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Abstract

With the all-around change caused by artificial intelligence (AI) technology, the
need for perception in real scenes is increasingly urgent. As an essential medium
to perceive the world, the integrity and richness of information often determine
the performance of the algorithm. However, in the process of image capture, there
are usually a variety of uncontrollable physical factors, resulting in image inform-
ation degeneration and missing, thus affecting the acquisition and utilization of
information in the application process of high-level visual tasks. The concept of
information enhancement is becoming increasingly important in today’s world,
as we are constantly bombarded with vast amounts of information from multiple
sources. It is not enough to have access to information. We need to be able to
extract the most relevant and useful information from this abundance of data. This
is where information enhancement comes in, as it aims to improve the quality and
relevance of information through various techniques.

The present thesis examines that the core theme is information enhancement and
a knowledge-oriented systematic framework of enhancement for various applic-
ations is proposed, which includes single-modal information enhancement (SIE),
multi-modal information enhancement (MIE), and task-driven information enhance-
ment (TIE). First, SIE investigates the single modal medical image quality en-
hancement techniques for improved visual inspection with the downstream applic-
ation. Second, MIE aims to integrate multiple modal medical images by feature-
level fusion for further understanding and complementing information enhance-
ment. Finally, TIE extends the generality of enhancement perspective that embeds
into high-level visual tasks.

Single-modal information enhancement (SIE) is focused on enhancing the quality
and clarity of information from a single source or modality. The goal of SIE is

1
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to improve the accuracy and usefulness of the information within a single modal-
ity, which can be especially important in situations where the data quality is low
or the signal-to-noise ratio is poor. To achieve the research goal of this thesis, a
framework of image information enhancement for two knowledge-oriented meth-
ods based on generative adversarial neural networks (GAN) is proposed.

Multi-modal information enhancement (MIE) involves integrating and enhancing
information from multiple sources or modalities. This can include combining im-
ages to improve understanding or merging data from multiple sensors to provide a
complete picture. The goal of MIE is to increase the amount and quality of inform-
ation available by integrating multiple sources, thereby enabling better decision-
making and understanding. To investigate the feasibility of MIE, one optimization-
based fusion method and one deep learning GAN-based method are proposed and
verified by medical image segmentation task and object detection/tracking.

Task-driven information enhancement (TIE) focuses on enhancing information
specifically for a particular application. For this topic, two methods are proposed
to verify how to embed knowledge-oriented information enhancement in high-
level vision applications, including medical image segmentation and object detec-
tion/tracking.

The research conducted as part of the Ph.D. thesis on information enhancement
will likely involve developing and evaluating various knowledge-oriented meth-
ods for implementing these information enhancement techniques. This may in-
clude analyzing image data from various modalities and developing algorithms to
improve the quality, content, and relevance practicability of the information con-
tained within these sources.

Overall, the Ph.D. thesis on information enhancement is to contribute to our under-
standing of how to extract the most useful and relevant information from the vast
amount of data, to advance our knowledge of critical principles and techniques.
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Chapter 1

Introduction

This chapter aims to provide the details of this thesis’s context, motivation, and
research questions. In addition, it outlines the related research publications and
their interrelationship with the research questions. Finally, the structure of this
thesis is given.

1.1 Research Context
Vision is an innate ability for both humans and animals. We effortlessly perceive
and understand the world around us without any conscious training. However, for
machines, comprehending images is a formidable challenge. Computer vision is a
field of study that aims to teach machines how to "see." Through continuous iter-
ation with a clearly defined objective function, modern computer technology can
complete various complicated tasks such as image and video classification, target
tracking and detection, instance segmentation, and key point detection. Despite
the remarkable progress made in the field of computer vision, the cost of training
a single complex task is high, data collection is difficult, and the number of in-
terdisciplinary image understanding tasks is overwhelming. The training process
requires a clearly defined objective function to complete a complex task. At the
same time, human vision is characterized by the ability to perform an extensive
array of tasks without explicit instruction.

Nowadays, Artificial Intelligence (AI) has emerged as a burgeoning field world-
wide, encompassing a vast array of definitions. Some researchers [151] define AI
as "a system that thinks like humans," while others describe it as "a system that acts
like humans." However, there is no universally accepted formal definition of AI,
as it may vary depending on the environment in which it is applied. Despite this

7
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ambiguity, AI plays a significant role in many aspects of computing technology.

To study this automagic process of vision, there is one main methodological dis-
tinction 1 to specify the position of scientific findings concerning research ques-
tions in the total field of vision research:

The total field of vision research may be divided into several subfields:

• Low-level Vision — which concerns extracting image properties from the
retinal image.

• High-level Vision — which concerns the everyday functionality of percep-
tual organizations.

In particular, a discernible difference exists between AI with high-level vision and
low-level vision. High-level vision has made remarkable progress recently, and
its application is increasingly prevalent in various fields, such as face recognition
and autonomous driving. Conversely, low-level vision remains a challenging area
of research, with limited progress made thus far. Nevertheless, the field of AI is
continuously evolving. With ongoing research, further advancements will likely
be made in high-level and low-level vision, leading to even more impressive ap-
plications.

We acknowledge the tremendous power of machine learning in high-level vision
tasks, as it can be trained with only enough data and information. However, giving
more attention to the quality and source of the data and potential issues that may
arise is crucial, particularly in low-level vision tasks. Understanding low-level
vision can greatly aid high-level vision tasks.

For instance, in the past, when performing Optical Character Recognition (OCR)
[8], it was necessary to identify text in images. However, the data available for
machine learning tasks was limited, covering only a portion of the data. This
resulted in undesired data alterations, such as changes in illumination, gradient,
and destruction, which were unrelated to the actual words in the image.

Although it is possible to input these data alterations into the machine learning
model directly, it is more efficient to remove them beforehand, especially when
data is insufficient. Suppose someone has a thorough understanding of low-level
vision Figure 1.1. In that case, they can consider removing these alterations be-
fore feeding the data into the machine learning model, resulting in more efficient
machine learning that relies less on data.-

1The details can be found in https://ppw.kuleuven.be/apps/research/petervanderhelm/doc/visionintro.html
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Computer Vision (CV) encompasses various facets, including signal acquisition,
processing, analysis, and final comprehension, and is closely related to numerous
disciplines, such as machine learning, optics, and computer graphics. Moreover,
it is intertwined with our comprehension of the physical world. Nonetheless,
due to the constraints of sensors, our comprehension often originates from two-
dimensional or one-dimensional projections instead of full three-dimensional data.
Image enhancement and reconstruction are fundamental research problems in im-

Low-level Vision

• Understanding Limitations and Assumptions
in image formation

• Understand sources of image variation
• Cues for resolving problems in high-level

vision tasks

Figure 1.1: The common discussions of low-level vision [40].

age processing, which have been extensively studied and explored by scholars in
related fields for a considerable time. The primary causes of image degradation
are complex imaging equipment and unfavorable external imaging environments,
such as system noise, camera shake, poor weather, and other factors. These can
result in images of varying degrees of degradation, manifesting as noisy images,
blurry images, and images polluted by rain and fog, among others. Enhancing
and reconstructing degraded images to obtain a clear image with good visual qual-
ity is an incredibly challenging problem. As the foundational processing steps
in many real-world vision systems, image enhancement and reconstruction aim
to improve image quality and provide reliable information for subsequent visual
decision-making.

1.2 Research Motivation
In this thesis, we would like to introduce the two concepts first. High-content
images contain significant information or meaningful content, such as detailed im-
ages of cells, tissues, or complex scenes. These images often require sophisticated
analysis techniques, such as image segmentation and feature extraction, to extract
relevant information from the data.
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On the other hand, low-content images contain relatively little information or
meaningful content that typically has minimal information or details. Examples
of low-content images include simple shapes, abstract patterns, or blurred back-
grounds. These images do not typically require sophisticated analysis techniques
and can be easily processed.

These terms [161] are commonly used in computer vision, image analysis, and sci-
entific research, and their definitions can be found in various academic papers and
textbooks related to these fields. Overall, the definitions of high-content and low-
content images are widely accepted and used in various fields, and their specific
applications and interpretations may vary depending on the context.

Image information enhancement refers to enhancing high-content images from
low-content images, an important class of image processing techniques in low-
level computer vision and image processing. Figure 1.2 shows that the citations
and publications covering the keyword Information Enhancement, which is for pa-
pers published in the given year, not the number of citations in that year 2. The
trends are estimated by the number of publications of the given keyword(s) and
show an increasing tendency.

It covers a wide range of real-world AI applications, such as medical imaging [45], [123],
natural image [210], [148] amongst others. Other than improving perceptual im-
age quality, it also helps to improve other computer vision tasks[146], [36], [135].
High-content images are desired urgently in the above application areas, such as
intelligent surveillance, medical imaging, and remote sensing. To obtain images
with higher content, a logical approach would be to upgrade the hardware (e.g.,
the imaging system).

Although recent years have witnessed the obvious progress of imaging devices and
techniques, this kind of approach has two main limitations:

• It is inflexible and costly because the demand for practical applications is
constantly changing;

• It can be used only to capture new high-content images but not to enhance
the existing low-content images.

Compared to the hardware upgrade-based ’hard’ solution, the signal processing-
based ’soft’ image content enhancement is more flexible and economical. With
the image information enhancement techniques that reconstruct a higher content

2The search is based on major keywords "Information Enhancement" highlighting the main
theme of this thesis: https://exaly.com/trends/Information-Enhancement/1970-2020.
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output from the low content observation, we can obtain images with high content
beyond the limit of imaging systems, thereby improving visual quality and bene-
fiting the subsequent analysis and understanding tasks.

Figure 1.2: The trends of publications covering the keyword Information Enhancement
[1].

The main goal of information enhancement is to solve the limitations of imaging
equipment hardware, image processing software, and dataset collection environ-
ment since the sensors of a single type or setting can not fully characterize the
imaging scene.

For example, visible light images usually contain rich texture details [46], but
they are vulnerable to the impact of extreme environment and occlusion and lose
the objects in the scene. On the contrary, some specific sensors [14] can effect-
ively highlight prominent targets such as pedestrians and vehicles by capturing
the radiation information emitted by objects but lack the ability to provide de-
tailed descriptions. In addition, sensors with different International Organizations
Standardization (ISO) [145] and exposure time can only capture scene information
within their dynamic range, and inevitably lose information beyond the dynamic
range.

In addition to the visible light field, there are situations in the medical image field
where relevant information needs to be enhanced. In the medical field, imaging
technology is mainly divided into using electromagnetic and acoustic energy ima-
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ging [17]. The use of acoustic energy imaging refers to using different propagation
speeds of ultrasound in different media to achieve real-time imaging directly.

Medical imaging technology has developed rapidly. In addition to Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomo-
graphy (PET), and Single Photon Emission Computed Tomography (SPECT), there
are also conventional imaging technologies such as X-ray and ultrasound. Taking
the brain medical image, which can be checked in Figure 1.3 as an example, the
image obtained by CT can provide rich anatomical details and can clearly dis-
tinguish the skull, brain parenchyma, cerebrospinal fluid, and non-pathological
calcification areas in the brain; MRI can display abundant physiological and bio-
chemical information, including nerves, blood vessels and soft tissues in the brain;
PET/SPECT images can reflect the metabolism of markers in normal and diseased
tissues and the blood flow signals of the brain. Due to the existence of equipment,

Figure 1.3: The example of computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), and single photon emission computed tomo-
graphy (SPECT).

environment, operators, and other factors, low-quality images present significant
challenges and lead to a poor explanation of the predictions. Image is often taken
under sub-optimal lighting conditions, under the influence of backlit, uneven light,
and dim light, due to inevitable environmental and/or technical constraints such
as insufficient illumination and limited exposure time, which can be checked in
Figure 1.4. Such images suffer from compromised aesthetic quality and unsatis-
factory transmission of information for high-level tasks. This problem is generally
challenging and inherently ill-posed since there are not always solved exactly.

For example, the inevitable different dye compositions in staining, illumination
variants [74] in scanning technologies, and image artifacts such as noise and blur-
ring would limit the prediction accuracy. Not only that, but other optical-based
medical scenarios will also occur to the appearance variants. Endoscopic ima-
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ging [115] suffers from non-uniform illumination due to the directory of the light
source. Furthermore, different imaging technologies [131] have their own advant-
ages, limitations, and clear scope. Various enhancement techniques are required
to achieve these clear sensing situations to challenge these imaging problems. In-
formation enhancement is the basic fundamental component for the development
of AI applications.

Figure 1.4: The example of the degraded natural image and medical image.

Considering the current real situation, this is a complicated task because no general
unified theory is available for computational imaging to guide the enhancement of
information. Furthermore, the lack of a quantitative standard for selecting the best
criterion for information enhancement adds to the complexity of this task. Inform-
ation enhancement of an image is the process of improving the quality or making it
more visually appealing to some extent. The selection criterion for image enhance-
ment depends on the specific application and the goals of the image enhancement.
Here are some common selection criteria for image enhancement:

• Image Quality: The image quality refers to the resolution, brightness, con-
trast, sharpness, color balance, and other visual aspects of the image. The
selection criterion for image enhancement should aim to improve the overall
image quality to make it more visually appealing.

• Image Content: The selection criterion for image enhancement can depend
on the image’s content. For example, images with text may require different
enhancement techniques than images with natural landscapes or portraits.
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In some cases, the image content can determine the detail required in the
enhancement process.

• Downstream Application: The selection criterion for image enhancement
should also consider the image’s intended use. For example, an image used
for scientific analysis may require different enhancement techniques than
one used for marketing purposes.

Meanwhile, it is usually difficult to measure whether the quality of the enhanced
information is improved and to what extent. Even having multiple parameters
controlling the enhancement output makes this situation even worse. Traditional
image enhancement technologies [2][51] have been proposed to improve down-
stream application tasks. However, the dependence of these models on manually
designed models has a greater impact on the results in complex optical medical
scenarios.

In recent years, many methods [100, 159] introduced deep learning into image en-
hancement technology and improved the model’s performance by learning direct
mapping based on pairing learning. However, most of these fully supervised mod-
els need to train the image pairs strictly, which leads to the model’s performance
being greatly affected by the dataset. Not only information enhancement focuses
on image quality, but it also relies on the content of the image description.

From [107], we notice three indicators to generalize the objective enhancement
criteria:

• Make the enhancement processes intelligent.

• Select a suitable transform.

• Select the optimal parameters.

It becomes necessary to develop information enhancement that can be used as an
effective standard when it is used for pre-processing and followed by other image-
processing steps. Developing information enhancement technologies is helpful in
supporting the low-level research community.

1.3 Research Objectives
The present work is a systematic framework of information enhancement around
several applications. The main scientific output includes Single-modal Informa-
tion Enhancement (SIE), Multi-modal Information Enhancement (MIE), and Task-
driven Information Enhancement (TIE) for the current enhancement research com-
munity. Hence, we formulate the main objective as follows:
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This research aims to develop methods to improve the visual appearance and con-
tent of several types of images. In order to reach the main goal, the research work
is divided into three sub-objectives as defined below:

— Objective 1: To create advanced research techniques and practical uses,
construct a technical basis for improving Single-modal Information Enhance-
ment (SIE) through the creation of an unpaired deep learning training frame-
work.

Medical image quality is the key judgment basis of clinical diagnosis and
treatment in healthcare. However, low-quality medical images can not provide
a large amount of precise information on human tissues or organs beyond the
reach of human eyes. Furthermore, a network’s generalization ability may
be restricted due to a shortage of training data, making it difficult to perform
effectively. Especially in real-world scenarios, it is hard to collect sufficient
good registration datasets. Most methods only focus on the global appear-
ance to enhance the low quality from the guidance of high-quality data in the
same feature extraction network to achieve unpaired learning. The informa-
tion entanglement caused by ignoring specific image characteristics between
different quality images leads to the degradation of enhancement perform-
ance. Therefore, this objective focuses on developing a data-driven neural
network framework with a new perspective on feature extraction and differ-
ent comparative assessment study on state-of-the-art enhancement methods.

— Objective 2: To propose a fusion guided framework for Multi-modal In-
formation Enhancement (MIE), considering multiple optimization-driven con-
straints, data characteristics, and theoretical improvement.

To deal with multi-modal information interactions, various strategies have
been developed with success [184],[75],[163]. Some works [85] have gradu-
ally sought decomposition methods for feature extraction, but they ignored
the explicit redundancy removal of the whole framework. The core of this
objective is to propose a constraint-based optimization learning and data-
driven framework for multi-modal image fusion-guided information enhance-
ment. Medical and natural images are used in experiments to verify the
performance of the proposed methods.

— Objective 3: Investigating different knowledge extraction strategies and
learning mechanisms to benefit the high-level visual tasks and further ex-
tend the Task-driven Information Enhancement (TIE) for high-level visual
tasks.
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In this objective, we highlight the inherent concept limited by image qual-
ity and image fusion of information enhancement. Our primary emphasis is
incorporating task-specific knowledge as external information to supervise
high-level visual tasks such as medical image segmentation and visual object
tracking. Our research objective is not limited to improving existing repres-
entation learning for neural networks from the perspective of information
enhancement. Still, we also explore various forms of external information
as weak supervision to inform network design.

Research Questions
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Figure 1.5: A schematic overview of research problems, motivation, and contents

1.4 Research Questions
Three main Research Question (RQ)s were formulated to lead the research activit-
ies to accomplish the research objectives. Figure 1.5 describes the research activ-
ities with the corresponding research questions. Building on these stated goals
described above, this thesis will raise several of the following research questions:

— RQ 1: What are training mechanisms of deep neural network in an
end-to-end learning manner that can solve the problems of poor image
quality and lack of paired data in Single-modal Information Enhance-
ment (SIE)?
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The first research question stimulates investigating the existing problems of
the training mechanism in Single-modal Information Enhancement (SIE),
including domain gap, unpaired dataset, degraded image quality, and feature
extraction technologies. This question attempts to recognize opportunities,
prospects, and limitations of low-level vision in the medical image area.
While traditional manual-engineering works about medical image enhance-
ment have their research topics and corresponding methodologies, with the
supporting deep learning powerful feature capability. The novel networks
and training mechanism can be introduced into the requirements of real col-
lected medical image data, which are difficult to acquire paired high-quality
data in real-world scenarios.

Research question 1 can be further elaborated into more detailed research
questions to establish an understanding of practical problems.

— RQ 1-1: Is it possible to use deep learning for an unpaired dataset for
image enhancement?

Most fully supervised models need to train the image pairs strictly,
which leads to the performance of the model and is greatly affected
by the dataset. Furthermore, medical images are restricted by different
tissues and lesions, which makes it difficult to collect complete low-
quality/high-quality data pairs. Therefore, in recent years, an unpaired
data-learning model has become an important research topic in med-
ical image enhancement. This research question gives the framework
from different network structures to solve how to maintain structural
information in medical image enhancement. This research question is
answered in the research paper I and paper II (RP I and RP II; listed in
Section 1.5).

— RQ 1-2: How to solve the domain gap problem in the unpaired dataset
for image enhancement?

In the current works, it is too complex to recognize the specific in-
formation between high-quality and low-quality, only relying on the
same encoder network. Thus, it is prone to over-fitting and leads to
the entanglement problem in high-dimensional feature representation
in terms of the domain gap, training scale, different structure, texture,
and illumination intensity. This research question is answered in the
research paper II.
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— RQ 2: With respect to data fusion objective function and optimization
constraint, how the technology of multi-modal fusion can achieve Multi-
modal Information Enhancement (MIE) and how to solve information
entanglement and lack of detail preservation?

For the assessment of specific scenarios, different imaging modalities usu-
ally provide different information on the target structure. In actual practice,
the data with different physical imaging principles have always been used
together to obtain a more comprehensive view of specific information re-
organization. On the other hand, although the data from different modalities
have dramatic differences in appearance, some techniques are always re-
quired to aid in the following high-level visual tasks. This research question
discusses the multi-modal sources that would lead to mixed mutual inform-
ation from multiple modalities resulting in sub-optimal accuracy for each
modality. To ensure accuracy and clarity, removing any redundant inform-
ation from a given piece of content is important. This can be achieved by
including all the necessary details while avoiding repetition or duplication of
information. This approach is particularly useful when presenting complex
or technical information, as it allows the data fusion method to focus on the
most important points without being distracted by unnecessary or repetitive
information. Thus, this is the first question should be how to evaluate the
problem of feature extraction and redundancy. Furthermore, how to achieve
edge and texture preservation between multi-modal images in a more gen-
eral perspective?

— RQ 2-1: How to solve feature extraction and redundancy problem for
multi-modal image information fusion enhancement?

How to preserve important biological information efficiently has be-
come a main challenge. A single modal source provides limited in-
formation and cannot meet the requirements of patient verification,
disease diagnosis, health monitoring, surgery, and radiation therapy.
Fusing different sources into one image is necessary to obtain com-
plementary information to assist aided-diagnosis frameworks. Feature
extraction-driven methods have demonstrated that this explicit fusion
guideline (extensions of feature extraction capacity only) leads to sev-
eral issues for medical image fusion. The major problem of these al-
gorithms is that the information is over-completed. Thus, the main
solution is adapting the appropriate balance between feature extraction
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and redundancy removal. This thesis answers this research question in
RP III.

— RQ 2-2: How to achieve edge and texture preservation between multi-
modal images?

This research question answers how to preserve information by op-
timization and deep learning from both perspectives. The multi-level
feature information and optimization-driven constraints are considered
to achieve our goal. This thesis answers this research question in RP
III and RP IV.

— RQ 3: To what extent the external knowledge information and discov-
ering what information enhancement of Task-driven Information En-
hancement (TIE) benefiting for high-level vision task decision-making
support.

After building the content and quality information enhancement model, the
following research questions are about how we analyze the detail and task-
driven information enhancement for high-level visual tasks. To generalize
and diagnose the practical applications, we must examine the data charac-
teristics, knowledge generalization, knowledge information distillation, and
further precise evaluation models. Research question 3 will be distributed to
four precise research sub-questions to analyze the detail task-driven inform-
ation enhancement from different perspectives and objectives for high-level
visual tasks. Two interesting topics are selected to verify the effectiveness of
information enhancement in a task-driven manner, including segmentation
of multiple organs and tumors on partially labeled medical image datasets
and video-based visual object tracking. This research question is answered
in RP V and RP VI.

— RQ 3-1: What external knowledge information can facilitate analysis
of partially labeled medical image segmentation?

To analyze the task of segmenting multiple organs and tumors on a par-
tially labeled medical image dataset, we first investigate the knowledge
of conditioning class label information within network training as a
manner of information supervision technology. It can also provide an
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interesting perspective for solving multi-modal high-level visual tasks.
This research question is addressed in RP V.

— RQ 3-2: Based on the conditioning class label information, what other
method for partially labeled data and how to bring specific information
to guide the single feature extraction network to gain the discrepancy
between tasks?

According to the information enhancement theory, intra-domain in-
terference of simultaneously segmenting organs and tumors raises a
new research question. The question becomes, what other information
can be used to solve this interference? What method can be guided
to mitigate the discrepancy between tasks? This research question is
addressed in RP V.

— RQ 3-3: How to embed the temporal transition information for object
tracking?

In practice, the online visual tracking task only relies on the current
frame information and is short of other information supervision. To
improve performance, selecting the proper temporal information is a
good choice to mitigate online tracker degeneration. This research
question provides a new perspective to introduce how to generalize the
data characteristics and exploit the data characteristics based on the in-
formation enhancement tool for high-level visual tasks. This research
question is addressed in RP VI.

1.5 Listed of Included Publications
Based on the development of information enhancement, this core theme at differ-
ent dimensions of this thesis, it is a field of what can be applied for research that
draws on different data subjects, such integrative studies are important for identi-
fying concrete research requirements and contributions in each research topic and
further leads to the advancement of computer science and computer vision devel-
opment. This thesis was conducted within a core theme around image and inform-
ation academic framework that involves different public benchmark datasets for
experiment verification.
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This leads to a number of Research Paper (RP)s on different research topics. This
section lists the six research papers included in this thesis, published in interna-
tional journals or international conference proceedings. Figure 1.6 shows the rela-
tionship between research questions and the included RPs. The extended descrip-
tions of the connections can be found in Chapter 3.

RQ1

RQ2

RQ3

RQ 1-1

RQ 1-2

RQ 2-1

RQ 2-2

RQ 3-1

RQ 3-2

RP II

RP III

RP V

RP VI

RP I

RP IV

RQ 3-3

Figure 1.6: Relationship between research questions and research papers.

With the objective of establishing a cross-topic foundation to understand inform-
ation enhancement in single-modal, multi-modal, and task-driven processes, this
thesis contributes to image processing, and computer vision. The thesis is based
on a collection of several papers. The list and the main contributions of the work
of the papers are given below.

1. RP I [176]:

Guoxia Xu, Hao Wang, Marius Pedersen, Meng Zhao, Hu Zhu: SSP-Net:
A Siamese-based Structure-Preserving Generative Adversarial Network for
Unpaired Medical Image Enhancement, IEEE/ACM Transactions on Com-
putational Biology And Bioinformatics, 2023.

Contribution: In this paper, a dual input mechanism image enhancement
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method based on Siamese structure (SSP-Net) is proposed, which takes into
account the structure of target highlight (texture enhancement) and back-
ground balance (consistent background contrast) from unpaired low-quality
and high-quality medical images. Furthermore, the proposed method in-
troduces the mechanism of the generative adversarial network to achieve
structure-preserving enhancement by jointly iterating adversarial learning.
Experiments comprehensively illustrate the performance in unpaired image
enhancement of the proposed SSP-Net compared with other state-of-the-art
techniques.

2. RP II:

Guoxia Xu, Hao Wang, Hu Zhu, Marius Pedersen: Disentangled Spatial-
Transformation Guided GAN for Unpaired Medical Image Quality Enhance-
ment, Pending Submission, 2022.

Contribution: Though cycle-consistent generative adversarial network (Cycl-
eGAN) has achieved great progress with unsupervised framework to deal
with the unpaired medical image enhancement problem, most CycleGANs
only focus on the global appearance to perceive the low-quality and high-
quality data in a same feature extraction network to achieve unpaired learn-
ing. The information entanglement caused by ignoring the specific image
characteristics between different quality images leads to the degradation of
enhancement performance. In this paper, a new perspective of disentangled
extraction based on CycleGAN (DSSGAN) is introduced, which can provide
pixel-level supervision to preserve texture and detail information for image
quality enhancement. As a result, we propose a disentangled generator struc-
ture to better enhance images of different quality perceptually. Furthermore,
to model the spatial transformation in unpaired learning, the spatial trans-
formation module is used to capture the spatial and structural features as
supervised information between high-quality and low-quality images, thus
fusing with the encoded information to capture the more accurate feature
information. The experimental results in three datasets show that our pro-
posed method has promising performance compared to other state-of-the-art
algorithms.

3. RP III [175]

Guoxia Xu, Xiaoxue Deng, Xiaokang Zhou, Marius Pedersen, Lucia Cim-
mino, Hao Wang: FCFusion: Fractal Component-wise Modeling with Group
Sparsity for Medical Image Fusion, IEEE Transactions on Industrial Inform-
atics, 18(12), 9141-9150, 2022.

Contribution: Multimodal image fusion is the process of combing relevant
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biological information that can be used for automated industrial applica-
tions. In this paper, we present a novel framework combining fractal con-
straint with group sparsity to achieve optimal fusion quality. Firstly, we
adopt the idea of patch division and component-wise separation to perceive
the fractal characteristics across multi-modality sources. Then, to preserve
the spatial information against the redundancy of component-entanglement,
group sparsity is proposed. A dual variable weighting rule is inherently
embedded to mitigate the overfitting across the component penalty. Further-
more, the Alternating Direction Method of Multipliers (ADMM) is conduc-
ted for the proposed model optimization. The experiments show that our
model has a better performance in quantitative visual quality and qualitat-
ive evaluation analysis. Finally, a real segmentation application of PET/CT
image fusion proves the effectiveness of our algorithm.

4. RP IV [179]

Guoxia Xu, Hao Wang, Meng Zhao, Hu Zhu: JADD-GAN: A Joint Atten-
tion Generative Adversarial Data Fusion Network for Object Detection and
Tracking, the 20th IEEE International Conference on Smart City(SmartCity-
2022), 2022.

Contribution: Image fusion is the fusion of images captured by different
sensors to generate a single image with enhanced information, and fusion
technology, as one of the important branches in the field of information
fusion, mainly realizes the processing of multi-source image information.
However, many commonly used fusion methods usually ignore the visual
naturalness and information fidelity of the fused images and lack emphasis
on the salient information, which makes the fused images unsuitable for
human visual perception. To address these shortcomings of existing meth-
ods, in this paper, we propose the Joint Attention and Dual Discriminator
Generative Adversarial Data Fusion Network JADD-GAN. In the generator
module, to increase the extraction of multi-level information by the network,
we first adopt a dual encoder structure and give information fusion in the de-
coder part. Secondly, different discriminators are used for infrared and vis-
ible images in order to highlight the thermal radiation information and key
textures. The effectiveness of the method is verified by experiments on four
datasets, and the results show that the method can effectively highlight the
thermal radiation information and key texture details of the fused images,
fully demonstrating its great potential and performance.

5. RP V [177]

Guoxia Xu, Hao Wang, Meng Zhao, Marius Pedersen, Hu Zhu: Multi-
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label Abdominal Image Segmentation with Partially Labeled Data: A Pro-
totypical Consistent Learning Perspective, The 7th IEEE Cyber Science and
Technology Congress (CyberSciTech 2022), 2022.

Contribution: Recently, accurate automatic Computed Tomography (CT)
segmentation of organs and tumors has the potential to facilitate clinical
diagnosis and therapy. However, the automatic segmentation of Multiple
Organs and Tumors (MOTs) is a complex task since they present variab-
ility in the partially labeled data due to limited manpower and resources.
The most prevalent techniques are committed to proposing a unified frame-
work for the multi-task segmentation problem while suffering from the do-
main gap and discrepancy caused by the imbalance of data distribution. To
handle the aforementioned imbalance challenges, we introduce a novel pro-
totype assignment strategy as weak enhancement information for a compact
intra-class feature representation. Moreover, an exponential-based probab-
ility regularization term is proposed to avoid the inter-class imbalance prob-
lem caused by forcing the network to provide a consistent prototype label
for adjacent features. Experiments comprehensively illustrate the perform-
ance of the proposed method compared with other state-of-the-art (SOTA)
approaches both qualitatively and quantitatively.

6. RP VI [178]

Guoxia Xu, Hao Wang, Meng Zhao, Marius Pedersen, Hu Zhu: Learning the
Distribution-Based Temporal Knowledge with Low-Rank Response Reas-
oning for UAV Visual Tracking, IEEE Transactions on Intelligent Trans-
portation Systems, IEEE, 2022.

Contribution: The constraint-based correlation filter has shown good per-
formance in object tracking, which has gained a lot of popularity in many
intelligence transportation applications. In this work, a distribution-based
temporal knowledge-driven method is proposed to leverage the temporal
translation property in visual tracking. Instead of focusing on traditional
issues in the correlation filter, we provide a new method of learning para-
metric distribution on temporal knowledge by Wasserstein distance which is
successfully embedded to solve the problem of temporal degeneration in the
learning process of tracking. Furthermore, we approximate optimal response
reasoning with low-rank constraint over response consistency. Furthermore,
the proposed method is solved by a simple iterative scheme with alternating
direction multiplication ADMM algorithm. We demonstrate superior track-
ing performance in several public standard tracking benchmarks compared
with state-of-the-art algorithms.
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1.6 Thesis Structure
This thesis has eleven chapters which are divided into two parts. Part I of the thesis
gives an overview of the research work, and Part II presents the included research
papers.

Part I: Introductory Chapters
Chapter 1: (this chapter) introduces an overview of the thesis and consists of sec-
tions on the research context, motivation, research objectives, research questions,
and the list of publications.

Chapter 2: presents a comprehensive and necessary application background, sci-
entific foundation, and related work of the research subject areas.

Chapter 3: presents an extended summary of the included papers published in peer-
reviewed internationally recognized conferences and journals. Each paper follows
an IMR format: Introduction, Methodology, and Result. Full research papers are
provided in Part II of this thesis.

Chapter 4: highlights and reflects upon the main contributions of this research.

Chapter 5: gives the conclusion of the research work, which includes research
discussions, followed by some future research orientations and an epilogue.

Part II: Research Papers
Chapters 6-11 include the six research papers that constitute the main part of this
thesis. The papers are presented in the same sequence as in Section 1.5.
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Chapter 2

Literature Review

2.1 Image Quality Enhancement for Single-modal Information
Enhancement (SIE)

With the ongoing advancements in medical imaging technology, a variety of med-
ical imaging modalities have become increasingly prevalent in clinical disease dia-
gnosis, surgical assistance, and health monitoring. Among the most common types
of medical images are Magnetic Resonance Imaging (MRI) [152], Positron Emis-
sion Computed Tomography (PET) [157], and Computed Tomography (CT) im-
ages [18], etc.

Different modes of medical images reflect different body structure information due
to variations in imaging methods. MRI-T1 image (Figure 2.1(a)) offers clear and
precise anatomical structure information similar to the clinical anatomical map.
On the other hand, in MRI-T2 images (Figure 2.1(b)), lesion information is more
prominent, providing a more intuitive view of the lesion as compared to normal
tissues. Positron Emission Computed Tomography (PET) images (Figure 2.1 (c))
provide a wealth of information on human metabolism and blood flow, but their
image resolution is comparatively lower. Computed Tomography (CT) images
(Figure 2.1(d)) vividly display skeletal information, but they do not offer soft tissue
information. It is essential to consider that medical imaging generates radiation
and the image clarity increases with the radiation level and duration. Hence, it is
crucial to minimize radiation exposure while ensuring the best image quality.

Medical image quality enhancement typically involves various tasks, including
medical image super-resolution, multi-modal medical image fusion, and medical
image denoising. Due to its convenience, speed, and cost-effectiveness, this field

27
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has gained significant attention [43, 13, 65, 37]. However, to reduce collection
time and minimize radiation dose for patients, the resolution of many medical im-
ages is limited, resulting in low-quality images. Additionally, medical images with
a single mode cannot fully capture lesion information, and low-resolution images
are often inadequate to describe the overall details of a lesion. Fully and clearly
describing lesion information is crucial for subsequent medical processes, making
medical image enhancement technology vital to bridge the gap between clinical re-
quirements and imaging technology limitations. Thus, processing medical images
using enhancement techniques can help doctors make more accurate diagnoses and
provide better care for patients.

Figure 2.1: Multi-modal medical images of the brain

2.1.1 The development of image quality enhancement technology

Many excellent methods have been proposed for various image enhancement tasks
in recent years. Histogram-modified local contrast enhancement was proposed in
[160] to adjust the levels of contrast enhancement, which gave the resultant image
a strong contrast and improved the local details present in the original image for a
more relevant interpretation. He et al. [51] proposed a simple but effective image
prior-dark channel prior to removing haze from a single input image. Using this
prior to the haze imaging model, researchers can directly estimate the thickness of
the haze and recover a high-quality haze-free image. However, like many tradi-
tional methods, this method requires a lot of data training and manual parameter
setting, which is difficult to implement in practical applications. [52] presented
an explicit image filter, which is effective in detail enhancement and fog removal.
[203] proposed a 2D/3D symmetric filter to solve the problem of automatic blood
vessel detection. However, most of these methods treat the foreground and back-
ground indiscriminately, resulting in poor fidelity of the image structure and loss
of detailed information.

In practice, obtaining complete pairwise training data for many deep-learning tasks
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can be challenging. Still, despite this, numerous breakthroughs in deep learn-
ing have been achieved in various research areas. For instance, Liu et al. [109]
proposed a simple and effective method for removing image rain based on un-
paired learning by analyzing the features of rain maps. The algorithm comprises
a semi-supervised learning component and a knowledge distillation component.
The semi-supervised portion utilizes a layer separation principle to estimate and
reconstruct rain maps. In contrast, a rain direction regularizer is introduced to
restrict the estimation network during the semi-supervised learning phase. Mean-
while, Lore et al. [116] accomplished the objectives of low-light enhancement
and denoising by training a depth overlay sparse denoising autoencoder with dim-
ming and denoising images. In addition, a novel training scheme was introduced
in [79] to overcome dataset dependency in the Noise2Noise (N2N) model [80],
which requires paired noisy images. The proposed scheme in [129] consists of a
two-stage approach, including self-supervised learning and knowledge distillation,
for learning a blind image denoising network from an unpaired set of clean and
noisy images. However, this method may not perform well on real noise, which
can be more complex than the pixel-independent noise used in their experiments.
Moreover, due to the challenges in collecting medical datasets, learning from un-
paired data with different imaging modes has become an increasingly popular re-
search direction. The adversarial learning mode of the Generative Adversarial
Network (GAN) structure has been applied to unpaired learning, and the Cycle-
Consistent Generative Adversarial Network (CycleGAN) model has made a signi-
ficant breakthrough in this field. This model proposes a framework to capture the
unique characteristics of one image domain and translate them into another. How-
ever, the Cycle-Consistent Generative Adversarial Network (CycleGAN) method
is limited by its separated learning modules for realizing the datasets, and it is chal-
lenging to maintain image quality by only restricting the background. To address
these issues, Ma et al. [123] introduced the Structure and Illumination Constrained
Generative Adversarial Network (StillGAN), a novel generalized bi-directional
Generative Adversarial Network (GAN), to improve the quality of medical im-
ages. However, it is complex for this model to recognize high and low-quality
images and generate images based on a fixed weight perception, which results in
a coupling problem between low and high-quality images. Furthermore, the en-
coded data in Structure and Illumination Constrained Generative Adversarial Net-
work (StillGAN) can lead to serious problems such as image structure confusion
and lack of important information, especially when dealing with significant differ-
ences in location and shape. Fu et al. [42] presented a novel unsupervised shimmer
image enhancement network based on generative adversarial networks and trained
with unpaired shimmer and normal light images. The network addresses the issues
of color bias and overexposure in shimmer image improvement by constructing
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an illumination-aware attention module and introducing a novel identity-invariant
loss. However, the challenge of preserving texture detail and harmonizing the
background remains. In addition to image enhancement for medical images, un-
paired image enhancement technology has also been applied to multi-mode image
processing, as demonstrated in [7, 173]. [173] proposed a novel cross-modality im-
age synthesis method that trains on unpaired data, enhancing synthesized images’
quality. Despite these advancements, maintaining texture detail and harmonizing
the background continue to pose difficulties in this field.

In other image enhancement tasks, several effective image enhancement meth-
ods have been proposed for various tasks. For instance, Upadhyay et al. [167]
proposed an uncertainty-aware Generative Adversarial Network (GAN) for robust
Magnetic Resonance Imaging (MRI) image enhancement, which utilized an adapt-
ive loss function to reduce noise and improve robustness. Additionally, Deep Light
Enhancement Generative Adversarial Network (EnlightenGAN) [69] employed
the VGG Deep Convolutional Networks (VGG)-based perceptual loss principle
to maintain the correlation between low-light input images and normal output im-
ages. Despite these efforts, the current image enhancement algorithms face spatial
limitations and other challenges, as discussed previously.

2.1.2 The detail description of Generative Adversarial Network (GAN)

Convolutional Neural Network (CNN) in deep learning is a kind of feedforward
neural network that is based on the theory of multi-layer perceptron in machine
learning and contains convolution operation with sufficient depth structure [194].
Due to the similarity between convolution operation and filter processing in im-
age processing and the powerful feature extraction capability of multi-layer con-
volution, CNN can replace manual to realize the complexity in traditional image
processing, feature extraction pre-processing operation[201].

In the working process of neural networks, it is also necessary to define a loss
function to measure the deviation between the output result of the current model
and the expected value according to the task handled. The error of the current out-
put can be calculated according to the loss function. Then the network model can
obtain the gradient direction of the parameters of each neuron through multistage
derivative and adjust the parameters according to the gradient direction. After iter-
ation, the model can get a smaller loss error, that is, closer to the task target. In the
field of image processing, Mean Squared Error (MSE) loss is a relatively common
loss function, defined as:

MSE =
1

n

nX

i=1

(yi � �yi)
2 (2.1)
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where n is the total number of pixels, yi and �yi represent the pixel value predicted
by the model and the expected output pixel value, respectively.

To leverage the advantages of neural networks, a good strategy for information en-
hancement is to use a generative adversarial network. The Generative Adversarial
Network (GAN) refers to the creation of artificial instances from the dataset, which
maximize the retention of the characteristics of the original dataset. According to
these principles of countermeasures training, many GAN modeling frameworks
have been generated. Bowles et al. [15] described GAN as a method of "unlock-
ing" additional information from a dataset. As a generative modeling framework,
GAN is significantly ahead of other similar models in terms of computing speed
and generation quality.

As the most widely used model in the image generation model, the Generative
Adversarial Network (GAN) was first proposed by Ian Goodfellow in 2014. The
model comprises two parts: generator (G) and discriminator (D). The generator
network is trained to generate new data samples that are similar to a given training
dataset, while the discriminator network is trained to distinguish the generated
samples from real samples in the training dataset.
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Figure 2.2: The developments of Generative Adversarial Network (GAN) in [67].
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During training, the generator network generates new samples and the discrim-
inator network evaluates them. If the discriminator network determines that the
samples are fake, the generator network adjusts its parameters to generate more
realistic samples, and the process repeats. Over time, the generator network gets
better at generating realistic samples, while the discriminator network gets better
at detecting fake samples, leading to an equilibrium where the generator network
generates high-quality samples that are difficult to distinguish from real samples.
The optimized objective of Generative Adversarial Network (GAN) can be de-
scribed as the following equation:

min
G

max
D

V (G;D) = Ex�Pr [logD(x)] +Ez�Pz [log(1�D(G(z)))] (2.2)

In the process of training, the discriminator network D functions as a secondary
classifier, improving its ability to distinguish between real and generated images
with each update. The objective is to correctly label the two types of data and
establish an accurate decision boundary between them. The generator network G
is updated to produce images that can also be classified as real by the discriminator
network, which results in generated images that approach the decision boundary
and real images. Through iterative updates, the generated images progressively
become more realistic, making it increasingly challenging for the discriminator
network to differentiate between real and generated images. This process allows
the generator network to fit the real data with a high level of fidelity.

Cycle-Consistent Generative Adversarial Network (CycleGAN) is a variant of
Generative Adversarial Network (GAN) specifically designed for image-to-image
translation task. It was introduced in 2017 by Jun-Yan Zhu et al. In Cycle-
Consistent Generative Adversarial Network (CycleGAN), two generator-discriminator
pairs are trained simultaneously, with each pair transforming an image from one
domain to another. For example, one generator-discriminator pair might trans-
form a photo of a horse into a painting of a horse, while the other pair trans-
forms the painting back into a photo. The idea behind Cycle-Consistent Generative
Adversarial Network (CycleGAN) is to capture the underlying mapping between
the two domains and use it to translate images from one domain to another. In
Cycle-Consistent Generative Adversarial Network (CycleGAN), X and Y are two
different image representations, and the Cycle-Consistent Generative Adversarial
Network (CycleGAN) learns the translation X ! Y and Y ! X simultan-
eously. Different from “pix2pix” [63], training data in Cycle-Consistent Gener-
ative Adversarial Network (CycleGAN) is unpaired. Thus, they introduce Cycle
Consistency to enforce forward-backward consistency which can be considered
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as “pseudo” pairs of training data. With the Cycle Consistency, the loss function
of Cycle-Consistent Generative Adversarial Network (CycleGAN) is defined as
L (GX!Y; GY!X; DX; DY):

L (GX!Y; DY) + L (GY!X; DX) + �Lc (GX!Y; GY!X) (2.3)

Cycle-Consistent Generative Adversarial Network (CycleGAN)s utilize a loss func-
tion to train the generators to generate high-quality images and the discriminator
to differentiate between real and generated images. In addition, an extra loss func-
tion is applied to guide the generator in preserving the input image content while
performing the intended transformation. The outcome is a model capable of visu-
ally appealing image translations between different domains while preserving the
input image content. The details can be checked in Figure 2.2.

2.2 Image Fusion for Multi-modal Information Enhancement (MIE)
The purpose of the Heterogeneous Image Fusion (HIF) task is to combine the
global image and the detailed image obtained from different imaging sensors to
generate robust and informative fused (high content) images, which can simultan-
eously keep the pixel intensity from the global images and the texture informa-
tion from the detailed images. For the diversity of imaging sensors, Heterogen-
eous Image Fusion (HIF) is a wide range of topics in natural, medical, and biolo-
gical image fusion tasks, e.g., infrared and visible image fusion (IVF) [180] [104],
Positron Emission Computed Tomography (PET) and Magnetic Resonance Ima-
ging (MRI) image fusion [191] [202], Single-photon Emission Computed Tomo-
graphy (SPECT) and Magnetic Resonance Imaging (MRI) image fusion [56], and
Green Fluorescent Protein (GFP) and Phase Contrast (PC) image fusion [165].
By integrating salient information from source images, the fused image contains
more comprehensive information and thus has a better performance in downstream
tasks.

As medical image devices continue to develop at a fast pace, the secure storage
of medical image data has become crucial for efficient real industrial applications,
such as biometric verification and clinical diagnosis. Sensor fusion [23] [10] has
rapidly developed for verification and treatments. Schemes such as fingerprint
verification [141] and biometric-based efficient medical image watermarking [5]
have been successfully applied to real applications. Medical images and biometric
data are inseparable, as seen in the use of Magnetic Resonance Imaging (MRI)
for biological fingerprint in patient verification [166]. However, efficiently pre-
serving important biological information has become a major challenge. Single
modal sources provide limited information and cannot meet the requirements of
patient verification, disease diagnosis, health monitoring, surgery, and radiation
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therapy [31]. Therefore, it is important to keep data secure and enhance its usage
in operative environments. Heterogeneous data has also attracted a lot of attention
in many real applications. Fusing different sources into one image is necessary to
obtain complementary information to assist aided-diagnosis frameworks [93]. For
example, Magnetic Resonance Imaging (MRI) can provide high spatial resolution
and depict soft tissue definition [189], while Computed Tomography (CT) captures
hard tissue information with little distortion [66]. Positron Emission Computed
Tomography (PET) can be used for the staging of uterine cervical cancer [76]
and pancreatic cancer detection [150]. Single-photon Emission Computed Tomo-
graphy (SPECT) reveals clinically significant changes in metabolism. With the
growing appeal of image fusion, various fusion algorithms have been developed
[188]. Image fusion aims to leverage the dominant features from multi-modal
sources and synthesize the common-unique content together.

In past research, numerous methods have been proposed to achieve the fusion of
heterogeneous images, including multi-scale transform-based methods [90], sparse
representation-based methods [103], subspace-based methods [137], saliency-based
methods, and hybrid methods [89]. With the emergence of deep learning, data fu-
sion techniques can leverage the adaptive feature fusion from source images and
well-designed loss functions [88] [121] [140] [122] [110]. However, current deep
learning-based data fusion methods mainly rely on image reconstruction-based
methods, which generally follow a similar architecture: feature extraction, fea-
ture fusion, and image reconstruction. Recently, autoencoder-based, convolution
neural network-based, and generative adversarial network-based methods have
been introduced, which benefit from the increasingly mature network architecture.
However, the specific network structure of these methods is only applicable in spe-
cific scenarios, such as the unmanned driving method proposed in [204]. There-
fore, further research is needed to explore the potential of deep learning-based data
fusion in diverse scenarios.

2.2.1 The development of image fusion technologies

With the fierce development of computer vision and the fast-growing demand for
application requirements, various heterogeneous image fusion methods were pro-
posed. Simply, they can be classified into several categories, including multi-
scale transform-based[90, 39], sparse representation-based [103, 72, 35], neural
network-based [86, 140], subspace-based [137], saliency-based, hybrid-based [89],
and other methods [119].

In this part, we will simply introduce the main content of those methods. Multi-
scale transform-based methods have obtained the most effective usage rate in im-
age fusion, which assumes that source images can be decomposed as sub-images
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at different scales. Li et al.[90] proposed a method combining two-scale decom-
position and weighted average technique. The large scale is the base layer of
intensity transformation, and the small scale is the detail layer that captures in-
formation. In[39], the proposed algorithm adopted different fusion strategies for
different subbands and can adaptively find the balance point between the grayscale
image and diverse backgrounds in the image fusion process. Sparse representation-
based methods [103, 72] focus on learning an over-complete dictionary with the
guidance of massive high-quality image pairs. Since the data can be represented
with a linear combination of elements sparse in the over-complete dictionary, it is
a reasonable way to get satisfactory results.

To deal with the multi-modal information interactions, various strategies have de-
veloped with success from many perspectives. The Sparse Representation (SR)
has attracted much attention from the natural sparsity of signals in medical image
fusion. The aim is to learn the sparse coefficients based on a pre-trained dictionary
with intrinsic features to approximate fine details. Thus, the SR with multi-scale
transformation [113] and Sparse Representation (SR) with pulse coupled neural
network [190] were constructed for mitigating the fixed feature extraction capa-
city. Later, Wang et al. [114] and Liu et al. [111] respectively conducted the fusion
of medical images based on Adaptive Sparse Representation (ASR) and Convo-
lutional Sparse Representation (CSR). The Convolutional Sparse Representation
(CSR) model overcomes the shortcomings of limited ability in detail preservation
and high sensitivity to misregistration of the SR model. In contrast, Jiang et al.
[70] proposed a novel multi-component SR-based fusion method via Morpholo-
gical Component Analysis (MCA) [158], which can obtain the sparse represent-
ations of cartoon and texture components of each source image. This compon-
ent separation process can significantly improve the flexibility for designing more
effective fusion strategies. Sadly, it would bring a significant amount of noise
in. The Convolutional Sparse Representation Morphological Component Analysis
(CS-MCA) model [112] integrated the advantages of Morphological Compon-
ent Analysis (MCA) and Convolutional Sparse Representation (CSR), achieving
a multi-component and global sparse representation of the source image. Joint SR
proposed in [75] formed the dictionary from various modalities. Furthermore, the
group sparsity representation [92], low rank prior [84] [85], and various Sparse
Representation (SR) extensions have been proposed to address the medical image
fusion problem. However, the over-smoothed issues inevitably would lead to color
distortion and weaken the root of Sparse Representation (SR) based medical image
fusion. Our analysis indicates that feature extraction with redundancy removal for
preserving fine details remains a critical challenge.

In traditional spatial and transform domain methods, image decomposition, and
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reconstruction are the two main processes designed. However, as previously sum-
marized, feature extraction can also be conducted through multi-scale transform-
ation or multi-scale geometric analysis and through several transformation-based
and pyramid-structured methods. For instance, image decomposition lets the Dis-
crete Wavelet Transformation (DWT) separate high-frequency from low-frequency
information. Nonetheless, these decomposition methods suffer from directional
feature distortion and shift invariance properties. To solve the degeneration of
multiple scale features, popular representative modeling examples include the non-
subsampling paradigm, such as the Non-subsampling Contour Transformation (NSCT)
[12] and Non-subsampling Shearlet Transformation (NSST) [191]. In addition, hy-
brid schemes have also been investigated to enhance the feature extraction process,
such as different extensions of the pulse-coupled neural network [32] and several
improvements [191].

Neural network-based methods [86, 140] aimed to mimic the human brain’s pro-
cessing of neural information with their strong adaptability and anti-noise capacity.
Subspace-based methods [137] aimed to generate low-dimensional subspaces from
high-dimensional source images, considering that redundant features can interfere
with feature extraction. Proper subspace-based methods can speed up image pro-
cessing speed and accuracy. Saliency-based methods focus more on the essential
objects or pixels rather than their edges or neighbors, which can improve the visual
quality of the fused results by highlighting the intensities of the salient objects.
Hybrid-based methods [89] focus on combining the advantages of the previously
mentioned methods to improve the performance of the fusion strategy. Other fu-
sion strategies, such as the method based on total variation [119], can also bring
inspiration to the field of infrared and visible image fusion.

2.2.2 The detailed description of computational method

• Since the pioneering work of [184], a number of Sparse Representation (SR)
based image fusion methods have been proposed. Typically, Sparse Repres-
entation (SR) based fusion is performed patch-wise by dividing the source
image into several patches of the same size and applying image fusion at
the patch level. A sliding window with a fixed number of pixels is used to
select image patches to reduce block artifacts and improve the robustness
of erroneous registrations. Consequently, the source image is divided into
overlapping patches, and the standard sparse coding model [126] is inde-
pendently applied to each patch. Mathematically, the applied SR model can
be expressed as:

min
x

kxk0 s:t: ky �Dxk2 < " (2.4)
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where y 2 Rn means a stacked vector version of an image patch of sizep
n � p

n. D 2 Rn�m means an over-complete dictionary. x 2 Rmis the
sparse vector to be calculated, and the sparsity is measured by its l0-norm,
which counts the number of non-zero entries. " represents the tolerance of
reconstruction error. The Orthogonal Matching Pursuit (OMP) algorithm is
employed to solve this optimization problem. Later, [185] applied the Sim-
ultaneous Orthogonal Matching Pursuit (SOMP) algorithm to improve the
fusion method, which can ensure that identical dictionary atoms decompose
the source image patches at the same location. The target image is finally
obtained for these patch-based SR methods by aggregating all reconstructed
patches and averaging the overlapping pixels.

• Definition for the Cartoon and Texture Components. Here we provide a brief
explanation of the cartoon and texture components. The theory was initially
put forward from [125] and states that an image can be decomposed into
a cartoon image and a texture map. The cartoon image captures the sali-
ent features, including piecewise smooth changes in illumination and edges,
while the texture map provides detailed texture information within regions
bounded by these edges. However, in some cases, such as during dictionary
filter learning, the source medical images may not be well decomposed into
the cartoon and texture components. This phenomenon is known as com-
ponent entanglement. For example, as shown in Figure 2.3, the texture map
obtained by Convolutional Sparse Representation Morphological Compon-
ent Analysis (CS-MCA) suffers from component entanglement with the car-
toon image, resulting in poor-quality information. In contrast, our method
can derive a texture map rich in texture information and complements the
cartoon image.

• Â means the Fourier transform of A. AT and AH separately represent the
transpose and conjugate transpose of A. � means convolution such as A�B.
� means matrix dot product. AB means matrix multiplication and hA;Bi is
an linear projection operator. vec(A) is the vectorization of A. 
 means
the Kronecker product. We also present the usage of the subscripts here.
For a three-dimensional matrix like X 2 RE�N1�N2 , unfold the matrix in
the first dimension. Then Xe means the e-th matrix in the sequence, namely
Xe = X(e;:;:). The subscript m has the same meaning as e. In the beginning,
we also add the subscript c and t to distinguish different components.

• Component-wise Fusion Method Revisited. Combining the standard Sparse
Representation (SR)[184], Morphological Component Analysis (MCA)[68]
and Convolutional Sparse Representation (CSR) model[108], the Convo-
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lutional Sparse Representation Morphological Component Analysis (CS-
MCA) model in [112]is defined as

min
X

1

2

Y �
McX

m=1

Dc;m �Xc;m �
MtX

m=1

Dt;m �Xt;m



2

2

+ �c

McX

m=1

kXc;mk1 + �t

MtX

m=1

kXt;mk1

(2.5)

where Y 2 RN1�N2 is an entire image. fDc;mgMc
m=1 and fDt;mgMt

m=1 denote
two sets of dictionary filters for the SR of the cartoon and texture compon-
ents, respectively. fXc;mgMc

m=1 and fXt;mgMt

m=1 are the corresponding sparse
coefficient maps. The dimensions of the dictionary filters are RM�B1�B2

and the coefficient maps are RM�N1�N2 . �c; �t are model coefficients. It
can be seen from (2.5) that the proposed model promotes SR-based image
fusion by combining two different methods. We can find from Figure 2.3.
Source image:(a1-a2). Fused image obtained by CS-MCA: (fused image:
b1; the texture map: c1; the cartoon image: d1). Fused image obtained by
our proposed method: (fused image: b2; the texture map: c2; the cartoon
image: d2). The CS-MCA model also combines Convolutional Sparse Cod-
ing (CSC) [196] to simultaneously implement a global sparse representation
of two components and source images to overcome the shortcomings of the
previous two methods.

2.3 Image Analysis for Task-driven Information Enhancement
(TIE)

2.3.1 The development of information enhancement for image segmenta-
tion

In this chapter, we discuss two topics of task-specific information enhancement ob-
ject segmentation and object tracking, which include the core theme of "Enhance-
ment" and how to embed the enhancement knowledge into the learning process.
Firstly, we discuss the topic of segmentation. CT is a valuable tool for provid-
ing pathological information about dense structures in the human body, including
bones and organs. It plays a critical role in diagnosing and treating renal tumors.
However, the automatic clinical diagnosis of tumors remains challenging due to
their various shapes, sizes, and fuzzy textures. Liver tumor segmentation techno-
logy [136], for example, uses re-segmentation to separate the liver and other organs
from abdominal CT and obtain tumor images. This can help doctors accurately
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Figure 2.3: Examples of the cartoon and texture decomposition.

Figure 2.4: Examples of the partially labelled datase from [197].
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evaluate the development of primary or secondary tumors and quickly formulate
treatment plans [170, 174, 117]. Deep learning has revolutionized automatic data-
driven medical image segmentation [153, 154, 199], benefiting from the powerful
ability of neural network models to fit data. For instance, Andriy et al. proposed a
segmentation network composed of an encoder-decoder structure that can reliably
and effectively segment kidneys and kidney tumors from abdominal 3D CT scan in
the arterial phase [132]. However, many segmentation methods can only segment
specific organs and tumors, making them difficult to adopt for other segmentation
tasks and wasting computing resources. Manual labeling of multiple organ med-
ical images is limited by manpower and resources, making it intractable to obtain
a self-contained dataset for training. In real scenarios, only one kind of tissue or
organ is typically labeled, resulting in a partially labeled dataset. Most benchmark
datasets are dedicated to specific organs, so the segmentation model becomes inef-
ficient and inflexible. Consequently, the segmentation task of multiple organs and
tumors on partially labeled datasets has become a crucial issue in computer-aided
diagnosis [60].

Traditional model-based segmentation techniques enjoy the theoretical guarantee
of the segmentation process while suffering from the fixed operator and the non-
adaptive segmented rules [49] [50]. Many methods based on deep CNN had been
proposed for MOTs segmentation [54, 95, 209]. Most methods have trained mul-
tiple independent networks for different targets ( like only for the liver or kidney).
The deep learning framework NNU-Net proposed by Fabian et al. [62] can in-
dependently make critical decisions required to convert the basic architecture to
different data sets and segmented tasks without manual adjustment. A cascade
trainable segmentation model proposed by Yu et al. [192] captured the global and
local appearance information from crossbar patches. Zhang et al. [198] proposed
a lightweight hybrid convolutional network segmentation method for liver and tu-
mor within CT volume, using the codec structure and depth and space-time separ-
ation (DSTS) technology, which effectively reduced the complexity of the model.
While these methods take various measures to reduce the complexity, the com-
putational complexity of their models is still a challenge and can not be ignored.
Fang et al. [38] proposed a new training strategy, which enabled the multi-scale
depth neural network to be trained on multiple partially labeled datasets through
a shared encoder and significantly reduced the computational complexity of the
model. Chen et al. [20] and Shi et al. [155] adopted a similar multi-head net-
work to solve this multiple partially dataset problem. Although these methods
achieve impressive performance, they are short of dealing with new tasks. Most
methods [38, 20, 155] [205] only relied on a shared backbone network to realize
the common knowledge of several inputs and multiple output headers for different
segmentation tasks. However, the mode assumption of multi-class segmentation
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of partially labeled data may mislead some unlabeled organs as the background.
The work of Zhang et al. [197] was a single input head network and a single
output head segmentation head. Specifically, it adopted a dynamic segmentation
head to solve the problem of partial labeling and can simultaneously segment or-
gans and tumors to overcome the above problem. However, some inevitable noise
from the dataset and network training based on conditioning class label informa-
tion can influence the performance of feature extraction and organ segmentation.
This problem explicitly results from the intra-domain interference of MOTs task.

Figure 2.5: Examples of the Correlation filter tracker.

2.3.2 The development of information enhancement for object tracking

Secondly, we discuss the topic of tracking, the development1 can be checked in
Figure 2.5. Object tracking in the traffic domain is how to adapt to fast changes
in the target’s appearance. Even if the initial frame of an unknown scene is given,
the central performance of predicting the target state of each frame will be limited
by several appearance variants. Moreover, because the traditional target tracking
background is fixed, the tracker only considers the problem of the target itself in the
tracking process. However, due to the movement of traffic vehicles, the tracking
process needs to take into account the complex scene variants and unpredicted

1https://github.com/HonglinChu/CFTrackers
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interference. The characteristic of target tracking is that both the target and the
background are in motion, which is hard to solve the difficulty of target tracking
in traffic scenarios and achieve an excellent, intelligent traffic video monitoring
effect. In addition, target tracking has brought more significant challenges due
to mechanical vibration, object motion, target occlusion, and background clutters
[41].

Benefiting from its easy implementation and fast prediction of Discriminative Cor-
relation Filter (DCF), DCF has attracted a lot of attention in Unmanned Aerial
Vehicle (UAV) tracking. Until now, there are three main research directions in
DCF tracking: spatial regularization, temporal smoothing, and robust feature
representation. To solve the first problem, spatial regularization DCF: SRDCF[7]
is proposed based on the spatial penalty. This work also inspired other research
work on spatial regularization[30, 82]. In [199], they offered a new DCF tracker
by suppressing the constraint of spatial boundary effect with spatial feature se-
lection. Moreover, the spatial reliability enhanced DCF[41] [118] had proposed
to indicate the reliability of background. However, these methods do not adapt-
ively depress the background and consider the temporal information. To solve the
second problem, a temporal regularization is introduced by [82] and [99] to real-
ize the joint spatial-temporal solution and obtain better performance. For the third
question, with the development of robustness image feature extraction method on
deep neural network, the performance of DCF-based trackers have significantly
improved performance and solved the problem to some extent.

Recently, to combine temporal information, some latest models used a transformer
to combine spatial and temporal information. STARK [183] had not used any
proposals, anchors, and post-processing steps (such as cosine window or bound-
ing box regression), which greatly simplified the visual tracking model. [21] de-
veloped a feature fusion network based on a self-context augmentation module
with self-attention and a cross-feature augmentation module with cross-attention.
Compared with correlation-based feature fusion, self-attention-based methods ad-
aptively focus on useful information, such as edges and similar objects, and es-
tablish associations between distant features, enabling the tracker to obtain better
classification and regression results. However, the response of redundant inform-
ation in the global response will affect the accuracy. AutoTrack[99] automatic-
ally updated the hyper-parameters to accommodate the change of each frame with
the global response. To achieve better performance, the spatial constraints with
content-aware [47] and bilateral regression ranking model [206] and other differ-
ent hybrid response mining [81] [61] based methods had been proposed.

While online learning of tracking has made good progress, there are still many
problems in the temporal-based tracking framework. These existing methods only
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discover the reliability of spatial or temporal or background or response; the re-
liability of the temporal knowledge transfer should also be investigated to avoid
temporal degeneration. In existing temporal knowledge transfer based on the DCF
tracking framework, euclidean distance is commonly used to measure the similar-
ity of the targets of the two adjacent filters within a closed appearance [99, 181, 82].

Here, we recall a new concept about online temporal learning in visual tracking
(probability measurement). This problem is unnoticed by the above methods. Does
it also raise some questions: what can we measure in online learning: probabilistic
temporal fitting or direct temporal interpolation? In a temporal-based framework,
most methods assume that the target context between two frames is a compon-
ent with minor changes. The change of two adjacent target distributions can be
kept only by interpolation. However, this is not easy to appear in reality. In DCF
tracking, it is evident that there is no such assumption that the tracked target has
apparent occlusion or deformation. The noise drifting in the temporal domain will
inevitably lead to tracking distortion. A more reasonable solution is to replace
the measurement or transformation here. Regardless of temporal regularization
or response mining methods, they are all looking for a transformation such that
the representation of the updated frame is matched with historical information.
The well-known transformation class can be expressed in [98], in which the Kull-
back Leibler divergence was used in a deep neural network for visual tracking
[28]. However, no closed-form solution can express the similarity measurement.
Moreover, the distorted appearance of the tracking in DCF challenges the spatial
or temporal-based DCF methods. The above discussion motivates us to mitigate
the problem of overfitting and omit the impact of unpredicted appearance. Fortu-
nately, the Wasserstein distance with a common Lagrangian formulation alleviates
the need for a common space. In [200], they proposed a novel approach to learn-
ing domain invariant feature representations. Wasserstein generative adversarial
network (GAN) [6] learned a more reasonable and efficient approximation method
and cured the main training problem of GAN.

2.3.3 Revisited Temporal Response Based Method

We first review the basic algorithm, which is conducted on the temporal response-
based method [99]. Their objective function for joint optimization of the filter, as
well as temporal regularization term, can be written as:
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where Xk
t 2 (k = 1; 2; 3; � � � ;K) is the extracted feature in frame t, K de-

notes number of channel, Y 2 RT�T is the desired Gaussian-shaped response.
Hk

t ;H
k
t�1 2 RT�T respectively denote the filter of the k-th channel trained in

the t-th and (t-1)-th frame, ~ indicates the convolution operator. The parameter ~S
is the local response, denoted as the reference parameter, St, and optimized tem-
poral regularization weighting parameter. The parameter ~u represents the global
response for automatic spatial regularization calculated by Equ. (2.7).

~u = PT �log(�+ 1) + u (2.7)

PT 2 RT�T is used to crop the central part of the filter where the object is located.
� is a constant to adjust the weight of local response variations, and u is inherited
from spatial-temporal regularized correlation filter [83] to mitigate boundary ef-
fects, � is the local variation vector.

Although many temporal response mining methods [99, 181, 82] have achieved
good performance, the redundant information in the global response will lead to
errors in the update of St. Here, we adopt low-rank processing to avoid the in-
terference of irrelevant information. In addition, when the target is deformed, the
influence of temporal noise drift makes the target tracking inaccurate and will con-
tinue to affect the follow-up tracking.



Chapter 3

Summary of Included
Publications

This chapter will summarize the published papers included in this thesis. These pa-
pers are published in peer-reviewed professional and academic international ven-
ues in medical image processing, computer vision, and intelligent algorithms. It
consists of six research papers. Each paper is elaborated following an MFR format:
Motivation, Formulation, and Result. Full versions of the research papers are given
in Part II of this thesis.

3.1 Paper I: SSP-Net: A Siamese-based Structure-Preserving
Generative Adversarial Network for Unpaired Medical Im-
age Enhancement [176]

3.1.1 Abstract

Recently, unpaired medical image enhancement is one of the important topics in
medical research. Although deep learning-based methods have achieved remark-
able success in medical image enhancement, such methods face the challenge of
low-quality training sets and the lack of a large amount of data for paired training
data. In this paper, a dual input mechanism image enhancement method based
on a Siamese structure (SSP-Net) is proposed, which takes into account the struc-
ture of target highlight (texture enhancement) and background balance (consistent
background contrast) from unpaired low-quality and high-quality medical images.
Furthermore, the proposed method introduces the mechanism of the generative ad-
versarial network to achieve structure-preserving enhancement by jointly iterating
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adversarial learning. Experiments comprehensively illustrate the performance in
unpaired image enhancement of the proposed SSP-Net compared with other state-
of-the-art techniques.

3.1.2 Motivation

Siamese networks [96] was originally proposed to deal with the classification prob-
lem, and it adopted the two-channel network with shared weights to measure the
local distribution of the network. Not only is the classification label information
considered, but also the local spatial distribution information between samples is
achieved. It definitely helps for a small sample size task for classification per-
formance [77]. Li et al. [94] presented a discriminative self-attentive recurrent
generative adversarial network, based on a recurrent GAN architecture, to address
the super-resolution issue of natural images. This network used unpaired samples
to train both degraded and reconstructed networks. Contextual data was collected
using a self-attentive method to reduce detail degradation. Bertinetto et al. [11] in-
troduced a Siamese network into a target tracking task, which greatly improved the
sample limitations of online learning over traditional tracking methods. All these
work well to demonstrate the strong feature generalization capacity of a siamese
network structure, which can solve the situation with mismatched training data.

Here, we tailor the same property to the medical image enhancement task. In
this study, we employ a Siamese structure for training unpaired data, allowing the
network to learn important features from high-quality (HQ) images and preserving
the structural details of low-quality (LQ) images, such as target highlight (texture
enhancement) and background balance (consistent background contrast). To learn
the texture-preserving representation and enhance the visual quality, we introduce
two generators for learning a random pair (LQ and HQ). Our network structure
is similar to the work in [58] which is used for face hallucination. Instead of
relying on faulty paired labeling and the same identity, our random input pair aims
to learn a common and salient distribution between LQ and HQ medical images,
as these prerequisites are not necessary for our input pair. The HQ image can be
treated as prior knowledge to guide the enhancement of the LQ image. Overall,
our model combines the siamese structure with a GAN, using shared weights to
produce high-quality enhancement results in an adversarial manner, which ensures
the robustness of the model to texture blur, structure weakening, and background
noise.

3.1.3 Methods

In this paper, we propose a Siamese-based structure-preserving network, named
SSP-Net, for corneal confocal microscopy image enhancement to handle the chal-



3.1. Paper I: SSP-Net: A Siamese-based Structure-Preserving Generative Adversarial
Network for Unpaired Medical Image Enhancement [176] 47

lenge of the deficiency of the paired LQ images and the HQ images. In this sec-
tion, we introduce the details of our proposed SSP-Net, including an overview of
the Siamese-based generative network structure and loss function.

The framework of the proposed SSP-Net is shown in Fig. 3.1, where the un-
paired LQ images m and the HQ images n are simultaneously used as input into a
Siamese-based GAN and the corresponding enhanced outputs are discriminated
by a discriminator with the original LQ and HQ input in an adversarial man-
ner. Our SSP-Net adopts two generators, which share the same structure and
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Figure 3.1: The framework of the proposed SSP-Net.

parameters, and one discriminator, where the discriminator is implemented by a
PatchGAN [63] structure, which discriminates one image by its patch rather than
the whole image, with a local illumination-sensitive constraint. The backbone of
the generator is a U-Net-like structure, where there exist skip connections between
the encoder and the decoder. Furthermore, the U-Net-like encoder-decoder module
in the generator is not a symmetrical structure, where the backbone of the encoder
module is a modified ResNet50 [53], where the fully-connected (FC) layer is re-
moved and the max-pooling operation is replaced by a stride convolution for a
more powerful texture preservation ability. Moreover, the decoder module is com-
posed of five 3� 3 convolution layers in case of local illumination variations. The
discriminator is composed of three convolution layers with the kernel size of 4�4,
whose initialization follows a normal distribution with the parameter of � (0; 0:02).

3.1.4 Result

All the training images are initially resized by 384� 384 with a series of data aug-
mentation strategies [123], e.g., random flipping, and color space transformation.
Adam optimizer is applied to train the network with momentum terms (0:5; 0:9)
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for the generator and (0:9; 0:999) for the discriminator, whose learning rate is ini-
tialized as 3 � 10�5 and linearly warmed up to 1 � 10�4. When reaching 500
iterations, the learning rate will be halved every 15 epochs. The batch size and the
related parameters �1, �2, �; � are set as 4, 0.6, 0.4, and 5.1. All the experiments
are implemented in PyTorch [138] on two RTX2080TI GPUs.

Four no-reference evaluation metrics are provided to comprehensively illustrate
the superiority of our proposed SSP-Net, which are entropy, average gradient
(AvG) [64], natural image quality evaluator (NIQE) [127], and perception-based
image quality evaluator (PIQE) [169]. Entropy and AvG measure the amount of
information and detail textures contained in the enhanced images, respectively,
where a larger value indicates a better performance. Nevertheless, NIQE and PIQE
correspond to the natural quality and perception-based feature quality modeled by
the multivariate Gaussian model, where a lower score means better-reconstructed
quality. We employ the area under the ROC curve (AUC) [59], accuracy (ACC) [59],
sensitivity (SEN) [44], specificity (SPE) [44], false discovery rate (FDR) [24], dice
coefficient (Dice) [73], G-Mean score (G-Mean) [9], and Kappa coefficient [78] as
the evaluation metrics for segmentation task. A higher value denotes better per-
formance.

Our SSP-NET model achieved the best results on all metrics, especially AvG and
PIQE. The ideal result of AvG and Entropy shows that our structure-maintaining
network accomplishes the goal of image enhancement well, extracts the detailed
features of the original, and highlights the performance, making the enhanced
image extremely fidelity to the texture structure. Compared with the StillGAN
method with a non paired learning model, our values of NIQE and PIQE are very
low, which ensures the reconstruction performance of SSP-Net.

3.2 Paper II: Disentangled Spatial-Transformation Guided GAN
for Unpaired Medical Image Quality Enhancement

3.2.1 Abstract

Deep learning-based medical image enhancement has received significant research
attention recently. Most of the existing methods fall into the supervised learning
framework by synthetic training data. However, they are short of generalizing
whole medical image visual appearances due to the gap between the simulation
and practicability. Though cycle-consistent generative adversarial network (Cycl-
eGAN) has achieved great progress with an unsupervised framework to deal with
the unpaired medical image enhancement problem, most CycleGANs only focus
on the global appearance to perceive the low-quality and high-quality data in the
same feature extraction network to achieve unpaired learning. The information
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entanglement caused by here ignoring the specific image characteristics between
different quality images leads to the degradation of enhancement performance.
This paper introduces a new perspective of disentangled extraction based on Cycl-
eGAN (DSSGAN), which can provide pixel-level supervision to preserve texture
and detail information for image quality enhancement. As a result, we propose a
disentangled generator structure to enhance images of different qualities better per-
ceptually. Furthermore, to model the spatial transformation in unpaired learning,
the spatial transformation module is used to capture the spatial and structural fea-
tures as supervised information between high-quality and low-quality images, thus
fusing with the encoded information to capture the more accurate feature inform-
ation. The experimental results in three datasets show that our proposed method
has promising performance compared to other state-of-the-art algorithms.

3.2.2 Motivation

Due to the encoder-decoder structure adopted by the traditional generator [208],
the unpaired input images of network training are randomly shuffled from low-
domain and high-domain image sources. Moreover, for medical images, it is dif-
ficult to obtain such large-scale low/high-quality image pairs in real scenarios for
training. Therefore, it is too complex to recognize the specific information between
high quality and low quality by only relying on the same encoder of the generator.
Thus, it is prone to over-fitting and leads to the entanglement problem in high-
dimensional feature representation in terms of the training scale, different struc-
ture, texture, and illumination intensity. Concerning two novel problems here for
the unpaired image enhancement task:

• Q.A: What information is extracted between low-quality and high-quality
domains?

• Q.B: How to properly investigate information from high quality to low qual-
ity?

Referring to the Q.A., the most relevant medical image enhancement works treat
this problem as image-to-image translation [106]. They lead to learning the shared
representation with low-level image properties, such as texture or cartoon. Re-
cently, one method is to learn the relations between the two domains with inde-
pendent autoencoders for the two domains, but the existing methods always gen-
erate image-to-image translation-based enhancement according to shared weight
perception [105]. Lin et al. [102] proposed the image-level disentanglement and
instance-level disentanglement to learn domain-invariant representation for gen-
eralizable object detection. Motivated by [142], the simple two-pathway encoder
and a single decoder for image content transfer. We propose the disentanglement
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representation framework to preserve the informative features for medical image
enhancement.

Referring to the Q.B, the usage of the extracted information is usually followed
the guided methodology in a multi-layer encoder-decoder manner. However, the
encoded data is significantly different due to the unpaired data and degrades the
spatial information in medical images. As a result, the model will produce aliasing
and chaos when encoding the information of different images, leading to blurred
image structure, and disordered illumination distribution [195, 156]. Actually, un-
paired input is not prone to achieve optimal in the traditional CycleGAN proved
by [123]. The image-to-image translation assumption is inevitably affected by
illumination, noises, and other variants. Nevertheless, the existing deep learning
image-to-image translation-based enhancement techniques avoid the difficulties of
ideal medical image data collection. Due to the effects of heterogeneity and com-
plex illumination conditions of natural images, the content of medical images is
always homogeneous. Rather than the existing natural images unsupervised en-
hancement techniques[133], we prefer to use the above good property to solve the
medical image enhancement. Moreover, we observe that the spatial homogeneity
similarity across different quality medical images. Thus, we specially design a
different module to perceive this specific information between high-quality and
low-quality for medical image enhancement.

3.2.3 Methods

The framework of the proposed DSSGAN is shown in Fig.3.2. The main frame-
work of our model is the CycleGAN structure, which contains two groups of GAN,
namely Generator1/Discriminator1 (G1/D1) and Generator2/Discriminator2 (G2/D2).
Where G1/D1 deals with the mapping and conversion of low-quality images to
high-quality images, G2/D2 is the opposite.

Take G1/D1 as an example (G2/D2 is similar), our generator consists of three mod-
ules: encoder, STN, and decoder. The input low-quality image (LQ) generates the
corresponding predicted high-quality image (HQ0) through G1 and identifies the
true and false through D1. Then, the generated HQ0 image enters G2 to generate
the corresponding secondary predicted low-quality return image (LQ"). Thus, a
set of image cycle consistency of L-H-L (low domain to high domain back to low
domain) is formed. Specifically, the corresponding simple coding information of
the input image is obtained through the encoder and fused with the supervision
information of the space, structure, and other features of the input image extracted
by the decoupled STN module to obtain adaptive high-dimensional features. Then,
the corresponding generated image is obtained through the decoder module.
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Figure 3.2: The proposed DSSGAN framework consists of two groups of GANs.

The generator with disentangled structure can differently learn and generate differ-
ent types of images. At the same time, the matching of the traditional discriminator
module and the generator module can form a complete process of confrontation
learning. Furthermore, HQ goes into G1 to generate HQ^ in order to make G1
have a one-way generation from L to H.

3.2.4 Result

The public CVC-EndoSceneStrill dataset [168], the corneal confocal microscope
(CCM) dataset[123], and Whole-slide images (WSI) from the Genome Data Shar-
ing Data Portal [186] are used for the experiment. For evaluation, we adopt 5 no-
reference evaluation metrics, namely Entropy [149], Average Gradient (AvG) [25],
Natural Image Quality Evaluator (NIQE) [128], Perception-based Image Quality
Evaluator (PIQE) [169], and Blind/Referenceless Image Spatial Quality Evalu-
ator (Brisque) [143]. Five methods are selected in comparison with the proposed
DSSGAN, which consist of two traditional methods DCP [51] and BM3D [26],
and three deep learning methods EnlightenGAN [69], MSG [195] and StillGAN
[123]. Moreover, the aforementioned learning-based methods are all retrained in
the same dataset with the proposed DSSGAN. Our DSSGAN achieves the best
results on all metrics except Entropy, especially PIQE, and NIQE.
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3.3 Paper III: FCFusion: Fractal Component-wise Modeling with
Group Sparsity for Medical Image Fusion

3.3.1 Abstract

Multimodal image fusion combes relevant biological information that can be used
for automated industrial applications. This paper presents a novel framework
combining fractal constraint with group sparsity to achieve optimal fusion qual-
ity. Firstly, we adopt the idea of patch division and component-wise separation
to perceive the fractal characteristics across multi-modality sources. Then, group
sparsity is proposed to preserve the spatial information against the redundancy of
component entanglement. A dual variable weighting rule is inherently embedded
to mitigate overfitting across the component penalty. Furthermore, the Alternating
Direction Method of Multipliers (ADMM) is conducted for the proposed model
optimization. Experiments show that our model performs better in quantitative
visual quality and qualitative evaluation analysis. Finally, a real segmentation ap-
plication of PET/CT image fusion proves the effectiveness of our algorithm.
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Figure 3.3: The image fusion process of our FCFusion model.

3.3.2 Motivation

As discussed earlier, feature extraction-driven methods have demonstrated that this
explicit fusion guideline (extensions of feature extraction capacity only) leads to
several issues for medical image fusion. The major problems of these algorithms
are that the information is over-completed. Thus, adapting the appropriate balance
between feature extraction and redundancy removal is the main solution. In this
paper, the fusion quality is determined by the feature extraction and redundancy
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removal in our proposed fractal component-wise prior and group sparsity model
termed FCFusion. The main flowchart algorithm is shown in Figure 3.3. In gen-
eral, we design the patch division with component-wise separation to perceive the
fractal characteristics across the different components in multi-modality. Unlike
traditional patch sparse representation (SR) based image fusion [184, 75] in slid-
ing windows manner, they performed feature extraction directly for each patch.
Our motivation relies on the proposed fractal constraint for feature extraction. To
keep up with the redundancy removal for mitigating the over-smoothing problem,
preserving the characteristic information by a group sparsity model is exploited
in our proposed model. Unlike the model proposed in [92], to better promote
detail preservation and remove redundancy, we use a fractal variable weighting
coefficient strategy to select the features of each patch over the decomposed com-
ponents. The saliency is reflected in the group-weighted sparse coefficient here for
medical image fusion to achieve a few artifacts. Overall, our designed patch-level
component feature extraction and group sparsity mainly focus on how to avoid
over-smoothing from noise interference, color distortion, and artifacts.

3.3.3 Methods

It includes four steps: patch cropping, sparse coding, a fusion of sparse coefficient
maps, and reconstruction. In step 2, the source images are divided into two com-
ponents: basic B and detail D, and then they are processed in a parallel way. A new
medical image fusion algorithm based on "fractals" is proposed, which intuitively
imposes the patch-level component-wise separation to perceive the fractal charac-
teristic across the different components in multi-modality sources. A new strategy
of group sparsity for components is proposed to strengthen the detail preservation
for medical image fusion, and the dual variable weighting is utilized to mitigate
over-smoothing and remove redundancy for characterizing the detailed structure
and fine components.

3.3.4 Result

Experiments are carried out by MATLAB R2016b on a computer with Dual-Core
Intel Core i5 processor (1.8GHz) and 8GB 1600 MHz DDR3. For a fair com-
parison, for both basic B and detail D, we adopt the same fusion strategy as the
convolutional sparse representation (CSR) based model[112]. We experimentally
fix � = 1:5, � = 4 � 10�7, � = 5 � 10�8, � = 50 �  + 1, the patch size is
16� 16 and the iteration number is 3. We select seven metrics including Average
Gradient (AG), Correlation Coefficient (CC), Entropy (EN), Mean Square Error
(MSE), Root Mean Squared Error (RMSE), Mutual Information (MI), Spatial Fre-
quency (SF) in [147]. We also calculate the average rank of these seven indicators,
which is an F-rank. Our experiments use five different modalities of fusion (mag-
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netic resonance imaging (MRI), positron emission tomography (PET), computed
tomography (CT), and single photon emission computed tomography (SPECT) im-
ages), including MRI-CT, MRI-PET, MRI-SPECT, and T1-T2, T2-PD, where T1,
T2, and PD are MRI images based on different weights. The source images used
in the experiment are all from the Whole Brain Atlas[71] established by Harvard
Medical School.

Our FCFusion model compares with seven existing medical image fusion methods,
including NSST-PAPCNN[191], NSCT-PCDC[12], NSCT-RPCNN[32], GFF[91],
CS-MCA[112], LP-SR[113] and IFCNN[202], where IFCNN is a deep learning
based fusion method. Note that in the fusion of color images, the CS-MCA method
is not included in the comparison. All parameters in these methods are set to the
default values for unbiased comparison.

3.4 Paper IV: JADD-GAN: A Joint Attention Generative Adversarial
Data Fusion Network for Object Detection and Tracking

3.4.1 Abstract

Image fusion is the fusion of images captured by different sensors to generate a
single image with enhanced information, and fusion technology, as one of the im-
portant branches in the field of information fusion, mainly realizes the processing
of multi-source image information. However, many commonly used fusion meth-
ods usually ignore the fused images’ visual naturalness and information fidelity
and lack emphasis on the salient information, making the fused images unsuitable
for human visual perception. To address these shortcomings of existing methods,
in this paper, we propose the Joint Attention and Dual Discriminator Generative
Adversarial Data Fusion Network JADD-GAN. In the generator module, we first
adopt a dual encoder structure and give information fusion in the decoder part to
increase the extraction of multi-level information by the network. Second, differ-
ent discriminators are used for infrared and visible images in order to highlight the
thermal radiation information and key textures. The effectiveness of the method
is verified by experiments on four datasets, and the results show that the method
can effectively highlight the thermal radiation information and key texture details
of the fused images, fully demonstrating its great potential and performance in
solving the infrared and visible image fusion (IVF) problem.

3.4.2 Motivation

In order to increase the extraction of multi-level information by the network and
to accurately reflect the salient features of the source images, in the generator part
we use the trained network to double encode the infrared and visible images sep-
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Figure 3.4: The architecture of the proposed JADD-GAN.

arately, use the attention model to combine these feature information and give in-
formation fusion in the decoder part. Different discriminators are used for infrared
and visible images to better highlight thermal radiation information in infrared im-
ages and the detailed information and key textures in visible images by construct-
ing different functions. Extensive experimental analyses based on four datasets
are conducted to evaluate the performance of the proposed framework against the
benchmark consisting of state-of-the-art IVF approaches.

3.4.3 Methods

Our proposed network architecture JADD-GAN which can be shown in Figure 3.4
has three parts: encoder sub-network, attention layer, and decoder sub-network.
It can be found that our network extracts multi-scale depth features but does not
deepen the network to some extent. A dual encoder is used in the encoding sub-
network, and the decoding process gives partial fusion information. All interme-
diate features are fused by a dense jump-connected multiplexing layer. The goal
of fusing infrared and visible images is to reconstruct a synthetic image with con-
spicuous targets and rich texture features. Selecting the right fusion strategy is
essential, and in this work, we use the attention mechanism strategy. The human
observation mechanism of external things is quite similar to the attention process.
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When people watch external things, they typically do not look at things as a whole.
but instead tend to selectively access particular key elements of the observed ob-
jects in accordance with their needs. Without adding additional computational and
storage expense to the model, the attention mechanism enables the model to give
varying weights to each input component and extract more crucial and significant
information to improve judgments.

3.4.4 Result

We perform an experimental evaluation on four datasets (two for IVF, i.e., INO
and RoadScene, and two for objection detection, i.e., M3FD and LLVIP). The
180/3500 multi-mode images were selected to train the fusion and detection tasks
by random cropping and enhancement, respectively, cropping to 24k/151k blocks
with 320 � 320 pixels. Our training parameters were set as follows: batch size to
4, stage number N to 15. We set the number of channels of the 3�3 size filter to 8,
i.e. L = 8. The Adam optimizer is used to optimize the network with momentum
terms (0.5, 0.99), and the learning rate is set to 1 � 10�4. All experiments are
performed on an RTX3090TI GPU.

3.5 Paper V: Multi-label Abdominal Image Segmentation with
Partially Labeled Data: A Prototypical Consistent Learning
Perspective

3.5.1 Abstract

Recently, accurate automatic computed tomography (CT) segmentation of organs
and tumors has the potential to facilitate clinical diagnosis and therapy. However,
the automatic segmentation of multiple organs and tumors (MOTs) is a complex
task, as they present variability in partially labeled data due to limited manpower
and resources. The most prevalent techniques are committed to proposing a uni-
fied framework for the multi-task segmentation problem while suffering from the
domain gap and discrepancy caused by the imbalance of data distribution. We
introduce a novel prototype assignment strategy to handle the aforementioned im-
balance challenges as weak enhancement information for a compact intra-class
feature representation. Moreover, an exponential-based probability regularization
term is proposed to avoid the inter-class imbalance problem caused by forcing the
network to provide a consistent prototype label for adjacent features. Experiments
comprehensively illustrate the performance of the proposed method compared with
other state-of-the-art (SOTA) approaches both qualitatively and quantitatively.
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3.5.2 Motivation

Traditional model-based segmentation techniques enjoy the theoretical guarantee
of the segmentation process while suffering from the fixed operator and the non-
adaptive segmented rules [49] [50] [207]. Many methods based on deep con-
volutional neural networks (CNN) have been proposed for MOTs segmentation
[54, 95, 209]. Most methods have trained multiple independent networks for dif-
ferent targets (like only for the liver or kidney). The deep learning framework
NNU-Net proposed by Fabian et al. [62] can independently make key decisions
required to convert the basic architecture to different data sets and segmented tasks
without manual adjustment. A cascade trainable segmentation model proposed by
Yu et al. [192] captured the global and local appearance information from crossbar
patches. Zhang et al. [198] proposed a lightweight hybrid convolutional network
(LW-HCN) segmentation method for liver and tumor within CT volume, using the
codec structure and depth and space-time separation (DSTS) technology, which ef-
fectively reduced the complexity of the model. While these methods take various
measures to reduce the complexity, the computational complexity of their mod-
els is still a challenge and can not be ignored. Fang et al. [38] proposed a new
training strategy, which enabled the multi-scale depth neural network to be trained
on multiple partially labeled datasets through a shared encoder and significantly
reduced the computational complexity of the model. Chen et al.[20] and Shi et al.
[155] adopted a similar multi-head network to solve this multiple partially data-
set problem. Although these methods achieve impressive performance, they are
short of dealing with new tasks. Most methods [38, 20, 155] [205] only relied
on a shared backbone network to realize the common knowledge of several in-
puts and multiple output headers for different segmentation tasks. However, the
mode assumption of multi-class segmentation of partially labeled data may mis-
lead some unlabeled organs as the background. The DoDNet proposed by Zhang
et al. [197] was a single input head network and a single output head segmentation
head. Specifically, it adopted a dynamic segmentation head to solve the problem
of partial labeling and can simultaneously segment organs and tumors to overcome
the above problem. However, some inevitable noise from the dataset and network
training based on conditioning class label information can influence the perform-
ance of feature extraction and organ segmentation. This problem explicitly results
from the intra-domain interference of MOTs task.

3.5.3 Methods

In order to solve the above problems, we introduce a novel prototype assignment
strategy as a weak enhancement information to achieve a compact intra-class fea-
ture representation for our segmentation task. Firstly, to solve the problem of
partially labeled data, the most important issue is to bring specific information to
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Figure 3.5: The framework of the proposed method.

guide the single feature extraction network to gain the discrepancy between tasks.
However, the existing network ignores the problem of class-wise feature inform-
ation to guide multiple-task learning by more compact intra-class feature repres-
entation. Thus, in this work, we exploit the implicit class-wise feature information
by clustering learning to guide the learning of a partially labeled dataset segment-
ation task. Furthermore, we use an exponential-based probability regularization
term, which encourages the output to be evenly distributed to different classes to
overcome the problem of cluster degeneration like an empty cluster.

The network is motivated by [197] and consists of a feature extraction module, a
prior knowledge extraction module, and a prior knowledge fusion module. Differ-
ent from the existing method, we further investigate the works on how to exploit the
capacity of prior knowledge. At first, to guide the single feature extraction module,
the class one hot prior information Fp is coded with middle representation Fm.
Figure 3.5, mainly includes 3 modules: a feature extraction head, a prior know-
ledge extraction module, and a prior knowledge fusion module. Kullback–Leibler
(KL) divergence, i.e., joint augmentation consistency, and an exponential-based
probability regularization term are introduced in the shared encoder-decoder.

3.5.4 Result

In this section, we compare the performance of the multi-organ and tumor seg-
mentation (MOTS) dataset [197]. This dataset contains seven partially labeled
sub-datasets involving the segmentation tasks of the kidney, liver, hepatic vessels,
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pancreas, colon, lung, and spleen. A total of 1155 3D abdominal CT scans were
collected from various clinical sites worldwide, including 920 for training and 235
for testing. Each scan is re-sliced to the same voxel size of 1:5�0:8�0:8mm3. Five
methods are selected in comparison with the proposed method, which consists of
one multiple networks method, i.e., multi-nets, a multi-head networks approach,
i.e., TAL [38], two single-network methods, i.e., Cond-NO and Cond-Dec [33],
and a unified segmentation structure, i.e., DoDNet [197]. To ensure a fair compar-
ison, we use the same encoder-decoder architecture for all methods.

Following the setting from [197], the processing of Hounsfield unit (HU) values
is similar to the work in [197]: [�325;+325] and linearly normalized them to
[�1;+1]. The weight standardization [144] is used for accelerating the training
procedure. The stochastic gradient descent (SGD) algorithm with a momentum
of 0.99 is adopted as the optimizer. The learning rate is initialized to 0.01 and
decayed according to a polynomial policy lr = lrinit � (1 � k=K)0:9, where the
maximum epoch K is set to 1000. The indicators for the experiment are the Dice
similarity coefficient (Dice) and Hausdorff distance (HD)[162]. Dice and HD are
commonly used for segmentation.

3.6 Paper VI: Learning the Distribution-Based Temporal Know-
ledge with Low-Rank Response Reasoning for UAV Visual
Tracking

3.6.1 Abstract

In recent years, the constraint-based correlation filter has shown good performance
in unmanned aerial vehicle (UAV) tracking, which has gained popularity in many
intelligence transportation applications. This work proposes a distribution-based
temporal knowledge-driven method to leverage the temporal translation property
in UAV tracking. Instead of focusing on the traditional issues in the correlation
filter, we provide a new method of learning parametric distribution on temporal
knowledge by Wasserstein distance, which is successfully embedded to solve the
problem of temporal degeneration in the learning process of tracking. Further-
more, we approximate optimal response reasoning with low-rank constraint over
response consistency. Furthermore, the proposed method is solved by a simple
iterative scheme with alternating direction multiplication ADMM algorithm. We
demonstrate the superior tracking performance in several standard public UAV
tracking benchmarks compared with state-of-the-art algorithms.
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Figure 3.6: Our proposed method adopts low-rank temporal response constraint and group
feature selection to improve the stability of the correlation filter.

3.6.2 Motivation

Benefiting from its easy implementation and fast prediction of the discriminative
correlation filter (DCF), DCF has attracted attention in UAV tracking. Recently,
to combine temporal information, some of the latest models used a transformer
to combine spatial and temporal information. STARK [183] had not used any
proposals, anchors, and post-processing steps (such as cosine window or bounding
box regression), which greatly simplified the visual tracking model. While online
learning of tracking has made good progress, there are still many problems in
the temporal-based tracking framework. These existing methods only discover
the reliability of spatial or temporal or background or response, the reliability of
the temporal knowledge transfer is also deserved to investigate to avoid temporal
degeneration. In existing temporal knowledge transfer based on the DCF tracking
framework, the Euclidean distance is commonly used to measure the similarity of
the targets of the two adjacent filters within a closed appearance [99, 181, 82].
Here, we recall a new concept about online temporal learning in visual tracking
(probability measurement). This problem is not noticed by the above methods
and raises some questions: what can we measure in online learning: probabilistic
temporal fitting or direct temporal interpolation?
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3.6.3 Methods

With the development of target tracking, research on low rank has made great pro-
gress and achieved good results. He et al. [55] had been successfully used in object
tracking by exploiting low-rank constraints to capture the underlying structure of
candidate particles. To mitigate this issue, we further investigate the low-rank reas-
oning over the temporal response. Therefore, we propose a new model (ATGT) as
shown in Figure 3.6. The main contributions of our ATGT method include:

A novel Wasserstein distance regularization method for measuring the temporal
transition is proposed. By adaptively incorporating the probability temporal fit-
ting manner, the filter is able to mitigate the problem of temporal degeneration.
Differently from inducing the representation, the low-rank constraint is conducted
on the temporal response to achieve beyond response consistency for improving
tracking robustness and overcoming the appearance variants. The iterative process
is solved using the ADMM algorithm. A comprehensive evaluation of ATGT, in-
cluding UVA123@10fps, DTB70, OTB100, UAVDT-M, and UAVDT-S. The res-
ults demonstrate the advantages of the ATGT, as well as its advantages over the
most advanced trackers.

3.6.4 Result

We evaluate the performance of our ATGT and other trackers on six benchmark
datasets, including DTB70[154], UAVDT-S[34], OTB100[172], UAVDT-M[34],
and UVA123@10fps[130]

For quantitative comparison, we use the precision plot[172] and the success plot[172].
The precision plot illustrates the percentage of frames whose tracked locations are
within the given threshold distance to the ground truth. A representative precision
score with a threshold equal to 20 pixels is used to rank the trackers.

The results are compared with 11 state-of-the-art trackers with both HOG feature-
based trackers and deep-based trackers, i.e, KCF[164], DSST [29], SAMF[97],
SRDCF[7], STRCF[82], ECO-HC (with gray-scale)[27], AutoTrackC[99], GFSDCF[181],
ARCF-HC[154], HOG-LR, LADCF[182], ARCF-H[154]. We evaluate our tracker
on the dataset DTB70. The result shows the precision and success plots of all track-
ers. Among the existing methods, our proposed method has the best performance
with scores of 0.492 and 0.714 on precision and success plot.
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Chapter 4

Discussion

In the previous chapter, the articles included in this dissertation have been summar-
ized concerning motivation, methodology, and results. In this chapter, the findings
in each article are discussed with respect to the three initial research objectives and
overall contributions to computational techniques in computer vision. The discus-
sion is grouped into three parts corresponding to these research objectives. The
first part is related to the work on Image Quality Enhancement for Single-modal
Information Enhancement (SIE) (RP I and RP II ), the second part is related to
the Image Fusion Enhancement for Multi-modal Information Enhancement (MIE)
(RP III and RP VI), and the last part is related to the Image Analysis for Task-
driven Information Enhancement (TIE) (RP V and RP IV).

4.1 Unpaired Image Enhancement with Deep Neural Network
From an application perspective, RP I and RP II address the same main issue and
test in many benchmark datasets which had been published in high-level journals
and collect a few parts of the experimental dataset by ourselves. The main goal of
these two works is not a denoising-like method for enhancing the quality, it is a
method for adjusting the illumination and contrast for human eye perception and
matching the corresponding high-level task for verification.

There have been an increasing number of studies on image quality improvement
utilizing the unpaired learning approach in recent years thanks to the works of
the generative adversarial network (GAN). [22] transformed the input image into
the enhanced image based on a bidirectional GAN utilizing an image intensifier.
An unpaired GAN model was proposed in [208] that aimed to solve the task with
unpaired training data. It learned a map by converting images from the source
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domain to the target domain and combined with inverse mapping to enhance im-
ages by using cyclic consistency loss. A model for converting MR images to CT
images was proposed in [3] using paired-unpaired unsupervised attention-guided
GANs (uagGANs). Based on paired datasets for pre-training and initialization, the
uagGAN model was then retrained on unpaired datasets using a cascade method.
In order to produce fine-structured images, pairwise pre-training was used to com-
bine the Wasserstein GAN adversarial loss function with two new non-adversarial
losses. In [101], they suggested a colorization network based on the CycleGAN
model with a combination of the perceptual loss function and full variational loss
function, in order to secure color medical images and enhance the quality of syn-
thetic images while using unpaired training image data. The model in [69] also
was constructed without low-light/normal light image pairs and can well handle
various real-world test images. However, the biggest problem with these methods
is that they focus on the global constraints of appearance and consistency and have
poor performance in local detail learning. RP I proposes a Siamese-based struc-

Low
Quality

High
Quality

Figure 4.1: Examples of unpaired LQ images and HQ images of corneal confocal micro-
scopy.

ture with dual inputs, low-quality (LQ) images, and high-quality (HQ) images,
allowing the network to learn salient features from the HQ images while maintain-
ing structural information in the LQ images. The proposed SSP-Net can generate
high-quality enhanced results in an adversarial manner, which ensures the robust-
ness of the SSP-Net to blurred textures, weakened structure, and background noise.
The methodologies of RP I are based on Generative Adversarial Network (GAN),
and the testing dataset shown in Figure 4.1 gives an example of three unpaired
sets of LQ and HQ images, where the first row is LQ and the second row is HQ.
The first and second LQ images represented challenges of uneven lighting distri-
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bution and blurred texture detail, respectively, while the third LQ image contained
both degradations. In contrast to these LQ images, the second row of HQ images
is visually superior, with uniform illumination and clear structural detail, which
is critical for many medical imaging applications: segmentation, computer-aided
diagnosis, etc. The first and second LQ images represent the challenges of het-
erogeneous illumination distribution and blurred texture detail, respectively. The
third LQ image is incorporated with the two aforementioned degradations, which
is a more common phenomenon in LQ images.

Although RP I makes the progressive contribution to enhancing quality. Motivated
by the multi-source domain gap, we develop the algorithm that is explored in the
follow-up work RP II. Concerning two novel problems here for the unpaired image
enhancement task:

• Q.A: What information is extracted between low-quality and high-quality
domains?

• Q.B: How to properly investigate information from high quality to low qual-
ity?

Referring to Q.A, the most relevant medical image enhancement works treat this
problem as image-to-image translation [106]. They lead to learning the shared
representation with low-level image properties, such as texture or cartoon. Re-
cently, one method has been to learn the relations between the two domains with
independent autoencoders for the two domains, but existing methods always gen-
erate image-to-image translation-based enhancement according to shared weight
perception[105]. Lin et al.[102] proposed image-level disentanglement and instance-
level disentanglement to learn domain-invariant representation for generalizable
object detection. Motivated by [142], the simple two-pathway encoder and a single
decoder for image content transfer. We propose the disentanglement representation
framework to preserve informative features for medical image enhancement.

Referring to Q.B, the usage of the extracted information is usually followed by
the guided methodology in a multi-layer encoder-decoder manner. However, the
encoded data is significantly different due to the unpaired data and degrades the
spatial information in the medical image. As a result, the model will produce
aliasing and chaos when encoding the information of different images, leading
to blurred image structure, and disordered illumination distribution [195, 156].
In fact, unpaired input is not prone to achieve optimal in traditional CycleGAN
as proved by [123]. The image-to-image translation assumption is inevitably af-
fected by illumination, noises, and other variants. Nevertheless, the existing deep
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learning image-to-image translation-based enhancement techniques avoid the dif-
ficulties of ideal medical image data collection. Due to the effects of heterogeneity
and complex illumination conditions of natural images, the content of medical
images is always homogeneous. Rather than the existing natural images unsuper-
vised enhancement techniques[133], we prefer to use the above good property to
solve medical image enhancement. Moreover, we observe the spatial homogen-
eity similarity across different quality medical images. Thus, we specially design
a different module to perceive this specific information between high quality and
low quality for medical image enhancement.

The RP II can be treated as the extension of RP I. And, from RP II, the experi-
mental dataset uses three scenarios: corneal confocal microscope (CCM) dataset[123],
public CVC-EndoSceneStrill dataset [168] and Whole-slide images (WSI) from
the Genome Data Sharing Data Portal [186]. It is noticeable that these articles are
generalized to any low-light application and do not depend on image source and
calibration.

4.1.1 Limitation Analysis

The main limitation of RP II and RP I is the use of a small-scale testing dataset.
Despite being evaluated on three benchmark datasets, the algorithms are yet to
undergo large-scale verification. The testing dataset’s small size could lead to
overfitting, where the algorithm performs well on the specific data it was trained
on but fails to generalize to other datasets. It is crucial to emphasize that the
developed techniques require efficient verification in various scenarios and to be
tested in real-world cases.

4.2 Unsupervised Image Fusion via Optimization Learning and
Deep Learning

Our objective is not solely confined to enhancing image quality but also encom-
passes a thorough investigation into the fusion of images derived from multiple
modalities.

From RP III, we concentrate on the fact that the structure of medical multi-
modality is a heterogenous system with self-similarity characteristics in nonlocal
region [48]. Specifically, inspired by the fractal analysis, the fractal dimension rep-
resents the degree of self-similarity, and fractal features are extracted via a mul-
timodal statistical distribution. Fractal analysis has been proposed for medical
image diagnosis [4] and [171] for accurately identifying the spatial distribution
and density. Thus, in this paper, the medical image fusion problem is tailored to
quantify structural heterogeneity and balance the degree of heterogeneity. Here,
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the notion of fractal analysis in this paper reflects that the small-scale structures of
a fractal set resemble large-scale structures in an irregular region of interest in a
medical image [134]. Thus, it intuitively gives inspiration for how to perceive im-
age fusion. The motivation is similar to the work in [124] that proposed the fractal
differential to enhance image details like edges and textures. By the construction
of fractal constraint on convolution sparse representation-based fusion framework,
we achieve the implicit perception of the fractal characteristic of components.

To improve fusion, the fractal constraint method is applied to retain image struc-
tural information to form a large group of patches. At times, the proposed fractal
constraint is similar to the non-local constraint [139, 187]. They specifically high-
light the importance of self-similarity to achieve more representative features.
However, in medical image fusion, the sources used for fusion belong to differ-
ent modalities. Compared to the method in [16, 139, 187], the non-local method
is mainly used to remove noise by using the similarity in each group patch after
which the image is divided. For our proposed method in RP III, the non-local-like
fractal constraint is retained in the feature extraction on the separated compon-
ents. Simultaneously, we avoid the intermediate group matching procedure [19]
for the reason that block matching of the patch comes from different positions of
the source image.
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Figure 4.2: The sparse coding process of our FCFusion model.

As discussed earlier, feature extraction-driven methods have demonstrated that this
explicit fusion guideline (extensions of feature extraction capacity only) leads to
several issues for medical image fusion. The major problems of these algorithms
are that the information is over-completed. Thus, the main solution is adapting
the appropriate balance between feature extraction and redundancy removal. To
realize our proposed feature extraction and redundancy removal to overcome the
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over-smoothing issue. Figure 4.2 shows the schematic of the proposed fractal
component-wise model, consisting of three parts: CSR, fractal component-wise
constraint, and group sparsity. We first propose a fractal component-wise model
and intuitively embed the group sparsity and its group variable weight techniques.
Then we put the optimization process of the proposed method.

In RP III, we did not analyze the natural image fusion. It is understood in the
literature that natural image has developed many deep-driven methods. The de-
tailed analysis of image fusion quality would require a more general subjective
experiment. In general, the contribution of RP III is toward a better methodo-
logy to guide the further method using the two core ideas: feature extraction and
redundancy removal as a golden baseline for further research works.

Moreover, the feature extraction and redundancy removal ideas are combined into
RP IV. In this work, the image fusion is not limited to the medical case, and it is
moved to the natural image case for object detection and tracking.

The development of deep learning has driven great progress in image fusion, and
the powerful feature extraction and reconstruction capabilities of neural networks
make the fusion results promising. Building on the works of RP III, we design
the deep network for the image fusion task in RP IV. The most challenging aspect
of designing deep learning fusion models is based on the unsupervised learning
truth to produce fused images. To solve this issue, Li et al. [87] presented the
RFN-Nest, a new end-to-end fusion network design that trains the residual fusion
network using both a new detail-preserving loss function and a feature-enhancing
loss function. A two-stage training procedure is used to learn the fusion model,
which makes up for the drawbacks of conventional approaches by being learnable.
The work in [120], an image fusion network with a feature extraction network
that can selectively extract salient target characteristics from infrared pictures and
background texture features of visible images and perform salient target recogni-
tion and crucial information fusion implicitly. To solve the shortcomings of the
training dataset, an unsupervised end-to-end learning system [57] may provide
enough benchmark training datasets using visible and infrared frames. Addition-
ally, a strong hybrid loss function that combines a modified structural similarity
(M-SSIM) metric and a total variation (TV) is utilized to compensate for the lack of
labeled datasets. Thermal radiation and texture details can be adaptively merged,
and noise interference can be reduced, by constructing an unsupervised learning
process.

Therefore, in RP IV, our main contributions include three aspects: Following the
feature extraction idea in RP III, to increase the extraction of multi-level inform-
ation by the network, and to accurately reflect the salient features of the source
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images. In the generator part, we use the trained network to double encode the
infrared and visible images separately, use the attention model to combine these
feature information and give information fusion in the decoder part. For the re-
dundancy removal idea, we use the different discriminators that are used for in-
frared and visible images to better highlight the thermal radiation information in
infrared images and the detailed information and key textures in visible images by
constructing different functions. Extensive experimental analyses based on four
datasets are conducted to evaluate the performance of the proposed framework
against the benchmark consisting of state-of-the-art fusion approaches.

But it is noticeable that the learning mechanism of fusion is in an unsupervised
manner. Thus, it is trained to extract features from the input images and combine
them in a meaningful way to generate the output image. Overall, deep learning
neural networks for image fusion are powerful tools for integrating information
from multiple sources to produce a more complete and informative image. By
training these networks on large datasets, they can learn to perform complex image
fusion tasks with high accuracy, making them valuable tools in a variety of fields.

4.2.1 Limitation Analysis

In RP III, the main limitation is the computational cost. In general, fusion pro-
cessing often requires significant computational resources as they involve comput-
ing the objective function and its first and second derivatives. And to ensure ob-
taining the global optimal solution during the optimization process, one common
strategy is to increase the search space of the optimization algorithm. However, it
inevitably brings additional computational complexity.

Furthermore, while the existing deep neural networks have shown great promise
for image fusion, there are several limitations that must be considered in RP IV.
The first limitation is training data for image fusion, this can be a challenge, espe-
cially in cases where obtaining annotated data is difficult or time-consuming. Even
though we have many testing datasets, there is no ground truth for the fusion task
itself. The trained network is prone to overfitting, this can result in the network
memorizing the training data instead of learning the underlying patterns, leading
to poor generalization performance on new, unseen data.

Despite these limitations, based on these existing limitations, it also indicates our
future development direction for deep neural networks for image fusion.
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4.3 Leveraging the external information as weak supervision
for high-level vision tasks.

In RP V, we explore external information to enhance current feature extraction.
We introduce a novel prototype assignment strategy as weak enhancement inform-
ation to achieve a compact intra-class feature representation for our segmentation
task. Firstly, to solve the problem of partially labeled data, the most important
issue is to bring specific information to guide the single feature extraction network
to gain the discrepancy between tasks. However, the existing network ignores the
problem of class-wise feature information to guide multiple-task learning by more
compact intra-class feature representation. Thus, in this work, we exploit impli-
cit class-wise feature information by clustering learning to guide the learning of a
partially labeled dataset segmentation task. Furthermore, we use an exponential-
based probability regularization term [193], which encourages the output to be
evenly distributed to different classes to overcome the problem of cluster degener-
ation like an empty cluster.

For RP VI, actually, the distorted appearance in visual tracking challenges the
spatial or temporal-based DCF methods. The above discussion motivates us to
mitigate the problem of overfitting and omit the impact of unpredicted appearance.
Fortunately, the Wasserstein distance with a common Lagrangian formulation and
alleviates the need for a common space. In [200], they proposed a novel approach
to learning domain invariant feature representations. Wasserstein generative ad-
versarial network (GAN) [6] learned a more reasonable and efficient approxima-
tion method and cured the main training problem of GAN. Thus, we leverage a
probability temporal fitting method motivated by the Wasserstein distance. To im-
prove the anti-noise performance of the tracking, we use the Wasserstein distance
to measure the similarity of the filter distribution instead of the previous linear
interpolation method for the estimation of the temporal filter.

To mitigate this issue, we further investigate the low-rank reasoning over the tem-
poral response. A novel Wasserstein distance regularization method for measuring
the temporal transition is proposed. By adaptively incorporating the probability
temporal fitting manner, the filter is enabled to mitigate the problem of temporal
degeneration. Unlike inducing the representation, the low-rank constraint is con-
ducted on the temporal response to achieve beyond response consistency for im-
proving tracking robustness and overcoming the appearance variants. The iterat-
ive process is solved by the ADMM algorithm. A comprehensive evaluation of
ATGT, including UVA123@10fps, DTB70, OTB100, UAVDT-M, and UAVDT-S.
The results demonstrate the advantages of the ATGT, as well as its advantages over
the most advanced trackers.
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4.3.1 Limitation Analysis

In RP V, the dataset used in the experiment is very heavy and lacks of the light-
weight architecture of multiple organs and tumors segmentation.

Discriminative Correlation Filter (DCF) is a popular method for visual object
tracking, which has achieved good performance in terms of accuracy and effi-
ciency. However, it also has several limitations in RP VI, including:

Requirement for Regular Sampling: the proposed method relies on a regular sampling
of the search region, which may cause suboptimal results when the target moves
in an irregular manner.

Lack of Online Model Update: the proposed method does not have a mechanism
for updating the model online, which may result in a decrease in tracking perform-
ance in a long-term tracking process over time as the target appearance changes.

4.4 Additional Contributions
In addition to the computational analysis of medical images and natural image
information enhancement, other works related to the computer vision domain were
finished during the research development.

4.4.1 Data Fusion by Deep Learning

Background

Multimodal sentiment analysis of social media has attracted increasing attention.
Its core idea is to discover a heuristic fusion strategy to analyze the sentiment
orientations over heterogeneous multimodal sources from a learned compact mul-
timodal representation. Unfortunately, existing multimodal fusion techniques not
only struggle to achieve entire heterogeneous data interaction but are also unable
to dynamically assess the quality of various modal data to determine predictability.

Methods

To address the above issues, the first one is that we present a novel profound tensor
evidence fusion network for multimodal sentiment classification termed DTEF.
Firstly, we propose a common view evaluation network that uses an extended
short-term memory network (LSTM) and a tensor-based neural network to extract
rich inter-modal and intra-modal information. Then, we propose a unique time
cue evaluation network that takes advantage of the temporal granularity associated
with numerous pattern sequences. To make reliable decisions, we finally incorpor-
ate uncertainty through the trusted fusion layer, which improves the accuracy and
robustness of sentimental classification. Our model is validated using the CMU-
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MOSEI and CMU-MOSI datasets, and the experimental findings demonstrate the
superior performance of the proposed network in terms of accuracy compared with
the state-of-the-art methods.

Outcome

There are two related publications, as shown below.

1. Zongyang Wang, Guoxia Xu, Xiaokang Zhou, Kim, J. Y., Hu Zhu, Lizhen
Deng. Deep Tensor Evidence Fusion Network for Sentiment Classification.
IEEE Transactions on Computational Social Systems, 2022.

Contribution: Problem formulation, Experiment Design and Development,
Paper Writing.

4.4.2 Temporal Information for Visual Tracking

Background Many discriminative correlation filters (DCF) based methods have
successfully leveraged the guidance for solving two problems (i.e., the boundary
effect and temporal filtering degradation) as a model before visual tracking. Re-
gardless of the specific content of the tracking algorithms, the intuitive motivation
of these methods is to control the degeneration of the updating loss of the objective
function with a structural framework. However, while these methods rely primar-
ily on various explicit prior regularization items, they always ignore the loss from
the data fidelity term. Furthermore, these trackers only adopt first-order data-fitting
information and have difficulty maintaining robust tracking in unconstrained scen-
arios, especially in the case of complex appearance variations.

Methods

To address the above issues, we propose a bilateral weighted regression ranking
model with a spatial-temporal correlation filter, namely, BWRR. Here, we resort
to two procedures for solving the above problems. First, BWRR introduces a bi-
lateral constraint into the data fidelity term to control the filter learning data term’s
loss of rows and columns. The weighted matrices could impose an adaptive pen-
alty for significant data loss during learning to avoid the tracking offset and model
degradation problems. Second, the data of the updated weighted matrices is not
directly applied to the calculation of the filter during each iteration. Instead, a new
weighted product matrix is obtained by ranking and numerical transformation for
updating the filter. We show that the proposed model converts the original correla-
tion filter regression problem into a regression-with-ranking problem, thus avoid-
ing the problem of positive and negative sample imbalance. Overall, the BWRR
model is approximated as a linear equality constraint problem, which is iteratively
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solved by the alternating direction method of multipliers(ADMM). Qualitative and
quantitative evaluations demonstrate the effectiveness and superiority of our pro-
posed approach through extensive and quantitative experiments on the OTB, VOT,
and UAV datasets.

The second one designs a new method by introducing a second-order data-fitting
term to the DCF; we propose a second-order spatial–temporal correlation filter
(SSCF) learning model. Specifically, the SSCF tracker incorporates both the first-
order and second-order data-fitting terms into the DCF framework, making the
learned correlation filter more discriminative. Meanwhile, the spatial–temporal
regularization was integrated to develop a robust model for tracking complex ap-
pearance variations. Finally, extensive experiments were conducted on the bench-
mark databases.

Outcome

There are two related publications, as shown below.

1. Hu Zhu, Hao Peng, Guoxia Xu, Lizhen Deng, Yueying Cheng, and Aiguo
Song. Bilateral weighted regression ranking model with spatial-temporal
correlation filter for visual tracking. IEEE Transactions on Multimedia 24:
2098-2111, 2021.

Contribution: Problem formulation, System and Experiment Design, paper
review.

2. Yu-Feng Yu, Long Chen, Haoyang He, Jianhui Liu, Weipeng Zhang, Guoxia
Xu, Second-Order Spatial-Temporal Correlation Filters for Visual Tracking.
Mathematics, 2022.

Contribution: Problem formulation, System and Experiment Design, paper
review.

4.4.3 The Feature Learning in Deep Learning

Background Traffic sign classification plays a vital role in autonomous vehicles
for its powerful capability in information representation. However, the low-quality
data of traffic signs captured by in-vehicle cameras often inevitably bring inherent
challenges to the one-shot classification task. Apart from the problem of data
degradation, learning-based classification techniques of real traffic signs also come
across the challenges of intra-class and inter-class data imbalance from the training
data.
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Methods To overcome the problems above, we propose an end-to-end degradation
robust deep model, PcGAN, to classify traffic signs using few-shot learning. The
proposed PcGAN models the joint distribution between the degraded traffic signal
data and the corresponding prototypes from both degradation removal and gener-
ation perspectives by two alternating optimized modules, which ensures the gen-
eralization of the learned embedding of latent space for novel tasks. A multi-task
loss function is designed to improve the robustness of PcGAN. Numerous exper-
iments comprehensively demonstrate that the accuracy of our proposed PcGAN
is improved by 5% compared with other state-of-the-art (SOTA) approaches in
few-shot classification.

Outcome

There are two related publications, as shown below.

1. Lizhen Deng, Chunming He, Guoxia Xu, Hu Zhu, Hao Wang, PcGAN:
A Noise Robust Conditional Generative Adversarial Network for One Shot
Learning, IEEE Transactions on Intelligent Transportation Systems, 2022.

Contribution: Problem formulation, System and Experiment Design, paper
writing.



Chapter 5

Conclusions and future
perspectives

In this chapter, we will provide an overall conclusion of the thesis and give a
perspective for future work.

5.1 Conclusion
This Ph.D. thesis aims at researching information enhancement with special em-
phasis on three types Single-modal Information Enhancement (SIE), Multi-modal
Information Enhancement (MIE), and Task-driven Information Enhancement (TIE).
The topic of the Ph.D. is multidisciplinary research of imaging problems consist-
ing of medical images and natural images with respect to existing information
deficiency issues of imaging technologies. The dissertation provides an analysis
of several public benchmark datasets and proposes several state-of-the-art compu-
tational techniques to improve visual quality, content supplement, and high-level
visual tasks.

Methodological perspective: The research articles in this project contribute to im-
age enhancement, image fusion, automated multiple organs, and tumor segmenta-
tion/object tracking algorithms. Image enhancement problems are challenging as
they depend on acquisition hardware and lighting conditions. This Ph.D. project
proposes two unpaired medical image enhancement algorithms based on Generat-
ive Adversarial Network (GAN) methodology for solving several imaging issues in
medical scenarios. Experimental results show that the proposed method provides
better visualization of the desired image attributes. Moving to image fusion, we
proposed an image fusion algorithm based on the fractal idea, which intuitively
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imposes the patch-level component-wise separation to perceive the fractal charac-
teristic across the different components in multi-modality sources. Furthermore,
we design a deep learning-based method for the image fusion task. To increase
the extraction of multi-level information by the network and to accurately reflect
the salient features of the source images, in the generator part, we use the trained
network to double encode the source images separately, use the attention model to
combine these feature information and give information fusion in the decoder part.
In the later period of this Ph.D. project, we are focusing on bringing the informa-
tion enhancement perspective to high-level tasks. We investigate a novel prototype
assignment strategy as weak enhancement information to achieve a compact intra-
class feature representation for multiple organ segmentation problems based on a
partially labeled dataset. Furthermore, a novel Wasserstein distance regularization
method for measuring the temporal transition is proposed to exploit the informa-
tion enhancement idea in temporal video object tracking. By adaptively incorpor-
ating the probability temporal fitting manner, the filter is enabled to mitigate the
problem of temporal degeneration.

Application perspective: This thesis identifies the challenges and opportunities
in information enhancement from three levels and gives our understanding of qual-
ity, content, and tasks. The methods developed during this project could flourish
in the existing information enhancement research community. Furthermore, en-
hancement ideas can be further used to inspire other researchers to design their
works, and enhancement can be used for different levels, architectures, and cases.

5.2 Future Research Orientation
We have identified many research challenges that can be addressed in future work.
They are grouped according to their focus on the different high-level pipelines.

We found that information enhancement can be mainly about a plug-and-play
countermeasure strategy, which is to generate more salient images to improve the
’task processor’ ability to extract discriminative information. Intuitively, it may
also enhance the performance of the enhancement algorithm in low-level on real-
world images. The previous methods are to generate a more realistic degraded
image through degeneration, form a pseudo-image pair, and then use such pseudo-
image pairs to train an enhancement network. However, these two steps are separ-
ate and not end-to-end. In addition, such images do not provide targeted degrada-
tion for the weakness of the enhancement network and thus do not fully strengthen
the resilience of the enhancement network to complex degradation. We can further
use the confrontation strategy to bridge these two areas. In phase 1, we fix the in-
tensifier and optimize the degeneration. The purpose is to make the degeneration
generate degenerate images that can make the enhancer fail as much as possible
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(how to evaluate the failure has not been decided, such as PSNR, SSIM, etc.). In
phase 2, we fix the degeneration, optimize the enhancer, and force the enhancer
to restore such degenerate images perfectly. By alternating these two steps, we
hope that the degeneration can generate targeted, degraded images to improve the
recovery ability of the intensifier for complex degradation so as better to improve
the performance of the intensifier on real-world images.

Different scenarios have different cases, and our target is how to design a uni-
fied case to handle these questions from different perspectives. Color deviation
of many nature images; Low-light images may also have deviations, and foggy
images (equivalent to low-light images) can be treated similarly to low-light im-
ages, which will also have corresponding recovery problems. This has brought
difficulties to the network: these tasks are extreme, and the deep learning network
based on data statistics is difficult to learn. Perhaps under this consideration, we
must guide a non-pairing high-quality image when restoring a low-quality image.
Since HQ pictures do not have such extreme degradation, HQ can provide real-time
correction assistance. In addition, this guidance is also conducive to our unified
enhancement because low-quality maps have their differences, while high-quality
maps have their common advantages. Such explicit guidance can strengthen the
stability and generalization of our enhanced network.
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