ𝜔𝑒𝜓. Subsequently, the inverse FFT (IFFT) can be applied,

as shown by Shinozuka [31], and Eq. (2.60) can be rewritten to

𝑥𝑚(𝑡) = Re

(
𝑚∑
𝑛=1

IFFT
(
|𝑮𝑚𝑛 | ·

√
2Δ𝜔 · 𝑒𝝍𝑛

))
(2.61)

The turbulence vector v can be found by performing the time series simulations according
to Eq. (2.61) for the turbulence components 𝑢 and 𝑤 such that
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v =

(
𝑢(𝑥, 𝑡)
𝑤(𝑥, 𝑡)

)
. (2.62)

Going from simulating time series with double summation in Eq. (2.59) to single summa-
tion with the IFFT reduces the computational costs drastically. However, the computa-
tional cost can be reduced even further. One of the most time consuming calculations in
the simulation is the Cholesky decomposition. The problem have been circumvented, by
e.g. [37], by calculating the Cholesky decomposition, G(𝜔red), for a coarser frequency axis
and then interpolate G(𝜔red) onto the main frequency axis.

2.3.5 Buffeting load

Now everything is accounted for, except the buffeting load qbuff. As seen by the frequency
domain representation of the buffeting load in Eq. (2.25), the buffeting load is defined
through a multiplication of the buffeting load matrix B𝑞(𝜔) and the turbulence components
G𝑣(𝑥, 𝜔). As stated earlier (regarding the self-excited forces) a multiplication in the
frequency domain corresponds to a convolution integral in time domain. The buffeting
load in time domain then reads

qbuff(𝑥, 𝑡) =
∫ ∞

−∞
b𝑞(𝜏)v(𝑥, 𝑡 − 𝜏)𝑑𝜏 (2.63)

where bq(𝜏) is the inverse Fourier transform of Bq(𝜔). By applying the modal transform-
ation, the generalised buffeting load reads

q̃buff(𝑡) =
∫ 𝐿

0

Φ𝑇(𝑥)qbuff(𝑥, 𝑡)𝑑𝑥 (2.64)

The convolution integral in Eq. (2.63) is a computational expensive calculation and it
is beneficial to avoid calculating the integral directly. The convolution integral can be
evaluated in Fourier space. This can be done by taking the Fourier transform of the
turbulence vector v obtained through the time series simulation, which yields G𝑣(𝜔). The
buffeting load matrix B𝑞 and G𝑣 can then be multiplied together, according to Eq. (2.25).
The inverse Fourier transform of the result then yields the buffeting load qbuff(𝑡).

2.4 Flutter stability

Flutter is a phenomenon in which the structure exhibits unsteady dynamic behaviour due
self-excited vibrations. The flutter response is govern by vertical or torsional response,
or both vertical and torsional response in a coupled configuration. The stability limit is
an important aspect of bridge design, which tells us for which frequency and mean wind
velocities the structure becomes unstable. The stability limit of an aeroelastic system can
be determined by solving the following complex polynomial [14][38]

��det (
E𝜂(𝑉, 𝜔)

) �� = 0 (2.65)
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where E is the impedance matrix and is equal to the inverse of the frequency response
matrix. Because of the relation between the impedance matrix and the frequency response
matrix, the solution of Eq. (2.65) can readily be obtained graphically by plotting the
absolute value of the determinant of the frequency response matrix and seeing where it
tends to infinity.

Another way to determine the stability limit of an aeroelastic system is through eigenvalue
analysis of the state space model, as done by e.g. [1][24][39][40]. This is done by calculating
the eigenvalues of A𝑐, defined in Eq. (2.58). The eigenvalues of A𝑐 will generally be on
the form 𝑆𝑛 = 𝜇𝑛 + 𝜔𝑛 𝑖. The eigenvalues 𝑆𝑛 have the properties that the imaginary part
correspond to the natural frequency of the system and the damping ratio can be found by
the following expression [28]

𝜉𝑛 = −Re (𝑆𝑛)
|𝑆𝑛 |

. (2.66)

From these properties it is seen that a negative real part implies positive damping ratio
and a stable system, while a positive real part implies negative damping and an unstable
system. If the imaginary part of 𝑆𝑛 is zero, 𝜔𝑛 = 0, the response is non-periodic, while a
nonzero imaginary part implies an oscillatory response.

2.5 Extreme value analysis time domain

Extreme value analysis is an important part of structural safety and design. The results
from the buffeting response can be used to fit the extreme values of the response to
a probability distribution function (PDF). Generally, the probability distribution is not
known. However, since the extreme response is the matter of interest, it will follow an
extreme value distribution. There are only three types of extreme value distributions [41],
namely, Gumbel [42], Fréchet [43] and Weibull [44] distribution. All three distribution
can be described on one parametric form called the generalised extreme value (GEV)
distribution. Therefore, the GEV distribution could be used in order to find the best
fitting extreme value distribution. However, there are problems with this approach as
discussed by e.g. Næss [41]. Therefore, the Gumbel distribution will only be discussed
henceforth.

2.5.1 Gumbel distribution

The cumulative distribution function (CDF) of the Gumbel distribution reads as follows

𝐹(𝑥; 𝛼, 𝛽) = 𝑒−𝑒
− (𝑥−𝛼)

𝛽
(2.67)

where 𝛼 and 𝛽 > 0 are parameters that is found through the simulated data by e.g. the
method of moments. It has been shown that the parameters 𝛼 and 𝛽 can be expressed by
the mean value 𝜇 and the standard deviation 𝜎 [45] such that

𝛽 =
√
6𝜎/𝜋

𝛼 = 𝜇 − 𝛽𝛾,
(2.68)
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where 𝛾 denotes Euler’s constant. The PDF of the Gumbel distribution is found by taking
the derivative of the CDF with respect to 𝑥. The PDF of the Gumbel distribution then
reads

𝑓 (𝑥; 𝛼, 𝛽) = 1

𝛽
𝑒
−
(
(𝑥−𝛼)

𝛽 +𝑒−
(𝑥−𝛼)

𝛽

)
. (2.69)

After the response calculation are done through time series simulations with 𝑁 simulations,
there are 𝑁 maximum values (for each degree of freedom). Let 𝑥1, 𝑥2, ..., 𝑥𝑁 be the
(absolute) maximum realisation for each simulation in 𝑁 in increasing order, such that
𝑥(1) ≤ 𝑥(2) ≤ ... ≤ 𝑥(𝑁). Let 𝑋(𝑚) be a random variable corresponding to 𝑥(𝑚) 𝑚 ∈
{1, 2, ..., 𝑁}. Then, a realisation of 𝑋(𝑚) = 𝑥 implies that there are 𝑁 −𝑚 values greater
than 𝑥, and there are 𝑚 − 1 values less than or equal to 𝑥. Using the results above it can
be shown that the expected value of the CDF of a realisation 𝑋(𝑚) is written as [46][47]

E[𝐹(𝑋(𝑚))] =
𝑚

𝑁 + 1
. (2.70)

This result can be used to estimate the parameters of the Gumbel distribution by plotting
all realisations on the following form (− log(− log( 𝑚

𝑁+1 )), 𝑥𝑚) and utilising that the negative
logarithm of the negative logarithm of the CDF of the Gumbel distribution reads

− log (− log(𝐹(𝑥; 𝛼, 𝛽))) = 1

𝛽
𝑥 − 𝛼

𝛽
. (2.71)

Taking twice the negative logarithm of 𝐹 renders a linear function which can be found by
linear regression of the points (− log(− log( 𝑚

𝑁+1 )), 𝑥𝑚). The CDF of 𝐹 can be determined

after the estimated parameters 𝛼̂ and 𝛽̂ have been obtained. Subsequently, an estimated
response 𝑅̂ corresponding to a prescribed percentile, 𝑝 ∈ [0, 1], can be obtained. However,
there are uncertainties related to the aforementioned result as it is based on a limited
number of simulations. Therefore, it is useful to employ the parametric bootstrapping
method [48][49] in order to calculate an estimated confidence interval for the estimated
response 𝑅̂.

2.5.2 Confidence interval

The parametric bootstrapping method uses all the data points obtained earlier, i.e. x =

(𝑥1, 𝑥2, ..., 𝑥𝑁 ), or rather, it uses the estimated parameters 𝛼̂ and 𝛽̂ and the corresponding
Gumbel distribution 𝐹(𝑥; 𝛼̂, 𝛽̂). New samples x∗

𝑗
𝑗 ∈ {1, 2, ..., 𝑛} are then generated from

a new random variable 𝑋∗ with the distribution function 𝐹(𝑥; 𝛼̂, 𝛽̂). Each new sample x∗
𝑗

contains 𝑁 independent observations of 𝑋∗ and each x∗
𝑗
is then fitted to a new Gumbel

distribution 𝐹(𝑥; 𝛼̂∗
𝑗
, 𝛽̂∗

𝑗
) where a new estimate of the response 𝑅̂∗

𝑗
can be obtained. An

approximation of the confidence interval is then given by(
𝑅̂ − 𝑤𝑞/2𝜎

∗
𝑅
, 𝑅̂ + 𝑤𝑞/2𝜎

∗
𝑅

)
(2.72)

where 𝑤𝑞/2 denotes the 100(1 − 𝑞/2)% standard normal fractile and 𝜎∗
𝑅
is the standard

deviation of the new response samples
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𝜎∗
𝑅 =

√√√
1

𝑛 − 1

𝑛∑
𝑗=1

(
𝑅̂∗
𝑗
− 𝑅̄∗

)2
(2.73)

𝑅̄∗ = (1/𝑛)
𝑛∑
𝑗=1

𝑅̂∗
𝑗 (2.74)

However, the true distribution may be generated by using several thousands bootstrap
samples [46]. By ordering the estimates 𝑅̂∗

𝑗
in increasing order, a 100(1 − 𝑞)% confidence

interval is then given as (
𝑅̂∗
𝑙
, 𝑅̂∗

𝑢

)
(2.75)

where 𝑙 = [𝑞𝑛/2] and 𝑢 = [(1 − 𝑞/2)𝑛] ([·] denotes the integer part of ·).

2.6 Extreme value analysis frequency domain

The frequency domain response does not have any realisations of the actual response of the
bridge, rather it describes the response in statistical terms. The probability distribution
of the largest peak for a time interval 𝑇 follows a Poisson distribution. The CDF of the
largest peak is equal to the probability of the maximum value of a function 𝑦(𝑡), where 𝑡
goes from 0 to 𝑇, is less or equal to some threshold 𝑎, which can be expresses as:

𝑃Ma(𝑎) = Prob{max{𝑦(𝑡), 0 ≤ 𝑡 ≤ 𝑇} ≤ 𝑎}

= exp
(
−𝑣+𝑦 (𝑎)𝑇

) (2.76)

where 𝑣+𝑦 (𝑎) is the up-crossing rate defined as:

𝑣+𝑦 (𝑎) =
1

2𝜋

𝜎 ¤𝑦
𝜎𝑦

exp

(
−1

2

(
𝑎

𝜎𝑦

)2)
. (2.77)

Here, 𝜎𝑦 and 𝜎 ¤𝑦 is the standard deviation of the function 𝑦(𝑡) and its derivative ¤𝑦, re-
spectively. The standard deviation of the frequency response can be obtained by utilising
one of the most important property of the power spectra. That is, for some process 𝑦,
the integral of the power spectra 𝑆𝑦(𝜔) over the entire frequency domain is equal to the
variance, or 𝐸[𝑦2], of the process [15]. The standard deviation of 𝑦 can be obtained from
the following:

𝜎𝑦 =

√∫ ∞

−∞
𝑆𝑦(𝜔)𝑑𝜔. (2.78)

The standard deviation of the derivative of the frequency response can be obtained by
utilising another property of the power spectra:
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𝑆 ¤𝑦(𝜔) = 𝜔2𝑆𝑦(𝜔), (2.79)

such that the standard deviation of the derivative of the response reads as follows:

𝜎 ¤𝑦 =

√∫ ∞

−∞
𝜔2𝑆𝑦(𝜔)𝑑𝜔. (2.80)

The up-crossing rate of any response given by the power spectra S𝑅(𝜔) can be determined
through Eq. (2.78) and Eq. (2.80). Subsequently, the CDF of the largest peak can be
established for a given time interval 𝑇. The CDF of the largest peak can then be used
to obtain a response 𝑅̂ for a given percentile 𝑝 ∈ [0, 1] such that for an arbitrary peak
response, 𝑅, the probability of exceeding 𝑅̂ is 100(1 − 𝑝) %.
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Figure 5: The H̊alogaland Bridge viewed from the South-East, photo from Statens Ve-
gvesen [50].

3 Methodology

The theory presented in the previous chapter is the theoretical foundation used to calculate
the buffeting response of the H̊alogaland Bridge in frequency and time domain, in addition
to the flutter stability and the extreme value analysis of the buffeting response. This
chapter outlines how the theory was used in order to obtain the desired results as well as
a short introduction of the H̊alogaland bridge and its properties.

3.1 Introduction

The H̊alogaland Bridge is a suspension bridge located in the vicinity of Narvik in northen
Norway. The bridge, which was finished in the end of 2018, crosses the Rombak fjord and
as a result, the European route E6 was shortened by 18 km and traffic was redirected away
from an area prone to accidents. The H̊alogaland Bridge is currently the second longest
bridge in Norway, with a main span of 1145 m [50]. The bridge deck is made of a steel
box girder and the cross section, which is similar to the one shown in Figure 1, has a total
width of 18.6 m and a height of 3 m [51]. The girder is carried by hangers connected to
two suspension cables which are supported by a tower in each end. Figure 5 shows the
finished H̊alogaland Bridge.

3.2 Abaqus model

A finite element model of the H̊alogaland Bride have been modelled in Abaqus [52] and was
provided by Øyvind Wiig Petersen. The model is shown in Figure 6. The model was used
to extract the modal features of the H̊alogaland Bridge, i.e. modal mass, mode shapes and
the corresponding natural frequencies. The first eighth mode shapes of the horizontal, ver-
tical and torsional mode shapes are illustrated in Figure 7 and the corresponding dynamic
properties are listed in Table 1. Note that the eighth torsional mode correspond to the
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80th mode shape while the eighth horizontal and vertical modes correspond to the 19th
and 13th mode shape, respectively. Subsequently, many mode shapes need to calculated in
order to obtain sufficiently many torsional modes. Therefore, a total of 100 mode shapes
was extracted from the Abaqus model and used in the buffeting response calculations.

The Abaqus model contains 573 nodes along the entire length of the bridge girder. This
corresponds to approximately 2 m long elements. The number of nodes were however
reduced to 120 nodes along the main span, which gives an approximate of 10 m per
element, in order to reduce the computational costs of the buffeting response calculations.

Figure 6: Abaqus model of the H̊alogaland Bridge
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Figure 7: The eighth first horizontal, vertical and torsional mode shapes of the H̊alogaland
Bridge
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Table 1: Dynamic properties of the H̊alogaland Bridge

Mode nr. 𝑖 Mode type Natural frequency 𝜔𝑖 (rad/s) (Assumed) damping ratio 𝜉𝑖 (-)

1 Horizontal 0.338 0.01
2 Vertical 0.728 0.01
3 Horizontal 0.752 0.01
4 Vertical 0.905 0.01
5 Vertical 1.293 0.01
6 Vertical 1.367 0.01
7 Horizontal 1.433 0.01
8 Vertical 1.680 0.01
9 Vertical 1.737 0.01
10 Horizontal 1.755 0.01
11 Horizontal 1.782 0.01
12 Vertical 1.798 0.01
13 Vertical 2.187 0.01
14 Horizontal 2.497 0.01
16 Torsional 2.752 0.01
18 Horizontal 2.835 0.01
19 Horizontal 2.908 0.01
29 Torsional 3.324 0.01
32 Torsional 3.676 0.01
48 Torsional 5.547 0.01
53 Torsional 5.965 0.01
60 Torsional 6.557 0.01
65 Torsional 7.216 0.01
80 Torsional 8.899 0.01

3.3 Wind tunnel testing

As mentioned earlier, in order to obtain the aerodynamic derivatives and the load coeffi-
cients it is necessary to perform wind tunnel testing of a down-scale section model of the
bridge. The wind tunnel data presented in this thesis was generated at the wind tunnel
testing laboratory at NTNU by Solstad and Onstad [53] in 2022. They performed the
testing on a section model with a scale of 1:50. The down-scaled H̊alogaland model had a
height of 0.06 m, width of 0.372 m and was 2.68 m long. Figure 8 show the wind tunnel
testing of a bridge girder section model similar to the H̊alogaland Bridge. As the wind
only comes from one direction in the wind tunnel, the section model has to be rotated in
order to simulate different angle of attacks. Thus it is possible to measure the aerodynamic
forces acting on the section model for different angles of attack.

3.3.1 Aerodynamic derivatives

The file containing the processed data from the wind tunnel testing regarding the aero-
dynamic derivatives contains the values of the dimensionless aerodynamic derivatives and
the corresponding mean wind velocity and reduced velocity for which they are obtained
at. The data consist of discrete values of the aerodynamic derivatives which are within a
limited range of reduced velocities. It is necessary to obtain the aerodynamic derivatives as
continuous functions in order to perform the buffeting response calculations. This can be

24



Figure 8: Wind tunnel testing of a bridge girder section model. Courtesy of NTNU.
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done by fitting the rational functions in Eq. (2.35) to the transfer functions in Eq. (2.33).
The first step in this process is to determine the number of rational terms to include. As
discussed earlier, this curve fitting can be a tricky process due to the consequences the
number of included terms have and the limited amount of experimental data. Investiga-
tions into the optimal number of terms to include have not been presented nor pursued
as it is out of scope of this thesis. Therefore, the number of terms were simply set to
three terms for describing the rational functions, i.e. a1, a2, a4 and 𝑑. In addition, 𝑑 was
assumed equal to one by recommendation from Ole Øiseth. This turned out to give a
good fit and further investigation to optimise 𝑑 were not made.

Now, lets take a closer look as to how a1, a2 and a4 can be determined through the method
of least squares by employing the Moore-Penrose inverse, also known as the pseudoinverse.
First, note that the coefficient matrices a𝑖 𝑖 ∈ {1, 2, 4} are 3x3 matrices such that they
can be expressed as follows

a𝑖 =

©­­­­«
𝑎11
𝑖

𝑎12
𝑖

𝑎13
𝑖

𝑎21
𝑖

𝑎22
𝑖

𝑎23
𝑖

𝑎31
𝑖

𝑎32
𝑖

𝑎33
𝑖

ª®®®®¬
. (3.1)

Each element in the coefficient matrices are connected to the corresponding element in
the frequency response matrix (see Eq. (2.33)). This implies that in order to find the
coefficients 𝑎11

𝑖
, only the data points from 𝑃∗

1 and 𝑃
∗
4 need to be considered, for 𝑎12

𝑖
the data

points 𝑃∗
5 and 𝑃∗

6, and so forth. Lets take a closer look as to how 𝑎11
𝑖

can be determined.
Assuming there are 𝑁 data points obtained through the wind tunnel testing, the following
matrix equation can be written with respect to the first elements in the rational functions
(see Eq. (2.35)) and the frequency response matrix (the factor 1/2𝜌𝑉2 is a common factor
of both equations and cancels each other out):

©­­­­­­­­­­­­­­­­­­­«

(𝐾2𝑃∗
1)1

(𝐾2𝑃∗
1)2
...

(𝐾2𝑃∗
1)𝑁

(𝐾2𝑃∗
4)1

(𝐾2𝑃∗
4)2
...

(𝐾2𝑃∗
4)𝑁

ª®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­«

0 1 Im
(

𝑖𝐾1

𝑖𝐾1+𝑑

)
0 1 Im

(
𝑖𝐾2

𝑖𝐾2+𝑑

)
...

...
...

0 1 Im
(

𝑖𝐾𝑁
𝑖𝐾𝑁+𝑑

)
1 0 Re

(
𝑖𝐾1

𝑖𝐾1+𝑑

)
1 0 Re

(
𝑖𝐾2

𝑖𝐾2+𝑑

)
...

...
...

1 0 Re
(

𝑖𝐾𝑁
𝑖𝐾𝑁+𝑑

)

ª®®®®®®®®®®®®®®®®®®®®¬

©­­­­«
𝑎111

𝑎112

𝑎114

ª®®®®¬
(3.2)

The equation can be written in a tidier manner:

y = Ax (3.3)

where x denotes the unknown coefficients to be determined. For a matrix P, the pseu-
doinverse is defined as follows:

P+ = P𝑇
(
PP𝑇

)−1
. (3.4)
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Figure 9: Dimensionless aerodynamic derivatives, as function of reduced circular frequency,
obtained from wind tunnel testing. These aerodynamic derivatives are associated with the
aerodynamic damping.

Applying the pseudoinverse to Eq. (3.3) then renders the following expression for x:

x = A𝑇
(
AA𝑇

)−1
y. (3.5)

The exact same procedure can be followed in order to obtain the other coefficients. The
experimental data obtained from the wind tunnel testing of the aerodynamic derivatives
related to the aerodynamic damping and stiffness is shown in Figure 9 and Figure 10,
respectively. The figures show the aerodynamic derivatives multiplied by the reduced
frequency squared as functions of reduced frequency, which is convenient for the method
described for fitting the rational functions.

3.3.2 Load coefficients

The experimental data obtained from the wind tunnel testing regarding the drag, lift and
moment coefficients is presented in Figure 14. The mean angle of attack is assumed equal
to zero, such that the load coefficients 𝐶𝐷, 𝐶𝐿 and 𝐶𝑀 are obtained 𝛼 = 0, while 𝐶′

𝐷
, 𝐶′

𝐿
and 𝐶′

𝑀
are obtained as the slope of the derivative of the load coefficients at 𝛼 = 0.

3.4 Verification of the modelling of self-excited forces

It is possible to check if the curve fitted expressions for the rational functions is properly
fitted by the use of a state space model to obtain the self-excited forces. By prescribing
an arbitrary motion for a single reduced circular frequency, the self-excited forces can be
obtain through a state space model and through to Eq. (2.12).
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Figure 10: Dimensionless aerodynamic derivatives, as function of reduced circular fre-
quency, obtained from wind tunnel testing. These aerodynamic derivatives are associated
with the aerodynamic stiffness.
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Figure 11: Load coefficients obtained from wind tunnel testing of different angles 𝛼. Top
figure show the drag coefficient, middle figure show the lift coefficient, while the bottom
figure show the pitching moment coefficient.
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In order to obtain the state space model for describing the self-excited forces, a procedure
similar to the one presented in Section 2.3.2 can be applied. The state space model can
be set up using the general state space model, given in Eq. (2.54), to find the unsteady
part of the of the self-excited forces. As a𝑖 and 𝑑 are known from the curve fitting and a
random motion is prescribed, the following set of equations can be used to describe the
self-excited forces as a continuous function:

¤x(𝑡) = D𝑐x(𝑡) + E𝑐 ¤u(𝑡)
z(𝑡) = Q𝑐x(𝑡)

(3.6)

qse(𝑡) =
1

2
𝜌𝑉2 (a1u(𝑡) + a2 ¤u(𝑡)) + z(𝑡) (3.7)

where,

D𝑐 = −𝑑𝑉
𝐵

I (3.8)

E𝑐 = I (3.9)

Q𝑐 =
1

2
𝜌𝑉2a4 (3.10)

x =

(
u(𝑡) − 𝑑𝑉

𝐵

∫ 𝑡

−∞
𝑒−

𝑑𝑉
𝐵 (𝑡−𝜏)u(𝜏)𝑑𝜏

)
. (3.11)

Here I is the (3x3) identity matrix. The discretised state space model can be established
similar to the discretisation of the state space model of the equation of motion:

¤x𝑘+1 = D𝑑x𝑘 + E𝑑 ¤u𝑘
z𝑘 = Q𝑑x𝑘

(3.12)

q𝑘 =
1

2
𝜌𝑉2 (a1u𝑘 + a2 ¤u𝑘) + z𝑘 (3.13)

where D𝑑, E𝑑 and Q𝑑 can be established through Eq. (2.56). Eq. (3.12) and Eq. (3.13)
can then be used to simulate the self-excited forces for an arbitray motion.

3.5 Calculating the buffeting response

The buffeting response of the H̊alogaland Bridge was calculated using 100 mode shapes.
All calculations have been carried out in Python and are available in the appendix. The
buffeting response is calculated for horizontal, vertical and rotational displacement at the
midspan of the bridge.
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Table 2: Wind field parameters

𝜌 𝐴𝑢 𝐴𝑤 𝐶𝑢𝑦 𝐶𝑤𝑦 𝐿1(m) 𝑧1(m) 𝑧(m) 𝑥𝐿𝑢(m) 𝑥𝐿𝑤(m) 𝐼𝑢 𝐼𝑤

1.25 6.8 9.4 10.0 6.5 100.0 10.0 50.0 𝐿1(𝑧/𝑧1)0.3 𝑥𝐿𝑢/12 0.15 𝐼𝑢/4

The modal mass, natural frequencies and corresponding mode shapes are obtained through
the Python script prepared by Øyvind Wiig Petersen. The Python script (see Appendix
A.4) reads the structural properties from a HDF5 data file which contains the relevant
information from the ODB (output database) file from the Abaqus model. The modal
properties are readily obtained in NumPy arrays [54]. There are in total 573 nodes along
the bridge deck from the Abaqus model and six degrees of freedom (DOF) in each node,
namely, longitudinal , horizontal and vertical translation, in addition to rotations, i.e.
torsion, vertical bending and horizontal bending. However, the script sorts out the relevant
DOF, i.e. horizontal translation, vertical translation and torsion. The number of nodes
were reduces from 573 to 120 in order to reduce the computational time. This results in
roughly 10 m between each node rather than the original 2 m.

Having the modal mass and natural frequencies, the modal stiffness matrix was obtained
by the following equation

K̃ = 𝑑𝑖𝑎𝑔
(
𝜔2
𝑛𝑀̃𝑛

)
, (3.14)

where 𝜔𝑛 𝑛 ∈ {1, 2, ..., 100} is the natural circular frequency and 𝑀̃𝑛 𝑛 ∈ {1, 2, ..., 100}
denote the diagonal terms in the modal mass matrix. The damping ratio was assumed
𝜉 = 1 % in all modes, and such the modal damping matrix was found through the following
equation

C̃ = 𝑑𝑖𝑎𝑔
(
2𝑀̃𝑛𝜔𝑛𝜉

)
. (3.15)

Using the static load coefficients and the sectional dimensions of the H̊alogaland Bridge, the
buffeting load matrix B𝑞 (Eq. (2.6)) can be obtained for an arbitrary mean wind velocity
𝑉. For the same arbitrary 𝑉, the cross-spectral density of the turbulence components S+

𝑉
(Eq. (2.28)) can readily obtained by inserting the assumed wind field parameters, given
in Table 2, into Eq. (2.8) and Eq. (2.10).

3.5.1 Calculations in frequency domain

Having obtained the mode shapes Φ, the buffeting load matrix B𝑞 and the cross-spectral
density of the turbulence components S+

𝑉
, the cross-spectral density of the generalised

buffeting load (Eq. (2.27)) can be calculated by numerical integration. The integration
is performed with a coarser frequency axis and then the co-spectra is interpolated back
onto the original frequency axis. This reduces the number of calculations needed and
subsequently the computational time. This can be done as the frequency steps Δ𝜔 needed
to capture the narrow peaks in the power spectra of the buffeting response is much smaller
than what is needed for the power spectra of the buffeting load.

In order to obtain the frequency response matrix (Eq. (2.31)), the modal aerodynamic
damping (Eq. (2.23)) and stiffness (Eq. (2.24)) matrices need to be determined. The
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aerodynamic damping and stiffness matrix can be established with the mode shapes Φ
and previously obtained curve fits of the aerodynamic derivatives. The frequency response
matrix can then readily be obtained having established the modal aerodynamic damping
and stiffness matrices. The cross-spectral density of the response S𝑅 can then be calculated
as in Eq. (2.30).

Note that the frequency response matrix and the co-spectra of the generalised buffeting
load are both matrices as functions of the mean wind velocity 𝑉 and the circular frequency
𝜔, and subsequently, the co-spectra of the response is also a function of 𝑉 and 𝜔. This
means that these matrix multiplications and numerical integrations need to happen for all
frequency components 𝜔𝑘 and all mean wind velocity components 𝑉𝑘 . This is very com-
putationally expensive and optimisations, such as the integration of a coarser frequency
axis to find the co-spectra of the generalised buffeting load is rather convenient.

Integrating the co-spectra of the response over the frequency axis renders the covariance
matrix of the response. The covariance matrix can be used to calculate the standard devi-
ation and correlation coefficient between the different responses as the standard deviation
is equal to the square root of the variance. The correlation factor, 𝜌𝑥𝑦, of two processes
𝑥 and 𝑦 is equal to the covariance of 𝑥 and 𝑦 divided by the product of the standard
deviation of 𝑥 and 𝑦:

𝜌𝑥𝑦 =
cov(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

. (3.16)

3.5.2 Calculations in time domain

The buffeting response in time domain also needs to be calculated for an array of mean
wind velocities. Additionally, time series of the wind field must be simulated for each
mean wind velocity in order to obtain the turbulence vector v and calculate the buffeting
response.

The buffeting response can be calculated through the discretised state space model given
in Section 2.3.3. First, the state space matrices in Eq. (2.58) need to be established.
From Section 3.3.1 it was determined that the transfer functions would be described by
the use of the coefficient matrices a1, a2 and a4. The matrices, which have been estab-
lished through the curve fitting of the aerodynamic derivatives, are then transformed to
generalised matrices, ã1, ã2 and ã4 according to Eq. (2.40). The state space matrix A𝑐,
given in Eq. (2.58), then reads:

A𝑐 = −
©­­«

0 −I 0

M̃−1
(
K̃ − ã1

)
M̃−1

(
C̃ − ã2

)
−M̃−1 ã4

0 −𝑬 𝑫

ª®®¬ , (3.17)

while B𝑐 and C𝑐 reads the same. These matrices can be transformed to the discretised
state space model according to Eq. (2.56).

The Cholesky decomposition of the co-spectra of the turbulence components S+
𝑉
are found

through the SciPy function cholesky [55]. The Cholesky decomposition is found for a
coarser frequency axis than the main simulation frequency axis, and then interpolated
back to the main axis, as described in Section 2.3.4, in order to reduce the computational
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cost. Another way to increase the computational speed is to zero-pad the inverse FFT to
the next power of two as the FFT computes arrays with length equal to exponents of two
faster than arrays of other lengths.

The number of Monte Carlo simulations was set to 20, and such, for each simulation, a new
set of random phase angles between 0 and 2𝜋 was generated by the help of the NumPy
function random.rand. With the random phase angles and the Cholesky decomposed
matrix in place, the turbulence components, 𝑢𝑚 and 𝑤𝑚, can readily be obtained according
to Eq. (2.61). The turbulence components are then calculated for all 120 nodes along the
main span in order to establish the turbulence vector v. As no admittance functions are
applied, the buffeting load matrix is not dependent on the circular frequency such that
the buffeting load can be expressed as qbuff(𝑡) = B𝑞v(𝑡) and the generalised buffeting load
can be calculated according to Eq. (2.64). The discretised state space model presented in
Eq. (2.57) is then used, assuming x0 = 0, to calculate the buffeting response.

3.6 Stability limit

The flutter stability of the system was estimated by the eigenvalue analysis of the state
space model, i.e. the second approach shown in Section 2.4. The eigenvalues of the state
space matrix A𝑐, which were established in the last section, are then calculated by iterating
through different mean wind velocities 𝑉. The iterations was done in a while-loop, starting
with relative small values of 𝑉 and calculating the eigenvalues 𝑆𝑛 of A𝑐. The system is
stable if all the real eigenvalues are negative, i.e. positive damping. If this is the case, 𝑉 is
slightly increased and a new set of eigenvalues are calculated for the new 𝑉. The process
of increasing 𝑉 continues until the maximum of the real eigenvalues becomes positive. The
system have then become unstable and exhibit negative damping. When this happens the
increase in 𝑉 is reverted to the previous value and instead increased with half amount
as compared to earlier. By doing this every time the maximum real eigenvalue is greater
than zero, we get closer and closer to the critical mean wind velocity 𝑉cr, which is readily
obtained with sufficiently many iterations or a stop criteria.

3.7 Extreme response time domain

3.7.1 Fitting the extreme value distribution

After calculating 20 realisations of the buffeting response in time domain, the maximum
response (in each DOF) is selected for each realisation and a specific mean wind velocity
and put into an array. These values are then sorted in ascending order, 𝑥1 ≤ ... ≤
𝑥𝑚 ≤ ... ≤ 𝑥𝑁=20. These values can then be plotted on the form presented in Section
2.5.1: (− log(− log( 𝑚

𝑁+1 )), 𝑥𝑚), and such, the parameters of the Gumbel distribution can
be found by linear regression, in accordance with Eq. (2.71). Another way to determine
the Gumbel parameters is through method of moments, using the mean and standard
deviation of the array of the maximum responses. With the mean and standard deviation,
the Gumbel parameters are readily obtainable using Eq. (2.68). Both methods are equally
viable. However, the latter method was used to obtain the Gumbel parameters. The PDF
and the CDF of the Gumbel distribution can then be calculated according to Eq. (2.69)
and Eq. (2.67), respectively.

By setting the CDF of the Gumbel distribution 𝐹(𝑅) equal to some percentile 𝑝, an
estimator of the peak response 𝑅̂ can be obtained for which the exceedance rate of 𝑅̂ is
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equal to 100 (1− 𝑝) %. The 95th percentile was used in order to obtain the results in this
thesis, i.e. 𝑝 = 0.95. However, since the Gumbel parameter are based on a relative small
number of samples, there are (quite the) uncertainty in the calculated response. For this
reason it is important to find the confidence interval of the peak response estimator 𝑅̂.

3.7.2 Confidence interval

The confidence interval of the estimated peak response, 𝑅̂, was estimated using the boot-
strap method presented in Section 2.5.2. For the bootstrap method, 100 000 arrays with
20 elements each were randomly generated from the CDF of the Gumbel distribution with
the estimated Gumbel parameters. The mean and the standard deviation of the arrays
were then calculated and a new set of Gumbel parameters can be estimated for the cor-
responding arrays. With these new estimated parameters, a new estimator of the 95th
percentile response 𝑅̂∗

𝑗
𝑗 ∈ {1, 2, ..., 100 000} can obtained.

By sorting all the new estimators 𝑅̂∗
𝑗
in ascending order, 𝑅̂∗

(1) ≤ 𝑅̂∗
(2) ≤ ... ≤ 𝑅̂∗

(100 000), the

100 (1 − 𝑞) % confidence interval can be found according to Eq. (2.75). The confidence
interval is chosen to be 95 % in this thesis, i.e. 𝑞 = 0.05, meaning that the 95 % confidence
interval is given by: (

𝑅̂∗
(2 500), 𝑅̂∗

(97 500)

)
(3.18)

3.8 Extreme response frequency domain

The standard deviation of the response and the derivative of the response can readily be
obtained after the co-spectra of the response S𝑅 have been established, according to Eq.
(2.78) and Eq. (2.80), respectively. With the standard deviation in place, the CDF of the
largest peak 𝑃Ma can then be obtained through Eq. (2.76). After 𝑃Ma was established,
the 95th percentile responses were obtained by solving the equation 𝑃Ma = 0.95.
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4 Results

This chapter presents the results derived from the theory, described in Section 2, and
applied to the H̊alogaland Bridge following the methodology described in Section 3.

4.1 Wind tunnel data

This section presents the result regarding the aerodynamic properties, i.e. the curve
fitting of the aerodynamic derivatives, the load coefficients and the verification of the
fitted rational functions.

4.1.1 Aerodynamic derivatives

Figure 12 and Figure 13 show the experimental data of the aerodynamic derivatives from
the wind tunnel testing together with the curve fitting of the respective aerodynamic
derivative. Figure 12 show the aerodynamic derivatives associated with the aerodynamic
damping while Figure 13 show the aerodynamic derivatives associated with aerodynamic
stiffness. A summary of the rational function coefficients describing the curve fits are
presented in Table 3.

Table 3: Rational function coefficients obtained through curve fitting of the experimental
aerodynamic derivative data.

𝑖 𝑎11
𝑖

𝑎12
𝑖

𝑎13
𝑖

𝑎21
𝑖

𝑎22
𝑖

𝑎23
𝑖

𝑎31
𝑖

𝑎32
𝑖

𝑎33
𝑖

1 0.056 0.003 -0.152 -0.066 0.030 2.657 0.012 -0.010 1.014
2 0.052 -0.219 -0.031 1.036 -1.875 1.464 0.041 -0.928 -0.057
4 -0.190 0.030 -0.070 -0.238 -0.647 -0.260 0.053 -0.048 -0.235
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Figure 12: Curve fits of the rational functions defined in Eq. (2.35) to the experimentally
determined dimensionless aerodynamic derivatives, as function of the reduced circular
frequency. These aerodynamic derivatives are associated with the aerodynamic damping.

Figure 13: Curve fits of the rational functions defined in Eq. (2.35) to the experimentally
determined dimensionless aerodynamic derivatives, as function of the reduced circular
frequency. These aerodynamic derivatives are associated with the aerodynamic stiffness
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4.1.2 Load coefficients

Figure 14 show the experimentally obtained load coefficient data of the drag, lift and
pitching moment for a range of angles of attack. The estimated derivatives at zero angle
of attack are also presented in the figures as the dashed orange lines. The slope of these
dashed lines gives the load coefficients 𝐶′

𝐷
, 𝐶′

𝐿
and 𝐶′

𝑀
. These values, together with the

average value of the load coefficients at 𝛼 = 0 are presented in Table 4.

Table 4: Load coefficients

𝐶𝐷 𝐶𝐿 𝐶𝑀 𝐶′
𝐷

𝐶′
𝐿

𝐶′
𝑀

0.81 -0.31 -0.01 -0.62 2.73 1.05
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Figure 14: Approximation of the derivative of the load coefficients at angle 𝛼 = 0 with
regard to the wind tunnel data.

4.1.3 Verification of the rational functions

Figure 15 display the motion induced forces caused by an arbitrary motion. The motion
history for each DOF is shown in the left figure while the corresponding forces are shown
in the right figure. The solid blue lines shows the motion induced forces obtained through
the state space model given in Section 3.4. The motion is chosen as a single harmonic
motion with a reduced circular frequency 𝐾 = 0.586 such that the self-excited forces can
additionally be calculated through Eq. (2.12) with the experimental wind tunnel data
of the aerodynamic derivatives. The dashed orange lines in Figure 15 represent the self-
excited forces obtained through Eq. (2.12).
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Figure 15: Simulation of motion induced forces of the H̊alogaland Bridge.

4.2 Buffeting response

In this section, the results from the buffeting response calculations are presented. Both
the time and frequency domain responses are presented and compared.

Figure 16 shows the comparison of the buffeting response, at the midspan, obtained
through both frequency and time domain analysis. The figure is showing the response
in a statistical sense, comparing the standard deviations and correlation factors of the
frequency and time domain response as functions of the mean wind velocity. The figures
from the upper left and diagonally down shows the standard deviations of the horizontal,
vertical and torsional response, respectively. While the off-diagonal figures shows the cor-
relation between the responses. Table 5 and Table 6 presents the values obtained from
Figure 16 at the various mean wind velocities for the frequency and time domain solution,
respectively.

Table 5: Standard deviations and correlation coefficients from frequency domain analysis.

𝑉 (m/s) 𝜎𝑦𝑦 (m) 𝜎𝑧𝑧 (m) 𝜎𝜃𝜃 (rad) 𝜌𝑦𝑧 (-) 𝜌𝑦𝜃 (-) 𝜌𝑧𝜃 (-)

10 0.034 0.014 0.0002 -0.257 0.482 0.129
30 0.536 0.151 0.0027 -0.137 0.586 0.084
50 1.674 0.410 0.0096 -0.062 0.615 0.092
60 2.543 0.591 0.0163 0.014 0.629 0.118
70 3.802 0.858 0.0281 0.088 0.603 0.117
78 4.495 1.119 0.0581 0.261 0.445 -0.011
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Table 6: Standard deviations and correlation coefficients (mean value of 20 realisations)
from time domain analysis.

𝑉 (m/s) 𝜎𝑦𝑦 (m) 𝜎𝑧𝑧 (m) 𝜎𝜃𝜃 (rad) 𝜌𝑦𝑧 (-) 𝜌𝑦𝜃 (-) 𝜌𝑧𝜃 (-)

10 0.042 0.014 0.0002 -0.326 0.541 0.073
30 0.474 0.140 0.0023 -0.122 0.577 0.084
50 1.511 0.389 0.0088 -0.054 0.599 0.118
60 2.309 0.566 0.0150 -0.004 0.611 0.107
70 3.383 0.783 0.0269 0.164 0.610 0.164
78 4.364 1.080 0.0519 0.267 0.041 0.041

Figure 16: Predicted standard deviation and correlation coefficients of the buffeting re-
sponse at the midspan. Red crosses are the results obtained from the average of 20 time
domain simulations of 10 minutes, while the solid blue lines are the frequency domain
response.

4.3 Comparing power spectra

By employing Welch’s method [56] to the time domain response, it is possible to estimate
the power spectra of the response from the buffeting response in the time domain. Welch’s
method is applied to all 20 time simulations and the 20 spectra is subsequently averaged
out into one graph. Figure 17 presents the comparison of the estimated power spectra
from the time domain response and the power spectra from the frequency domain response
(Eq. (2.30)) for three different mean wind velocities; 30, 60 and 80 m/s. The figure consist
of three sub-figures where the top figure show the auto-spectral density of the horizontal
response, the middle figure show the auto-spectral density of the vertical response and the
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bottom figure show the auto-spectral density of the torsional response.

Figure 17: Comparison of the frequency response spectra and the Welch spectra estimated
from the time domain response. The dashed lines indicate the frequency response spectra
while the solid lines indicate the estimated response spectra.

4.4 Stability limit

In this section, the results regarding the flutter stability of the aeroelastic system are
presented. As previously mentioned, the stability limit is found through the eigenvalue
analysis of the state space matrix A𝑐.

In Figure 18, the stability of the system is illustrated using only two mode shapes to
calculate the flutter stability. The figure is just for illustration, as showing the same figure
with all 100 mode shapes would be near indecipherable. This pair gives the lowest critical
mean wind velocity for any given pair of mode shapes. The mode shapes are 𝝓5 and 𝝓16

which correspond to the third vertical and first torsional mode, respectively. This pair
yields a critical mean wind velocity of 90.2 m/s. However, the stability limit is reduced to
80.69 m/s when all 100 mode shapes are taken into consideration.

Figure 19 shows the free vibration response at the midspan for two different mean wind
velocities. One velocity is equal to the flutter stability, while the other is slightly higher
than the stability limit. The response is calculated through the same state space model
from the time domain analysis, i.e. Eq. (2.53), but with the generalised buffeting load set
equal to zero, q̃buff = 0, and an arbitrary initial condition, e.g. x𝑘=0 = (1, 1, ..., 1)𝑇 .
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Figure 18: Eigenvalues of the system as a function of the mean wind velocity for one pair
of mode shapes, namely 𝝓5 and 𝝓16. Top figure represent the imaginary part, e.g. the
natural frequency, while the bottom figure represent the damping ratio. This pair of mode
shapes yields a critical velocity 𝑉𝑐𝑟 = 90.2 m/s.

Figure 19: Free vibration response at the midspan of the bridge for two mean wind
velocities; the stability limit and a slightly higher velocity.
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4.5 Extreme response time domain

In this section, the results from extreme value analysis of the time domain response are
presented. The following sections shows the results from the time domain analysis for
three different mean wind velocities, namely, 30, 60, and 80 m/s. In each section, there is
one figure showing the midspan response for one of the 20 time simulations, in addition to
three figures showing the maximum response for each DOF from the simulations. These
figures also show the estimated response at the 95th percentile and the confidence interval
obtained through the bootstrap method.

A summary of the results is presented in Table 7. Here, 𝑅̂ 𝑗 𝑗 ∈ {𝑦, 𝑧, 𝜃} are the estimated

response corresponding to the 95th percentile and 𝑅̂ 𝑗,conf denote the 95 % confidence

interval of the estimated peak response 𝑅̂ 𝑗.

Table 7: Estimators of the 95th percentile response and the corresponding 95 % confidence
interval.

𝑉 (m/s) 𝑅̂𝑦 (m) 𝑅̂𝑦,conf (m) 𝑅̂𝑧 (m) 𝑅̂𝑧,conf (m) 𝑅̂𝜃 (rad) 𝑅̂𝜃,conf (rad)

30 1.88 (1.42, 2.23) 0.62 (0.49, 0.71) 0.010 (0.009, 0.011)
60 9.51 (7.13, 11.36) 2.26 (1.96, 2.50) 0.065 (0.055, 0.072)
80 17.40 (13.34, 20.60) 5.75 (4.59, 6.66) 0.395 (0.297, 0.473)

4.5.1 30 m/s

Figure 20 show the horizontal, vertical and torsional response at 30 m/s mean wind velocity
for one of the 20 simulated time series. The (absolute) maximum response from the figure
is extracted, along with the other 19 simulated time series, and used to make the left-side
figure of Figure 21, Figure 22 and Figure 23.

Figure 20: Midspan response from one time series simulation at 30 m/s mean wind velocity
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Figure 21: Extreme value analysis of the horizontal midspan response at 30 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

Figure 22: Extreme value analysis of the vertical midspan response at 30 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.
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Figure 23: Extreme value analysis of the torsional midspan response at 30 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

4.5.2 60 m/s

Figure 24 shows the horizontal, vertical and torsional response at 60 m/s mean wind
velocity for one of the 20 simulated time series. The (absolute) maximum response from
the figure is extracted, along with the other 19 simulated time series, and used to make
the left-side figure in Figure 25, Figure 26 and Figure 27.

Figure 24: Midspan response from one time series simulation at 60 m/s mean wind velocity
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Figure 25: Extreme value analysis of the horizontal midspan response at 60 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

Figure 26: Extreme value analysis of the vertical midspan response at 60 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.
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Figure 27: Extreme value analysis of the torsional midspan response at 60 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

4.5.3 80 m/s

Figure 28 shows the horizontal, vertical and torsional response at 80 m/s mean wind
velocity for one of the 20 simulated time series. The (absolute) maximum response from
the figure is extracted, along with the other 19 simulated time series, and used to make
the left-side figure in Figure 29, Figure 30 and Figure 31.

Figure 28: Midspan response from one time series simulation at 80 m/s mean wind velocity
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Figure 29: Extreme value analysis of the horizontal midspan response at 80 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

Figure 30: Extreme value analysis of the vertical midspan response at 80 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.
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Figure 31: Extreme value analysis of the torsional midspan response at 80 m/s mean wind
velocity. Left figure: the blue points are the maximum response from the simulations, the
orange line describes the Gumbel parameters (see Eq. (2.71)) and the black line denote
the 95th percentile. Right figure: the solid blue line denote the bootstrapped PDF while
the red cross denote the 95th percentile and the red circles and the shaded area marks the
95 % confidence interval.

4.6 Extreme response frequency domain

This section presents the results from extreme value analysis of the frequency domain
response.

Figure 32 show the CDF of the largest peak for a time interval of 10 minutes, the same
length as the time series simulations, for the horizontal, vertical and torsional response.
The red crosses denotes the 95th percentile peak response, which are presented in Table
8. Table 9 show the ratio of the 95th percentile peak response of the time and frequency
domain results.

Table 8: Largest peak corresponding to the 95th percentile.

𝑉 (m/s) 𝑅𝑦 (m) 𝑅𝑧 (m) 𝑅𝜃 (rad)

30 1.91 0.57 0.011
60 9.05 2.26 0.065
80 16.87 5.39 0.455

Table 9: Comparison of the time and frequency 95th percentile peak response.

𝑉 (m/s) 𝑅̂𝑦/𝑅𝑦 𝑅̂𝑧/𝑅𝑧 𝑅̂𝜃/𝑅𝜃

30 0.98 1.09 0.91
60 1.05 1 1
80 1.03 1.07 0.87

48



0 10 20
uy (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 2 4 6
uz (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.0 0.2 0.4 0.6
u  (rad)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

V = 30.0 m/s V = 60.0 m/s V = 80.0 m/s CDF = 0.95

Figure 32: The CDF of the largest peak on an interval 𝑇 = 600 s at three different mean
wind velocities; 30, 60 and 80 m/s. Left figure: horizontal response. Middle figure: vertical
response. Right figure: torsional response. The red crosses denote the 95th percentile.
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5 Discussion

5.1 Wind tunnel data

Wind tunnel testing is necessary in order to obtain the aerodynamic derivatives and the
load coefficients. Experimental testing always introduces some degree of uncertainty to
the results. This section will discuss the results obtained from the wind tunnel testing.

5.1.1 Aerodynamic derivatives

Figure 12 and Figure 13 shows the aerodynamic derivatives associated with the aerody-
namic damping and stiffness, respectively. The figures show the data obtained from the
wind tunnel testing and the curve fits of the aerodynamic derivatives. The data is shown as
black circles and are obtained from two tests with different mean wind velocities, namely
8 and 10 m/s, and a range of reduced frequencies. In the figures showing the aerodynamic
derivatives 𝑃∗

1 and 𝐴∗
4, the data points seem to diverge onto two different paths as a result

of the two tests. For the derivatives 𝑃∗
4, 𝑃

∗
5, 𝐻

∗
1, 𝐻

∗
2, 𝐻

∗
4, 𝐻

∗
5, 𝐴

∗
1, 𝐴

∗
2, 𝐴

∗
5 and 𝐴∗

6 the data
coincide, while for the remaining derivatives the data is more scattered.

The red curves in the figures show the curve fitting of the aerodynamic derivatives. For
the most part, the curve fits are able to represent the data accurately, especially for the
derivatives where the data from the two tests coincide. However, this is not the case for
𝑃∗
4 where the data points are almost kept at a constant value while the curve fit does not

seem to fit the data accurately. This is due to the fact that the coefficients describing the
rational functions describes a pair of aerodynamic derivatives, as state in Section 3.3.1.
This means that 𝑃∗

4 and 𝑃∗
1 share the same coefficients, namely 𝑎111 , 𝑎112 and 𝑎114 (values

given in Table 3.1), and since the data points of 𝑃∗
1 diverges onto two paths it affects the

result of the curve fit of 𝑃∗
4.

As mentioned earlier it may be convenient to force the curve fits to appropriate quasi-
static asymptotes in order to avoid the problems of the inverse Fourier transform. Since
the Fourier transform uses the entire frequency range, the curve fits need to be extrapol-
ated outside the reduced frequency range. The extrapolation may yield unrealistic values,
especially considering the fact that the data from the wind tunnel testing only ranges
from a reduced circular frequency of 0.06 to 0.74. It might therefore be more appropri-
ate to apply quasi-static asymptotes, especially for to case of 𝑃∗

4. However, quasi-static
was not implemented. The limited amount of available data introduces uncertainty into
curve fitting and the buffeting response calculations. The degree of uncertainty may have
been reduced by obtaining more results from the wind tunnel testing of the aerodynamic
derivatives.

5.1.2 Load coefficients

The load coefficients shown in Figure 14 shows a clear pattern. However, there is some
scatter in regard to the force coefficients for each angle of attack. This scatter is most
prominent in the figure showing the drag coefficient, especially around the zero angle of
attack which have a single data point a relative large distance away from the rest of the
points. This outlier might stem from an error in the measurements during the testing
and was considered negligible when attaining the load coefficients used in calculating the
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buffeting response.

5.1.3 Verification of the rational functions

In addition to the visual confirmation of the accuracy of the curve fitted functions of
the aerodynamic derivatives, the motion induced forces can be simulated by the use of
the state space model presented in Section 3.4 and compared to the self-excited forces
calculated through Eq. (2.12). The comparison of the self-excited forces are shown in
Figure 15. In the top right figure, there is a clear discrepancy between the two force
histories. There are also discrepancies in the two other sub figures containing the force
histories, but they are more subtle. These discrepancies come from the fact that the state
space model assume that the motion begin at 𝑡 = 0 with the initial conditions shown in the
figure while the motion does not start at 𝑡 = 0 when a single harmonic motion is assumed
in Eq. (2.12). The beginning of the force histories are therefore not interesting when
looking at how well the rational functions are able to describe the motion induced forces.
It is therefore concluded that the rational functions are able to describe the load history
with high accuracy, at least within the frequency range the wind tunnel data inhabits.

5.2 Buffeting response

The comparison of the statistical properties of the buffeting response in time and frequency
domain shown in Figure 16 (and quantified in Table 5 and Table 6) show that the frequency
and time response coincide fairly well. However, the frequency response (solid lines) display
fluctuations, which was not expected. This is most likely an error in the implementation
of the frequency response calculations. This is supported by the fact that the frequency
domain analysis was a lot more computationally expensive than the time domain analysis.
In theory, the time domain analysis is more computationally expensive than the frequency
domain analysis. However, this was not the case here, as the time domain analysis required
much less time than the frequency domain analysis to complete the calculations. the
buffeting response was significantly faster to obtain in the time domain even considering
the fact that multiprocessing was applied to the frequency response calculations to try to
speed up the calculations.

It was expected similar results as the time and frequency domain calculations are effect-
ively just different paths to the same destination. However, the time domain analysis is
vexed by the need of performing time series simulations. This raises the question; how
many simulations are are sufficient enough? Figure 16 obviously show that 20 response
series yields a satisfactory result. Further investigations could have been made to reduced
the number of simulations while still gaining a satisfactory result in order to save compu-
tational time. However, 20 simulations were used to reduce the uncertainty of the time
domain response and the extreme value analysis.

5.3 Comparing power spectra

Figure 17 shows the comparison of the auto-spectral densities of the buffeting response
obtained from frequency domain analysis and the auto-spectral density of the buffeting
response obtained from employing Welch’s method to the buffeting response in time do-
main. The figure shows the frequency ranging from 0 to 5 rad/s. However, the frequency
range from the frequency domain analysis only ranges from 0 to 3 rad/s. This was due to
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the troubles with the frequency response implementation mentioned in the previous sec-
tion. This resulted in the Python script not being able to complete the task in a feasible
amount of time.

Despite the difficulties in calculating the buffeting response, the most interesting rang
of frequencies is covered and the frequency and time domain solution coincide in this
range. The bottom figure in Figure 17 shows the graph of the auto-spectral density of the
rotational response for the three different mean wind velocities𝑉; 30, 60 and 80 m/s. There
are two noticeable peaks for all three velocities. The first one lies around the frequency of
the first horizontal mode shape (see Table 1) and the peaks are noticeable around the same
frequency in the figures showing the auto-spectral density of the horizontal response. The
peaks in the spectra of the rotational response stem from the coupling of the horizontal
and torsional modes. The second peak along the graph, where 𝑉 = 30 m/s, correspond
to the first torsional mode. This peak is not as distinctive as the first peak, but it can
be seen in all three figures. As the mean wind velocity increases, the peaks shift towards
the left and are getting higher and narrower. At 𝑉 = 80 m/s, just below the stability
limit, the peaks are very distinctive in all three auto spectra due to mode coupling. This
result indicate that the unsteady dynamic response of the bridge is coupled horizontally,
vertically and torsionally. This was not expected based on the theory presented in Section
2.4 which stated that the flutter stability is due to the vertical or torsional response,
or a combination of the two. Figure 18 was based on this theory and tried to find an
approximation of the stability limit based on only one vertical and one torsional mode.
However, from what is seen in Figure 17 a better approximation could have been found
by including one horizontal mode.

5.4 Stability

Figure 18 shows the results obtained from the eigenvalue analysis, as described in Section
3.6, for the first torsional mode (𝝓16) and the third vertical mode (𝝓5, see Figure 7). In
the bottom figure, the damping ratio is shown as a function of the mean wind velocity
and the top figure shows the imaginary part of the systems eigenvalues, or the natural
frequency, as function of the mean wind velocity. The damping ratio seem to increase for
both modes as the mean velocity increases. However, around 𝑉 = 70 m/s the damping
ratio of 𝝓16 begins to decrease. It continues to decrease until the damping ratio reaches
zero and the stability limit is reached. The natural frequencies of these two modes are
also found from the eigenvalue analysis and is shown in the top figure. In the top figure,
the natural frequency of the third vertical mode is observed to be approximately constant
for all mean wind velocities. The natural frequency of the first torsional mode, however, is
seen to decrease as the velocity increases. This coincide with the results observed in Figure
17. This shows that the natural frequency and damping ratio of a system is dependent on
the mean wind velocity.

The results shown in Figure 18 are only calculates with the two modes that gives the
lowest critical velocity for any pair of modes. The reason for only calculating the stability
limit with only two modes was to get an approximation of the critical velocity, based on
the flutter theory, and present a readable figure. However, as discussed in the previous
section, a better approximation of the stability limit would have been obtained if it had
included a horizontal mode because of the unstable dynamic response being a coupling of
horizontal, vertical and torsional response. Never the less, the figure shows the essence of
the stability calculations. The same figure could be made with the calculation of all 100
mode shapes, but there would be a struggle to extract any information from that figure.
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A figure with all 100 mode shapes would also show the increases and decreases in both
the natural frequencies and the damping ratios similar to what is seen in Figure 18. The
real stability limit was calculated, as described in Section 3.6, and the critical velocity was
determined to be 80.69 m/s.

Figure 19 show the consequence of the bridge being exposed to a mean wind velocity
above the critical velocity. At the critical velocity, the midspan response is shown to
be near constant over time, while for a velocity greater than the critical velocity, the free
vibration response becomes unstable and keeps increasing over time. This is clearly visible
in the rotational and vertical response, while the horizontal is beginning to show signs of
instability towards the end. The instability is due to the fact that the system exhibits
negative damping when exposed to mean wind velocities greater than the critical velocity.
The negative damping can be illustrated in Figure 18 by imagining the continuation of
the curves. After the stability limit is reached, 𝝓16 will continue into negative values and
thus exhibit negative damping ratios.

The stability limit of the H̊alogaland Bridge have previously been examined by Kvamstad
[57] in 2011. Kvamstad found the critical mean wind velocity to be 68.1 m/s, which
is a massive difference compared to the 80.69 m/s obtained in this thesis. Noticeable
differences are that Kvamstad assumed the damping ratios to be 0.5 %, while in this
thesis the damping ratio was assumed to equal to 1 % in all modes. A greater damping
ratio will yield a greater critical velocity, but the difference in damping ratios does not
justify the 12.59 m/s difference. The difference is most likely due to different aerodynamic
derivatives. Kvamstad’s measurements came from FORCE Technology’s wind tunnel in
Lyngby Denmark in 2010 while the wind tunnel data used in this thesis came from wind
tunnel testing at NTNU over a decade later, performed by Solstad and Onstad. Kvamstad
was unable to obtain the aerodynamic derivatives associated with horizontal motion as
the section model in Denmark was restrained in the horizontal direction.

5.5 Extreme values

Given the results shown in Table 7 and Table 8 the extreme value analysis of the frequency
and time domain buffeting response seem to coincide. The ratio of the 95th percentile
extreme response of the time and frequency response is shown in Table 9. It is seen
that the horizontal and vertical response at 60 m/s yields the exact same value in both
domains, while the other responses vary slightly. The biggest discrepancy is found in
torsional response. At 80 m/s the time domain result is 13 % less than the frequency
domain result and at 30 m/s it is 9 % less. The horizontal response seem to be the most
accurate with a maximum deviation of 5 % at 60 m/s.

In the figures showing the extreme responses obtained from the time domain simulations,
the linear regression of the points does not coincide perfectly with the points, which would
be expected if the extreme values followed a Gumbel distribution and sufficiently many
realisations of the response were made. In Figure 22 and Figure 26 the maximum of all
the extreme responses seem to be much greater than the rest of the extreme responses. In
Figure 25 the points towards the end form a curved shape, and in Figure 26 and Figure
29 the minimum of the extreme responses seem to yield much lower values than the other
points and the regression line. These deviations from a perfect line may be caused by
too few simulations, or it could be that the assumed Gumbel distribution is not the true
probability distribution of the extreme response. This could be investigated further by
performing more and longer time domain simulations and by using the GEV distribution
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instead.
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6 Conclusion

In this thesis the wind induced dynamic response of the H̊alogaland Bridge have been
calculated both in time and frequency domain. This was done by using experimental
data from wind tunnel testing of a down-scale section model of the H̊alogaland Bridge to
determine the aerodynamic properties of the H̊alogaland Bridge. The experimental aero-
dynamic derivative data was used to curve fit rational functions to the transfer functions.
The curve fits were then verified by using a state space model to simulating the motion in-
duced forces and comparing it to the self-excited forces given in Eq. (2.12), at least within
the range of the experimental data. The load coefficient were also successfully obtained
from the wind tunnel data which showed clear and distinctive trends. Correlated time
series simulations of the wind field were simulated using the Monte Carlo method and
the Cholesky decomposition of the cross-spectral density of the turbulence components
in order to decrease the computational costs. In theory, the time and frequency domain
buffeting response should give the exact same answer if the time domain response have
converged, i.e. sufficiently many simulations are performed. There were a total of 20 time
series simulations with lengths of 600 s performed. While this did not yield the exact same
answer in both domains it turned out to be approximately the same and it is concluded
that 20 time series simulations with lengths of 600 s are sufficient enough to describe the
response.

Extreme response analysis and flutter stability was also investigated as they are important
aspects of bridge design. The extreme response analysis was conducted for the frequency
and time response which also had a fairly high level of accuracy. The flutter stability
yielded a somewhat unexpected result as it was expected that a good approximation of
the stability limit could be obtained considering one vertical mode and one torsional mode.
It was discovered from the results that a better approximation might have been made by
adding a horizontal mode.
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Appendix

A Python sripts

The following Python scripts are written to carry out the calculations of this thesis. The
scripts are (tried to be) written with readability in mind. Therefore, it is possible to
improve the code in order to optimise the computational cost. Generally, the scripts uses
the output from other files as input and some scripts have so-called ’magic numbers’ which
should be changed, e.g. depending on which response is wanted. Therefore, any use of the
scripts should be done with great care.

A.1 functions.py

1 import numpy as np

2 import scipy.linalg as spla

3 from scipy import interpolate

4

5 def distance_matrix(l, npoints=2):

6 """Creates the distance matrix dydy needed for obtaining cross

spectral density↩→

7 Parameters:

8 l - (float) distance between the first and last point

9 npoints - (int) number of points on the distance l

10

11 returns:

12 dydy (2D-array) a matrix with the absolute distance to each point

13 """

14 y = np.linspace(0,l,npoints)

15 return np.abs(np.array([y]) - np.array([y]).T)

16

17 def MCCholesky(frequencyaxis, SS, Nsim=1, dwsim=.001):

18 """ Creates random realisation of the turbulence components by Monte

Carlo simulation,↩→

19 Cholesky decomposition and interpolation of decomposed matrices

20

21 Args:

22 frequencyaxis (array): frequency axis

23 SS (ndarray): cross spectral matrix

24 Nsim (int, optional): Number of simulations. Defaults to 1.

25 dwsim (float, optional): smaller frequency step for simulation.

Defaults to .001.↩→

26

27 Returns:

28 array, ndarray: returns the time array and all Nsim simulations

29 """

30 omegaaxis = frequencyaxis

31 GG = np.zeros_like(SS)

32
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33 for k in range(len(omegaaxis)):

34 if np.max(np.abs(SS[:, :, k]))<1e-10:

35 continue

36 else:

37 GG[:, :, k] = spla.cholesky(SS[:, :, k], lower=True)

38

39 wsim = np.arange(dwsim, omegaaxis[-1], dwsim) # omegaaxissim

40 NFFT = int(2**np.ceil(np.log2(len(wsim))))

41 t = np.linspace(0, 2*np.pi/dwsim, NFFT)

42 if Nsim==1:

43 x = np.zeros((GG.shape[0], len(t)))

44 else:

45 x = np.zeros((Nsim, GG.shape[0], len(t)))

46

47 for z in range(Nsim):

48 phi = 2*np.pi* np.random.rand(GG.shape[0], len(wsim)) #Random

phase angle between 0 and 2pi↩→

49 for m in range(GG.shape[0]):

50 for n in range(0, m+1):

51 c = interpolate.interp1d(omegaaxis, np.abs(GG[m, n,

:]))(wsim) * np.exp(1j *phi[n, :]) * np.sqrt(2*dwsim)↩→

52 x[z, m, :] += np.real(np.fft.ifft(c, n=NFFT)* NFFT)

53 # print("{} simulation(s) complete".format(z+1))

54 return t, x

55

56 def gumbel_beta(std):

57 """Find the beta parameter in the gumbel distribtion

58

59 Args:

60 std (float): standard deviation

61

62 Returns:

63 float: beta

64 """

65 return np.sqrt(6/np.pi**2 * std**2)

66

67 def gumbel_mu(mean, std):

68 """Find the mu parameter in the gumbel distribution

69

70 Args:

71 mean (float): mean of the distribution

72 std (float): standard deviation

73

74 Returns:

75 float: mu

76 """

77 return mean - gumbel_beta(std)*np.euler_gamma

78

79 def gumbel_CDF(x, mean, std):

80 """gumbel cumulative distribution function

81
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82 Args:

83 x (array): axis

84 mean (float): mean of the distribution

85 std (float): standard deviation

86

87 Returns:

88 array: gumbel CDF

89 """

90 beta = gumbel_beta(std)

91 mu = gumbel_mu(mean, std)

92

93 return np.exp(-np.exp(-(x-mu)/beta))

94

95 def gumbel_PDF(x, mean, std):

96 """gumbel probability distribution function

97

98 Args:

99 x (array): axis

100 mean (float): mean of the distrivution

101 std (float): standard deviation

102

103 Returns:

104 array: gumbel PDF

105 """

106 beta = gumbel_beta(std)

107 mu = gumbel_mu(mean, std)

108

109 return np.exp(-np.exp(-(x-mu)/beta)) * np.exp(-(x-mu)/beta) / beta

110

111 def gumbel_PDF2(x, mu, beta):

112 return np.exp(-np.exp(-(x-mu)/beta)) * np.exp(-(x-mu)/beta) / beta

113

114 def aerodynamic_derivatives(vred, RFa, d):

115 """ Calculates the ADs from the rational functions and state

116 parameters for one spesific reduced velocity

117

118 Args:

119 vred (float): reduced velocity

120 RFa (ndarray): rational functions

121 d (array): state parameters

122

123 Returns:

124 (2, 3, 3) array: first (3, 3) array contains the stiffness related

ADs, second the damping↩→

125 """

126

127 AD = np.zeros((2, 3, 3))

128

129 sumRFa = np.zeros((3, 3), dtype=complex)

130

131 for i in range(RFa.shape[0]):
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132 if i == 0:

133 sumRFa += RFa[i]

134 elif i == 1:

135 sumRFa += RFa[i]* 1j/vred

136 else:

137 sumRFa += RFa[i]* (1j/vred)/((1j/vred) + d[i-2])

138

139 sumRFa *= vred**2

140

141 AD[0] = np.real(sumRFa)

142 AD[1] = np.imag(sumRFa)

143

144 return AD

145

146 def wind_tunnel_measurments(omegaaxis, rho, B, V, RFa, d):

147 """ Creates the aerodynamic stiffness and damping matrices for

148 an array of frequencies and one wind velocity V by using the

149 rational funcition that is found through the experimental wind

150 tunnel testing

151

152 Args:

153 omega (array): frequency axis

154 rho (float): air density

155 B (float): section width

156 V (float): mean wind velocity

157 RFa (ndarray): rational functions

158 d (array): state parameters

159

160 Returns:

161 ndarray, ndarray: aerodynamic stiffness and damping matrices

162 """

163 cae = np.zeros((3, 3, len(omegaaxis)))

164 kae = np.zeros((3, 3, len(omegaaxis)))

165

166 vred = V/(B*omegaaxis)

167 for k in range(len(omegaaxis)):

168 AD = aerodynamic_derivatives(vred[k], RFa, d)

169 for i in range(AD.shape[0]):

170 AD[i, -1, :] *= B

171 AD[i, :, -1] *= B

172 kae[:, :, k] = 1/2*rho*B**2*omegaaxis[k]**2 *AD[0] # Eq.(4) Øiseth

et al.↩→

173 cae[:, :, k] = 1/2*rho*B**2*omegaaxis[k] *AD[1] # Eq.(4) Øiseth et

al.↩→

174

175 return kae, cae

176

177 def modal_aerodynamic_damping_and_stiffness(V, omegaaxis, phiphi, rho, B,

RFa, d, beam):↩→

178 """ Calculates the modal aerodynamic damping and stiffness matrix

179 for a given mean wind velocity V
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180

181 Args:

182 V (float): mean wind velocity

183 omegaaxis (array): frequency axis

184 phiphi (ndarray): mode shapes

185 rho (float): air density

186 B (float): section width

187 RFa (ndarray): rational functions

188 d (array): state parameters

189

190 Returns:

191 ndarray, ndarray: aerodynamic stiffness and damping matrices

192 """

193 kae, cae = wind_tunnel_measurments(omegaaxis, rho, B, V, RFa, d)

194

195 KKae = np.zeros((phiphi.shape[0], phiphi.shape[0], len(omegaaxis)))

196 CCae = np.zeros((phiphi.shape[0], phiphi.shape[0], len(omegaaxis)))

197

198 phiphi_p = np.transpose(phiphi, [1, 0, 2])

199

200 for k in range(len(omegaaxis)):

201 integrandKK = np.zeros((phiphi.shape[0], phiphi.shape[0],

len(beam)))↩→

202 integrandCC = np.zeros((phiphi.shape[0], phiphi.shape[0],

len(beam)))↩→

203 for m in range(len(beam)):

204 integrandKK[:, :, m] = phiphi_p[:, :, m].T @ kae[:, :, k] @

phiphi_p[:, :, m]↩→

205 integrandCC[:, :, m] = phiphi_p[:, :, m].T @ cae[:, :, k] @

phiphi_p[:, :, m]↩→

206

207 KKae[:, :, k] = np.trapz(integrandKK, beam, axis=-1)

208 CCae[:, :, k] = np.trapz(integrandCC, beam, axis=-1)

209

210 return KKae, CCae

211

212 def frequency_response_matrix(MM, CC, KK, V, omegaaxis, phiphi, rho, B,

RFa, d, beam):↩→

213 """ Calculate the frequency response matrix for a system

214 (with self-excited forces) for one mean wind velcoity V

215

216 Args:

217 MM (ndarray): mass matrix

218 CC (ndarray): damping matrix

219 KK (ndarray): stiffness matrix

220 V (float): mean wind velocity

221 omegaaxis (array): frequency axis

222 phiphi (ndarray): mode shapes

223 rho (float): air density

224 B (float): section width

225 RFa (ndarray): rational functions
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226 d (array): state parameters

227

228 Returns:

229 HH: Frequency response matrix for one given wind velocity V

230 """

231 KKae, CCae = modal_aerodynamic_damping_and_stiffness(V, omegaaxis,

phiphi, rho, B, RFa, d, beam) # Eq.(6) Øiseth et al.↩→

232 HH = np.zeros((MM.shape[0], MM.shape[0], len(omegaaxis)),

dtype=complex)↩→

233

234 for k in range(len(omegaaxis)):

235 HH[:, :, k] = np.linalg.inv(-omegaaxis[k]**2*MM +

1j*omegaaxis[k]*(CC-CCae[:, :, k]) + (KK-KKae[:, :, k])) #

Eq.()9 Øiseth et al.

↩→

↩→

236 return HH

237

238 def cross_spectral_wind_field(V, omegaaxis, dxdx):

239 """ Calculate the cross-spectral densities of the turbulence

240 for one mean wind velocity V and one frequency omega

241 Args:

242 V (float): mean wind velocity

243 omega (float): frequency

244 dxdx (ndarray): distance matrix

245

246 Returns:

247 SvSv: CSD turbulence

248 """

249 L1 = 100.0 # Reference integral length scale

250 z1 = 10.0 # Reference height

251 z = 50.0 # Height above ground

252 xLu = L1*(z/z1)**0.3 # Integral length scale

253 xLw = 1/12*xLu # Integral length scale

254 Au, Aw = 6.8/2/np.pi, 9.4/2/np.pi # Constant in the auto-spectral

density↩→

255 Iu = 0.15 # Turbulence intensity

256 Iw = 1/4*Iu# Turbulence intensity

257 Cuy, Cwy = 10.0, 6.5 # Decay coeff

258

259 SvSv = np.zeros((2, 2, dxdx.shape[0], dxdx.shape[0], len(omegaaxis)))

260 Su = (Iu*V)**2*Au*xLu/V/((1+1.5*Au*omegaaxis*xLu/V)**(5.0/3.0))

261 Sw = (Iw*V)**2*Aw*xLw/V/((1+1.5*Aw*omegaaxis*xLw/V)**(5.0/3.0))

262 for ii in range(len(omegaaxis)):

263 Cou = np.exp(-Cuy/2/np.pi*dxdx*omegaaxis[ii]/V)

264 Cow = np.exp(-Cwy/2/np.pi*dxdx*omegaaxis[ii]/V)

265 SvSv[0, 0, :, :, ii] = Su[ii]*Cou

266 SvSv[1, 1, :, :, ii] = Sw[ii]*Cow

267 SvSv[0, 1, :, :, :] = 0

268 SvSv[1, 0, :, :, :] = 0

269 return SvSv

270

271 def cross_spectral_load_matrix(omegaaxis, V, BqBq, dxdx, phiphi):
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272 """ Calculate the cross spectral density load matrix for a

273 given mean wind velocity V

274

275 Args:

276 omegaaxis (array): frequency axis

277 V (float): mean wind velocity

278 BqBq (ndarray): buffeting load matrix

279 dxdx (ndarray): distance matrix

280 phiphi (ndarray): mode shapes

281

282 Returns:

283 SQSQ: CSD load

284 """

285 phiphi_p = np.transpose(phiphi, [1, 0, 2])

286 omegaaxis_load = np.logspace(np.log10(np.min(omegaaxis)),

np.log10(np.max(omegaaxis)), round(len(omegaaxis)/4))↩→

287 SQSQ_coarse = np.zeros((phiphi.shape[0], phiphi.shape[0],

len(omegaaxis_load)))↩→

288

289 SvSv = cross_spectral_wind_field(V, omegaaxis, dxdx)

290 for k in range(len(omegaaxis_load)):

291 integrand = np.zeros((phiphi.shape[0], phiphi.shape[0],

dxdx.shape[0], dxdx.shape[0]))↩→

292 for m in range(dxdx.shape[0]):

293 for n in range(dxdx.shape[0]):

294 integrand[:, :, m, n] = phiphi_p[:, :, m].T @ BqBq @

SvSv[:, :, m, n, k] @ np.conj(BqBq).T @ phiphi_p[:, :,

n]

↩→

↩→

295 SQSQ_coarse[:, :, k] = np.trapz(np.trapz(integrand, dxdx[0],

axis=-1), dxdx[0], axis=-1)↩→

296

297 SQSQ = np.zeros((phiphi.shape[0], phiphi.shape[0], len(omegaaxis)))

298 for m in range(SQSQ.shape[0]):

299 for n in range(SQSQ.shape[1]):

300 SQSQ[m, n, :] = interpolate.interp1d(omegaaxis_load,

SQSQ_coarse[m, n, :])(omegaaxis)↩→

301 return SQSQ

A.2 curve fit ads.py

1 import pandas as pd

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5 # This file uses a least square method (pseudoinverse) to obtain the

a-matrices describing ADs↩→

6 # they are curve fitted to the transfer functions and plots all the fits

7 # [[ K^2(P1 i + P4) K^2(P5 i + P6) K^2(P2 i + P3)]
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8 # [ K^2(H5 i + H6) K^2(H1 i + H4) K^2(H2 i + H3)]

9 # [ K^2(A5 i + A6) K^2(A1 i + A4) K^2(A2 i + A3)]]

10

11 df_dim = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Dim section

model")↩→

12 df_ADs = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Aerodynamic

derivatives")↩→

13 df_red_vel = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Reduced

velocities")↩→

14 df_mean_vel = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Mean

wind velocity")↩→

15

16 stiffness_ADs = ['P_4', 'P_6', 'P_3', 'H_6', 'H_4', 'H_3', 'A_6', 'A_4',

'A_3']↩→

17 damping_ADs = ['P_1', 'P_5', 'P_2', 'H_5', 'H_1', 'H_2', 'A_5', 'A_1',

'A_2']↩→

18

19 B = df_dim['B'][0]

20 d = np.array([1])

21 aa = np.zeros((3, 3, 3)) # curvefitting with a1, a2 and a4 (d=1)

22

23 n_dp = len(df_ADs[stiffness_ADs[0]].to_numpy()) # number of data points

24 xx = np.zeros((len(stiffness_ADs), 3, 2*n_dp))

25

26 V_hat = df_red_vel['P_4']

27 K = 1/V_hat # Every AD is measured with approx the same reduced velocity

28

29 for i in range(len(damping_ADs)):

30 xx[i, 1, :n_dp] = K

31 xx[i, 2, :n_dp] = np.imag(1j*K/(1j*K + d))

32

33 xx[i, 0, n_dp:] = np.ones(len(K))

34 xx[i, 2, n_dp:] = np.real(1j*K/(1j*K + d))

35

36 AD_stiff = df_ADs[stiffness_ADs[i]].to_numpy()

37 AD_damp = df_ADs[damping_ADs[i]].to_numpy()

38

39 ADs = np.hstack([AD_damp*K**2, AD_stiff*K**2])

40

41 a_s = np.linalg.pinv(xx[i]).T @ ADs

42 aa[0][i//3, i%3] = a_s[0]

43 aa[1][i//3, i%3] = a_s[1]

44 aa[2][i//3, i%3] = a_s[2]

45 np.savez("RFa_d.npz", aa=aa, d=d)
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A.3 static force coefficients.py

1 """

2 Finner statiske last koeffisenter fra Static_coeff_HALOGALAND_PUS.xlsx

3 """

4 #%%

5 import numpy as np

6 import pandas as pd

7 import matplotlib.pyplot as plt

8

9 df_dim = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx", sheet_name="Dim

section model")↩→

10 df_stat_coeff_0 = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx",

sheet_name="Mean wind 0.0")↩→

11 df_stat_coeff_1 = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx",

sheet_name="Mean wind 1.0")↩→

12 df_stat_coeff_6 = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx",

sheet_name="Mean wind 6.0")↩→

13 df_stat_coeff_8 = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx",

sheet_name="Mean wind 8.0")↩→

14 df_stat_coeff_10 = pd.read_excel("Static_coeff_HALOGALAND_PUS.xlsx",

sheet_name="Mean wind 10.0")↩→

15 stat_list = [df_stat_coeff_0 ,df_stat_coeff_1 ,df_stat_coeff_6

,df_stat_coeff_8, df_stat_coeff_10]↩→

16 coeff_list = ["C_D, C_L, C_m"]

17

18 alpha = df_stat_coeff_10["pitch motion"]

19 Cd = df_stat_coeff_10["C_D"].to_numpy()

20 Cl = df_stat_coeff_10["C_L"].to_numpy()

21 Cm = df_stat_coeff_10["C_m"].to_numpy()

22

23 ## Zero angle of attack

24 alpha0_indx = np.argmin(np.abs(alpha))

25 C_D = Cd[alpha0_indx]

26 C_L = Cl[alpha0_indx]

27 C_m = Cm[alpha0_indx]

28

29 #%% Derivatives of coefficents

30 # Approximating the gradient of C_D

31 b_cd = np.argmin(np.abs(alpha+.04))

32 o_cd = np.argmin(np.abs(alpha-.02))

33 dCd = (Cd[o_cd]-Cd[b_cd])/(alpha[o_cd]-alpha[b_cd])

34

35 # Approximating the gradient of C_L

36 b_cl = np.argmin(np.abs(alpha+.025))

37 o_cl = np.argmin(np.abs(alpha-.025))

38 dCl = (Cl[o_cl]-Cl[b_cl])/(alpha[o_cl]-alpha[b_cl])

39

40 # Approximating the gradient of C_m

41 b_cm = np.argmin(np.abs(alpha+.025))
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42 o_cm = np.argmin(np.abs(alpha-.025))

43 dCm = (Cm[o_cm]-Cm[b_cm])/(alpha[o_cm]-alpha[b_cm])

44

45 load_coeff = np.array([C_D, dCd, C_L, dCl, C_m, dCm])

46 #np.save("load_coefficients.npy", load_coeff)

47

48 fig, axs = plt.subplots(nrows=3, ncols=1, dpi=1000, sharex=True)

49

50 approx_x = np.array([np.min(alpha), np.max(alpha)])

51 approx_y1 = np.array([np.max(alpha*dCd+Cd[alpha0_indx]),

np.min(alpha*dCd+Cd[alpha0_indx])])↩→

52 approx_y2 = np.array([np.min(alpha*dCl+Cl[alpha0_indx]),

np.max(alpha*dCl+Cl[alpha0_indx])])↩→

53 approx_y3 = np.array([np.min(alpha*dCm+Cm[alpha0_indx]),

np.max(alpha*dCm+Cm[alpha0_indx])])↩→

54

55 axs[0].plot(alpha, Cd, ".", label=r"Data points", lw=.1)

56 axs[0].plot(approx_x, approx_y1*.99, "--",label=r"$C_D'|_{\alpha=0}$",

lw=2)↩→

57 axs[0].legend()

58 axs[0].grid(":")

59 axs[0].set_ylabel(r"$C_D(\alpha)$")

60

61 axs[1].plot(alpha, Cl, ".", label=r"Data points", lw=.7)

62 axs[1].plot(approx_x, approx_y2, "--",label=r"$C_L'|_{\alpha=0}$", lw=2)

63 axs[1].legend()

64 axs[1].grid(":")

65 axs[1].set_ylabel(r"$C_L(\alpha)$")

66

67 axs[2].plot(alpha, Cm, '.', label=r"Data points", lw=1)

68 axs[2].plot(approx_x, approx_y3, "--",label=r"$C_M'|_{\alpha=0}$", lw=2)

69 axs[2].legend()

70 axs[2].grid(":")

71 axs[2].set_ylabel(r"$C_M(\alpha)$")

72

73 axs[2].set_xlabel(r"$\alpha$")

74 plt.tight_layout()

75 fig.align_ylabels(axs)

76 #plt.savefig("force_coeff.png", bbox_inches='tight')

A.4 ImportModalProperties.py

1 ## Script made by Øyvind Wiig Petersen

2 import h5py

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 hf = h5py.File('HalogalandModel_exportmodal.h5', 'r')
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7

8 # Frequencies

9 f = np.array(hf.get('f'))

10

11 # Generalized mass

12 gm = np.array(hf.get('gm'))

13

14 # Node coordinates all nodes (size [N_nodes,4])

15 nodecoord = np.array(hf.get('nodecoord'))

16

17 # Mode shape matrix for all DOFs (size [6*N_nodes,N_modes])

18 phi = np.array(hf.get('phi'))

19

20 # Labels corresponding to each row of phi (each DOF), as a list of

strings↩→

21 phi_label_temp = np.array(hf.get('phi_label'))

22 phi_label=phi_label_temp[:].astype('U10').ravel().tolist()

23

24 # The DOFs are as follows:

25 # U1=x=longitudinal translation (along bridge)

26 # U2=y=horizontal translation

27 # U3=z=vertical translation

28 # UR1=rotation about x aka. torsion

29 # UR2=rotation about y aka. vertical bending

30 # UR3=rotation about z aka. horizontal bending

31

32 #%% Get node coordinates and mode shape for bridge deck only

33 # Nodes in bridge deck (total 573)

34 node_deck=np.arange(1004,1576+1,1)

35

36 # Create list index of nodes in bridge deck

37 index_node_deck=[]

38

39 for k in np.arange(len(node_deck)):

40 index_node_deck.append(np.argwhere(node_deck[k]==nodecoord[:,0])[0,0])

41

42 nodecoord_deck=nodecoord[index_node_deck,:]

43

44 # Create list of index of y-DOFs,z-DOFs, and t-DOFs in bridge deck

45 index_y=[]

46 index_z=[]

47 index_t=[]

48

49 for k in np.arange(len(node_deck)):

50 str_y=str(node_deck[k]) + '_U2'

51 index_y.append(phi_label.index(str_y))

52

53 str_z=str(node_deck[k]) + '_U3'

54 index_z.append(phi_label.index(str_z))

55

56 str_t=str(node_deck[k]) + '_UR1'
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57 index_t.append(phi_label.index(str_t))

58

59 phi_y=phi[index_y,:]

60 phi_z=phi[index_z,:]

61 phi_t=phi[index_t,:]

62

63 #%% Plot single mode

64 mode_plot=12 # Mode number to plot

65 scale_factor=1e4 # Scale factor

66

67 plt.figure()

68

69 x=nodecoord_deck[:,1] #x-coordinate of deck nodes

70

71 h1=plt.plot(x,phi_y[:,mode_plot]*scale_factor, label='Horizontal')

72 h2=plt.plot(x,phi_z[:,mode_plot]*scale_factor, label='Vertical')

73 h3=plt.plot(x,phi_t[:,mode_plot]*scale_factor, label='Torsion')

74

75 plt.xlabel('x [m]')

76 plt.ylabel('Modal deflection [m or rad]')

77

78 plt.legend()

79

80 plt.show()

A.5 stability.py

1 import numpy as np

2 from curve_fit_ads import aa, d

3 import ImportModalProperties as modal_properties

4 import matplotlib.pyplot as plt

5

6 #modechosen1 = 3

7 modechosen2 = 4

8 modechosen3 = 15

9

10 modes = np.array([modechosen2, modechosen3])

11 modes = np.array(range(0,100))

12

13 wn = modal_properties.f[modes]*2*np.pi

14

15 xin = np.ones_like(wn)*1/100

16 MM = np.diag(modal_properties.gm[modes])

17 KK = np.diag(wn**2*modal_properties.gm[modes])

18 CC = np.diag(modal_properties.gm[modes]*2*wn*xin) # Assumed diagonal

generalised damping matrix↩→

19

20 B = 18.6 # Width of Hålogaland
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21 rho = 1.25 # Air density

22

23 length = modal_properties.x[-1] - modal_properties.x[0] # Length of

bridge↩→

24 nlength = len(modal_properties.x) # Number of increments

25 beam = np.linspace(0, length, nlength) # Discretisation of bridge

26

27 phiphi = np.zeros((len(modes), 3, nlength))

28 for m in range(phiphi.shape[0]):

29 phiphi[m, 0, :] = modal_properties.phi_y[:, modes[m]]

30 phiphi[m, 1, :] = modal_properties.phi_z[:, modes[m]]

31 phiphi[m, 2, :] = modal_properties.phi_t[:, modes[m]]

32

33 AA = np.copy(aa)

34 for i in range(len(aa)):

35 AA[i, :, -1] *= B

36 AA[i, -1, :] *= B

37

38 AA_tilde = np.zeros((aa.shape[0], MM.shape[0], MM.shape[0]))

39 phiphi_p = np.transpose(phiphi, [1, 0, 2])

40

41 for k in range(aa.shape[0]):

42 integrand = np.zeros((len(beam), MM.shape[0], MM.shape[0]))

43 for m in range(len(beam)):

44 integrand[m, :, :] = (phiphi_p[:, :, m].T @ AA[k, : , :] @

phiphi_p[:, :, m])↩→

45

46 for i in range(MM.shape[0]):

47 for j in range(MM.shape[0]):

48 AA_tilde[k, i, j] = np.trapz(integrand[:, i, j], beam)

49

50 # Stability assesment

51 MMinv = np.linalg.inv(MM)

52

53 A1 = AA_tilde[0]

54 A2 = AA_tilde[1]

55

56 QQ_c = np.concatenate(AA_tilde[2:], axis=-1)

57 DD_c = np.diag(np.repeat(d, AA_tilde.shape[1])) # Eq. 16 Øiseth (2012)

58 EE_c = np.zeros((len(d), AA_tilde.shape[1], AA_tilde.shape[1]))

59 EE_c[:] = np.eye(AA_tilde.shape[1]) # Eq. 16 Øiseth (2012)

60 EE_c = np.concatenate(EE_c)

61

62 Vs = 1

63 dV = 1

64 it = 0

65 #%%

66 while (it<1000):

67 it += 1

68 Vs += dV

69
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70 AA_c = -np.vstack((

71 np.hstack((

72 np.zeros_like(MM), -np.eye(MM.shape[0]), np.zeros((MM.shape[0],

QQ_c.shape[1]))↩→

73 )),

74 np.hstack((

75 MMinv@(KK-1/2*rho*Vs**2*A1), MMinv@(CC-1/2*rho*Vs**2*B/Vs*A2),

-1/2*rho*Vs**2*MMinv@QQ_c↩→

76 )),

77 np.hstack((

78 np.zeros((EE_c.shape[0], MM.shape[0])), -EE_c, Vs/B*DD_c

79 ))

80 ))

81 eig, _ = np.linalg.eig(AA_c)

82 if np.max(np.real(eig))>0:

83 Vs -= dV

84 dV *= 0.5

85

86 print(Vs)

87 x = Vs

88

89 #%%

90 Vs = np.linspace(1, 90, 1000)

91 eigS = np.zeros((len(Vs), AA_c.shape[0]), dtype=complex)

92 MMinv = np.linalg.inv(MM)

93

94 for i in range(len(Vs)):

95 AA_c = -np.vstack((

96 np.hstack((

97 np.zeros_like(MM), -np.eye(MM.shape[0]), np.zeros((MM.shape[0],

QQ_c.shape[1]))↩→

98 )),

99 np.hstack((

100 MMinv@(KK-1/2*rho*Vs[i]**2*A1),

MMinv@(CC-1/2*rho*Vs[i]**2*B/Vs[i]*A2),

-1/2*rho*Vs[i]**2*MMinv@QQ_c

↩→

↩→

101 )),

102 np.hstack((

103 np.zeros((EE_c.shape[0], MM.shape[0])), -EE_c, Vs[i]/B*DD_c

104 ))

105 ))

106

107 eig, _ = np.linalg.eig(AA_c)

108 indx = np.argsort(np.imag(eig))

109 eigS[i, :] = eig[indx]

110

111

112 fig, axs = plt.subplots(nrows=2, ncols=1, sharex=True, dpi=1000)

113

114 for i in range(len(modes)):
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115 axs[0].plot(Vs, freq[:, i],

color="C{}".format(str(i)),label=(r"$\phi_{" +

str(modes[-(i+1)]+1) + "}$") )

↩→

↩→

116 axs[0].plot(Vs, freq[:, -(i+1)],color="C{}".format(str(i)))

117

118 for i in range(len(modes)):

119 axs[1].plot(Vs, damp[:, i], label=(r"$\phi_{" + str(modes[-(i+1)]+1) +

"}$") )↩→

120

121 axs[0].set_ylabel(r'$\omega_n = $Im$(S)$')

122 axs[0].grid(ls=":")

123 axs[0].legend()

124

125 axs[1].set_ylabel(r'$\xi = -$Re$(S)/|S|$')

126 axs[1].set_xlabel(r"$V$ (m/s)")

127 axs[1].set_ylim(0, .25)

128 axs[1].grid(ls=":")

129 axs[1].legend()

130 plt.tight_layout()

131 fig.align_ylabels(axs)

132 #fig.savefig("critical velocity", bbox_inches='tight')0)

133 plt.show()

A.6 buffeting response time domain.py

1 import numpy as np

2 import scipy.linalg as spla

3 import scipy.interpolate as spip

4 import ImportModalProperties as modal_properties # Import modal properties

(from abaqus model)↩→

5 from functions import distance_matrix, MCCholesky

6

7 #%% Hålogaland parameters/ constants

8 B = 18.6 # Section width

9 D = 3 # Section height

10 rho = 1.25 # Air denisty

11 L = (modal_properties.x[-1]-modal_properties.x[0]) # Length of bridge

12 nlength = len(modal_properties.x) # number of nodes along the length

13 beam = np.linspace(0, L, nlength) # discretising the bridge

14

15 #%% Wind field parameters Er disse verdiene riktig for Hålogaland`?`

16 L1 = 100.0 # Reference integral length scale

17 z1 = 10.0 # Reference height

18 z = 50.0 # Height above ground

19 xLu = L1*(z/z1)**0.3 # Integral length scale

20 xLw = 1/12*xLu # Integral length scale

21 Au, Aw = 6.8/2/np.pi, 9.4/2/np.pi # Constant in the auto-spectral density

22 Iu = 0.15 # Turbulence intensity
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23 Iw = 1/4*Iu# Turbulence intensity

24 Cuy, Cwy = 10.0, 6.5 # Decay coeff

25

26 #%% MonteCarlos Simulations Wind Field

27 Nsim = 20

28 omegaaxis = np.linspace(0.00000001,10,100)

29 dxdx = distance_matrix(L, nlength)

30

31 #%% Modal properties

32 modes = np.arange(0, 100, 1) # all modes

33 wn = modal_properties.f[modes]*2*np.pi

34 xin = np.ones_like(wn)* 1/100

35

36 MM = np.diag(modal_properties.gm[modes])

37 KK = MM*np.diag(wn)**2

38 CC = 2*MM*np.diag(wn*xin)

39

40 phiphi = np.zeros((MM.shape[0], 3, len(beam)))

41 for m in range(MM.shape[0]):

42 phiphi[m, 0, :] = modal_properties.phi_y[:, modes[m]]

43 phiphi[m, 1, :] = modal_properties.phi_z[:, modes[m]]

44 phiphi[m, 2, :] = modal_properties.phi_t[:, modes[m]]

45

46 #%% Creating a coarser discretisation, reduced to about 10 m segments

47 n = 120 # creater coarser discretisation

48 beam_red = np.linspace(0, L, n)

49 phiphi_red = np.zeros((phiphi.shape[0], phiphi.shape[1], len(beam_red)))

50 for i in range(phiphi.shape[0]):

51 for j in range(phiphi.shape[1]):

52 phiphi_red[i, j, :] = spip.interp1d(beam, phiphi[i, j,

:])(beam_red)↩→

53

54 phiphi = phiphi_red

55 beam = beam_red

56 dxdx = distance_matrix(L, n)

57

58 #%% Generalised rational functions

59 npzfile = np.load('results\\RFa_d.npz')

60 RFa = np.copy(npzfile['aa'])

61 d = npzfile['d']

62 for i in range(RFa.shape[0]):

63 RFa[i, :, -1] *= B

64 RFa[i, -1, :] *= B

65

66 RFa_gen = np.zeros((RFa.shape[0], MM.shape[0], MM.shape[0]))

67 phiphi_p = np.transpose(phiphi, [1, 0, 2])

68

69 for k in range(RFa.shape[0]):

70 integrand = np.zeros((len(beam), MM.shape[0], MM.shape[0]))

71 for m in range(len(beam)):

77



72 integrand[m, :, :] = phiphi_p[:, : , m].T @ RFa[k, :, :] @

phiphi_p[:, :, m]↩→

73 RFa_gen[k, :, :] = np.trapz(integrand, beam, axis=0)

74

75 #%% Static load coefficients

76 load_coeff = np.load('results\\load_coefficients.npy')

77 Cd, dCd = load_coeff[0], load_coeff[1]

78 Cl, dCl = load_coeff[2], load_coeff[3]

79 Cm, dCm = load_coeff[4], load_coeff[5]

80

81 #%% Stability assessment

82 MMinv = np.linalg.inv(MM)

83 QQ_c = np.concatenate(RFa_gen[2:], axis=-1)

84 DD_c = np.diag(np.repeat(d, RFa_gen.shape[1])) # Eq. 16 Øiseth (2012)

85 EE_c = np.zeros((len(d), RFa_gen.shape[1], RFa_gen.shape[1]))

86 EE_c[:] = np.eye(RFa_gen.shape[1]) # Eq. 16 Øiseth (2012)

87 EE_c = np.concatenate(EE_c)

88

89 #%% Calculating the response

90 mean_wind_velocities = np.array([10, 30, 50, 60, 70, 78, 80, 81])

91 covariance_matrix = np.zeros((phiphi.shape[1], phiphi.shape[1],

len(mean_wind_velocities)))↩→

92 rr = []

93 for v in range(len(mean_wind_velocities)):

94 V = mean_wind_velocities[v]

95 ## State matrix for selected mean wind velocity

96 AA_c = -np.vstack((

97 np.hstack((

98 np.zeros_like(MM), -np.eye(MM.shape[0]),

np.zeros((MM.shape[0], QQ_c.shape[1]))↩→

99 )),

100 np.hstack((

101 MMinv@(KK-1/2*rho*V**2*RFa_gen[0]),

MMinv@(CC-1/2*rho*V**2*B/V*RFa_gen[1]),

-MMinv@QQ_c*1/2*rho*V**2

↩→

↩→

102 )),

103 np.hstack((

104 np.zeros((EE_c.shape[0], MM.shape[0])), -EE_c, V/B*DD_c

105 ))

106 ))

107 BB_c = np.vstack((

108 np.zeros_like(MM),

109 MMinv,

110 np.zeros((EE_c.shape[0], MM.shape[0]))

111 ))

112

113 ## Discrete time matrices

114 dt = .01

115 AA = spla.expm(AA_c*dt)

116 BB = np.linalg.inv(AA_c)@(AA - np.eye(AA.shape[0])) @ BB_c

117 CCss = np.hstack(([
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118 np.eye(MM.shape[0]), np.zeros_like(MM), np.zeros((MM.shape[0],

EE_c.shape[0]))↩→

119 ]))

120

121 ## Monte Carlos Simulations Wind Field

122 SuSu = np.zeros((dxdx.shape[0], dxdx.shape[0], len(omegaaxis)))

123 SwSw = np.zeros((dxdx.shape[0], dxdx.shape[0], len(omegaaxis)))

124 Su = (Iu*V)**2*Au*xLu/V/((1+1.5*Au*omegaaxis*xLu/V)**(5.0/3.0))

125 Sw = (Iw*V)**2*Aw*xLw/V/((1+1.5*Aw*omegaaxis*xLw/V)**(5.0/3.0))

126 for k in range(len(omegaaxis)):

127 Co_hat_u = np.exp(-Cuy/2/np.pi*dxdx*omegaaxis[k]/V)

128 Co_hat_w = np.exp(-Cwy/2/np.pi*dxdx*omegaaxis[k]/V)

129 SuSu[:, :, k] = Su[k]*Co_hat_u

130 SwSw[:, :, k] = Sw[k]*Co_hat_w

131

132 tsim, Xu = MCCholesky(omegaaxis, SuSu, Nsim)

133 _, Xw = MCCholesky(omegaaxis, SwSw, Nsim)

134 t = tsim[tsim<600]

135

136 for uw in range(Nsim):

137 ## Generalised buffeting load

138 u = Xu[uw][:, tsim<600]

139 w = Xw[uw][:, tsim<600]

140

141 BqBq = 1/2*rho*V*B*np.array([

142 [2*D/B*Cd, (D/B*dCd-Cl)],

143 [2*Cl, (dCl+D/B*Cd)],

144 [2*B*Cm, B*dCm]

145 ])

146

147 qq = np.zeros((3, len(t), len(beam)))

148 for n in range(len(beam)):

149 qq[:, :, n] = BqBq@np.real(np.array([u[n, :], w[n, :]]))

150

151 QQ = np.zeros((MM.shape[0], len(t)))

152 for k in range(len(t)):

153 integrand = np.zeros((MM.shape[0], len(beam)))

154 for n in range(len(beam)):

155 integrand[:, n] = phiphi_p[:, :, n].T @ qq[:, k, n]

156 QQ[:, k] = np.trapz(integrand, beam, axis=1)

157

158 ## Convert the state space model to discrete time

159 tint = np.arange(0, np.max(t), dt)

160 QQint = spip.interp1d(t, QQ.T, axis=0)(tint)

161

162 x = np.zeros((AA.shape[0], len(tint)))

163 y = np.zeros((MM.shape[0], len(tint)))

164

165 for k in range(len(tint)-1):

166 x[:, k+1] = AA@x[:, k] + BB@QQint[k, :]

167 y[:, k+1] = CCss@x[:, k]
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168

169 resp = phiphi_p[:, :, round(len(beam)/2)] @y # midspan response

170 rr.append(resp)

171 print("{} of {} response calculations completed".format(v+1,

len(mean_wind_velocities)))↩→

172

173 np.savez("results\\time_domain_20nsim_600tsim.npz", rr=rr,

mean_wind_velocities=mean_wind_velocities, Nsim=Nsim)↩→

A.7 buffeting response frequency domain.py

1 import numpy as np

2 import scipy.interpolate as spip

3 import halogaland_model.ImportModalProperties as modal_properties # Import

modal properties (from abaqus model)↩→

4 from functions import distance_matrix, frequency_response_matrix,

cross_spectral_load_matrix↩→

5

6 #%% Hålogaland parameters/ constants

7 B = 18.6 # Section width

8 D = 3 # Section height

9 rho = 1.25 # Air denisty

10 L = (modal_properties.x[-1]-modal_properties.x[0]) # Length of bridge

11 nlength = len(modal_properties.x) # number of nodes along the length

12 beam = np.linspace(0, L, nlength) # discretising the bridge

13 dxdx = distance_matrix(L, nlength)

14

15 omegaaxis = np.linspace(0.00000001, 10, 1000)

16 mean_wind_velocities = np.hstack((

17 np.arange(2, 75, 4),

18 np.arange(79, 82, .5)

19 ))

20

21 #%% Buffeting load matrix

22 load_coeff = np.load("results\\load_coefficients.npy")

23 Cd, dCd = load_coeff[0], load_coeff[1]

24 Cl, dCl = load_coeff[2], load_coeff[3]

25 Cm, dCm = load_coeff[4], load_coeff[5]

26 Axx = np.array([1, 1, 1, 1, 1, 1]) # Axx values set to 1 for simplicity

27

28 BqBq = 1/2*rho*B*np.array([

29 [2*D/B*Cd*Axx[0], ((D/B)*dCd-Cl)*Axx[1]],

30 [2*Cl*Axx[2], (dCl+(D/B)*Cd)*Axx[3]],

31 [2*B*Cm*Axx[4], B*dCm*Axx[5]]

32 ])

33

34 #%% Modal properties

35 modes = np.arange(0, 100, 1) # all modes
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36 wn = modal_properties.f[modes]*2*np.pi

37 xin = np.ones_like(wn)* 1/100

38

39 MM = np.diag(modal_properties.gm[modes])

40 KK = MM*np.diag(wn)**2

41 CC = 2*MM*np.diag(wn*xin)

42

43 phiphi = np.zeros((MM.shape[0], 3, len(beam)))

44 for m in range(MM.shape[0]):

45 phiphi[m, 0, :] = modal_properties.phi_y[:, modes[m]]

46 phiphi[m, 1, :] = modal_properties.phi_z[:, modes[m]]

47 phiphi[m, 2, :] = modal_properties.phi_t[:, modes[m]]

48

49 #%% Creating a coarser discretisation

50 n = 120 # creater coarser discretisation

51 beam_red = np.linspace(0, L, n)

52 phiphi_red = np.zeros((phiphi.shape[0], phiphi.shape[1], len(beam_red)))

53 for i in range(phiphi.shape[0]):

54 for j in range(phiphi.shape[1]):

55 phiphi_red[i, j, :] = spip.interp1d(beam, phiphi[i, j,

:])(beam_red)↩→

56

57 phiphi = phiphi_red

58 beam = beam_red

59 dxdx = distance_matrix(L, n)

60

61 phiphi_p = np.transpose(phiphi, [1, 0, 2])

62 xr = round(len(beam)/2)

63 np.savez('results\\modal_properties.npz', phiphi_p=phiphi_p, xr=xr)

64 #%% Loading curvefitted rational functions

65 npzfile = np.load('results\\RFa_d.npz')

66 RFa = np.copy(npzfile['aa'])

67 d = npzfile['d']

68

69 covariance_matrix = np.zeros((phiphi.shape[1], phiphi.shape[1],

len(mean_wind_velocities)))↩→

70 SRSR = np.zeros((phiphi.shape[1], phiphi.shape[1],

len(mean_wind_velocities), len(omegaaxis)), dtype=complex)↩→

71 import time

72

73 # Hva er det som tar så lang tid?

74 for i, V in enumerate(mean_wind_velocities):

75 tic = time.time()

76 HH = frequency_response_matrix(MM, CC, KK, V, omegaaxis, phiphi, rho,

B, RFa, d, beam)↩→

77 toc = time.time()

78 SQSQ = cross_spectral_load_matrix(omegaaxis, V, V*BqBq, dxdx, phiphi)

79 for k, w in enumerate(omegaaxis):

80 SRSR[:, :, i, k] = phiphi_p[:, :, xr] @ (HH[:, :, k] @ SQSQ[:, :,

k] @ np.conj(HH[:, :, k]).T) @ phiphi_p[:, :, xr].T # Eq. (9)

IABSE

↩→

↩→
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81 covariance_matrix[:, :, i] = np.real(np.trapz(SRSR[:, :, i, :],

omegaaxis, axis=-1))↩→

82

83

84 #%% Saving results

85 #np.savez('results\\covariance_matrix_frequency_domain.npz',

covariance_matrix=covariance_matrix,

mean_wind_velocities=mean_wind_velocities)

↩→

↩→

86 #np.savez('results\\SRSR.npz', SRSR=SRSR)

A.8 plot ads.py

1 import pandas as pd

2 import matplotlib. pyplot as plt

3 import numpy as np

4

5 df_dim = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Dim section

model")↩→

6 df_ads = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Aerodynamic

derivatives")↩→

7 df_red_vel = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Reduced

velocities")↩→

8 df_mean_vel = pd.read_excel("ADs_HALOGALAND_PUS.xlsx", sheet_name="Mean

wind velocity")↩→

9 B = df_dim['B']

10 # Want to add all the different velocities into its own array

11 n_mean_vel = np.unique(np.round(df_mean_vel['P_1']).to_numpy(dtype=int))

12

13 #%%

14 stiffness_ads = ['P_4', 'P_6', 'P_3', 'H_6', 'H_4', 'H_3', 'A_6', 'A_4',

'A_3']↩→

15 damping_ads = ['P_1', 'P_5', 'P_2', 'H_5', 'H_1', 'H_2', 'A_5', 'A_1',

'A_2']↩→

16

17 fig_s, axs_s = plt.subplots(nrows=3, ncols=3, num="ADs related to

stiffness")↩→

18 fig_d, axs_d = plt.subplots(nrows=3, ncols=3, num="ADs related to

damping")↩→

19

20 for i in range(3):

21 for j in range(3):

22 mean_velocities_s =

np.round(df_mean_vel[stiffness_ads[i*3+j]]).to_numpy(dtype=int)↩→

23

24 red_vel_stiff_1 =

df_red_vel[stiffness_ads[i*3+j]][mean_velocities_s==n_mean_vel[0]]↩→

25 red_vel_stiff_2 =

df_red_vel[stiffness_ads[i*3+j]][mean_velocities_s==n_mean_vel[1]]↩→

82



26

27 ads_stiff_1 =

df_ads[stiffness_ads[i*3+j]][mean_velocities_s==n_mean_vel[0]]↩→

28 ads_stiff_2 =

df_ads[stiffness_ads[i*3+j]][mean_velocities_s==n_mean_vel[1]]↩→

29

30 red_vel_damp_1 =

df_red_vel[damping_ads[i*3+j]][mean_velocities_s==n_mean_vel[0]]

# redusert V ikke K!

↩→

↩→

31 red_vel_damp_2 =

df_red_vel[damping_ads[i*3+j]][mean_velocities_s==n_mean_vel[1]]↩→

32

33 ads_damp_1 =

df_ads[damping_ads[i*3+j]][mean_velocities_s==n_mean_vel[0]]↩→

34 ads_damp_2 =

df_ads[damping_ads[i*3+j]][mean_velocities_s==n_mean_vel[1]]↩→

35

36 axs_s[i][j].plot(red_vel_stiff_1, ads_stiff_1, '.', c="C0")

37 axs_s[i][j].plot(red_vel_stiff_2, ads_stiff_2, '.', c="C1")

38

39 axs_d[i][j].plot(red_vel_damp_1, ads_damp_1, '.', c="C0")

40 axs_d[i][j].plot(red_vel_damp_2, ads_damp_2, '.', c="C1")

41

42 axs_s[i][j].set_ylabel('$'+stiffness_ads[i*3+j]+'^*$')

43 axs_d[i][j].set_ylabel('$'+damping_ads[i*3+j]+'^*$')

44

45 axs_s[i][j].grid()

46 axs_d[i][j].grid()

47

48 axs_s[j][i].set_xlabel('$K=V/(B\cdot\omega)$')

49 axs_d[j][i].set_xlabel('$K=V/(B\cdot\omega)$')

50

51 fig_s.axes[-1].lines[0].set_label(r"$V\approx" +str(n_mean_vel[0]) +"$")

52 fig_s.axes[-1].lines[1].set_label(r"$V\approx" +str(n_mean_vel[1]) +"$")

53 fig_s.axes[-1].legend()

54

55 fig_d.axes[-1].lines[0].set_label(r"$V\approx" +str(n_mean_vel[0]) +"$")

56 fig_d.axes[-1].lines[1].set_label(r"$V\approx" +str(n_mean_vel[1]) +"$")

57 fig_d.axes[-1].legend()

58

59 fig_d.tight_layout()

60 fig_s.tight_layout()

61

62 plt.show()

63 \subsection{plot\_ads.py}

64
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A.9 plot mode shapes.py

1 import h5py

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 hf = h5py.File('HalogalandModel_exportmodal.h5', 'r')

6

7 # Node coordinates all nodes (size [N_nodes,4])

8 nodecoord = np.array(hf.get('nodecoord'))

9

10 # Mode shape matrix for all DOFs (size [6*N_nodes,N_modes])

11 phi = np.array(hf.get('phi'))

12

13 # Labels corresponding to each row of phi (each DOF), as a list of

strings↩→

14 phi_label_temp = np.array(hf.get('phi_label'))

15 phi_label=phi_label_temp[:].astype('U10').ravel().tolist()

16

17 #%% Get node coordinates and mode shape for bridge deck only

18 # Nodes in bridge deck (total 573)

19 node_deck=np.arange(1004,1576+1,1)

20

21 # Create list index of nodes in bridge deck

22 index_node_deck=[]

23

24 for k in np.arange(len(node_deck)):

25 index_node_deck.append(np.argwhere(node_deck[k]==nodecoord[:,0])[0,0])

26

27 nodecoord_deck=nodecoord[index_node_deck,:]

28

29 # Create list of index of y-DOFs,z-DOFs, and t-DOFs in bridge deck

30 index_y=[]

31 index_z=[]

32 index_t=[]

33

34 for k in np.arange(len(node_deck)):

35 str_y=str(node_deck[k]) + '_U2'

36 index_y.append(phi_label.index(str_y))

37

38 str_z=str(node_deck[k]) + '_U3'

39 index_z.append(phi_label.index(str_z))

40

41 str_t=str(node_deck[k]) + '_UR1'

42 index_t.append(phi_label.index(str_t))

43

44 phi_y=phi[index_y,:]

45 phi_z=phi[index_z,:]

46 phi_t=phi[index_t,:]

47
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48 x=nodecoord_deck[:,1] #x-coordinate of deck nodes

49

50 # Plotting first 8 modes horisontal, vertical and torsional modes

51 horizontal_modes = [0, 2, 6, 9, 10, 13, 17, 18]

52 vertical_modes = [1, 3, 4, 5, 7, 8 , 11, 12]

53 torsional_modes = [15, 28, 31, 47, 52, 59, 64, 79]

54

55 fig, axs = plt.subplots(nrows=len(horizontal_modes), ncols=3, dpi=1000,

sharex=True)↩→

56 scale_factor = 10**4

57 for i in range(len(horizontal_modes)):

58

59 axs[i, 0].plot(x/(x[0]-x[-1])+.5, phi_y[:, horizontal_modes[i]])

60 axs[i, 0].plot(x/(x[0]-x[-1])+.5, phi_z[:, horizontal_modes[i]])

61 axs[i, 0].plot(x/(x[0]-x[-1])+.5, phi_t[:, horizontal_modes[i]])

62

63 axs[i, 1].plot(x/(x[0]-x[-1])+.5, phi_y[:, vertical_modes[i]],

label=r"$\phi_y$")↩→

64 axs[i, 1].plot(x/(x[0]-x[-1])+.5, phi_z[:, vertical_modes[i]],

label=r"$\phi_z$")↩→

65 axs[i, 1].plot(x/(x[0]-x[-1])+.5, phi_t[:, vertical_modes[i]],

label=r"$\phi_t$")↩→

66

67 axs[i, 2].plot(x/(x[0]-x[-1])+.5, phi_y[:, torsional_modes[i]])

68 axs[i, 2].plot(x/(x[0]-x[-1])+.5, phi_z[:, torsional_modes[i]])

69 axs[i, 2].plot(x/(x[0]-x[-1])+.5, phi_t[:, torsional_modes[i]])

70

71 axs[i, 0].set_ylabel(r"$\phi_{" + str(horizontal_modes[i]+1) + "}$")

72 axs[i, 1].set_ylabel(r"$\phi_{" + str(vertical_modes[i]+1) + "}$")

73 axs[i, 2].set_ylabel(r"$\phi_{" + str(torsional_modes[i]+1) + "}$")

74

75 axs[i, 0].set_ylim(-np.max(np.abs(phi_y[:, horizontal_modes[i]]))*1.2,

np.max(np.abs(phi_y[:, horizontal_modes[i]]))*1.2)↩→

76 axs[i, 1].set_ylim(-np.max(np.abs(phi_z[:, vertical_modes[i]]))*1.2,

np.max(np.abs(phi_z[:, vertical_modes[i]]))*1.2)↩→

77 axs[i, 2].set_ylim(-np.max(np.abs(phi_t[:, torsional_modes[i]]))*1.2,

np.max(np.abs(phi_t[:, torsional_modes[i]]))*1.2)↩→

78

79 axs[i, 0].grid(":")

80 axs[i, 1].grid(":")

81 axs[i, 2].grid(":")

82

83 plt.setp(plt.gcf().get_axes(), yticks=[])

84 plt.tight_layout()

85 fig.align_ylabels(axs[:, 0])

86 fig.align_ylabels(axs[:, 1])

87 fig.align_ylabels(axs[:, 2])

88

89 axs[0, 0].set_title(r"Horizontal mode shapes $\phi_y$", fontsize=10)

90 axs[0, 1].set_title(r"Vertical mode shapes $\phi_z$", fontsize=10)

91 axs[0, 2].set_title(r"Torsional mode shapes $\phi_t$", fontsize=10)
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92 axs[-1, 0].set_xlabel(r"$x/L$")

93 axs[-1, 1].set_xlabel(r"$x/L$")

94 axs[-1, 2].set_xlabel(r"$x/L$")

95

96 axs[-1, 1].legend(loc='upper center', bbox_to_anchor=(0.5, -1.4),

97 fancybox=True, shadow=False, ncol=3)

98 plt.savefig("Figures\\modeshapes.png", bbox_inches='tight')

A.10 plot time series.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import ImportModalProperties2 as modal_properties # Import modal

properties (from abaqus model)↩→

4 from functions import distance_matrix, MCCholesky

5

6 #%% Hålogaland parameters/ constants

7 B = 18.6 # Section width

8 D = 3 # Section height

9 rho = 1.25 # Air denisty

10 L = (modal_properties.x[-1]-modal_properties.x[0]) # Length of bridge

11 nlength = len(modal_properties.x) # number of nodes along the length

12 beam = np.linspace(0, L, nlength) # discretising the bridge

13

14 #%% Wind field parameters Er disse verdiene riktig for Hålogaland`?`

15 L1 = 100.0 # Reference integral length scale

16 z1 = 10.0 # Reference height

17 z = 50.0 # Height above ground

18 xLu = L1*(z/z1)**0.3 # Integral length scale

19 xLw = 1/12*xLu # Integral length scale

20 Au, Aw = 6.8/2/np.pi, 9.4/2/np.pi # Constant in the auto-spectral density

21 Iu = 0.15 # Turbulence intensity

22 Iw = 1/4*Iu# Turbulence intensity

23 Cuy, Cwy = 10.0, 6.5 # Decay coeff

24

25 #%% MonteCarlos Simulations Wind Field

26 Nsim = 2

27 omegaaxis = np.linspace(0.00000001,10,100)

28 dxdx = distance_matrix(L, nlength)

29

30 #%% Creating a coarser discretisation, reduced to about 10 m segments

31 n = 120 # creater coarser discretisation

32 beam_red = np.linspace(0, L, n)

33 beam = beam_red

34 dxdx = distance_matrix(L, n)

35

36 #%% Plotting time series

37 V = 60
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38

39 ## MonteCarlos Simulations Wind Field

40 SuSu = np.zeros((dxdx.shape[0], dxdx.shape[0], len(omegaaxis)))

41 SwSw = np.zeros((dxdx.shape[0], dxdx.shape[0], len(omegaaxis)))

42 Su = (Iu*V)**2*Au*xLu/V/((1+1.5*Au*omegaaxis*xLu/V)**(5.0/3.0))

43 Sw = (Iw*V)**2*Aw*xLw/V/((1+1.5*Aw*omegaaxis*xLw/V)**(5.0/3.0))

44 for k in range(len(omegaaxis)):

45 Co_hat_u = np.exp(-Cuy/2/np.pi*dxdx*omegaaxis[k]/V)

46 Co_hat_w = np.exp(-Cwy/2/np.pi*dxdx*omegaaxis[k]/V)

47 SuSu[:, :, k] = Su[k]*Co_hat_u

48 SwSw[:, :, k] = Sw[k]*Co_hat_w

49

50 tsim, Xu = MCCholesky(omegaaxis, SuSu, Nsim)

51 _, Xw = MCCholesky(omegaaxis, SwSw, Nsim)

52 t = tsim[tsim<600]

53

54 us = []

55 ws = []

56 for uw in range(Nsim):

57 u = Xu[uw][:, tsim<600]

58 w = Xw[uw][:, tsim<600]

59 us.append(u)

60 ws.append(w)

61

62 #%% Plotting

63

64 fig, axs = plt.subplots(nrows=4, ncols=1, sharex=True, dpi=1000)

65 quarterspan = len(beam)//4

66 midspan = len(beam)//2

67 plot_points = [quarterspan, midspan]

68 for i in range(2):

69 axs[2*i].plot(t, us[i][plot_points[i]], lw=1.1)

70 axs[2*i+1].plot(t, ws[i][plot_points[i]], lw=1.1)

71

72

73 axs[2*i].grid(ls=":")

74 axs[2*i+1].grid(ls=":")

75

76 axs[2*i].set_ylabel(r"$u_"+"{}".format(i+1)+" (t)$")

77 axs[2*i+1].set_ylabel(r"$w_"+"{}".format(i+1)+" (t)$")

78

79 axs[-1].set_xlabel(r"Time $t (s)$")

80 fig.align_ylabels()

81 fig.savefig("Figures\\time_series_simulation.png", bbox_inches="tight")
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A.11 plot self excited forces.py

1

2 #%%

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from curve_fit_ads import aa, damping_ad, stiffness_ad, df_ADs, K

6 from scipy.linalg import expm

7

8 def wind_induced_self_excited_forces(t, rr, d, aa, rho, V, B):

9 """Calculates the wind induced self excited forces through

10 a state space model

11

12 Args:

13 t (array): time array

14 rr (array_like): contains the response (3xlen(t) ry, rz, rrot)

15 d (array): contains all d values obtain from the curve fitting of

ADs(all values set to 1 for simplicity)↩→

16 aa (array_like): all a matrices from the transfer function (3x3

matrices * len(d)+2)↩→

17 rho (double): air density

18 V (double): wind speed

19 B (double): width

20

21 Returns:

22 array_like: return the self excited forces

23 """

24 # Finding the selfexcited forces through state space model

25 dt = t[1] - t[0]

26 rr_dot = np.gradient(rr, axis=-1)/dt # velocity

27

28 I = np.eye(3)

29

30 D_c = -V/B * np.diag(np.repeat(d, len(I)))

31 E_c = np.zeros((len(d), len(I), len(I)))

32 E_c[:] = I

33 RFa = aa.copy()

34

35 for i in range(len(RFa)):

36 RFa[i, :, -1] *= B

37 RFa[i, -1, :] *= B

38

39 Q_c = 1/2 *rho*V**2 * RFa[2:]

40

41 x = np.zeros((len(d)*3, len(t)))

42

43 D = expm(D_c*dt)

44 E = np.linalg.inv(D_c)@ (D - np.eye(len(D)))@ E_c

45

46 Q = Q_c
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47 z = np.zeros_like(rr)

48 q = np.zeros_like(rr)

49

50 for k in range(len(t)-1):

51 x[:, k+1] = D @ x[:, k] + E[0] @ rr_dot[:, k]

52 z[:,k] = Q @ x[:, k]

53 q[:,k] = 1/2 *rho*V**2*(RFa[0] @ rr[:, k] + RFa[1] @ rr_dot[:,

k]*B/V) + z[:, k]↩→

54

55 return q

56

57

58 # Testing the wind_induced_self_excited_forces with an arbitrary motion

59 # and one value for K

60 #%%

61 reduced_frequency_index = 7

62 K_red = K[reduced_frequency_index]

63

64

65 V = 40

66 B = 18.6

67 rho = 1.25

68 motion_freq = K_red*V/B

69

70

71 t = np.linspace(0, 20, 1000)

72 rr = np.array([.1*np.sin(motion_freq*(t+1/3)),

.05*np.sin(motion_freq*(t+4/3)),

.08*np.sin(motion_freq*(t+1/2))/2/np.pi])

↩→

↩→

73 d = np.array([1])

74

75 q = wind_induced_self_excited_forces(t, rr, d, aa, rho, V, B)

76

77 fig, axs = plt.subplots(nrows=3, ncols=2, sharex=True, dpi=1000,

figsize=(8, 3))↩→

78

79 axs[0][0].plot(t, rr[0], c="C3", label=r"$\mathbf{u}$")

80 axs[1][0].plot(t, rr[1], c="C3")

81 axs[2][0].plot(t, rr[2], c="C3")

82

83 axs[0][1].plot(t[:-1], q[0][:-1]/1000, lw=2)

84 axs[1][1].plot(t[:-1], q[1][:-1]/1000, lw=2)

85 axs[2][1].plot(t[:-1], q[2][:-1]/1000, lw=2, label=r'$\mathbf{q}$

(state-space)')↩→

86

87 axs[0][0].set_ylabel(r"$u_y$ (m)")

88 axs[1][0].set_ylabel(r"$u_z$ (m)")

89 axs[2][0].set_ylabel(r"$u_\theta$ (rad)")

90

91 axs[0][1].set_ylabel(r"$q_y$ (kN/m)")

92 axs[1][1].set_ylabel(r"$q_z$ (kN/m)")
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93 axs[2][1].set_ylabel(r"$q_\theta$ (kNm/m)")

94

95 fig.align_ylabels()

96 # Control against q = Cae* rr_dot + Kae *rr

97

98

99

100

101 K_ae = 1/2*rho*V**2*K_red**2 * np.array([[

df_ADs['P_4'][reduced_frequency_index],

df_ADs['P_6'][reduced_frequency_index],

B*df_ADs['P_3'][reduced_frequency_index] ],

↩→

↩→

↩→

102 [

df_ADs['H_6'][reduced_frequency_index],

df_ADs['H_4'][reduced_frequency_index],

B*df_ADs['H_3'][reduced_frequency_index]

],

↩→

↩→

↩→

↩→

103 [

B*df_ADs['A_6'][reduced_frequency_index],

B*df_ADs['A_4'][reduced_frequency_index],

B**2*df_ADs['A_3'][reduced_frequency_index]

]])

↩→

↩→

↩→

↩→

104

105 C_ae = 1/2*rho*V*K_red*B * np.array([[

df_ADs['P_1'][reduced_frequency_index],

df_ADs['P_5'][reduced_frequency_index],

B*df_ADs['P_2'][reduced_frequency_index] ],

↩→

↩→

↩→

106 [

df_ADs['H_5'][reduced_frequency_index],

df_ADs['H_1'][reduced_frequency_index],

B*df_ADs['H_2'][reduced_frequency_index]

],

↩→

↩→

↩→

↩→

107 [

B*df_ADs['A_5'][reduced_frequency_index],

B*df_ADs['A_1'][reduced_frequency_index],

B**2*df_ADs['A_2'][reduced_frequency_index]

]])

↩→

↩→

↩→

↩→

108

109

110

111 dt = t[1]-t[0]

112 rr_dot = np.gradient(rr, axis=-1)/dt

113 q_se = K_ae @ rr + C_ae @ rr_dot

114

115

116 axs[0][1].plot(t, q_se[0]/1000,"--")

117 axs[1][1].plot(t, q_se[1]/1000,"--")

118 axs[2][1].plot(t, q_se[2]/1000,"--",

label=r'$\mathbf{q}=\mathbf{C}_{ae}\dot{\mathbf{u}}+\mathbf{K}_{ae}\mathbf{u}$')↩→

119

120 axs[-1][0].set_xlabel(r"$t$ (s)")
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121 axs[-1][1].set_xlabel(r"$t$ (s)")

122

123 handles, labels = axs[2][1].get_legend_handles_labels()

124 fig.legend(loc='upper center', bbox_to_anchor=(.5, 0),

125 fancybox=True, shadow=False, ncol=3)

126

127 axs[0][0].grid(ls=":")

128 axs[1][0].grid(ls=":")

129 axs[2][0].grid(ls=":")

130

131 axs[0][1].grid(ls=":")

132 axs[1][1].grid(ls=":")

133 axs[2][1].grid(ls=":")

134

135 plt.tight_layout()

136 fig.savefig("Figures\\self excited forces.png", bbox_inches="tight")

137 plt.show()

138 #%%

139

A.12 plot extreme value.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from gumbel import method_of_moments_gumbel

4 from gumbel_bootstrap import gumbel_parametric_bootstrap

5 from functions import *

6

7 #%% Frequency domian

8 npzfile_freq_dom = np.load('results\\freq_resp_NEW.npz')

9 covariance_matrix = npzfile_freq_dom['covariance_matrix']

10 mean_wind_velocities_freq = npzfile_freq_dom['mean_wind_vel']

11

12 #%% Time domain

13 npzfile_time_dom = np.load('results\\time_domain_20nsim_600tsim.npz')

14 rr = npzfile_time_dom['rr']

15 mean_wind_velocities_time = npzfile_time_dom['mean_wind_velocities']

16 Nsim = npzfile_time_dom['Nsim']

17

18 #%% Plotting extreme value distriubtion

19 for V in mean_wind_velocities_time[mean_wind_velocities_time==60]:

20 #V = mean_wind_velocities_time[v]

21 rr_mid = np.zeros((Nsim, rr.shape[-1]))

22

23 for n in range(Nsim):

24 rr_mid[n, :] = rr[1*Nsim + n, 1, :] # Choose which response to

look at↩→

25
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26 rr_mid_max = np.sort(np.amax(np.abs(rr_mid), axis=-1))

27 p = np.zeros_like(rr_mid_max)

28 for m in range(len(rr_mid_max)):

29 p[m] = (m+1)/(len(rr_mid_max)+1)

30

31 pt = .95

32

33 mean = np.mean(rr_mid_max)

34 std = np.std(rr_mid_max)

35

36 beta = gumbel_beta(std)

37 mu = gumbel_mu(mean, std)

38

39 fig, axs = plt.subplots(nrows=1, ncols=2, dpi=1000, figsize=(9,4))

40

41 rr_arr = np.linspace(0, 2*np.max(rr_mid_max), 10000)

42 gumbel_cdf = gumbel_CDF(rr_arr, mean, std)

43 rr_p = rr_arr[gumbel_cdf>pt][0]

44

45 ll_p = -np.log(-np.log(p))

46

47 axs[0].plot(ll_p, rr_mid_max, "o", label=r"Maximum response $m$")

48 ## Linear regression

49 reg_x = np.array([1.2*np.min(ll_p), 1.2*np.max(ll_p)])

50 reg_y = reg_x*beta+mu

51 axs[0].plot(reg_x, reg_y, label = "Linear regression")

52 axs[0].plot(reg_x, [rr_p, rr_p], "k", label="{:.0f}th

percentile".format(pt*100))↩→

53

54 axs[0].set_xlabel("$-\log(-\log(m/(N+1)))$")

55 axs[0].set_ylabel("$u_{\max}$")

56 axs[0].legend()

57 axs[0].grid(ls=":")

58

59 ## Bootstrapping

60

61 Nsim_gum1, Nsim_gum2 = 100000, 20

62 N = Nsim_gum1 * Nsim_gum2

63

64 gumbel_mc_sim = mu - np.log(-np.log(np.random.rand(N)))*beta

65

66 mat = np.reshape(gumbel_mc_sim, (Nsim_gum1 , Nsim_gum2))

67 R = np.zeros(mat.shape[0])

68

69 for i in range(len(R)):

70 mean_i = np.mean(mat[i, :])

71 std_i = np.std(mat[i, :])

72

73 betai = gumbel_beta(std_i)

74 mui = gumbel_mu(mean_i, std_i)

75
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76 R[i] = mui - np.log(-np.log(pt))*betai

77

78 R_hat = np.mean(R)

79 std_R = np.std(R)

80 w_q2 = 1.96 #95 % confidence interval

81 confidence_interval = np.array([R_hat - w_q2*std_R, R_hat +

w_q2*std_R])↩→

82 p_conf = .95

83 q = 1-p_conf

84 confidence_interval = np.array([np.sort(R)[int(q*Nsim_gum1/2)],

np.sort(R)[int((1-q/2)*Nsim_gum1)]])↩→

85 ## plot_bootstrap

86 Nbin = int(np.min([len(R)/10, 500]))

87 xout = np.linspace(np.min(R), np.max(R), Nbin)

88 hist = np.histogram(R, Nbin)

89 prob = hist[0]/len(R)/(xout[1] - xout[0])

90

91 axs[1].plot(xout, prob)

92 axs[1].plot(R_hat,0, "x", mfc='w', c="red", label=r"95th percentile")

93 axs[1].fill_between(

94 x=xout,

95 y1=prob,

96 where= (xout >= confidence_interval[0]) & (xout <=

confidence_interval[1]),↩→

97 alpha=1,

98 )

99

100 axs[1].plot(confidence_interval,[0, 0], "o", mfc='w', c="red",

label=r"95\% confidence")↩→

101 axs[1].set_xlabel("$u (m)$")

102 axs[1].set_ylabel("$PDF$")

103

104 axs[1].plot(xout, gumbel_PDF(xout, R_hat, std_R))

105 #axs[1].legend()

106 axs[1].grid(ls=":")

107 axs[1].set_xlim(xout[0], xout[-1]*.9)

108

109 fig.savefig("Figures\\gumbel_V=60_vertical.png", bbox_inches="tight")

110

111

112 #mu, beta = method_of_moments_gumbel(rr_mid, pt)

113 #gumbel_parametric_bootstrap(beta, mu, Nsim_gum1, Nsim_gum2, pt)

114 plt.show()

115

116 npzfile = np.load("results\\time_domain_20nsim_600tsim.npz")

117 rr = npzfile['rr']

118 mean_wind_velocities_time = npzfile['mean_wind_velocities']

119 Nsim = npzfile['Nsim']

120

121 #%%

122 fig, axs = plt.subplots(nrows=3, ncols=1, sharex=True, dpi=1000)

93



123 t = np.linspace(0, 600, rr.shape[-1])

124 axs[0].plot(t, rr[-(Nsim+1), 0, :], lw=1.3)

125 axs[1].plot(t, rr[-(Nsim+1), 1, :], lw=1.2)

126 axs[2].plot(t, rr[-(Nsim+1), 2, :], lw=1)

127

128 axs[0].set_ylabel(r"$u_y$ (m)")

129 axs[1].set_ylabel(r"$u_z$ (m)")

130 axs[2].set_ylabel(r"$u_\theta$ (rad)")

131

132 fig.align_ylabels()

133

134 axs[-1].set_xlabel(r"$t$ (s)")

135

136 axs[0].grid(ls=":")

137 axs[1].grid(ls=":")

138 axs[2].grid(ls=":")

139

140 axs[0].set_ylim(-13,13)

141

142 plt.tight_layout()

143

144 fig.savefig("Figures\\midspan_response_V=80.png", bbox_inches="tight")

A.13 plot cdf peak frequency.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 npzfile_freq_dom = np.load('results\\freq_resp_NEW.npz')

5 mean_wind_velocities_freq = npzfile_freq_dom['mean_wind_vel']

6

7 SRSR = npzfile_freq_dom['SRSR']

8 omegaaxis = npzfile_freq_dom['omegaaxis']

9 # %% Mean wind velocities of interest

10 indx30 = np.where(mean_wind_velocities_freq==30.)

11 indx60 = np.where(mean_wind_velocities_freq==60.)

12 indx80 = np.where(mean_wind_velocities_freq==80.)

13 indices = np.array([indx30, indx60, indx80])

14

15 # %% probability distribution of the largest peak

16 ndofs = 3

17 nwinds = 3

18

19 sigma = np.zeros((ndofs, nwinds))

20 sigma_dot = np.zeros_like(sigma)

21

22

23 for i in range(ndofs):
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24 for j in range(nwinds):

25 sigma[i, j] = np.sqrt(np.trapz(np.real(SRSR[i, i, indices[j]]),

omegaaxis))↩→

26 sigma_dot[i, j] = np.sqrt(np.trapz(np.real(omegaaxis**2*SRSR[i, i,

indices[j]]), omegaaxis))↩→

27

28 a = np.linspace(0, 30, 100000)

29 vy = np.zeros((len(a), sigma.shape[1], sigma.shape[0]))

30 for k in range(len(a)):

31 vy[k] = 1/2/np.pi * sigma_dot/sigma *np.exp(-1/2*(a[k]/sigma)**2)

32

33 T = 600

34 P = np.exp(-vy*T)

35

36 #%% Plotting results

37 fig, axs = plt.subplots(nrows=1, ncols=3, dpi=1000, figsize=(8,4))

38 for i in range(nwinds):

39 axs[0].plot(a, P[:, 0, i], label=r"$V =

"+str(mean_wind_velocities_freq[indices[i]][0][0])+ "$ m/s")↩→

40 axs[1].plot(a, P[:, 1, i])

41 axs[2].plot(a, P[:, 2, i])

42

43 pt = .95

44 axs[0].plot(a[(np.abs(P[:, 0, i] - pt)).argmin()], P[ (np.abs(P[:, 0,

i] - pt)).argmin(), 0, i], 'rx')↩→

45 axs[1].plot(a[(np.abs(P[:, 1, i] - pt)).argmin()], P[ (np.abs(P[:, 1,

i] - pt)).argmin(), 1, i], 'rx')↩→

46 axs[2].plot(a[(np.abs(P[:, 2, i] - pt)).argmin()], P[ (np.abs(P[:, 2,

i] - pt)).argmin(), 2, i], 'rx')↩→

47

48 print(a[(np.abs(P[:, 0, i] - pt)).argmin()], # pt response

49 a[(np.abs(P[:, 1, i] - pt)).argmin()],

50 a[(np.abs(P[:, 2, i] - pt)).argmin()])

51

52 axs[0].set_xlim(0, 25)

53 axs[1].set_xlim(0, 7)

54 axs[2].set_xlim(0, .7)

55

56 axs[0].set_xlabel(r"$u_y$ (m)")

57 axs[1].set_xlabel(r"$u_z$ (m)")

58 axs[2].set_xlabel(r"$u_\theta$ (rad)")

59

60 axs[0].grid(ls=":")

61 axs[1].grid(ls=":")

62 axs[2].grid(ls=":")

63

64

65 axs[0].plot(-1,-1, "rx", label=r"CDF = 0.95")

66 axs[0].set_ylim(-.05, 1.05)

67 fig.legend(loc='upper center', bbox_to_anchor=(.5, 0),

68 fancybox=True, shadow=False, ncol=4)

95



69

70 axs[0].set_ylabel(r"CDF")

71 axs[1].set_ylabel(r"CDF")

72 axs[2].set_ylabel(r"CDF")

73 plt.tight_layout()

74 fig.savefig('Figures\\probability_largest_peak.pdf', bbox_inches="tight")

A.14 plot mid span response.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 #%% Frequency domian

5 npzfile_freq_dom = np.load('results\\freq_resp_NEW.npz')

6 covariance_matrix = npzfile_freq_dom['covariance_matrix']

7 mean_wind_velocities_freq = npzfile_freq_dom['mean_wind_vel']

8

9 #%% Time domain

10 npzfile_time_dom = np.load('results\\time_domain_20nsim_600tsim.npz')

11 rr = npzfile_time_dom['rr']

12 mean_wind_velocities_time = npzfile_time_dom['mean_wind_velocities']

13 Nsim = npzfile_time_dom['Nsim']

14

15 ## Statistical properties | standard deviation and correlation

coefficients↩→

16 cov_mat_time = np.zeros((rr.shape[1], rr.shape[1],

len(mean_wind_velocities_time)))↩→

17 for i in range(len(mean_wind_velocities_time)):

18 cov = np.zeros((3, 3, Nsim))

19 for n in range(Nsim):

20 cov[:, :, n] = np.cov(rr[i*Nsim + n])

21 cov_mat_time[:, :, i] = np.mean(cov, axis=-1) # Average all the

covarianses↩→

22

23 #%% Plotting the standard deviation and correlation coefficients

24 fig, axs = plt.subplots(nrows=3, ncols=3, dpi=200)

25 fig.suptitle(r"$\sigma$ and $\rho$ for midspan response")

26 labels = ["$\sigma_{yy}$", "$\\rho_{yz}$", "$\\rho_{y\\theta}$",

27 "$\\rho_{z y}$", "$\sigma_{zz}$", "$\\rho_{z\\theta}$",

28 "$\\rho_{\\theta y}$", "$\\rho_{\\theta z}$",

"$\sigma_{\\theta\\theta}$" ]↩→

29

30 from scipy.signal import savgol_filter

31 covariance_matrix = covariance_matrix[:, :, mean_wind_velocities_freq<80]

32 mean_wind_velocities_freq =

mean_wind_velocities_freq[mean_wind_velocities_freq<80]↩→

33

34 cov_mat_time = cov_mat_time[:, :, mean_wind_velocities_time<80]

96



35 mean_wind_velocities_time =

mean_wind_velocities_time[mean_wind_velocities_time<80]↩→

36 for i in range(3):

37 for j in range(3):

38 ax = axs[i][j]

39 if i==j:

40 ax.plot(mean_wind_velocities_freq, covariance_matrix[i,

j]**.5, 'b', lw=1)↩→

41 #ax.plot(mean_wind_velocities_freq,

savgol_filter(covariance_matrix[i, j]**.5, 51, 6),

'black', lw=1)

↩→

↩→

42 ax.plot(mean_wind_velocities_time, cov_mat_time[i, j]**.5,

'rx', lw=.5)↩→

43 ax.set_ylabel(labels[3*i+j])

44 ax.set_xlim(10, 100)

45 else:

46 ax.plot(mean_wind_velocities_freq, covariance_matrix[i,

j]/(covariance_matrix[i, i]**.5)/(covariance_matrix[j,

j]**.5), "b", lw=1)

↩→

↩→

47 #ax.plot(mean_wind_velocities_freq,

savgol_filter(covariance_matrix[i,

j]/(covariance_matrix[i, i]**.5)/(covariance_matrix[j,

j]**.5), 51, 4), 'black', lw=1)

↩→

↩→

↩→

48 ax.plot(mean_wind_velocities_time, cov_mat_time[i,

j]/(cov_mat_time[i, i]**.5)/(cov_mat_time[j, j]**.5),

'rx', lw=.5)

↩→

↩→

49 ax.set_ylabel(labels[3*i+j])

50 ax.set_xlim(15, 100)

51 ax.set_ylim(-1, 1)

52 plt.tight_layout()

A.15 plot free vibration.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import scipy.interpolate as spip

4 import scipy.linalg as spla

5 # Import modal properties (from abaqus model)

6 import ImportModalProperties2 as modal_properties

7 from functions import distance_matrix

8

9 # %% Hålogaland parameters/ constants

10 B = 18.6 # Section width

11 D = 3 # Section height

12 rho = 1.25 # Air denisty

13 L = (modal_properties.x[-1]-modal_properties.x[0]) # Length of bridge

14 nlength = len(modal_properties.x) # number of nodes along the length

15 beam = np.linspace(0, L, nlength) # discretising the bridge
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16

17

18 # %% MonteCarlos Simulations Wind Field

19 Nsim = 20

20 omegaaxis = np.linspace(0.00000001, 10, 110)

21 dxdx = distance_matrix(L, nlength)

22

23 # %% Modal properties

24 modes = np.arange(0, 100, 1) # all modes

25 wn = modal_properties.f[modes]*2*np.pi

26 xin = np.ones_like(wn) * 1/100

27

28 MM = np.diag(modal_properties.gm[modes])

29 KK = MM*np.diag(wn)**2

30 CC = 2*MM*np.diag(wn*xin)

31

32 phiphi = np.zeros((MM.shape[0], 3, len(beam)))

33 for m in range(MM.shape[0]):

34 phiphi[m, 0, :] = modal_properties.phi_y[:, modes[m]]

35 phiphi[m, 1, :] = modal_properties.phi_z[:, modes[m]]

36 phiphi[m, 2, :] = modal_properties.phi_t[:, modes[m]]

37

38 # %% Creating a coarser discretisation, reduced to about 10 m segments

39 n = 120 # creater coarser discretisation

40 beam_red = np.linspace(0, L, n)

41 phiphi_red = np.zeros((phiphi.shape[0], phiphi.shape[1], len(beam_red)))

42

43 for i in range(phiphi.shape[0]):

44 for j in range(phiphi.shape[1]):

45 phiphi_red[i, j, :] = spip.interp1d(beam, phiphi[i, j,

:])(beam_red)↩→

46

47 phiphi = phiphi_red

48 beam = beam_red

49 dxdx = distance_matrix(L, n)

50

51 # %% Generalised rational functions

52 npzfile = np.load('results\\RFa_d.npz')

53 RFa = np.copy(npzfile['aa'])

54 d = npzfile['d']

55 for i in range(RFa.shape[0]):

56 RFa[i, :, -1] *= B

57 RFa[i, -1, :] *= B

58

59 RFa_gen = np.zeros((RFa.shape[0], MM.shape[0], MM.shape[0]))

60 phiphi_p = np.transpose(phiphi, [1, 0, 2])

61

62 for k in range(RFa.shape[0]):

63 integrand = np.zeros((len(beam), MM.shape[0], MM.shape[0]))

64 for m in range(len(beam)):

65 integrand[m, :, :] = phiphi_p[:, :,
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66 m].T @ RFa[k, :, :] @ phiphi_p[:, :,

m]↩→

67 RFa_gen[k, :, :] = np.trapz(integrand, beam, axis=0)

68

69

70 # %% Calculating the free vibration response for the critical velocity and

a higher velocity↩→

71 Vcr = 80.69

72 Vocr = 82

73 Vs = np.array([Vocr, Vcr])

74 fig, axs = plt.subplots(nrows=3, ncols=1, sharex=True, dpi=1000)

75 for i, V in enumerate(Vs):

76

77 t = np.linspace(0, 200, 10000)

78 dt = t[1] - t[0]

79

80 AA = RFa_gen.copy()

81

82 A1 = AA[0] * 1/2*rho*V**2

83 A2 = AA[1] * 1/2*rho*V**2 *B/V

84 QQ = AA[2:]

85 d = np.atleast_1d(d)

86

87 QQ_c = np.concatenate(AA[2:], axis=-1) * 1/2*rho*V**2

88 DD_c = V/B*np.diag(np.repeat(d, AA.shape[1])) # Eq. 16 Øiseth (2012)

89 EE_c = np.zeros((len(d), AA.shape[1], AA.shape[1]))

90 EE_c[:] = np.eye(AA.shape[1]) # Eq. 16 Øiseth (2012)

91 EE_c = np.concatenate(EE_c)

92

93 MMinv = np.linalg.inv(MM)

94

95 AA_c = -np.vstack((

96 np.hstack((np.zeros_like(MM),

97 -np.eye(MM.shape[0]),

98 np.zeros((MM.shape[0], QQ.shape[1])))),

99 np.hstack((MMinv@(KK-A1),

100 MMinv@(CC-A2),

101 -MMinv@QQ_c)),

102 np.hstack((np.zeros((EE_c.shape[0], MM.shape[0])),

103 -EE_c,

104 DD_c))

105 ))

106 P = np.zeros((len(wn), len(t)))

107 PP = np.vstack((

108 np.zeros_like(P),

109 P,

110 np.zeros((MM.shape[0]*len(d), P.shape[1]))))

111

112 BB_c = np.zeros((PP.shape[0], PP.shape[0]))

113 BB_c[MM.shape[0]:MM.shape[0]*2, MM.shape[0]:MM.shape[0]*2] =

np.linalg.inv(MM)↩→
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114

115 AA_d = spla.expm(AA_c* dt)

116 BB_d = np.linalg.inv(AA_c) @ (AA_d - np.eye(len(AA_d))) @ BB_c

117

118 sol = np.zeros_like(PP)

119 sol[:, 0] = np.ones(len(sol[0:, 0]))*1000

120

121 for k in range(len(t)-1):

122 sol[:, k+1] = AA_d @ sol[:, k] + BB_d @ PP[:, k]

123

124 rr = sol[:MM.shape[0]]

125 rr_dot = sol[MM.shape[0]:2*MM.shape[0]]

126 xx = sol[2*MM.shape[0]:]

127

128 # midspan repsonse

129 rr_mid = phiphi_p[:, :, round(len(beam)/2)] @ rr

130

131

132 axs[0].plot(t, rr_mid[0, :], label= r"$V="+str(V)+"$ m/s")

133 axs[1].plot(t, rr_mid[1, :])

134 axs[2].plot(t, rr_mid[2, :], label= r"$V="+str(V)+"$ m/s")

135

136 axs[0].set_ylabel(r"$u_y$ (m)")

137 axs[1].set_ylabel(r"$u_z$ (m)")

138 axs[2].set_ylabel(r"$u_\theta$ (rad)")

139

140 axs[0].grid(ls=":")

141 axs[1].grid(ls=":")

142 axs[2].grid(ls=":")

143

144 fig.align_ylabels()

145 axs[2].set_xlabel(r"$t$ (s)")

146 handles, labels = axs[2].get_legend_handles_labels()

147 axs[2].legend(handles[::-1], labels[::-1], loc='upper center',

bbox_to_anchor=(0.5, -.5),↩→

148 fancybox=True, shadow=False, ncol=2)

149

150 plt.tight_layout()

151 fig.savefig("Figures\\Free vibration response.png", bbox_inches="tight")

152 # %%

153

154

A.16 plot frequency and welch.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.signal import csd
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4

5 #%% Time domain

6 npzfile_time_dom = np.load('results\\time_domain_20nsim_600tsim.npz')

7 rr = npzfile_time_dom['rr'] # midspan response

8 mean_wind_velocities_time = npzfile_time_dom['mean_wind_velocities']

9 Nsim = npzfile_time_dom['Nsim']

10

11 #%% Frequency domain

12 npzfile_freq = np.load('results\\freq_resp_NEW.npz')

13 SRSR = npzfile_freq['SRSR']

14 omegaaxis = npzfile_freq['omegaaxis']

15 mean_wind_vel = npzfile_freq['mean_wind_vel']

16

17 #%% Comparing the response of time and frequency domain with welch's

method↩→

18 Ndiv = 1

19 Nwindow = np.ceil(rr.shape[-1]/Ndiv) # Length of window/segment

20 Nfft_pow2 = 2**(np.ceil(np.log2(Nwindow))) # Next power of 2 for zero

padding↩→

21 t = np.linspace(0, 600, rr.shape[-1])

22 dt = t[1] - t[0]

23

24

25 # Spectral matrix

26 V_plot = np.array([30, 60, 80])

27 S_welch=np.zeros((len(V_plot), 3, 3, np.int32(Nfft_pow2/2+1)),

dtype=np.complex_)↩→

28 # Fill spectral matrix by taking the average of the cross spectral density

between↩→

29 for v in range(len(V_plot)):

30 for k1 in range(3):

31 for k2 in range(3):

32 indx =

np.where(mean_wind_velocities_time==V_plot[v])[0][0]↩→

33 f, S_Hz = csd(rr[indx*Nsim:(indx+1)*Nsim, k1, :],

rr[indx*Nsim:(indx+1)*Nsim, k2, :], fs=1/dt,

window='hann', nperseg=Nwindow, noverlap=None,

nfft=Nfft_pow2, detrend='constant',

return_onesided=True, scaling='density', axis=-1,

average='mean')

↩→

↩→

↩→

↩→

↩→

34

35 w_welch = f*2*np.pi # Frequency axis in rad/s

36 S_welch[v, k1, k2, :]= np.average(S_Hz, axis=0)/(2*np.pi)

# Spectrum in rad/s↩→

37

38 #%% Plotting the cross spectra

39 fig, axs = plt.subplots(nrows=3, ncols=1, dpi=1000, sharex=True)

40 labels = ["u_y", "u_z", "u_\\theta"]

41 for v in range(len(V_plot)):

42 V = V_plot[v]

43 for k1 in range(3):
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44 ax = axs[k1]

45 ax.plot(w_welch,np.real(S_welch[v, k1, k1, :]), label="V = {}

m/s".format(V))↩→

46

47 if V_plot[v] in mean_wind_vel:

48 indx2 = np.where(mean_wind_vel==V_plot[v])[0][0]

49 ax.plot(omegaaxis, np.real(SRSR[k1, k1, indx2, :]), '--',

label="V = {} m/s".format(V))↩→

50 ax.set_ylabel(('$S_{' + labels[k1] + " " + labels[k1] +

'}(\omega)$'))↩→

51 ax.grid(ls=":")

52 ax.set_yscale('log')

53 ax.set_xlim(0,5)

54 ax.set_ylim(10**(-10), 2*10**3)

55

56 ax.set_xlabel('$\omega$')

57 ax.legend(loc='upper center', bbox_to_anchor=(0.5, -.5),

58 fancybox=True, shadow=False, ncol=3)

59 plt.tight_layout()

60 plt.savefig("Figures\\welch.png", bbox_inches='tight')
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