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Abstract: Modern vehicle communication development is a continuous process in which cutting-edge
security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET).
Malicious node detection is one of the critical issues found in the VANET environment, with the
ability to communicate and enhance the mechanism to enlarge the field. The vehicles are attacked
by malicious nodes, especially DDoS attack detection. Several solutions are presented to overcome
the issue, but none are solved in a real-time scenario using machine learning. During DDoS attacks,
multiple vehicles are used in the attack as a flood on the targeted vehicle, so communication packets
are not received, and replies to requests do not correspond in this regard. In this research, we selected
the problem of malicious node detection and proposed a real-time malicious node detection system
using machine learning. We proposed a distributed multi-layer classifier and evaluated the results
using OMNET++ and SUMO with machine learning classification using GBT, LR, MLPC, RF, and
SVM models. The group of normal vehicles and attacking vehicles dataset is considered to apply the
proposed model. The simulation results effectively enhance the attack classification with an accuracy
of 99%. Under LR and SVM, the system achieved 94 and 97%, respectively. The RF and GBT achieved
better performance with 98% and 97% accuracy values, respectively. Since we have adopted Amazon
Web Services, the network’s performance has improved because training and testing time do not
increase when we include more nodes in the network.

Keywords: real-time malicious nodes; VANET; machine learning; DDoS; OMNET++

1. Introduction

The Vehicular Communication System (VCS) increased with time, especially when
Tesla self-driving cars entered the VANET market. The computational power and commu-
nication between these vehicles increase with time, and malicious attacks are also increased
to harm the data generated through these devices [1]. According to the research, almost
one-third of the people in the developed world have a vehicle license to drive cars. The
vehicles in VANET use wireless technology, such as 5G, that enables attackers to attack
the network using its open nature. As a prevention to this attack, misbehavior detection
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systems are developed to attack and prevent these behaviors. The prevention only captures
the incoming data packets and provides an easy way to enable these attackers to catch
and enlist them for distribution. Many attacks on the VANET environment can hack the
network [2]. In this chapter, we introduce our research with some used infrastructure and
the ability to communicate and handle the communication infrastructure—we discussed
the motivation, problem statement, research questions, and research outline.

The VANET term is implemented from the autonomous network transformation to im-
plement the nature of the wireless network. It holds the new generation of technologies that
embrace the nature of network deployment and provides the ability to enhance knowledge
and experience of network boundaries. The idea of the VANET is that it connects in the
same way as the computing connectivity of mobile devices. These devices are connected to
deploy the proper network architecture. Intelligent Transportation System (IST) is one of
the key deployment areas that makes the network architecture more secure and provides
reliable features and delivery services for the network’s needs. In VANET, we contain three
types of communications, i.e., vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and
infrastructure-to-infrastructure (I2I) communication [3].

ITS uses the ICT concepts with data transmission flow with abilities to enhance the
knowledge and the work experience of these professional skills, and the demand for
nature perspectives. The ITS technology is efficient, smarter, and suitable for remote
communication in VANET [4]. The Roadside Units (RSUs) and Base Stations (BS) are
the common ways to provide effective delivery services of the common protocols and
enhance the recovery and efficiency of policies inside the network architecture. The modern
communication infrastructure makes the role more important, as others cannot do this
from a development perspective. The safety of the drivers and passengers in the VANET
is a high priority in this autonomous industry [5]. Several possible attacks on the VANET
make its distribution more questionable regarding data transparency and security. The
data is very important in the VANET. Denial of services, jamming, malware, Blackhole,
spamming, Sybil, tunneling, GPS spoofing, and traffic analysis attacks are the common
attacks on the VANET environment. The most significant and dangerous attack is a denial
of service or distributed denial of service attack (DDoS) in VANET. These attacks make
the network more vulnerable and provide a separate attack scenario for the development
perspectives of the network and autonomous industry. The attacks encountered under
these umbrellas destroy the network activities [6]. VANET has multiple categories, such as
cloud ad hoc networks (CANET), mobile ad hoc networks (MANET), and vehicular ad hoc
networks (VANET). All of these can be compromised using the attack scenario presented in
this context for the VANET to be updated according to the wireless technologies. Hop-to-
hop communication is allowed, or vehicle-to-vehicle communication, in this research that
corresponds to secure communications using the machine learning approach. The VANET
offers multiple ways to control and provides the significance of handling these types of
network attacks. Multiple wireless channels are imported into the VANET that demonstrate
the network architecture, make the network more secure and not vulnerable to attacks,
and provide the latest coverage area to design and develop for wireless communication
technologies [7].

Real-time malicious nodes are a critical concern in vehicular ad hoc networks (VANET)
because they can cause severe disruption and pose a significant threat to the security
and privacy of communication. VANETs rely on communication between vehicles and
infrastructure to ensure smooth and safe transportation. Malicious nodes can exploit
these communication channels to launch attacks on the network and cause widespread
damage [8]. The importance of real-time malicious nodes in VANETs lies in their ability
to compromise the network’s security and privacy. Malicious nodes can exploit network
vulnerabilities and steal sensitive information, such as vehicle location, speed, and driving
habits. They can also send false messages, which can cause confusion, accidents, and even
gridlock on the roads.
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Moreover, real-time malicious nodes can launch denial of service (DoS) attacks, which
can significantly disrupt the network’s operation [9]. DoS attacks can cause communication
breakdowns, leading to delays in emergency services, traffic congestion, and accidents.
Therefore, it is essential to detect and isolate real-time malicious nodes in VANETs to
ensure the network’s security and reliability. VANETs need advanced security protocols to
detect and prevent attacks from malicious nodes. Security measures such as encryption,
authentication, and intrusion detection systems are necessary to mitigate the impact of
real-time malicious nodes in VANETs [10].

In DDoS, intruders use multiple vehicles to target the network from different locations,
disturbing the network density and integrity. However, all of these vehicles involved in
DDoS attacks are unaware they are utilizing the attack on the network devices. All of these
vehicles are also called “zombies” in the DDoS context. The results of DDoS attacks can
be sewers, such as loss of human lives, accidents to automatic vehicles, and infrastructure
loss. As multiple zombies are involved in this attack, detection is difficult, and there is no
proper conveyancing [11]. Figure 1 shows the attack on vehicles using DDoS. In this DDoS
attack from Figure 1, the attackers use other vehicles to attack single data or a major vehicle
under this attack. The targeted vehicles stop working and leave for another environment.
The victim vehicle did not correspond to these changes and started to drop out of the
responding phase in the network. In these theses, we focused on the real-time detection
and mitigation of DDoS attacks using machine learning.
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Figure 1. DDoS Attack on vehicles in the VANET environment [12].

VANET is one of the wireless multi-hop network (WMN) cases. This network provides
fast technology change in different infrastructure management and enhances the work
of different resources under a high level of mobility [13]. In VANET, the devices are
equipped with wireless communication devices and computing technologies for inter-
vehicle and intra-vehicle communication. Inter-vehicle communication, in the form of
caching, is one of the promising fields of research in these development perspectives for
standardization, research, and development technologies [14]. “VANETs enable a wide
range of applications, such as prevention of collisions, safety, blind crossing, dynamic route
scheduling, real-time traffic condition monitoring, etc. Another important application for
VANETs is providing Internet connectivity to vehicular nodes. Figure 2 shows an example
of a VANET”. From Figure 2, we adopted the communication using 802.11 for the V2V,
V2I, and I2I communication architecture. The vehicles, RSU, and based stations use the
communication architecture to explain the current scenario [15].
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VANET provides three main components, which include the application unit (AU),
on-board unit (OBU), and roadside unit (RSU) [17]. Figure 3 provides the effective com-
munication range for VANET architecture. The architecture shows that during the V2V
communication, two vehicles communicate with each other, i.e., vehicles A and B. Dur-
ing V2I communication, the architecture is communicated with the vehicle, i.e., RSU is
communicating with vehicle G. The communication range is defined under every vehicle,
based on the area surrounding the vehicle, in which it communicates with other vehicles or
infrastructure [18].
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Machine learning has recently been a hot topic, and its application in vehicular ad hoc
networks (VANETs) has gained much attention. VANETs are an emerging technology that
enables vehicles to communicate with each other and the road infrastructure to improve
road safety and traffic efficiency. However, the success of VANETs depends on the reliability
and efficiency of communication between vehicles, which can be affected by various
factors such as signal interference, dynamic network topology, and unpredictable mobility
patterns [20]. Machine learning techniques can be applied to VANETs to overcome these
challenges and enhance the network’s performance. One of the main applications of
machine learning in VANETs is predicting vehicles’ behavior on the road. Machine learning
algorithms can analyze the data collected from various sensors and communication devices
installed in the vehicle to learn driving behavior patterns, such as speed, acceleration,
and lane changes. This information can then be used to predict the future behavior of
the vehicle and improve communication between vehicles [21]. The machine learning
algorithm is very effective at using straight learning in the machine to provide effective
and quality-based training. It supports algorithms, deep learning, and AI, and shows
classification and detection accuracies in the network. We adopted ML in our model to
train the network to detect DDoS-compromised vehicles [22].

1.1. Real-Time Malicious Node Detection

VANET is always vulnerable to attacks due to its open wireless access. The wireless
network is susceptible to attacks [23]. VANET is also vulnerable due to wireless technology.
In VANET, there is real-time communication among the vehicles, so the detection of the
malicious nodes may also come in real time; otherwise, the network is always targeted
with high vulnerabilities. The security requirements must be best fitted to communicate
and provide real-time malicious node detection using the scenario [24]. Malicious node
detection comes with confidentiality, non-repudiation, integrity, authentication, and privacy
to protect against attackers and intruders. In our case, we encounter real-time malicious
node detection using the machine learning approach. This happened due to the protection
and detection of different schemes that can demonstrate and provide adequate knowledge
and discovery. The main idea in this context is real-time malicious node detection. Real-time
means whenever a node starts behaving differently, we encounter the machine learning
algorithm that starts detection of the malicious nodes [25].

1.2. Importance of the Research

Malicious nodes create issues such as content alteration, non-trustable content delivery,
and information flow. Malicious nodes are detected through machine learning, which
enables data management operations in VANET. DDoS is one of the most critical and
advance level threats for VANET. In this research, we plan to handle DDoS attacks in a
real-time scenario. More specifically, when we talk about real-time traffic and content
sharing in VANET, the content shared data is difficult to handle whether the real-time
data is secure or not. We took the idea from machine learning, and VANET combined
the handling of different incoming network traffic for the DDoS attacks. The VANET and
machine learning collectively secure real-time content sharing among all the vehicles.

Although many research works have been implemented and provide secure content
delivery in VANET, the real-time detection of the malicious nodes in VANET is still the
main idea to be solved. This proposed work solves the malicious node’s detection issues
with real-time monitoring through VANET emergency packet delivery. Malicious nodes
are detected using real-time monitoring schemes through VANET. A reliable mathematical
model is evolved through a machine learning malicious node detection policy. VANET
is considered one of the most demanding smart environments in the recent technological
era. VANET faces multiple issues such as content security and privacy, and smart V2V
environment. In this research, we considered malicious node detection during the flow of
information in VANETs.

This research evaluates the below objectives:



Sensors 2023, 23, 2594 6 of 34

• Detection of malicious nodes through machine learning.
• Enhance the throughput of the network through the detection of malicious nodes.
• True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and

False Negative Rate (FNR) classification for malicious node detection.
• This research will contribute to secure the lives of patients when medical data is secured.
• This research enhances the security of special coveys and government data.

1.3. Problem Description

VANET is considered one of the most demanding smart environments in the recent
vehicular technological era. VANET faces multiple security issues, such as malicious nodes,
behavior changes, security, content privacy, and message exchange. Through the literature
study, we learned that malicious node detection is a very state-of-the-art research gap in
VANET; after studying the topic, we have seen that multiple techniques are presented on
this topic, but based on our further study, we concluded that real-time malicious node
detection using machine learning is one of the most critical research problems. A novel
technique is presented in this research to detect and classify malicious nodes using machine
learning techniques. In this research, we have considered malicious node detection during
the information flow in VANET. To address the issue, we proposed a real-time machine
learning-based secure information flow mechanism to enhance the privacy and security
in VANETs.

In this paper, we have considered the below-mentioned questions during the task
scheduling:

(i). How are malicious nodes detected in VANET in real-time?
(ii). How to achieve privacy and security of VANET under network attack?
(iii). How to deliver real-time content to vehicles in VANET using machine learning techniques?
(iv). How to deal with malicious requests generated from malicious nodes?

1.4. Research Contributions

The main contributions of the research are to detect malicious attacks using machine
learning techniques.

(i). The research supports the real-time communication between vehicles in VANET to
detect malicious node detection.

(ii). The proposed multi-layer classifier technique, called the DDoS detection scheme, de-
tects malicious nodes that hijack a vehicle in the network using a monitoring approach.

(iii). The machine learning models are evaluated to adopt real-time malicious node detec-
tion with OMNET++ and SUMO simulations under a higher accuracy of 99%.

(iv). We design a cluster-based VANET architecture in which the RSU handles and im-
plements the real-time machine Learning algorithms to detect the malicious nodes.
This technique is conducive to overcoming the malicious activities of DDoS attacks
in VANET.

(v). The proposed technique predicts real-time DDoS malicious activities by continuously
monitoring each vehicle in the network using an ML algorithm.

(vi). The real-time dataset is monitored to evaluate each node through the RSU-based
technique for the performance evaluation and enhancement of parameters.

(vii). The ML-based model is trained using real-time traffic analytics in VANET after ob-
serving each node’s behavior, message threshold, speed, packet routing, and network
congestion and handling parameters. After the evaluation and dataset of these pa-
rameters, the ML-based algorithm is trained and tested in a real-time environment
through a simulation setup.

(viii).The anomalies in the network are checked, and malicious vehicles are removed from
the network using a RSU-based real-time checking mechanism.
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(ix). We design a real-time malicious node detection mechanism to detect the DDoS at-
tack nodes from real-time analysis to perform the selected performance based on a
generated dataset under the severity of 10% to 70% under attack.

(x). The performance is compared with the existing state-of-the-art techniques using ma-
chine learning on a training and testing dataset model that is real-time generated
under the supervision of RSU that implements the machine learning models. The
network throughput and model prediction accuracy are achieved using the men-
tioned requirements.

(xi). The machine learning approach for DDoS-based malicious node detection and classification.
(xii). The network throughput is achieved using machine learning techniques.
(xiii).False Positive Rate (FPR), True Positive Rate (TPR), False Negative Rate (FNR), and

True Negative Rate (TNR) for malicious node detection and classification.
(xiv).The research contributes towards the modern ITS-equipped vehicles from the vehicu-

lar industry for classification and model prediction accuracy and secured medical data.

Section 2 describes the thesis background with respect to related work. We define
misbehavior detection in VANET. Close related work is described in this chapter of the
thesis. All the related work is effectively described and utilized in these strategies. At the
start of this chapter, we define the structure, and then machine learning-based malicious
node detection is determined, which provides the fully reference-based allocation and
development schemes. Section 3 contains the proposed method to detect real-time malicious
nodes using machine learning and provide significant results using such techniques. The
neural networks are introduced with the ability to handle and provide the significance
needed to provide effective resources. The three state-of-the-art algorithms are defined
in this chapter. The proposed model with methodology diagram is implemented in this
context to define the clear features of the proposed technique. The workflow model for the
proposed methodology is also explained to detect malicious nodes using these techniques.
In Section 4, we simulate our research ideas using simulation tools. We adopted machine
leaning and VANET model selection to deliver these services successfully. The results are
gathered, and then a discussion is performed using such techniques. The analysis and
ratios are performed using these techniques. In Section 5, we provide a summary of the
thesis to conclude and understand the thesis in a single heading. In Section 5, we concluded
the work with future directions provided in the same context.

2. Literature Review

The nature of the vehicular networks is open, which means it uses wireless technology
to communicate under V2V, V2I, and I2I communications. The openness makes it vulner-
able to cyber-attacks, such as DDoS attacks. Regarding the wireless network’s security,
some solutions are provided in this context—the literature review defined the machine
learning-based DDoS attack detection using real-time scenarios. According to the survey,
we studied around 50 articles on machine learning-based malicious node detection using
the real-time scenario. In this chapter, we focused on the real-time scenario and found the
research gap which we focused on in this research. The existing techniques for malicious
node detection in VANET are studied [26].

Understanding VANET security architecture is important at the initial stages of the
literature before moving on to the final decision-making. In [27], the authors write a review
article to discuss VANET security. The authors review almost 114 articles on VANET
security. The VANET is a soft target for attacks, such as DDoS, eavesdropping, bogus
information, impersonation, and hardware tempering. The DDoS attacks are considered
to target resolving issues using machine learning. In [28], the authors define the security
mechanisms, such as RSA, public key encryption, and elliptic curve cryptography. These
security mechanisms play an important role in the development of effective mechanism
handling. In this paper, the authors continuously highlight DDoS detection in VANET. The
authors in [29] propose a new security protocol that safeguards against DDoS attacks in
VANET. The main steps of the proposed solution are as follows:
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• DDoS detection;
• DDoS reporting;
• DDoS investigation.

The DDoS handles use the activities to detect the DDoS from the literature ordinance
values. DDoS is also a form of misbehavior detection. Initially, the system detects the
misbehavior, and then this detection is reported to the authority named misbehavior
authority. The authority then completes the detection and provides notification about the
DDoS attacks. In another research article, the developers develop a new system to develop
the new misbehavior system. Another research in this regard is published in [30], in which
a misbehavior reporting system is designed to develop a new system. The messages are
contained from vehicles that show or misbehave in the network. The evidence containers
contain vehicular information from its historical behavior. This affects the simplicity of
the network and promotes network operations. The detection inside the system contains
the detection containers able to manage the network operations. This container contains
information regarding the errors that are reported in this context.

The dataset generation and misbehavior detection from the network is a challenging
task—authors in [31] design VeReMi (Vehicular Reference Misbehavior Dataset). The
authors highlight the issue related to misbehavior detection and other dataset generation
systems. Different datasets are generated, and studies define the misbehavior network
inside these challenges. VeReMi uses log files to detect misbehavior whenever the network
starts behaving as if it is engaged in malevolent activities. In this network, the source
code is for about 255 simulation rounds. It detects attacks such as network traffic and
attacker densities for network analysis. In [32], the author makes claims about these kinds
of datasets. According to researchers, the authors achieved great achievements, but the
dataset is imperfect. Through this technique, the users cannot detect multiple attacks—the
author’s continuous development of network architecture using the VeReMi dataset. The
dataset has less impact than other dataset techniques.

Another technique to simulate the VANET, SUMO (Simulation of Urban Mobility), is
proposed. SUMO is used in multiple research activities. It is an open-source simulation for
VANET traffic simulation. The authors in [33] use the study of SUMO in VANET. The tool
works in combination with NS-2/3. In [29], the authors proposed a network simulation for
VANET malicious node detection under NS-2 and SUMO. SUMO imports network models
for related matters. The recent SUMO projects are VABENE, iTETRIS, and CityMobil.
Researchers in [30] created the GUI-based road network with publicly available tools for
the simulation in VANET.

Inside the VANET, another tool that is introduced is OMNET++. OMNET++ is used
for GUI-based communication. It uses C++-based architecture and provides the effective
delivery of network services. The simulation and development tool helps to integrate
the network connections. Authors in [34] use OMNET++ to detect DDoS attacks. Four
simulated vehicles are used as a study for the research topic in this network. In DDoS,
more than one attacker attacks the system. The authors use multiple attack vehicles as a
zombie. Another simulation by Kaur et al. [35] uses RaeSE and OMNET++ under the attack
development using the web servers. Simulated DDoS attacks were generated using random
access to the network effects. In this technique, multiple routers and factors are involved in
addressing the issue raised in this technique. The network access ratio and packet drop
ratio are observed in this technique. There are several design parameters considered for
proper environmental protection. After the malicious network node attacks, the Wireshark
analysis tool is used to analyze the network. The results are quite remarkable in terms of
providing effective network services.

Malicious node attackers are the threat to the VANET that provides the ability to com-
municate and handle the network environment. The malicious node attacks incorporated
in the network, when intercepted with normal vehicles, are not encounters. The attacker
encounters that the packets are captured, doped, and modified in the network. According
to research in [36], the attackers attack the network using OMNET++ and SUMO. VEINS is



Sensors 2023, 23, 2594 9 of 34

also part of the attack environment. The maps are defined using VEINS, and other tools
incorporate the network. The total of different cars and other network environments are
incorporated with the network disability and efficiency. According to the study, fleet-based
and distributed attacks are encountered in the study environment.

The DDoS attacks come from flooding vehicles or RSUs. The authors in [37] proposed
the graphical aware flooding technique in VANET. It is similar to a technique for normal
flooding attacks. The packet drop ratio is increased in this type of flooding attack in the
network. The vehicle behind the vehicular communication operates in this favor of the
flooding attacks for the order of the flooding. Another method named OLSR (Optimized
Link State Routing) is proposed in which vehicles propose a new technique for the similarity
and other main features related to the network architecture. Flooding is one of the critical
methods for obtaining advanced-level communication between vehicles. Many machine
learning methods are used in this subject to detect and provide DDoS, Sybil, and alert
message detection techniques. The attacker wants to obtain the communication pattern to
provide an effective communication environment.

The authors in [38] use the case to detect the malicious nodes using machine learning
models such as logistic regression, KNN, decision tree classification, random forest, and
bagging. The authors check that the decision techniques used effective learning and
mitigation techniques for the final approval of the detection of misbehavior detection. The
accuracy of the network is achieved and provides effective qualitative research patterns for
the selection and provision of the results. The authors in [39] proposed a hybrid, trustable,
deep learning model to detect malicious nodes in VANET. Communication in VANET is
expensive when nodes are detected and provide efficient and effective qualitative-based
trust management approaches. The authors proposed a hybrid technique using deep
learning to overcome challenges such as packet loss, packet damage, routing difficulties,
and software and hardware failure issues. The attacks are classified inside the VANET
environment. A hybrid algorithm is used for the CH selection and hybrid optimization
approaches. The optimization algorithm is used to provide the effective classification and
methodology for the proper certification. In the end, 94% accuracy is achieved in detecting
the malicious nodes from the VANET environment.

In [40], the authors target traffic exchange and communication in VANET. DDoS
attacks are considered in the network. An intrusion detection system is one possible way to
handle these attacks, but the growing needs of larger networks challenge the environment.
The author uses the random forest algorithm for the posterior detection of malicious nodes
using high accuracy. The detection accuracy is enhanced by providing these effective
networks and other related matters to detect and classify DDoS Attacks. The proposed
model enhances the machine learning results with detection accuracy and value predictions.

VANET is always available for attackers’ malicious activities due to its open nature
and provides many different techniques that detect and classify malicious nodes. The
authors use multiple machine learning models to detect the attacks from the system.
Different machine learning algorithms detect every attack under binary classification. The
accuracy shows that the attack detection technique effectively handles malicious node
detection. The main limitation of the work is that this does not handle the real-time
detection of malicious nodes. This means that the detection accuracy is compromised when
a real-time scenario is involved [41]. Another technique proposed by authors in [42] is to
detect malicious nodes as position falsification attacks. The authors consider cooperative
intelligent transportation systems (C-ITS) to connect advanced technology with useful
features and enhanced required terminologies. The attack is dangerous for the safety of
the passengers and other related situations. It plays a vital role in detecting and mitigating
the vital attack system in VANET. The authors consider three features: sender position,
existence, and performance. KNN and RF models are used in this system to detect and
mitigate the research-based parameters related to the advanced level significance in this
regard. The results effectively show better results, but the limitation is the real-time
detection of the malicious nodes under different machine learning models.
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Malicious node detection in VANET is challenging, especially when working under a
wireless network. Additionally, network situations such as real-time detection make it more
difficult to detect malicious activities from the network. The misbehavior detection/DDoS
detection technique is considered in this research. The technique observed that very little
work is performed under the VANET environment. The attacked scenarios are considered
on multiple intensities. Table 1 shows the summary of existing techniques with working
parameters compared with existing ones.

Table 1. Comparison of different existing state-of-the-art techniques under multiple parameters.

S. No. Author and Year Algorithm Used Real-Time Dataset Environment
Setup Tool Used Malicious

Attack Accuracy

1 Eziama et al. [37] ANN No NG-SIM VANET Matlab Misbehavior 97%

2 Bangui et al. [41]
Deep belief

network
technique

No Online VANET NS-2 Trust En-
hancement 96%

3 Kalaiselvi
et al. [43] SVM Yes KDD 1999 VANET Matlab DDoS 85%

4 Kaur et al. [44] SVM Yes Self-generated VANET SloMoSIM Misbehavior 92%

5 Patil et al. [45] IBK, RF, BN,
and Boost-1 No Self-generated VANET Weka Misbehavior 93%

6 Haung et al. [46] SVM No Self-generated SDVN Flood-Light DDoS 97%

7 Karthiga
et al. [47] K-Mean Yes Self-generated VANET NS-3 DDoS 95%

8 Nayak et al. [48]
Graph-based

machine learn-
ing technique

Yes DFRA VANET SUMO Malicious
Node 95%

9 Sharma et al. [49]
Cluster

algorithm and
fest classification

No Online Kaggle VANET ML Malicious
Node 96.5%

10 Proposed
techniques

GBT, LR, MLPC,
RF and SVM Yes Self-generated

+ Kaggle VANET ML and NS-3 Misbehavior
+ DDoS 99%

3. Materials and Methods

Previous research in Section 2 has developed the research method for distributed
denial of service attacks through machine learning. Our research is novel because it takes
into account the real-time computational cost of the proposed model, which has not been
discussed in previous research. To execute the misbehavior system, the distributed denial
of distribution system encompasses the distributed system technological features, which
reduces the cost of the detection of misbehavior of individual specific vehicles. Apache
Spark is a technology that resolves this issue using open-source distributed technology.
Common computational languages are designed to distribute useful technology features,
such as R, Python, etc. The parallel operations on each cluster are primarily focused on
the tool. A cluster is a group of nearby vehicular nodes with similar characteristics. After
the composition of clusters, the data is transferred to a neural network to check the DDoS
attack in the case of this light scenario.

3.1. Computation with Distributed System Implementation

The distributed system remains a single point of the working group, which consists of
multiple machines working together. In the vehicle system, we consider each machine as a
vehicular system with the implementation of the complete distributed system. Each vehicle
is a part of the distributed system. Every vehicle in the distributed system communicates
with each other to design and use the neural network (NN) model. We can call it a
distributed neural network (DNN) model. The system effectively reduces the allocation of
resources on each vehicle and speeds up the detection of malicious nodes. A high-level
system implementation of this proposed system is implemented in Figure 4. One vehicle
is selected as a monitor vehicle to monitor the safety of a specific location. The monitor
vehicle contacts other vehicles to collect malicious information or misbehavior detection.
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The worker vehicle is only used as a computational resource vehicle. Every new role in the
network is circulated to neighboring nodes to add additional security.
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In the proposed system, we use Apache Spark to add the distributed nature to the
proposed architecture. The main function of Spark is to split the dataset into distributed
datasets that are resilient to the proposed methodology’s distributed nature. Figure 5 shows
the clustering operation in this scenario. The resilient distributed dataset architecture allows
us to perform parallel operations on the dataset. The monitor vehicle’s parallel ability
to check the co-worker vehicles’ ability speeds up the malicious node detection process.
Driver programs are designed and run on monitoring vehicles. These programs help
utilize the resources from other vehicles. The head nodes in each cluster are named cluster
manager. In the monitoring vehicle’s driver program, an object is named “SparkContext”
that helps and connects the manager nodes in each cluster. In this research, we designed
a cluster manager node that helps to determine the resource allocation for each node in
the cluster programs. So, Spark-based cluster managers are used to determine the resource
nodes for each program.

3.2. Neural Network in Machine Learning

A neural network is a machine learning-based algorithm designed to mimic the
similarities of the human brain. Initially, our goal in this research is to design a classifier.
The developed classifier works effectively, as much as the human brain can. We select a
single-layer perceptron to design the single-layer neuron operation in the selected research.
With the changes in the perceptron, the researchers feel that they have designed many
similar neurons in the human brain. In Section 3.3.1, we designed to use a single-layer
perceptron, and in Section 3.3.2, we explain the neural network development through
this perceptron.
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3.3. Construction of Network

The VAENT (Visual Analytics for Environmental and Transportation Networks) sys-
tem creates zones based on clusters. Clusters are groups of similar objects identified using
data analysis techniques. By grouping similar objects, zones can be defined to represent
specific areas of interest, such as traffic congestion hotspots or pollution hotspots. Using
zones helps simplify the analysis of complex data sets, making it easier to identify patterns
and trends that may not be immediately apparent. Overall, the construction of zones based
on clusters is an important aspect of the VAENT system, helping to facilitate data-driven
decision-making in transportation and environmental management. Using unsupervised
learning, we construct the zones for the proposed approach. The proposed zone-based
effective learning algorithm is constructed. Table 2 selects parameters inside the content
placement and selection algorithm.

Table 2. Parameters with the descriptions used for the proposed methodology.

S.No. Parameters Definition Description

1 Zi

Zone declared in VANET, i.e.,
Z1 for zone 1, Z2 for zone 2,

and so on.

In every cluster, the RSU holds the data and obtains the system
feedback to be developed to capture the network. The clusters are

according to the RSU numbers.

2 CMD
y

Central manager for vehicle
data storage.

The master central BS has complete data and architecture
implementation of the real-time machine learning applications. It

provides the safety and security requirements along with the
methodology to implement the results.

3 CMdec
y

The BS starts the
communication and

monitoring.

The backend BS is responsible for deciding and architecting the
communication architecture collaboratively and effectively. The

central manager decides the collaboration and centralization
architecture to be affected.

4 RSU
RSU is held responsible for

making clusters of ideas and
making the network.

The responsibility of the RSU is to make it more vulnerable to
attacks and make it more reasonable for deploying the

respected scenario.

5 CT BS is used to obtain central
storage responsibilities.

The complete content of the network is only accessible to the
network architecture, which has the ability to demonstrate

knowledge and experience perspectives. It enhances and controls
the communication architecture under such a scenario.

6 Czi Congestion of zone
The congestion in every zone is balanced through the proposed

techniques. The congestion is related to the content and its
requests for content placement and enhancements.
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Table 2. Cont.

S.No. Parameters Definition Description

7 CH Cluster heads for zones

Every zone holds a selected cluster head, which is part of the
cluster, and makes effective cluster collaborations to discuss and
provide the cluster-based implementation policies. The discussed

results provide effective zone-based content pre-caching and
enhancement strategies.

8 Xred Zone radius
Every zone holds a radius that consumes the zone area and

provides the system enhancement features to collect and discuss
the resulting privileges.

9 ML Machine learning algorithms
for vehicles.

We adopted a machine learning vehicles-based approach to
handle the content congestion and enhanced the features for the

collaborative workings.

10 Data Exchange

The data is the exchange
between the network and

different parties for
network performance.

The content is the exchange between RSU, BS, and vehicles before
and after the attacks. These devices provide the full flexibility to

exchange data with high-volume perspectives.

11 V2Vcom
Communication point from

vehicle to vehicle.

The communication point from the vehicle addresses provides
the collective methodology for the results and discussions to
elaborate and provide the working methodologies effectively.

12 V2Icom
The communication with

vehicular output architecture.

The complete network permission and vehicle communication
architecture is provided with the ability to demonstrate and

enhance the total communication between the vehicle to
infrastructure communication.

13 Rr Requested content of size r
The content requested by the consumer node is size r, where r is

the threshold value set in the algorithm to provide effective
caching placement and implementation strategies.

14 Dr Delivered content of size r The content, which is delivered to the requested vehicles, is size r.

15 Reqdata
Requested content with

data requested.

This shows the request for the data and content from the
requested node toward the content placement and

enhancement strategies.

16 DMZ
Node

Data rate among manager
nodes and vehicles.

The data rate for the manager node and vehicles shows at which
rate the data is delivered among these nodes for

proper implementation.

17 Ztable Intra cluster entries table The table stores all the communication entries found between the
communication of RSUs and vehicles between different clusters.

3.3.1. Perceptron Classifier Based on Single-Layer Operations

The single-layer perceptron used a binary classification algorithm similar to a single
human neuron. The nominated algorithm started with each of the nominated inputs,
and weights assigned based on input values. Figure 6 shows the single-layer perceptron
and its operations. In this setting the X1, X2, X3, . . . . . . , Xn are the input values and
W1, W2, W3, . . . . . . , Wn are the associated weights.

The determined values from the layers are determined through Equation (1). These
are the multiplicative values determined through the proposed equation.

Z =
n

∑
i=1

Wi × Xi (1)

After output in the form of Z, the comparison values are conducted against threshold
θ. Equation (2) shows the comparison between the threshold and actual predicted values.

f(x) =
{

1, if Z > θ
0, otherwise

(2)
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In step 2, the algorithm defines its predictions based on the dataset provided in this
phase of the development steps.
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3.3.2. Perceptron Classifier Based on Multilayer Layer Operations

Researchers group the single-layer perceptron to make a multilayer operational neural
network. In multilayer operations, higher predictive outputs can be created to determine
the actual positive values from the model. Figure 7 shows the multiple-layer perceptron
example. The new model with multiple layers is called the feed-forward neural network
(FFNN) or the multilayer perceptron classifier (MLPC). A series of layers are determined
through these steps. Each layer is predicted as a single-layer column perceptron. Initially,
the input layer is shown in the multiplayer neural network. The input layer is the same
size as the dataset’s number of features. The end layer is perceived as the output layer,
which shows the required classification results in the given output values. The middle
layers are hidden in the multilayer architecture and perform the required classification
operations. There is no strict formula to design the required results in the network’s
respective input or output operations. The hidden layers are determined through brute
force or trial-and-error algorithms.

In mathematics, we perceive that the multilayer architecture is very similar to a single
layer with more operations on its hidden layer’s perceptron. The formula in Equation (3)
is applied to each layer of the multilayer architecture. The Xi is determined by the pre-
vious output from the formula. Equation (3) shows the computation of Hj through the
following formula.

Hj = f (
n

∑
i=1

Wij × Xi) (3)

The updating is required at weighted values to find Ok. In the output layer, the Oj is
used instead of Xi, to adjust the values from the participated input and output determined.
Equation (4) depicts the scenario.

Oj = f (
n

∑
j=1

Wkj × Hi) (4)
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3.4. Proposed Algorithms

The proposed malicious node detection technique provides the feasibility to control
and automate real-time detection. We proposed two algorithms: the first is L-BFGS for the
optimization procedure in machine learning, and the second is to find the optimization
procedure for the proposed model in VANET machine learning. In the next section, we
propose and provide the two main algorithms with their descriptions.

3.4.1. L-BFGS Proposed Segmentation Optimization Procedure

The limited-memory Brayden–Fletcher–Goldfarb–Shannon algorithm (L-BFGS) is
selected as the optimization procedure for the proposed model in VANET machine learning.
The L-BFGS is a derivation of the Brayden-Fletcher-Goldfarb-Shannon algorithm (BFGS)
used for the larger datasets. To explain the proposed method’s main operations, we design
two main algorithms, i.e., Algorithms 1 and 2. Algorithm 1 determines the values of
Hk∇ fk., where Hk is the inverse Hessian approximation function value, and the gradient is
determined using fk [34]. The main reason to use an approximation Hessian instead of a
true Hessian is that it uses L-BFGS as a quasi-Newton method, not a true Newton Method.
The values of Hk∇ fk obtained from Algorithm 1 is used to find the directions for pk in
Algorithm 2.
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Algorithm 1: L-BFGS Recursion to Calculate Hk∇ fk

1. Input: q, ∇ fk, H0
k , ρk, Hk, β, αi

2. Output: Hk∇ fk values as recursive algorithmic approach
3. Steps:
4. Start
5. q←∇ fk
6. for i← k− 1, k− 2 to k−m Do
7. αi ← ρiST

i q
8. q← q− aiyi
9. End for
10. r ← H0

k q
11. for i ← k−m, k−m + 1, . . . . . . , k− 1 do
12. β← ρiyT

i r
13. r← r + si(ai − β)
14. End for
15. stop process when Hk∇ fk ← r

Algorithm 2: Limited-memory Brayden–Fletcher–Goldfarb–Shannon (L-BFGS)

1. Input: x0, H0
k , Memory > 0, xk+1, yk, f , αi, {sk−m, yk−m}

2. Output: Optimization Procedure for the proposed model in VANET Machine Learning
3. Steps:
4. Start
5. start− point← x0
6. set− integer : m > 0
7. Choose : H0

k
8. Repeat Steps:
9. pk ←−Hk∇ fk, ∴from algo-1
10. xk+1 ← xk + ak pk ∴ Wolfe condition satisfaction is ak
11. i f (k > m) then
12. discart− vector− pair ← {sk−m, yk−m}
13. End i f
14. compute− vector− pair : sk ← xk+1 − yk, yk ← ∇ fk+1 −∇ fk
15. k ← k + 1
16. until − algorithm− converges

In terms of Algorithm 1, sk is described as displacement, and yk is the gradient change.
Algorithm 1 contains two loops that are used to update the Hessian matrix. At the start of
the initial loop, the current gradient q is determined and steps in length to determine the
αi. The variable, which is used to determine the values of αi, is ρk. The ρk is computed by
using the below-mentioned Equation (5).

ρk =
1

yT
k × Sk

(5)

Before the second loop in Algorithm 1, the new value of q is obtained by multiplying
the inverse Hessian matrix. Initially, the inverse Hessian is calculated using Equation (6),
where I is the initial level Hessian approximation value.

H0
k =

(
ST

k × yk−1

yT
k × yk−1

)
× I (6)

The final matrices are found by multiplying the H0
k , and q is referred to as R. The value

of R is updated through β values in the algorithm, and the values of αi in Algorithm 1. In
the last steps, when the value of R becomes equivalent to Hk∇ fk, the algorithm steps and
values are determined with the required output.
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The time complexity of algorithm 1 is computed by the time required to execute each
task of the computational algorithm. The complexity, according to the instruction and
number of steps to perform in the algorithms, is O(log n). O(n) is the specified space
complexity of the algorithm. The algorithm’s performance denotes it.

3.4.2. Optimization Procedure for the Proposed Model in VANET Machine Learning

Algorithm 2 shows the computation of the L-BFGS model. Initially, we set the optimal
starting value point, i.e., x0, with memory > 0, and initially, the inverse Hessian H0

k . To
find the initial inverse Hessian matrix in Algorithm 2, we apply the same methodology
defined in algorithm 1. At this point of the computation, the proposed algorithm computes
the direction for the search pk, and then updates xk+1. After updating xk+1, the αi (step
length) must satisfy the Wolfe conditions. By Wolfe condition, we mean that αk is applied
for an objective function f . The whole condition under the Wolfe function is shown in
Equation (7).

f (xk + αpk) ≤ f (xk) + c1α∇ f T
k pk (7)

where c is used as a constant among 0 and 1. Algorithm 2 removes the vector pair
{sk−m, yk−m} if and only if k is larger than memory m. From Algorithm 1, we mean
that sk is the displacement for vehicles, and the change in gradient is stored through yk. If
these are not verified, then new values related to sk should be computed. The procedure
repeats until the algorithm meets at a point of desired optimal value. Figure 8 shows the
working of all complete system model.
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3.5. Logical Workflow of Proposed Methodology

The proposed technique’s main goal is to detect and classify DDoS-based malicious
attacks in V2V and V2I communication in urban environments. Figure 9 elaborates on the
workflow proposed methodology. Initially, the OBU received the data requests inside the
environment. The vehicle IDs are registered, and elimination requirements are mentioned.
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After the elimination of the vehicles, the checking units check the units. If no unit is found,
the new vehicle ID data is checked. The machine learning algorithms are applied to the
dataset to provide the signals. The system uses real-time scenarios to detect malicious nodes
using the machine learning approach [50,51]. The classification is applied to the targeted
malicious nodes; if the nodes are discarded, the vehicles are distributed over the network.
Finally, information is broadcast on the network to identify the DDoS-affected nodes.
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3.6. Simulation Attack Density Algorithm

Algorithm 3 also defines the attack operations in the simulation setup scenario. The
algorithm effectively creates roadside units. IDs are made for implementation and distribu-
tion to all nearby vehicles in a simulation environment.
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Algorithm 3: Simulations on 10% of attack density for the network environment

1. Input: Messages, Wave short messages (wsm)
2. Output: Distributed Denial of Service (DDoS) Attack Generation
3. Steps:
4. Start
5. i f (simulation− time ( f rom 50 to 75))&& (simulation− time ( f rom 210 to 224)) then
6. f or(i f rom 1 to 25000) do
7. sent−Message ← True
8. wsm← new demo−message(TraCI
9. populate(wsm)
10. send(wsmdata) to roadid
11. send(wsm)
12. End f or
13. else
14. time− last− drove()← simulation− time()

3.7. Distributed Multilayer Perceptron Classifier (MLPC) Architecture Development of the
Proposed Model

The attack percentages are handled using the architecture development model of
the proposed system, called Distributed Multilayer Perceptron Classifier (MLPC). The
MLPC uses all the available features from the dataset. According to an example, the
simulation environment, which contains 15 vehicles, generates 75 features and is loaded
into machine learning models. The initial layer of the MLPC architecture is the feature
input. Therefore, the model attempts to identify the DDoS attack occurrence and generates
the results in labeled Boolean. The final layer uses two values for the identification of an
attack occurrence or nonoccurrence. The five layers of the model outperform the smaller
architecture for the proper development of the architecture development. The testing of the
dataset is performed using the numbers with a layered architecture. The testing performs
better on the third and fourth layers of the NN. Algorithm 4 provides the running of the
simulation with the high-performance architecture of the network.

Algorithm 4: Layers determination using Brute Force Method

1. Input: All values f rom the network
2. Output: Prints F1 score
3. Steps:
4. Start
5. for p f rom 80 to 100 do
6. for q f rom 5 to 10 do
7. for i f rom 2 to 10 do
8. layer← [p, q, k, 76, 2]
9. design_model(layer)
10. apply (Algorithm 5, traindata, testdata)
11. f it_model(training_data)
12. get_predictions(testing_data)
13. determine( ) ← F1 Score
14. if( f 1 > 0.95) then
15. print(F1 Score, layers)
16. End for
17. End for
18. End for

Algorithm 4 collects the results and exports them to a CSV file. In this context, if
the combination of layers works multiple times, it runs all the simulation environments.
Through this, the developed model has a universal identity and effectiveness rather than
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operating on only a single attack scenario. Inside the proposed MLPC architecture, the
highest values for median and mean over F1 score are [87, 9, 4, N, 2], where N is the number
of features given through the dataset. Algorithm 4 it refers to the input layer, and 2 refers to
the output layer of the model. From the dataset, we use all the feature-labeled columns as
labels. The values 87, 9, and 4 show NN’s hidden layers. In addition, 91.5% is the average
F1 score, and 95.9% shows the median score over the network architecture. Algorithm 5
decides the training and testing dataset, splitting and fine-tuning the dataset according to
the reference model. The training and testing dataset is then provided to Algorithm 4 for
ML algorithm classification.

Algorithm 5: Decision about training and testing dataset

1. Input: Complete Dataset
2. Output: traingdata, testdata
3. Steps:
4. Start
5. Split(traingdata, testdata).

6. traindata = Rand_method
(

datacomplete, train
)

7. testdata = Rand_method
(

datacomplete, test
)

8. Model()data
train

9. model_train
(
datatest)

10. Repeat steps 4, and 5
11. Accruacyimprove = param()

12. I f (accuracy = satis f ied())
13. datapredict = newdata
14. End

4. Results

In this chapter, we discuss the results to achieve the main objectives of the research
from the proposed model. We have considered security as the key element that we achieve
through the proposed model, with adequate consideration of the provided framework
model. Three key elements are needed to achieve the proposed zone-based content caching
approach in VANET for congestion control using machine learning. The key parameters
are cache hit ratio, throughput, prediction accuracy, and average delay.

4.1. OMNeT++ Indication

To evaluate the performance of vehicular communication and security management,
OMNeT++, NSL-KDD, NS-2/3, and UNSW simulators were discussed in Section 2 for
introduction purposes [52]. In addition to all of these tools, OMNeT++ is one of the
backbone simulators for vehicular communications. To handle advanced-level vehicular
communication systems, OMNeT++ is introduced. In the simulation environment, we
introduce mobile devices, SUMO, and Veins to be experts in handling such simulation
experiments. In OMNeT++, SUMO is considered to control the traffic simulations to
generate the normal vehicles and mobility inside the vehicles. As SUMO and OMNeT++
work together to generate full traffic control, Veins is used as the glue to connect both and
make a complete vehicular communication system for the proposed methodology. In this
thesis, the OMNeT++ is designed to enhance 1-Hop broadcasting among roadside units
(RSU) and vehicles [53]. This is performed to distribute the messages to each node in the
range of the sender vehicle.

4.2. Background Information and Simulation Settings

The Ubuntu virtual machine designs and develops all vehicular virtual network
simulators. During installation, the Veins are designed with built-in maps and a simulation
system for vehicular communication. In this simulation, we use 195 vehicles, and all drive
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in the same direction. In this simulation, 73 s are used when the incident occurs. The
total duration is 50 s. The incident causes the other vehicles to alert and react with other
vehicles, causing a traffic jam. A total of 200 s were lost during this simulation. A single
RSU is also involved in this step for processing. This simulation is used as starting point
for such simulations. To simulate DDoS attacks, the distance between the nodes is variable
due to the movement of vehicles on the highway. The maximum number of 200 nodes
(vehicles) are used in the simulation environment. The connectivity inside the network is a
5G wireless communication architecture. The attack vehicles are used to perform the attack
simulation environment scenarios.

In the default simulation setup, a sequence of revisions was adjusted to make it feasible
for this research. The total simulation time was increased to 380 s. According to the simula-
tion of vehicles, 15, 20, 25, 30, and 35 were made in the setup. In the previous setup, four
parked vehicles were used as an attack, using DDoS on RSU and other vehicles. Therefore,
these vehicles are utilized in an attack scenario. These were considered otherwise the same
as in the attack scenario for possible consideration. The vehicles utilized in the attacks
were considered the same as the possible mobile vehicles. Attackers use these vehicles as
zombies, which means that other than attacking, these vehicles normally communicate
in the network. At 73 s of the simulation program, the accident was considered, and no
change was made to this arrangement. Figure 10 shows the OMNeT++ simulation setup for
the proposed methodology. In the simulation environment at 11, the attackers were marked
as “hackers,” and normal communication vehicles were marked as “nodes”. Equation (7)
computes the accuracy values.

Accuracy =
Number of Classified Samples

Total Samples
(8)
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Figure 10. Veins/OMNET++ attacker simulation environment.

We developed seven versions for each attack in a simulation environment to check the
proposed system’s attack handling density. Initially, we set up 10% for the first simulation
setup. This means a 10% simulation time was checked to set up the attack simulation time.
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After that, we increased the attack density by 10% for every simulation to test the proposed
system’s performance. Table 3 shows the simulation time for the attack, the first attack
duration, and the second attack duration in percentage.

Table 3. Attacker simulation time in setup.

Attack Percentage Duration (1 Attack) Sec Duration (2nd Attack) Sec

10 50 to 74 210 to 224

20 50 to 74 210 to 264

30 50 to 112 210 to 264

40 50 to 150 210 to 264

50 50 to 150 210 to 300

60 50 to 150 210 to 237

70 50 to 150 174 to 340

In the simulation setup, those attacks which run only on a 10% density of attack
were run from 50 to 74 s and 210 to 224 s. At 50 s, the first attack started on every attack
density. At 210 s, the second attack started for every density. All stacks were started, but
the attack started at 174 s is at 70% of the attack density. In this stipulated simulation time,
we sent 25,000 wave short messages to every vehicle in the simulation time. The wave short
messages code used to send short messages is in traCIDemo11p.cc in the Veins setup. In
the simulation, the malicious changes were discussed in the handlePositionUpdate method
for effective simulation setup. Algorithm 3 defines the simulation setup and other main
methods in this setup.

4.3. Dataset Preparation/Generations

The dataset is selected as a DDoS attack scenario from the OMNeT++ interactions
and its simulation environment. Generating datasets for malicious nodes in VANET is an
important aspect of studying the security of vehicular communication networks. Using
SUMO++ and Veins simulators, it is possible to simulate and analyze the behavior of
malicious nodes in the network. These simulators enable researchers to generate realistic
scenarios where malicious nodes may compromise the integrity and confidentiality of the
data transmitted in the network. Such datasets can help improve the security of VANET by
identifying vulnerabilities and devising effective countermeasures against potential attacks.

The extracted and cleaned CSV dataset file is handled using Jupyter notebook IDE
through the Spark read method. The columns inside the dataset are shifted toward the
real values before being loaded into the PySpark.ml machine learning models. The attack
on the dataset column is shifted towards the handling of the model of labeled data using
PySpark. The feature vector method is adopted to split the dataset into training and testing
datasets. In our case, we split the dataset into 50% for training and 50% for testing on the
available dataset. The dataset is prepared to provide the vector representation of data-like
libraries for the PySpark library to develop the ML-based models. The dataset is loaded
into machine learning models and transformed into the required columns of the dataset,
and then the model is used as input for training and testing.

The work of machine learning algorithms is dependent on datasets through which
the algorithms train and test. The features inside the dataset allow the machine learning
models to work and detect malicious nodes effectively. The dataset used in this work
was gathered from real-time scenarios under OMNET++ and SUMO with some online
repositories, including Kaggle and UCI. Some datasets were downloaded from the IEEE
dataset repository and named the malicious nodes dataset. The characteristics of the dataset
include message ID, message type, time, type, message ID, receiver name, receiver signal
strength, no received requests, number of generated requests, source name, longitude,
latitude, destination, IPv4 addresses, channel, slope, stopped, route ID, connection ID, lane
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index, blink left, blink right, break left, break right, and number of decisions. The main
dataset were grouped into i-e, message reception, message transformation, and vehicle
updates. We use 20,030 lines of the dataset, 10,030 samples for training the models, and
10,000 samples for testing purposes. The size of the dataset affects the accuracy of the ML
model. Figures 11–13 show the dataset values.
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4.4. Simulation Results
4.4.1. Comparison of Models for Attack Densities

The Jupyter Notebook on the HP Notebook compares the architecture’s performance
with existing architectures using common ML models. The machine is equipped with
Intel Core i7 10th G Processors with 16 GB of RAM. The model was compared using
random forest, logistic regression, support vector machine, and gradient boosted tree.
In this context, we adopted the training data with 70% and the testing data with 30%,
splitting from the main dataset. In addition to the random forest ML model, the other
models train over 100 training iterations. Inside the PySpark ML, random forest does not
provide an option to restrict to 100 training iterations. Three tree depth is set for random
forest as a maximum depth. The PySpark ML module is used to build all the models
over the network. PySpark is the main ML library developed by Apache Spark over the
other machine learning modules. The library can use the apart cluster values over the
network. The main parameters are considered to evaluate the performance, such as F1
score, precision, accuracy, and recall, for comparing the performance of these models.

The sum of true positive (TP) and true negative (TN) values is used to find the ML
model’s accuracy. All possible outcomes are divided into these values of TP and TN. False
positive (FP) and false negative (FN) are also used to evaluate the performance of these
network resources. Equation (8) shows the accuracy computation of ML models.

Accuracy =
TP + TN

(TP + TN) + (FP + FN)
(9)

To compute the precision values, the TP is divided by the sum of FP and TP in
Equation (9).

Precision =
TP

FP + TP
(10)
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Equation (10) shows the computations of the recall values for the model. It shows that
TP is divided into FN and TP.

Recall =
TP

FN + TP
(11)

According to Equations (9) and (10), the precision and recall are computed. The F1
score shows the weighted average of both values. Equation (11) shows the computation of
these values to divide the multiplication of results from Equations (9) and (10) over the sum
of results from Equations (9) and (10). Then computations from these values are multiplied
by two for the F1 score. Equation (11) shows the F1 score computation.

F1 Score =
Precision ∗ Recall
Precision + Recall

(12)

4.4.2. Model Accuracy Results

Consistency is one of the main reasons to implement the values of these functions using
the PySpark ML library. The implementation provides the correct computations of these
values using Python code. Table 4 shows the values of the model accuracy results under
different machine learning models. These simulations are computed and collected over
the five-simulation environment to collect these vehicles over the network environment.
Figure 14 shows the accuracy value of the model over the multiple attack densities. The
weak point of the MLPC model can be observed using the below-mentioned graph. Overall,
the attack densities in the production model show an F1 score. The overall model is
not as effective as the densities, as shown in their results. According to the analysis in
Figure 15, GBT and RF show higher accuracy values for all network densities. The proposed
system outperforms the SVM and LR models with a 40% attack density over the network
performance layers.

Table 4. Model Accuracy result of the networks comparison.

Time Percentage under Attack
ML Algorithms

GBT LR MLPC RF SVM

10% 0.92 0.89 0.87 0.94 0.84

20% 0.94 0.83 0.85 0.95 0.79

30% 0.95 0.85 0.86 0.98 0.82

40% 0.94 0.92 0.78 0.97 0.88

50% 0.95 0.94 0.87 0.96 0.89

60% 0.95 0.92 0.91 0.97 0.92

70% 0.94 0.93 0.97 0.97 0.93

4.4.3. Model Precision Results

The precision for each model should follow the trends to find the accuracy values over
similar trends. RF and GBT outperform other models with 60 to 70 percent attack densities
over GBT. The proposed MLPC performs better in training the LR models. The comparison
is performed over the number of vehicles within the network which accounts for over 40%
of the scores. Based on the regression values, the SVM does not perform well compared
to other models for the final and effective confirmation of the values from these models.
Figure 15 shows the precision values over all attack densities for the final and effective
model comparisons. Table 5 shows the precision values from GBT, LR, MLPC, RF, and
SVM models.
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Table 5. Model Precision Results of the network and comparison with other networks.

Average Precision Metric
ML Algorithms

GBT LR MLPC RF SVM

10% 0.986 0.975 0.864 0.989 0.864

20% 0.987 0.897 0.874 0.978 0.875

30% 0.987 0.864 0.861 0.990 0.869

40% 0.982 0.787 0.750 0.979 0.921

50% 0.942 0.821 0.874 0.974 0.924

60% 0.897 0.883 0.875 0.941 0.799

70% 0.742 0.764 0.765 0.875 0.751

4.4.4. Model Recall Results

Table 6 shows the values of the model average recall metric results under different
machine learning models. These simulations are computed and collected over the five-
simulation environment to collect these vehicles over the network environment. The model
recall is considered for all ML models except MLPC in Figure 16. The models such as
GBT, RF, and MLPC, performed best over the network attack percentage and average recall
metric at a 40% attack density of MLPC. At 60%, all the models show the highest recall
results over density values, and then over 50% of these results show the highest recall
values for all models. The GBT drops over 70% of the network attack density for network
performance management. Based on the results, it clearly shows that LR performs better
as compared to other results and outperforms over the same network density values. The
SVM produces similar results to LR, but the results are comparatively weak compared to
SVM. Figure 16 shows the complete results of these network values.

Table 6. Model recall results under different networks.

Average Recall Metric
ML Algorithms

GBT LR MLPC RF SVM

10% 0.96 0.95 0.97 0.98 0.96

20% 0.97 0.955 0.92 0.98 0.87

30% 0.98 0.93 0.98 0.99 0.88

40% 0.97 0.94 0.83 0.98 0.93

50% 0.92 0.93 0.78 0.95 0.89

60% 0.91 0.96 0.89 0.99 0.92

70% 0.96 0.74 0.82 0.87 0.67

4.4.5. F-1 Score Results for Models

Table 7 shows the values of the model average F-1 score results under different machine
learning models. These simulations are computed and collected over the five-simulation
environment to collect these vehicles over the network environment. The F-1 score depicts
the performance of the model accuracy measurement over the dataset. Figure 17 shows the
F-1 score values for all ML models over the dataset for network attack density and attack
computations. The GBT and RF show the highest level of the F-1 score across all levels
of simulation parameters. According to the results, the MLPC shows lower or equivalent
metrics compared to GBT and RF. On the 40% attack density values, the MLPC shows
lower results compared to other results in the simulation environments. The SVM and
LR show comparatively good results over the 40% attack density values for the proposed
and network models. At the 70% attack density, the models outperform with better results
compared to their current score and results.
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Table 7. Model F-1 results under different networks.

Average F-1 Score Metric
ML Algorithms

GBT LR MLPC RF SVM

10% 0.96 0.93 0.92 0.97 0.88

20% 0.97 0.88 0.89 0.98 0.87

30% 0.98 0.86 0.89 0.99 0.89

40% 0.95 0.89 0.78 0.99 0.88

50% 0.94 0.93 0.91 0.97 0.93

60% 0.96 0.95 0.94 0.99 0.92

70% 0.97 0.95 0.96 0.98 0.94

4.5. Cluster-Based Training and Testing Time for the Proposed Network Architecture

We have applied PySpark, which is based on distributed technology. Figure 18 shows
the complete configuration. The values gained from the vehicles show the computations
from these vehicles. In addition, 50% of the attacks are stored online using AWS services to
simulate the whole process. The Amazon MapReduce tool sets up the servers for PySpark
cluster running and schemes storage. AWS supports the Amazon MapReduce cluster to
run the Jupyter Notebook. The single controller node and other computational nodes are
considered in the cluster transformation. The server is configured with 4 Core and 16 GB of
memory to deliver the actual values generated through the produced results.
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4.6. Computational Speed and Node Amount of MPLC

The training and classification/prediction instance configuration determine the compu-
tational performance. The six different AWS servers are used to adapt the total performance
of these nodes. One to six total controller nodes are considered in the simulation setup.
In this simulation, 35 vehicles are used to analyze the network’s performance. Ten differ-
ent times are noted with the simulation environment’s ability to configure the instances.
Figure 19 shows the algorithm utilization and training running time for every node. The
additional nodes we try to add impact the information provided and the running time
performance details. Their median time had decreased when nodes were included in the
simulation setup.
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4.7. Comparison of Results with Existing Techniques

The results are compared with existing methodologies. This shows that the proposed
approach performs better than the previous approaches mentioned in the results. The
evaluation parameters are accuracy, precision, recall, F-1 score, specificity, and sensitivity.
Table 8 shows the results compared to the proposed approach. Alongside Table 8, Figure 20
shows the complete comparison of the presented results with similar findings from the
literature discussed and enlisted in the present scenario. The work presented in Table 8 and
Figure 20 shows that our proposed approach works better compared to other techniques
presented in [40–43,54].

Table 8. Comparison of the results with existing approaches.

Reference
Parameters

Accuracy Precision Recall F1 score Specificity Sensitivity

[40] 80.8 96.5 93.5 96.4 76.7 84.9

[41] 73 72.7 73 93 92.4 89.3

[42] 92 93 96 95 94.3 94

[54] 75.3 94 94 95 94 93

[43] 85.9 83.7 94 96 55.6 94

Proposed Model 98 99 98 98 97 96.6
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chine learning techniques. We set up the environment with an attack scenario over a den-
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5. Conclusions and Future Research
5.1. Conclusions

VANET is one of the most demanding network architectures that provides high-level
data-sharing connections between vehicles. In this methodology, we simulate real-time
malicious node detection using machine learning. In this research, we focused on the
VANET architecture with the ability to contribute and provide reliable services for high-
level real-time malicious node detection. We call this misbehavior detection using machine
learning techniques. We set up the environment with an attack scenario over a density of
10% to 70% from the external environment. We adopted the GBT, LR, MLPC, RF, and SVM
to compare the results of machine learning models. The results show that the proposed
approach presents accuracy, precision, recall, F1 score, specificity, and sensitivity with 98%,
99%, 98%, 98%, 97%, and 96.6% from the proposed results. RF is recommended for better
misbehavior detection results. The results accurately predict that the proposed architecture
effectively handles the research in the VANET environment.

5.2. Future Research

In the future, we plan to work on further analysis by adopting deep learning-based
advanced persistent threats (APT) to detect and protect the network. The future rec-
ommendations also adopt more accurate results prediction analysis and provide a brief
justification for the results and outcomes. Other possible future research directions on
real-time malicious node detection using machine learning are:

• Developing novel machine learning algorithms for malicious node detection: Re-
searchers can develop novel machine learning algorithms specifically designed for
VANETs. These algorithms can be optimized for real-time processing and high accuracy.
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• Improving feature selection: Feature selection is a critical step in the machine learning
process. Researchers can investigate which features are most relevant for detecting
malicious nodes in VANETs. They can also explore new features that have not been
previously used for this purpose.

• Analyzing the impact of different attacks on malicious node detection: Various
attacks can be launched on VANETs, such as jamming, impersonation, and denial-
of-service attacks. Researchers can analyze the impact of different attacks on the
performance of machine learning algorithms for malicious node detection.

• Designing a hybrid approach: A hybrid approach that combines multiple machine
learning algorithms can be developed to improve the accuracy of malicious node
detection. For example, an ensemble of algorithms such as decision trees, neural
networks, and support vector machines can be used to detect malicious nodes.

• Investigating the trade-off between detection accuracy and computational com-
plexity: Real-time processing is crucial for malicious node detection in VANETs.
However, processing large amounts of data in real time can be computationally
complex. Researchers can investigate the trade-off between detection accuracy and
computational complexity to develop a system with high accuracy and low computa-
tional overhead.

• Evaluating the system’s robustness to different network scenarios: VANETs are
subject to different network scenarios, such as varying traffic densities, topologies, and
mobility patterns. Researchers can evaluate the robustness of the proposed system in
these different scenarios to ensure that it works effectively in different environments.

• Testing the proposed system in a real-world environment: The proposed system
should be tested in a real-world environment to evaluate its effectiveness in detecting
malicious nodes in VANETs. This can involve setting up a testbed and collecting data
from real vehicles to evaluate the system’s real-time accuracy and efficiency.
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