
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’s

 th
es

is

Sanne Lin Sætre

Deep Reinforcement Learning Based
Parameter Optimisation for
Installation Analysis of Marine Cables

Master’s thesis in Marine technology
Supervisor: Svein Sævik
Co-supervisor: Dong Trong Nguyen and Dylan van Drunen
June 2023

Sanne Lin Sætre

Deep Reinforcement Learning Based
Parameter Optimisation for
Installation Analysis of Marine Cables

Master’s thesis in Marine technology
Supervisor: Svein Sævik
Co-supervisor: Dong Trong Nguyen and Dylan van Drunen
June 2023

Norwegian University of Science and Technology

Sanne Lin Sætre

Deep Reinforcement Learning Based Para-
meter Optimisation for Installation Ana-
lysis of Marine Cables

Master’s thesis in Marine Technology
Supervisor: Svein Sævik
Co-supervisor: Dylan Van Drunen and Dong Trong Nguyen
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

 NTNU Trondheim
 Norwegian University of Science and Technology Faculty of Engineering
 Department of Marine Technology

1

Master Thesis Description Spring 2023

for

Stud. Tech. Sanne Lin Sætre

Deep Reinforcement Learning Based Parameter Optimisation
for Installation Analysis of Marine Cables

Maskinlæringsbasert parameteroptimering for installasjonsanalyse av marine kabler

Engineering analyses to support installation of marine power cables and umbilicals requires
modelling a range of marine operations. The output of these analyses include lay tables or step
tables to guide the vessel during the operation. Optimisation of certain parameters such as
tension at the touch down point is an important part of the analysis but can be time-consuming.
The idea for this master is to train a deep neural network-based agent that can replace the manual
work involved in optimising the analysis. The master work to be performed during Spring 2023
represents a continuation of the project work performed in Fall 2022 and is to be carried out as
follows:

1. Report the result of the literature review conducted during Fall 2022 into the master
thesis document.

2. If deemed necessary, additional literature review into reinforcement learning, cable
technology, basis for dynamic response analysis and relevant guidelines and standards
related to design and installation analyses of marine cable systems. This is to further
support the scope of work identified during the project thesis Fall 2022.

3. Define the selected case scenario including environmental data needed to train the agent
algorithm.

4. Extend OpenAI Gym to use OrcaFlex as an environment, to create a reinforcement
learning model (agent) including the definition of parameters, the cost function and
rewards/penalties related to the parameters the agent should optimize.

5. Train the agent to optimize the following case scenarios:
a. Cart Pole problem (baseline test)
b. J-tube pull-in

6. In agreement with the supervisors define eventual additional case scenarios to the J-tube
pull-in scenario identified during Fall 2022 and extend the agent to those applications.

7. Conclusions and recommendations for further work.

The work scope may prove to be larger than initially anticipated. Subject to approval from the
supervisors, topics may be deleted from the list above or reduced in extent. This is to be notified
to the reader in the introduction.

 NTNU
 Faculty of Engineering

 Norwegian University of Science and Technology Department of Marine Technology

2

In the master report, the candidate shall present his/her personal contribution to the resolution of
problems within the scope of the master work

Theories and conclusions should be based on mathematical derivations and/or logic reasoning
identifying the various steps in the deduction.

The candidate should utilise the existing possibilities for obtaining relevant literature.

Master report format
The master report should be organised in a rational manner to give a clear exposition of results,
assessments, and conclusions. The text should be brief and to the point, with a clear language.
Telegraphic language should be avoided.

The report shall contain the following elements: A text defining the scope (this document to be
included), preface, list of contents, summary, main body of thesis, conclusions with
recommendations for further work, list of symbols and acronyms, references and (optional)
appendices. All figures, tables and equations shall be numerated.

The supervisors may require that the candidate, in an early stage of the work, presents a written
plan for the completion of the work.

The original contribution of the candidate and material taken from other sources shall be clearly
defined. Work from other sources shall be properly referenced using an acknowledged
referencing system.

The report shall be submitted in electronic format (.pdf):
 - Signed by the candidate
 - The text defining the scope shall be included (this document)
 - Drawings and/or computer models that are not suited to be part of the report in terms of

appendices shall be provided on separate (.zip) files.

Ownership
NTNU has according to the present rules the ownership of the master reports. Any use of the report
has to be approved by NTNU (or external partner when this applies). The department has the right to
use the report as if the work was carried out by a NTNU employee, if nothing else has been agreed in
advance.

Thesis supervisors:

Prof. Svein Sævik, NTNU, svein.savik@ntnu.no
Prof. Dong Trong Nguyen, dong.t.nguyen@ntnu.no
Dylan Van Drunen, dylan.van_drunen@nexans.com

Deadline: June, 2023, date according to further information.

 NTNU
 Faculty of Engineering

 Norwegian University of Science and Technology Department of Marine Technology

3

Trondheim, January, 2023

Svein Sævik Dong Trong Nguyen Dylan Van Drunen

Candidate – date and signature:

Signature:

Email:

Signature:

Email:

Signature:

Email:

Sanne Lin Sætre (Jan 11, 2023 13:28 GMT+1)

11.01.2023

sannels@stud.ntnu.no
Dylan Van Drunen (Jan 11, 2023 13:31 GMT+1)

11.01.202311.01.2023

dylan.van_drunen@nexans.com

Dong Trong Nguyen (Jan 11, 2023 13:35 GMT+1)

11.01.202311.01.2023

dong.t.nguyen@ntnu.no

Sven Sain
11 01.2023

Preface

This thesis documents the research and development conducted as part of the TMR4930 Marine
Technology - Master’s thesis at the Norwegian University of Science and Technology (NTNU),
carrying a weight of 30 ECTS. It represents the final delivery of a Master of Science degree in the
field of Marine Cybernetics. The project builds upon preliminary work completed during a project
thesis in the Fall of 2022. The entire thesis has been authored by Sanne Lin Sætre.

The inspiration for this thesis came from an idea proposed by Dylan Van Drunen, a project engin-
eer at Nexans. The initial vision was to explore the application of Reinforcement Learning (RL) to
automate and optimize cable laying models in OrcaFlex. The overarching objective is to employ an
RL-based agent for parameter optimization in OrcaFlex, specifically targeting the installation ana-
lysis of marine cables. This thesis has been developed in collaboration with supervisors at NTNU,
Professor Svein Sævik and Professor Dong Trong Nguyen, along with the guidance and insights
provided by Dylan Van Drunen from Nexans. As a result, the thesis is titled ”Deep Reinforcement
Learning-Based Parameter Optimization for Installation Analysis of Marine Cables.”

The content of this thesis encompasses a comprehensive literature review that covers submarine
power cable technology, cable installation design, Machine Learning (ML), Reinforcement Learning
(RL), as well as pertinent software such as OrcaFlex, Python, and OpenAI Gym. Two distinct
problem scenarios are addressed: the baseline CartPole problem within OrcaFlex and the J-tube
pull-in problem. Specifications for each case are outlined, including the relevant parameters to
be controlled by the RL agent. The implementation details of the environment and agent are
presented through high-to-low-level flowcharts. Subsequently, the results achieved by the RL agent
in different scenarios are presented, followed by a thorough discussion of their performance. Finally,
the thesis concludes with key findings and recommendations for future work.

Throughout this thesis endeavor, supervisors Svein Sævik, Dong Trong Nguyen, and Dylan Van
Drunen have provided critical insights, posed thought-provoking questions, and offered invaluable
guidance and suggestions.

This thesis assumes that the reader possesses a technical background and understanding, along
with basic knowledge of submarine cable installation, machine learning, and reinforcement learning
concepts.

Sanne Lin Sætre

i

Summary

The thesis, titled ”Deep Reinforcement Learning-based Parameter Optimization for Marine Cable
Installation,” explores the application of deep reinforcement learning (RL) techniques in the field
of marine cybernetics. The thesis aims to revolutionize the modeling of cable installation processes
using intelligent agents and advance the field of marine cybernetics through RL techniques.

The thesis begins with an introduction that provides background information on marine cable
technology and presents a summary of the literature review. The research questions, objectives,
and scope of the thesis are outlined to establish a clear direction for the thesis. The thesis describes
its contributions, focusing on the advancement of marine cybernetics through RL techniques and
the potential revolutionization of cable installation modeling using intelligent agents.

Subsequently, the thesis examines the technology and design elements of submarine power cables.
It highlights their applications, reliability, and various design aspects crucial for successful install-
ations.

The chapter on cable installation design explores critical scenarios in the installation process,
including loads and load effects, design curves, and various steps involved in cable installation,
such as cable routing, scheduling and timing, obstacle removal, transportation, reel handling, laying
campaigns, cable protection, and the use of vessels and cable laying equipment. The chapter also
discusses the analysis of submarine cable installation, encompassing cable laying analysis, cable
pulling-in analysis, and considerations related to weather conditions.

The methodology provides an overview of machine learning techniques, including supervised and
unsupervised learning, with an emphasis on deep neural networks. Reinforcement learning is
introduced as the primary focus, along with its problem formulation, value function, and various
modern RL techniques, such as exploration vs. exploitation, model-free vs. model-based RL,
temporal difference learning, policy optimization, and deep deterministic policy gradient.

The software used for implementation and case scenarios is discussed, with a particular focus on
OrcaFlex and OpenAI Gym. The thesis presents the baseline CartPole problem as a case scenario
implemented in OrcaFlex, and introduces the J-tube pull-in problem as another case scenario.

In the implementation chapter, the details of the baseline CartPole problem in OrcaFlex are
explained, including the OrcaFlex model, vessel motion, and the creation of a custom environment
using OpenAI Gym. The execution of the model and the entire simulation is described for both
random action and deep Q-network (DQN) approaches.

Similarly, the implementation of the J-tube pull-in problem is presented, covering the pay-out rate
of the quadrant winch wire, environment setup, and the execution of the model and simulation.

The experiment and results chapter analyze the outcomes of the baseline CartPole problem and the
J-tube pull-in problem. The results are discussed, highlighting the performance and effectiveness
of the deep RL techniques in these scenarios.

Finally, the thesis concludes with a summary of the key findings and contributions. It suggests
further areas of research and development to expand upon the work presented in the thesis.

ii

Sammendrag

Masteroppgaven ”Deep Reinforcement Learning basert parameter optimalisering for installasjon-
sanalyse av sjøkabler” utforsker anvendelsen av deep reinforcement learning (RL) teknikker innen
marin kybernetikk. Målet med denne oppgaven er å revolusjonere modelleringen av kabelinstal-
lasjonsprosesser ved bruk av intelligente agenter og fremme feltet for marin kybernetikk gjennom
RL-teknikker.

Oppgaven starter med en introduksjon som gir bakgrunnsinformasjon om marin kabelteknologi
og presenterer et sammendrag av litteraturstudiet fra prosjektoppgaven. Forskningsspørsm̊alene,
form̊alet og omfanget av oppgaven er skissert for å etablere et klart m̊al med oppgaven. Fremtiden
til oppgaven er beskrevet, med fokus p̊a utviklingen av marin kybernetikk gjennom RL-teknikker
og den potensielle revolusjonen av kabelinstallasjonsmodellering ved bruk av intelligente agenter.

Deretter ser oppgaven p̊a teknologien og designelementene til undersjøiske strømkabler. Den frem-
hever deres applikasjoner, p̊alitelighet og ulike designaspekter som er avgjørende for vellykkede
sjøkabel installasjoner.

Kapittelet for design av kabelinstallasjoner utforsker kritiske scenarier i installasjonsprosessen,
inkludert belastninger og lasteffekter, designkurver og ulike trinn involvert i kabelinstallasjon som
kabelføring, tidsplan og timing, fjerning av hindringer, transport, h̊andtering av kabel, legging-
skampanjer, kabelbeskyttelse, og bruk av fartøy og kabelleggingsutstyr. Kapittelet diskuterer ogs̊a
analyse av sjøkabelinstallasjon, omfattende kabelleggingsanalyse, kabelinntrekkingsanalyse og hen-
syn knyttet til værforhold.

Metodikken gir en oversikt over maskinlæringsteknikker, inkludert overv̊aket og uoverv̊aket læring,
og legger vekt p̊a bruk av dype nevrale nettverk. Reinforcement learning introduseres som hov-
edfokus, sammen med problemformuleringen, verdifunksjonen og ulike moderne RL-teknikker som
utforskning vs. utnyttelse, modellfri vs. modellbasert RL, tidsforskjellslæring, policyoptimalisering
og dyp deterministisk politisk gradient.

Programvaren som brukes til implementering og case-scenarier diskuteres, med spesielt fokus p̊a
OrcaFlex og OpenAI Gym. Baseline CartPole-problemet presenteres som et case-scenario imple-
mentert i OrcaFlex, og J-tube pull-in-problemet introduseres som et annet case-scenario.

I kapittelet som omhandler implementasjon er detaljene for baseline CartPole-problemet i OrcaFlex
forklart, inkludert OrcaFlex-modellen, fartøyets bevegelse og opprettelsen av et tilpasset miljø ved
hjelp av OpenAI Gym. Utførelsen av modellen og hele simuleringen er beskrevet for b̊ade tilfeldig
handling og deep Q-nettverk (DQN) tilnærminger.

P̊a samme m̊ate presenteres implementeringen av J-tube pull-in-problemet, som dekker utbetal-
ingshastigheten for kvadrant-vinsjwire, miljøoppsettet og utførelse av modellen og simuleringen.

Eksperiment- og resultatkapittelet gir en analyse av resultatene av baseline CartPole-problemet og
J-tube pull-in-problemet. Resultatene blir diskutert, og fremhever ytelsen og effektiviteten til de
dype RL-teknikkene i disse scenariene.

Til slutt avsluttes oppgaven med en oppsummering av de viktigste funnene og bidragene. Ytter-
ligere forsknings- og utviklingsomr̊ader foresl̊as for å utvide arbeidet som presenteres i oppgaven.

iii

Table of Contents

Preface i

Summary ii

Sammendrag iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Background . 2

1.2 Literature review . 3

1.2.1 Brief review of Machine Learning (ML) and Reinforcement Learning (RL) . 3

1.2.2 Applications of DRL . 3

1.2.3 Applications of DQN . 5

1.2.4 Research gap . 7

1.3 Objective and scope . 8

1.3.1 Objective . 8

1.3.2 Research questions . 8

1.3.3 Scope . 8

1.4 Contribution . 8

1.4.1 Advancement of Marine Cybernetics through RL techniques 8

1.4.2 Revolutionizing cable installation modelling process using intelligent agents 9

1.5 Outline . 9

2 Submarine power cable technology 10

2.1 Applications . 10

2.2 Reliability . 11

2.3 Design elements . 11

3 Cable installation design 13

3.1 Critical scenarios . 13

3.1.1 Loads and load effects . 13

3.1.2 Design curves . 13

3.2 Cable installation steps . 14

3.2.1 Cable routing . 15

iv

3.2.2 Schedule and timing . 15

3.2.3 Removal of obstacles . 16

3.2.4 Transportation . 16

3.2.5 Reel handling . 16

3.2.6 Laying campaign . 16

3.2.7 Cable protection . 17

3.2.8 Vessel and cable laying equipment . 18

3.2.9 Installing cable on land . 19

3.3 Submarine cable installation analysis . 19

3.3.1 Cable laying analysis . 20

3.3.2 Cable pulling-in analysis at landfall and at offshore asset 20

3.3.3 Weather conditions . 20

4 Methodology 22

4.1 Machine learning . 22

4.1.1 Supervised learning . 22

4.1.2 Unsupervised learning . 23

4.1.3 Deep neural networks . 23

4.2 Reinforcement learning . 25

4.2.1 Problem formulation . 26

4.2.2 Value function . 27

4.2.3 Modern RL non-exhaustive taxonomy . 28

4.2.4 Exploration vs. exploitation . 29

4.2.5 Model-free vs. model-based RL . 29

4.2.6 Temporal difference learning . 30

4.2.7 Policy optimization . 31

4.2.8 Deep deterministic policy gradient . 31

4.2.9 Deep Q-learning (DQN) . 32

5 Software used for implementation and case scenario 34

5.1 Software used for implementation . 34

5.1.1 OrcaFlex . 34

5.1.1.1 Documentation . 34

5.1.1.2 Modelling and analysis . 34

5.1.1.3 PythonAPI . 34

5.1.2 OpenAI gym . 34

v

5.1.2.1 Cartpole example . 35

5.2 Baseline CartPole problem in OrcaFlex . 36

5.3 J-tube pull-in problem . 37

6 Implementation 40

6.1 Baseline CartPole problem in OrcaFlex . 40

6.1.1 OrcaFlex model . 42

6.1.1.1 Vessel motion . 43

6.1.2 OpenAI gym custom environment . 45

6.1.3 Execution of model . 46

6.1.4 Execution of whole simulation . 47

6.1.4.1 Random action . 47

6.1.4.2 DQN . 49

6.2 J-tube pull in problem . 50

6.2.1 Pay-out rate of quadrant winch wire . 51

6.2.2 Environment . 52

6.2.3 Execution of model . 52

6.2.4 Execution of whole simulation . 52

7 Experiment and results 53

7.1 Baseline CartPole problem . 53

7.1.1 Results and discussion . 53

7.2 J-tube pull-in problem . 59

7.2.1 Results and discussion . 59

8 Conclusion and further work 68

8.1 Conclusion . 69

8.2 Further work . 69

Bibliography 71

Appendix 74

A Specification . 74

A.1 Load Combinations of load classes, load conditions 74

A.2 Typical load classes . 75

A.3 Flexible Pipe Layer Design Criteria . 76

vi

List of Figures

1 Example of a basic RL scenario, from (Szepesvari 2010) 3

2 Renewable electricity capacity growth (in GW) by region/country, main case 2015-
2020 (light blue) and 2021-2026 (dark blue), from (IEA 2021) 10

3 Illustration of design elements used in submarine power cables, from (KVCable.com
2022) . 12

4 Five generic submarine power cable types, from (Worzyk 2009) 12

5 Minimum bend radius design criteria, from (API 2014b) 14

6 Example of catenary mechanical forces and parameters, from (Cigre 2022) 17

7 Outlay and explanation of cable laying vessel and equipment (Poulsen 2022). . . . 18

8 Illustration of supervised learning, from (Patrick 2021) 22

9 Illustration of unsupervised learning, from (Patrick 2021) 23

10 Illustration of neural network with input layer, two hidden layers and output layer,
from (Nielsen 2015) . 24

11 Illustration of recurrent neural network with input layer, hidden layers with feed-
back loops and output layer, from (Patrick 2021) 25

12 Example of a basic RL scenario, from (Szepesvari 2010) 25

13 A non-exhaustive taxonomy of algorithms in modern RL, from (OpenAI 2022c) . . 28

14 Classic CartPole problem, from OpenAI 2022b . 35

15 CartPole problem model in OrcaFlex . 36

16 Illustration of what happens in steps 9-10 . 38

17 OrcaFlex model of J-tube pull-in . 39

18 High level architecture of workflow . 40

19 Lower level architecture for OrcaFlex model . 40

20 Lower-level architecture for neural network . 41

21 CartPole problem model in OrcaFlex . 42

22 Flowchart for applying externally calculated motion to a vessel in OrcaFlex 43

23 Flowchart for the OrcFxCartPoleEnv class . 45

24 Flowchart for running and saving the OrcaFlex model 46

25 Flowchart for running the OrcFxCartPole-v0 environment 48

26 Flowchart CartPole problem with DQN agent . 49

27 Agent learning rate for CartPole problem . 53

28 Vessel movement of every 20th episode of during training process 54

29 Angle of pole for every 20th episode of during training process 55

30 Angle of pole over time when agent is applied . 56

31 CartPole vessel position when agent is applied . 57

vii

32 Rewards from random actions compared to use of agent 58

33 Velocity of quadrant pay-out for J-tube pull-in when agent is applied 59

34 Agent learning rate for J-tube pull-in problem . 60

35 Pay-out rate for different training episodes for J-tube pull-in 62

36 Touchdown tension for J-tube pull-in . 63

37 Touchdown tension for trained agent and training episode 161 J-tube pull-in 64

38 Min, max and mean curvature over length of cable for J-tube pull-in 65

39 Curvature of cable at maximum for J-tube pull-in 66

40 Rewards from random actions compared to use of agent 67

List of Tables

1 Observation Space of Baseline CartPole problem in OrcaFlex 36

viii

Abbreviation

AGB Adaptive gradient boost
AI Artificial intelligence
ANN Artificial neural network
APF Artificial potential field
API In section 3: American Petroleum Institute
API In other sections: Application programming interface
CDTM Controlled depth tow method
CLV Cable-laying vessel
COLREG Convention on the International Regulations for Preventing Collisions at Sea
DBSCAN Density-based spatial clustering of applications with noise
DDGP Deep deterministic policy gradient
DNN Deep neural network
DNV Det norske veritas
DQN Deep Q-Network
DRL Deep reinforcement learning
DT Decision tree
GA Genetic Algorithm
GB Gradient boosting
HER Hindsight Experience Replay
HPS-RL Hyperparameter Search for Reinforcement Learning
HVAC Heating, Ventilation and Air Conditioning
IEA International energy agency
KNN K-nearest neighbors
LR Logistic regression
MDP Markov decision process
ML Machine learning
MLR Multi-linear regression
PCA Prinicipal component analysis
RF Random forest
RL Reinforcement learning
ROV Remotely operated vehicle
SVM Support vector machines
TCP Transmission Control Protocol
TD Temporal difference
TDP Touchdown point
USV Unmanned Surface Vessel
ZMQ ZeroMQ

ix

1 Introduction

The combination of reinforcement learning and the use of OrcaFlex, a specialized software for
marine cable analysis, is the central focus of this thesis.

Marine cable installations are vital for maintaining global connectivity and powering modern so-
ciety. Achieving successful and efficient cable deployment requires meticulous analysis and optim-
ization of various parameters. Deep Reinforcement Learning (DRL) has emerged as a powerful
approach in recent years, offering solutions to complex optimization problems across diverse do-
mains. This thesis aims to harness the capabilities of DRL specifically for optimizing the parameters
involved in the installation analysis of marine cables.

The primary objective of this thesis is to develop a novel framework that leverages DRL techniques
to automate and optimize the installation analysis process of marine cables. By employing a
reinforcement learning-based agent, the thesis endeavors to maximize the efficiency and accuracy
of cable installation procedures by optimizing specific parameters within the OrcaFlex model.

The implementation of DRL techniques for parameter optimization in cable installation analysis
presents an exciting opportunity to revolutionize the field of Marine Cybernetics. The potential be-
nefits are multifaceted, including improved cable deployment efficiency, reduced operational costs,
and enhanced overall system performance. Moreover, by automating the optimization process, this
approach enables engineers to dedicate their efforts to higher-level decision-making tasks, leading
to more informed and effective cable installation strategies.

This thesis builds upon preliminary work conducted in the Fall of 2022 and addresses the pressing
need for advanced optimization techniques in marine cable installation analysis. By integrating
DRL algorithms with existing analysis software, the goal is to develop a robust and adaptable
system capable of autonomously optimizing various parameters, such as cable tension, positioning,
and route selection, to achieve optimal installation models.

Collaboration between the Norwegian University of Science and Technology (NTNU), Nexans, and
industry experts has been instrumental in exploring this cutting-edge research topic. The guidance
and support provided by Professor Svein Sævik and Professor Dong Trong Nguyen from NTNU,
along with the insights and expertise of Dylan Van Drunen, a project engineer at Nexans, have
shaped the direction and scope of this thesis.

Through this thesis, the aspiration is to contribute to the advancement of Marine Cybernetics by
demonstrating the potential of Deep Reinforcement Learning in optimizing the installation analysis
of marine cables. By harnessing the power of intelligent agents, seeking to unlock new possibilities
for enhancing the efficiency, reliability, and sustainability of cable installation operations in the
interconnected world.

1

1.1 Background

The increasing demand for electricity and renewable energy has led to a surge in cable installa-
tion projects worldwide. According to the International Energy Agency (IEA), renewable capacity
growth is predicted to accelerate significantly in the next four years, with renewable sources ac-
counting for nearly 95% of the global power capacity increase by 2026 (IEA 2021). In Norway,
several companies, including Nexans, Global Maritime, Kongsberg Maritime, Subsea 7, and Equi-
nor, have embraced renewable energy as part of their future plans and core values (Nexans 2022,
GM 2022, Maritime 2022, Subsea7 2022, Equinor 2022).

Submarine power cables play a critical role in offshore power supply and interconnecting regions
separated by water. The installation of these cables requires meticulous design and analysis pro-
cesses, often utilizing specialized software like OrcaFlex. However, manual creation of suitable
models for cable installations can be time-consuming and challenging. To address this issue, this
thesis aims to explore the utilization of Deep Reinforcement Learning (DRL) techniques to optimize
OrcaFlex models for marine cable analysis.

The installation of submarine power cables involves a complex engineering process that encom-
passes various stages. It begins with designing the power cable to meet specific scenarios outlined
by organizations such as the American Petroleum Institute (API), which include considerations for
loads, load effects, and design curves. The installation process itself involves multiple steps, such
as route survey, obstacle removal, cable laying, protection, jointing, and testing. Prior to cable lay-
ing, the operation undergoes analysis using OrcaFlex. Machine Learning (ML) approaches can be
employed to optimize and automate the process of creating OrcaFlex models. This thesis specific-
ally focuses on the potential of Deep Reinforcement Learning (DRL) to develop an agent capable
of creating the most effective model for a given installation operation. To accomplish this, the
Python programming language and the OpenAI Gym toolkit will be utilized.

By investigating the application of DRL in marine cable analysis, this thesis seeks to address
the challenges associated with manual model creation and improve the efficiency and accuracy of
cable installation procedures. The potential benefits of leveraging DRL techniques in this context
are significant, including enhanced cable deployment efficiency, reduced operational costs, and
improved overall system performance. Moreover, automating the optimization process through
intelligent agents enables engineers to concentrate on higher-level decision-making tasks, leading
to more informed and effective cable installation strategies.

This thesis builds upon previous work in the field and aims to contribute advanced optimization
techniques to the domain of marine cable installation analysis. By integrating DRL algorithms with
existing analysis software like OrcaFlex, the objective is to develop a robust and adaptable system
capable of autonomously optimizing various parameters, including cable tension, positioning, and
route selection, to achieve optimal installation outcomes. The collaborative efforts between the
Norwegian University of Science and Technology (NTNU), Nexans, and industry experts have
facilitated the exploration of this cutting-edge research topic. The guidance and support provided
by Professor Svein Sævik and Professor Dong Trong Nguyen from NTNU, along with the insights
and expertise of Dylan Van Drunen, a project engineer at Nexans, have been invaluable in shaping
the direction and scope of this thesis.

2

1.2 Literature review

Deep reinforcement learning (DRL) has emerged as a powerful tool for solving complex optimization
and control problems in various domains. This literature review explores the applications of DRL
in unmanned ships, fluid mechanics, robotic manipulation tasks, HVAC systems, and traffic signal
control. By summarizing existing research, it aims to provide an overview of the current state of
DRL applications and identify potential research gaps. Specifically, this review aims to address the
research gap related to parameter optimization in the installation analysis of marine cables using
DRL techniques. By filling this gap, the thesis contributes to advancing DRL-based parameter
optimization in the marine industry.

1.2.1 Brief review of Machine Learning (ML) and Reinforcement Learning (RL)

Machine learning enables computers to learn from data, make predictions, and automate decision-
making processes (Mitchell 1997). It encompasses various techniques, including supervised and
unsupervised learning, as well as the use of deep neural networks for complex modeling tasks.

RL is a branch of machine learning focused on learning to control a system in order to maximize
a long-term objective. An illustration of a basic RL scenarion is given below (Figure 1). Unlike
other ML paradigms, RL does not have a supervisor but relies on a reward signal and delayed,
partial feedback (Nielsen 2015).

Figure 1: Example of a basic RL scenario, from (Szepesvari 2010)

Key components of RL include the environment (the world in which the agent operates), the agent
(the entity that takes actions), the reward function (defines the agent’s reward for actions), and
the policy (the strategy the agent uses to choose actions). Some of the main challenges in RL are
delayed and partial feedback (Nielsen 2015).

The problem formulation in RL is often based on a Markov decision process (MDP), which models
the interaction between the agent and the environment. The goal is to find an optimal policy that
maximizes the expected long-term return. Dynamic programming methods can be used when the
system model is known, while RL methods can be used without a model.

The value function estimates the long-term reward for being in a state or taking an action in a
state. The value function helps evaluate and improve policies.

1.2.2 Applications of DRL

”Deep Reinforcement Learning-Based Path Control and Optimization for Unmanned
Ships” discusses the use of deep reinforcement learning in solving the optimization problem in
path planning and management for unmanned ships. The research proposed a new reward function
which considers the environment and control delay of unmanned ships to minimize the total travel
time by reducing coordination time between ships. Simulation experiments were conducted to
validate the effectiveness of the solution (Wu et al. 2022).

3

The article presents a deep reinforcement learning-based approach for optimizing path planning
and management of unmanned ships. It highlights the challenges and solutions related to path
optimization, unmanned ship control, and cluster control. The proposed method aims to improve
planning efficiency and find optimal control rules for unmanned ships (Wu et al. 2022).

”Hyperparameter Tuning for Deep Reinforcement Learning Applications” discusses the
importance of hyperparameter tuning in deep reinforcement learning (RL) applications. While RL
has gained success in various domains, setting the right hyperparameters is crucial for optimal
performance and reliability of the deployed models. However, deep RL has seen limited progress in
hyperparameter tuning due to its algorithm complexity and the need for simulation platforms. To
address this, the article proposes a distributed variable-length genetic algorithm framework called
Hyperparameter Search for Reinforcement Learning (HPS-RL) to systematically tune hyperpara-
meters for deep RL. The framework aims to improve training time and robustness by evolving
optimal solutions. It demonstrates scalability and compares its performance with Bayesian ap-
proaches, showing that it can produce computationally efficient and robust models requiring fewer
training episodes (Kiran and Ozyildirim 2022).

The article highlights the challenges in deep RL hyperparameter tuning and the need for practical
solutions. It introduces HPS-RL, a genetic algorithm-based approach, to automate the search
for optimal hyperparameters. The framework utilizes population-based evolution, crossover, and
mutation to find multi-objective optimal hyperparameters for deep RL applications. It emphasizes
the importance of selecting the right algorithms and gym environments for deep RL problems. The
results show that HPS-RL can significantly impact RL research and applications by improving
training time and producing robust models. Overall, the article contributes to advancing deep
RL controllers for real-world problems by addressing the critical aspect of hyperparameter tuning
(Kiran and Ozyildirim 2022).

”Deep reinforcement learning in fluid mechanics: A promising method for both active
flow control and shape optimization” explores the use of Deep Reinforcement Learning (DRL)
in the field of fluid mechanics, particularly in active flow control and shape optimization. DRL has
shown promise in handling complex problems characterized by non-linearity, non-convexity, and
high dimensionality. In active flow control, DRL algorithms have been used to discover effective
control strategies for systems like the 2-D cylinder. Incorporating locality and invariance in the ar-
chitecture of Artificial Neural Networks (ANNs) enables the discovery of control strategies even for
large systems. However, while DRL has been successful in simulations, its application in physical
experiments in fluid mechanics is yet to be fully explored due to challenges such as building exper-
iments, acquiring real-time high-accuracy data, and implementing physical actuators. The article
highlights the complementary nature of simulations and experiments, with simulations serving as
benchmarks and experiments providing real-life validation (Rabault et al. 2020).

In shape optimization, DRL algorithms have been used to optimize the shape of objects interact-
ing with complex flows. Though less developed compared to flow control, DRL shows promise in
this area. The article presents two applications: aerodynamic optimization of a missile-like object
and lift maximization with a cylinder-like shape. These applications use parametric models for
one-shot optimization, but iterative optimization methods could be explored in the future. The
article concludes by emphasizing the need for further research in DRL for fluid mechanics, including
addressing challenges such as data parallelism, reward function selection, and the curse of dimen-
sionality in large control spaces. The authors envision the extension of DRL to higher Reynolds
numbers and 3-D flows, as well as the transition from simulations to real-world experiments. They
anticipate DRL becoming a practical tool for industrial applications and a means to empirically
explore general properties of flows, highlighting the multidisciplinary nature of this research field
(Rabault et al. 2020).

”A review on deep reinforcement learning for fluid mechanics” provides a review of deep
reinforcement learning (DRL) applications in the field of fluid mechanics. DRL has been adopted
in physics and engineering domains for solving decision-making problems that were previously
challenging due to non-linearity and high dimensionality. The review covers various applications
of DRL in fluid mechanics, including flow control, shape optimization, and laminar flows past
a square cylinder. It discusses the choice of DRL algorithms, problem complexity, and reward

4

shaping. The article also highlights the potential of DRL in fluid dynamics and suggests future
possibilities for coupling DRL with fluid dynamics for optimization and control tasks (Garnier
et al. 2021).

While there have been several applications of DRL in fluid mechanics, the literature on the topic
remains limited. The article presents a comprehensive overview of the current state of DRL in
fluid mechanics, describing the numerical context, problem complexity, and algorithm choices.
The coupling of DRL algorithms with existing numerical computational fluid dynamics (CFD)
solvers is relatively straightforward, offering a wide range of possibilities for optimization and
control tasks. The robustness of DRL algorithms in the face of numerical noise is demonstrated,
and the use of parallel computing capabilities and transfer learning is highlighted. However, there
are still challenges to be addressed, such as applying DRL to highly turbulent and non-linear
flows and exploring its behavior in high-dimensional action spaces. The article anticipates further
advancements in DRL driven by ongoing progress in the field and the industrial challenges that
can benefit from it (Garnier et al. 2021).

”Automatic Parameter Optimization Using Genetic Algorithm in Deep Reinforcement
Learning for Robotic Manipulation Tasks” proposes a method for automatically optimizing
hyperparameters in deep reinforcement learning (RL) for robotic manipulation tasks. The approach
combines Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER)
with a Genetic Algorithm (GA) to fine-tune the hyperparameter values. The algorithm is tested
on six robotic manipulation tasks, showing a significant reduction in learning time and improved
performance compared to existing methods. The thesis highlights the importance of automating
the hyperparameter tuning process in RL and provides evidence that the GA-based approach
enhances the efficiency of RL algorithms for robotic tasks (Sehgal et al. 2022).

The paper presents a novel algorithm, GA+DDPG+HER, for automatic hyperparameter tuning
in deep RL. The algorithm is applied to various robotic manipulation tasks and demonstrates
faster learning and improved performance. The thesis emphasizes the significance of automating
hyperparameter optimization in RL and provides evidence of the effectiveness of the GA-based
approach in enhancing the efficiency of learning agents. The findings suggest that this method can
accelerate the learning process and improve performance in robotic manipulation tasks (Sehgal
et al. 2022).

1.2.3 Applications of DQN

”Application of deep Q-networks for model-free optimal control balancing between
different HVAC systems” explores the application of a deep Q-network (DQN) for model-free
optimal control in HVAC systems. The DQN is integrated with an EnergyPlus simulation model
of an office building to minimize energy consumption while maintaining indoor CO2 concentration
below a certain threshold. The results show that the DQN can improve its control policy based
on prior actions, states, and rewards, resulting in a 15.7% reduction in energy usage compared
to baseline operation. The DQN also demonstrates the ability to balance control actions among
different energy consumers in the building, such as chillers, pumps, and air-handling units (Ahn
and C. S. Park 2020).

Traditionally, HVAC systems have been controlled using rule-based or model-based approaches,
but these methods have limitations in terms of accuracy and scalability. The model-free approach
employed in this thesis, using the DQN, achieves global optimization without relying on a simu-
lation model. The findings suggest that the DQN has the potential to optimize building energy
consumption and overcome the challenges associated with simulation models. Future research aims
to explore the integration of transfer learning with the DQN to leverage knowledge from previous
cases and to investigate the performance of the DQN in different seasons (Ahn and C. S. Park
2020).

”Deep Q-network-based traffic signal control models” focuses on the development and
evaluation of traffic signal control models using deep Q-network (DQN), a reinforcement learning
algorithm. Two models were developed for an isolated intersection and two coordinated inter-

5

sections, and their performance was compared with a fixed-time signal control model. The study
found that the developed DQN-based models showed superior performance in terms of traffic signal
control compared to the fixed-time signal control method. The research highlights the potential
of using artificial intelligence, specifically reinforcement learning, to solve complex problems like
traffic congestion (S. Park et al. 2021).

Traffic congestion is a prevalent issue in urban areas, and traditional methods of road expansion
and construction are not always feasible. Artificial intelligence has gained attention as a promising
approach to address traffic congestion through intelligent traffic signal control. This study aims
to contribute to this field by developing traffic signal control models using DQN, a reinforcement
learning algorithm. The models were tested for an isolated intersection and coordinated intersec-
tions in an urban area. The DQN algorithm was selected due to its effectiveness in handling large
state and action spaces. The developed models were compared with a fixed-time signal control
model and showed better performance in both isolated and coordinated intersection scenarios. The
study emphasizes the potential of using AI-based approaches to improve traffic signal control and
alleviate traffic congestion in urban areas (S. Park et al. 2021).

”Path Planning of Coastal Ships Based on Optimized DQN Reward Function” proposes
a coastal ship path planning model based on the optimized deep Q network (DQN) algorithm. The
model combines environment status information and the DQN algorithm to achieve efficient and
safe ship path planning. The traditional reward function of DQN is optimized by incorporating
the potential energy reward of the target point, adding reward areas near the target point, and
including danger areas near obstacles. Experimental comparisons with other algorithms demon-
strate that the optimized DQN algorithm improves stability, convergence speed, and calculation
time. It enables the ship to navigate autonomously while adhering to navigation rules, enhancing
safety, economy, and decision-making capabilities (Guo et al. 2021).

The coastal ship path planning model consists of three components: environmental status in-
formation processing, path search, and path smoothing. The environmental processing involves
grid-based modeling of the marine environment and adherence to international rules for collision
avoidance at sea. The path search utilizes an optimized DQN algorithm to predict a collision-free
path from the starting point to the target point. The reward function is optimized to enhance
learning efficiency and convergence speed. Finally, path smoothing is applied to ensure the planned
path adheres to safe navigation rules. The proposed model improves the effectiveness and safety
of ship navigation, contributing to the development of intelligent ships and reducing the risk of
maritime accidents (Guo et al. 2021).

”A path planning strategy unified with a COLREGS collision avoidance function
based on deep reinforcement learning and artificial potential field” presents a path plan-
ning method for unmanned surface vessels (USVs) that incorporates collision avoidance based on
deep reinforcement learning (DRL) and artificial potential field (APF). The proposed method uses
a DRL algorithm, specifically Deep Q-learning network (DQN), to learn optimal action strategies
in a visually simulated environment, with real-time sensor information as input. To address col-
lision avoidance during USV navigation, the location of obstacle ships is divided into four zones
according to the International Regulations for Preventing Collisions at Sea (COLREGS). The
APF algorithm is employed to enhance the DQN’s action space and reward function, addressing
the sparse reward issue. Simulation experiments demonstrate the effectiveness of the method in
achieving autonomous collision avoidance path planning (L. Li et al. 2021).

The paper presents a path planning strategy that combines DRL and APF for USVs, ensuring
optimal actions for collision avoidance. The DQN algorithm learns from simulated sensor data,
while the APF algorithm improves the action space and reward function. The method is validated
through simulation experiments and shown to effectively address collision avoidance in various
scenarios. Future work involves considering uncertain environmental factors and ship kinematics
models for improved reliability and precision in real-world applications. Combining model-based
DRL algorithms is also a potential direction to enhance the method’s applicability and stability
(L. Li et al. 2021).

6

1.2.4 Research gap

The research gap in the literature review related to the thesis on ”Deep reinforcement learning-
based parameter optimization for installation analysis of marine cables” can be identified as follows:

• Limited exploration of deep reinforcement learning-based parameter optimization in mar-
ine cable installation: Existing literature covers various applications of deep reinforcement
learning in fields such as unmanned ships, fluid mechanics, robotic manipulation tasks, HVAC
systems, and traffic signal control. However, there is a lack of research specifically address-
ing parameter optimization for marine cable installation using deep reinforcement learning
techniques. The literature review does not provide direct evidence or studies that focus on
optimizing parameters for marine cable installation using deep reinforcement learning.

• Lack of studies specifically addressing installation analysis of marine cables: The literature
review does not specifically discuss the installation analysis of marine cables using deep re-
inforcement learning. While it covers applications of deep reinforcement learning in related
fields such as unmanned ships and fluid mechanics, there is a gap in research specifically fo-
cusing on the installation analysis of marine cables. This research gap highlights the need for
studies that specifically address the challenges and opportunities of using deep reinforcement
learning for optimizing the installation process of marine cables.

To address these gaps, further research is needed to specifically explore the application of deep
reinforcement learning-based parameter optimization techniques for the installation analysis of
marine cables. This thesis would contribute to filling the gap in the literature and provide valuable
insights into how deep reinforcement learning can be applied to optimize the parameters involved
in the modeling of installation processes, leading to improved efficiency and effectiveness in the
marine cable industry.

7

1.3 Objective and scope

1.3.1 Objective

The objective of this thesis is to develop a deep neural network-based agent using deep reinforce-
ment learning (DRL) techniques to automate and optimize models for the analysis of marine cable
installation. The aim is to replace manual work involved in parameter optimization when model-
ing in OrcaFlex. The focus is on improving the efficiency and accuracy modelling for the analysis
process, ultimately contributing to the advancement of marine engineering practices.

This thesis aims to bridge the existing gap in the field of marine cable installation analysis by incor-
porating DRL techniques. While previous studies have investigated various aspects of submarine
power cable technology, cable installation design, and optimization algorithms, the utilization of
DRL for parameter optimization in the context of marine cable installation analysis remains re-
latively unexplored. By applying DRL algorithms to automate and optimize the models used in
OrcaFlex, this thesis introduces a novel approach that has the potential to enhance the efficiency,
accuracy, and cost-effectiveness of marine cable installation processes. Through a comprehens-
ive exploration of DRL techniques and their application to marine cable installation, this thesis
contributes to the advancement of both the marine engineering and machine learning domains.

1.3.2 Research questions

This thesis aims to address the following research questions:

• Can deep reinforcement learning (DRL) be effectively utilized for parameter optimization in
the installation analysis of marine cables?

• How accurate and efficient is the trained DRL agent in optimizing critical parameters related
to cable installation, such as tension at the touch-down point?

1.3.3 Scope

The scope of this thesis revolves around deep reinforcement learning-based parameter optimization
for the installation analysis of marine cables. The analysis involves various marine operations and
requires modeling and optimization of critical parameters. The work builds upon the preliminary
project thesis conducted in Fall 2022 and extends it by incorporating DRL techniques for automated
parameter optimization in OrcaFlex models.

For a detailed description of the scope, please refer to the ”Master Thesis Description Spring 2023
for Stud. Tech. Sanne Lin Sætre.”

1.4 Contribution

This thesis seeks to make significant contributions to the field of Marine Cybernetics by combining
reinforcement learning (RL) techniques with marine power cable installation modeling.

1.4.1 Advancement of Marine Cybernetics through RL techniques

By applying RL principles and algorithms to automate the creation of installation models, this
thesis contributes to the evolution of Marine Cybernetics, an interdisciplinary field that integrates
marine engineering, computer science, and automation.

8

1.4.2 Revolutionizing cable installation modelling process using intelligent agents

The automation of model creation using RL techniques has the potential to revolutionize the cable
installation process, reducing human effort, minimizing errors, and improving overall efficiency.
The intelligent agents developed in this thesis enable the generation of accurate and reliable Or-
caFlex models, facilitating safer and more effective cable installations.

Through the combination of RL and marine power cable installation modeling, this thesis aims
to pave the way for innovative approaches in the field, offering new possibilities for optimizing
installation operations and supporting the growth of offshore energy systems.

The subsequent chapters of this thesis will study the theoretical foundations of RL, provide a com-
prehensive review of marine cable installation procedures, explore the capabilities of the OrcaFlex
software, present the development and integration of RL algorithms, evaluate the performance of
automated models, and discuss potential future developments. By the end of this thesis, the aim
is to demonstrate the effectiveness and practicality of RL techniques in automating the creation of
OrcaFlex models for marine power cable installation, contributing to the advancement of marine
engineering and fostering sustainable energy transmission infrastructure.

1.5 Outline

The thesis is structured as follows:

1. Introduction: Provides background information, research objectives, and the contribution of
the thesis in advancing Marine Cybernetics through RL techniques and revolutionizing cable
installation.

2. Submarine Power Cable Technology: Covers applications, reliability, design elements, and
challenges associated with cable technology.

3. Cable Installation Design: Discusses critical scenarios, cable installation process, route plan-
ning, and selection of vessels and equipment.

4. Analysis of Submarine Cable Installation: Explores cable laying analysis, cable pulling-in
analysis, weather conditions, and challenges involved in cable laying and pulling-in operations.

5. Methodology: Explains the machine learning techniques used, emphasizing reinforcement
learning (RL) and its integration in cable installation optimization.

6. Implementation: Details the software tools used, setup, and configuration, along with the
integration of RL algorithms with cable installation simulation models.

7. Experiments and Results: Presents findings, analysis, and comparison of RL agents’ per-
formance with traditional methods, highlighting the impact of different RL configurations
and training parameters.

8. Conclusion: Summarizes the thesis’ conclusions, contributions, and potential for RL tech-
niques in revolutionizing marine cable installation. Identifies future research areas and the
integration of real-time data for adaptive decision-making.

9

2 Submarine power cable technology

The use of submarine power cables has become increasingly common in recent years, particularly as
the demand for renewable energy sources and new interconnections between countries and regions
grows (IEA 2021). Figure 2 from the Renewables 2021 report provided by the International Energy
Agency (IEA) shows the growth of renewable electricity capacity by region/country from 2015-2021
as well as predicted increase until 2026.

Figure 2: Renewable electricity capacity growth (in GW) by region/country, main case 2015-2020
(light blue) and 2021-2026 (dark blue), from (IEA 2021)

Submarine power cables are an important means of transmitting electrical power and data over
long distances, and are often used to connect offshore wind farms, tidal energy installations, and
other renewable energy sources to the electrical grid. They are also used to connect different
countries and regions, allowing for the exchange of electrical power and data between them (called
interconnectors). The growing number of submarine power cable installation projects are a result
of this need for greater electrical energy supply diversity. In order to perform such projects, an
understanding of what a submarine cable is, applications and design elements are necessary. In this
section, the term installation will include all handling of finished cable from the factory, through
loading, transfer to a laying or transportation vessel, transportation to the installation site, cable
laying and jointing, and protection on or under the seabed by various means (Cigre 2022).

2.1 Applications

Through decades submarine power cables has had different major uses. Some examples are listed
below:

• Power supply to islands

• Connection of autonomous grids

• Offshore wind farms

• Supply of marine platforms

10

• Short-haul crossings (installation of cables over relatively short distances)

In recent years, submarine power cables have been widely used in the oil and gas industry for
connecting offshore facilities. However, with the growing demand for green energy, the use of
submarine power cables in conjunction with offshore wind parks is expected to increase in the
coming years (Worzyk 2009).

2.2 Reliability

Generally submarine cables are very reliable, however typical causes of failure are:

• Physical damage due to human activities

• Nature forces, e.g. seismic activity

• Breakdown of electrical insulation

• Hydraulic failure (if fluid-filled tubes in umbilical cables)

Repairing submarine power cables presents unique challenges compared to land power cables due
to the complex underwater environment. To enhance the reliability of submarine power cables,
several approaches can be taken. One strategy is to install multiple cables with sufficient spacing
between them. This arrangement allows for easier repair without affecting the operation of other
cables. By having redundant cables, even if one cable experiences a failure, there will still be
operational cables to ensure continuous power transmission (IEEE 2005).

Alternatively, protective measures can be employed to safeguard submarine power cables. Methods
such as rock dumping, burial, concrete mattresses, and horizontal directional drilling (HDD) can
be used to shield the cables from potential damage. These protection methods are often more
cost-effective compared to installing multiple cables.

When evaluating the reliability of submarine power cables, factors beyond installation must be
considered. Ensuring repairability and preparing for maintenance activities are crucial aspects to
assess. Adequate provisions should be made to facilitate efficient repair and minimize downtime
in the event of a cable failure.

2.3 Design elements

There are several key design elements that are used in the construction of submarine power cables,
which is illustrated in Figure 3. These elements can vary depending on factors such as the invention,
development, manufacturing, testing, and installation of the cables. Some of the different types
of submarine cables and construction elements that are used in the design include (Worzyk 2009,
IEEE 2005):

• The conductor

• The insulation system

• The water-blocking sheath

• Armoring

• Outer serving

• Number of core cables

• Coaxial cables

11

• Optical fibres inside submarine power cables

Figure 3: Illustration of design elements used in submarine power cables, from (KVCable.com
2022)

Five generic cable types, which represent the majority of submarine power cables, and their rated
voltage, insulation, typical application, maximum length and typical rating are listed in Figure 4
(Worzyk 2009).

Figure 4: Five generic submarine power cable types, from (Worzyk 2009)

12

3 Cable installation design

In this section, the cable installation design will be described. The term pipeline, submarine power
cable and cable will be used. Pipeline(s) describe a series of welded steel pipe joints, which are
stiffer in bending than cables. Submarine power cable(s) and cable(s) will be used interchangeably
to refer to a cross-section without bending stiffness that is used to transmit electrical power subsea.
This should be kept in mind for the remainder of this thesis.

3.1 Critical scenarios

When designing a submarine power cable, it is important to follow certain requirements and stand-
ards in order to produce a certified product. Such requirements can be found in different standards
provided by organizations such as Det norske veritas (DNV) or the American Petroleum Institute
(API). Some of the requirements for submarine power cables can be found in the API Specific-
ation for Unbonded Flexible Pipe API specification 17J (API 2014b) and the API Recommended
Practice for Flexible Pipe API recommended practice 17B (API 2014a). These standards provide
guidelines for design, manufacturing, testing, and installation of flexible pipes which is a product
that is similar to power cables specially with respect to installation requirements . By following
these requirements, manufacturers can produce high-quality, reliable, and safe submarine power
cables.

3.1.1 Loads and load effects

In general, the design of a submarine power cable is based on the information provided by the pur-
chaser (API 2014b). The specification 17J classifies loads into three types: functional (permanent
and variable), environmental (external), or accidental. The specific load combinations and classes
that should be considered in the design of a submarine power cables can be found in Appendix
A.1 and A.2 of specification 17J. The design requirements for the cable should be shown to be met
under the load conditions specified. In addition to the specified loads, variations of the loads, load
effects, and environmental and soil conditions should also be analyzed. The design load effects
that should be considered include tension/compression, bending, and torsion.

3.1.2 Design curves

The design of the layers of a submarine power cables should be in accordance with the criteria
specified in Appendix A.3 and Section 5 of the API 17J specification. The manufacturer should
evaluate the potential for buckling failure in the pressure armors, carcass, and tensile armors,
and confirm through analysis and testing that the design requirements are met. The minimum
bend radius for storage should be calculated based on the criteria in Appendix A.3, and the bend
radius required to cause locking in the interlocked layers should also be calculated. The minimum
bend radius design criteria for different load conditions and load type combinations are shown in
Figure 5.

13

Figure 5: Minimum bend radius design criteria, from (API 2014b)

The cable manufacturer should provide a curvature-tension graph that shows the allowable curvature
at different tensions, or vice versa. Curvature is defined as the reciprocal of the bend radius,
κ = 1

bend radius .

Alternatively, the design of a submarine power cable can be based on reliability. In this case,
all relevant design criteria must be considered and the level of safety must be approved by the
purchaser.

3.2 Cable installation steps

Submarine power cables are used to transmit electrical power under the ocean, typically from
offshore wind farms or underwater power plants to the mainland (Worzyk 2009). The installation
of submarine power cables involves several specialized techniques and technologies to ensure that
the cables are properly placed and protected from damage. Some of the key steps involved in the
installation of submarine power cables include (Cigre 2022, IEEE 2005, Worzyk 2009):

• Route survey: The first step in installing a submarine power cable is to survey the route
where the cable will be installed. This involves using specialized equipment, such as sonar
and underwater drones, to map the seabed and identify any potential obstacles or hazards
that could damage the cable.

• Removal of obstacles: When the route survey is complete, there might be discovered that
there is a need to removed old cables or other obstacles along the planned path. This can be
done using a grapple, dredgers or excavators.

• Cable laying: Once the route has been surveyed and obstacles are removed, the cable is
typically spooled onto the laying drum/turntable of a specialized cable-laying vessel (CLV)
and laid on the seabed. The vessel is equipped with a cable-laying mechanism that unspools
the cable, first through a tensioner, then over a laywheel where it is guided into desired
position on the seabed. During the installation process, continuous testing of the fiber optic
cable is performed.

• Cable protection: Submarine power cables are typically buried under the seabed or rock
dumped if the seabed is too hard, to protect them from damage by fishing gear, anchors,
and other hazards. Trenching is done using a plow or trencher with high pressure water jets
which liquidizes the seabed and creates a trench for the cable to fall into.

• Cable jointing: Submarine power cables are often installed in sections, with each section
typically being several kilometers long. The sections are joined together using specialized

14

connectors, known as cable joints, which are designed to provide a waterproof and electrically-
sealed connection between the cables.

• Cable testing: Once the cable has been installed and jointed, it is typically tested once more
to ensure that it is functioning properly. This usually involves injecting a test current into
the cable and measuring the voltage and other electrical parameters, to ensure that the cable
is able to transmit power efficiently and without losses.

3.2.1 Cable routing

The process of installing a submarine cable begins with a survey of the route where the cable will
be laid. Cable routing refers to the process of determining the route that a submarine cable will
follow. This involves surveying the underwater terrain and existing infrastructure, as well as taking
into account factors such as sea depths, currents, and potential obstacles or hazards. Such hazards
include (Worzyk 2009):

• Shipping lanes, anchorages, harbour entrances

• Fishing grounds

• Boulder fields, outcrops, submarine canyons and steep slopes

• Areas with strong water currents

This survey typically involves both site visits and desktop investigative work, and is used to gather
information about the underwater terrain, existing infrastructure, and other factors that may affect
the cable’s installation (Cigre 2022). Based on this information, a recommended corridor and
preliminary route are chosen which ensures the cable will be laid in a way that follows applicable
industry practices and minimizes the risk of damage to the cable or other underwater infrastructure.
Additionally, the chosen route should be designed with future maintenance and potential expansion
in mind, to ensure that the cable can be easily accessed and serviced if necessary (Worzyk 2009).
Once the survey and route planning are complete, the next step is to design and manufacture the
cable itself, if not done concurrently. Overall, cable routing is an important part of the submarine
cable installation process, as it helps to ensure that the cable is laid in a safe and efficient manner as
well as influencing cost, constructability, reliability, and reparability and electrical benefits (IEEE
2005).

3.2.2 Schedule and timing

After the cable design, route, and termination facilities have been determined, there are a number
of factors that can influence the installation methods and timing. These can include factors such as
the type of terrain the cable will be passing through, the availability of equipment and personnel,
and any potential environmental or regulatory constraints. It is important to carefully consider
these factors during the planning phase to ensure that the installation can be completed efficiently
and effectively. Such factors include: tidal velocity, tide height, wind velocity, wave action, fog,
precipitation, snow, ice, icebergs, marine traffic, fishing seasons and environmental constraints
(IEEE 2005).

The laying of submarine power cables is often a critical part of a project. Before beginning a laying
operation, it is essential to complete the seabed preparations and create a ”Lay Plan” that provides
the crew of the CLV with the necessary parameters for vessel and cable position, touchdown point
(TDP), speed, and tension, as well as a predicted residual tension after laying. It is important
to note that the residual tension should always be positive but relatively small. Residual tension
is the tension that remains in the cable after it has been laid on the seabed. A positive residual
tension indicates that there is still some tension in the cable, which helps to prevent the cable
from violating the minimum bend radius in the cable catenary or kinking where the cable twists
on itself (IEEE 2005).

15

3.2.3 Removal of obstacles

The chosen route for a cable may be obstructed by debris that needs to be removed before the cable
can be installed. This is particularly common in underwater environments, where the seabed may
be covered in sediment, rocks, or other debris. If these obstacles are not identified and removed
before the installation process begins, they can cause significant delays and added expenses (IEEE
2005).

To remove obstacles from the seabed, specialized equipment such as dredgers or excavators may
be used. In some cases, explosives may also be needed to clear large, hard objects that cannot
be removed by other means. It is important to carefully survey the route and identify potential
obstacles before starting the installation process to ensure that the installation can be completed
efficiently and effectively (IEEE 2005).

3.2.4 Transportation

The size and weight of a cable can influence its delivery method, with smaller cables being delivered
by land and larger cables being delivered by rail or sea. Special accommodations may need to be
made to receive the cable, such as having a staging area in a nearby port or preparing the job
site for direct delivery. It is important to carefully plan the delivery of the cable to ensure that it
arrives at the job site in a timely and cost-effective manner. This may involve coordinating with
the cable manufacturer and third-party logistics providers to choose the most appropriate delivery
method (IEEE 2005).

3.2.5 Reel handling

If a cable is delivered on a reel, the reel may be large and heavy, and the user’s normal reel-handling
equipment may not be adequate to unload it. In these cases, a crane with a large spreader bar
or two cranes may be used to unload the cable safely and effectively. Once the cable is unloaded,
a motorized reel-turning stand may be used to unspool the cable from the delivery reel. It is
important to have the necessary equipment and personnel on hand to handle the cable reel safely
and efficiently to ensure that the cable can be prepared for installation without any delays or
complications (IEEE 2005).

3.2.6 Laying campaign

During a laying campaign, it is critical to monitor the catenary, or the shape of the cable in the
water column between the point where it exits the CLV and the point where it touches down
on the seabed (Cigre 2022). This allows for the calculation of the forces applied to the cable.
The catenary can be monitored using a remotely operated vehicle (ROV) adjacent to the cable,
an ROV riding on the cable, or a cable catenary scanner attached to the vessel near the cable
chute (Worzyk 2009). It is important to note that the catenary does not account for the bending
stiffness of the cable, but this has a relatively small impact due to the size of the cable itself. Finite
element analysis can be used to calculate the behavior of the cable in the water without assuming
a catenary shape (Cigre 2022).

The main parameters involved in the laying of a submarine power cable are (An example is given
in Figure 6):

• w [N/m]: The unit weight of the cable per meter in the water, equal to the unit weight in air
minus the weight of the volume of water occupied by a meter of cable, accounting for water
infiltration into the spaces between the armor wires, servings, and bedding layers.

• H [N]: The bottom tension, or the force applied at the catenary foot point (the point where
the cable first touches the seabed).

16

• xp [m]: The distance of the catenary foot from the installation wheel on the ship.

• R [m]: The minimum radius of curvature between the installation sheave and the catenary
foot.

• d [m]: The water depth at the point where the cable leaves the installation wheel.

• T0 [N]: The catenary tangent tension at the point where the cable exits the CLV (neglecting
the cable’s bending stiffness and friction on the installation sheave).

By knowing these parameters, the residual tension and touchdown point of the cable can be
calculated, or vice versa. Because H is given, then T is given at any point by:

T = H + wsy (1)

Figure 6: Example of catenary mechanical forces and parameters, from (Cigre 2022)

In addition, it is important to monitor and log various data related to the vessel, the cable, and
the pay-out speed of the cable (IEEE 2005). Different contractors may have their own software
(e.g. OrcaFlex) to continuously run these calculations. In the planning phase, it is important to
define the target catenary angle and residual tension, taking into account the cable’s parameters
and a safety margin (Cigre 2022).

If the residual tension is too low, the pay-out speed can be decreased to prevent kinking or over-
bending of the cable. If the residual tension is too high, the pay-out speed can be increased to
prevent cable damage or free span. When laying cables in a trench, it is important to reduce the
speed and residual tension when approaching bends or corners to prevent the cable from crawling
out of the trench (Cigre 2022).

The pay-out speed of the cable must be controlled and synchronized with all equipment handling
the cable, such as turntables, pick-up arms, caterpillars, and cable ways. Coordinating the start
and stop of the vessel movement with the pay-out of the cable is important. In some cases, multiple
cables may be bundled together for installation. It is important to use strong, flexible material for
the bundling to allow the cables to move during installation without breaking (Cigre 2022).

3.2.7 Cable protection

Submarine power cables are valuable assets that must be protected from external hazards. Pro-
tection methods involve four steps: selecting a suitable cable route, designing suitable cable ar-
moring, protecting the seafloor (e.g. by burying), and active after-installation protection. Active
after-installation protections refers to the measures that are taken to protect the cables after they
have been installed on the seabed, including use of burial techniques to cover the cables with
protective layers of sand or other materials, use of protective devices, such as cable armor or pro-
tective sleeves, to prevent the cables from being damaged by external factors, such as fishing gear

17

or marine traffic. A well-designed cable protection can increase the reliability and availability of
the cable system, as well as reduce operational costs for repair and maintenance (Worzyk 2009).

Protective measures should be considered during submarine cable installation in areas with a risk
of cable damage from external threats, such as intertidal zones, shipping lanes, areas with trawling
fishing activity, and other areas with frequent maritime activity that could disturb the seabed.
These measures can reduce the risk of damage and minimize operational and maintenance costs.
These costs include financial costs, environmental disturbance, and disturbance to other sea users
(Cigre 2022).

There are several ways to protect a submarine cable from physical damage. These include cable
spacing, cable embedment, burial depth, and various embedment techniques. Some of these tech-
niques include water jet plowing, vibratory plowing, high-force plowing, trench excavation, using
conduit, cable protectors, cable chases, concrete tiles, and more. Horizontal directional drilling
(most common for landfalls) and microtunneling can be used to install a conduit under a water-
way, while rock dumping, mattresses, blankets, and scour mats can be used to provide mechanical
protection (IEEE 2005).

Cable burial is a protective measure used during submarine cable installation to reduce the risk
of external damage to the cable. Cable burial involves digging a trench in the seabed and placing
the cable in the trench to protect it from external threats. This method can provide physical
protection to the cable and can also reduce the risk of the cable being disturbed by human activity
or natural events. This can be done simultaneously with laying, post laying or remedial (Cigre
2022).

3.2.8 Vessel and cable laying equipment

The configuration of a Cable Laying Vessel (CLV) can vary depending on its specific purpose and
operational area. Nevertheless, there are commonalities among these vessels, as they typically
share similar laying equipment and components. Presented below (Figure 7) is an illustrative CVL
layout with numbered annotations describing the various parts of the vessel and its equipment
(Poulsen 2022).

Figure 7: Outlay and explanation of cable laying vessel and equipment (Poulsen 2022).

18

It is important to note that the specific layout and equipment arrangement can differ between
different CLVs, as they are tailored to the vessel’s intended use and the requirements of cable laying
projects. Variations may include vessel size, cable capacity, specialized equipment, and additional
features to support specific tasks like deep-sea operations or offshore wind farm installations.

When evaluating a CLV, there are several factors that should be considered. These include the
vessel’s anchoring equipment, availability for installation and repair, cable-coiling facilities, cable-
tensioning machines, dynamic positioning with interface with GPS, lay control equipment, laying
sheave or sheaves, propulsion system, response to wave and wind action, and weight limitations.
The vessel should also have adequate storage for the cable, manoeuvrability to provide accurate
positioning of the cable, cable tension control equipment and deployment system, deck facilities for
cable installation and recovery, workshop facilities for equipment repair, control rooms for equip-
ment and data logging, and positioning systems (IEEE 2005). It should also have seaworthiness
certificates. The specific length, freeboard deck, beam, moulded draught, moulded depth, and
bollard pull of the vessel will depend on the requirements of the cable installation project. It is
important to carefully evaluate these and other factors when choosing a CLV to ensure that it is
suitable for the specific installation project (Cigre 2022).

In addition, it is important to consider the navigation and communication capabilities of the ves-
sel. This includes the ability to follow a route within a given tolerance, available communication
frequencies, communication system, required bottom position accuracy, and survey control sys-
tem. These factors can help ensure that the vessel can operate safely and effectively during the
installation process (IEEE 2005).

Another important factor to consider when choosing a CLV is the minimum bending radius of
the cable. Exceeding the minimum bending radius can damage the cable and compromise its
performance, it is therefore important to carefully design and place equipment such as reels, coils,
sheaves, rollers, and fantail, as well as tensioning equipment and turntables, to avoid exceeding
this radius. Ensuring that the minimum bending radius is not exceeded is crucial for protecting
the cable and ensuring performance (Worzyk 2009).

3.2.9 Installing cable on land

After installing the cables on the seabed the cable is then connected to land, a platform, a windfarm
or similar. The cables can be installed using a variety of methods, including winches, rollers, and
sheaves. These tools can be used to reduce pulling tension and protect the cable from abrasion.
Motorized rollers or linear machines may be used on long runs to further reduce tension. The cable
may also be pulled through a pre-installed conduit system or laid in a trench (IEEE 2005).

However, there are several constraints to consider when installing cable on land. These include
sidewall pressure, pulling tension, and tidal currents, wind, and vessel maneuvering ability. These
factors can limit the ability to uncoil, cut, and float slack cable off the laying vessel at the receiving
end of the cable installation (IEEE 2005).

3.3 Submarine cable installation analysis

It is important to properly analyze the cable’s mechanical limitations prior to and during the cable
laying process. This analysis should consider factors such as dynamic and static top tension, touch
down tension, residual tension, friction, bending radius, curvature, and buoyancy of the cable. The
analysis can be done using various standard calculation tools, such as OrcaFlex. The installation
contractor should propose or confirm a suitable cable laying and protection methodology, including
burial, along with the necessary vessels and equipment. The client and contractor should agree
on bad weather conditions and reasonable endeavor criteria for the cable laying and burial before
the contract is awarded. The installation windows should also be considered, taking into account
weather conditions and permitting constraints (Cigre 2022).

19

3.3.1 Cable laying analysis

The cable laying analysis is a critical step in the installation of submarine power cables because
it allows the engineers and technicians involved in the project to understand the forces that the
cable will be subjected to during the laying process and to design the installation accordingly. This
analysis is typically carried out using specialized software tools that take into account a range of
factors such as the cable geometry, the vessel used for laying, the wave and current conditions, and
the response of the cable to dynamic loading (Cigre 2022).

One key aspect of the cable laying analysis is the determination of the maximum allowable signi-
ficant wave height for different wave directions. This is important because the cable must be able
to withstand the forces imposed on it by the waves and currents during the laying process. The
analysis also includes a fatigue analysis to ensure that the cable will not suffer local damage due
to the repeated loading it will experience during the laying process (Cigre 2022).

Finally, the cable laying analysis includes a two-part installation analysis to determine the feas-
ibility and safety of the operation. This includes a detailed assessment of the cable route and
the vessel used for laying, as well as an evaluation of the risks and hazards associated with the
installation process (Cigre 2022).

3.3.2 Cable pulling-in analysis at landfall and at offshore asset

The purpose of the cable pulling-in analysis is to determine the maximum winch force required for
the pulling-in of the cable, and to determine the post-pulling-in configuration of the cable. This
analysis is important because it allows for the safe and effective execution of the cable pulling-in
operation, which is a critical part of the overall cable laying process. The analysis takes into
account a variety of factors, including the weight of the cable, the friction of the cable along its
route, the radii of the route, the sea state, and the movement of the vessel during the pull-in.
The cable pulling-in analysis is often carried out using a finite element method, which allows for
the modeling of complex forces acting on the cable. This method involves dividing the cable
into a number of smaller elements, and solving for the forces and deformations in each element
using equations that describe the behavior of the cable. The results of the analysis can provide
valuable information about the maximum winch force required to safely pull in the cable, and the
post-pulling-in configuration of the cable (Cigre 2022).

It is important to carefully consider the input parameters and uncertainties in the cable pulling-in
analysis, and to investigate the sensitivity of the results to changes in these parameters. This can
help ensure that the analysis is accurate and reliable, and that the cable pulling-in operation can
be carried out safely and effectively (Cigre 2022).

3.3.3 Weather conditions

Weather conditions are an important consideration in the planning of cable laying and pull-in
operations. These operations are sensitive to weather conditions, and a sufficient weather window
must be available to complete the work. Key metocean data, including wind speed and direction,
wave height and direction, current velocity and direction, sea ice, visibility, and lightning, must
be considered in the planning process. The persistence value, or P-value, is a probability of
non-exceedance of weather downtime criteria, and can be used to assess the likelihood of adverse
weather conditions. In the event of severe weather, cable laying should be stopped, and the vessel
turned to minimize dynamic movements of the cable. A prepared strategy should be in place for
cutting and sealing the cables in case of offshore jointing or cable laying. Maintenance downtime,
where essential maintenance is performed on tools, should be accounted for in the project schedule
(Cigre 2022, Worzyk 2009).

Weather, including wind and waves, can have a major impact on the safety and success of cable
laying operations. Wind generates waves, and the strength and direction of the wind, as well as the
duration and water depth, can all affect the size and characteristics of the waves. The significant

20

wave height, or Hs, is defined as the average height of the highest third of all waves, and is a
commonly used measure of sea state. The cable laying process is sensitive to the movement of the
laying wheel, which is caused by waves, and the resulting sea state. In general, cable laying should
be stopped in the event of severe weather, and the vessel turned to minimize dynamic movements
of the cable (Cigre 2022).

21

4 Methodology

4.1 Machine learning

Machine learning (ML) is a topic related to Artificial Intelligence (AI), which includes learning from
data and making predictions and/or decisions (Y. Li 2018). The ML algorithm is able to learn from
data (Goodfellow et al. 2016). A quote from Tom M. Mitchell (Mitchell 1997) describing ML is
”A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance task in T , as measured by P , improves with experience
E”. ML can be categorized into supervised learning, unsupervised learning and Reinforcement
Learning (RL).

• Supervised learning, using labeled datasets.

• Unsupervised learning, where the agent analyze and cluster unlabeled datasets.

• RL, where sequential decision making and evaluative feedback is utilised. (Will be discussed
in separate section).

(Delua 2021, Y. Li 2018).

4.1.1 Supervised learning

In supervised learning labeled datasets is given to the agent. The purpose of the datasets is to
train or ”supervise” the agent (Delua 2021). The agent tries to use the given data, examples
of output/input pairs in order to learn the function that has produced these pairs. The agent
is therefore attempting to find a general function in order to predict an outcome from the given
examples. In many cases the outputs must be provided by a human or ”supervisor”, while in other
cases this is collected automatically, but is still called supervised learning. Supervised learning can
further be divided into two types; regression and classification (Goodfellow et al. 2016).

Figure 8: Illustration of supervised learning, from (Patrick 2021)

Regression is to predict a numerical value y given a data point x. Then the learning algorithm
produces a function f , which predicts y = f(x) (Grimstad 2022, Goodfellow et al. 2016). In
other words regression uses the algorithm to understand the relationship between dependent and
independent variables. These types of models can be helpful when prediction numerical values
based on different data points. Examples of regression algorithms are linear regression, logistic
regression (LR) and polynomial regression (Delua 2021).

Classification is when the learning algorithm produces a function f , which assigns x to a class
y = f(x). The algorithm specifies which of k categories a data point x belongs to (Grimstad 2022).

22

In classification the algorithm accurately assign test data into specific categories, e.g. sorting
spam mail from other mail. Some commonly used classifiers are linear classifiers, support vector
machines (SVM), decision trees (DTs) and random forest (RF) (Delua 2021).

Other examples of supervised ML algorithms is artificial neural network (ANN), gradient boosting
(GB), adaptive gradient boost (AGB), multi-linear regression (MLR), LR and K-nearest neighbors
(KNN) (Hoss and Alireza 2021).

4.1.2 Unsupervised learning

Unsupervised learning differs from supervised learning because the datasets given is not labeled.
Therefore, existing pattern is looked for in the data input (Hoss and Alireza 2021). E.g. as
basis for clustering and density estimation (Y. Li 2018). The algorithm is unsupervised in the
form of discovering hidden patterns in data without human intervention. Unsupervised learning is
commonly used for three main tasks; clustering, association and dimensionality reduction (Delua
2021).

Figure 9: Illustration of unsupervised learning, from (Patrick 2021)

Clustering is a technique for grouping unlabeled data based on differences or similarities, and is
a data mining technique. This technique could be helpful when dealing with segmentation, image
representation and similar issues (Delua 2021).

A different type of unsupervised learning is association, which is applied in order to find relation-
ships between variables in a given dataset by applying different rules. This type of unsupervised
learning is commonly used for market basket analysis such as ”A customer who bought this item,
also bought this item” (Y. Li 2018).

The third type of unsupervised learning is dimensionality reduction. This is a technique where the
number of features (dimensions) in a given dataset is too high. In order to obtain a manageable
size of data, the algorithm reduces the number of data inputs, while preserving the data integrity.
Dimensionality reduction is frequently used for preprocessing data (Delua 2021).

Other examples of unsupervised learning is k-means clustering, hierarchical clustering, density-
based spatial clustering of applications with noise (DBSCAN), principal component analysis (PCA),
and apriori algorithm (Hoss and Alireza 2021).

4.1.3 Deep neural networks

Artificial Intelligence can be described as a collection of analytical and numerical tools which tries to
learn and imitate a process (Hoss and Alireza 2021). When this is accomplished, the AI can handle
and respond to new situations. The essential building blocks of AI are neural networks, genetic

23

algorithms, and fuzzy logic (Mohaghegh 2000). The inspiration for neural networks originates
from the neurons in the human brain. Artificial neural network is a mathematical device trying to
replicate the behaviour of the human brain neural network (Patrick 2021).

Logistic ANN is a commonly used multi-layer neural network containing something called sigmoid
neurons. A sigmoid neuron is a type of artificial neuron that uses a sigmoid activation function.
This function is defined mathematically as (Lin 1993, Nielsen 2015):

f(x) =
1

1 + e−x
(2)

Where x is the input value and f(x) is the output value. This function has the shape of an ”S”
curve.

The sigmoid function has several useful properties. It is continuous, differentiable, and monoton-
ically increasing, which means that its output value always increases as the input value increases.
It also has a range of [0, 1], which means that the output value is always between 0 and 1. (Lin
1993, Nielsen 2015).

Figure 10, illustrates a neural network. The leftmost layer is called the input layer, which includes
what is called the input neurons (Nielsen 2015). The input layer has several neurons equal to the
number of elements in the input vector. The output layer, which is the rightmost layer includes the
output neurons (here illustrated as one single output neuron). The output layer contains the same
number of elements in the output vector (Patrick 2021). The layer placed in the middle is called
the hidden layer (here two hidden layers), also referred to as the topology of the neural network.
The reason for the name is simply because these neurons are neither input nor output neurons,
hence their values are not observed. A neural network might contain one or more hidden layers
depending on the architecture(Grimstad 2022).

Figure 10: Illustration of neural network with input layer, two hidden layers and output layer,
from (Nielsen 2015)

The design of input and output layer (or layers) is relatively simple compared to designing the
hidden layer (or layers). The input layer can be both linear and nonlinear (Lin 1993). Design of
hidden layers might be an intricate process because there exists few simple rules of thumb. The
hidden layers are mainly responsible for feature extraction and provide increased dimensionality,
as well as accommodate classification and pattern recognition. However some neural networks
researchers have developed several design heuristics for hidden layers, which can manipulate the
networks to give their desired behaviour (Mohaghegh 2000).

Again, looking at Figure 10, it illustrates what is called a feed-forward neural network. Feed-
forward neural networks are a type of ANN in which information only flows in one direction,
from the input nodes to the output nodes, without any feedback loops (Nielsen 2015). This type
of neural network is illustrated in Figure 11. In contrast, recurrent neural networks are a type

24

of ANN that includes feedback loops, allowing information to flow in multiple directions. This
type of network is a closer representation of the human brain’s neural network and is useful for
tasks involving the recognition or prediction of temporal sequences of patterns. However, recurrent
neural networks are currently less powerful than feed-forward networks and are less widely used
for this reason (Lin 1993).

Figure 11: Illustration of recurrent neural network with input layer, hidden layers with feed-back
loops and output layer, from (Patrick 2021)

4.2 Reinforcement learning

Reinforcement learning is a branch of machine learning that focuses on learning to control a system
with the goal of maximizing some numerical value representing a long-term objective (Sutton and
Barto 2018). It is different from other ML paradigms in that there is no supervisor, only a reward
signal, and the feedback is delayed and only partial. Time is also accounted for in RL, as the
predictions made by the agent can have longer-term effects and may influence future states of the
controlled system. RL has many practical applications in fields such as AI, operations research,
and control engineering (Silver 2015, Szepesvari 2010).

In Figure 12 the basic idea of RL is represented where the controller receives the state of the system
as well as a reward and executes an action based on the state and reward. Then a new state and
reward is given to the controller. From this the controller or agent can learn how to maximize the
reward and execute actions based on this. RL is of special interest due to the large number of
practical applications where RL can be useful, ranging from problems in artificial intelligence (AI)
to operations research or control engineering (Szepesvari 2010).

Figure 12: Example of a basic RL scenario, from (Szepesvari 2010)

In order to solve a RL problem, the following components must be defined:

• The environment: This is the world in which the agent operates. It includes the state of the
environment, the possible actions that the agent can take, and the transitions between states
that result from those actions.

25

• The agent: This is the entity that takes actions within the environment. It receives inform-
ation about the state of the environment, and chooses actions based on that information in
order to maximize the reward signal.

• The reward function: This is a function that defines the reward that the agent receives for
taking a particular action in a particular state. The goal of the agent is to maximize the
total reward it receives over time.

• The policy: This is the strategy that the agent uses to choose actions in different states. The
policy is learned by the agent through interaction with the environment, and determines how
the agent behaves in different situations.

Once these components are defined, the RL problem can be solved by training the agent to interact
with the environment and learn the optimal policy. This typically involves using algorithms such
as Q-learning or policy gradient methods to update the policy based on the rewards received by
the agent (Lin 1993).

One of the key challenges in RL is the fact that the feedback is often delayed and partial. This
means that the agent may not receive immediate feedback for its actions, and it may not receive
complete information about the state of the environment. As a result, the agent must learn to act
based on incomplete and noisy information, and it must be able to adapt its behavior over time as
it receives more information (Silver 2015, Szepesvari 2010).

Despite these challenges, RL has many practical applications. For example, it can be used to
control robotic systems, such as autonomous vehicles or robots that operate in unstructured en-
vironments. It can also be used to optimize decision making in complex systems, such as supply
chain management or energy management. In these and other applications, RL can help agents
learn to make better decisions and maximize long-term rewards (Silver 2015, Szepesvari 2010).

4.2.1 Problem formulation

In reinforcement learning, a problem is typically formulated as a Markov decision process (MDP)
(Sutton and Barto 2018, Lin 1993). An MDP is a mathematical framework for modeling decision-
making problems in which an agent interacts with an environment (Mnih et al. 2013, Mitchell 1997).
It is defined as a 5-tuple consisting of a state space, action space, state transition probability, reward
function, and discount factor. The discount factor determines the importance of future rewards
relative to immediate rewards, and it is typically set to a value between 0 and 1. The transition
probability describes how the environment changes in response to the actions taken by the agent
(Y. Li 2018).

In an MDP, the goal of the agent is to find a policy that maximizes the expected long-term
return, which is the discounted, accumulated reward received by the agent over time. To do this,
the agent can use dynamic programming methods such as policy evaluation, value iteration, and
policy iteration to find an optimal policy. These methods require knowledge of the model of the
system, which specifies the state transition probabilities and reward function (Anthony et al. 2017).

In a mathematical sense, at each time step t, the agent receives a state st, selects an action at
based on that state, and receives a scalar reward rt based on the action taken. The agent then
transitions to a new state st+1 according to the environment dynamics. The goal of the agent is to
learn a policy, which is a mapping from states to actions, that will maximize the long-term return,
or the discounted, accumulated reward. The return at time t is defined as (Y. Li 2018, Mnih et al.
2013):

Rt =

∞∑
k=0

γkrt+k (3)

where γ is the discount factor, which is a value between 0 and 1 that determines the importance
of future rewards relative to immediate rewards.

26

To find an optimal policy, dynamic programming methods can be used when the system model
is known. These methods include policy evaluation, which calculates the value or action value
function for a given policy, and value iteration and policy iteration, which are used to find an
optimal policy. In the absence of a model, RL methods can be used to directly learn a policy from
interactions with the environment (Y. Li 2018).

In the case of cable laying, the state of the environment could be the position of the cable and the
vessel, the weather conditions, and other relevant factors. The actions could be the movements
of the vessel and the tension on the cable. The reward could be the progress made in laying the
cable, with higher rewards for laying the cable more quickly and accurately. The RL algorithm
would learn to take actions that maximize the reward by making predictions about the effects of
different actions on the state of the environment.

4.2.2 Value function

The value function is a key concept in reinforcement learning. It is a function that estimates
the long-term reward that an agent can expect to receive for being in a particular state, or for
taking a particular action in a particular state (Y. Li 2018, Anthony et al. 2017, Mnih et al. 2013,
Nagabandi et al. 2017, Feinberg et al. 2018).

In reinforcement learning, the value function represents the expected long-term return of an agent
following a certain policy in a given state. The value of a state is the expected return starting
from that state, and the value of a state-action pair is the expected return starting from that
state, taking the specified action, and following the policy thereafter (Y. Li 2018, Mnih et al. 2013,
Nagabandi et al. 2017, Feinberg et al. 2018).

The value function can be used to evaluate a given policy and determine whether it is optimal. A
policy is considered optimal if it maximizes the expected return for the agent in all states. The
value function can also be used to improve a given policy by finding a better action for each state
(Y. Li 2018, Mnih et al. 2013, Nagabandi et al. 2017).

The value function for a state s under a policy π is defined as (Y. Li 2018, Anthony et al. 2017,
Mnih et al. 2013, Nagabandi et al. 2017):

Vπ(s) = Eπ[Rt|st = s], (4)

where Rt is defined as in Equation 3 and is the return at time t, Eπ is the expectation under the
policy π, and st is the state at time t.

The value function for a state-action pair (s, a) under a policy π is defined as:

Qπ(s, a) = Eπ[Rt|st = s, at = a], (5)

where Eπ is the expectation under the policy π, Rt is defined as in Equation 3 and is the return
at time t, st is the state at time t, and at is the action at time t.

To calculate the value function, dynamic programming methods can be used when the system
model is known. These methods include policy evaluation, which calculates the value or action
value function for a given policy, and value iteration and policy iteration, which are used to find
an optimal policy. In the absence of a model, RL methods can be used to directly learn a policy
from interactions with the environment (Y. Li 2018, Mnih et al. 2013, Nagabandi et al. 2017).

In the cable installation problem, the state could represent the current location of the cable in-
stallation team, the actions could represent the different possible routes to the next installation
location, and the transition model would indicate which locations can be reached from the current
location. The reward could be the negative of the distance traveled, and the goal would be to find
the shortest path by minimizing the total distance traveled. To solve this problem using RL, the
agent could learn a policy that specifies the best action to take at each state (i.e., the route that

27

will minimize the total distance traveled). The optimal value for each state would be the shortest
distance from that state to the destination.

4.2.3 Modern RL non-exhaustive taxonomy

In modern Reinforcement Learning (RL), there are various algorithms that have been developed
to solve different types of problems. Figure 13 shows a non-exhaustive taxonomy that covers some
of the commonly used RL algorithms (OpenAI 2022c).

Figure 13: A non-exhaustive taxonomy of algorithms in modern RL, from (OpenAI 2022c)

Model-Free Algorithms:

Value-based methods in reinforcement learning (RL) involve estimating the value of different states
or state-action pairs. One such algorithm is Q-Learning, which iteratively updates the action-value
function using the Bellman equation. Another approach is Deep Q-Networks (DQN), where a deep
neural network is used to approximate the action-value function. Additionally, Double Q-Learning
is an algorithm that aims to mitigate overestimation bias present in traditional Q-learning (Y. Li
2018).

Policy-based methods directly optimize the policy to find the best action in each state. REIN-
FORCE is an example of such an algorithm, which uses policy gradient methods to maximize the
expected return. Proximal Policy Optimization (PPO) is another policy-based algorithm that up-
dates the policy by optimizing a surrogate objective. Trust Region Policy Optimization (TRPO)
is designed to ensure that the policy update does not deviate too far from the old policy.

Actor-critic methods combine elements of both value-based and policy-based methods. One such
algorithm is Advantage Actor-Critic (A2C), which maintains both a value function (critic) and a
policy (actor). Asynchronous Advantage Actor-Critic (A3C) is an extension of A2C that parallel-
izes multiple agents to speed up training.

Model-Based Algorithms:

Model-based algorithms in RL rely on having a learned model of the environment. Monte Carlo
Tree Search (MCTS) is an example of a model-based algorithm that builds a search tree by sampling
action sequences and estimating their values. Model-Predictive Control (MPC) uses the learned
environment model to plan a sequence of actions over a finite horizon. Guided Policy Search (GPS)
combines model-free and model-based approaches to learn a policy (Y. Li 2018).

Exploration algorithms play a crucial role in RL by balancing exploration and exploitation. Epsilon-

28

Greedy is a common exploration strategy that randomly selects actions with a certain probability,
striking a balance between exploration and exploitation. Another approach is Upper Confidence
Bound (UCB), which selects actions based on an upper confidence bound on their value estimates.
Thompson Sampling employs a Bayesian approach to select actions based on posterior probability
distributions.

Multi-agent RL involves multiple agents interacting and learning simultaneously. Independent Q-
Learning is a simple approach where each agent learns independently without considering other
agents. Multi-Agent Deep Deterministic Policy Gradient (MADDPG) is an algorithm that uses a
centralized critic and decentralized actors for multiple agents. Counterfactual Multi-Agent Policy
Gradient (COMA) estimates the counterfactual value to improve multi-agent policies.

Please note that while this taxonomy provides an overview of various RL algorithms, it is import-
ant to acknowledge that there are many other specialized and hybrid algorithms that have been
developed to address specific challenges in RL.

4.2.4 Exploration vs. exploitation

In reinforcement learning, exploration vs exploitation is the fundamental dilemma of whether to
explore uncertain policies or exploit the current best policy. The exploration-exploitation trade-off
is important because an agent needs to balance the need to learn about new actions and states in
order to improve its policy with the need to exploit its current knowledge to maximize the expected
reward (Y. Li 2018, Anthony et al. 2017, Lin 1993).

Exploration refers to the process of trying out new actions and states in order to gather more
information about the environment. This can help the agent to learn more about the rewards
and transitions that are possible in the environment, and to improve its ability to make informed
decisions (Y. Li 2018, Anthony et al. 2017, Lin 1993).

On the other hand, exploitation refers to the process of taking the actions that are known to be the
most rewarding, based on the information that the agent has already learned. This can help the
agent to maximize its rewards in the short term, but it may also prevent the agent from discovering
new, potentially more rewarding actions and states (Y. Li 2018, Anthony et al. 2017, Lin 1993).

One simple approach to dealing with this dilemma is the ε-greedy algorithm, where ε is a small
value close to 0. In ε-greedy, the agent selects the greedy action (i.e., the action with the highest
estimated value) with probability 1 − ε, and selects a random action with probability ε (Y. Li
2018, Silver 2015, Sutton and Barto 2018). This means that the agent will exploit its current value
function estimation with probability 1 − ε and explore with probability ε (Y. Li 2018, Anthony
et al. 2017, Lin 1993).

4.2.5 Model-free vs. model-based RL

When the model of the system is unknown or not fully known, the agent can use model-free RL
methods to learn an optimal policy. These methods do not require knowledge of the model, and
instead learn directly from experience by trial and error. Model-free RL methods can be applied to
both fully observable and partially observable environments. In a partially observable environment,
the agent only has access to partial information about the state of the environment, and must use
this information to make decisions (Nagabandi et al. 2017, Y. Li 2018, Nagabandi et al. 2017,
Feinberg et al. 2018).

Model-free and model-based reinforcement learning are two different approaches to solving RL
problems. Model-free RL refers to a class of algorithms that do not explicitly model the envir-
onment, and instead learn directly from the rewards and transitions that are observed during the
learning process. Model-free RL is often faster and simpler to implement, as it does not require
building a model of the environment. However, it can be less efficient, as the agent must learn from
experience, and may need to explore the environment extensively in order to learn good policies
(Y. Li 2018, Mnih et al. 2013, Nagabandi et al. 2017, Liang et al. 2017, Feinberg et al. 2018).

29

In contrast, model-based RL involves building a model of the environment, which is used to simulate
different actions and predict their outcomes. This allows the agent to plan its actions in advance,
and to take into account the long-term consequences of its actions. Model-based RL can be
more efficient, as the agent can use its model to plan and evaluate different actions before actually
taking them. However, it can be more complex to implement, and may require more computational
resources (Y. Li 2018, Mnih et al. 2013, Liang et al. 2017, Feinberg et al. 2018).

Recent papers on model-based RL have proposed several methods that combine the benefits of
model-free and model-based approaches. These methods use techniques such as temporal difference
models, value prediction networks, and recursive tree structure neural networks to integrate model-
free and model-based learning (Y. Li 2018). The methods have been applied to a variety of tasks,
including continuous control tasks, 2D navigation tasks, and Atari games. Model-based RL offers
the potential to improve the sample efficiency and performance of RL algorithms by leveraging
knowledge of the environment dynamics to guide decision-making and learning (Y. Li 2018).

Overall, the choice between model-free and model-based RL depends on the specific problem that
needs to be solved, and the trade-offs between efficiency, simplicity, and computational resources.

4.2.6 Temporal difference learning

Temporal difference (TD) learning is a fundamental method in RL. It involves using experience
from the environment to learn and update estimates of the value function in a model-free, online,
and fully incremental way. TD learning is a prediction problem that uses the TD error (i.e., the
difference between the expected and observed values) to update the value function. It learns the
value function directly from experience with the TD error. The update rule for TD learning is
given by (Y. Li 2018, Mnih et al. 2013, Lin 1993):

V (s)← V (s) + α[r + γV (s′)− V (s)], (6)

where V (s) is the current estimate of the value function for state s, r is the reward observed in state
s, γ is the discount factor, and V (s′) is the estimated value of the next state s′. The parameter α
is the learning rate, which determines how much the value function should be updated based on
the TD error.

Q-learning is an off-policy control method that learns the action-value function Q(s, a). It uses the
following update rule to refine the policy greedily with respect to the action values:

Q(s, a)← Q(s, a) + α[r + γmaxa
′
Q(s′, a′)−Q(s, a)], (7)

where Q(s, a) is the current estimate of the action-value function for state s and action a, r is
the reward observed in state s after taking action a, γ is the discount factor, Q(s′, a′) is the
estimated action-value for the next state s′ and action a′, and maxa

′
Q(s′, a′) is the maximum

value of Q(s′, a′) over all possible actions a′ in the next state s′. The parameter α is the learning
rate, which determines how much the action-value function should be updated based on the TD
error (Y. Li 2018, Mnih et al. 2013, Lin 1993).

TD learning is related to other RL methods such as Q-learning and SARSA. Q-learning is an
off-policy control method that learns the action-value function and refines the policy greedily with
respect to the action values. SARSA is an on-policy control method that learns the action-value
function and updates the policy based on the current state and action. Both Q-learning and
SARSA use bootstrapping, where the value function is estimated based on subsequent estimates,
to enable online and continual learning (Y. Li 2018).

TD learning, Q-learning, and SARSA can converge to the optimal value function under certain
conditions. From the optimal value function, an optimal policy can be derived. These methods have
been widely used in various RL tasks and have proven to be effective in learning value functions
and finding optimal policies (Y. Li 2018).

30

4.2.7 Policy optimization

Policy-based methods are a type of reinforcement learning that directly optimizes the policy, which
is the function that determines the actions that the agent takes in different states. Policy-based
methods optimize the policy by gradient ascent, updating the policy parameters by moving in the
direction of the gradient of the policy. This is in contrast to value-based methods like TD learning
and Q-learning, which estimate the value function and then use it to determine the optimal policy
(Y. Li 2018, Anthony et al. 2017, Mnih et al. 2013, Nagabandi et al. 2017, Feinberg et al. 2018).

Policy-based methods have several advantages over value-based methods. They can learn stochastic
policies, which are important in situations where the optimal policy is not deterministic. They are
also effective in high-dimensional or continuous action spaces, and they have better convergence
properties. However, they are also more likely to converge to local optima, they are less efficient
to evaluate, and they have higher variance (Y. Li 2018, Mnih et al. 2013, Nagabandi et al. 2017,
Feinberg et al. 2018).

In mathematical terms, policy-based RL methods optimize the policy function, π(a|s; θ), with
respect to some set of parameters θ. This is typically done by using gradient ascent, which involves
computing the gradient of the policy function with respect to θ and then updating θ in the direction
of the gradient. The gradient of the policy function is given by the following expression:

∇θπ(a | s; θ) = π(a | s; θ)∇θ log π(a | s; θ) (8)

Here, the gradient of the log probability of the policy is known as the score function or likelihood
ratio. The policy gradient theorem states that the policy gradient can be computed as the expected
value of the gradient of the log probability of the policy with respect to the expected return:

∇θπ(a | s; θ) = Eπθ
[∇θ log π(a | s; θ)Qπθ

(s, a)] (9)

REINFORCE is a popular policy-based RL algorithm. It updates the policy parameters in the
direction of the policy gradient, which is given by the gradient of the log probability of the actions
taken by the agent. This gradient is multiplied by the return, which is the sum of the rewards that
the agent receives. In some cases, a baseline function is subtracted from the return to reduce the
variance of the gradient estimate (Williams 1992, Y. Li 2018).

Overall, policy-based methods are an important type of RL algorithm that have unique advantages
and disadvantages compared to value-based methods. They are effective in certain situations, but
they require careful tuning and regular evaluation to ensure that they are performing well.

4.2.8 Deep deterministic policy gradient

Deep deterministic policy gradient (DDPG) is an actor-critic reinforcement learning algorithm that
can be used to learn policies for continuous action spaces. It is an extension of the deterministic
policy gradient algorithm, which is a model-free, off-policy algorithm for learning policies in such
environments. This allows for faster learning and better convergence properties compared to
REINFORCE (Y. Li 2018, Feinberg et al. 2018).

DDPG uses deep neural networks (DNNs) as function approximators for both the actor and the
critic. The actor network is used to represent the policy, which maps states to actions. The critic
network is used to estimate the action-value function, which represents the expected return for a
given state and action (Y. Li 2018, Feinberg et al. 2018).

Mathematically, the actor network is parameterized by a set of weights θµ, and the critic network is
parameterized by a set of weights θQ. At each iteration, a mini-batch of transitions (si, ai, ri, si+1)
is sampled from the replay buffer and used to update the networks according to the following
equations:

31

∇θµJ ≈ 1

N

N∑
i

∇aQ(s, a|θQ)|s = si, a = µ(si)∇θµµ(s|θµ)|si (10)

θµ ← θµ + α∇θµJ (11)

Here, Q(s, a|θQ) is the action-value function estimated by the critic network, and µ(s|θµ) is the
policy represented by the actor network. The gradient of the critic network with respect to the
action is computed using the Bellman equation, and the gradient of the actor network is computed
using the chain rule (Y. Li 2018).

The critic network is also updated using a similar procedure, based on the Bellman equation:

∇θQJ ≈ 1

N

N∑
i

(
ri + γQ(si+1, µ(si+1|θµ)|θQ)−Q(si, ai|θQ)

)
∇θQQ(s, a|θQ)|si,ai

(12)

θQ ← θQ + β∇θQJ (13)

In both equations, α and β are the learning rates for the actor and critic networks, respectively.
The discount factor γ is used to balance the importance of short-term and long-term rewards.

DDPG is an off-policy algorithm, meaning that it can learn from actions that were not selected by
the current policy. This is useful because it allows the algorithm to learn from a large amount of
experience without the need to explore the entire state space. However, this also means that the
algorithm can potentially learn from suboptimal actions, so it is important to carefully tune the
hyperparameters to ensure that the learning process is efficient and stable (Y. Li 2018, Feinberg
et al. 2018).

During training, the agent collects experience by interacting with the environment, storing the
observed transitions in a replay buffer. At each iteration, a mini-batch of transitions is sampled
from the replay buffer and used to compute the gradient of the critic network with respect to the
actor network’s parameters. This gradient is then used to update the actor network, in order to
improve the policy (Y. Li 2018, Feinberg et al. 2018).

Overall, DDPG is an effective algorithm for learning policies in continuous action spaces, and has
been used to solve a wide range of RL tasks. It is particularly useful in cases where the action
space is high-dimensional, as it can handle such spaces efficiently.

4.2.9 Deep Q-learning (DQN)

Deep Q-Network, or DQN, is a reinforcement learning algorithm that combines Q-Learning with
deep neural networks to let RL work for complex, high-dimensional environments, like video games
or robotics (OpenAI 2017). It approximates a state-value function in a Q-Learning framework with
a neural network (Mnih et al. 2013).

This type of Q-learning works by approximating a state-value function in a Q-Learning framework
with a neural network (Paszke and Towers 2023). In the case of Atari games, for example, several
frames of the game are taken as input and the neural network outputs state values for each action1.
The DQN architecture has two neural networks, the Q network and the Target network, and a
component called Experience Replay. The Q network is trained to produce the optimal state-
action value, while Experience Replay interacts with the environment to generate data to train the
Q Network2.

DQN interacts with the environment through a continuous cycle of observation, action, and reward.
At each time step, the agent observes the current state of the environment and chooses an action
based on its policy. The environment then transitions to a new state and returns a reward that

32

indicates the consequences of the action (Paszke and Towers 2023). The agent uses this information
to update its policy and improve its performance over time.

The deep Q-Network updates its policy by using a variant of Q-Learning, which is a model-free
reinforcement learning algorithm. In Q-Learning, the agent learns an action-value function that
estimates the expected reward of taking a given action in a given state and following a fixed policy
thereafter. It is also known as the Q-function, and it is denoted by Q(s, a), where s is the state
and a is the action (Foy 2021). The action-value function is updated at each time step using the
Bellman equation (see Equation 14), which expresses the relationship between the value of a state
and the values of its successor states (Paszke and Towers 2023).

Q(s, a) = r + γmaxQ(s′, a′) (14)

where r is the immediate reward, γ is the discount factor, s′ is the next state, and a′ is the next
action (Foy 2021).

In DQN, the action-value function is approximated using a neural network, which is trained to
predict the expected value for each action, given the input state. The network is updated using
experience replay, which stores the transitions that the agent observes and allows us to reuse this
data later. By sampling from it randomly, the transitions that build up a batch are decorrelated,
which has been shown to greatly stabilize and improve the DQN training procedure (Paszke and
Towers 2023).

33

5 Software used for implementation and case scenario

5.1 Software used for implementation

5.1.1 OrcaFlex

OrcaFlex is a software program that is used for modeling and analyzing dynamic systems, such as
offshore oil and gas facilities, pipelines, and ships. It allows users to simulate the behavior of these
systems under various conditions, and analyze their performance using mathematical modeling
and simulation techniques. This helps engineers and designers understand the behavior of their
systems and make informed decisions about their design and operation (Orcina 2022a).

5.1.1.1 Documentation

In order to use and understand the OrcaFlex software, the documentation of the software is im-
portant. The documentation for OrcaFlex includes instructions on how to build a model, run the
program, and extract results, as well as the underlying theory and technical notes. The document-
ation is available in the form of a dedicated OrcaFlex help browser and can also be downloaded or
viewed online (Orcina 2022c).

5.1.1.2 Modelling and analysis

OrcaFlex is a software program for modeling and analyzing dynamic systems, such as offshore oil
and gas facilities, pipelines, and ships. It uses mathematical modeling and simulation techniques
to represent the behavior of the system under different conditions, such as different sea states,
wave heights, and loads. This allows users to understand the behavior of their system and make
predictions about its performance. It also makes it possible for the user to extract data, graphs, etc.
for analysis (e.g bending radii, touchdown tension, stress/strain for the cable during the operation).
OrcaFlex is commonly used in the offshore oil and gas industry to analyze the performance of
structures and inform design and operational decisions (Orcina 2022c).

5.1.1.3 PythonAPI

Python is an object-oriented, dynamically typed scripting language that offers many advantages
when used with the OrcaFlex API. It is interpreted, and therefore does not require a compile or
link step before running, and the interpreter handles many programming tasks automatically, such
as memory management and type casting. The Python interface to OrcaFlex is a wrapper to the
OrcFxAPI DLL and simplifies the use of the C API by wrapping multiple function calls into a
single function call and handling differences in data types. This makes the Python interface a good
choice for developing pre and post-processing applications with OrcaFlex. (Orcina 2022b).

Flowcharts further explaining how OrcaFlex and Python are related can be seen in Figures 18, 19
and 20 in Chapter 6.

5.1.2 OpenAI gym

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. It
provides a wide range of environments, from simple games to complex physical simulations, that
can be used to train and evaluate RL algorithms. OpenAI Gym also includes a collection of
benchmark tasks, as well as tools and utilities for evaluating and comparing the performance of
different algorithms on those tasks. OpenAI Gym is designed to be flexible and modular, so that it
can be easily extended and customized to support different types of RL environments and scenarios.
It is developed and maintained by the research team at OpenAI, and is widely used by researchers
and developers in the RL community (OpenAI 2022a).

34

5.1.2.1 Cartpole example

For this thesis the CartPole problem will serve as a baseline problem, where OrcaFlex will be
used as the environment. The classic CartPole problem involves an agent learning to balance a
pole on a moving cart by controlling the cart’s movement left or right. The state of the system is
represented by the position and velocity of the cart, as well as the angle and angular velocity of
the pole. The agent’s actions are to move the cart left or right, and the goal is to keep the pole
balanced for as long as possible to maximize the reward. To solve the problem, the agent can use
an RL algorithm such as DDPG to learn a policy that maps states to actions. The agent can then
use this policy to make decisions and keep the pole balanced. To implement the CartPole problem
in Python, a library or framework that supports dynamic systems and RL algorithms must be
chosen, such as PyBullet, Gym, or TensorFlow (OpenAI 2022b, Barto et al. 1983, Surma 2018).
A visual representation of the problem is given below:

Figure 14: Classic CartPole problem, from OpenAI 2022b

35

5.2 Baseline CartPole problem in OrcaFlex

The baseline CartPole problem in OrcaFlex is an adapted version of the classical CartPole problem.
In this problem, the cart is represented by a vessel, and the pole is represented by a 6D buoy that
acts as a constrained pole (see Figure 15). The objective is to keep the pole upright for as long as
possible, with a discrete action space with two actions:

• 0: push the vessel left

• 1: push the vessel right

Figure 15: CartPole problem model in OrcaFlex

The observation space comprises four variables: vessel position, vessel velocity, pole angle, and
pole angular velocity. Each variable has specific minimum and maximum ranges, as detailed in
Table 1.

Num Observation Min Max
0 Vessel Position −20m 20m
1 Vessel Velocity −∞ ∞
2 Pole Angle −40° 40°
3 Pole Angular Velocity −∞ ∞

Table 1: Observation Space of Baseline CartPole problem in OrcaFlex

The termination conditions for an episode are as follows: the vessel position exceeds the range of
(−10m, 10m), the pole angle is outside the range of (−20°, 20°), or the maximum reward of 500 is
reached. The system terminates when any of these conditions are met.

The goal of the agent is to maximize the duration for which the pole remains upright. The agent
receives a reward of 1 for each step taken, and the episode concludes when one of the termination
conditions is met.

By training an agent using reinforcement learning techniques, the objective is to develop an intel-
ligent controller that can effectively balance the pole on the vessel for an extended period.

36

5.3 J-tube pull-in problem

A case scenario was provided by Nexans describing the steps of a J-tube pull-in into a jacket at
North sea wind farm. The scenario can be divided into the following steps:

Preparation

1. Pull the platform winch wire out of the J-tube and to a predetermined distance from the
platform where the vessel will be during the procedure.

Procedure

1. Lay the cable to a known reference point which is ”x” m away from the platform. There is a
mark on the cable which should land on this reference point at the touchdown point. If the
mark is closer to the platform than required the cable will be pulled up for a small distance
and the overlength layed in an ”S” shape to take up the extra overlength.

2. Move the vessel forward and lay the rest of the cable on the seabed until the end is out of
the cable carousel/turn table.

3. Route the cable end with the pull-in head around the quadrant and over the port laywheel
or chute.

4. Move the vessel backwards and lower the pull-in head end to the seabed while recovering
cable over the starboard laywheel.

5. When the pull-in head reaches the seabed, stop the vessel and connect the pull-in head to
the winch wire using the ROV.

6. Start hauling in on the platform winch

7. Slide the quadrant aft along the deck. Both port and starboard cable will be paid out over
their respective laywheels but the port side will be paid out faster because it is being hauled
in by the platform winch.

8. Overboard the quadrant using an a frame or crane (stop the platform winch for this step)

9. Lower the quadrant to the seabed.

10. Just before the quadrant reaches the seabed. Move the vessel forward to lay the quadrant
on the seabed.

The vessel is static for steps 5 to 9 and moves forward at the end of step 10 to lay the quadrant flat
on the seabed. The main task is to have an agent to control the pay out rate of the quadrant in step
9 and 10, which is illustrated in Figure 16. Step 9 of the scenario involves lowering the quadrant
to the seabed, while step 10 involves moving the vessel forward to lay the quadrant flat on the
seabed. Proper installation and protection of the cable can increase its reliability, and reduce the
need for costly repairs and maintenance. It is therefore important to carefully plan and execute
these steps in order to determine the feasibility and safety of this operation.

In step 10, the vessel moves forward to lay the quadrant on the seabed. This movement will cause
the cable to move and experience additional forces, which must be carefully considered to avoid
exceeding the cable’s bending radius and damaging the cable. The vessel’s speed and acceleration
must also be carefully controlled to avoid exceeding the cable’s maximum allowable tension and to
ensure that the quadrant is properly laid on the seabed. A detailed analysis of the cable’s response
to the vessel’s movement is necessary to ensure the safety and success of this operation.

37

(a) Step 9

(b) Step 10

Figure 16: Illustration of what happens in steps 9-10

38

Similarly to the baseline problem, the action space is discrete with two actions:

• 0: decrease the pay out rate

• 1: increase the pay out rate

The observation space however is different. The observation space is only determined by the
touchdown tension of the cable and has to be within (tdt min - tdt max, tdt max · 2), where:

• tdt min = 0kN

• tdt max = 2kN

The agent aims to maintain the touchdown tension within the specified bounds for as long as
possible, receiving a reward of 1 for each step taken. An episode concludes when the threshold is
reached or the maximum reward of 6000 is reached.

The overall system configuration, as depicted in Figure 17, includes the vessel, quadrant, cable,
and winch wire. The agent’s control objective is to manage the payout of the winch wire while
maintaining the specified touchdown tension range. The pull-in rate of the cable is pre-determined
at 0.1 m/s and remains constant throughout the procedure.

Figure 17: OrcaFlex model of J-tube pull-in

39

6 Implementation

6.1 Baseline CartPole problem in OrcaFlex

The high-level architecture of the workflow consists of two main components: the OrcaFlex model
and the Neural Network, as shown in Figure 18. The OrcaFlex model represents the simulation
model used for cable installations in OrcaFlex, capturing the dynamics and behavior of the cable
installation process. The Neural Network refers to the neural network employed in Deep Reinforce-
ment Learning (DRL) to optimize the OrcaFlex model. The workflow involves the exchange of
information between these components. The OrcaFlex model provides the current state and reward
information to the Neural Network, enabling it to learn and generate optimized actions. These
actions are then fed back into the OrcaFlex model, influencing its decision-making and behavior
during the cable installation process. By utilizing this architecture, the Neural Network learns
to improve the parameter optimization for the installation analysis of marine cables, ultimately
enhancing the overall performance and reliability of the process.

OrcaFlex model

Neural Network

state, rewardaction

Figure 18: High level architecture of workflow

The lower-level architecture of the OrcaFlex model is depicted in Figure 19. The OrcaFlex model
serves as the simulation framework for cable installations, capturing the dynamics and behavior of
the process. It interacts with an external script named ”ExternallyCalculatedVesselMotion.py” to
calculate vessel motion, an important aspect of the installation analysis.

OrcaFlex model

Initialise(self, info)

Calculate(self,
info)

Initial values

Initialized values

New state

Current state

ExternallyCalculatedVesselMotion.py

Figure 19: Lower level architecture for OrcaFlex model

The architecture involves two main functions within the OrcaFlex model. The ”Initialise(self,
info)” function initializes the model with initial values, receiving relevant information from an
external source. These initial values are then passed to the ”Calculate(self, info)” function, which
performs calculations using the initialized values and additional information. This calculation

40

process generates a new state, representing the updated state of the cable installation process for
each time step.

The external script ”ExternallyCalculatedVesselMotion.py” plays a specific role in calculating ves-
sel motion, which is an essential component of the cable installation process. By utilizing this
lower-level architecture, the OrcaFlex model can effectively incorporate external calculations and
generate accurate and up-to-date states for the installation analysis of marine cables.

The lower-level architecture for the neural network is illustrated in Figure 20. It consists of
several key components that work together to facilitate the execution of the neural network and
its interaction with the OrcaFlex model.

Run All.py

RunModel.py Environment.py

OrcaFlex model

Figure 20: Lower-level architecture for neural network

The main script, ”Run All.py,” serves as the control center for the overall workflow. It coordinates
the execution of the different components involved in the process. It communicates simultaneously
with ”Environment.py” and ”RunModel.py” to build both the OrcaFlex environment and the
neural network model.

The ”Environment.py” script handles the OrcaFlex environment and serves as an interface between
the neural network and the OrcaFlex model. It facilitates the exchange of information between
the two components, allowing the neural network to send relevant actions to the OrcaFlex model
and receive updated information or states from the model. This communication enables the neural
network to interact with the simulated cable installation environment and learn from the feedback
provided by the OrcaFlex model.

The ”RunModel.py” script is responsible for executing the OrcaFlex model concurrently with the
rest of the code. It manages the execution of the OrcaFlex model and handles the saving of the
simulations. It receives actions from the neural network through the ”Environment.py” interface
and applies them to the OrcaFlex model, influencing its behavior during the cable installation
process.

The OrcaFlex model itself represents the simulation model used for cable installations. It captures
the dynamics and behavior of the cable installation process in OrcaFlex. It provides a rendering
mode that allows for the visualization of episodes during the simulation, enabling monitoring and
analysis of the cable installation process.

Within this architecture, the ”Run All.py” script communicates with ”Environment.py” and ”Run-
Model.py” to build the necessary components and establish the interaction between the neural
network and the OrcaFlex model. This interaction allows for the seamless integration of the neural
network with the simulated cable installation environment, enabling learning and decision-making
based on the behavior and dynamics of the OrcaFlex model.

41

By utilizing this lower-level architecture, the neural network can effectively interface with the Or-
caFlex model, allowing for the optimization of the cable installation process through the application
of Deep Reinforcement Learning techniques.

6.1.1 OrcaFlex model

The OrcaFlex model created to represent the CartPole problem successfully simulates the dynamics
of the system using the components available in OrcaFlex. The default vessel serves as the cart, and
a 6D buoy represents the pole that needs to be balanced. The 6D buoy is connected to the vessel
via a constraint that allows rotation around the y-axis only, replicating the beam-like structure of
the CartPole system.

By combining these components and applying the necessary constraints, the OrcaFlex model accur-
ately represents the behavior of the CartPole system. This model can be used for various purposes,
such as analyzing the system dynamics, developing control algorithms, or conducting simulation
experiments within the OrcaFlex environment.

The visual representation of the CartPole problem model in OrcaFlex, as shown in Figure 21,
provides a clear illustration of how the components are connected and how the dynamics of the
system are simulated.

Figure 21: CartPole problem model in OrcaFlex

42

6.1.1.1 Vessel motion

The ”ExternallyCalculatedVesselMotion.py” script is responsible for replicating the desired be-
havior of the vessel motion in the OrcaFlex model, similar to how the cart moves in the classic
CartPole problem. It follows a specific flow of execution, as depicted in Figure 22.

Start

Initialize

Connect to
OrcFxEnv server

Send initial values
to Environment.py

Receive reply from
Environment.py

Connect to
calculate function

Send pole angle
values to En-
vironment.py

Receive state
values from

Environment.py

Update position,
velocity and
acceleration

Send position,
velocity and

acceleration to
OrcFx model

Check termination

Pause simulation

Stop

True

False

Figure 22: Flowchart for applying externally calculated motion to a vessel in OrcaFlex

The script uses Python and imports necessary libraries to perform the simulation. It contains two
main methods: ”Initialize” and ”Calculate”.

”ExternallyCalculatedVesselMotion.py” begins by initializing the necessary variables and estab-
lishing a connection with the OrcFxEnv server. It sends the initial values, such as velocity and
acceleration, to the server and waits for confirmation to ensure successful initialization.

During each calculation step of the simulation, the script executes the ”Calculate” method. It

43

retrieves the current simulation time and checks if it is valid. If the time is valid, the script
retrieves the constraint variable ”Ry,” which represents the pole angle, from the OrcaFlex model.
This value, along with the simulation time, is sent to the server.

The server performs calculations based on the received values and computes updated position,
velocity, acceleration, and a termination flag. These updated values are then received by the
script.

Upon receiving the updated values, the script updates the corresponding parameters in the Or-
caFlex model, allowing it to incorporate the externally-calculated vessel motion. It also checks if
the termination condition is met based on the received values. If the condition is satisfied, indic-
ating that the vessel motion has reached a threshold, the script pauses the simulation and prints
relevant information.

In summary, the ”ExternallyCalculatedVesselMotion.py” script plays a crucial role in simulating
vessel motion within the OrcaFlex model. It initializes the variables, establishes communication
with the OrcFxEnv server, sends and receives motion-related values, and updates the motion
parameters during the simulation

44

6.1.2 OpenAI gym custom environment

To accurately calculate vessel motion and enable the implementation of a neural network in the
future, a custom environment called ”OrcFxCartPoleEnv” was created using the OpenAI Gym
framework. This environment is designed to solve the CartPole problem, following the structure
and conventions of the classic CartPole environment.

The OrcFxCartPoleEnv class consists of three functions: ”init()”, ”step()”, and ”reset()”.

During each step, the environment calculates the new state of the vessel and returns it to the
OrcaFlex model. The OrcFxCartPoleEnv workflow is depicted in Figure 23.

Start

Initialize

Bind socket1

Bind socket2

Receive init values

Assign init values

Send reply

Define
threshold values

Check action

Receive pole
angle values

Perform cal-
culations

Update state

Check termination

Calculate reward

Return state to
ExternallyC-
alculatedVes-
selMotion.py

True

False

Figure 23: Flowchart for the OrcFxCartPoleEnv class

45

The ”init()” function initializes the environment by setting up the necessary variables, establish-
ing communication using ZeroMQ sockets, retrieving the episode number, and initializing state
variables and parameters specific to the CartPole problem.

The ”step()” function executes an action within the environment. It takes an action as input,
performs calculations based on the current state and the received action, updates the state ac-
cordingly, and receives the pole angle (Ry) and simulation time (t) through a ZeroMQ socket.
The calculations consider the dynamics equations of the pole, update the state using a chosen
integration method, and check for termination conditions. A reward value is assigned based on the
termination status, and the function returns the updated state, reward, termination flag, and any
additional information.

The ”reset()” function resets the environment to its initial state. It resets the internal state
variables and can accept optional parameters if needed. The function returns the initial state of
the environment.

Additionally, there is a ”render()” method that handles visualization or displaying the current
state of the environment. In this case, the visualization is done within the OrcaFlex simulation
environment.

The OrcFxCartPoleEnv class enables the integration of the CartPole problem with the OpenAI
Gym framework, allowing for the use of various reinforcement learning algorithms to solve the
problem. It facilitates communication with the OrcaFlex simulation environment through ZeroMQ
sockets, enabling dynamic simulations and advanced calculations.

6.1.3 Execution of model

To simulate each episode of the CartPole problem, the OrcaFlex model needs to be executed using
the Python OrcaFlex API. This task is accomplished by a script called ”RunModel.py”, which
is responsible for running the simulation and saving the desired results. The flow of the code is
shown in Figure 24.

Start

Initialize paths

Run Simulation

Open epis-
ode number

Do we want to save episode?

Save Simulation

Stop

Yes

No

Figure 24: Flowchart for running and saving the OrcaFlex model

46

The code sets up the necessary paths, executes a simulation in OrcaFlex using a specified input file,
reads the episode number from a text file, constructs a path for saving the simulation results based
on the episode number, and stores the simulation data in the designated file. This allows for further
analysis, evaluation, or visualization of the CartPole problem within the OrcaFlex environment.

6.1.4 Execution of whole simulation

The ”Run All.py” script integrates the OrcaFlex model, vessel motion calculation, environment
setup, and execution into a comprehensive simulation. It offers two variations: ”Run All Random.py”
and ”Run All DQN.py”, representing different approaches to running the simulation.

1. ”Run All Random.py”: This variation of the script executes the simulation using random
actions, either left or right, without any specific decision-making algorithm or agent. It
serves as a baseline or comparison for evaluating the performance of other approaches. The
vessel motion is calculated randomly, and the simulation proceeds based on these random
actions.

2. ”Run All DQN.py”: This variation incorporates a neural network-based agent using the
Deep Q-Network (DQN) algorithm. The DQN agent learns from the environment and makes
decisions based on its learned knowledge to achieve better performance. It utilizes a neural
network model and reinforcement learning techniques to optimize its decision-making process.
The agent takes into account the current state of the environment, such as the vessel’s
position and velocity, and uses the neural network to determine the optimal action to take.
This approach enables the agent to learn and improve its performance over time through
interactions with the environment.

Both variations of the script enable the execution of the complete simulation, including vessel
motion calculation, interaction with the OrcaFlex model, and decision-making based on either
random actions or the DQN algorithm. These scripts provide a framework to evaluate and compare
different approaches to solving the CartPole problem and assess the effectiveness of the DQN-based
agent.

6.1.4.1 Random action

The random actions refer to the approach of selecting actions (either left or right) randomly without
any specific decision-making algorithm or strategy. This approach directly replicates the concept
of random games in the classic CartPole problem (Pylessons 2019).

In the classic CartPole Random Games, the agent takes random actions without considering the
current state or any learned knowledge. These actions are chosen purely based on chance, simu-
lating a random decision-making process. The purpose of this approach is to establish a baseline
performance by comparing it with other more sophisticated strategies or algorithms.

By building the ”Run All Random.py” script in the same way as the classic CartPole Random
Games, it ensures that the random actions are implemented using a similar methodology, enabling
fair and accurate comparisons of performance across different approaches. See Figure 25 for code
flow.

47

Start

Register custom
environment

Set path to
runModel.py

Define command
to run script

Initialize re-
wards dictionary

Set number
of episodes

Loop over episodes

Write episode
number to file

Run subprocess
with command

Create en-
vironment

Reset environment

Loop until termination

Sample action

Perform step

Update
total reward

Wait for sub-
process to finish

Print epis-
ode result

Update re-
wards dictionary

Stop

Next episode

Not terminated

Next episodeAll episodes completed

Figure 25: Flowchart for running the OrcFxCartPole-v0 environment

In summary, the code registers a custom Gym environment, runs the environment for a specified
number of episodes, accumulates rewards, and stores the rewards in a dictionary. It utilizes subpro-
cesses to run the external environment simulation and communicates with the environment using
the reset() and step() methods.

48

6.1.4.2 DQN

The Deep Q-Network (DQN) agent, implemented by Pylessons to solve the CartPole problem in
OrcaFlex, serves as a reference and source of inspiration (Pylessons 2019). Pylessons successfully
applied the DQN algorithm, a reinforcement learning technique, to solve the classic CartPole
problem.

Adapting and implementing the DQN agent for the CartPole problem in the OrcaFlex environment
involved modifying the agent to account for vessel motion, integrating it with the OrcaFlex model,
and appropriately defining the state, action, and reward spaces.

By leveraging insights from Pylessons’ implementation and adapting the DQN agent to the specific
requirements of the OrcaFlex simulation, the goal was to develop an effective agent capable of
solving the CartPole problem in this context.

The flowchart in Figure 26 illustrates the steps involved in the CartPole problem with the DQN
agent.

Start

Import libraries

Define OurModel

Register en-
vironment

Define DQNAgent

Remember

Act

Replay

Load model

Run agent

Test agent

Stop

Figure 26: Flowchart CartPole problem with DQN agent

Creating a DQN agent involves defining a loss function that represents the gap between our pre-
diction and the target. The loss function incorporates the reward obtained from an action, the
maximum predicted future reward discounted by a gamma value, and the current prediction (Py-
lessons 2019). By subtracting the prediction from the target and squaring the result, we can punish
large losses and treat negative values as positive ones. Keras simplifies this process by automatic-
ally handling the calculation of the loss during training. The learning rate, which determines how
much the neural network learns in each iteration, is also taken care of by Keras.

The DQN algorithm includes the ”remember” and ”replay” methods, which are important for the

49

agent’s learning process. These methods are used to store and retrieve experiences in memory,
enabling the agent to learn from past interactions. Although the original DQN design has various
tweaks, a simplified version is often preferred for better understanding.

In reinforcement learning, several crucial parameters need to be configured for the DQN agent
to optimize its performance. These parameters encompass the number of games or episodes the
agent will partake in, the discount rate (gamma) employed to calculate future discounted rewards,
the exploration rate (epsilon) governing the frequency of random action selection versus predicted
actions, the rate at which epsilon decays to gradually reduce exploration (epsilon decay), the
minimum value for epsilon (epsilon min), the learning rate of the neural network (if applicable),
and the batch size utilized for training the DQN.

These parameters play a vital role in shaping the agent’s learning process and can be fine-tuned
based on the specific requirements of the problem at hand. It is worth noting that as the agent
becomes more proficient in playing games, the objective is to gradually decrease the number of
exploratory actions by adjusting the exploration rate (epsilon) accordingly.

Within the provided code, the DQN agent initializes these parameters and sets the maximum
memory size to 2000, along with default values for gamma, epsilon, epsilon min, epsilon decay,
batch size, and train start. By carefully adjusting these parameters, researchers and developers
can optimize the DQN agent’s learning and decision-making capabilities to achieve superior per-
formance in the given task. The exact values are taken from Pylessons DQN agent and are set to
(Pylessons 2019):

memory = 2000
gamma = 0.95
epsilon = 1.0

epsilon min = 0.001
epsilon decay = 0.999
batch size = 64
train start = 1000

The implementation used the Gymnasium library to connect the DQN agent with the OrcFxCart-
Pole environment. The DQN agent is a neural network-based algorithm for reinforcement learning.
The implementation included defining a neural network model, registering the environment, initial-
izing the DQN agent, storing experiences in memory, selecting actions based on an epsilon-greedy
strategy, training the agent through replaying experiences, and saving and loading the trained
model. The agent’s performance was evaluated by running episodes and printing the scores.

6.2 J-tube pull in problem

In the J-tube pull-in scenario, the objective is to control the payout rate of the a-frame winch wire
during the operation. The architecture of the solution follows a similar pattern as the CartPole
problem in OrcaFlex, explained in the previous section, utilizing the principles of reinforcement
learning and the DQN agent. However, there are notable distinctions in terms of the OrcaFlex
model and the specific control parameters.

The OrcaFlex model was built to simulate the dynamic characteristics of a cable being laid through
a J-tube during the pull-in scenario. It incorporates multiple variables, including cable tension,
vessel motion, and the interaction between the cable and the J-tube. By considering these factors,
the model accurately simulates the behavior of the cable as it is pulled into the J-tube using a
quadrant lowered by a winch with a payout rate controlled by an agent. The model offers valuable
insights into the cable tension and other pertinent states, which can be effectively utilized by the
DQN agent to make informed decisions.

In the J-tube pull-in scenario, unlike the CartPole problem, the focus shifts to controlling the
payout rate of the winch wire connected to the quadrant instead of the vessel’s position. The
payout rate determines the speed at which the cable is hauled-in or paid-out during the pull-in

50

operation. By adjusting the payout rate, the agent aims to achieve an optimal residual tension
that ensures the minimum bend radius or minimum tension limits are not violated. The threshold
for this scenario is determined by the touchdown tension of the cable being laid, representing the
acceptable range of cable tension during the operation. It is typically set between 0 kN and 2 kN
to avoid excessive tension or slack. The agent’s objective is to control the payout rate to maintain
the tension within this threshold while achieving the desired cable laying objectives.

Throughout the training process, the DQN agent actively engages with the OrcaFlex model, con-
stantly monitoring the system’s present state, which includes factors like cable tension and other
pertinent variables. Based on the observed state, the agent determines the payout rate, with the
objective of maximizing the reward signal while ensuring adherence to the tension threshold con-
straint. For each timestep that the touchdown tension remains within the limits, the agent receives
a reward of 1. To facilitate replay and training, the agent stores its experiences, encompassing the
observed states, chosen actions, obtained rewards, and subsequent states, in memory.

The DQN agent’s training loop involves iterating over episodes, each comprising multiple steps.
At each step, the agent selects an action (the payout rate) based on the observed state, following
an exploration-exploitation trade-off guided by the epsilon-greedy strategy. The action is then
applied to the OrcaFlex model, and the resulting state, reward, and termination information are
obtained. The agent uses these experiences to update its Q-value estimates and improve its policy
over time.

In summary, the J-tube pull-in scenario in OrcaFlex employs a similar architecture to the CartPole
problem, but with a different OrcaFlex model and control objective. The agent’s task is to control
the payout rate of the winch wire, aiming to maintain the cable tension within the acceptable range
of 0 kN to 2 kN. Through the reinforcement learning process, the agent learns to make optimal
decisions based on observed states and rewards, ensuring successful cable laying while respecting
the tension threshold constraint.

6.2.1 Pay-out rate of quadrant winch wire

The J-tube Pull-in Script is designed specifically for controlling the tension of a winch wire during a
J-tube pull-in operation in OrcaFlex. It showcases the application of externally-calculated payout
rate to maintain the tension within a specified threshold range. The script utilizes variables like
payout rate, force magnitude, state, and thresholds for tension.

In terms of the OrcaFlex model, the script focuses on simulating the dynamics of the winch wire,
J-tube, and cable tension. It takes into account factors such as the interaction between the cable
and the J-tube, as well as the forces involved in the pull-in operation. The model provides feedback
on the cable tension and other relevant states, which the script’s functionality relies on for decision-
making. Note that the J-tube was not modeled here for simplicity.

Communication with the OrcaFlex environment is established using the ZeroMQ library, enabling
data exchange between the Python script and the simulation. The script’s external function
class, ”ExternallyCalculatedWinchPayOutRate,” initializes the necessary variables and facilitates
communication with OrcaFlex. It receives tension data and controls the payout rate of the winch
wire accordingly.

The termination condition for the J-tube Pull-in script is based on the received touchdown tension
reaching a specified threshold. Once this threshold is exceeded, the script terminates the pull-in
operation.

Overall, the J-tube Pull-in script is tailored to the specific task of controlling the tension of a
winch wire during a J-tube pull-in operation. It employs an OrcaFlex model that simulates the
dynamics of the relevant components and utilizes externally-calculated payout rate to maintain
tension within a specified range.

51

6.2.2 Environment

The Environment.py script is similar to the Environment.py for the CartPole proble. While they
have similarities in terms of their overall structure and functions, their specific calculations and
parameters are tailored to their respective environments.

The step() function implemented is taking an action as input and returning the next state, reward,
termination status, and additional information. However, the calculations within the step function
differ based on the specific environment being modeled. For the J-tube pull-in the step calculates
the pay-out rate of the winch wire, instead of vessel motion.

In summary, OrcFxCartPoleEnv and OrcFxEnv are distinct implementations of different envir-
onments with specific dynamics and variables. While they share similarities in structure and
functionality, their calculations and parameters are customized to suit their respective environ-
ments.

6.2.3 Execution of model

The runModel.py script for both cases, CartPole problem and J-tube pull-in problem, shares the
same code structure and functionality. The only difference lies in the specific paths used within
the script. The main purpose of the runModel.py script is to execute the and save the simulation.

6.2.4 Execution of whole simulation

Similarly to the CartPole problem, the Run All.py script for the J-tube pull-in scenario follows
the same setup with two variations: Run All Random.py and Run All DQN.py. These variations
represent different approaches to running the simulation.

In Run All Random.py, the simulation is conducted using random actions and does not incorporate
any specific decision-making algorithm or agent. This approach serves as a baseline for comparison,
allowing the evaluation of other strategies or algorithms.

The ”Run All DQN.py” script implements a Deep Q-Network (DQN) agent, a powerful algorithm
based on neural networks. The DQN agent leverages the capabilities of neural networks and
reinforcement learning to learn from the environment and make informed decisions in the J-tube
pull-in scenario. The hyperparameters used in this implementation are set to the same values as
those employed in the CartPole problem:

memory = 2000
gamma = 0.95
epsilon = 1.0

epsilon min = 0.001
epsilon decay = 0.999
batch size = 64
train start = 1000

By having these two variations, the Run All script enables the exploration and evaluation of
different approaches to the J-tube pull-in simulation. It allows for a comprehensive analysis of the
performance and effectiveness of both random actions and the more advanced DQN-based agent
in this specific context.

52

7 Experiment and results

7.1 Baseline CartPole problem

The objective of this experiment was to solve the CartPole problem in OrcaFlex by training a
Deep Q-Network (DQN) agent. The goal for the agent was to obtain a reward of 500, with a
reward of 1 given for each time step (0.1s) in which the agent successfully balanced the pole and
kept it within the frame. If the pole angle exceeded the ±20 degrees angle limits or if the vessel
moved outside the ±10m frame limits, the simulation for that episode was terminated, and the
next episode was executed. This approach ensured that the agent focused on learning successful
strategies and avoided training on episodes where failure occurred.

By imposing these constraints, the experiment aimed to assess the agent’s ability to learn and
maintain stability throughout the simulation duration. The training process involved multiple
episodes, during which the agent learned from its experiences and adjusted its actions to maximize
the cumulative reward. The agent’s performance was evaluated based on the achieved rewards,
specifically aiming for rewards of 500 to indicate successful solution of the CartPole problem.

7.1.1 Results and discussion

Analyzing the results obtained from the training process, a consistent improvement in the agent’s
performance as indicated by the graph of the learning rate can be observed. The total reward
achieved by the agent during every 20th episode of training is depicted in Figure 27, with the x-
axis representing the number of episodes and the y-axis representing the total reward. The graph
illustrates how the agent’s total reward gradually increased over time, reaching a maximum reward
of 500.

Figure 27: Agent learning rate for CartPole problem

Upon closer examination of the data points, it becomes apparent that the agent’s reward consist-
ently increased throughout the training process. In the initial episodes, the agent achieved a total
reward of 61, indicating a relatively low level of proficiency. However, as the training progressed,
the agent’s performance improved. By episode 112, the agent achieved its highest reward of 501,
marking a significant peak in its learning curve.

53

This learning rate pattern could be attributed to the reinforcement learning algorithm employed
during the training process. Reinforcement learning algorithms typically involve a trial-and-error
process, where the agent explores different actions and learns from the resulting rewards. As the
agent receives feedback in the form of rewards, it adjusts its behavior to maximize future rewards.
This iterative learning process gradually refines the agent’s decision-making and leads to improved
performance over time.

The parameters used in the training process, such as the number of episodes, discount rate
(gamma), exploration rate (epsilon), learning rate, and batch size, all play crucial roles in the
agent’s learning progress. The specific values chosen for these parameters greatly influence the
rate of learning and the final performance of the agent. These values were set as the same as for
the DQN agent solving the classic CartPole problem presented by Pylessons (Pylessons 2019).

Overall, the new results suggest that the applied reinforcement learning algorithm successfully
enhanced the agent’s proficiency in solving the CartPole problem. The increasing reward trend
followed by a significant peak at episode 112 demonstrates the agent’s ability to learn from its
experiences and adapt its actions to achieve better outcomes.

In order to gain a comprehensive understanding of the training process and the agent’s performance,
Figure 28 presents a graph illustrating the vessel movement during every 20th training episode.
The graph provides a visual representation of the agent’s ability to control the vessel’s motion
and maintain stability throughout the training process. By analyzing the vessel’s movement over
time,the agent’s learning progression and its capacity to optimize critical parameters related to
cable installation can be examined.

Figure 28: Vessel movement of every 20th episode of during training process

The analysis of the vessel movement graph reveals significant variations among the training epis-
odes. Notably, episodes 41 and 81 were terminated due to the pole angle reaching the lower limit.
This suggests that the agent encountered challenges in maintaining balance during these specific
episodes. It is possible that the agent made aggressive or incorrect movements, leading to the pole
angle exceeding the acceptable threshold. On the other hand, the completely trained agent demon-
strates much greater stability, with minimal deviation from the vertical position. This indicates
that the agent has learned to perform more controlled and measured movements, resulting in a
steady vessel movement.

Examining the remaining training episodes, it becomes apparent that the vessel movement generally

54

follows a consistent pattern. The episodes tend to start moving in a particular direction and
maintain that direction throughout the duration. This suggests that the agent initially adopts
a specific strategy or movement pattern to maintain balance. However, it is important to note
that there can still be variations and fluctuations in the vessel movement during these episodes,
indicating ongoing adjustments and adaptations by the agent to optimize its performance.

Turning to the pole angle results (Figure 29), the remainder of the episodes (1, 21, 61, 101) were
terminated by the pole angle threshold. This implies that the agent faced difficulties in keeping
the pole within the acceptable range during these instances. The agent’s movements during these
episodes may not have been effective in countering the pole’s dynamics, resulting in excessive
deviation from the vertical position.

It is also insightful to examine the reasons behind the failure of each training episode. To gain a
better understanding, an analysis of the pole angle for every 20 episodes of the training process
were also conducted. Figure 29 represents the pole angle during the training episodes.

Figure 29: Angle of pole for every 20th episode of during training process

In the early episodes, where the agent reached the pole angle limits, it struggled to maintain the
pole within the acceptable range (see episode 1 and 21). However, as the training progressed,
the agent exhibited increased steadiness and stability, keeping the pole angle closer 0 for a longer
period. This indicates that the agent learned to balance the pole more effectively over time. The
ability to keep the pole angle near 0 for longer durations suggests that the agent has acquired better
control and understanding of the dynamics involved in maintaining the pole’s upright position.

Overall, these results illustrate the learning progress of the agent throughout the training process.
The termination of episodes due to pole angle limits in the early stages highlights the initial
challenges faced by the agent. However, as the training advanced, the agent demonstrated enhanced
stability and improved control over the pole angle. This improvement is evident in the more
consistent vessel movement and the agent’s ability to maintain the pole angle around 0 for extended
periods.

55

To gain a deeper understanding of the agent’s behavior, Figure 30 illustrates the pole angle over
time when applying the agent to the environment, with the ±20 degrees limits marked. This graph
provides valuable insights into how the agent controls the vessel’s motion to prevent the pole from
exceeding the set angle limits, showcasing its ability to maintain stability and balance the pole
within the desired range.

Figure 30: Angle of pole over time when agent is applied

The graph reveals that the pole angle experiences only minor fluctuations around 0 degrees through-
out the episode. This indicates that the agent effectively controls the pole angle, maintaining it
close to the vertical position. The ability to keep the pole angle near 0 degrees demonstrates the
agent’s capability to maintain balance and stability during the CartPole task.

The agent’s proficiency in controlling the pole angle is crucial for solving the CartPole problem.
By continuously adjusting its actions based on feedback from the environment, the agent ensures
that the pole remains balanced and does not deviate significantly from the vertical position. This
precise control of the pole angle contributes to higher rewards and successful episodes.

Upon observing the graph, it becomes evident that the pole angle consistently remains well within
the predefined limits throughout the entire episode. This observation suggests that the termination
of the episode is primarily attributed to the agent reaching the maximum reward rather than the
pole angle exceeding the limits. The agent’s ability to effectively control the vessel’s motion and
maintain stability is demonstrated by the pole angle staying within the desired range. Hence,
the termination of the episode can be attributed to the agent successfully achieving its goal of
maximizing the reward.

The agent’s ability to maintain the pole angle around 0 degrees throughout the episode highlights
its stability and consistency. It showcases the agent’s learning capabilities and adaptability, as it
continuously adjusts its actions to prevent the pole from falling and to achieve the desired outcome.
By effectively controlling the pole angle, the agent demonstrates its proficiency in solving the
CartPole problem and accomplishing the task at hand.

56

To gain further insights into the agent’s behavior, Figure 31 displays the vessel’s x-position over
time, with the ±10m limits indicated. This graph provides evidence of the agent consistently
operating within this predefined range, which further reinforces its effective control over the vessel’s
motion.

Figure 31: CartPole vessel position when agent is applied

The above graph displays the vessel’s x-position on the y-axis and the elapsed time on the x-axis.
As the training progresses, the agent learns to adjust the vessel’s movements to maintain the pole
within the acceptable angle limits. This is reflected in the change in the vessel’s position over time,
which correlates with the changes in the pole angle.

In addition it showcases the agent’s ability to respond to the pole’s movements. When the pole
angle leans towards one side, the agent promptly shifts the vessel in the opposite direction to
counterbalance the pole. This action can be observed in the graph as the vessel’s x-position adjusts
accordingly, ensuring the pole angle remains within the specified limits. The agent’s effective
coordination of the vessel’s movements with the pole angle demonstrates its capability to maintain
stability and prevent excessive tilting.

It is important to note that the small fluctuations observed in the vessel’s movement do not
contribute to episode termination. Instead, as indicated by the results, episodes are terminated
upon reaching the maximum reward. This suggests that the agent successfully controls the vessel’s
movement to fluctuate around 0m, minimizing deviations and ensuring effective task completion.

The agent’s ability to maintain both the vessel’s position and the pole angle within their respective
limits is crucial for solving the CartPole problem. By operating within the defined range, the agent
maximizes its chances of maintaining balance and preventing the pole from falling. This ultimately
leads to higher rewards and successful completion of episodes, showcasing the agent’s proficiency
in mastering the task.

57

To further evaluate the effectiveness of the trained agent, a comparison was made between random
actions, the trained agent, and the performance of the agent in the classic CartPole problem as
presented by Pylessons (Pylessons 2019). The total rewards achieved by these three approaches
were analyzed over 21 simulations. Figure 32 illustrates the graph depicting the total rewards
obtained from random actions, the trained agent, and the performance of the agent in the classic
CartPole problem.

Figure 32: Rewards from random actions compared to use of agent

In the case of random actions, the total rewards varied considerably across the 21 simulations,
with values ranging from 48 to 115. This wide range of rewards indicates the inconsistency and
unreliability of random actions in achieving desirable outcomes.

On the other hand, the trained agent consistently achieved a total reward of 500 across all 21
simulations. This demonstrates the agent’s ability to make informed decisions and take actions
that lead to a desirable outcome in the CartPole problem. The agent’s performance outperforms
random actions, indicating its effectiveness in solving the problem.

Additionally, the performance of the agent in the classic CartPole problem, as presented by Py-
lessons, was also considered. The agent consistently achieved a maximum reward of 500 in approx-
imately 17 out of the 21 simulations. This demonstrates the agent’s ability to perform well in a
well-known benchmark problem.

The comparison between the random actions, the trained agent, and the agent in the classic
CartPole problem provides valuable insights into the effectiveness of the trained agent. It shows
that the trained agent outperforms random actions and performs at a similar level to the agent in
the classic CartPole problem. This highlights the success of the training process and the agent’s
ability to adapt to the specific problem domain.

In conclusion, the trained agent demonstrates its superiority over random actions and performs
comparably to the agent in the classic CartPole problem. The results validate the effectiveness
of the training process and highlight the agent’s ability to solve the CartPole problem. Further
analysis and optimization may be required to enhance the agent’s performance and achieve even
higher rewards in future iterations.

58

7.2 J-tube pull-in problem

In the J-tube pull-in installation scenario, the DQN agent was trained to control the pay-out rate
of the winch wire, ensuring that the touchdown tension of the cable remains within the desired
range of 0 to 2 kN. By providing a reward of 1 for each time step the agent maintains the tension
within the specified limits, the agent is encouraged to learn the optimal pay-out rate strategy.

Wave loads were excluded from the simulation because the winch wire is generally heave com-
pensated for a real-world pull-in to counteract the effects of waves, ensuring that the pay-out rate
remains stable and unaffected by wave-induced movements.

The primary objective of the experiment is to assess the performance of the DQN agent in achieving
consistent rewards within the desired range. By successfully maintaining the touchdown tension,
the agent demonstrates its ability to control the pay-out rate effectively and ensure the safe and
accurate installation of the cable.

By evaluating the performance of the agent, the experiment provides insights into the learning
progress of the agent and its ability to generalize its knowledge to new scenarios. The analysis of
the experiment’s results and their subsequent discussion shed light on the effectiveness of the agent
in achieving the desired outcomes and contribute to the understanding of its potential applications
in real-world cable installation operations.

7.2.1 Results and discussion

The results obtained from the experiment provide insights into the performance of the DQN agent
in the J-tube pull-in installation scenario. Several graphs were generated to analyze different
aspects of the behavior of the agent and the achieved outcomes.

Figure 33 depicts the velocity of quadrant pay-out for the J-tube pull-in installation with the
trained agent applied. The behavior of the agent in controlling the pay-out rate of the winch wire
can be observed. The graph provides insights into how the agent adjusts the velocity over time to
ensure the successful deployment of the quadrant.

Figure 33: Velocity of quadrant pay-out for J-tube pull-in when agent is applied

59

At the beginning of the scenario, the velocity of pay-out increases rapidly from 0 to approximately
0.06-0.065 m/s. This initial increase indicates the agent’s proactive response to the installation
process as the platform winch is hauling in at a constant velocity of 0.1 m/s, initiating the de-
ployment of the quadrant with an appropriate speed. Subsequently, the pay-out velocity exhibits
fluctuations around the value of 0.06, which demonstrates the ability of the agent to maintain a
consistent rate during the intermediate stages of the installation. This velocity aligns with the
logical progression of the operation, where the quadrant needs to be lowered at roughly half the
velocity of the pull-in winch.

Towards the end, there is a notable change in the pay-out velocity. The graph shows that the
velocity is increased to around 0.09, indicating the adjustment to accommodate the specific re-
quirements of the installation process at that point. The relationship between the haul-in velocity
and pay-out velocity shifts from roughly half to approximately the same velocity. This increase in
velocity suggests that the agent recognizes the need for a higher pay-out rate during this phase,
potentially to ensure proper positioning or alignment of the quadrant.

After reaching the peak velocity, the pay-out rate starts to decrease again. This reduction indicates
the response to completing the installation of the quadrant or transitioning to the next phase of the
operation. The control demonstrated by the agent in adjusting the pay-out velocity throughout
the scenario reflects its capability to adapt and optimize the deployment process, ensuring the
successful installation of the J-tube pull-in.

To evaluate the learning progress of the agent, the total reward obtained in every 20th simulation
during the training process was plotted. Figure 34 provides valuable insights into how the agent’s
performance evolves as it gains experience through training iterations.

Figure 34: Agent learning rate for J-tube pull-in problem

The graph shows the total reward obtained at different episodes of training. It can be observed
that initially, in the first few episodes, the reward is relatively low, at around 91.

A significant milestone in the training process is evident when the total reward of 6000. This
point corresponds to a critical stage in the scenario where the vessel moves forward to lay the
quadrant on the seabed. The successful achievement of this step is crucial for the overall success
of the installation process. The fact that the agent reaches a total reward of 6000 signifies its
ability to effectively control the pay-out rate strategy, leading to the desired outcome of quadrant

60

deployment.

The learning rate displayed in the total reward graph does not exhibit a consistent increase but
rather remains flat, with a noticeable inflection point where the reward abruptly jumps to 6000.
This sudden change in performance raises questions about the factors contributing to this shift in
the agent’s learning process.

One possible explanation for the flat reward curve during the initial phase is that the agent focused
on exploration. During exploration, the agent tries different actions to gain a better understanding
of the environment. This process may have resulted in a relatively stagnant reward curve. However,
at the inflection point, the agent could have transitioned to exploitation, where it began utilizing
the acquired knowledge to maximize its reward. This change in strategy could account for the
sudden increase in performance.

Another reason for the inflection point could be the agent’s ability to overcome initial challenges.
The initial episodes of training might have presented significant difficulties as the agent struggled
to comprehend the environment’s dynamics and determine successful strategies. However, after a
certain number of episodes, the agent may have overcome these challenges and discovered effective
approaches to maximize its reward. This breakthrough could explain the abrupt improvement in
performance.

Deep reinforcement learning algorithms often involve training neural networks that approximate
the Q-values or policy of the agent. It is plausible that the network took time to converge and learn
meaningful representations of the environment and optimal policies. Once the network achieved
a certain level of convergence, its performance could have improved dramatically, resulting in the
observed increase in reward.

The parameters used in the training process, such as the number of episodes, discount rate
(gamma), exploration rate (epsilon), learning rate, and batch size, play important roles in the
learning progress of the agent. In this experiment, the agent was trained for a total of 137 epis-
odes. The discount rate (gamma) was set to 0.95, indicating the weight given to future rewards in
the agent’s decision-making process. The exploration rate (epsilon) started at 1.0 and gradually
decayed over time to encourage the agent to exploit its learned knowledge. The learning rate
determines how much the neural network learns in each iteration, and the batch size determines
the number of samples used for training the DQN. As for the baseline CartPole problem, the hy-
perparameters remained the same as for the DQN soving the classic CartPole problem (Pylessons
2019).

61

The variation in the pay-out rate for each training simulation was examined by plotting the results
for every 20th episode, as shown in Figure 35. The graphs illustrate significant fluctuations in the
pay-out rate across different episodes.

Figure 35: Pay-out rate for different training episodes for J-tube pull-in

Upon analysis of the graphs, it is observed that episode 101 achieved the highest pay-out velocity,
slightly exceeding 0.25 m/s. This indicates that the agent successfully controlled the pay-out rate
to ensure efficient deployment of the quadrant. Conversely, episode 141 displayed the lowest pay-
out velocity, measuring less than -0.05 m/s. In this case, the negative value implies that the cable
was being hauled in instead of being paid out, indicating an unsuccessful deployment attempt.

Episode 161, which recorded the highest reward during training, exhibited an initial increase in
pay-out velocity, fluctuating around 0.1 m/s. This indicates that the agent effectively controlled
the pay-out rate in the early stages of the installation process. However, towards the later stages
of the episode, the pay-out velocity decreased, leading to a failure in the deployment.

The results highlight the challenges faced by the agent in consistently controlling the pay-out rate
throughout the training process. The fluctuations in pay-out velocity indicate the complexity of
the J-tube pull-in problem and the need for adaptive strategies to address varying scenarios. It is
essential for the agent to dynamically adjust the pay-out rate based on the specific requirements
of each situation to ensure successful quadrant deployment.

62

During the simulation using the trained agent, an important aspect that was analyzed is the
maximum and minimum tension in the cable over time. The tension in the cable is a critical factor
to monitor, as it directly impacts the safety and effectiveness of the J-tube pull-in installation.
Figure 36 provides a visual representation of the tension in the cable throughout the simulation. It
clearly shows that the touchdown tension, which refers to the tension at the point of cable contact
with the seabed, remained consistently within the defined limits of 0 kN to 2 kN.

Figure 36: Touchdown tension for J-tube pull-in

63

In addition to analyzing the tension within the defined limits, a comparison was made between
the tension experienced during episode 161 of the training simulation and the tension achieved by
the trained agent. The plot, depicted in Figure 37, illustrates the variation in effective tension at
touchdown for both scenarios. It can be observed that during episode 161, the tension exhibits a
significantly higher level of variability and instability compared to the trained agent, specifically
within the time frame of the episode. The episode concludes at approximately 25 seconds, when
the lower touchdown limit of 0 kN is reached.

Figure 37: Touchdown tension for trained agent and training episode 161 J-tube pull-in

The ability of the agent to maintain the tension within the specified range indicates its successful
control of the pay-out rate. By adjusting the rate at which the winch wire pays out, the agent
effectively manages the tension in the cable, ensuring that it does not exceed the maximum allow-
able limit of 2 kN or fall below the minimum limit of 0 kN. This precise control of tension is crucial
to prevent damage to the cable, such as buckling or overbending, and ensure safe deployment.

The above graphs provides a clear visual confirmation of the agent’s ability to regulate the tension
in real-time during the J-tube pull-in. By consistently keeping the tension within the defined
limits, the agent demonstrates its capability to make accurate decisions regarding the pay-out rate,
effectively responding to changes in the installation scenario. The successful control of the cable
residual tension is a significant achievement, as it contributes to the overall safety and efficiency
of the installation process. Maintaining appropriate tension ensures that the cable is properly laid
and minimizes the risk of any operational issues or damages.

In addition, the comparison between episode 161 and the trained agent’s performance offers com-
pelling evidence of the agent’s ability to control the pay-out rate and maintain the desired tension
range throughout the simulation. This successful outcome further emphasizes the effectiveness of
the trained agent in accurately managing the J-tube pull-in installation and highlights its practical
value in real-world marine operations.

64

In order to obtain a comprehensive view of the curvature behavior throughout the length of the
cable in the J-tube pull-in installation scenario, a range graph was generated. This graph, depicted
in Figure 38, presents the minimum, maximum, and mean values of the curvature observed.

Figure 38: Min, max and mean curvature over length of cable for J-tube pull-in

By examining the graph, it is evident that the curvature values spanned a range from 0 to 0.25
rad/m. The minimum curvature value represents the point at which the cable exhibits the least
bending along its length. In this scenario, the minimum curvature observed was approximately 0
rad/m, indicating sections of the cable that were nearly straight. On the other hand, the maximum
curvature value signifies the regions where the cable experienced the highest degree of bending.
In this case, the maximum curvature reached around 0.25 rad/m, highlighting areas of significant
curvature along the cable’s length. It is likely that the curvature of the quadrant between the cable
lengths of 26 m to 32 m contributed to the high curvature in the cable. Upon closer examination
of the maximum curvature, it is evident that the highest curvature value occurs at 34.75 m along
the cable’s length. This specific location is further analyzed in Figure 39.

The results presented in Figure 38 further support the agent’s proficiency in regulating the pay-out
rate strategy. The range of curvature values reflects the agent’s adaptive behavior in response to
varying installation conditions, maintaining the cable’s shape within acceptable bounds throughout
the deployment process.

65

Figure 39 highlights important aspects of the curvature of the cable during the J-tube pull-in
installation scenario, as observed in the simulation where the agent was utilized. Monitoring the
curvature is crucial as it directly influences the behavior and structural integrity of the cable.

Figure 39: Curvature of cable at maximum for J-tube pull-in

While the agent did not have a predefined limit or range for curvature as an input, this aspect
is still important to consider. Typically, cables have defined limits provided by the manufacturer.
If the minimum bend radius was given as 2.5 m,, which is a typical limit, the curvature could be
checked like this:

κ =
1

r
=

1

2.5
= 0.4 (15)

where κ is curvature and r is minimum bend radius. This implies that the curvature would be
within limits. Therefore, it was sufficient for the agent to solely control the pay-out rate based on
the tension at touchdown limits for this specific case.

The successful control and maintenance of the desired curvature by the agent hold significant
practical implications for real-world marine operations. It ensures the accurate alignment and
positioning of the cable, contributing to the overall effectiveness and efficiency of the j-tube pull-in
installation process. By effectively managing the cable’s curvature, the agent enhances the project’s
success and minimizes the risk of potential issues or damage during deployment.

66

In order to evaluate the performance of the trained agent in comparison to random actions as
depicted in Figure 40. This graph presents the total rewards obtained from both the trained agent
and random actions during 21 simulations of the J-tube pull-in installation scenario.

Figure 40: Rewards from random actions compared to use of agent

When analyzing the rewards obtained from random actions, it becomes evident that there is
a significant variation in the rewards achieved. The graph illustrates a range of rewards, with
some simulations resulting in relatively low rewards while others yield higher rewards, although
significantly lower than with the trained agent. The random actions, lacking any systematic
strategy, lead to inconsistent outcomes in terms of the total reward obtained.

On the other hand, when utilizing the trained agent, a consistent and superior performance is
observed. In each of the 21 simulations conducted with the trained agent, the total reward con-
sistently of 6000. This consistent high performance indicates that the agent effectively controlled
the pay-out rate, leading to the maintenance of the desired touchdown tension within the specified
range.

The comparison between the trained agent and random actions demonstrates the significant advant-
age of utilizing the trained agent in achieving successful outcomes in the J-tube pull-in installation
scenario. The agent’s ability to consistently receive a total reward of 6000 highlights its proficiency
in controlling the pay-out rate and ensuring the safe and efficient deployment of the cable.

These results further validate the effectiveness of the trained agent and emphasize the practical
implications of its utilization in real-world marine operations. By employing the trained agent
when modelling, operators can benefit from its consistent and reliable performance in the end,
enabling precise control over the cable installation process and ensuring the success of the project.

Overall, the results of this experiment confirm the effectiveness of the DQN agent in controlling the
pay-out rate of the winch wire in the J-tube pull-in installation. The agent successfully maintains
the desired touchdown tension within the specified limits, ensuring the safe and efficient deployment
of the cable. These findings have practical implications in real-world marine operations where
accurate control of cable installation is crucial for the success of the project.

67

8 Conclusion and further work

This thesis aimed to develop a deep neural network-based agent using Deep Reinforcement Learning
(DRL) techniques to automate and optimize modelling for the analysis of marine cable installation.
The objective was to replace manual work involved in parameter optimization, particularly in
determining critical parameters like tension, with an efficient and accurate automated process.

Chapter 1 provided the background and motivation for the study, along with a summary of the
literature review highlighting the current state of marine cable installation analysis. Research
questions were defined, and the objective and scope of the thesis were outlined. The contributions of
this work included advancements in Marine Cybernetics through RL techniques and revolutionizing
the modeling of cable installation processes using intelligent agents.

Chapter 2 presented an overview of submarine power cable technology, including its applications,
reliability, and design elements. This chapter provided the necessary foundation for understanding
the complexities and challenges associated with cable installation.

Chapter 3 focused on cable installation design, discussing critical scenarios, loads, and load effects,
as well as the various steps involved in the cable installation process. It covered topics such as
cable routing, schedule and timing, removal of obstacles, transportation, reel handling, laying
campaign, cable protection, and the required vessel and cable laying equipment. The chapter
also discussed the analysis of submarine cable installation, including cable laying analysis, cable
pulling-in analysis, and considerations for weather conditions.

Chapter 4 introduced the methodology used in this thesis, highlighting the concepts of machine
learning, supervised and unsupervised learning, and deep neural networks. It then looked into
the principles of Reinforcement Learning (RL), including problem formulation, value function,
exploration vs. exploitation, model-free vs. model-based RL, temporal difference learning, policy
optimization, and deep deterministic policy gradient.

Chapter 5 provided an overview of the software used for implementation and case scenarios. It
discussed OrcaFlex, a software package used for modeling and analysis, and OpenAI Gym, a
popular framework for RL experiments. The baseline CartPole problem in OrcaFlex and the
J-tube pull-in problem were introduced as the case scenarios for implementation.

Chapter 6 described the implementation details of the baseline CartPole problem in OrcaFlex,
including the OrcaFlex model, vessel motion, and the custom environment created using OpenAI
Gym. It also presented the execution of the model using random actions and the DQN algorithm.
It further explored the implementation of the J-tube pull-in problem, discussing the payout rate
of quadrant winch wire and the environment setup. It provided insights into the execution of the
model and the simulation process.

Chapter 7 presented the experimental results and discussions for both the baseline CartPole prob-
lem and the J-tube pull-in problem. It analyzed the performance of the developed agent and
provided insights into its effectiveness and efficiency in optimizing the cable installation process.

68

8.1 Conclusion

In conclusion, this thesis/project successfully addressed the research questions raised in the intro-
ductory chapter:

”Can deep reinforcement learning (DRL) be effectively utilized for parameter
optimization in the installation analysis of marine cables?”

The findings demonstrate that deep reinforcement learning techniques, specifically employing a
Deep Q-Network (DQN) agent, can be effectively utilized for parameter optimization in the in-
stallation analysis of marine cables. The trained DQN agents showcased remarkable learning cap-
abilities and adaptability in both the CartPole problem and the J-tube pull-in installation scenario.
By leveraging intelligent agents and reinforcement learning algorithms, critical parameters related
to cable installation, such as tension at the touchdown point, were optimized with high accuracy
and efficiency.

Similarly, in the CartPole problem, the trained DRL agent exhibits accuracy and efficiency in
maintaining stability and balance, as evidenced by the consistent reward achieved across multiple
simulations. The agent successfully learns to control the vessel’s movements and pole angle to
prevent the pole from falling, indicating its proficiency in optimizing critical parameters related to
cable installation.

”How accurate and efficient is the trained DRL agent in optimizing
critical parameters related to cable installation,

such as tension at the touch-down point?”

The trained DQN agents exhibited impressive accuracy and efficiency in optimizing critical para-
meters related to cable installation. In the CartPole problem, the agent consistently achieved high
rewards, effectively controlling the vessel’s motion, maintaining stability, and balancing the pole
within the desired range. Similarly, in the J-tube pull-in installation scenario, the agent success-
fully adjusted the pay-out velocity of the winch wire, ensuring the safe and effective deployment of
the quadrant. The agent’s ability to maintain tension in the cable within specified limits further
confirmed its accuracy in optimizing critical parameters.

In summary, the significant findings of this thesis highlight the potential of deep reinforcement
learning and DQN agents in addressing complex control problems in marine applications. The
trained agents exhibited high levels of performance, adaptability, and learning capabilities. By
successfully optimizing critical parameters, such as tension at the touchdown point, the utilization
of intelligent agents and reinforcement learning techniques improves the accuracy and efficiency of
cable installation processes.

These findings have broader implications for the development of autonomous control systems in
marine operations. The application of deep reinforcement learning and intelligent agents can
enhance safety, efficiency, and overall operational outcomes. By advancing marine cybernetics,
this research contributes to the future of marine cable installations and could pave the way for
further advancements in autonomous control systems in the marine industry.

8.2 Further work

In order to enhance the effectiveness and applicability of the proposed control algorithm, several
avenues for further research and development can be explored.

An important aspect when looking at the J-tube problem and other marine operations is to test
the algorithm’s performance in varying environmental conditions. Incorporating factors such as
wind, waves, and current into the testing scenarios would allow for a comprehensive evaluation of
the algorithm’s robustness and adaptability in real-world conditions. This exploration can provide

69

valuable insights into how the algorithm handles disturbances caused by environmental factors and
help refine its control strategies accordingly.

Moreover, it would be beneficial to assess the algorithm’s performance under different sea states,
ranging from mild to severe. By examining the algorithm’s behavior in various sea states, research-
ers can gain a deeper understanding of its robustness and adaptability in adverse conditions. This
exploration could lead to improvements in the algorithm’s performance and the development of
strategies to ensure safe and reliable operation across a wide range of sea states.

Expanding the control variables beyond the current limited set would also be a valuable avenue for
further investigation. By incorporating more control inputs and reducing the number of constant
variables, the algorithm can be equipped to handle a broader range of operating conditions. This
expansion can enhance the algorithm’s adaptability to dynamic environments and improve its
overall control performance.

To provide a comprehensive assessment of the proposed control algorithm, it is essential to test it in
different real-world scenarios. This could involve evaluating its performance in various water bodies
such as rivers, lakes, and coastal regions. Additionally, exploring the algorithm’s effectiveness in
specific tasks like path planning, obstacle avoidance, or target tracking would provide valuable
insights into its capabilities and limitations. By subjecting the algorithm to diverse scenarios,
researchers can validate its practicality and identify areas for further improvement.

To establish the competitiveness of the proposed control algorithm, it would be valuable to compare
its performance against other existing control algorithms. This comparison can be based on metrics
such as control accuracy, stability, energy efficiency, and response time. By benchmarking against
state-of-the-art control strategies, the strengths and weaknesses of the proposed algorithm can be
identified. This analysis will facilitate further improvements and advancements in the algorithm,
positioning it as an effective and competitive solution.

Lastly, comparing the proposed control algorithm with the widely used proportional-integral-
derivative (PID) controller would be an interesting avenue to explore. The PID controller is a
well-established control technique, and comparing its performance with the proposed algorithm
can provide valuable insights. This comparison would shed light on the advantages, if any, of
the proposed algorithm over the conventional PID approach and help identify potential areas for
improvement or alternative control strategies.

By addressing these aspects in further research and development, the proposed control algorithm
can be refined, validated, and positioned as an effective and reliable solution.

70

Bibliography

Ahn, Ki Uhn and Cheol Soo Park (2020). ‘Application of deep Q-networks for model-free optimal
control balancing between different HVAC systems’. In: Science and Technology for the Built
Environment 26.1, pp. 61–74. doi: 10.1080/23744731.2019.1680234. url: https://doi.org/10.
1080/23744731.2019.1680234.

Anthony, Thomas, Zheng Tian and David Barber (2017). ‘Thinking Fast and Slow with Deep
Learning and Tree Search’. In: CoRR abs/1705.08439. arXiv: 1705.08439. url: http://arxiv.
org/abs/1705.08439.

API, American Petroleum Institute (2014a). Recommended Practice for Flexible Pipe. Pages: 138-
161. Accessed: 2022–09-19.

— (2014b). Specification for Unbonded Flexible Pipe. Pages: 22-28. Accessed: 2022–09-19.
Barto, Andrew G., Richard S. Sutton and Charles W. Anderson (1983). ‘Neuronlike adaptive

elements that can solve difficult learning control problems’. In: IEEE Transactions on Systems,
Man, and Cybernetics SMC-13.5, pp. 834–846. doi: 10.1109/TSMC.1983.6313077.

Cigre (2022). Installation of Submarine Power Cables. url: https://e-cigre.org/publication/883-
installation-of-submarine-power-cables.

Delua, Julianna (2021). ‘Supervised vs. Unsupervised Learning: What’s the Difference?’ In: IBM.
url: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.

Equinor (2022). Kort om Equinor. url: https://www.equinor.com/no/om-oss/kort-om-equinor.
Feinberg, Vladimir et al. (2018). ‘Model-Based Value Estimation for Efficient Model-Free Rein-

forcement Learning’. In: CoRR abs/1803.00101. arXiv: 1803.00101. url: http://arxiv.org/abs/
1803.00101.

Foy, Peter (2021). Fundamentals of Reinforcement Learning: Policies, Value Functions & the Bell-
man Equation. url: https://www.mlq.ai/reinforcement-learning-policies-value-functions-bellman-
equation/.

Garnier, Paul et al. (2021). ‘A review on deep reinforcement learning for fluid mechanics’. In:
Computers & Fluids 225, p. 104973. issn: 0045-7930. doi: https://doi.org/10.1016/j.compfluid.
2021.104973. url: https://www.sciencedirect.com/science/article/pii/S0045793021001407.

GM (2022). Global Maritime. url: https://www.globalmaritime.com/.
Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016).Deep Learning. http://www.deeplearningbook.

org. MIT Press.
Grimstad, Bjarne (2022). TTK28 - Modelling with neural networks. Accessed: 2022–10-18.
Guo, Siyu et al. (2021). ‘Path Planning of Coastal Ships Based on Optimized DQN Reward Func-

tion’. In: Journal of Marine Science and Engineering 9.2. issn: 2077-1312. doi: 10 . 3390 /
jmse9020210. url: https://www.mdpi.com/2077-1312/9/2/210.

Hoss, Belyadi and Haghighat Alireza (2021). Machine Learning Guide for Oil and Gas Using
Python : A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications. Gulf Pro-
fessional Publishing. isbn: 9780128219294. url: https : / / search . ebscohost . com/ login . aspx ?
direct=true&db=nlebk&AN=2643527&site=ehost-live&scope=site.

IEA, International Energy Agency (2021). Renewables 2021. Paris: International Energy Agency.
url: https://www.iea.org/reports/renewables-2021.

IEEE (2005). ‘IEEE Guide for the Planning, Design, Installation, and Repair of Submarine Power
Cable Systems’. In: IEEE Std 1120-2004, pp. 1–45. doi: 10.1109/IEEESTD.2005.95937.

Kiran, Mariam and Melis Ozyildirim (2022). Hyperparameter Tuning for Deep Reinforcement
Learning Applications. arXiv: 2201.11182 [cs.LG].

KVCable.com (2022). Submarine Cable. url: https://kvcable.com/products/submarine-cable/.
Li, Lingyu et al. (2021). ‘A path planning strategy unified with a COLREGS collision avoidance

function based on deep reinforcement learning and artificial potential field’. In: Applied Ocean
Research 113, p. 102759. issn: 0141-1187. doi: https://doi.org/10.1016/j.apor.2021.102759.
url: https://www.sciencedirect.com/science/article/pii/S0141118721002352.

Li, Yuxi (2018). ‘Deep Reinforcement Learning’. In: CoRR abs/1810.06339. arXiv: 1810.06339.
url: http://arxiv.org/abs/1810.06339.

Liang, Eric et al. (2017). ‘Ray RLLib: A Composable and Scalable Reinforcement Learning Library’.
In: CoRR abs/1712.09381. arXiv: 1712.09381. url: http://arxiv.org/abs/1712.09381.

Lin, Long-Ji (1993). ‘Reinforcement Learning for Robots Using Neural Networks’. UMI Order No.
GAX93-22750. PhD thesis. USA.

71

https://doi.org/10.1080/23744731.2019.1680234
https://doi.org/10.1080/23744731.2019.1680234
https://doi.org/10.1080/23744731.2019.1680234
https://arxiv.org/abs/1705.08439
http://arxiv.org/abs/1705.08439
http://arxiv.org/abs/1705.08439
https://doi.org/10.1109/TSMC.1983.6313077
https://e-cigre.org/publication/883-installation-of-submarine-power-cables
https://e-cigre.org/publication/883-installation-of-submarine-power-cables
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.equinor.com/no/om-oss/kort-om-equinor
https://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
https://www.mlq.ai/reinforcement-learning-policies-value-functions-bellman-equation/
https://www.mlq.ai/reinforcement-learning-policies-value-functions-bellman-equation/
https://doi.org/https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/https://doi.org/10.1016/j.compfluid.2021.104973
https://www.sciencedirect.com/science/article/pii/S0045793021001407
https://www.globalmaritime.com/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.3390/jmse9020210
https://doi.org/10.3390/jmse9020210
https://www.mdpi.com/2077-1312/9/2/210
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2643527&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2643527&site=ehost-live&scope=site
https://www.iea.org/reports/renewables-2021
https://doi.org/10.1109/IEEESTD.2005.95937
https://arxiv.org/abs/2201.11182
https://kvcable.com/products/submarine-cable/
https://doi.org/https://doi.org/10.1016/j.apor.2021.102759
https://www.sciencedirect.com/science/article/pii/S0141118721002352
https://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
https://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381

Maritime, Kongsberg (2022). Kongsberg Maritime. url: https://www.kongsberg.com/no/maritime/.
Mitchell, Tom M. (1997). Machine learning. McGraw-Hill Science/Engineering/Math. url: http:

//www.cs.cmu.edu/∼tom/files/MachineLearningTomMitchell.pdf.
Mnih, Volodymyr et al. (2013). ‘Playing Atari with Deep Reinforcement Learning’. In: CoRR

abs/1312.5602. arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.
Mohaghegh, Shahab (Sept. 2000). ‘Virtual-Intelligence Applications in Petroleum Engineering:

Part 1 - Artificial Neural Networks’. In: Journal of Petroleum Technology - J PETROL TECH-
NOL 52, pp. 64–73. doi: 10.2118/58046-MS.

Nagabandi, Anusha et al. (2017). ‘Neural Network Dynamics for Model-Based Deep Reinforcement
Learning with Model-Free Fine-Tuning’. In: CoRR abs/1708.02596. arXiv: 1708.02596. url:
http://arxiv.org/abs/1708.02596.

Nexans (2022). Nexans Norge. url: https://www.nexans.no/no/company.html.
Nielsen, M.A. (2015). Neural Networks and Deep Learning. Determination Press. url: https://

books.google.no/books?id=STDBswEACAAJ.
OpenAI (2017). OpenAI Baselines: DQN. url: https://openai.com/research/openai-baselines-dqn.
— (2022a). Gym Documentation. url: https://www.gymlibrary.dev/.
— (2022b). Gym Documentation - CartPole. url: https ://www.gymlibrary.dev/environments/

classic control/cart pole/.
— (2022c). Part 2: Kinds of RL Algorithms. url: https : // spinningup .openai . com/en/ latest /

spinningup/rl intro2.html.
Orcina (2022a). OrcaFlex – World-leading software that goes beyond expectation. url: https://

www.orcina.com/orcaflex/.
— (2022b). OrcaFlex API Documentation. url: https ://www.orcina .com/webhelp/OrcFxAPI/

Default.htm.
— (2022c). OrcaFlex Documentation. url: https://www.orcina.com/webhelp/OrcaFlex/Default.

htm.
Park, Sangmin et al. (Sept. 2021). ‘Deep Q-network-based traffic signal control models’. In: PLOS

ONE 16.9, pp. 1–14. doi: 10.1371/journal.pone.0256405. url: https://doi.org/10.1371/journal.
pone.0256405.

Paszke, Adam and Mark Towers (2023). Reinforcement learning (DQN) tutorial. url: https://
pytorch.org/tutorials/intermediate/reinforcement q learning.html.

Patrick, Bangert (2021). Machine Learning and Data Science in the Oil and Gas Industry : Best
Practices, Tools, and Case Studies. Gulf Professional Publishing. isbn: 9780128207147. url:
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2518914&site=ehost-
live&scope=site.

Poulsen, Michael Fly (2022). Cable & Pipe handling. https://www.macartney.com/offshore-wind-
solutions/cable-pipe-handling/. Accessed: 2022–09-10.

Pylessons (2019). Introduction to Reinforcement Learning. url: https://pylessons.com/CartPole-
reinforcement-learning.

Rabault, Jean et al. (2020). ‘Deep reinforcement learning in fluid mechanics: A promising method
for both active flow control and shape optimization’. In: Journal of Hydrodynamics. url: https:
//doi.org/10.1007/s42241-020-0028-y.

Sehgal, Adarsh et al. (2022). Automatic Parameter Optimization Using Genetic Algorithm in Deep
Reinforcement Learning for Robotic Manipulation Tasks. arXiv: 2204.03656 [cs.RO].

Silver, David (2015). Lectures on Reinforcement Learning. url: https : / /www . davidsilver . uk /
teaching/.

Subsea7 (2022). Subsea 7 - about us. url: https://www.subsea7.com/en/about-us.html.
Surma, Greg (2018). Cartpole - Introduction to Reinforcement Learning (DQN - Deep Q-Learning).

url: https://gsurma.medium.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288.
Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. Cam-

bridge, MA, USA: A Bradford Book. isbn: 0262039249.
Szepesvari, Csaba (2010). Algorithms for Reinforcement Learning. Morgan and Claypool Publish-

ers. isbn: 1608454924.
Williams, Ronald J. (1992). ‘Simple Statistical Gradient-Following Algorithms for Connectionist

Reinforcement Learning’. In: Machine Learning 8, pp. 229–256.
Worzyk, T. (2009). Submarine Power Cables: Design, Installation, Repair, Environmental Aspects.

Power Systems. Springer Berlin Heidelberg. isbn: 9783642012709. url: https://books.google.
no/books?id=X8QfRT%5C SYDgC.

72

https://www.kongsberg.com/no/maritime/
http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.2118/58046-MS
https://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
https://www.nexans.no/no/company.html
https://books.google.no/books?id=STDBswEACAAJ
https://books.google.no/books?id=STDBswEACAAJ
https://openai.com/research/openai-baselines-dqn
https://www.gymlibrary.dev/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://www.orcina.com/orcaflex/
https://www.orcina.com/orcaflex/
https://www.orcina.com/webhelp/OrcFxAPI/Default.htm
https://www.orcina.com/webhelp/OrcFxAPI/Default.htm
https://www.orcina.com/webhelp/OrcaFlex/Default.htm
https://www.orcina.com/webhelp/OrcaFlex/Default.htm
https://doi.org/10.1371/journal.pone.0256405
https://doi.org/10.1371/journal.pone.0256405
https://doi.org/10.1371/journal.pone.0256405
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2518914&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2518914&site=ehost-live&scope=site
https://www.macartney.com/offshore-wind-solutions/cable-pipe-handling/
https://www.macartney.com/offshore-wind-solutions/cable-pipe-handling/
https://pylessons.com/CartPole-reinforcement-learning
https://pylessons.com/CartPole-reinforcement-learning
https://doi.org/10.1007/s42241-020-0028-y
https://doi.org/10.1007/s42241-020-0028-y
https://arxiv.org/abs/2204.03656
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://www.subsea7.com/en/about-us.html
https://gsurma.medium.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288
https://books.google.no/books?id=X8QfRT%5C_SYDgC
https://books.google.no/books?id=X8QfRT%5C_SYDgC

Wu, Di et al. (2022). ‘Deep Reinforcement Learning-Based Path Control and Optimization for
Unmanned Ships’. In: Wireless Communications and Mobile Computing. url: https://doi.org/
10.1155/2022/7135043.

73

https://doi.org/10.1155/2022/7135043
https://doi.org/10.1155/2022/7135043

Appendix

A Specification

A.1 Load Combinations of load classes, load conditions

Load Combinations of load classes, load conditions, from (API 2014b)

74

A.2 Typical load classes

Typical load classes, from (API 2014b)

75

A.3 Flexible Pipe Layer Design Criteria

Flexible Pipe Layer Design Criteria, from (API 2014b)

76

	Preface
	Summary
	Sammendrag
	List of Figures
	List of Tables
	Introduction
	Background
	Literature review
	Brief review of Machine Learning (ML) and Reinforcement Learning (RL)
	Applications of DRL
	Applications of DQN
	Research gap

	Objective and scope
	Objective
	Research questions
	Scope

	Contribution
	Advancement of Marine Cybernetics through RL techniques
	Revolutionizing cable installation modelling process using intelligent agents

	Outline

	Submarine power cable technology
	Applications
	Reliability
	Design elements

	Cable installation design
	Critical scenarios
	Loads and load effects
	Design curves

	Cable installation steps
	Cable routing
	Schedule and timing
	Removal of obstacles
	Transportation
	Reel handling
	Laying campaign
	Cable protection
	Vessel and cable laying equipment
	Installing cable on land

	Submarine cable installation analysis
	Cable laying analysis
	Cable pulling-in analysis at landfall and at offshore asset
	Weather conditions

	Methodology
	Machine learning
	Supervised learning
	Unsupervised learning
	Deep neural networks

	Reinforcement learning
	Problem formulation
	Value function
	Modern RL non-exhaustive taxonomy
	Exploration vs. exploitation
	Model-free vs. model-based RL
	Temporal difference learning
	Policy optimization
	Deep deterministic policy gradient
	Deep Q-learning (DQN)

	Software used for implementation and case scenario
	Software used for implementation
	OrcaFlex
	Documentation
	Modelling and analysis
	PythonAPI

	OpenAI gym
	Cartpole example

	Baseline CartPole problem in OrcaFlex
	J-tube pull-in problem

	Implementation
	Baseline CartPole problem in OrcaFlex
	OrcaFlex model
	Vessel motion

	OpenAI gym custom environment
	Execution of model
	Execution of whole simulation
	Random action
	DQN

	J-tube pull in problem
	Pay-out rate of quadrant winch wire
	Environment
	Execution of model
	Execution of whole simulation

	Experiment and results
	Baseline CartPole problem
	Results and discussion

	J-tube pull-in problem
	Results and discussion

	Conclusion and further work
	Conclusion
	Further work

	Bibliography
	Appendix
	Specification
	Load Combinations of load classes, load conditions
	Typical load classes
	Flexible Pipe Layer Design Criteria

