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Summary

Carbon dioxide capture and storage have become important actions for reducing the
greenhouse gas emissions in the atmosphere. For full scale carbon capture and storage
to be successful and implemented in a global scale, safe and reliable transportation and
infrastructure are required. The Battelle Two-curve method has previously been the
dominant approach for assessing fracture propagation control in pipelines, but has shown
to give non-conservative results. Other approaches can be time-consuming and with high
computational cost. Due to this, investigation on incorporating machine learning models
in engineering tools for efficient simulations have been done. Research has shown that
the crack propagating force of a running ductile fracture has a strong spatial variation in
two directions. In the thesis, the development of a reference pressure decay model for the
pressure inside the pipe during the event of a running ductile fracture has been presented.
The developed model will account for the spatial variations and the depressurisation
of CO2. The pressure model developed was used as loading for simulation of running
ductile fracture in a FEM-program. Four pipelines were simulated and the results from
the simulations were evaluated. Further, machine learning model were implemented, and
trained using data obtained from the simulations. Data from three different pipeline
simulations was used for testing the developed machine learning model, and assessing
the predictive capabilities. From the testing, it was found that the trained machine
learning models were able to predict pressure in a pipe with smaller diameter and longer
propagating crack. For a larger pipe diameter the models were not able to predict all
aspects of the pressure curves. To overcome this, the models need to be trained with
more diverse data, containing multiple pipe diameters. From the work, it is believed that
a machine learning model can be implemented in engineering tools for efficient simulations
of running ductile fractures.





Sammendrag

Karbonfangts og lagring har blitt et viktig tiltak for å redusere klimagassutslippene i
atmorsfæren. For at karbonfangst og lagring skal være vellykket i fullskala, kreves det
trygg og pålitelig transport og infrastruktur. Tidligere har metoden "Battelle two-curve
method" vært den dominerende metoden brukt for å dimensjonere rør med kontroll av
sprekkdannelsene. Metoden har vist seg å gi ikke-konservative resultater for CO2. Andre
metoder kan være tidkrevenede, og kostnadskrevende beregninger. Det er derfor ønske-
lig å undersøke muligheten for å implementere en maskinlæringsmodell i ingeniørverktøy
for mer effektive simuleringer. Forskning har vist at kreftene som virker på et løpende
duktilt brudd har en romslig variasjon i to retninger. I denne oppgaven er det presentert
en trykkmodell som tar hensyn til disse romslige variasjonene. Videre har trykkavlast-
ningen av CO2 blitt tatt i betraktning for å kunne beskrive alle mekanismene for trykket
i røret. Den utviklede trykkmodellen ble brukt som last for simulering av duktile brudd
i et FEM-program. Fire rørledninger med varierende geometri ble simulert, og resul-
tatene ble evaluert. Videre ble maskinlæringsmodeller implementert, og trent på data
fra en av simuleringene av rørledning. Maskinlæringsmodellen ble testet på data fra tre
andre simuleringer. Resultatene fra testingen indikerte at maskinlæringsmodellene kan
med relativ høy nøyaktighet predikere trykket i et rør med mindre diameter og lenger
sprekkdannelse. For rør med større diameter vil ikke modellene prestere like godt. For
å takle dette må maskinlæringsmodellene trenes med flere diametere på rør. Basert på
arbeidet er det anslått at en maskinlæringsmodell kan implementeres i ingeniørverktøy
for effektive simuleringer av løpende duktile brudd.
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Chapter 1

Introduction

1.1 Research context
In an effort to reduce the world’s greenhouse gasses and combat climate change, the cap-
ture and storage of carbon dioxide (CO2) have become important and necessary actions.
The purpose of carbon dioxide capture and storage (CCS) is to limit the CO2 emission
in the atmosphere by capturing, transporting and storing CO2[1]. According to the In-
ternational Energy Agency, CCS can contribute to a reduction in CO2 emissions with
approximately 6 Gt per year in 2050 [2]. The process of CCS consists of three parts:
capture, transport, and storage of CO2. The CO2 can be captured from waste gases
at power plants and industrial production sites[3]. According to Norwegian Petroleum,
geological storage under the seabed is regarded as one of the most secure options for per-
manent storage in Norwegian CCS projects[4]. In order to inject the captured CO2 under
the seabed, the CO2 is pressurized into liquid CO2 (LCO2) and transported by pipelines
from an onshore terminal to the seabed. For CCS to be successful, preventing leakage
during transportation and storage is vital, and design of a safe and reliable CO2-transport
system is necessary[5].

If a pressurized pipeline is subject to an initial fracture, the rupture can either end in
an immediate arrest or evolve into a running ductile fracture (RDF) [6]. A running
ductile fracture is a fracture mode experienced in high-pressure gas pipelines, where a
crack propagates along the pipe for a large distance [7, 8]. Previous studies have shown
that pipelines transporting CO2 are more prone to RDF, compared to pipelines with
natural gas [9, 10]. This is mainly due to the high operating pressures of LCO2, as well
as the phase shift CO2 will go through. To prevent a running ductile fracture, actions
like increased thickness, selection of stronger material, or the use of crack arrestors can
be used for design[5]. However, these actions all increase the cost of CCS projects. It is of
interest to design pipelines ensuring the integrity of the structure withouth increased costs.
The Battelle two-curve method has previously been a commonly used tool for design of
pipelines[11]. However, experimental tests and research have found the two-curve method
as non-conservative[12]. Due to this, further research and methods for describing an
RDF phenomenon in CCS are needed. When designing for fracture propagation control
in pipelines, an important component is the fluid pressure inside the pipe. The crack
driving force of an RDF stems from the pressure from the fluid at the crack tip, and the
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pressure distribution behind the crack. Considering that there are no direct methods for
calculating this distribution, new methods for modelling the pressure profile at the crack
tip and area behind the crack are needed[13, 14].

Artificial intelligence and data-driven approaches have proved to be efficient tools for
computing complex non-linear relations. In the last two decades, AI techniques have
been developed and applied to solve engineering problems[15]. Within the field of fracture
mechanics, the use of AI has had an increasing interest, due to the increasing complexity
of numerical material models[16]. The implementation of AI tools can simplify complex
damage simulations and can reduce computational costs [15]. If implemented correctly, AI
tools could provide become an aid for quickly simulating fracture propagation in pipelines.

1.2 Thesis objective
The objective of this thesis is to investigate different numerical models for pressure from
the CO2 in the pipeline, and how the pressure is related to the crack propagation. A
fluid dynamical pressure model should be developed from existing models and evaluated
against experimental values. Further, an evaluation of how machine learning, and artificial
neural networks, can be implemented for predicting presure during RDF.

The main idea behind this project is to evaluate how machine learning and artificial
neural networks can be used to incorporate interacting fluid-structure effects within an
engineering tool for simulating running cracks in pipelines. In other words, evaluate
the possibility of replacing complex fluid-structure analyses with a surrogate model for
efficient simulations.

The objective can be defined as:

1. To develop a reference pressure decay model for the pressure inside the pipe during
the event of a running ductile fracture

2. To simulate a running ductile fracture in a pipeline using the developed reference
pressure decay model, and evaluate the results from the simulations

3. To develop an artificial neural network capable of predicting the applied pressure
in pipelines during RDF, and assess its predictive capabilities

1.3 Scope
The following is the scope of the work:

• Existing experimental test will be used for the development of a reference pressure
decay model

• The work will be based on previous findings by Burchardt and Saether[17]

• Surrounding soil and backfill is outside the scope of this thesis.

• The calculations and modelling done will only account for the axial propagation of
the crack, not accounting for any deviation such as potential ring-offs.
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1.4 Outline of Thesis
Chapter 2 presents the background of running ductile fracture in pipelines as well as
design methods for crack propagation control in pipelines.

Chapter 3 presents existing pressure models for the pressure decay of CO2 in pipelines.
Additionally, the development of the reference pressure decay model is described. The
reference pressure decay model was based on values obtained through simulations and
experiments from the work by Aursand et al. [5].

In chapter 4, the modelling of a pipe simulations of an RDF will be explained. The
simulations will lay the foundation for the data used for the training and validation of a
machine learning model.

In chapter 5 background of machine learning and previous work will be presented. Fur-
thermore, the implementation of the neural network is presented and predictions for data
set belonging to other pipes are analysed.

Chapter 6 contains the concluding remarks of the work presented. Recommendations for
possible further work and studies are suggested.





Chapter 2

Running ductilfe fractures in
pipelines

This section covers the relevant theory and background on running ductile fractures in
pipelines. In order to obtain fracture propagation control in pipelines, the Battelle two-
curve method has been the dominant used method previously [18]. New approaches for
obtaining fracture propagation have been suggested in the last decade[5, 11]. Background
and theory regarding methods for obtaining fracture propagation control in pipelines.

2.1 Formation of RDF
If a pressurized pipeline sustains a small local rupture, caused by either a corrosion damage
or third-party damage severe enough, the rupture can either self-arrest or evolve into a
running ductile fracture[19]. When considering if such rupture evolves into a running
ductile fracture, mainly two factors are considered: the decompression speed of the fluid
and the speed of the propagating fracture of the pipeline. If a sudden opening in the
pipeline has occurred, the fluid will escape from the opening and two depressurization
waves will propagate in each direction from the crack tip openings[12]. The pressure waves
have a speed equal to the difference between the local fluid speed and the local speed of
sound[9]. The speed of the propagating fracture is controlled by the distributed pressure
on the pipe at the opening. These two couples together to determine the arrestability in
the pipeline[6]. If the fluid has a high decompression speed, the pressure at the crack tip
will drop and the crack will arrest shortly. However, if the fluid has a low decompression
speed, the pressure at the crack tip will remain sufficiently high to create a long-running
fracture[3].

Several design requirements and guidelines have been created for pressurized pipelines
in order to obtain fracture propagation control[20]. The challenge lies in determining
the applicability of existing industry standards for natural gasses to CO2 transportation
systems[3]. CO2 and rich natural gasses have shown to be more prone to running ductile
fracture, due to the depressurization of CO2[10, 12]. An RDF is governed by the inter-
action between the decompression wave of the fluid and the crack propagation speed. In
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pressurized pipelines carrying liquid-phase fluids, such as water or oil, the fluids will have
the same state both before and after the decompression. In these cases, the decompression
speed is high, and the pressure near the crack will drop rapidly after a rupture. In cases
where the fluid in the pipeline has a slow decompression wave, or the decompression wave
has been delayed, there is a risk of running ductile fracture[3].

In the process of CCS, CO2 is transported in a liquid or dense-liquid phase in the pipelines
[5]. When a rupture occurs in the pipeline, the liquid CO2 expands, which again leads
to a phase change[20]. The CO2 will begin to boil, and the fluid will consist of a mixture
of liquid-phase and gaseous-phase CO2[20]. The decompression speed of the liquid-phase
CO2 is higher than the speed of a ductile fracture. The CO2 between the primary decom-
pression wave and the crack tip will have a two-phase state, and the pressure present will
be equal to the pressure of boiling CO2[20]. Additionally, the two-phase fluid will create
a different depressurization gradient from the one obtained in natural gas. While natu-
ral gas has a smooth depressurization, CO2 will depressurize in a non-linear manner[5].
All these effects should be incorporated in the designing of pipelines used for CCS. The
above explained factors of an RDF is presented in figure 2.1. Note that the figure only
contains the fracture propagation in one direction, and that during an RDF, the fracture
will propagate in both directions from the initial rupture[5].

Figure 2.1: Figure adapted from [21]

2.2 Ductile tearing of pipes
Generally, materials can fail in two ways, brittle or ductile. Metals will typically have
ductile fractures, with large plastic deformations. Ductile tearing of pipes has previously
been studied by Schindler et al. [8]. Ductile fracture in pipelines is characterized by crack
flanks opening, bulging at the crack tip and plastic deformation in the area of the flaps[22].
A brief summary of the governing mechanisms of ductile tearing, as presented by Schindler
et al., is given in the following. In thin sheets, ductile tearing can be characterized by the
creation of a crack-tip opening angle (CTOA), α. The CTOA tends to become constant
after a minimum distance of crack propagation [23]. The ductile fracture in elastic-plastic
sheets can typically be created by two specific load cases: stretching and bending. When
a thin plate is subject to stretching necking will occur in the fully-plastic ligament. As
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the crack extends, the strains on the entire ligament will increase and the fracture is
eventually caused by plastic shearing. In the case of bending in the thin sheet, necking in
the ligament is restricted to an area between the centre of rotation and the crack tip. The
adjacent area is subject to compression which results in plastic swelling. For both loading
conditions, the energy input required for the ductile tearing depends on the geometry and
loading case of the deformed body.

Several different features are present in ductile tearing of pipes, compared to ductile
tearing in thin sheets. For ductile tearing over a large axial distance to take place in a
pipe, constant CTOA is necessary. A constant CTOA requires bulging ahead of the crack
tip. Furthermore, for the creation of a bulge, plastic stretching of the material is necessary
in the area near the newly formed crack. Additionally, necking occurs in a flattened zone
ahead of the crack. The necking process is not a continuous process in the case of pipelines
and has to be considered a plastic pre-deformation. The necking is largest at the crack
tip and decreases in the area behind. A fracture process in the pipeline is considered to
start when the bulge reaches the necked zone. The necking prior to the fracture ahead
of the crack will ensure that the crack has a straight crack path in the axial direction.
If the necking in the area ahead of the bulge is insufficient, the crack will have a lateral
deviation, denoted "ring-off". This can happen if the crack propagation speed is slower
than the sonic speed of the medium, and the phenomenon is often observed right before
the crack-arrest.

2.3 Modelling of Running ductile fracture
Dynamic ductile fracture is a complex phenomenon that requires the utilisation of var-
ious analytical and numerical methods. Finite element methods (FEM) have been used
to simulate the propagation of dynamic ductile fractures[16]. One widely used damage
model for predicting ductile failure initiation and propagation is the Gurson-Tvergaard-
Needleman (GTN) model[24, 25]. The GTN model is able to capture the complex behavior
of materials undergoing ductile deformation and failure. The GTN model incorporates
the concept of voids or pores within the material, which are crucial in influencing its
mechanical response[16]. These voids act as nucleation sites for cracks, leading to the
formation and propagation of fractures. However, the GTN model’s accuracy is highly
dependent on the mesh size and type used in the simulation, requiring fine discretization
to obtain satisfactory results[16]. In the thesis conducted by Burchardt and Saether [17],
the primary objective was to create a simplified model for propagating ductile fractures.
The GTN model had been previously calibrated for various steel alloys used in pipelines,
with the initial porosity as the only adjustable parameter. The calibrated GTN model
was validated in the thesis, and satisfactory results were obtained. To address the chal-
lenges posed by computational complexity and mesh dependency, a 2D plane strain model
incorporating the validated GTN model was initially employed as a reference model. The
ductility of pipeline steels imposed limitations on the length of the plane strain model.
A simpler shell element was introduced to replace the 2D plane strain model. The shell
element was calibrated and the calibrated parameters alone were sufficient for the shell
element to accurately represent a propagating crack in small-scale pipeline models.
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2.4 Existing fracture propagation control
Fracture propagation control is mainly focused on the design of pipelines with high tol-
erance to defects, thus minimizing the length of long-running ductile fractures[12]. Fol-
lowing, two categories of approaches used for maintaining fracture propagation control is
presented.

2.4.1 Uncoupled Two-curve methods
To maintain fracture propagation control, pipeline design has previously commonly been
based on the Battelle two-curve method (TCM). The method stems from the Battelle
Memorial Institute from the 1970s [26]. A semi-empirical curve was created based on
extensive experimental datasets for natural gases and fluids. Following is a summary of
the two curve method, as given by Aursand et al.[5], Gruben et al. [3] and Higuchi et
al.[7].

The TCM gives an estimate for the desired material strength in terms of the Charpy
V-notch (CVN) values needed to arrest an RDF. The method relies on a fundamental
assumption that gas decompression and the fracture resistance in a material are two
uncoupled phenomena. The original TCM is based on an equation expressing the critical
hoop stress for a material at the crack-tip, σa, for arresting a fracture:

1000 CVN E

ACσ2
f

√
R · t

= 24
π

ln(sec(π

2
3.33σa

σf
)) (2.1)

where Ac is the area of a Charpy Specimen, E is the material’s Youngs modulus, R is the
pipe radius, t is the wall thickness, σf is the equivalent flow stress of the pipe material
and CV N is the charpy V-notch values. The arrest pressure is related to the critical hoop
stress as pa = σa · t/R. The arrest pressure can then be defined as the following equation:

pa = γ
2tσ̄

3.33πR
arccos[exp(− πRf E

24σ̄2
√

Rt
)] (2.2)

where σ̄ is the material flow stress and Rf is the Charpy plateau energy per fracture area.
The parameters α, β and γ are specific quantities for different models. The fracture speed
in the axial direction is derived from the speed of a propagating plastic wave:

f(x) =
{

α σ̄√
Rf

( p
pa

− 1)β , if p > pa

0, if p ≤ pa

(2.3)

The gas decompression speed is calculated for a stationary fluid experiencing a full-bore
opening in one end. This means that the opening process is stationary, not a running
fracture. The speed of the pressure level is given in equation 2.4:

v(p) = c(p) − |u(p)| = c(p) −
∫ b

a

1
ρ(p′)c(p′) dp′ (2.4)
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Figure 2.2: Examples of the two-Curve Method. Figures adapted from Gruben et al.
[20]

For a multi-phase flow, no slip between the phases is assumed[5]. Figure 2.2 shows an
example of a plot for the two-curve method[20]. The blue curves are fracture curves for
two different material toughnessess. The red curve is the decompression wave for the fluid
inside the pipe. The toughness of the material increases for a higher start pressure at the
fracture curves. An arrest is expected for the fracture curve 1, and fracture propagation
is expected for curve 2. As the TCM does not consider the two-phase characteristics of
CO2, an approach considering only the arrest pressure and the boiling pressure of CO2
was suggested[3]. The crack arrest question relies upon the pipe’s ability to withstand a
propagating crack compared with the saturation pressure. The condition can be expressed
as

ps ≤ pa (2.5)

where ps is the saturation pressure for CO2, and pa is the arrest pressure for the material,
as given in equation 2.2[3]. The TCM is empirically-based, and was developed using
experimental data for vintage steel materials and natural gas. The method has proven to
be non-conservative for the modern design of CO2 pipelines [6, 12].

2.4.2 Direct Fluid-structure interaction models
A reason for the inaccuracy of the TCM is believed to be due to a lack of understanding
of the factors governing the crack speed[14]. As the crack arrest question is determined by
the race between the ductile fracture speed and the decompression wave, it is essential to
predict the fracture speed. In modern pipeline design, pipelines have higher strengths and
toughness, as well as lower pipe wall thickness[14]. Because of the high toughness, there
are uncertainties regarding the relationship between the Charpy energy and the fracture
speed[14]. Furthermore, to obtain an accurate description of the physical processes present
during an RDF, a varying load in the area behind the crack tip has to be accounted for[27,
28]. The pipe will experience a variation in load due to depressurization and outflow of
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the fluid[28]. Models where the computations of the fluid and the structure are coupled
together are suggested as a solution for describing the acting pressure on the crack tip
and the associated fracture speed[5]. The speed of the propagating crack is calculated
from the fluid pressure acting on the crack. The pressure of the fluid is calculated using
the surrounding geometry of the pipe as a boundary condition. Thus, an RDF can be
described as a two-way coupled problem, known as coupled fluid-structure interaction
(FSI) calculations[5].

Structure
field Fluid field

External force

Boundary conditions

Figure 2.3: Caption

Hou, Wang and Leyton [29] has classified FSI approaches into monolithic approaches or
partitioned approaches. In the monolithic approach, the same mathematical framework
is used for the structure and the fluid. This will form one single equation set for the
entire problem, which can be solved by an algorithm simultaneously. In a partitioned
approach, the fluid and the structure are treated as two separate computational fields.
These fields are solved separately with their respective discretizations and algorithms.
For a partitioned approach, interfacial conditions are needed to communicate information
in the coupling between the two domains.

According to Keim et al. [11], FSI approaches for fracture propagation simulation can be
divided into to analytical models and finite element based models. For the finite element
models, node-to-surface contact algorithms are often implemented[30]. A standard FSI
algorithm for finite element models can be described by following scheme, as given by
Rabczuk et al.[30]:

1. Surfaces and the belonging normals are computed

2. The fluid nodes that may come into contact with the surface are searched for

3. to prevent penetration of the fluid through the surfaces, penalty forces are applied
to the fluid nodes

A set of rules and modification should be applied if the structure is allowed to fracture[30].
When using finite element methods for FSI, the flow through the opening crack requires
communication of a defined crack shape. Hou, Wang and Layton [29] states that the
structural domain is usually given in a Lagrangian description, while the fluid domain is
often represented through Eulerian descriptions. The interaction between the flow and the
structure can introduce issues, due to the coupling between the fields[30]. To overcome
these problems, it is possible to use immersed particle methods and smoothed particle
hydrodynamics (SPH). Smoothed particle hydrodynamics is a method where the fluid is
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replaced by a set of particles[31]. By doing this, an approximate numerical solution for
the fluid dynamical equations are obtained.

Previously, research on immersed particle methods for fluid-structure interaction and
implementation of immersed particle model has been conducted by Rabczuk et al [30].
Following is a brief description of the key elements and attraction of using immersed
particle methods. In an immersed particle method, the fluid and the structure are both
treated by particles, removing the need for meshes. When using a mesh-free method
for the fluid, the motion of the fluid through openings is naturally treated. The same
algorithm can be used with and without crack present, and no modifications are needed
for treating flow through voids. The fluid is treated by a Lagrangian description but can
model considerable motions because of the use of particles. Research from Monoghan [31]
on the application of smoothed particle hydrodynamics found that problems involving
free surface disrupting can be simulated easily using SPH, while still giving satisfatory
results. Additionally, SPH codes are considered easy to program, and can be used with
little change for problems involving several fluids. In the work from Rabczuk et al., a
method for immersed particles for simulation was implemented. The method was intended
for problems with high-pressure waves on structures.

The coupled FSI methods are limiting, because these approaches are computationally
demanding. Approaches based on FSI may require rich finite-element meshes or heavy
3D CFD computations or many-particles simluations, resulting in time consuming com-
putations [5].

2.5 Effects of Backfill
Pipelines buried in soil or surrounded by water will experience external pressure from the
backfill. The backfill is beneficial for resisting crack propagation[28]. The surrounding
backfill will consume kinetic energy during the RDF, and dissipate energy from the ex-
panding gas. This will result in a slower fracture speed and decreased fracture thoughness
needed for the arrest of the RDF. [5] In the work by Gruben et al. [3] it was concluded
that the submerged part of a pipeline was significantly less susceptible to RDF than the
section located onshore. The effects of backfill have previously been studied for the dam-
age process of an RDF [18, 32]. Furthermore, several studies has implemented particle
models for representing backfill[11, 5]. The particles can represent granular materials
experiencing large deformations, and will affect the design of a pipeline.





Chapter 3

Development of reference
pressure decay model

The pressure of the CO2 in a fractured pipeline have a strong spatial variation behind
the crack tip [19]. This section contains some previously proposed pressure models and
research with regards to spatial pressure decay in pipelines. Further, experiments and
validation of a coupled fluid structure model is presented. The values obtained through
the numerical models and simulations will lay the foundation for the development of a
pressure decay model. The developed model will be implemented in simulations of the
pipeline in chapter 4.

3.1 Modelling of pressure
One of the main issues with numerical simulations of running ductile fracture is defining
the local pressure decay near the crack-tip region [14]. Although it is reasonable to assume
the fluid flow ahead of the crack tip to be a one-dimensional flow, the same assumption
cannot be made for the area behind the crack[33]. Research from experimental tests has
found that there is a difference of more than 50% in pressure between the top of the pipe
and the bottom of the pipe[5]. When a fluid storage component has sustained a fracture,
complex three-dimensional transient flow exists until depressurization is complete [19].
Research and development of coupled FSI models have been based on the assumption of
homogeneous equilibrium models and compressible one-dimensional fluid dynamics[5, 22,
34]. The process of depressurization in the crack tip region is considered to be dynamic,
and the local pressure distribution behind the crack will determine the propagation of the
fracture. From full-scale tests, it is known that the pressure profile on the crack tip can
be captured in two dimensions. However, currently there are currently no direct methods
for calculating such pressure profile behind the crack[28]. Several fluid models aim to
describe the crack driving force, and will be presented in the following.
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3.1.1 Two-curve method
The pressure calculated in the original two-curve method estimated the pressure at the
crack tip as a function of the crack speed[19]. The equation for the pressure at the crack
tip is given in 3.1.

p(V ) = pL( 2
γ + 1 + γ − 1

γ + 1 · V

CL
)

2γ
γ−1 (3.1)

In the equation, V is the crack velocity, CL is the acoustic velocity at the initial operating
pressure, pL and γ is the ratio of the specific heat at constant pressure to the specific heat
at constant volume. The equation is a homogenous one-dimensional equation and does
not account for any spatial variations[5]. Equation 3.1 is also based on the assumption
that the local sonic speed of a single-phase gas at the open end equals the local particle
velocity relative to the moving fracture[3].

3.1.2 Spatial decay model
As experimental full-burst tests have shown that the pressure of CO2 in a pipeline during
RDF has a strong spatial variation[19], research and development of models accounting
for the phenomenon has been conducted. Shim et al. [27] developed an exponential
function for spatial pressure decay based on experimental full-burst tests. The research
did not consider a coupling between fluid and structure, only the pressure as a function
of the 3D position in the pipe. The model is divided into two sections divided by the
current axial position of the crack tip. For the section ahead of the crack tip position,
the pressure was assumed to be equal to the crack tip pressure. For the area behind the
crack tip, the pressure varies based on the circumferential variation and the position with
regard to the crack.

The developed pressure decay model is an exponential function that aims to describe the
pressure in the area behind the crack tip. The model was developed from an experimental
full-burst test of a pipeline. The experimental full-burst tests contained measurements
for several circumferential positions, and linear interpolation was used to determine the
pressure around the circumference. Shim et al. suggested a normalized pressure, given
as an exponential function with the steady-state crack tip pressure p0. The exponential
function is scaled by a funciton of the circumferential position, θ, and the normalized
distance to the crack tip, z

D .

p = p0 · exp(f(θ) · z

D
) (3.2)

3.1.3 Keim et al
The equation from Shim et al. has been further developed and elaborated in the research
by Keim et al.[35]. From equation 3.2, the exponential equation is scaled based the two
directions: circumferential direction of the pipe cross-section ξ and axial direction along
the pipe stoke x. An initial global pressure decay is developed based on experimental data.
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The inital global pressure decay from initial pressure pi,g = pi,0 down to pi,g = 0.4pi,0 for
the first td = 20ms of the simulation. This decay is expressed as:

pi,g = pi,0 · (1 − 0.6
td

· tsim) (3.3)

Following the global pressure decay, the proposed exponential function for the spatial
decay behind the crack is given as:

p = pi,g · exp b1
xcrack

x − lref
· [1 + ( 4

π
tanhb2( ξ

π
))] (3.4)

The axial variation f(x) = xcrack

x−lref
is derived using the distance between the current

position of the crack tip and the integration point, xcrack. The circumferential variation
f(ξ) = [1 + ( 4

π tanhb2( ξ
π ))] considers the angle ξ from the bottom of the circumferential

cross-section of the pipe to the top. The axial function contains the reference length
for the pressure decay, lref . Additionally, the equation includes two phenomenological
parameters, b1 and b2. These parameters have previously been identified by Völling et.
al. [28], which are based on experimental observations from Berardo et al.[36]. Ahead of
the crack, the pressure is assumed to be equal to the global pressure, pi,g

3.1.4 Xue et al
Further research from Xue et al.[37] aimed to research the anisotropic effects on crack
propagation. The research implemented the pressure model from Keim et al, with modi-
fications. The model developed considers the same time-dependent global pressure decay
for the first 20 ms of the simulation. The axial scaling in equation 3.4 has been modified,
and the equation from Xue et al. is given as:

pi,f = pi,g · exp(−b1 · lcrack − x

lref
· (1 + [ 4

π
· ξ tanhb2( ξ

π
)])) (3.5)

where lcrack is the length of the crack measured from the initial start point and x is the
axial position on the pipe behind the crack. The equation contains the same phenomeno-
logical parameters b1 and b2, and the reference length for the pressure decay lref .

To get an overview of the pressure variation inside a pipeline, equation 3.5 has been
plotted for varying axial and circumferential positions in a three dimensional space. The
equation has been plotted for a given crack length lcrack and with the position x varying
from 0 to x > lcrack. The parameter ξ varies between 0 and π. The reference decay length
has been set to 1.2 · Outer Diameter (OD). Furthermore, the crack distance, lcrack has
been set to 3·OD. The decay model has been plotted for the normalized pressure, p/pi,g.
For an axial position, x, close to the crack, the pressure is close to the global pressure
in the pipeline. The pressure ahead of the crack is equal to the global pressure, and
decays in the area behind the crack tip. The circumferential scaling has a larger effect for
positions further away from the crack tip region, where the crack has experienced larger
deformations.
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Figure 3.1: Pressure plot

3.2 Experimental data
The development of new numerical models and re-calibration of existing design models
require full-scale test data which can represent the situation during the operational phase
of CCS [20]. The execution of full-scale test data for CO2 pipelines requires a lot of
resources, and the data available are rather scarce[3]. Four projects over the last decade
have produced experimental data for running ductile fracture. These four projects lie the
ground for the validation and development of new numerical approaches to accurately
describe the RDF phenomenon [3].

One of the experimental medium-scale burst tests conducted is the joint industry project
CO2PIPETRANS[20]. The aim of the experiment CO2PIPETRANS was to check if
the current design standards for fracture propagation control based on the two curve
methods agreed with the observations. Further, a study done by Aursand et al. [5]
aimed to validate a coupled fluid-structure interaction model, based on the data from the
medium-scale test. This section covers the set-up of the CO2PIPETRANS experiment
and the coupled FSI model subject to verification. The results from the simulations of
the coupled fluid-structure model are presented. These results will lay the foundation
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for the development of a reference pressure decay model, which will be applied in new
simulations of RDF in pipelines.

3.2.1 Test layout and results
Following is the description of the test set-up of the experiment CO2PIPETRANS. The
experiment aimed to test fracture propagation control based on TCM, where two tests
were conducted. In the first test, no-arrest was predicted, while in Test 2, the crack
would self-arrest. Further, in order to check several materials using the TCM, the pipeline
consisted of different materials and geometries. The two tests had approximately the same
test layout. The initial state of the CO2 was changed between the two tests, in order to
ensure arrest in the second test. This was done by changing the initial temperature of
the CO2, resulting in a two-phase fluid at a different saturation pressure.

The pipe consisted of four sections, two in each direction, West and East, and numbered
as shown in figure 3.2. In the pipe stokes W1 and E1, the pipe stokes were supposed to
propagate in test 1 and arrest in test 2. The two outer stokes, W2 and E2, were acting
as gas reservoirs, and intended to ensure that the crack would arrest. For these stokes,
the pipe is fully submerged in 1 m of sand backfill and the pipe walls are thicker than of
the stokes further inn . For the pipe stokes W1 and E1 compact sand is surrounding the
pipe up to the height of half the pipe diameter. To restrict any horizontal movement, two
concrete blocks have been set up at the end of the pipes. In order to create the initial
fracture in the pipe, a shaped charge was positioned on the centre girth weld in the axial
direction.

To measure the pressure in the pipeline, the two tests were instrumented with calibrated
pressure transducers positioned in the axial direction. The pressure transducers were
positioned at a 3 o’clock position, at 1, 3, and 5 m in each direction from the axial
midpoint of the pipe. Additionally, timing wires were mounted in order to track the
propagating crack, thus being able to calculate the fracture propagation velocity.

Figure 3.2: Test layout for the experimental full-burst test. Figure adapted from Aur-
sand et al.[5]

As the development of a pressure decay model is based on the assumption of running
ductile fracture, the results and conditions from Test 1 will be presented. A running
ductile fracture propagated through the test pipes W1 and E1, and arrested when the
crack reached the welds to the pipe stokes acting as gas reservoirs. A ring-off mechanism
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was observed as the crack arrested. Table 3.1 contains a summary of the test conditions
and results from Test 1.

Table 3.1: Conditions and results for the first test of CO2PIPETRANS. Table adapted
from Aursand et al. [5]

Test pi(bar) psat (bar) Pipe stoke Avg Vf ms−1 Crack length (m) ta (ms)
Test 1 88.5 64 West 1 185 5.08 27.5

East 1 135 5.16 34.4

3.2.2 The coupled model
In the research from Aursand et al., a coupled FSI model is subject to validation. In the
research, a partitioned FSI approach is implemented, where the fluid and the structure
are treated as two separate fields. The coupling between the fluid and structure is done
through interfacial conditions. The following steps can summarise the coupled FSI model
proposed:

1. The structure model communicates the current fracture width profile we(x) to the
fluid model

2. The fluid model uses this profile to integrate the fluid state for the current time

3. The pressure profile for each cross-section along the pipe length for the current time
is communicated back to the structure model

4. The structure model uses the pressure profile at the current time to apply a load
to its elements, and integrates the equations of the pipe material to the next time
step.

The deformation and fracture of the structure have been modelled using shell elements
and an elastic-visco-plastic constitutive equation. The structure model is implemented in
the finite element program LS-DYNA [38]. All the elements of the shell model obtained
in the simulations have the same fracture criterion and fracture parameters.

The fluid is modelled as a one-dimensional compressible flow of pure CO2 using the
homogeneous equilibrium model (HEM) and the Span-Wagner reference equation of state
(EOS) [39]. The equation of state is possible to use for multi-phase flow under the
assumption of no velocity difference between the phases[6]. The flow model can be written
as:

∂ρ

∂t
+ ∂ρu

∂x
= −ξ

∂ρu

∂t
+ ∂ρu2

∂x
= −ux,eξ

∂E

∂t
+ ∂([E + p]u)

∂x
= −(he + 1

2u2
e)ξ

(3.6)



3.2 Experimental data 19

where x is the axial position, t is the time, ρ is the density of the fluid, u is the velocity
of the fluid in the axial direction, p is the pressure and E is the total energy per volume.
The factor ξ is an escape quantity describing the rate of mass loss per volume. The
fluid model has been implemented using computational fluid dynamics (CFD). In the
implementation of the one-dimensional fluid-model, two components are calculated at
each axial computational cell. First, the cross-sectional average pressure p is calculated.
Additionally, the escape pressure through the leakage in the pipe is calculated. The escape
pressure represents the pressure at the fracture.

To properly account for the observed decrease in pressure from the bottom of the pipe to
the top of the pipe, a circumferential variation has been proposed in the coupling scheme.
Ahead of the crack tip, no circumferential variations are observed experimentally, and a
calculated average pressure p is applied to all elements. Behind the crack tip, the cross-
sectional geometry is considered. At each axial position behind the crack, the structure
model communicates the fracture width we(x) corresponding to the escape area Ae, and
the largest width of the cross-section, wM (x). For the elements below wM (x), the average
pressure was applied. For the elements above wM (x), an improved load estimate is
applied, using the average pressure and the escape pressure. By considering different
cases of the cross-section, the pressure model includes the spatial variation observed
experimentally.

The fluid-structure coupling scheme has not been developed for the change of the crack
direction and does not account for the observed ring-off that happens before the crack-
arrest. Moreover, interactions from the geo-materials on the structure and on the escaping
fluid will take place. For the interaction between the structure and the backfill, smoothed
particle hydrodynamics has been implemented in the simulations. The interaction be-
tween the escaping fluid and the backfill has not been considered.

3.2.3 Results
Following are the results from the numerical simulations, as well as the results from the
experimental tests. The dashed lines represents the experimental tests and the solid
lines are the results from the coupled fluid-structure interaction model. The results of
the simulations for Test 1 are said to be have an excellent agreement between the simu-
lated data end the experimental crack speed, and additionally between the simulated and
experimentally measured pressures.
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Figure 3.3: Result for test 1. subfigure (a) and (c) are the crack speed and pressure
measurements for W1 respectively. Figure (b) and (d) are the same plots for pipe stoke
E1. The plotted results are adapted from Aursand et al. [5]
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3.3 Reference pressure decay model
This section covers the development of a reference pressure model. The model is developed
using the results from Aursand et al, presented in 3.2.3, and based on the spatial decay
models from Xue et al. and Keim et al. presented in section 3.1. As the development of a
pressure decay model intends to model the pressure under a running ductile fracture, only
the results from Test 1, where a running ductile fracture was observed experimentally,
will be used. Furthermore, the results from the two pipe stokes W1 and E1 both have
good agreement with the experimental values, and for the further development only the
results from pipe stoke W1 is used.

3.3.1 Primary investigation
Primary investigation of the applicability of a spatial decay model has been conducted. In
the primary investigation, the models from Xue et al., given in equation 3.5, and Keim et
al. given in equation 3.4, are plotted for the sensors from the experiments. As the models
expresses the pressure variation behind the crack tip, the models have been plotted for
when the crack has surpassed the sensor position. The models do not take the area ahead
of the crack tip into account and the global pressure ahead of the crack tip is set to
pi,g = 0.4 · pi,0. Furhtermore, the spatial models have been plotted for a varying crack
position. The pressure model has been plotted against the experimental values, where the
crack position is calculated using the average speed of the crack. The phenomenological
parameters b1 and b2 have been set to respectively 0.69 and 2.9, as identified by Völling
et al [28]. The reference decay length, lref has been set to lref = 1.2OD, as found by
Völling et al. and presented by Keim et al. [28, 35]. The values used in the primary
investigation are given in table 3.2.

Table 3.2: Values used for the initial investigation
Pi,g (bar) Vf (ms−1) ξ b1 b2 lref OD (m) ltot(m) lcrack (m)

88.5 185 · 10−3 π/2 0.69 2.9 1.2· OD 0.403 5.485 5.08

(a) (b)

Figure 3.4: (a) Model from Keim (b) Model from Xue
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Figure 3.4 displays the initial plotting of the curves. It is evident that the curves have a
poor fit, with a lower starting point and ending point. By studying the curves from the
simulations in figure 3.5, some observations are made.

Figure 3.5: Original data from Aursand

1. Each of the curves has a plateau at the beginning of the curve, where the pressure
is equal to the initial pressure

2. Following this plateau, the pressure rapidly drops down to approximately 64 bars

3. A new small plateau is placed around 64 bars

4. The points annotated ’crack’ is where the crack has reached the sensor. All crack
points infere with pressure near saturation point

5. The curves experience a second decay after the crack. For the sensors placed at 1
and 3 meters, the pressure decays to approximately 5 bar.

The pressure decay model are not able to capture all the variations observed in the
simulations from Aursand et al., and has to be developed by accounting for the physical
properties of CO2 during a running ductile fracture. Furthermore, both section of a
running ductile fracture, behind and ahead of the crack, should be investigated.

3.3.2 Initial depressurization
From the observations in figure 3.5, a primary pressure decay is observed from initial
pressure down to approximately 64 bars. During the decompression of dense-phase CO2,
the fluid will enter a two-phase state, where the pressure of the fluid will be equal to
the boiling pressure for pure CO2. This is also known as the saturation pressure, or the
plateau pressure, of CO2 [20]. Under the conditions of Test 1, the saturation pressure for
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the CO2 is at 64.0 bars. The primary pressure decay may be related to the decompression
wave of CO2. The decompression wave of CO2 travels down the pipeline with a speed Vw.
As an RDF is present in the simulation, the speed of the decompression wave is higher
than the crack speed Vcrack. In order to investigate the effects of the decompression wave
and the effect of the propagating crack, the curves have been adjusted with regard to
the time. The adjustment uses the position of each of the sensors, and the speed of the
decompression wave and the crack speed. Equation 3.7 represents the adjustments in
time for when the decompression is experienced at an axial sensor position x. Equation
3.8 represents the adjustment in time for the curves for when the pressure decay related
to the crack starts.

tw = t − x

Vw
(3.7)

tc = t − x

Vc
(3.8)

Figure 3.6 displays the simulated pressure curves, where the time has been adjusted.
When adjusting the time with a constant speed for the decompression wave Vw = 525 m/s
the pressure curves, independently of sensor placement, start to decay from the initial
pressure. When adjusting the time with a constant speed for the running crack Vc =
185 m/s the pressure curves start to decay from approximately the saturation pressure
for all sensors.

In order to model the initial pressure decay, a model based on the axial position of a
sensor, x and the time t, as well as the speed of the propagating wave, Vw, of the CO2 is
suggested in 3.9.

p = pi − (pi − psat)
(

1 − exp
(

−k

〈
t − xs

Vw

〉))
(3.9)

Here, pi,0 represents the initial internal pressure of the pipeline and psat is the satu-
ration pressure. The parameter k is an adjustment parameter. The equation includes
the Macauley brackets for the term of the adjusted times. Macauley brackets describe a
ramp function. If the term t − xs

vw
is negative the value inside the brackets is set to 0.

When plotting the initial decay against the values, the parameter k has been fitted for
the curves. Table 3.3 gives an overview of the obtained values for the three sensors placed
at 1, 3 and 5 meters.

Table 3.3: The constant k used to describe initial pressure decay
Sensor 1m 3m 5m

k 1.0 0.35 0.18

Figure 3.7 displays equation 3.9 plotted against the values from the simulations. The
developed model is close to the simulated values, and is believed to be a good description
of the event happening after a tear in a pipe.
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(a)

(b)

Figure 3.6

3.3.3 Circumferential variation
As mentioned in section 3.1, the pressure of the fluid will have a circumferential variation
in the area behind the crack tip. The circumferential scaling is given as:

f(ξ) = 1 + [ 4
π

· ξ tanhb2( ξ

π
)] (3.10)

All predictions and measurements have been carried out at a 3 o’clock position on the
pipeline. Thus, for the further development of a reference pressure decay model, the
circumferential term is adopted. The value of ξ is set to π/2, which is the radial value
for the 3 o’clock position. The parameter b2 controlling the pressure distribution is set
to 2.9 according to Völling et al. [28]. Figure 3.8(a) displays the circumferential scaling
parameter for the different values of ξ. In figure 3.8(b) pressure curves are plotted for
three different circumferential positions, at the sensor at 3 meters.
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Figure 3.7: Pressure related to depressurisation of CO2

(a) (b)

Figure 3.8: (a) displays the circumferential scaling factor, f(ξ). (b) displays the variation
of pressure along the circumference for a sensor placed at 3 meters

3.3.4 Pressure related to crack
As seen in figure 3.6b, the pressure decay related to the crack take place after the pressure
has reached a plateau at the saturation pressure. A spatial pressure decay model can be
used from the area where the crack tip has reached the pressure sensor. The spatial decay
model given by Xue et al. in equation 3.5 will be used to describe the spatial variation.
The pressure model can be written as:

p = psat · exp(−a < xc − x > (1 + 4
π

tanhb( ξ

π
)) (3.11)

where xc is the position of the crack in the pipeline at a given time t, x is the position of
the pressure sensor, and ξ is the angular position of the sensor along the circumference
of the pipeline. The equation contains the parameters a and b, where the parameter a
has been altered to include the reference decay length, lref . The parameter a has been
adjusted to the pressure recordings. In order to study the pressure related to the crack,
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without accounting for the initial depressurization, the curves have been plotted starting
from a pressure equal to the saturation pressure. The decay starts from the time the
crack has reached the sensor position and has been plotted for a time simulation equal to
tsim = 40 ms. Furthermore, the parameters have been set to a = 0.75 and b = 2.9, and
the saturation pressure is psat = 64.0.

Figure 3.9: Pressure related to the running crack

3.4 Results
The postulated pressure model accounts for the initial depressurization wave propagating
along the pipe ahead of the crack. Additionally, the spatial pressure decay behind the
crack during a running ductile fracture in a pipeline is accounted for. The model created
calculates the adjustment parameter k for the wave-related pressure decay based on the
location of the sensor. The parameter k is calculated as:

k = min
(

1.0 − a · (1 − e−b·(x−1.0)), 1.0
)

(3.12)

where a = 0.82 and b = 0.75. The calculation ensures that the parameter k does not
exceed the value 1.0. The complete model, containing both the initial pressure decay and
the spatial decay, has been plotted for the three sensor positions in figure 3.10.

3.4.1 Varying axial positions
The obtained solution has been plotted for several sensor positions, in figure 3.11. This
has been done in order to visualize the effects of the axial position on the pipe for the
parameter k. The pressure decay related to the depressurization of CO2 will have a
gradually flatter curve.
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Figure 3.10: Full pressure model

Figure 3.11: Developed model for different sensor positions

3.4.2 Variation of speed
The developed pressure model has been plotted for several crack velocities, for the sensor
placed at 3 m. Figure 3.12 illustrates the effect the crack speed has on the developed
model. The initial decay will not be affected by the crack speed. Only the crack-related
pressure decay is altered when the speed is changed.



28 Chapter 3 Development of reference pressure decay model

Figure 3.12: Developed model for different crack speeds for the sensor placed at 3m

3.5 Discussion
From the results in figure 3.10, it is observed that the developed pressure model has an
overall good fit with the values obtained from simulation and experiments. Although
the time-dependent global pressure decay presented by Xue et al. was not studied, the
obtained solution is able to account for a global decay by incorporating the effects of
the depressurization wave. The mechanism of the first decompression speed could be
associated with the internal pressure trying to reach equilibrium from the initial pressure
pi,0, and the sudden pressure drop induced by cracking the pipeline. The variation of the
parameter k in the depressurization could be related to the volume of gas being larger
when increasing the distance along the pipeline. Furhtermore, for the pressure sensor
placed at 1m, the pressure decay related to the crack has a smoother curve. It is possible
that the simulated curves will have some variation due to the incorporated effects from
backfill. Although the crack speed is varying, as seen in figure 3.3, the developed pressure
curve use the calculated average speed given in table 3.1. The use of average speed is not
considered to affect the obtained model particularly.
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Pipe simulation

In order to study the effects of the developed pressure decay model, a pipe containing a
running ductile fracture has been simulated. The pipe has been implemented in the finite
element program Abaqus [40]. The modelling of the pipeline is based on the thesis by
Burchardt and Saether [17]. This section describes the modelled pipelines and the results
from the simulations.

4.1 Method
The model of the pipe has been based on the experiment CO2PIPETRANS, and has been
created using a provided Abaqus-script. Following is a description of the mesh, geometry,
material, crack and load implemented through the script.

4.1.1 Pipe
The pipe has been divided into two pipe stoke sections, both with an initial length of
5500 mm. The two sections have been denoted first and second pipe. The two sections
aim to model the layout for one of the directions in Test 1 of CO2PIPETRANS, where
the second pipe acts as a gas reservoir. The first pipe has a wall thickness of 6.2 mm,
while the second pipe has a wall thickness of 14.3 mm. The pipe model is meshed using
S4R shell elements, with 5 through-thickness integration points. The elements have a
length in axial direction equal to 10 mm, and a thickness equal to the pipe thickness.
Furthermore, the material of the pipe is the steel alloy L415MB, as used in pipe stoke
W1 in CO2PIPETRANS. A support plate has been included to model the compressed
quarry. The second pipe has been constrained in all directions at the end to prevent
displacement, modelling the concrete blocks on the end.

4.1.2 Crack
The modelling of the crack has been adapted from the work of Burchardt and Saether. In
this work, the crack was modelled using special shell elements along the axial direction of
the pipeline. The crack elements have a thickness equal to 6.2 mm and width and length
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equal to 6.2 mm and 10.0 mm respectively. The elements representing the crack are S4R
elements with 5 through-thickness integration points and have been assigned accelerated
plastic thinning. The surrounding shells have been constrained from changing thickness.
Additionally, the surrounding shells have no failure criterion and have been assigned a
satisfactory work hardening model.

To simulate the beginning of a crack, initiated by an explosive cutter in the experimental
full-burst test, the pipeline has been assigned an initial crack. The initial crack has a
length equal to lcrack = 2π · D/2, where D is the diameter of the pipe. The initial width
is equal to the width of the crack elements, and set equal to wcrack = 6.2. The crack
has been modelled to run with plane strain conditions, according to the plain strain and
shell model from Burchardt and Saether. Although ring-off right before crack arrest is
often observed in experimental tests, the simulation will only account for axial crack
propagation along the top of the pipe. Figure 4.1 depicts a pipeline with an initial crack,
seen from above. The elements in blue are the special crack elements.

Figure 4.1: Pipe with the initial crack. The blue elements represent the crack elements
along the 12 o’clock position

4.1.3 Load
Burchardt and Saether implemented a simple load model using uniform surface distributed
load. An iterative scaling method was applied for the areas where the deformed pipe had
developed opening flaps. This ensured that only a portion of the force was applied in the
normal direction of the deformed elements. In the work, it was concluded that a more
complex load model was needed. For the current model, the pressure model developed
in chapter 3 is applied on the inner surface of the pipe. An explicit dynamic step has
been used for the load. During the development of a reference pressure decay model, the
pressure was given in Bar. In the simulations, the pressure will be given in MPa.
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4.1.4 Geometries
The simulation of a running ductile fracture in a pipeline has been replicated for four
different pipe geometries denoted pipe simulation 1, 2, 3, and 4. Pipe simulation 1 contains
the geometry and materials from pipe stoke W1. In pipe simulations 2 and 3, the pipe
diameter has been modified to be 200 mm larger and 200 mm smaller, respectively. By
changing the diameter, it is possible to see how the pipe diameter affects the propagating
crack and thus the pressure inside. Because the shell elements are of the same size for all
the simulations, the number of elements along the circumference and the number of total
elements will change accordingly. Lastly, for pipe simulation 4, the pipe was modelled such
that no arrest is expected in the welds between the first and second pipe. By changing the
thickness of the second pipe to the same thickness as the first pipe, 6.2 mm, the crack will
propagate through the second pipe. Table 4.1 summarises the variation of the geometries
of the different pipe stokes, as well as the number of active elements each model contains.

Table 4.1: The four different pipelines geometries
Pipe number Diameter nE

(mm) active elements
1 406 93372
2 606 135110
3 206 45035
4 406 93372

4.2 Results
Figures 4.2, 4.3 4.4 and 4.5 depict the deformations of the four pipelines, with the pressure
acting on the deformed pipe. The crack propagates as expected for all the pipe simula-
tions. In pipe simulations 1, 2, and 3 the crack arrest in the welds between the first and
the second pipe. For pipe simulation 4, no arrest is present, and the crack has propagated
through the second pipe. The pipe simulations obtain different simulation times. For pipe
simulation 1, the simulation time was 32 ms, while the simulation times of pipe simulation
2, 3 and 4 were 14.5 ms, 50 ms, and 50 ms respectively. The difference in simulation time
is a result of varying crack speeds due to varying pipe diameters. Gruben et al. state
that a larger pipe diameter will result in pressure being applied on a larger area and
the crack-driving force increases[3]. Thus, the simulation time will increase and decrease
accordingly. The effect of varying diameters is further supported in the parametric study
conducted in the thesis of Burchardt and Saether, where it was observed that the pipe
diameter had a large impact on the crack speed.
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The crack has some differences in the final deformations, although the base geometry is
similar. At the end of the simulated RDF the material in pipe 1 will bulge on the bottom
of the pipe near the pipe start. The same bulging is present and larger in pipe 2, and not
present in pipe 3. The bulge could be due to the force applied in the pipe in combination
with the crack arrest in the welds. Additional figures of the deformed pipes are enclosed
in appendix A. The simulation has the desired physical representation of an RDF and
data obtained from the output files are applicable for the training and validation of a
machine learning model.

Figure 4.2: RDF in pipe simulation 1

Figure 4.3: RDF in pipe simulation 2



4.2 Results 33

Figure 4.4: RDF in pipe simulation 3

Figure 4.5: RDF in pipe simulation 4.





Chapter 5

Artificial Neural Network

This section covers background and theory behind artificial neural networks. The imple-
mentation of the neural networks is presented.

5.1 Background
Artificial neural network (ANN) is a type of machine learning model inspired by the
structure and function of the human brain [41]. ANN consists of interconnected neurons
that process information through a series of mathematical operations[42]. Each neuron
takes in one or more inputs, performs a calculation and produces an output that is passed
on to the next layer of neurons. A neural network is trained using a data set of input-
output pairs, where the input represents the features or attributes of the data and the
output represents the target or value aimed to predict[42]. ANN can be used for various
tasks, including classification, regression, and pattern recognition. A network can learn
to identify complex non-linear relationships between the input variables and the target
variable, making it a powerful tool for prediction and forecasting[41].

According to Goodfellow et al.[41], machine learning algorithms can broadly be catego-
rized into three different types; supervised and unsupervised algorithms, and reinforce-
ment learning. In an unsupervised learning algorithm, the algorithm aims to find patterns
based on the structure of the data provided. In a supervised learning algorithm, the algo-
rithm aims to find structure between the features and the associated labels or targets[41].
In reinforcement learning, the algorithm continuously evaluates the results while learning,
giving a feedback loop between the learning system and the experiences[41].

Traditionally, regression problems are referred to as supervised learning [41]. The data
set is in the form of structured inputs and outputs, and the algorithm aims to model
continuous variables. There are several types of algorithms for regression analysis, in-
cluding the most simple algorithms like Ordinary least square (OLS) regression analysis.
However, one of the issues with linear regression is that a linear relation is assumed. This
may oversimplify real-world problems, and linear regression is unable to deal with the
relationships or complex patterns of the data [41]. Neural networks use multiple simpler
representations to describe and solve these complex concepts.
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5.2 Theory
Following is theory behind neural networks used for regression analysis.

5.2.1 Feedforward neural network
Commonly, for regression problems, feedforward neural networks (FFNN) are used. A
feedforward neural network is the simplest form of neural network, where the goal is
to approximate a function f . These networks are characterized by their feedforward
flow, which means information is passed strictly in one direction, without feedback con-
nections[41]. In a feedforward network, a mapping is defined as y = f(x; θ). For the
mapping, the network will learn which parameters of θ that result in the best function
approximation[41]. The mapping makes FFNN suitable for tasks that require static in-
puts, such as regression problems[41].

5.2.2 Layers and Nodes
An artificial neural network consists of interconnected neurons, organized in several layers.
Each neuron of one layer is connected to all neurons of the next layer[42]. Each neuron
in an FFNN receives inputs from the previous layer, performs a weighted summation
of the inputs, applies a non-linear activation function, and passes the output to the
subsequent layer [43]. An FFNN typically contains an input layer, one or more hidden
layers, and an output layer. The input layer accepts the input data, which in the case
of regression problems are numerical values. Hidden layers enable the network to learn
complex representations by extracting higher-level features from the input. The output
layer produces the final prediction or decision based on the information processed through
the preceding layers [41].

5.2.3 Training process
The training process of an FFNN involves two main steps: forward propagation and
backpropagation [41]. In forward propagation, the input data is passed on through the
network, and the activations of each neuron are sequentially computed. This is done until
the output layer is reached[41]. This process generates a predicted output. To optimize the
performance of a network, the predicted output is compared with the desired output using
a loss function [16]. For regression problems where the output variables are continuous,
the most common loss function used is mean squared error, MSE. The equation for MSE
is given in 5.1.

MSE = 1
n

∑
(y − ŷ)2 (5.1)

where y is the output obtained from the target, and ŷ is the predicted output.

After calculating the initial prediction, the weights are updated iteratively by an algo-
rithm denoted backpropagation[41]. By calculating the gradients of the loss function with
respect to the weights, the algorithm adjusts the weights in a way that minimizes the loss.
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This process is repeated over multiple iterations until the network converges to an optimal
set of weights. One iteration can be denoted as an epoch.

5.3 Previous work
Although the use of artificial intelligence has gained increasing interest within the field
of fracture mechanics in recent years[15, 16], research and applications of AI for running
ductile fracture has been scarce. Paermentier et al. [16] have studied a machine learning
sensitivity analysis for pipelines. In this research, an artificial neural networks was used
to analyze and predict the fracture energy value for a set of given GTN parameters in
X70 pipeline steel. The material-dependent parameters in the GTN model for one steel
grade material can show a wide spread in the prediction of ductile fracture initiation. For
training the neural network, seven different GTN parameters were used as input. The
corresponding Charpy energy value is used as an output for the network. In the research,
it was observed that the trained network could predict a satisfactory approximation of
the Charpy V-notch fracture energy.

5.4 Data and variables
Following is a description of the generation of data, the correlation obtained through the
data set and the pre-processing of data.

5.4.1 Data generation
The data was extracted from the simulations in Abaqus given in chapter 4. As previously
mentioned, four different simulations were done, each considering different cases of pipe
geometry. The data from pipe simulation 1 will be used for training, while the remaining
pipe simulations will be used for testing.

From the simulation in Abaqus, data of five variables has been extracted for further use.
Firstly, the data used for analysis consist of the time steps obtained in the simulation, t,
and the position of the running crack at each time step, Zc. Further the machine learning
model should be able to detect the spatial variation within a pipeline. The data set
denoted Z contains the position of an element at every time step. In order to account for
the circumferential variation, the data denoted N contains the y-component of the normal
vector of each element. The y-component of the normal vector will provide information
of where along the circumference the element is placed. If the value is close to −1 the
element is placed at the bottom at the pipe, while values close to 1 is near the top of the
pipe. Lastly, data containing the pressure on each element at every time step is denoted
P . All positional variables are given in millimeters, and P is given in MPa, and time is
given in seconds.

The data for the circumferential position, axial position, and pressure are all built as
matrices. Every column represents all the elements obtained in each simulation, and
every row represents a time step of the simulation. In order to create a data set used
for regression and machine learning, the data needs to be reshaped and concatenated.
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The final data set used for analysis contains the five variables, where the number of data
points is calculated as ndatapoints = nE · t.

5.4.2 Correlation study
A correlation study of the variables of the training data has been conducted. The cor-
relation states the influence between the variables, and how the independent variables
correlate to the dependent variables. The correlation between two variables is calculated
using Pearson’s correlation coefficient[44]:

r =

n∑
i=1

(Xi − X)(Yi − Y )√
n∑

i=1
(Xi − X)2

n∑
i=1

(Yi − Y )2

(5.2)

A strong correlation factor typically has values between ±0.50 and ±1, and indicates
a close relationship between the variables. A moderate correlation factor typically lies
between ±0.30 and ±0.50, where the independent variables will affect the dependent to
some degree.

Figure 5.1 displays the correlations between the different variables of the data for the
training, obtained from pipe simulation 1. From the heat-map, it is observed that between
the input variables, the position along the axis of the pipe, Z, has the strongest correlation
to the pressure, P . As the primary decompression from the pipe depends on the axial
position along the crack, the pressure will become more influenced by the axial position
Z along the pipe. The other variables, t, N and Zc all influence the pressure equally. The
correlation observed between the normal, N , of each element and the pressure can be seen
as the circumferential variation previously discussed. It should be noted that as the data
used for testing have been extracted from simulations of different pipeline geometry, the
correlation matrices will differ. The correlation matrices for the data for pipe simulations
2, 3 and 4 can be found in the appendix B.

5.4.3 Data pre-processing
Data pre-processing plays an important role in ensuring the quality and reliability of
machine learning models by addressing challenges such as missing data, outliers, and in-
consistent formatting. All these factors can impact model performance. In the present
case, there are no missing data or outliers. However, the data have inconsistent format-
ting. Table 5.1 describes the variation in the different variables, presented by the min
and max values for pipeline 4, used for training. The corresponding tables for the testing
data can be found in the appendix C.
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Figure 5.1: Pearsons correlation factor visualized as a heatmap between the different
variables in the data set

Table 5.1: Value range for the variables of training data
Parameter min max

t (s) 0.0005 0.0320
Zc (mm) 5359 9628
Z (mm) 4.964 10995

N −1.000 1.000
P (MPa) 0.0078 8.850

As the values from the data set have very different minimum and maximum values, the
data has been scaled to account for all values equally in the machine learning algorithm.
Normalization of the data has been used, scaling all values of the variables to fit in the
range between 0 and 1. This is done by applying equation 5.3 to all the variables of the
data set.

X̄ = X − Xmin

Xmax − Xmin
(5.3)

It is important to note that the scaling applied to the training set should be applied to
the testing data as well. Further, the training data is split into training and validation
data. The data has, with a random selection, been divided into training data containing
70% of the data, and the remaining 30% is validation data. As the data set contains a
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large number of data points, a split of 70/30 is deemed appropriate.

From table 5.1 it is observed that the crack has a high minimum value. Further, the crack
propagates a distance equal to approximately 4250 mm. In the tables for the value range
for the test data a negative values are observed for the axial position Z. However, after
data exploration of all the data sets, the data has been deemed as usable for training and
testing machine learning models.

5.5 Implementation
This section covers the implementation of neural networks. The hyper-parameters, such as
the number of nodes and layers, are presented for each model implemented. The training
of the models is presented with regard to the loss and validation loss. For the imple-
mentation of the machine learning model, Python libraries Tensorflow[45] and Keras[46]
have been used. The aim of the neural network is to be able to predict the pressure
P , based on a set of input parameters. Figure 5.2 displays the general architecture of
the implemented neural network. This section covers the models implemented, and the
results of the training. The number of neurons, or nodes, and the number of layers will
be modified, in order to find an optimal network architecture.

Figure 5.2: Architecture of a neural network for predicting the spatial pressure decay

5.5.1 Model 1
First a simple neural network has been implemented. The neural network consists of an
input-layer, where the variables t, Zc, Z and N are given as input. The neural network
further consists of two hidden dense layers, with 64 nodes in each. The model was trained
with a batch size of 64. The optimizer used was stochastic gradient descent with a
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learning rate equal to 0.2. The activation functions used were rectified linear unit (ReLu)
for the input and hidden layers, and a linear activation function for the output layer.
Furthermore, early stopping has been implemented. This was done in order to ensure
that the model finds the correct general representations and relationships, and not finds
the best fit for the training data[42]. This phenomenon is denoted overfitting, and in this
case the model will not be able to predict correctly for test data. The neural network ran
for 14 epochs before early stopping was activated. The loss was calculated using MSE,
and the training and validation loss are given in figure 5.3.

Figure 5.3: Loss model 1

5.5.2 Model 2
Model 1 was trained again separately but without early stopping. The aim was to test if
the learning became any improved if the training was run for all the epochs, but with an
increased batch size. The model was trained for 30 epochs, and with a batch size of 128.
The same layer, nodes, and parameters for optimization were used as in model 1. Figure
5.4 are the graphs for the loss for the training and validation of model 2.
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Figure 5.4: Loss model 2

5.5.3 Model 3
Further, a third model was implemented with 3 hidden layers and 64 nodes. The imple-
mented model has been trained with early stopping and hyper parameters as in model
1. The aim was to see if adding one more layer would improve the training, resulting in
lower loss. The network iterated through 19 epochs before early stopping was activated.
The training and validation losses are plotted in figure 5.5.

Figure 5.5: Loss model 3
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5.6 Results
In order to validate the training from the machine learning model, the models have been
used for prediction of the test data from pipe simulations 2, 3 and 4. The test data
all represent three new cases for the machine learning model: larger and smaller pipe
diameter, and longer fracture propagation.

5.6.1 Accuracy
In order to evaluate the goodness of fit from the different models, the R2 score for each
model on the test sets has been calculated. The R2 score ranges between 0 and 1, and a
value of 1 indicates a perfect fit. The R2 score is calculated as:

R2 = 1 − RSS

TSS

= 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5.4)

where the TSS is the total sum of squares and RSS is the residual sum of squares. The
value yi represents the true values, ŷi represents the predicted values, and ȳ represents
the mean of the true values.

Table 5.2 gives an overview of the R2 scores calculated for the predictions belonging to
the different models. The models implemented can be evaluated from the R2score. The
accuracy for Model 2 is slightly higher than the accuracy in Model 1 and Model 3, for
pipe simulations 3 and 4. All three models has poor performance on pipe simulation 2.
It is possible that the implementation of early stopping for model 1 and model 3 affects
the training of the model. By stopping the algorithm before 30 epochs, the relationship
between the variables may not have been fully detected. The results for each pipe will be
discussed further in the following sections.

Table 5.2: R2 score for the predictions
Pipe Model 1 Model 2 Model 3

2 0.4874 0.4712 0.4037
3 0.9877 0.9907 0.9826
4 0.9580 0.9762 0.9683

5.6.2 Testing - Pipe 2
The first testing set was done on pipe 2, which has a larger diameter than the training set.
The aim is to test the different models’ abilities to predict pressure based on circumfer-
ential variation. For an increased diameter, the number of elements has increased. This
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will affect the y-component of each normal, as there will be a smaller difference between
each element.

From the R2-score given in table 5.2, it is evident that the models does not provide
a sufficient prediction for pipe 2. Figure 5.6(b) displays the relationship between the
predicted values and the measured values for a randomly selected element. The element
is placed at Z = 9262mm. The error is larger for the lower values of the pressure than
for the high pressure values. Figure 5.6 displays the predictions for the same element.
When plotting the prediction from the different models up against the simulated data
obtained from the test set, some observations are made. Firstly, all the models have a
higher starting pressure and a higher end pressure. Secondly, the simulated data only has
one pressure decay, while the models predict two pressure decays. This might be due to
the increased diameter, resulting in a higher crack speed. Because of the high crack speed,
depressurization of CO2 is not present, removing the first decay and saturation plateau.
The models are not able to correctly predict the pressure decay from the crack. While
the pressure decays towards 0 MPa, the predicted values all flatten around 4 MPa. A
slight increase in the predictions is observed towards the end. This remains unexplained.

(a) (b)

Figure 5.6: Prediction for the different model for an element placed at Z = 9262mm

The predictions for pipe simulation 2 have been explored for multiple elements. For
elements with a high Z position, the predictions will mostly estimate a higher pressure
than what is measured. For elements with a low Z position, the curve for the measured
data has been observed to be constant. This remains unexplained.

5.6.3 Testing - Pipe 3
Pipe 3 has been simulated with a lower diameter size than the simulation obtained for
the training data. With a decreased diameter size, the number of elements along the
circumference decreases accordingly. All models have a high R2-score, with the second
model being able to fit the measured data best. In figure 5.7 the predictions from the
different models are plotted for a randomly selected element placed at Z = 7375 mm.
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(a) (b)

Figure 5.7: Prediction for the different model for randomly selected element placed at
Z = 7375 mm

From the plot, it is possible to see that all three models are able to predict a high start
pressure and an end pressure close to the pressure obtained from the simulation. The
initial pressure decay due to depressurization is predicted to be higher than the measured
values indicates. Additionally, the plateau pressure is predicted to be about 0.5 MPa
higher than the measured values. The pressure decay related to the crack opening has
a good fit for all models. Although model 2 has the best R2-score, an increase in the
predicted pressure is seen towards the end of the simulation. It is possible that for this
diameter and a longer propagating crack, the predictions would increase further. The
predictions for pipe simulation 3 have been explored for several other elements. The
predictions yield an overall good fit, and the predictions are mostly able to estimate a
pressure close to the true values.

5.6.4 Testing - Pipe 4
The aim of test-set 4 is to check the models’ capability to predict pressures when the
running crack propagates for a longer axial distance than what the models have been
trained on. In pipeline 4, the second pipe stoke has been assigned the same material and
geometrical properties as the first pipe stoke. Still, the number of active elements is the
same as the number of active elements in the training data. As the crack is propagating
longer, the simulation time for the pipe is longer than the simulation time of the training
data set. The calculated R2-score of the models on the pipe indicates that the models
have a good fit, with high accuracy. The predictions has been plotted up against the
simulated values for a randomly selected element.

From figure 5.8, the measured pressure is plotted and its observed that the pressure only
contains one decay, without the presence of the saturation plateau. The models accurately
predicts the decay. However, all models predict a second decay, starting around 0.02 ms,
and yield negative pressure beyond this time. It is believed that the models predict a
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(a) (b)

Figure 5.8: Prediction for the different model for a randomly selected element

first decay as a result of decompression, and a second decay as a result of the crack
propagation.

The predictions from the models are explored for several elements. The predictions have
mostly a good fit. It is observed that the predicted pressure has the largest error toward
the end of the time period, where crack arrest occur. Thus, the models might not have
found the best representation for when the crack is allowed to propagate further.

5.7 Discussion
In the chapter, the machine learning models have been implemented and the results have
been presented. From the results, it was observed that the developed models had varying
results on the different test data. The developed models can, with high accuracy, predict
the pressure decay in a pipe with a smaller diameter where the crack has been allowed
to propagate for the same distance as in the training data. It is observed that when the
crack is allowed propagate for a longer distance, the models will have inaccuracies. These
inaccuracies are related to the simulation times where the crack has propagated further
than what is observed in the training data. In order to create more accurate machine
learning models, the training data should contain a broader range of cases. By including
different pipe geometries in the training data, such as longer and shorter pipe stoke, the
implemented models might be able to create better representations of the pressure during
a running ductile fracture.

For the models to be applicable as surrogates in a simulation of running ductile fracture,
the material properties should be accounted for as well. The data from the simulation all
contain the same pipe material and thickness. The strength of the material and the wall
thickness of the pipe will affect the speed of the propagating crack. Because of this, it can
be beneficial to train machine learning models on data from different pipe steel alloys.
If the data were to be trained for different materials and wall thickness, more reliable
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results could be obtained from the machine learning models. Overall, the plotting of the
predicted pressures indicates that the models yield a decent fit. The presented method
can be further developed, and be an asset for the simulation of running ductile fractures.





Chapter 6

Concluding remarks

The main objective of this thesis was to train a neural network based on simulations of
a running ductile fracture in pipelines transporting CO2. This was achieved by studying
the mechanisms of an RDF, as well as the pressure present in the pipeline. For the area
behind the crack tip, spatial pressure decay has been observed experimentally. A reference
pressure decay model was developed using experimental values, and the results from a
validated coupled FSI model for pipeline simulation. The developed reference pressure
decay model has taken the depressurisation of CO2 into account. The spatial pressure
decay was calculated for two directions with regards to the crack, circumferential variation
ξ and axial variation. The developed pressure decay model has a satisfactory fit when
compared to existing pressure curves, and is believed to be describing the effects of CO2
in a fractured pipeline. When plotting the developed models for an axial variation along
the pipe, it was determined that the model was suitable for further use and application
in simulations.

Further, the pressure model was applied as a load for a FE-simulation of pipelines. Four
pipelines with different pipe geometries were simulated under the applied loading model
developed. Three of the pipes had variations in pipe diameter. A fourth pipe was sim-
ulated containing equal pipe diameter as the first simulation, but without a pipe stoke
acting as gas reservoir modelled. In the pipe simulations, all cracks propagated as ex-
pected, where three of the pipes arrested in the welds to the pipe stoke acting as gas
reservoir. It was observed that the physical appearance of the crack was altered based
on the pipe diameter. Further, it was observed that the crack speed was different for the
varying pipe diameters. With higher pipe diameter, the pressure on the crack tip will
become larger creating a faster crack speed. The physical properties of a running ductile
fracture was present in all the simulations. The data obtained in the simulations was
deemed as proficient for training and testing of a neural network.

Artificial neural network models were created and trained using the generated data from
the first simulation of the pipelines. Three different artificial neural network architec-
tures were implemented and trained. The loss of the models indicated that the networks
had found a good representation, without overfitting. The predictive abilities of the im-
plemented models were then tested on the simulations from the three remaining pipe
geometries, and the accuracy of the predictions were calculated using R2-score. For pipe
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3 and pipe 4, the models showed great predictive capabilities, with high R2-score. For
pipe 2, where the diameter was increased, the R2-scores were low, and all models were un-
able to accurately predict the pressure. This is believed to be due to the high crack speed
in pipe 2, which will alter the pressure curves. In order to account for this, the neural
network should be trained for several geometries. If this is done, it will be possible to use
the training from the neural network as a surrogate pressure model in FEM-simulations
of running fractures for efficient simulations. Additionally, for a surrogate model to truly
become a suitable alternative, simulations should be made for several materials. The
materials will have different strengths and the resisting force in the material could alter
the speed of the propagating crack and the pressure inside the pipe. The training data
could include material and geometry as variables in the training process as well, possibly
increasing the predictive capabilities. The procedure and methodology proposed showed
promising results with respect to predictive capability, and can be used as a surrogate
model in engineering tools for simulating RDFs.

Future Work
Building upon the outcomes of this research, future improvements and examinations can
be done for further developing the proposed methodology.

With the interest of creating a machine learning model able to quickly predict the pressure
curves inside a pipe, the models should be re-applied into simulation tools. The neural
networks should further be trained on more data, especially variations in geometry. Ad-
ditionally, the training could include material data in further research.

The presented pressure decay model and simulations does not consider the effects of
backfill. By incorporating backfill into the pressure decay models, the pressure inside the
pipe could better describe the real-world pressure present in CCS pipelines at the seabed.
This could improve the design further.

Further work could also generate the reference simulations using smoothed particle hy-
drodynamics techniques to represent the fluid within the pipeline. As immersed particle
methods and smoothed particle hydrodynamics is beneficial for describing fluid through
cracks, these simulations can provide better results for the simulation of the fluid-structure
interaction.
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A - Pipe simulations

A1 - Pipe simulation 1

Figure A.1: Pipe 1 seen from above

A2 - Pipe simulation 2

Figure A.2: Pipe 2 seen from above
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A3 - Pipe simulation 3

Figure A.3: Pipe 3 seen from above

A4 - Pipe simulation 4

Figure A.4: Pipe 4 seen from above



B - Testing data

B1 - Variable range pipe 2

Table B.1: Range for the variables for pipe 2
Parameter min max

t (s) 0.0005 0.015
Zc (mm) 8706 8928
Z (mm) −32313 15969

N −0.999 1.000
P (MPa) 0.0004 8.850

B2 - Variable range pipe 3

Table B.2: Value range for the variables of pipe 3
Parameter min max

t (s) 0.0005 0.050
Zc (mm) 5509 10314
Z (mm) 4.898 10995

N −0.999 1.000
P (MPa) 0.009 8.850
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B3 - Variable range pipe 4

Table B.3: Value range for the variables of pipe 4
Parameter min max

t (s) 5.004 · 10−4 5.000 · 10−2

Zc (mm) 5.531 9627
Z (mm) −114.2 10995

N −1.000 1.000
P (MPa) 0.00001 8.850



C - Heat-maps

C1 - Heat-map pipe data 2

Figure C.1: Correlation matrix for data from pipe simulation 3
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C2 - Heat-map for pipe data 3

Figure C.2: Correlation matrix for data from pipe simulation 3
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C3 - Heat-map for pipe data 4

Figure C.3: Caption
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