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Abstract

In the coming years, due to global climate change, the demand for renewable energies will
continue to increase. Developing solar cell technologies with higher efficiency could help
address this challenge. In the Solar Cell Physics group at NTNU, research is focused on
intermediate-band solar cell technology. Density functional theory (DFT) calculations from
the literature showed that (Cr, N) co-doped TiO2 can be an intermediate band material. In
order to subsequently analyze the (Cr, N) co-doped TiO2 samples, the undoped TiO2 samples
must first be characterized. Therefore, in this thesis, an optical characterization of TiO2 is
performed via spectroscopic ellipsometry (SE) and photoluminescence spectroscopy (PL). In
SE, the data of TiO2 anatase and rutile single crystals were analyzed only, as the samples
were measured previously by a PhD student of the group, Thomas Brakstad. In PL, three
TiO2 single crystal samples with different crystal orientations were studied: anatase (110),
rutile (110) and (001), and three undoped TiO2 thin films grown on SrTiO3 (STO), made in
the research group via PLD.

From the SE data, two optical models of the dielectric functions were built for the extraordin-
ary and ordinary axis of the two polymorphs of TiO2: first a simple B-spline model and then,
a general oscillator model where the classical picture of the absorption is used to deconvolute
the dielectric functions. From the general oscillator model, the experimental bandgaps of
the ordinary and extraordinary axis were determined to be 2.94 eV and 3.13 eV respectively
for rutile, and 3.25 eV and 3.63 eV for anatase. The bandgaps for the ordinary axis corres-
pond to the experimental bandgap from the literature. The ellipsometry analysis was next
pursued by an attempt to connect the dielectric functions of TiO2 to its band structure via
a critical point (CP) analysis. The dielectric functions extracted from DFT calculation by
another master’s student Rasmus Hoholm were studied first. Then, the same analysis was
performed on the B-spline model of rutile ordinary axis. The DFT dielectric functions were
best fitted with seven excitonic CPs, while the SE dielectric functions were best fitted with
four excitonic CPs.

PL spectroscopy of TiO2 was a new subject for the group and only an initial analysis is
performed in this thesis. The anatase (110) PL spectrum consisted of a single broad band,
from approx. 2 to 4 eV. The sub-bandgap part (i.e. below 3.20 eV) was attributed to mainly
self-trapped exciton (STE) emission and defect related emissions, in the literature and this
thesis. Both rutile (001) and (110) PL spectra exhibit two bands: one broad band around
bandgap of rutile (i.e. 3.00 eV) and a second centered at 1.52 eV. The first band is attributed
to band-to-band radiative recombination and defect emissions, like for anatase. The band at
1.52 eV demonstrates the characteristics of the PL of a color center (most likely an oxygen
vacancy in this work). A previous XRD analysis of the undoped TiO2 thin films grown on
STO showed that the samples are mostly textured anatase (001). The PL of the TiO2 thin
films is indeed similar to anatase. Due to the presence of the photoluminescence of STO in
the spectra, which has a bandgap of 3.25 eV, the contribution of the TiO2 thin films could
not be determined. However, regardless of the PL origin, the emission seems to be mainly
due to oxygen defects and excitonic states. There are some indications that the PL does
come from the film.

In conclusion, from the PL and SE analysis, the optical properties of TiO2 seem dominated
by excitons. The PL results complement nicely the SE analysis, by showing the importance
of the sub-bandgap state, whereas in SE only the above bandgap states were present in the
spectra.
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Sammendrag

I de kommende årene vil etterspørselen etter fornybar energi fortsette å øke, p̊a grunn av de
globale klimaendringene. Utvikling av solcelleteknologier med høyere effektivitet kan hjelpe
til å takle denne utfordringen. I Solcellefysikkgruppen ved NTNU fokuseres forskningen
p̊a høyeffektive mellomb̊andssolceller. Tetthetsfunksjonal-teori (engelsk: density functional
theory, DFT) beregninger fra litteratur viser at (Cr, N) ko-dopet TiO2 kan være et mel-
lomb̊andsmateriale. For å kunne analysere (Cr, N) ko-dopede TiO2-prøver, m̊a udopede
TiO2-prøver karakteriseres først. I denne oppgaven uttøres det derfor optisk karakterisering
av TiO2 ved bruk av spektroskopisk ellipsometri (SE) og fotoluminescensspektroskopi (PL).
For SE delen av oppgaven er dataene til tre TiO2 en-krystaller kun analysert, da prøvene ble
m̊alt tidligere av en doktorgradsstudent i gruppen, Thomas Brakstad. De tre en-krystallene
har ulik orientering og/eller fase: anatase (110), og rutil (110) og (001). For PL delen ble
de samme tre TiO2 en-krystallprøvene og tre udopede TiO2 tynnfilmer, deponert p̊a SrTiO3
(STO) substrater, b̊ade m̊alt og analysert. Filmene er laget i forskningsgruppen ved bruk av
pulset laser deponering (PLD).

Fra SE-dataene ble to optiske modeller av de dielektriske funksjonene laget, for b̊ade ek-
straordinær og ordinær akse for de to polymorfene til TiO2 (anatase og rutil): Først en enkel
B-spline modell og deretter, en generell oscillatormodell hvor det klassiske bildet av absorps-
jon brukes til å de-konvulere de dielektriske funksjonene. Fra den generelle oscillatormodellen,
ble de eksperimentelle b̊andgapene til ordinære og ekstraordinær akse bestemt til å være hen-
holdsvis 2,94 eV og 3,13 eV for rutil, og 3,25 eV og 3,63 eV for anatase. B̊andgapene for den
ordinære aksen stemmer overens med det eksperimentelle b̊andgapet fra litteraturen. Ellip-
sometrianalysen ble tatt videre i et forsøk p̊a å koble de dielektriske funksjonene til TiO2 til
b̊andstrukturen til TiO2 via s̊akalt kritisk punkt (CP) analyse. De dielektriske funksjonene
hentet fra DFT-beregning av en annen masterstudent, Rasmus Hoholm, ble studert først.
Etterp̊a ble samme analyse gjort for B-spline-modellen for rutil, ordinær akse. For dielektris-
itetsfunksjonen fra DFT beregningene, ble best tilpasning oppn̊add med sju, eksitoniske krit-
iske punkter, mens B-spline dielektriskfunksjonen (m̊alt med SE) ble best tilpasset med fire
eksitoniske kritiske punkter.

PL-spektroskopi av TiO2 var et nytt tema for forskningsgruppen, og bare en innledende
analyse er utført i denne oppgaven. For anatase (110) bestod PL-spekteret av en enkelt
(bred) topp. PL under b̊andgapet (dvs. under 3,20 eV) ble hovedsakelig tilskrevet s̊akalte
”self-trapped excitons” (STE) og oksygen-defekter, b̊ade i litteraturen og i denne oppgaven.
PL spektrene for b̊ade rutil (001) og (110) viste to brede topper: en rundt b̊andgapet til rutil
(dvs. 3,00 eV) og en annen sentrert ved 1,52 eV. Den første toppen tilskrives b̊and-til-b̊and
str̊alingsrekombinering og str̊alingsrekombinering via defekttilstander. Toppen ved 1,52 eV
stemmer overens med det man forventer av PL for et fargesenter (en urenhet eller defekt).
Tidligere XRD-analyse av de udopede TiO2 tynnfilmene (deponert p̊a STO) viste at filmene
for det meste best̊ar av teksturert (100) anatase. PL spektrene av TiO2 filmene likner PL
fra anatase en-krystallen. Men fordi STO har et b̊andgap p̊a 3,25 eV, s̊a er det vanskelig å
skille PL fra substratet fra PL fra filmen. Uansett om PL signalet kommer fra filmen eller
substartet, s̊a skyldes den i hovedsak oksygen-vakanser og ”self trapped” eksitoner. Det er
imidlertid indikasjoner som tyder p̊a at PL signalet kommer fra filmen.

Avslutningsvis kan man konkludere fra b̊ade PL- og SE-analysen at de optiske egenskapene
til alle TiO2 prøvene er dominert av eksitoner. PL-resultatene kompletterer SE-analysen fint,
ved å tydelig vise bidrag fra tilstander i b̊andgapet, mens man i SE i hovedsak ser bidrag fra
tilstandene over b̊andgapet.
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CP critical point

DFT Density functional theory

EMA effective mass approximation

FWHM full width half maximum

GIXRD grazing incidence X-ray diffraction
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IPPC intergovernmental panel on climate change

JDOS joint density of states
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MSE mean square error

PL photoluminescence spectroscopy
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PLE photoluminescence emission
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SEM scanning electron microscopy

SQ Shockley-Queiser limit

SSP shared socioeconomic pathways

STE self-trapped exciton

STE self-trapped exciton

TEM transmission electron microscopy

TMO transition metal oxide

VASE variable angle spectroscopic ellipsometry

XRD X-ray diffraction
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1 Introduction

The impact of human activities on climate change has been highlighted since 1965. The high
consumption of and dependence on fossil fuels, mainly linked to the lifestyles of developed
countries, are endangering biodiversity and the future of humanity. To reduce the impact
of humans on their environment, it is necessary to change our way of life. Developing new
technologies that consume less, and producing new energies that are more renewable is one
of the human challenges that our generations face. It is in this context that the development
of renewable energy with low impact on the environment, such as wind, solar, or thermal
became essential.

Human-induced climate change has irreversible consequences, but also consequences that we
can still limit. Since the intergovernmental panel on climate change (IPPC) was created in
1988, six assessment report (AR) have been published to take stock of the situation. Figure
1 traces the evolution of the publications of the IPCC. In the last IPCC report, they expose
a direct link between CO2, methane, and other greenhouse gas emissions (GHG emission) to
global warming.[1] The objective is also to predict the possible evolution of climate change
depending on the human reduction of emission of CO2. The IPPC envisages in its reports
the future temperature evolution according to 5 different shared socioeconomic pathways
(SSP). In all emission scenarios, the global warming threshold of +1.5◦C will be exceeded
in the near future (between 2021 and 2040) and the average temperature on earth will re-
main above +1.5◦C until the end of the century.[2] However, the current tendency heads
more towards +3 ◦C by the end of the century.[3] If humanity stops now its activities, global
warming would stop as a result. As this situation is not realistic to apply on a global scale,
alternatives to produce energy must be found.

Figure 1: IPPC reports timeline. Taken from [3].
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To reach the current goal of limiting global warming to +1.5◦C, one of the solutions is to
massively develop sustainable energies. As a result, the proportion of energy from renewable
sources is expected to increase over the next 20 years and take a share of the energy produc-
tion that currently relies on fossil fuels and gas.[4, 5] As solar energy is abundant on Earth,
solar cells are major candidates to effectuate this transition to renewable energy sources. [6]
One of the current challenges is the development and large-scale integration of solar panels
in cities and on buildings, which involves increasing their efficiency. To this end, new devices
must be designed to meet these specifications. It is in this context that third-generation solar
cells are developed.

The rate of conversion into electric current in a solar cell is limited in absolute by a theoretical
efficiency limit, the Shockley-Queiser limit (SQ). For single band gap solar cells, this limit is
40.7 % under fully concentrated light (32.33% under 1 sun illumination).[7, 8, 9]. To overcome
this limit, new concepts have been developed and gathered under the name of third-generation
solar cells. Such technologies are aiming to improve efficiency by increasing the proportion of
solar energy utilized by the cells. The multi-junction solar cells or tandem solar cells, based
on the use of materials with different bandgaps, are the most developed at the moment. The
Solar Cell Physics group at the department of Physics at NTNU has dedicated its research
on another promising technology: intermediate band solar cell (IBSC). The IBCSs are based
on the simple concept of adding one additional layer to a material to increase the efficiency.
Their theoretical efficiency limit is 63.2% under fully concentrated light.[10] The intermediate
band (IB) material is characterized by having a narrow energy band in the forbidden bandgap
of the semiconductor. Three ranges of photons can be absorbed, each related to one of the
bandgaps, EG, EH or EL, as illustrated in figure 2.

Figure 2: Schematic band diagram of an intermediate band material with its three bandgaps
EG, EH and EL. Taken from Ref.[11].
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The additional band (IB) can be achieved by adding impurities that will introduce energy
levels in the bandgap. In the Solar Cell Physics group, TiO2 is studied as a possible host
material for the intermediate band. DFT calculations in the literature show that (Cr, N)
co-doped TiO2 can be an intermediate band material.[12]

Thin film IBSCs are one way to address both the material reduction and the enhanced the-
oretical efficiency. The group specializes in the realization of such films via pulsed laser
deposition (PLD). In the last years, master and PhD students of the Solar Cell Physics group
made a large number of samples, trying to optimize the deposition technique as well as the
doping of TiO2. Now, to better understand the optical and electrical properties of these
samples, it is necessary to characterize them. This starts by having a detailed understanding
of the properties of the matrix material, TiO2. It is in this context that this thesis project
is inscribed. This thesis focuses on the optical characterization of the undoped TiO2. This
characterization is divided into two sub-studies: spectroscopic ellipsometry (SE) and pho-
toluminescence spectroscopy (PL). The spectroscopic ellipsometry gives an insight into the
dielectric functions (i.e. the refraction index and extinction coefficient) of the samples. Fol-
lowing this analysis, a line-shape analysis of the critical point (CP) of the dielectric functions
has been carried out. The photoluminescence spectroscopy provides information about the
optical behavior of the samples through their emission spectra. A curve-fitting of the PL
is attempted to explain the origin of the PL peaks. The characterization focuses mainly on
TiO2 single crystal polymorphs, but also undoped TiO2 thin films deposited on STO sub-
strates have also been characterized.

3
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2 Theory

In this section, a review of the concepts involved in the thesis is presented. The principle of
the two main techniques, photoluminescence and ellipsometry, in addition to the theory of
the critical point analysis are described.

2.1 Titania, TiO2

TiO2 is a transition metal oxide (TMO) composed of oxygen and titanium atoms. Its elements
are present abundantly on the earth and are non-toxic, making TiO2 an easily accessible and
environmentally friendly material. In addition, its good optical and electronic properties
designate it as an interesting material for a wide range of applications, from food pigments to
semiconductors. It is well-known for its photo-catalyst ability to photo-induce the splitting of
water molecules. TiO2 mainly exists in three crystalline forms: anatase, rutile, and brookite.
However, only anatase and rutile are polymorphs studied in the research, as brookite is
unstable. Rutile is the most stable of them due to its lowest free Gibbs energy and thus
the most present in nature. Anatase is also present in nature but less commonly. Usually,
natural crystals have different purity leading to different appearances and colors (due to color
centers). Figure 3 shows the crystal lattice of anatase and rutile. Both have a tetragonal
unit cell with an octahedral structure of oxygen atoms around the titanium atom. Their
respective lattices constants are c = 2.9587 Å and a = 4.5936 Å for rutile, c = 3.784 Å and
a = 9.515 Å for anatase.[13]

Figure 3: Representation of the tetragonal primitive unit cell of rutile and the body-centered
tetragonal conventional cell of anatase TiO2. Adapted from Ref. [14].

The difference in length of the unit cell along the z-axis, and the x- and y-axes leads to
the optical anisotropic behavior of TiO2, resulting in different optical properties for different
directions in the crystal. Having a different lattice constant for the z-axis leads to a special
case of anisotropy, where the material is said to be uniaxial. In this case, the material has
two refractive indexes ne and no in the extraordinary axis and ordinary axes directions. The
axis can be easily identified as it is linked to the lattice constant, the axis with the c lattice
constant is assimilated to the extraordinary axis, here z, while the other axes are ordinary.

5



TiO2 is studied in the Solar Cell Physics group as a potential candidate for hosting an
intermediate band. In addition to its optical and electronic properties, it has the important
characteristic of having a wide bandgap (which sometimes leads to calling TiO2 a dielectric).
Bandgaps of rutile and anatase are reported in literature respectively at ERg = 3.00 eV and

EAg = 3.20 eV (the values are based on experimental research). TiO2 absorbs mostly in the
UV region, however by inserting an IB, its absorption could be extended to the VIS and IR.
The literature agrees on an indirect bandgap for anatase, while the nature of rutile bandgap
is a matter of debate. A direct bandgap is often reported.[15] However, DFT calculation
have shown that its indirect bandgap and direct one have close values.[16, 17] According
to the thesis of Maria Jorge, a previous PhD student of the Solar Cell Physics group, sub-
stochiometric TiO2−x already shows states in the bandgap, due to oxygen vacancies. However,
the energy of the oxygen vacancy states is too close to the VB and thus they are not eligible
as an intermediate band. TiO2 co-doped with chromium and nitrogen has been suggested as
an interesting candidate for intermediate band solar cells by Zhu et al.[12] In their article,
they demonstrated that co-doping could enhance the photo-activity of TiO2 by increasing
the dopant solubility compared to mono-doping, as high doping density is necessary to create
an intermediate band. Moreover, another article from Wu et al. calculated a theoretical
efficiency for an IBSC with such co-doping of 52.7%.[18] This is why, the group of IBSC at
NTNU is currently focusing its research on (Cr, N)-codoped TiO2 samples.

2.2 Spectroscopic Ellipsometry

Spectroscopic ellipsometry (SE) is an experimental technique based on the modification of
the polarization state of an electromagnetic field upon specular reflection on a material (i.e.
sample to be studied). This change is measured via a modification of the amplitude ratio ψ
and phase difference ∆ between the p- and s-polarization of the electromagnetic field of the
light, whose origins will be explained in the following.

The SE is used to investigate the optical properties of materials by comparing experimental
data to a mathematical model. In most cases, thickness and refractive index estimates are the
main quantity explored with this technique. However, the optical response can also contain
information about the composition, crystallinity, roughness, doping concentration, and other
properties of the material.

The SE combined with other experimental methods is highly powerful. Various useful char-
acteristics of the material are accessible from these other techniques, such as its crystallinity
with transmission electron microscopy (TEM) images, its roughness with atomic force mi-
croscopy (AFM) imaging, its crystal phase thanks to X-ray diffraction (XRD) spectra, and
more. Comparisons allow the scientist to improve the mathematical model, as well as verify
its physical plausibility.

2.2.1 Variable Angle Spectroscopic Ellipsometry (VASE)

The variable angle spectroscopic ellipsometry (VASE) is a special case of ellipsometry where
the instrument allows measurements at different angles of incidence of the incoming light
beam. Then, in addition to the study of different angles of rotation of the sample over
360◦(i.e. azimuth), the optical response of the sample is probed in function of the interaction
of the wave-vector of the light with the electric dipoles of the crystal. Indeed, in function of
the angle of incidence the scalar product of the vector changes.

6



The azimuth angles are also very convenient, especially when anisotropic materials are studied
because of their anisotropic optical index. For example, the direction of the extraordinary
and ordinary axis can be determined through ellipsometry.

2.2.2 Polarization of light

General polarization representation

Any polarization of an incoming electromagnetic field E0 on an interface can be decomposed
into two components: one in the plane of incidence, called p-polarization Epe⃗p, and one
perpendicular to the incidence plane, s-polarization Ese⃗s. The direction of the propagation
is defined by the wave vector k⃗ and is always orthogonal to the direction of the oscillating
electric and magnetic field. Thus, {O, e⃗s, e⃗p, k⃗} forms an orthogonal frame. Upon reflection
the interaction between light and the material transforms the ratio of p and s components of
the electric field, giving rise to a new elliptical polarization.

In the most general case, the s and p components travel at different speeds in a material
(i.e. they may experience different refractive indexes) and their amplitudes evolve separately,
which results in a generally elliptic polarization state. From this follows two specific and
useful cases: when the two components are in phase, the polarization state is said to be
linear, but, when they are 90°out-of-phase and equal in amplitude, the polarization becomes
circular.

The orientation of the ellipse is described by the ellipticity ε which is the ratio of the minor
axis over the major axis a. The corresponding ellipticity angle is χ = tan( ba). The orientation
of the ellipse is defined by the azimuth ψ, the angle between the s-axis (or p-axis depending
on the definition chosen by the authors in the books) and the major axis of the ellipse (ψ is
counterclockwise) as illustrated in figure 4.

Figure 4: Ellipse of polarization, with the ellipticity angle χ = tan(ab ), the azimuth ψ, the
minor axis b and the major axis a.

Stokes vector and Mueller matrix

The Stokes vector and Mueller calculus are a way of describing the polarization of an elec-
tromagnetic wave passing through an optical system. Other representation exists such as the
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Jones matrix, with the difference that Jones vectors can only describe fully polarized light
whereas Stokes vectors can also be used in the case of partially polarized light. The Stokes
vectors can be written as:

J⃗


S0
S1
S2
S3

 =


I

Ip cos(2ψ) cos(2χ)
Ip sin(2ψ) cos(2χ)

Ip sin(2χ)

 (1)

The four parameters depend on the total intensity I = E2
p + E2

s of the wave, the degree

of polarization p =
√
S2
1 + S2

2 + S2
3/S0 and the shape of the ellipse of polarization (i.e. the

ellipticity χ and the azimuth ψ). The degree of polarization defined to which extent the light is
partially polarized, 0 < p < 1, for p = 1 the light is fully polarized, and for p = 0 reciprocally

unpolarized. Ip, 2χ and 2ψ are the spherical coordinates of

S1S2
S3

 on the Pointcarré sphere

as illustrated in figure 5.

Figure 5: Pointcarré sphere showing the Jones vector polarization representation in 3D.
Taken from Ref.[19].

The Stokes parameters S2 and S3 can also be expressed in terms of right/left circular polar-
ization and of the ±45◦ linear polarization: S2 = Ir − Il and S3 = I+45◦ − I−45◦ .

In the same way as the Stokes vector is used for the incident light polarization state, the
Mueller matrix describes the optical system (e.g. lenses) through a 4x4 matrix.

A Mueller matrix can be assigned to each element Mi of the system, in the way that the total
system can be expressed as S = MnMn−1...Mi...M0. In the case of an isotropic material M
can be written as:

Misotropic =


1 −N 0 0

−N 1 0 0
0 0 C S
0 0 −S C

 (2)

where N = cos(2ψ), C = sin(2ψ) cos(∆) and S = sin(2ψ) sin(∆). For an anisotropic material
the Mueller matrix is much more complex and can not be deduced directly from the data
(i.e. ψ and ∆).
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Finally, the new polarization states after the optical system can be find by computing Jf =
SJi, where the subscripts f and i denote the final and initial states.

2.2.3 Electrodynamic theory

Macroscopic polarization of a medium

The averaging of the orientation of the microscopic electric dipoles in a material creates
a macroscopic physical quantity called polarization. The polarization can be developed in
Taylor series in the dielectric dipole approximation:

P = ε0[χ
(1)E + 1/2χ(2)E2 + 1/6χ(3)E3 + ...+ o(E3)] (3)

where χ(i) is the dielectric susceptibility tensor of rank i of the medium, ε0 the dielectric
permittivity of the air, and E⃗ the total electric field of the medium (the medium could have
a permanent polarization and thus an internal E⃗in and undergo as well an external E⃗ext).
For a dielectric, isotropic, homogeneous, and linear material, the susceptibility becomes a
constant and the polarization is P⃗ = ε0χE⃗.

Through the Maxwell equations describing the propagation of an electromagnetic wave in the
matter, the polarization P⃗ can be linked to the displacement vector D⃗:

D⃗ = ε0E⃗ + P⃗ = ε0(1 + χ)E⃗. (4)

The term 1 + χ is referred to as the relative permittivity εr. Finally, the relation:

D⃗ = ε0εrE⃗ = εE⃗. (5)

gives the definition of the dielectric function ε. In the dynamic case where the physical
quantities are frequency dependent, if the electric field oscillates too fast, a delay is introduced
between the polarization P⃗ and E⃗. The modulus and argument of |χ(ω)| = |χ1(ω) + iχ2(ω)|
will give the amplitude and the phase shift of P⃗ . It follows that all the physical quantities
become complex, especially the dielectric function (now depending on ω) which describes the
response of the matter to the electric field Eext: ε(ω) = ε1(ω) + iε2(ω), where ε2 stands for
the absorption of the material.

As the dielectric constant is related to the optical index via the relation ε = N2, then the
optical constant becomes also complex: N(ω) = n(ω) + ik(ω), where k is the extinction
coefficient and n the optical or refractive index. Thus, the extraction of the imaginary and
real parts of ε from ∆ and ψ is of main importance in ellipsometry to retrieve the optical
characteristics of the material.

{
n = ε21 + ε22
k = 2iε1ε2

(6)

As the dielectric function must be calculated from a model in SE, it is primordial to ensure
their physical plausibility. To do this, the Kramers-Kronig (KK) relation can be used to
connect the imaginary and real parts of an analytic function, which gives for the dielectric
functions the following relations:

ε1(ω) = 1 +
2

π
P

∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ (7)
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and

ε2(ω) = − 2

π
P

∫ ∞

0

ε1(ω
′) − 1

ω′2 − ω2
dω′. (8)

The integrand blows up when ω′ goes to ω, which is in concordance with the resonant response
shape of ε1. In practice, the Kramers-Kronig consistency derives from the extraction of ε1
from ε2.

It should be noted that Kramers-Kronig expressions integrate all over the spectrum whereas
the measurements are performed only in an energy range. One way to calculate the integral
is then to set ε2 to zero when ω goes to 0 and to +∞. However, the behavior of ε1 and
ε2 outside the spectral range remains unknown and could affect the value of the dielectric
constant. Therefore, in some cases, some absorption tails or peaks (i.e. poles) must be
added outside the measurement range in the mathematical model used to find the dielectric
functions from the SE data.

2.2.4 Physical quantities measured in ellipsometry

To detect a change in the polarization of the reflected beam, the polarization state of the
incoming beam needs first to be controlled. The specific state can be selected via a polarizer,
which induces a linear polarized state, a linear combination of the p and s components:
Ei = Eip + Eis. At the interface with the sample, a fraction dependent on the material
characteristic (defined by the Fresnel reflection coefficients) is reflected with the same angle
as the incident angle (i.e. specular reflection). The reflected beam can also be expressed
as a linear combination: Er = Erp + Ers. Because of the complex material properties, the
linear polarized state is more likely to become elliptic after reflection as illustrated in figure 6.
However, the light beam can also undergo some depolarization (i.e. no preferential oscillation
axis, unpolarized light).
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Figure 6: Schematic representation of the principle of ellipsometry. The incoming light beam
with an incident angle ϕ is polarized in a known linear state. After the specular reflection,
the beam is in an elliptical unknown polarized state described by an amplitude ratio (also
called azimuth) ψ and a phase difference ∆. rs and rp are the Fresnel coefficients in the
direction of the two components of the electric field. Remark: here χ is not the ellipticity,
which is zero for a linear polarized light, it represents only the direction of the electric field
oscillations. Taken from Ref.[20].

As an electromagnetic field can be described in function of a frequency ω and wave vector k⃗
thus one can write the incoming electromagnetic field for respectively for each polarization:

E⃗ip(r⃗, t) = Eipe
−i(ωt−k⃗i.r⃗+δip) (9)

E⃗is(r⃗, t) = Eise
−i(ωt−k⃗i.r⃗+δis) (10)

after reflection, the electric fields become

E⃗rp(r⃗, t) = Erpe
−i(ωt−k⃗r.r⃗+δrp) (11)

E⃗rs(r⃗, t) = Erse
−i(ωt−k⃗r.r⃗+δrs) (12)

where k is the wave vector and δ the phase accumulated related to the paths the ray takes,
the p and s subscripts designate the p- and s-polarization. When the reflection occurs,
the p-polarization and s-polarization interact with the electric polarization of the mater-
ial (stemmed by the electric dipole moments). This interaction results in a change in the
amplitude ratio of the p and s components before and after reflection, mathematically as:

tan(ψ) =
Erp
Eip

Ers
Eis

(13)

In addition, if the material is anisotropic, the p and s components will ”see” different optical
indexes. Thus, the propagation of one compared to the other will be delayed and will induce
a phase shift ∆ = (δrp − δrs) − (δip − δis). It follows that the physical quantity measured is:

ρ =
rp
rs

= tan(ψ)ei∆ (14)
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where rp and rs are the complex Fresnel reflection coefficients respectively in the p and s
directions defined as:

rp =
Erp
Eip

ei(δrp−δip) (15)

rs =
Ers
Eis

ei(δrs−δis) (16)

If the incident light is linearly polarized, then the phase difference of the incident electric
field is zero and their amplitudes are equal. Thus ρ becomes:

ρ =
Erp
Ers

ei(δrp−δrs). (17)

For a simple sample structure, ∆ is linked to the imaginary optical index k and so the phase
shift is related to the absorption process, while ψ is affected by the real optical index n.

In the case where the material can be considered as isotropic, the Mueller matrix can be
extracted from ψ and ∆.

In a first approximation of the material constants, the raw data ψ and ∆ can be converted
into ”pseudo” dielectric functions. To do so, the substrate surface is considered flat and its
thickness semi-infinite:

⟨ε⟩ =< N >2= sin2ϕ

(
1 + tan2ϕ

(
1 − ρ

1 + ρ

)2
)

(18)

where ϕ is the incident angle. Although the pseudo dielectric functions are not completely
physical (denoted by the bra and ket notation) because they correspond to an ideal case, their
shapes give a good estimate of the material properties, especially the energy ranges where the
material is transparent and absorbing. In the transparent range, < ε1 > and < ε2 > oscillate
as ψ and ∆ do, while in the absorbing range, the interference not predominating anymore,
the pseudo dielectric functions show a similar shape with different incidence angles. The
peaks in the absorbing region of < ε2 > correspond to interband transitions. This change of
character of the pseudo dielectric functions occurs at the bandgap of the semiconductor.[21]

Fresnel coefficients

For an ideal material (i.e. without defects, roughness, pores, anisotropy, etc...) the optical
response could be deduced from the Maxwell equations and the boundary conditions. These
equations govern the response of a material in terms of polarization (macroscopic averaging
of microscopic electric dipole moments) and magnetization (macroscopic averaging of mi-
croscopic magnetic dipole moments). The Fresnel coefficients rs and rp, which derive from
these equations, describe the ratio of the electric field before and after reflection. A Fresnel
coefficient in transmission also exists but is not addressed in this thesis.

The simplest problem in ellipsometry is the reflection from a single ideal interface between
a semi-infinite medium 0 with N0 (most likely vacuum or air) and a semi-infinite isotropic,
homogeneous, and uniform medium 1 with a complex optical index N1 which is unknown.
This corresponds to the first reflection in figure 7. After the computation of the Maxwell
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equations and introduction of the boundary conditions, this leads to the expression of the
Fresnel coefficients:

rp =
N1 cos(θi) −N0 cos(θt)

N1 cos(θi) +N0 cos(θt
) (19)

rs =
N0 cos(θi) −N1 cos(θt)

N0 cos(θi) +N1 cos(θt)
(20)

The total reflection coefficient is defined as R = Rs + Rp = |rp|2 + |rs|2, and the total
transmission coefficient is T = 1−R. Then, the optical index N1 = n1 + ik1 can be extracted
from these expressions, where n1 is the real optical index and k1 is the extinction coefficient of
the medium 1. Using Snell-Descartes law to express the Fresnel coefficients only in function
of θi, N0, and N1. Then, using the relationship between the dielectric functions and the
optical index and the expression of ρ, one can find an analytic expression for ε1, the dielectric
function of the medium:

ε1 = ε0 sin2(θi)

(
1 + tan2(θi)

(
1 − ρ

1 + ρ

)2
)

(21)

Equation 21 is the expression of the pseudo dielectric functions used to calculate the properties
of a material in a first approximation.

However, in an advanced case where medium 1 has several transparent layers with different
indexes Ni (for example a thin film and a substrate), the reflections at the interface between
the layers should be considered. This will lead to several numbers of reflections, as illustrated
in figure 7. At each crossing of the layer by the optical ray, the electric field accumulates a
phase shift β = 4πd1

λ N1 cos(θ1). As a result of the higher orders of reflection, the waves will
modulate ψ and ∆ with an interference pattern of frequency β depending on the thickness d1
of the layer and its optical index N1. Afterward, the thickness of the layer can be extracted
from the distance between the interference fringes.
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Figure 7: Schematic representation of optical interference at a sample surface-thin film
and thin film-substrate interfaces, r corresponds to the reflection Fresnel coefficients while
t to the transmission Fresnel coefficients. The subscripts denote the layers involved in the
reflection. As the beam penetrates the material and reflects at the interface, it loses intensity
and accumulates a phase shift of e−i2β at each reflection. The values d1, N1, N2, and θ1
correspond respectively to the thickness and refractive index of the first layer, the refractive
index of the second layer, and the incident angle. Adapted from Ref. [22].

If one of the layers is anisotropic (e.g. birefringent), most of the assumptions in the calculation
are no longer valid. [23]

In practice, the samples having complex structures and properties (such as anisotropy) as well
as defaults (i.e. defects and impurities), require a model-based analysis to retrieve useful data.
It stems from this that ellipsometry is a model-dependent technique. Later in this report
(see section 4.1, the commonly used models will be presented with a particular emphasis on
the models used in the context of this thesis.
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2.3 Critical points (CP) theory

In this section, first, the origin of the dielectric functions is addressed, and then the critical
point line-shape analysis of the dielectric functions.

2.3.1 Quantum theory of band-to-band transition

This section is based on Electronic States and Optical Transition in Solids by Bassani,
Parravicini and Ballinger.[24]

The purpose of this section is to expose the connection between the quantum theory descrip-
tion of the crystal to its dielectric functions.

Here, only band-to-band transitions are considered. In the quantum theory framework, the
energy of atoms in the crystal is defined by a many-body Hamiltonian. To facilitate the
calculation, two approximations are often required. The Born-Oppenheimer approximation
consists in considering that the electron cloud rearranges itself adiabatically around the nuc-
leus. This approximation is based on the fact that nuclei mass is much heavier than electrons
mass, thus the nuclei positions can be considered fixed compared to the electron motion. Ad-
ditionally, the Hartree-Fock-Slater approximation can be applied to reduce the many-body
Hamiltonian to a one-electron Hamiltonian in a crystal potential.

From the above approximations, a Hamiltonian H0 can be built. Then, the action of the light
on the crystal consists in adding a perturbation term W (t) to the Hamiltonian H = H0 +W .
The perturbation, the electromagnetic field of a photon, interacts with the momentum p⃗ of
the electron, and thus its kinetics and its spin, conducting to the Eq.(22):

ˆW (t) =
e

m
ˆ⃗p.

ˆ⃗
A+

e

m
ˆ⃗
S.

ˆ⃗
B +

e2

2m
ˆ⃗
A2. (22)

where m and e the mass and the charge of the electron,
ˆ⃗
A is the vector potential operator

of electromagnetic field,
ˆ⃗
S the spin operator,

ˆ⃗
B the magnetic field operator. The potential

vector describes the light emission and absorption of the crystal. Thus, A⃗ is divided into an
absorption term and an emission term. In the following only the absorption is considered, the
vector potential expression is then: A⃗ = A0u⃗e

i(q⃗.r⃗−ωt) for an electromagnetic field oscillating
in the u⃗ direction and propagating in the q⃗ direction.

The electric dipole approximation can be applied when the wavelength at the origin of an
electronic transition between two energy levels is much larger than the typical size of an
atom. For UV-VIS light, λ is about 104 larger than the Bohr radius a0, so the electric
dipole approximation can be used here. Using the electric dipole approximation, the second
and third terms in Eq.(22) can be neglected, and A reduces to the first term of its Taylor
expansion. Thus, the perturbation reduces to:

ˆW (t) =
e

m
ˆ⃗p.

ˆ⃗
A. (23)

15



Now, a transition between |i⟩ an initial state in the full Valence band, and |f⟩ a final state
in the empty conduction band (i.e. a semiconductor at T = 0 K) is considered. Using the
first order of the time-dependent perturbation theory, the probability of this transition is:

Pif =
2π

ℏ
|
〈
f
∣∣∣ ˆW (t)

∣∣∣i〉|2 (24)

Associating a spin s and a wave vector k to the electrons in each state (i.e. |i⟩ = ψVkiχsi and

|f⟩ = ψCkfχsf ), and introducing Eq.(23) and A⃗ in the previous expression, the probability can
be written as:

Pif =
2π

ℏ
eA0

mc

2

δsi,sf |
〈
ψCkf

∣∣∣eiq⃗.r⃗u⃗.p⃗∣∣∣ψVki〉|2δ(Ef − Ei ± ℏω) (25)

The first Dirac function states that the transition happens only if the electron has the same
spin in the final and initial states. The second Dirac function embodies the fact that the
absorption of a photon of frequency ω occurs only when the energy of the photon matches
the energy difference between |i⟩ and |f⟩. In this term, −ℏω corresponds to an absorption
and +ℏω to an emission.

The momentum operator is ˆ⃗p = −iℏ ˆ⃗∇, which gives for the u-component pu = −iℏ d
du . To

find the transition probability, one needs to diagonalize the matrix
〈
ψCkf

∣∣∣eiq⃗.r⃗u⃗.p⃗∣∣∣ψVki〉, which

means that the determinant must be non-zero. This condition results in the conservation
of momentum: k⃗f = k⃗i + q⃗ + g⃗ where g⃗ is the reciprocal space lattice vector. As kf and
ki are of the magnitude of 2π

a0
, they are much larger than q = 2π

λ , thus the electric dipole
approximation can be applied. Considering, the first Brillouin zone (i.e. g = 0), the transition
can be considered vertical:

k⃗f = k⃗i = k⃗ (26)

Then, the probability becomes:

Pi→f =
2π

ℏ
eA0

mc

2

|MC,V |2δ(EC(k) − EV (k) − ℏω) (27)

To find the transition rate W, the probability must be integrated over all possible states in
the 1st Brillouin zone (BZ) and sum over all bands, which gives:

W(ω) =
∑
C,V

∫
BZ

2dk

(2π)3
Pif (ω) (28)

In Eq.(28), the factor two in the integral accounts for the two spins of the electron (i.e. up
and down). The transition rate corresponds to the number of transitions induced by the
absorption of light oscillating at ω per second per unit volume in the reciprocal space. The
final step is to make the link between the transition rate and the dielectric functions. The
absorption coefficient formula is:
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α =
2κω

c
=

ω

nc
ε2 (29)

with n and κ the refraction index and the extinction coefficient of the crystal, which must
not be mistaken with k the electron wave vector. The absorption coefficient is in essence the
energy absorbed/s/unit volume over the energy flux:

α(ω) =
ℏωW(ω)

uc/n
(30)

with u =
n2A2

0ω
2

2πc is the average energy density. Therefore, it is possible to connect the
imaginary part of the dielectric function to the transition rate:

ε2(ω) =
n2ℏW(ω)

u
(31)

Finally, the relation to the energy states of the transition is:

ε2(ω) =
e24π2

m2ω2

∑
C,V

∫
BZ

2dk

(2π)3
|MC,V |2δ(EC(k) − EV (k) − ℏω) (32)

ε1(ω) is then calculated via the Kramers-Kronig relations.

To go further, ε2(ω) is proportional to the joint density of states (JDOS) as an electron-hole
pair is considered. The JDOS between an empty state in CB and an occupied state in VB is:

JC,V =

∫
BZ

2dk

(2π)3
δ(EC(k) − EV (k) − ℏω) (33)

when considering |MC,V |2 is constant and setting it to 1. Using that:∫ b

a
g(x)δ(f(x))dx =

∑
x0

g(x0)(
df

dx
)−1
∣∣
(x=x0)

(34)

with f(x0) = 0. Then, Eq. (33) becomes:

JC,V =
2

(2π)3

∫
EC(k)−EV (k)=E

dS

∇[EC(k) − EV (k)]
(35)

Where dS is an infinitesimal surface element of the curve EC(k) − EV (k) = E. From this
expression, the JDOS presents interesting behavior when ∇[EC(k) − EV (k)] → 0. Each of
these points is a singularity and makes the integral blows up. As explained in the next
section, these points, called Van Hove singularities or critical points, correspond to positions
of electronic transitions in k-space.
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2.3.2 Critical points origin

Electronic interband transitions occur only for specific positions k (i.e. wave vector) in recip-
rocal space and coincide to critical points (CP) in the dielectric functions. The band structure
of a material can be connected to the dielectric functions through the computation of the
Schrodinger equation for a many-body system as seen previously. Those critical points cor-
respond in the band structure to positions k where the valence band and the conduction band
have parallel tangents. From the quantum mechanic point of view, the dielectric function is
proportional to the joint density of states (JDOS):

ε(ω) ∝ JCV =
2

(2π)3

∫
Ec(k)−Ev(k)=ℏω

dS

∇k(Ec(k) − Ev(k))
. (36)

For k where the energy difference is constant (i.e. derivative equal to zero), the denominator
vanishes while the joint density of states blows up, thus increasing abruptly ε2. Indeed, a
high JDOS means that there are a large number of available states in the conduction band
to promote electrons from the valence band to the conduction band, and the absorption
coefficient increases. To find the critical points, the denominator of the JDOS is expanded
in a Taylor series for k << 1 as follows:

Ec(k) − Ev(k) = Eg +
ℏ2

2

∑ (ki − k0,i)
2

µi
(37)

where i = x, y, z for each direction of the crystal and µi is the reduced inverse effective mass
component in the i-direction and describes the curvature of the band in this direction. For
an anisotropic material, ki is different depending on the axis of the crystal, for a uniaxial
material usually kz is attributed to the c-axis (i.e. extraordinary) while kx and ky are attrib-
uted to the a axis (i.e. extraordinary). Thus, the surface of constant energy is an ellipsoid,
whereas for an isotropic material, it is spherical. By inserting equation Eq.(37) in Eq.(36),
the contribution of each axis of the crystal to the critical points is accessible. The number of
non-zero µi gives the dimensionality d of the CP, while the sign of the µi gives the curvature.
Four dimensionalities are accessible 3D, 2D, 1D, 0D. For 3D critical points, four kinds of
critical points exist. If all µi are positive, then the critical point corresponds to a minimum
and is denoted M0. In the opposite case, the critical point is a maximum. When one or two
µi are negative (respectively positive) the critical point is a saddle point (M1,M2).

A 0D critical point corresponds to the case where the conduction band and the valence band
an almost flat, and describes the line-shape of an excitonic absorption. By computing the
JDOS integral over the first Brillouin zone near the critical point, the following expression of
the dielectric function is found for d = 3, 1, 0:

ε(ω) = C −Aeiϕ(ℏω − E0 + iγ)n (38)

where n = d/2 − 1, ϕ is a multiple of π and accounts for the different kinds of CP giving its
symmetry [25], A the amplitude, E0 the energy of the transition at the CP, γ the lifetime
broadening and C a constant background.
For d = 2, n = 0, the expression Eq.(38) becomes:

ε(ω) = C −Aeiϕln(ℏω − Eg + iγ) (39)

The parameter that dominates the shape of the CP is phi. For 3D critical point, ϕ = 0, π2 ,
3π
2 , π

correspond respectively to M1,M2,M0 and M3 CP (when A > 0).[26] The energy gap al-
ways lies in between the two extrema of the second derivative but is nearly independent of l.
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While around 20% of Γ depends on the dimensionality d. Indeed, the line-shapes are wider
as the dimensionality increases.[27]. Figures 8, 9 and 10 show examples of the line-shape of
respectively 3D, 2D and 0D critical points for various ϕ.

As Eq.(38) only considers the most resonant critical point, usually the derivative of the ε(ω)
is calculated up to a certain order to reveal secondary CPs, and allows a more complete and
relevant analysis of the dielectric functions. In the specific case of spectroscopic ellipsometry,
the signal-to-noise ratio allows the derivation ε(ω) up to the second or third order. In practice,
the expression Eq.(38) is used to fit the second-order numerical derivative, thus permitting
the identification of the energy and type of the CPs. As differentiation often enhances noise,
this method necessities to apply smoothing before fitting the second derivative. Usually, this
is achieved with a linear filtering algorithm such as the Savitzky-Golay filter and then the
parameters for each critical point are fitted by a least-squares regression. Another filtering
method consists to calculate the Fourier Transform of the second derivative and remove the
high-frequency contribution, which is most likely only noise. [28] In the present work, the
CP analysis was performed thanks to a Matlab code written by a previous master’s student
of the group, Benjamin Roaldsson Hope.

Figure 8: Shape of the 3D critical points (n = 1/2) for ϕ = 0, π, π2 ,
3π
2 , with the following

parameters: A=10, Γ = 0.1, C=0 and E0 = 4eV .
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Figure 9: Shape of the 2D critical points (n = 0) for ϕ = 0, π, π2 ,
3π
2 with the following

parameters: A=10, Γ = 0.1, C=0 and E0 = 4eV .

Figure 10: Shape of the 0D critical points (n = −1) for ϕ = 0, π, π2 ,
3π
2 with the following

parameters: A=10, Γ = 0.1, C=0 and E0 = 4eV .
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2.4 Photoluminescence spectroscopy (PL)

2.4.1 PL principle

Photoluminescence spectroscopy (PL) records the emission spectra of a material under op-
tical excitation. Figure 11 shows the principle of PL. For semiconductor materials, upon an
excitation, an electron-hole pair is formed. For the electron to be excited to the conduction
band, the energy of the photon must be equal or larger than the bandgap. If the photon
energy exceeds the bandgap, the electron usually relaxes to the conduction band edge. This
intraband relaxation (also called thermalization) of electrons in the conduction band is on the
picosecond scale. Next, if the electron and hole recombine radiatively, a photon of frequency
associated with the energy of the transition between the initial and final state is emitted.
Thus, PL spectroscopy is a useful measurement technique of energy gaps Eg of semicon-
ductors. However, in practice defects or impurities in the semiconductor with energy levels
inside the bandgap, will contribute to the spectra and must be considered during the analysis.

Figure 11: Schematic drawing of the emission process: under a monochromatic light beam,
an exciton from the valence band is excited to the conduction band if the energy of the
incoming photon is ≥ Eg (red arrow). The exciton loses its excess energy by relaxing first to
the bottom of the conduction band (black arrows) and then by emitting a photon of energy
∼ Eg (blue arrow). The PL principle is based on the collection of this emission. Adapted
from Ref. [29].

the emission of photons with energy below the band gap could show the existence of energy
levels between the valence and conduction band and could open give insight into real-life
intermediate band material, which is one of the goals of the Solar Cell Physics group. Nev-
ertheless, a range of radiative phenomena can explain PL at lower energy than the bandgap
and will be presented later in this report.
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2.4.2 Mechanisms contributing to the PL spectrum

This section is essentially based on chapter 4, entitled “Mechanisms contributing to the PL
spectrum” of the book “Spectroscopic Analysis for optoelectronic semiconductors” from Jime-
nez et al.[30]

For completeness, many processes are mentioned in this chapter. Not all are relevant for the
samples studied.

Band-to-band transition

Depending on the thermalization in the conduction band, and the presence of impurities
and/or defects in the sample, the excited electron can recombine radiatively through different
pathways. After the thermalization, the most usual pathway is the PL emission from the
bottom of the conduction band to the top of the valence band, so, at energies ∼ Eg.

Figure 12: Characteristic shape of band-to-band PL of a semiconductor (black line). The
red dashed line represents the electron density of states and the red dot line the occupation
probability of he conduction band state. Taken from Ref.[31].

The shape of the PL spectra is defined by the density of states together with the occupation
probability of those states, as illustrated in figure 12 in the most simple case. However, it is
possible that emission processes, involving a different state not belonging to the conduction
band or the valence band, add features to the spectra. On the other hand, if defects or
impurities are present, the emission can occur at lower energy than Eg. These particular
recombination mechanisms are described in the following, from the emission with the highest
photon energy to the lowest.

Excitonic transitions

Excitons are electrons and holes bound together via Colomb interaction that lowers the energy
of the pair. Thus, excitons are energetically more stable than free electrons and holes. Their
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energy levels have a similar structure to the hydrogen atoms:

E(n) = Eg −
1

n2
Eex (40)

where Eex is the binding energy of the electron with the hole. The first state is located at
Eg − Eex and then the other states are in between this limit and Eg.

Different types of excitons are described in the literature:

• Wannier-Mott exciton: correspond to weakly bound excitons, whose energy levels are
described by the Wannier-Mott equation. This type of exciton usually occurs in ma-
terials with a high dielectric constant which screens the Coulomb interaction inside the
exciton. Thus, the electron and hole in the Wannier-Mott excitons have delocalized
wave-functions, which leads them to be designated also by the terms ”large radii ex-
citons” or ”free excitons”. Indeed, they can move apart from each other over several
lattice constants. [32]. When these excitons are excited in one of their energy levels
n > 1 from the expression Eq.(40), they can later deexcite radiatively. As their energy
levels are below the conduction band edge, because of their binding energy, the emission
occurs at photon energies lower than Eg. This process is called free exciton emission
and is usually denoted with an X.

• Frenkel exciton: are forming in material with low dielectric constant, where the Cou-
lomb interaction between the electron and hole is strong. Due to the strong attraction
between the electron and hole, their respective wave-functions are localized and the
Frenkel exciton radii is small. Because of their higher binding energy, their energy levels
are lower than the Wannier-Mott exciton, and thus they emit at longer wavelengths.

• Self-trapped exciton (STE): A polaron is a quasi-particle consisting of a conduction
electron or a valence hole (i.e. a free carrier) together with its self-induced polarization
of the crystal lattice. Like polarons, excitons can induce a distortion of the lattice
around them. Then, when the coupling between electrons (respectively holes) and the
crystal lattice is strong, the exciton can be self-trapped by the induced distortion. These
excitons have states deeper in the bandgap than the free excitons because of their strong
attractive interaction with the lattice, thus leading to emissions far below Eg. [33]

Defects and impurities related transitions

Similar to excitons, free electrons and holes can also be trapped by defects in the lattice,
which results in a type of ”ionization”. Then, the energy of the transition corresponds to the
band-gap energy minus the ionization energy (in a similar way to the binding energy of the
excitons). From this phenomenon, we differentiate two types of defects:

• Shallow defects: are small perturbations (usually substitutional atoms) that affect the
lattice potential by a weak Coulomb interaction similar to the Hydrogen atom model.
Due to the screening of the potential by the other electrons of the lattice, the electron
is loosely bound to the defect-ion and its wave-function extends over several lattice
constants. The electron sees the periodic potential of the lattice and then its motion
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can be described by the effective mass approximation in a similar way to the Wannier-
Mott excitons. Thus, to describe the energy potential felt by a weakly bound electron
around the shallow defect, the Coulomb potential can be used by substituting the
electron mass with an effective mass µ.[34]

• Deep level defects: can be compared to ”localized defects” in a similar way to the
Frenkel excitons. In this case, the perturbation induced by the defect ion is much
larger and the resulting Coulomb interaction is more localized than for shallow defects.
This type of potential is usually created by interstitial atoms or vacancies coupled with
some lattice distortion. Thus, both the lattice relaxation (i.e. the energy needed for
the rearrangement of the atoms in the lattice) and the Coulomb interaction affect the
potential of the trapped electron. Unlike their name could suggest, deep levels defects
are not necessarily located in the middle of the bandgap. Nevertheless, when they are
near the middle, they can trap either an electron or a hole and act as recombination
centers (i.e. Shockley-Reed-Hall recombination).

• Acceptors and donors: correspond to the case where the semiconductors are doped (N
or P type).

2.4.3 Color centers

Color centers, also called luminescence centers, are optically active defects or impurities in
the lattice of the host crystal. When these defects are oxygen vacancies with one or two
unpaired electrons, they are called F centers. The F comes from Farber, the German word
for color. As they have their own energy levels, they act as a single atom or molecule inside
the lattice, it is the reason why the Franck-Condon principle, described below, can be applied
to them. Thus, the coupling between the phonon modes of the crystal with the electronic
states of impurity or defect, instead of the coupling of the vibrational states of the molecule
and its electronic states. If the color centers are present in the lattice in high density, they
can cause substantial absorption and emission of light at photon energies below the bandgap.
The effect of the color centers can be described as introducing additional levels in the energy
level diagram, which lie between the conduction and valence band. Thus, photons with sub-
bandgap energies can participate in processes. As a result of these additional states, some
naturally transparent crystals, such as TiO2, can exhibit pronounced colors.

The Franck-Condon principle states that the optical transition is vertical, because of the
slower motion of the nucleus of an atom compared to its electrons, which are much lighter.
The electron-phonon interaction couples phonon states with the excited and ground states of
the defect, allowing a series of absorption and emission transitions. The green wave-functions
in figure 13 represent the phonon energy levels of the color centers, the parabolas represent
the electronic states of the defect, which can be considered as a single atom.
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Figure 13: (Left) Schematic drawing of the Franck-Condon absorption and emission pro-
cesses in the case of an electron-phonon coupling due to the presence of color centers in the
crystal lattice. (Right) Line-shape of the absorption and emission spectra, which are mirror
images of each other. The zero-phonon line in black has a Lorentzian shape with a width
determined by the excited state lifetime. Adapted from Ref.[35].

As the Frank-Condon principle considers instantaneous transitions, when a photon is ab-
sorbed the transition must be compatible with the new average position of the nucleus of the
defect in the crystal. Indeed, the average position of the defect (i.e. configuration coordin-
ate) is different in the excited state. The configuration coordinate is related to the average
distance between the defect and the cage of the neighboring ions.[36] The difference between
the minima of the ground states and the excited states is called ∆qFC .

If a photon of energy larger than the energy E1 −E0 (see figure 13) is absorbed, an electron
is promoted to the electronic excited state and might reach one of the vibronic levels. Then,
the electron can relax to the bottom of the excited state by creating phonons and finally
return to the ground state by emitting a photon.

As the vibrational levels are the same in the excited band and ground state, the emission
and absorption spectra are mirror images of each other, the mirror plan corresponding to
the ZPL. The zero phonon line (ZPL) corresponds to the transition between the minimum
of the electronic excited state to the ground state (i.e. E1 − E0): no phonons are involved.
The resulting PL consists of a series of Lorentzian line-shapes, each one corresponding to one
transition between a vibrational level in the excited state and one in the ground state of the
defect. Because of the relaxation in the electronic excited state, the emission occurs at lower
energies than the absorption. This redshift is called the Stokes Shift.

At low temperatures, the fine structure of the transitions between the phonon levels is visible.
In the low-temperature approximation, emission transitions occur from the zero-phonon level
of the excited state to the zero-phonon level of the ground state or to higher phonon levels
of the ground state, as there is little thermal occupation of the other phonon modes. To find
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the relative intensity of the peak, one can apply the Franck–Condon principle and calculate
the Franck-Condon overlap factor Fmn . This factor contains the probability of transitions
involving phonons which is determined by the overlap of the wavefunctions of the initial and
final energy states: ψn and ψm. In addition to the Franck-Condon assumption, two other
approximations are assumed. The first approximation is that each lattice vibrational mode
is well described by a quantum harmonic oscillator model. The second approximation is
that the interaction between the color center and the lattice is the same in both the ground
and the excited state. Finally, the following expression can be found, where S is the Huang-
Rhys dimensionless parameter, a well-defined function of the shift in configuration coordinate
corresponding to the Stokes shift between the absorption and emission, and Ln−mm (S) are the
General Laguerre polynomials. n is the quantum number of the vibrational final state, so the
ground states for an emission process, and m of the vibrational initial state in the excited
band.

Fmn =
∣∣ ∫ ψ∗

nψm
∣∣2 = e−SSm−nm!

n!
(Ln−mm (S))2e

−m ℏωp
kBT (41)

The last term, the Boltzmann term, takes into account the thermal occupation of the excited
states in the initial state when the temperature is high enough. ℏωp is the energy of the
phonon involved in the transition.

2.4.4 PL of TiO2 in literature

This section presents a literature review of the PL of TiO2.

TiO2, a transition metal oxides

Transition metal oxides (TMOs) are well-known to have interesting properties, such as a
wide bandgap, a high dielectric constant, or ferromagnetism, due to their partially filled 3d-
orbitals for the cation. The filling of these orbitals with electrons gives rise to a range of
materials with properties from insulating to metallic. At the TMO range edges, TiO2 with
its empty 3d0 orbitals acts as a N-type semiconductor, while Cu2O with its 3d10 electronic
configuration behaves as a P-type semiconductor.[37]

To understand to what extent (defect and impurities free) TMOs have a specific behavior,
one can take a look at their energy diagram in the ligand field theory. The ligand field theory
is based on a molecular orbital approach. In this theory, the energy levels of the TMO are
determined by linear combinations of atomic orbitals, predominantly of metal 3d-orbitals
and oxygen 2p-orbitals. Therefore, the degeneracy of metal 3d-states is lifted resulting in a
complex energy diagram.[38] The molecular orbital diagram of TiO2 is shown in figure 14 a).

TiO2 has an octahedral structure in the Bravais lattice cell where six oxygen atoms are bound
to each titanium atom, forming Ti+4O2 complexes. The electronic structure of titanium is
[Ar] 3d24s2. Thus, even if the metal 3d orbitals are involved in the energy diagram, the Ti+4

cation has no valence electron to participate in the bonds. The hybridized orbitals of the
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complex are exclusively filled by electrons from oxygen atoms. For this reason, the occupied
valence band is said to have an oxygen 2p-orbitals character, as these orbitals are mostly
involved in the bond, while the unoccupied conduction band has mainly a Ti 3d-orbital
character.[39, 40] Thus, if an electron is trapped in the crystal, it is most likely the Ti+4

cation that will trap it. This has been seen in calculations of the density of states projected
for certain orbitals, as displayed in figure 14 b).

Figure 14: a) Energy diagram of the molecular orbitals of the Ti+4O2 complexes in TiO2

crystals, the hybridization of 3d-orbitals of the titanium cation with 2p-orbitals of the oxygen
atoms, b) Projection of the density of states (DOS) of TiO2 for the different orbitals: 3d and
2p. Taken from Ref. [39], and previously adapted from a) Ref. [41] and b) Ref. [42].

As a result, TiO2 has a large number of empty 3d-orbitals likely to accept free electrons or to
bind to impurities. Also, the TiO2 that is manufactured is subject to oxygen vacancies, lead-
ing to O2 adsorption at its surface which can have a strong influence on the PL spectra.[43]
Thus, the numerous energy levels resulting from combinations of oxygen and titanium orbitals
complicate the behavior of TiO2, especially when it comes to interactions with for example
excitons or impurities. Even if TiO2 is widely studied, the origins of its optical and electrical
behaviors are still not fully understood.

PL of anatase in literature

In literature, only a few examples of PL on single crystals TiO2 are available. Figures 15,
16, and 17 show examples of anatase and rutile PL that can be found in the literature. For
anatase, a broad band below 3 eV with a maximal intensity between 2.0 eV and 2.5 eV is
reported at low temperature by Sekiya et al. [44], Gallart et al. [45], Tang et al. [46] and
Watanabe and Hayashi [47]. The four papers assign the band principally to STE (see section
2.4.2 for an explanation the STE). According to Toyozawa theory of self-localization, the
longer inter-ionic distances Ti-Ti in anatase are in favor of STE formation. [48, 49, 50]

Anatase single crystal PL was also reported at RT, with a band slightly shifted towards higher
energies. Tang et al. observed a shift of 0.2 eV between 300K and 5K, with a peak centered
at 2.5 eV. An Urbach tail assigned to shallow states was also noticed by the group. Similar
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data were presented by Yamada and Kanemitsu.[51] However, they excluded the possibility
of emissions from exciton states due to the high dielectric constant of the TiO2 and the small
exciton binding energy, and attributed the emission band to band-to-band recombination.
An RT emission band centered at 2.5 eV is also measured in TiO2 anatase thin film by Jin
et al. [52] (on Si substrate) and by Pallotti et al. [49]. Both articles attribute the emission to
STE and support Tang et al. interpretation of a tail due to shallow states, originating either
from trap states or from surface states linked to oxygen vacancies.

This last interpretation should be nuanced, surface states and defect are mostly reported in
works about TiO2 nanoparticles, where the effect of the surface area is not negligible. For
single crystals, as the incident light penetrates the bulk, the effect of the surface states on
the photoluminescence seem likely to be lower. [45]

In an article, Choudhury and Choudhury investigated the effect of defects on the PL spec-
tra.[53] For that, they created defective anatase samples with oxygen defects to induce ab-
sorption in the visible range. Two nanoparticle samples, referred to as TV200 and TA450,
were prepared by Sol-Gel method and annealed in vacuum and air at 200◦ and 450◦ re-
spectively. Through XRD, their predominant crystalline phase was verified to be anatase.
Although, their different annealing conditions, the samples presented the same type of defects
and thus were fitted in the same way. Four different types of defects were reported in the
article: self-trapped excitons (STE) at 2.86 eV (anatase bulk), oxygen defects at 2.30 eV and
2.67 eV, and charge transfer from Ti3+ to TiO2−

6 at 2.52 eV. Finally, the peak at 3.19 eV
was attributed to the phonon-assisted indirect transition from M to Γ in the first Brillouin
zone of anatase TiO2. Each contribution was fitted with a Gaussian distribution, whose area
gives an idea of the proportion of the defect in the samples. This article was used to fit the
anatase spectra in section 5.3.
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Figure 15: PL and PLE spectra of rutile and anatase single crystals at low temperature
under 325 nm excitation from Gallart et al. Taken from Ref.[45].

Figure 16: PL spectra of rutile thin film (RF) and anatase thin film (AF) and pellet (AP)
at room temperature under 325 nm excitation from Pallotti et al. Adapted from Ref.[49].
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Figure 17: PL and PC (Photoconductivity) spectra of rutile (left) and anatase (right) single
crystal (001)-oriented at room temperature under 3.5 eV (354 nm) excitation from Yamada
and Kanemitsu. Taken from Ref. [51].

PL of rutile in literature

The literature reports for rutile either a sub-bandgap band similar to anatase PL, as illus-
trated in figures 15, 16, and 17, or a mid-bandgap band centered around 1.52 eV. The first
band is split into two contributions: a band-to-band transition near 3.0 eV and a sub-bandgap
contribution. The latter is often attributed to oxygen defects that create shallow states just
below the conduction band. While the second band is related to deep levels inside the for-
bidden bandgap.

The PL of the rutile single crystals shows a weak sub-bandgap photoluminescence around
[2.0, 3.2] eV. This band was detected only under strong pulse laser excitation for Yamada
and Kanemitsu [51], and only after plasma treatment for Tariq et al. [54] (at RT). In the
later article, the plasma treatment was believed to induce oxygen vacancies at the sample
surface. Moreover, the PL in this energy region seems to be enhanced for nanocrystal rutile
samples.[55, 56, 57] For example, Kernazhitsky et al. measured poly-dispersed nanostructured
rutile at RT and attributed the sub-bandgap PL to excitonic peaks.[56] Takci attributed the
PL of rutile nanoflowers to free exciton recombinations in the presence of oxygen vacancies.
The PL enhancement could be explained by the higher surface-to-bulk ratio of nanocrystal
samples, as they have a higher proportion of surface states and thus are more likely to present
surface defects and impurities. Indeed, it has been demonstrated that TiO2 can adsorbed
species at its surface under certain conditions.[43]

The band centered at 1.52 eV (i.e. NIR band) is reported for single crystals [45, 49], thin films
[52], and for annealed rutile powder [58, 59]. All papers agree that the band originates from
a mid-bandgap state due to defects or impurities, however, the origin of the state differs from
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one article to another. On one hand, Pallotti et al. attribute the emission to electron-hole
recombination, i.e. from an electron trapped in the deep midgap state with a valence hole.[49]
While Jin et al. ascribe the PL to the complementary transition: the recombination of an
electron in the conduction band with a hole trapped in the deep level.[jin] On the other hand
Gallart et al., Montoncello et al. and Krivobok et al. associate the band with the presence of
luminescent centers (i.e. color centers).[45, 58, 59]

For Gallart et al., the line-shape of the band originates from self-trapped exciton related
to oxygen vacancies, while Montoncello et al. mentions the ionization of oxygen vacancies,
and Krivobok et al. suggests intra-center transitions (i.e. d-d orbitals transitions) between
vanadium impurities and titanium ions.[45, 58, 59] Figure 18 shows examples of the PL band
at 1.52 eV attributed to color centers.

Figure 18: Near-IR PL spectra of rutile powder at 5K under three different excitations
from Krivobok et al.(left), and of rutile single crystals under 325 nm excitation (right): a)
at different temperatures, b) with the decomposition of the PL into bands at 20K, c) with a
Franck-Condon simulation (dark orange) from Gallart et al. Taken from Ref. [59, 45].

2.4.5 PL of SrTiO3 (STO) in literature

For completeness, a literature review of the PL of STO is presented here. The purpose of
this review is to have an idea of what STO PL looks like in order to analyze later the PL of
the undoped TiO2 thin films grown STO substrate.

STO has an indirect bandgap at 3.25 eV, close to the anatase bandgap, as well as a dir-
ect bandgap at 3.75 eV. [60] Photoluminescence of STO occurs mainly in the visible region,
depending on the measurement conditions either a green luminescence (GL) or a blue lumin-
escence (BL) is reported, with sometimes a particularly intense UV near band edge (NBE)
PL. The NBE is mostly attributed to band-to-band recombinations, and the GL and BL to
defects, self-trapped holes (STH) or electrons (STE).
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Yalishev et al. [61] and Yamada and Kanemitsu [62] measured a UV-NBE band in their
Nb-doped STO samples, and attribute it to phonon-assisted indirect band-to-band recom-
bination. In addition, Yalishev et al. recorded also a BL band between 2.1 eV and 3.0 eV,
centered at 2.6 eV, which was associated with the electron doping in the bulk of the sample,
whereas they related the NBE band to the presence of surface states.

Dadgostar et al. measured the PL of Nb-doped STO and undoped STO samples, as illlus-
trated in figure 19.[63] Their PL spectrum at 80K (λexc = 325 nm) shows a broad GL centered
2.4 eV, an NBE band at 3.25 eV as in [61], and a small a structured IR band (SIR) in the
range [1.4, 1.6] eV.Zhang et al. reported that the dominant defects are oxygen vacancies
(OV) near the surface, and then Ti interstitial defects in the bulk.[64] Based on this article,
Dadgostar et al. interprets the GL band as being either from self-trapped holes (STH) by O-

of the oxygen vacancies or from STE originating from Ti interstitials.

Yamada and Kanemitsu reported the same GL band and the NBE emission at 8K in undoped
STO single crystals annealed under oxygen flow to reduce the OV density, as illustrated in
figure 20.[65] In addition they measured a BL at 300K centered at 2.8 eV. According to them,
the GL is most likely due to impurities centers rather than STE, while the NBE corresponds
as before to band-to-band electron-hole recombinations involving phonons.

Few articles mention the study of TiO2 thin films on STO substrate. Li et al. measured TiO2-
SrTiO3 thin film (1:1 proportion).[66] Kamei et al. studied anatase TiO2 thin film on STO
(001) single crystal.[67] In both cases, a broad blue-green band is reported, either centered
at 2.57eV [66] or at 2.25eV [67].

Figure 19: PL spectrum of STO from Dadgostar et al. Taken from Ref. [63].
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Figure 20: PL spectrum of STO at 8K and 300K from Yamada and Kanemitsu. Taken
from Ref. [65].
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3 Experimental Details

In this section, the TiO2 samples characterized in this thesis by photoluminescence spectro-
scopy and spectroscopic ellipsometry in this thesis, as well as the photoluminescence setup
and experiments are presented.

3.1 Samples

The final goal of the Solar Cell Physics group is to characterize (Cr,N)-co-doped TiO2. Before
the doped samples can be studied, it is first necessary to understand the origin of the prop-
erties and the behavior of the undoped matrix material. This is the reason why this thesis
focuses firstly on TiO2 single crystals, and secondly on the characterization of undoped thin
films. The idea is to later be able to characterize the doped thin films and thus, to tune their
intermediate band characteristics and to evaluate their performance.

Single crystal reference samples

The single crystals were purchased at MTI® corporation. TiO2 anatase (110)-oriented single
crystal is a natural crystal, one side polished of size 5mm x 5mm x 0.5mm and is very brittle.
TiO2 single crystals are expected to be transparent in the visible because of the large bandgap
of TiO2 (3.00 - 3.20 eV). However, in figure 21, the orange and black coloration of the sample
is a visible sign of absorption in the visible region and of the natural origin of the sample.
Defects or impurities, also called color centers, are responsible for the coloration of the sample.
In an article from Yang et al., the visual aspect of anatase nanocrystal powder is related to
the presence of oxygen vacancies.[68] This type of defect leads to a blue appearance, while
oxygen vacancies filled with hydrogen atom turns the sample color into red.[69] In addition,
anatase is reported to have two growth habits in a natural environment: the first one gives
rise to an octahedral crystal shape with an indigo-blue-black color, and the second one to
pyramidal faces with a honey-yellow-brown color. From its color and size aspect, the anatase
(110) sample seems to originate from this second type.

The rutile samples are 10 mm x 10 mm x 0.5 mm one side polished single crystals oriented
in the (110) and (001) direction, perfectly transparent (although slightly yellow), and grown
by float zone method (i.e. crucible-free crystal growth).

The undoped TiO2 thin films studied here are the ones of the so-called A and B series studied
in the master thesis of Marcus Michaelsen, and deposited using pulsed laser deposition by
PhD student Thomas Brakstad and Marina Jorge.
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Figure 21: Photo of (110)-oriented anatase (left) and (110)-oriented rutile (right) single
crystal samples.

Pulsed Laser Deposition (PLD)

TiO2 thin films were prepared by pulsed laser deposition (PLD) in the group. Pulsed laser
deposition is a physical vapor deposition technique, well-known to be suitable for thin-film
growth. The technique was first invented by H·W Smith and A.F Turner in 1965, however, it is
only thanks to Dijkkamp et al., in 1987 that the potential of the PLD technique was revealed,
especially the production of high-quality thin film with very high purity.[70] A great variety of
target materials is compatible with PLD; metallic material as well as semiconductors, ceramic
layers, or oxides, thus allowing growth of films for numerous applications. The technique is
based on laser-matter interaction. A high-energy laser beam hits a target. As the laser
beam damages the surface structure of the target, breaking bounds, the target evaporates in
the form of a plasma plume. The plasma then condenses on an adequate substrate placed
in front of the target. For each laser pulse (femtosecond to nanosecond), a new thin layer
is created on the substrate, where the atoms arrange on the substrate. The process takes
place in a vacuum chamber to avoid any contamination from other species. The controlled
environment of the chamber is primordial to ensure the purity as well as the desired design of
the sample. Several chamber parameters can be adjusted: the temperature of the substrate,
the laser fluence, the pressure in the chamber, and the gas flow. Ultra-light vacuum can be
used to create high-purity thin films. Nevertheless, passive (Ar, N, etc...) or active gas are
also interesting to build a specific material. For example, an oxygen atmosphere is usually
used to create transition metal oxide thin films. In Figure 22, the TiO2 target is vaporized by
the laser in an O2 atmosphere and forms a plume of Ti+ and O− ions and TiO2 molecules.
The presence O2 atmosphere might help to fill the possible vacancies in the structure during
the deposition.
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Figure 22: Principle of pulsed laser deposition of a TiO2 thin film. Adapted from Marcus
Michaelsen master’s thesis.

As the plume is inhomogeneous due to its shape, the deposition is non-uniform on the sub-
strate; more material is deposited at the center of the plume than at the edges. This is the
main drawback of PLD when making flat thin films.

A and B series

The A and B series were made by previous PhD students in the group, Marina Rodrigues
Jorge and Thomas Brakstad. These series consist of uniform undoped TiO2 thin film samples
prepared through PLD with varying parameters in order to change the film properties (pres-
sure, O2 and Ar flow, laser fluence). The table below presents the growth conditions of TiO2

in the A and B series.

Table 1: Growth conditions of the A and B series samples studied in this thesis. Reproduced
from Marcus Michaelsen master’s thesis.

Sample label O2 (seem) Ar (seem) Pdep (mbar) Laser Fluence (J/cm2) Ts (◦C) Thickness (nm)

A2 50 0 2.7 x 10−2 229
B3 2 98 1.2 x 10−2 2.0 700 667
B5 100 0 1.7 x 10−2 687

Growing different materials on top of each other creates a boundary region where the two
materials meet. If the lattice constants and crystal structures are different enough, the
mismatching can cause strain, thus could lead to cracks or dislocations that propagate through
the structure.

The A and B series were implanted on different substrates: silicon (Si), lanthanum aluminate
(LAO), strontium titanate (STO), and sapphire (SPA). To establish the crystallinity of the
A and B series, a previous master student, Marcus Michaelsen, determined the crystal phase
of the thin films using XRD (θ − 2θ diffractograms) and grazing incidence X-ray diffraction
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(GIXRD). He found that the films on STO and LAO were more anatase-like, whereas the SAP
samples were more rutile-like, which agrees with the article in the literature. The following
table summarizes the results found by Marcus Michaelsen for the films on silicon, LAO, and
STO substrates.

Table 2: Table of the crystal phase measured with XRD of A and B series samples studied
in this thesis. Adapted by Joseba Ormaetxea from Marcus Michaelsen Thesis.

Si (110) LAO STO SAP

A2

Anatase;
(001) and (112)

preferred directions,
and rutile with (100)
preferred orientation.

Highly textured
(001)-oriented anatase,
with traits resembling

that of epitaxial growth.

(001) textured anatase
with some

rutile grains.

Rutile (100)
of considerably

high crystalline quality.

B3
Rutile, with (100)

preferred orientation.

(001)-oriented anatase,
and

a weak polycrystalline
(100) rutile pattern.

(001) textured anatase
with some rutile grains

Rutile (100)
of considerably

high crystalline quality.

B5

Anatase,
with (004) and (112)
preferred orientation.

Also rutile,
less dominant,

with (100) preferred
orientation.

Anatase (004) and (112),
most dominant (004).

Rutile (110) very weak.
(001) textured anatase. Rutile (100).

For simplicity, thereafter the samples are denoted by their label (e.g. STO B5 sample). In
this thesis, the study of the undoped thin film focuses mainly on the STO samples pictured
in Figure 23. As the interpretation of the results appeared to be more complex than expected
due to the broad PL band of the samples and the parasite PL of the substrate, the experiments
stopped after having measured the undoped STO samples.

Figure 23: Photo of A and B series samples on STO substrate
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3.2 Photoluminescence spectroscopy setup

The PL setup consists of a PL spectrometer provided by Horiba Jobin Yvon® , a turbo-
molecular pump (Lakeshore Janis model n°TP-75, or TS-85-D), and a cooling system com-
posed of a cooling head (Sumitomo model n°HC-204SFF-N) (called later the cryostat) and
a compressor (Sumitomo model n°HC-4A). Temperature control of the sample is monitored
through a Lakeshore 331 temperature controller.

The PL setup is composed of an excitation source, two monochromators, and a photomulti-
plier detector (PMT R928), with working wavelengths at (200-900) nm, as illustrated in figure
24. Three excitation sources are available in the lab, a Xenon lamp (working range: (220-
1000) nm). Inside the spectrometer, the beam passes through an excitation monochromator
(with the gratings corresponding to the light source) to select the excitation wavelength. An
adjustable slit selects the beam width which will illuminate the sample. A beam-splitter
allows the measurement of the source intensity on a Si reference detector, as well as the
intensity from the sample. Then, to study the emission spectra of the sample, an emission
monochromator scans the wavelengths emitted beam with two additional gratings, chosen
according to the detectors.

Figure 24: Schematic drawing of the PL spectrometer. The beam coming from the light
source enters the excitation monochromator (blue), then a mirror splits the beam-splitter in
two, a reference detector collects one part of the beam and the other is used to excite the
sample. After the sample chamber, the emission monochromator (red) selected the detection
wavelengths. Finally, the signal is recorded by the detector. Taken from Horiba’s presentation
of the instrument - 2011.

For PL measurements, usually, the excitation monochromator is fixed at λex and the emission
monochromator scans a range of λem. In the monochromators, a diffraction grating splits
the beam in its composite wavelengths. Each grating is optimal for a specific wavelength, the
blaze λb, but works well in a range around, which is defined by [λb2 , 3

λb
2 ]. For example, using

the Xenon lamp with the PMT, the appropriate gratings are 1200 groves/nm with λb = 300
nm for the excitation and 1200 groves/nm with λb = 500 nm for the emission. Figure 25
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shows the working range of the monochromators in this configuration.

Figure 25: Schematic drawing representation of the working range of the different compon-
ents of the spectrometer, the region where all the working ranges overlap is the operational
range of the spectrometer. Taken from Horiba’s presentation of the instrument - 2011.

3.3 Diffraction orders of the monochromators

Calculations from Fourier optics give the diffraction pattern of a light beam after a grating.
The grating relation describes how each wavelength diffracts at different angles:

λem = mλex = d[sin(θi) ± sin(θm)]

where λem is the wavelength we look at after the diffraction, θi the incidence angle, θm the
diffraction angle related to the diffraction order m, and d is the grating spacing. Indeed, the
sinusoidal function being periodic the grating relation is satisfied for different couples {θm,m}
for each wavelength. This phenomenon causes artifacts in the PL spectra. Contribution
from the different orders appears on the spectra at the wavelengths λem but is actually the
expression of λex

m . Thus, for an excitation at λex = 300 nm, a peak at λem = 600 nm (second
order: m=2), at λem = 900 nm (third order: m=3), etc..., will appear with decreasing
intensity. To avoid the second and above-order peaks, filters can be used. However, no
suitable filters were found for the PL study in this thesis. Thus, the second-order peak of the
emission monochromator is a recurrent artifact on the PL spectra. Remark: In the literature,
m=1 is the zeroth order, but in this thesis, we have shifted the naming by one digit.
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3.4 PL experiments

During this thesis, three types of measurements were performed. Typical PL emission spectra
were mainly recorded. They work as follows: the sample is excited at a single wavelength se-
lected by the excitation monochromator, while the emission monochromator scans a range of
wavelengths. Photoluminescence excitation spectra (photoluminescence emission (PLE)) are
also interesting to see which absorption wavelength contributes the most to the emission at a
specific wavelength. This type of spectra consists of the inverse process of PL: while scanning
the excitation wavelengths, the photoluminescence is detected at only one wavelength. The
last type is a combination of both, forming a 3D map of the photoluminescence. Although the
shape of the PL spectrum is less accessible with the 3D map, it gives a good idea of the PL
intensity distribution and is useful to find the parameters optimizing the PL intensity. Seven
or fewer main parameters for each spectrum can be adjusted: the emission and excitation
ranges, the exit slit sizes of both monochromators, the increments, and the integration time.

In the first phase, the investigation of the influence of the parameters on the spectra and
then their optimization were necessary to ensure the reliability of the data. The tests showed
that an optimal pair of increment and slit had to be found. A too-large increment reduces
drastically the accuracy of the result while a too little increases the noise, and a large slit
averages the wavelengths as the slit works like a filter, that is a rectangular function with a
not infinitesimal width (see the section D in the appendix for examples).

For all the samples, the measurements were performed in the same conditions to allow com-
parisons (with only some exceptions for the long wavelength range of the rutile references
sample, which contains sharp peaks). Measurements were performed both at room temper-
ature (RT) and 7K, using the Xe lamp as the source and the PMT detector. The excitation
wavelength was set to λex = 300 nm (4.13 eV) to excite above the bandgap of both rutile and
anatase. The excitation and emission slits were chosen to be dex = 5 nm and dem = 2 nm
respectively, the second one to maximize the outgoing photon flux from the sample without
losing too much of the spatial resolution. The integration time was set to tint = 3 s. Finally,
the emission range was taken the widest according to the working range of the detector, and
the emission and excitation monochromators, usually λem = (315 − 900) nm. To avoid the
second-order peak at 600 nm, whose intensity was above the PMT damage threshold, the
most recent spectra were recorded in two parts: (315 − 590) nm and (610 − 590) nm.

As a starting point, the single crystal anatase and rutile TiO2 reference samples were studied
in order to later identify anatase and rutile features in the A and B PL spectra.

The PL signal, called S1, detected by the PMT was recorded in counts per second, CPS
(actually CPS/nm because of the aperture of the slits), or normalized by the intensity of the
source S1/R1 [CPS/µm] in the function of the emission wavelength. However, for comparison
purposes with other articles, the abscissa was converted to photon energy in eV. As photon
energy is inversely proportional to wavelengths, to ensure that the integral of the curve stays
consistent, an intensity conversion was also required: I(E) = I(λ)λ

2

hc where c is the speed of
light and h Plank constant. [71]

41



42



4 Data Analysis

In this section, the data analysis performed in Spectroscopic Ellipsometry and for the critical
points is presented.

4.1 Spectroscopic Ellipsometry

This chapter is based on the book Spectroscopic Ellipsometry for Photovoltaics Volume
1 by Fujiwara and Collins and on the CompleteEase® manual.

Ellipsometry is a powerful and complex technique as it requires a model-based analysis. On
one hand, its strength lies in the fact that the inner characteristics of the sample are access-
ible, such as its crystallinity, its structure, and the properties of the different materials and
layers that compose it. In particular, the dielectric functions can be extracted, which is not
possible to measure directly with any optical instrument. On another side, the large variab-
ilities of the analysis (parameters and different types of models) make the data processing
complicated by the necessity to find the relevant parameters and the right model for this
specific sample. It often requires to already know the sample before starting the analysis.
Additionally, the fact that the characterization relies on optical models is a main drawback
of ellipsometry, as models can introduce artifacts and always have deviations from reality. It
is why, usually complementary methods are used in order to corroborate and confront the
model. XRD is used to investigate the crystallinity, AFM for the roughness, and TEM or
scanning electron microscopy (SEM) to explore the structure of the sample (eg. its aniso-
tropy). Multiple sample analysis can also help improve the reliability of the model.

In the present thesis, the (ψ,∆) data is analyzed through a software called CompleteEase®.
The software permits to design of the structure of the sample by building all the layers that
composite it and adding the known information for each, such as the material, the thickness,
the anisotropy, n, and k if there are known, etc... For each layer, a suitable model for the
dielectric functions is used to help fit ψ and ∆ for the whole sample. Each model is selected
depending on the properties of the layer, for example, if the material is transparent in the
measured wavelengths range, then a Cauchy model will be more likely to be used, a contrario
if it is absorbing, then several different oscillators models are possible (later introduced in
the thesis), also depending on the type of material: insulator, metal, or semiconductor. In
some models where the bandgap is a parameter, Eg can be extracted. Common parameters
can also be fitted for all the layers, such as the roughness. Figure 26 summarizes the method
of analysis in a simplified way.
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Figure 26: Schematic description of (ψ,∆) data analysis process in ellipsometry. Taken
from [21].

Once the model is built, ψ and ∆ are fitted using regression analysis by allowing specific
parameters of the model to vary. The improvement and the quality of the fit are evaluated
through the mean square error (MSE). The MSE is proportional to the square of the model
values minus the experimental ones, and is calculated as follows:

MSE =

√√√√ 1

2N −M

N∑
i=1

[(
ψMod
i − ψExpi

σexpψ,i

)2 + (
∆Mod
i − ∆Exp

i

σexp∆,i

)2] (42)

where N is the number of (ψ,∆) couples, M is the number of variables (fit parameters) in the
model, and σ is the standard deviation for each data point. An ideal MSE would be around
1. However, depending on the condition of the measurement and the sample, which cannot
be ideal, is difficult to reach a perfect MSE with all the models, thus, in most of cases the
experimenter must decide when he or she judges the MSE is sufficient, usually MSE between
5 and 1 are accepted. If the MSE is judged too high, either previous improving parameters
can now be fixed and new ones fitted, or either another more appropriate model can be used.
When the MSE is considered satisfying, then the final dielectric function model or optical
constants can be extracted from the software and used for further analysis, such as critical
point analysis or calculation of the absorption coefficient.

As with any model, it is important to ensure the physical reality of the model or at least
the assumptions under which it can be applied. As the dielectric functions are complex, the
Kramer-Kronig relations (KK) formalism is needed to maintain the consistency between the
real and imaginary parts. In B-spline models, the dielectric functions can be calculated with
the KK criteria or not. In oscillator-based models, where the plausibility relies on classical
physics, the KK criteria are intrinsic to the model: the oscillator describes ε2 and ε1 is cal-
culated from the KK relations.
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There are a certain number of sample characteristics affecting the data and that must be
taken into account in the model. Ellipsometry is highly sensitive to the thickness of the
sample, with an accuracy of up to 0.1Å[72]. As a result, roughness on the sample becomes a
critical problem. Usually, roughness is fitted in the software by adding an effective medium,
made of 50% of the material surface layer and 50% of void or air. Roughness greater than
or equal to the thickness sensitivity will largely affect ∆, and thus the dielectric functions.
A study by James N. Hilfiker, Jianing Sun, and Nina Hong has highlighted that incorrectly
fitted roughness alters the absorption coefficient near the bandgap Fujiwara and Collins, by
overestimating it above Eg and adding an Urbach tail below Eg. Thus, the estimation of the
bandgap deeply depends on the roughness.

The typical setup of a spectroscopic ellipsometer is composed of a light source, polarization
generator, sample, polarization analyzer, and detector. For the VASE measurements analyzed
in this thesis, the angle of incidence θinc varies between 55◦and 75◦with a 5◦step. The
spectral range measured covers the NIR to the UV: (2.00 - 6.00) eV. Additionally, the sample
is rotated around the normal to its surface in the experimental frame. The crystal can
therefore be probed along different axes. This is particularly interesting to find the ordinary
and extraordinary axis of a material. In figure 27, the sample is depicted in the experimental
frame with the Euler angles θinc and ϕinc (i.e. azimuth), which have a 360◦rotation. By
setting ”assume all rotation angle” ON in the software, the model fits the data from all ϕinc
instead of one incident angle (Figure 29).

Figure 27: Schema of Euler angles in the experimental frame in Variable Angle Spectroscopic
Ellipsometry.

Thanks to these multiple angles data, new and complementary information is available
through the analysis, as the light will experience different optical paths, thus increasing
the sensitivity in determining unknown parameters. This is particularly interesting to find
the ordinary and extraordinary axis of a uniaxial material. However, this depends on the
orientation (cut) of the crystal. Depending on the cut of the crystal, the atom arrangement
at the surface, both axis, or just the ordinary axis can be investigated. In figure 28, if z//z’,
the sample surface plane is [001] and as the extraordinary axis (also called c-axis), is normal
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to the surface, only the ordinary axis is probed. In any other configuration, for example,
z//y’ or z//x’, ordinary and extraordinary axis are both measured, [010] and [100] planes
respectively. The orientation of the crystal in the experimental frame is provided by the
Euler angles denoted as ”Phi” (∈ [0, 2π]) and ”Theta” (∈ [0, π2 ]) in the software. In z//z’
case, ”Theta” will be set as 0◦. If z is parallel to the (Ox’y’)-plane, ”Theta” is set to 90◦.
However, to account for non-perfect alignment, ”Theta” is usually fitted in windows of ±5◦

around its nominal value. ”Phi” is always fitted when rotation angles are available in the
data set.

Figure 28: Schema of a) the different orientations of the crystal in the crystal frame
{0,x’,y’,z’} and b) the crystal frame relative to the experimental one.

4.1.1 TiO2 single crystals analysis procedure

As rutile and anatase TiO2 are anisotropic uniaxial crystals, for each of their axes (ordinary
and extraordinary) they have a set of dielectric functions ε1 and ε2. Therefore, to fully
characterize them two samples are needed: sample A oriented such that the extraordinary axis
is normal to the surface, so cut in the (001)-direction, in a way to get uniquely the ordinary
axis optical functions, and sample B oriented in a way that both axes lie in the surface of
the sample, for example, the (100), (010) or (110) directions. The analysis procedure applied
here was the following:

• Create a B-spline model for the ordinary axis with sample A data;

• Convert to anisotropy the model and create a B-spline uniaxial model with sample B
data;

• Parameterize layers of the ordinary axis and extraordinary axis separately and create
a General Oscillator model (Gen-Osc) with Tauc-Lorentz functions.
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B-spline model

In the first approach, a B-spline model is used to fit the data. A B-spline model consists
of a series of control points (also called nodes) equally spaced in photon energy (eV) in or-
der to fit the ψ and ∆ data. The model is interpolated between each control points with a
basis spline (i.e. a polynomial function). The polynomial functions are defined in a recursive
manner by the B-spline formula from Chenney and Kincaid ”Numerical Mathematics and
Computing”, Third Edition, Brooks/Cole Publishing Company, 1994. Each basis function
is weighted by its amplitude, which can be a fitting parameter, and affects only the local
slope near its node.[73] The summation of the polynomial functions gives the final B-spline
model. A Kramers-Kronig consistent B-spline model also exists, where ε1 is extracted from
ε2. However, the B-spline model does not ensure the physical meaning of the oscillators at
each node, unlike the General-Oscillator (Gen-Osc) model which will be discussed later.
The settings in CompleteEase® allow one to choose a ”Starting Material” from the liter-
ature or n and k as input to guide the model towards the expected optical functions. The
option ”Assume transparent region” allows forcing the splines to be zero below a certain
photon energy by assuming a bandgap. It can be useful when the experimenter knows that
the material is transparent in a specific energy range. However, since ellipsometry analysis
is also a way to extract a bandgap from k, it is recommended to not impose a bandgap at
its nominal value but 1 or 2 eV below to allow some flexibility to the fit. The option ”Use
default TieOff behavior” allows the model to acknowledge for absorbing regions outside the
measured spectral range.

Figure 29 displays a typical B-spline uniaxial model. When switching to the uniaxial model,
the data set must be changed to the sample B data (for example rutile (110) reference
sample). Ex is assigned as the ordinary axis, and its values correspond to the previous model
(the ordinary B-spline model first created), while Ez is for the extraordinary axis. At first,
only the dielectric functions for Ez are fitted, and those for Ex are also fitted. When assuming
the bandgap, to avoid the problem specified earlier, some roughness must be fitted at the
same time. The fit weight designated from which type of data the model is calculated, here
N,S,C designate the N,C,S coefficient from the isotropic Mueller matrix. The N,C,S fit weight
is used for sample A as the ellipsometer sees only the ordinary axis whose data are supposed
to be isotropic. However when the model is converted to anisotropy, the N,C,S fit weight can
be kept at the beginning but then must be changed for the complete Mueller matrix.
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Figure 29: Typical B-spline uniaxial model from CompleteEase®, Ex corresponds to the
ordinary axis (and to ordinary B-spline model firstly created) and Ez to the extraordinary
axis. In green is highlighted what is usually fitted in the model, while elements highlighted in
orange are for ensuring the physical plausibility (KK criteria and positive ε2), the fit weight
designated from which type of data the model is calculated, here N,S,C designate the N,C,S
coefficient from the isotropic Mueller matrix. In pink is the assumed bandgap to avoid an
Urbach tail below Eg.

Gen-Osc model

Once the B-spline model is satisfying, a general oscillator model (Gen-Osc) can be used to
retrieve some physical meaning from the shape of the dielectric function, especially ε2. Such
models consist of a collection of oscillator functions. Depending on the material, metal,
insulator, or semiconductor, specific oscillator functions are more appropriate. Figure 30
shows some of the models. For example, a Drude oscillator is suited to account for energy
absorption (typically in the IR) without optical transition: the electrons are already in the
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conduction band of a metal before light absorption (i.e. free electrons). For a region where
the sample is known to be transparent, a Cauchy or Sellmeier model is adapted to model the
normal dispersion, where the optical index inversely proportional to wavelengths is a good
approximation. However, in the absorbing region, a Lorentz, Tauc-Lorentz, or Cody-Lorentz
oscillator is necessary to represent anomalous dispersion.

Figure 30: Example of the dielectric function for the following dispersion models: the
Sellmeir model, the Tauc-Lorentz model and the Drude model. Taken from Ref.[21].

In practice, the ordinary and extraordinary dielectric functions are converted separately into
a Gen-Osc, where their imaginary part ε2 is first fitted, and then ε1. Each absorption peak
in ε2 corresponds to an oscillator in the Gen-Osc model. For the samples studied here,
Tauc-Lorentz oscillators are employed. They are well suited for semiconductors since their
asymmetric shape fits properly the bandgap by setting the absorption to zero below Eg. If
more than one oscillator are needed, their bandgaps are set to a common Eg as illustrated
in figure 31. Then, ε1 is fitted but only by adjusting parameters to account for absorption
outside the measured spectral range. These parameter are: ε∞ (”Einf”), ε1(∞) and ε1(0)
(”IR pole Amp.”). ε∞ is just a constant background for ε1, while ε1(∞) adds a tail when
E → ∞ whose amplitude is governed by the parameter ”UV pole Amp.” and energy by ”UV
pole En.”. A non-zero ”UV pole Amp.” pulls ε1 up. The closer is the ”UV pole En.” to the
limit of the measured range, the greater is the tilt of the tail. ε1(0) for its part acts as a
Drude term by pulling ε1 down when E → 0. Those parameters are important to maintain
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the KK consistency as the integrals involved in the relationship are over the whole spectrum.

Figure 31: Typical B-spline uniaxial model from CompleteEase®.

Common Gen-Osc dielectric functions are detailed in the next section: Lorentz, Tauc-Lorentz
or Cody-Lorentz oscillators.

4.1.2 Oscillator models for the dielectric functions

Absorption is depicted by a resonance in ε2. As in classical mechanics, oscillators are used
to describe such response to a system, the word was borrowed and applied to absorption
phenomena. In practice, an oscillator describes the shape of a resonance in ε2 and ε1 is
deduced thanks to the Kramers-Kronig relations. Generally, optical transitions occur from
UV to NIR, thus the following dispersion relations concerns this range. As said earlier,
each material has its own appropriate dispersion law. The Tauc-Lorentz and Cody-Lorentz
oscillators are primarily used for semiconductors, where they model well the region near Eg.
The Gaussian oscillators are employed for organic material to describe molecular bonding.
Critical Point Parabolic Band (CPPB) models are used for finding critical points (i.e. CPs)
in semiconductors.
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Lorentz Model

The Lorentz model draws an analogy between the dynamic of a mass on a spring in classical
mechanics and the movements of an electron cloud around its nucleus due to the absorption
of a photon. The spring corresponds to the electrostatic forces maintaining the electron cloud
together with the nucleus. The absorption of photons induces an oscillation of the electron
cloud from its equilibrium position. The emission of a photon can be seen as a dissipative
force corresponding to friction in the mechanical model.
The general expression of the Lorentz dielectric function is the following:

ε(E) = ε1(E) + iε2(E) = ε1(∞) +
AΓE0

E2
0 − E2 + iΓE

(43)

where A is the oscillation amplitude, Γ the broadening, and E0 the central energy (i.e. the
maximum of absorption). Figure 32 shows the shape of the oscillator.

Figure 32: Graph of the dielectric functions where ε2 is modeled by a Lorentz oscillator
and a Drude model at low energies. Taken from Ref.[21].

The Lorentz model is not well suited for semiconductors at energies around the band gap,
because of its symmetric line-shape. To remove the unphysical Urbach tail below Eg induced
by the symmetry, two models were developed: the Tauc-Lorentz model by Jellison and Modine
and the Cody-Lorentz model by Ferlauto et al. [74, 75]

Tauc-Lorentz Model

The Tauc-Lorentz model derives from the Lorentz model and was created to model the dis-
persion equation of a semiconductor near the bandgap. The imaginary part of the Lorentzian
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oscillator model is multiplied by a Tauc factor (E−Eg)2 to break the symmetry of the Lorent-
zian shape, such that the absorption onset is sharper. Below Eg the Tauc-Lorentz is defined
as zero as represented in figure 33. Above Eg, the model is defined as follows:

ε2(E) =
AC(E − Eg)

2

[(E − E0)2 + C2E2]E
(44)

where A is the strength of the absorption amplitude, C is the broadening, and E0 is the
energy at the resonance.

Figure 33: Graph of the dielectric functions where ε2 is modeled by a Tauc-Lorentz oscil-
lator. Taken from Ref.[21].

Cody-Lorentz model

Like the Tauc-Lorentz model, the goal of the Cody-Lorentz oscillator is to model the ab-
sorption of a semiconductor. Nevertheless, the trend of the absorption onset differs from

the Tauc-Lorentz model: instead of being proportional to
(E−Eg)2

E2 , ε2 is only proportional to
(E − Eg)

2 as expressed in Eq.(46). Then, a small Urbach tail below Eg is included in this
model:

ε2(E) =
E1

E
exp(

E − Et
Eu

)for0 < E ≤ Et (45)

ε2(E) =
(E − Eg)

2

(E − Eg)2 + E2
p

AEE0Γ

(E2 − E2
0)2 + Γ2E2

forE > Et (46)

where A is the strength of the absorption amplitude, Γ the broadening, E0 the resonant
energy and Eu the Urbach energy. The behavior of the Cody-Lorentz model at the bandgap
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is compared to the Tauc-Lorentz behavior in figure 34. Ep is a parameter that can be adjusted
by the experimenter to specify when the ε2 switches from the Cody-Lorentz to the Lorentz
model, which occurs at Eg + Ep. Ep tells when the Urbach tail ends and the band-to-band
transition starts.

Figure 34: Comparison of the dielectric functions when ε2 is modeled with the Cody-Lorentz
model and the Tauc-Lorentz model. Taken from Ref.[21].

Critical Points Parabola Band models (CPPB)

The critical point parabola band model is a built-in model in CompleteEase®. It was created
to fit derivative or modulation spectra and to locate critical points in the dielectric functions
using quantum theory applied to inter-band transition. The dielectric functions from the B-
spline model can be fitted using the expression in Eq.(38), which derives from the quantum
calculations presented in section 2.3.1:

ε(ω) = C −Aeiϕ(ℏω − Eg + iγ)n (47)

The exponent n describes the dimensionality of the critical point: 1D (n = −1
2), 2D (n = 0),

3D (n = 1
2), or 0D for discrete excitons (n = −1). As this model can give a nonphysical shape,

by allowing negative ε2 or by adding an Urbach tail under the bandgap, it is only suitable
for modeling the dielectric functions near the critical points or for fitting their derivative.

4.2 Critical points analysis

In this section, an attempt to clarify the interpretation of the critical points (CP) is first
presented. Then, the fitting procedure of the dielectric functions with a CP line-shape is
addressed.

4.2.1 Interpretation of the dimensionality of the CP

The interpretation of dimensionality of the CPs is unclear in the literature, and various ana-
lyses have been performed. In most of the papers, no direct interpretation is made of the
dimensionality, and the dielectric functions are fitted with the best-suited line-shape for the
data. Quite often, this results in using a excitonic lines-shape (n = −1). [26, 76, 21] The use
of 2D CPs appears also regularly. [26, 76, 77] In some papers, the use of 2D CPs is correlated
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with polycrystalline samples. [78, 79] Some other papers mention fractional dimensionality
(0 <= n <= 3) for anisotropic solids. However, the anisotropy they refer to seems to be
related to the structure of the sample, such as chain-like structures (polymers), layered struc-
tures, or dot structures, and not to the optical anisotropy. [80, 81, 82]

Thus, the interpretation is complex. Fitting the dimensionality appears intrinsically related
to fitting ϕ. According to Toyozawa et al. work, the optical spectra of a solid contains localized
excitation (such as excitonic excitation) and band characteristics. If the band character dom-
inates, the line-shape is given by the expression Eq.(38) in section 2.3.2 with n = −1/2, 0, 1/2
(1D,2D,3D), and a varying ϕ can account for the excitonic effects by allowing a mixture of
CPs. In this case, the excitonic effect is weak. On the opposite, when localized excitations
interacting with a band or a continuum of inter-band transitions predominate in the spectra,
the expression Eq.(38) with n = −1 best fits the dielectric functions. In this case, the Lorent-
zian line shape is described accurately by a Fano-Breit-Wigner profile [84] and ϕ embodies
the strength of the interaction. If ϕ = 0, there is no coupling between the excitons and the
continuum [76] In both cases, ϕ is a free parameter.

The description of the many-body effects by allowing ϕ to take non-integer multiples of π
2

(to account for a mix of CPs) has no theoretical basis. As a result, several attempts were
made to find an analytical expression for the critical points introducing an excitonic effect
when the band character is dominant. [85, 76] One of these attempts is to introduce a
Koster-Slater contact interaction potential: V (r) = −δ(r)g, g > 0, to screen the Coulomb
interaction between the electron and hole in the exciton. The potential is non-zero only
when the electron and hole are in the same unit cell. The Koster-Slater model is usually
used to describe Frenkel excitons. However, in this case, the Koster-Slater model is used to
approximate the effect of the Wannier-Mott exciton on the optical spectra. This leads to the
modification of the one-electron dielectric function ε̃:

ε(ω) =
ε̃(ω) − 1

1 − g[ε̃(ω) − 1]
+ 1 (48)

where g is linked to the depth of the potential well. When g tends towards zero, the dielectric
function converges towards Eq.(38). Lautenschlager et al. tried to used the second derivative
of Eq.(48) with ϕ = 0 to fit g. Unfortunately, ε̃ cannot be determined in absolute from
the experimental data, and their fit did not converge. They proceed by iterations and each
time g tended towards a lower value. They conclude that Eq.(48) is not suitable when the
one-electron picture presents a large phase shift (ϕ > 90◦).

Other methods exist to include the many-particle effect in the CP analysis. One of them
is the effective mass approximation (EMA), in which the exciton Coulomb potential and its
screening by the dielectric constant can be incorporated. However, this technique works only
if one of the principal reduced masses is significantly bigger than the other two. A second
approach is to characterize the electron-hole interaction by passing through the local-orbital
treatment of the two-particle Green’s function. Unfortunately, despite the fact that this
method sounds promising, no analytical formula appropriate for the line-shape of the CPs
was found. [76]

In a paper by Lautenschlager et al.[26], they noticed that the light III-V or II-VI compounds,
as well as Si samples, were best fitted by excitonic line-shapes (n = 1), while 2D line shapes
are best suited to heavier III-V or II-VI compounds and Ge samples. They observed that
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within a group of compounds, the higher the dielectric constant was (i.e. ε1(∞)), the lesser
the line-shape had a localized character, because of the increasing screening of the Coulomb
interaction in the exciton. From the following formula, the binding energy of the exciton is
inversely proportional to the dielectric constant:

Eex =
2µ

ε1(∞)2
(49)

where µ is the effective mass. It has been measured that the exciton binding energy in rutile
is about 4 meV and in anatase is about 180/275 meV. [86, 87] According to this binding
energy, rutile would have a higher dielectric constant than anatase, and thus, a stronger loc-
alized character. In a previous paper, Lautenschlager et al. studied the effect of temperature
on the critical point dimensionality. They remarked that below RT, the localized excitation
interacting with a continuum was the dominant origin of the line-shape, they used a Fano
profile. While above ambient temperature, the 2D Van-Hove singularities perturbed by the
electron-hole attractive interaction took over the line-shape. They also demonstrate that
the broadening of the line-shape is temperature dependant. At higher temperatures, the
electron-phonon scattering events reduce the lifetime of the electronic states and increase the
broadening.

The challenge here is to understand the significance of the dimensionality of the CPs to
be able to fit it. The nature of the CPs is related to their positions and symmetry in the
Brillouin zone and their corresponding properties. Usually, the center of the Brillouin zone is
called Γ, and the other points depend on the geometry of the primitive cell of the material.
These points are called the high symmetry points, and from their symmetry derives the
electronic properties of the material. The directions between these points are denoted with
Greek letters. The primitive cell of anatase is body-centered tetragonal (BCT), its irreducible
high-symmetry points are Z-Γ-X-P-N-Γ. If its conventional tetragonal cell is considered, the
high-symmetry points are Γ-R-Z-M-A-Z.[88]. For rutile, its primitive cell is the same as its
conventional cell and is tetragonal (TET), its path is Γ-X-M-Γ-Z-R-A-Z—X-R—M-A (Figure
35). The band structure is built by plotting a section of the band in a specific direction of
the Brillouin zone, allowing thus to plot a 4D diagram in 2D.
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Figure 35: Primitive cells of rutile and anatase TiO2 and their respective Brillouin zone:
tetragonal, and body-centered tetragonal. Adapted from Ref.[89] and Ref.[90].

In the following, three different interpretations of the dimensionality are developed:

One interpretation of the dimensionality is related to the position of the high symmetry point
corresponding to the CP. In this case, the 1D critical points could correspond to transition
along one direction in the band structure, so to Latin letters. The 2D CPs could be associ-
ated with crosspoints of two directions in the band structure, so to Greek letters, except Γ.
Finally, the 3D critical points would be the crosspoints of tree directions, such as Γ. However,
this interpretation derives from the path chosen for the band structure representation, which
is applied according to a consensus but in theory could be different. So, this interpretation
does not seem really physical and plausible. For example, for rutile, all the high symmetry
points are at the crossing tree directions, so they would all be 3D critical points, the points
in between would be 1D CPs, and no 2D CPs would be involved (as illustrated in figure 35).

A second interpretation is related to the effective mass. The effective mass describes how
the electron moves in the crystal, is positive for an electron and negative for a hole (i.e., the
electron acts as a positive charge particle in response to an electric field). The curvature of

the bands d2Ec
dk2

in (Γ, kx, ky, kz) space is inversely proportional to the effective mass in this
direction of the space. If the curve is almost flat, the effective mass is huge, and it is difficult
for the electron to move from its site. On the opposite, if the curvature is important, the
effective mass is small, and the electron can easily move.
In this case, the dimensionality is defined by the number of non-infinite effective mass, so of
the non-flat band structure. A 0D CP would correspond to a localized excitation because
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in three directions the effective mass is infinitely large such that the electron can not move
from its position in any direction. A 1D CP would then be a point where two of the effect-
ive masses would be infinite, then the electron could move only in one direction in k-space.
A 2D CP would correspond to the case with only one infinite effective mass, so thus with
two allowed directions for the electron. Finally, the 3D critical point would be when in all
directions the effective mass is non-infinite, thus, the electron can move all around. This in-
terpretation derives from the paper of Loughin et al., and is supported by the number of type
CP per dimensionality, which is descending with it. Originally, the type of CP is associated
with a factor ir−d in the JDOS (see Eq.(8) and (9) in [91]), where d is the dimensionality, r
corresponds to the type and take values from 0, ..., d (not to d− 1 as written in [91]). Later,
the factor was replaced by eϕ, probably to have a parameter to vary continuously to account
for a mix of CPs. Thus, for a 3D critical point, four different shapes are possible, for a 2D
CP three shapes, and so on. Thus, the number of directions in which the conduction band
energy is largely flat can be used to categorize the dimensionality of the critical point, which
reduces the system dimensionality. Additionally, the type of critical point is indicated by the
relative curvature of the conduction band energy surface in orthogonal directions (kx, ky, kz).

This last interpretation seems to be the most relevant hypothesis and logic from a physical
point of view and was adopted in the following analysis.

4.2.2 Fit of Critical Point line-shape

The critical point analysis is performed with a Matlab code written by Benjamin Roaldsson
Hope, a previous master’s student of the Solar Cell Physics group. The code is mainly
divided into parts: the calculation of the second derivative of ε = ε1 + iε2 and the fit of the
derivative with the CP line-shapes (i.e. Eq.(53)). First, the data are interpolated over 1000
points equally spaced and smoothed with a Gaussian filter. Then, the second derivative is
calculated according to the following definition:

dε

dE
=

[ε(E + h) − ε(E)] − [ε(E) − ε(E − h)]

h2
(50)

where h is infinitesimally small. In practice, h was taken to be the distance between two points
after the interpolation. Finally, the second derivative is fitted with the CP line-shapes. The
number of oscillations in the second derivative will give an estimate of the minimum number
of CP involved in absorption spectra. For N CPs, each one is fitted with Eq.(38). The result
of the fit corresponds to the sum of each the line-shape for all CPs, as follow:

εfit(E) =

N∑
i=1

εi(E, p⃗i) (51)

where the vector p⃗i contains the parameters of the fit for one CP:

p⃗i = (Ai,Γi, E0,i, ϕini) (52)

and with:

εi(E, p⃗i) =

{
C −Aie

jϕi(E − E0,i + iΓi)
n if n ̸= 0

C −Aie
jϕi ln (E − E0,i + iΓi) if n = 0

(53)

where j is the complex number.

Before fitting the CPs, one must initialize them. This consists in fixing the dimensionality of
the CP by fixing n to one of these values: −1,−1

2 , 0,
1
2 , and setting an initial value as well as
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a lower and upper bound to the other parameters. The bounds used for the initialization in
the following analysis are:

Table 3: Table summarizing the upper and lower bounds for certain parameters of the fit.

Parameter Bounds

A [0,10] or [0,15]
ϕ [0,360]◦

Γ [0.01,0.5] or [0.01,1]

The bounds for E0,i were chosen in most of the cases in a range of ±100 meV around E0,i,
while E0,i were initialized with the positions of the local minimum in the second derivative
curve.
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5 Results and Discussion

This section contains first the ellipsometry analysis of anatase and rutile single crystals, then
an initial critical point line-shape analysis for the ordinary axis of rutile, and finally the PL
spectroscopy analysis of the singles crystals and of three undoped TiO2 thin films grown on
STO.

5.1 Ellipsometry analysis results

In this section, the dielectric functions of rutile and anatase are presented. Two types of
optical models were built for each sample, an anisotropic B-spline model and then a general
oscillator (Gen-Osc) model. Finally, the bandgap is determined through different techniques
and compared. From the Gen-Osc models, the bandgaps of the ordinary and extraordinary
axis are determined to be 2.944 eV and 3.130 eV respectively for rutile, and 3.246 eV and
3.630 eV for anatase.

5.1.1 Rutile dielectric functions

First, the anisotropic B-spline model is presented, and then the general oscillator model.

Anisotropic B-spline model

First, a B-spline model was built with the data of rutile (001) sample to model the ordinary
dielectric function of rutile. Rutile (001) is oriented in a way that the extraordinary axis is
normal to the sample surface. Thus, mainly the ordinary axis of the sample is probed during
the VASE measurements, allowing the extraction of the ordinary axis optical properties
separately from that of the extraordinary axis. The model is presented in section A.1 in the
appendix. Then, this model is converted into an anisotropic B-spline model to fit jointly the
ordinary and extraordinary dielectric functions. The anisotropic B-spline model is based on
rutile (110) data. For this sample, both axes lie in the plane of the surface. The data are
measured at 65◦ incident angle, while the sample is rotated from 0◦ to 360◦. This model
is decomposed into two B-spline models, each for one optical axis. The dielectric functions
from Tiwald and Schubert were used as starting material.[92]

To take into account the off-diagonal elements of the anisotropic tensor in the analysis, the
model is calculated from the full Mueller matrix data, and not only the N,C,S elements. Thus,
the MSE reduced from 5.48 to 3.85. Figure 36 shows the ordinary and extraordinary dielectric
function of rutile. For both axes, the absorption starts around 3.0 eV, the bandgap of
rutile. The imaginary part of the extraordinary dielectric functions, containing the absorption
behavior of rutile, shows one broad and intense peak. In the imaginary part of the ordinary
dielectric functions, three peaks are distinguishable and participate in the absorption, which
is less intense than for the extraordinary axis.
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Figure 36: Graph of the B-spline model of the dielectric functions of rutile (MSE = 3.85).

The B-spline model calculated with the N,C,S elements, the B-spline model calculated with
the full Muller matrix, and the Schubert dielectric functions are compared in figure 37. The
three models have almost identical results for the ordinary axis. For the extraordinary axis,
deviations are observed: the B-spline model (N,C,S) seems to overestimate the amplitude of
the absorption, while the Schubert model seems to underestimate it a little. The ordinary
and extraordinary ε2 appear to have a similar absorption onset around 3.00 eV, coherent
with the bandgap of rutile. As the ordinary axis can be measured almost separately from
the extraordinary, by choosing an appropriate crystal orientation (e.g. rutile (001)), it seems
coherent that its dielectric functions are more accurately modeled.
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Figure 37: Comparison of dielectric functions models of rutile. The solid line corresponds
to the B-spline model calculated with the N,C,S elements (MSE = 5.48), the circle line to the
B-spline model calculated with the full Mueller matrix (MM) (MSE = 3.85), and the dashed
line to Schubert model.[92]

The VASE technique allows measurements of ψ and ∆ at different azimuth angles. Con-
sequently, it is possible by aligning the wave vector of the incoming electromagnetic field
with the extraordinary axis to maximize the interaction with the electric dipoles and record
mainly the extraordinary optical properties. When the position of the extraordinary axis is
unknown, the pseudo dielectric functions, which are functions of the azimuth angle, can be
compared to the B-spline model of each axis to identify the ordinary and extraordinary axis
orientations in the crystal. In section A.2 in the appendix, the ordinary and extraordinary
orientation in the crystal are determined as a function of the azimuth angles.

Gen-Osc model

The purpose of the B-spline model is only to retrieve the overall shape of the dielectric func-
tions from the data by using parabolic functions. However, this model has no physical origin
and can not be interpreted in terms of oscillators. Thus, the B-spline model (MSE = 3.85)
was converted into a general oscillator model to give a physical meaning to the dielectric
function shape. In the classical picture, the absorption of an electromagnetic wave by a ma-
terial induces an oscillating movement of its electric dipoles, whose frequency depends on the
wavelengths of the incoming wave. The center frequency of the oscillators corresponds to the
resonance frequency, at which the absorption is maximum.
Each absorption peak is modeled by a Tauc-Lorentz function. This function allows to model
the behavior of the semiconductor below the bandgap. The number of oscillators required is
based on the shape of the ε2 function. The Gen-Osc model has an MSE of 3.8, similar to the
anisotropic B-spline model with the Mueller matrix.
Figure 38 shows the general oscillator model for each axis. The ordinary axis is well-fitted
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with three Tauc-Lorentz oscillators, and their bandgaps are coupled. For the extraordinary
axis, the intense absorption peak is well-fitted with only one Tauc-Lorentz oscillator.

Figure 38: Graph of the General-Oscillator model (ε2) for a) rutile ordinary axis and b)
rutile extraordinary axis using Tauc-Lorentz oscillators (MSE = 3.8).

Table 4 presents the parameters of the Tauc-Lorentz for the Gen-Osc model for the ordinary
and extraordinary axis of rutile.
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Table 4: Parameters of the Gen-Osc model of rutile for the extraordinary and ordinary axis.

Type/Name Amplitude Broadening Eo (eV) Eg (eV)

Ordinary axis

Tauc-Lorentz #1 88.47 0.50 3.97 2.98
Tauc-Lorentz #2 32.48 0.97 4.47 coupled
Tauc-Lorentz #3 34.59 1.54 5.45 coupled

Extraordinary axis

Tauc-Lorentz 319.33 0.90 4.02 3.14

The three oscillators for the ordinary axis show that at least three optical transitions are
involved in the absorption of rutile in this spectral range. The large broadening of the second
and third Tauc-Lorentz oscillators, of 0.97 and 1.54 respectively, suggests that probably more
optical transitions are contributing to the absorption. The unique Tauc-Lorentz of the ex-
traordinary axis is a sign of intense absorption, where one transition is likely predominating.
However, its large broadening suggests, as for the ordinary axis, that other transitions less
intense are involved in the absorption process. More oscillators could have been used to fit
the data, but without more information about the energy of the optical transitions, it can
not be done in a relevant way. Later, the parameters of the Gen-Osc model can be used for
the critical point analysis to initialize the parameters of the double derivative of ε2.

The models give a bandgap of 2.98 eV for the ordinary axis and of 3.24 eV for the extraordin-
ary axis. The ordinary bandgap coincides with the bandgap of rutile, 3.00 eV. Thus, during
experimentation, such as PL, the measured bandgap is likely to be the ordinary bandgap.

Bandgap determination

Usually, direct bandgap materials have a sharper transition from the transparent region to
the absorbing region, making it easier to determine the bandgap. For an indirect band, as
the optical transition needs to be phonon-assisted, a smoother transition is expected. The
dielectric function of rutile shows a sharp transition. Even if the nature of rutile bandgap is
still discussed, this observation reinforces the idea of a direct bandgap.

In the following, a comparative study of the determination of the optical bandgap of rutile
is presented. Two categories of methods are used, the first one based on linear fits of the
absorption coefficient or of the extinction coefficient (Tauc plot), and the second one based
on the dispersion relation used to fit the imaginary part of the dielectric function (ε2) (i.e.
the Tauc-Lorentz model). In addition, the values are compared to visual estimation of Eg
directly from ε2 as the curve presents a sharp elbow, and is discussed regarding the accuracy
limit of the ellipsometry measurement (i.e. k < 0.001 or α < 3 × 102cm−1 at 500 nm).[21]

The Tauc plot is calculated from the absorption coefficient. The absorption coefficient for
the extraordinary and ordinary axis of rutile are presented in figure 39.
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Figure 39: Absorption coefficient of rutile extracted from the B-spline model (MSE = 3.85).

The Tauc plot consist of fitting the graph of (αE)1/γ using the following linear regression:

(αE)1/γ = A(E − Eg) (54)

where A is a constant. Depending on the type of bandgap, the exponent γ changes from 1
2

for a direct bandgap to 2 for an indirect bandgap.[93]

The following figure 40 shows different linear regressions for the determination of the bandgap
of rutile from the dielectric functions of the anisotropic B-spline model. The uncertainty is
calculated by taking three times the standard deviation for the values of the slope and the
intersect. For the extinction coefficient, the linear regression is calculated for a range of values
between 20% and 50% of the absorption maximum as in the paper by Di et al. [94] For the
Tauc plot, two tangents are measured as the curves present two sections with different slopes.
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Figure 40: Determination of the bandgap through different methods: 1) via linearly fit of
k, 2) via Tauc plot. a) and b) show respectively the ordinary and extraordinary axis.

However, the use of the Tauc plot method must be nuanced. Firstly, it was originally used
for amorphous semiconductors, which have a smoother/lower bandgap transition than crys-
talline semiconductors.[93] Amorphous semiconductors present localized states near the band
edges due to a lack of long-range order.[95] Secondly, the method is based on the assumption
that the density of states of the conduction band and valence band behave as E2 above the
bandgap, and that ℏω√ε2 ∼ E2[96]. The Eq.(54) was inspired by the work of Jan Tauc
on amorphous germanium, to be extended and adapted to different materials and types of
transition by selecting γ accordingly.

A second method is to use the accuracy limit of the SE measurement. Indeed, the ellipsometer
is not sensitive to absorption below 3×102cm−1 (sometimes 5×102cm−1 or 6×102cm−1 values
are also mentioned in the literature).[21] Figure 41 shows the absorption coefficient calculated
with the dielectric functions from the anisotropic model (MSE = 3.85) and isotropic B-spline
model (MSE = 1.10) for rutile (110) and (001) respectively.
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Figure 41: Graph of the absorption coefficient calculated from the anisotropic (MSE =
3.85) and isotropic B-spline model (MSE = 1.10) for rutile (110) and (001) respectively. The
gray line shows the accuracy limit of the ellipsometer.

The transparent region of rutile is well modeled with the isotropic B-spline model from rutile
(001) data, while, the anisotropic B-spline model represents poorly the transparent region of
the semiconductor. Even if the absorption shows a sharp increase around the bandgap, the
model fails to fit the data and seems to add an Urbach tail. As in rutile (110), both axes are
measured and impossible to isolate completely. The fit induces a non-zero absorption below
3.00 eV. As a last estimation, the sharp transition at the absorption onset permits to notice
the bandgap by a visual approach using the slope break.

The bandgap values obtained from the different methods are resumed in the following table:
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Table 5: Comparison table of the bandgap of rutile determined from the anisotropic B-spline
model (MSE = 3.85) and the isotropic B-spline model (MSE = 1.10) using the following
methods: linear regression of k, Tauc plot, extraction of Eg from dielectric functions model
with Tauc-Lorentz dispersion low, accuracy limit of the absorption coefficient, and visual
estimation (i.e. slope break of α).

Anisotropic B-spline model Isotropic B-spline model

Method Ordinary axis Extraordinary axis Ordinary axis

Linear regression of k 3.53 ± 0.50 eV 3.49 ± 0.19 eV
Tauc plot (tangent 1) 2.97 ± 0.07 eV 3.05 ± 0.18 eV
Tauc plot (tangent 2) 3.40 ± 0.15 eV 3.31 ± 0.03 eV
Tauc-Lorentz model 2.944 ± 0.005 eV 3.130 ± 0.005 eV 3.046 ± 0.004 eV
Accuracy limit α < 3 × 102cm−1 not possible not possible 3.08 ± 0.05 eV
α slope break 3.02 ± 0.05 eV 3.03 ± 0.05 eV 3.01 ± 0.05 eV

The linear regression k and the Tauc plot second tangent give higher estimations of the
bandgap, while the first tangent and the bandgap from the Tauc-Lorenz model are closer
to the experimental bandgap. For the method with the SE accuracy limit, no value can
be determined for the anisotropic B-spline model, as the absorption coefficient presents an
Urbach tail that exceeds the accuracy limit. Nevertheless, the isotropic B-spline model allows
to extract a value for the bandgap at the point where the curve meets the accuracy limit
(i.e. α = 3 × 102cm−1 ). Finally, the visual estimation using the slope break agrees with the
globally admitted bandgap of rutile (3.00 eV). Both the Tauc-Lorentz method and the visual
estimation give slightly higher bandgaps for the extraordinary axis of rutile.

The first two methods use linear regressions and thus depend highly on the energy range
selected for the analysis. As depicted in figure 40 and table 5, two sets of data give hardly
different values for the bandgap depending on the part of the curve chosen to calculate the
tangents. Thus, although the Tauc plot is widely used in literature to determine the bandgap
it is not a rigorous method and it is not possible to rely safely on the values it gives.

An exact determination of the bandgap is impossible by using the Tauc plot technique.
In some cases, the accuracy limit of the absorption coefficient (respectively the extinction
coefficient k) can be useful to estimate Eg, however, this estimation depends on the goodness
of the model and on the measurements. In this present case, even if the MSE of the anisotropic
B-spline model is quite low, the model is not perfect below the bandgap, and the absorption
coefficient stays above the accuracy limit. There is no unanimous method to determine the
bandgap from SE data. Thus, in the present SE analysis, the Tauc-Lorentz bandgap is used
as an estimation of the bandgap.
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5.1.2 Anatase dielectric functions models

Anisotropic uniaxial B-spline model

As for rutile samples, a B-spline model was built with the data of anatase (001) sample to
model the ordinary dielectric function of rutile. The model is presented in section B.1 in the
appendix. Then, the B-spline model for the ordinary axis is converted into an anisotropic
uniaxial model in order to fit as well the extraordinary axis. This model is based on the
anatase (110) sample which has both axes in its surface plane.

The dielectric functions of anatase (110) modeled by the anisotropic uniaxial model are de-
picted in figure 42, the model presents an MSE of 5.97.

Figure 42: Dielectric function of anatase (110) fitted with an anisotropic uniaxial B-spline
model (MSE = 5.97).

The sample presents a transparent region from 1.00 eV to ∼ 3.20 eV, and an absorbing region
above 3.20 eV. The ordinary axis shows principally two contributions to the absorption. The
first contribution is centered at ∼ 3.92 eV, and the second peak is at ∼ 4.69 eV. As for rutile,
the extraordinary axis of anatase has the highest absorption than the ordinary one. The main
peak is located at ∼ 4.25 eV, and a second peak is visible ∼ 4.90 eV. The broadening of the
peaks suggests an absorption including multiple critical points. The absorption onset of the
extraordinary axis appears to be ∼ 0.30 eV above the ordinary axis one. This difference can
be explained by the difference in lattice constant between the axes, the extraordinary lattice
constant c is about 40% of the ordinary lattice constant a (c = 3.784 Åand a = 9.515 Å[13]).
Moreover, rutile shows a smaller difference in energy between the absorption onset of its
ordinary and extraordinary axis, and has closer ordinary and extraordinary lattice constants;
c = 64% a (c = 2.9587 Åand a = 4.5936 Å[13]). Thus, the higher asymmetry of the first
Brillouin zone (i.e. the unit cell) in anatase compared to rutile corroborates the observation of
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a larger bandgap energy difference between the ordinary and extraordinary axis for anatase.

Section B.2 in the appendix presents the determination of the orientation of the extraordinary
and ordinary axis of the anatase as a function of the azimuth angles.

Gen-Osc models for anatase

The dielectric functions extracted from the anisotropic B-spline model and from the isotropic
B-spline model (see section B.1 in the appendix) were converted into two general oscillator
models for anatase.

Figures 43 and 44 show the Gen-Osc model for the ordinary and extraordinary dielectric
function of anatase. In Figure 43, the Gen-Osc converted from the anisotropic B-spline model
and from the isotropic B-spline model are plotted for comparison purposes. The thin line
corresponds to the anisotropic Gen-Osc model, while the dashed lines were extracted from
the isotropic Gen-Osc model. Table 6 and 8 resumes the parameters of the Tauc-Lorentz
oscillators used in the models.

Figure 43: Comparison of the Gen-Osc models calculated from the isotropic B-spline model
and the anisotropic uniaxial model of the dielectric functions for anatase ordinary axis of
anatase. The thin line shows the Tauc-Lorentz oscillators of the anisotropic Gen-Osc, while
the dashed line corresponds to the isotropic Gen-Osc model. The green curves are the sum
of the oscillators in each model and represent the imaginary part of the dielectric function.
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Figure 44: Gen-Osc model of the dielectric functions of the extraordinary axis of anatase.

Table 6: Table of the parameters of the Tauc-Lorentz oscillators for the ordinary axis of
anatase, extracted from the isotropic (MSE = 2.23) and anisotropic Gen-Osc model (MSE =
5.91).

Type/Name Amplitude Broadening Eo (eV) Eg (eV)
UV pole
(Amp. –
En. (eV))

ε∞

Ordinary axis – Isotropic Gen-Osc model

Tauc-Lorentz #1 114.628 0.423 3.841 3.259
Tauc-Lorentz #2 89.858 0.860 4.637 coupled 15.260 – 6.708 1.870
Tauc-Lorentz #3 33.4119 1.273 6.043 coupled

Ordinary axis – Anisotropic Gen-Osc model

Tauc-Lorentz #1 102.729 0.440 3.852 3.246
Tauc-Lorentz #2 92.243 0.869 4.601 coupled 120.796 – 9.041 0.880
Tauc-Lorentz #3 27.243 1.233 5.886 coupled

Table 7: Table of the Tauc-Lorentz oscillators for the extraordinary axis of anatase extracted
from the anisotropic Gen-Osc model (MSE = 5.91).

Type/Name Amplitude Broadening Eo (eV) Eg (eV)
UV pole
(Amp. –
En. (eV))

ε∞

Extraordinary axis - Anisotropic Gen-Osc model

Tauc-Lorentz #1 336.800 0.485 4.162 3.630 167.706 – 0.880
Tauc-Lorentz #2 41.230 0.886 4.990 coupled 9.031
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In figure 43, the absorption along the ordinary axis is modeled with three Tauc-Lorentz oscil-
lators. Small deviations are visible between the isotropic Gen-Osc model and the anisotropic
Gen-Osc model, especially for the energy position of the Tauc-Lorentz #2 (orange). In table
6, the parameters of the Tauc-Lorentz function are listed. The Tauc-Lorentz #1 exhibits a
shift of 0.01 eV between the isotropic and anisotropic models, while the Tauc-Lorentz #2
shows a shift of ∼ 0.04 eV and the Tauc-Lorentz #3 a shift of 0.16 eV.
The bandgap varies also a little, from 3.246 eV for the anisotropic Gen-Osc to 3.259 eV for the
isotropic Gen-Osc model. Both fitted bandgap are slightly above the experimental bandgap
of anatase.

The extraordinary axis Gen-Osc model is composed of two Tauc-Lorentz functions, the first
one at 4.162 eV and the second one at 4.990 eV. The extraordinary bandgap is determined
to be 3.630 eV, which is considerably higher than the experimental bandgap of anatase, 3.20
eV. Thus, as for rutile, the indirect bandgap of anatase bandgap is the one measured exper-
imentally.

Determination of the bandgap

Different methods were tested to determine the bandgap of rutile, and have shown that only
a few methods give reliable values. Thus, for the bandgap analysis of anatase only the Tauc-
Lorentz model, the accuracy limit of the absorption coefficient and the visual estimation are
compared. Despite the fact that anatase has been determined to have an indirect bandgap,
the absorption curves of the ordinary and extraordinary axis show a sharp transition allowing
to estimate the bandgap directly from the model (as illustrated in figure 45).
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Figure 45: Absorption coefficient of anatase extracted from the B-spline model (MSE =
5.97).

Figure 46 shows the absorption coefficient from the anisotropic B*-spline model and the
isotropic B-spline near the bandgap for comparison purposes. Like previously in the analysis
of the bandgap of rutile, only the isotropic model for the ordinary axis models well the
bandgap and respects the semiconductor behavior. Because of the presence of both axis
in anatase (110), which complicates the analysis, the anisotropic B-spline model adds an
absorption tail below the expected bandgap.
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Figure 46: Absorption coefficient of anatase near the bandgap, comparison between the
isotropic B-spline model and the anisotropic B-spline model.

Table 8: Table of the Tauc-Lorentz oscillators for the ordinary axis of anatase extracted
from the isotropic Gen-Osc model (MSE = 2.23).

Type/Name Amplitude Broadening Eo (eV) Eg (eV)
UV pole
(Amp. –
En. (eV))

ε∞

Ordinary axis – Isotropic Gen-Osc model

Tauc-Lorentz #1 114.628 0.423 3.841 3.259
Tauc-Lorentz #2 89.858 0.860 4.637 coupled 15.260 – 6.708 1.870
Tauc-Lorentz #3 33.4119 1.273 6.043 coupled

Table 9 permits a comparison of the Tauc-Lorentz bandgap with the one determined via the
accuracy limit of the absorption coefficient and with a visual estimation (i.e. slope break)
for anatase. For the ordinary axis, the anisotropic B-spline model gives coherent values with
both methods and the value from the literature. The isotropic B-spline model presents also
values in accordance with the literature, although slightly higher for the Tauc-Lorentz and
the accuracy limit methods. For the extraordinary axis, the value differs more between the
different methods. Being subjective, the visual estimation is not a rigorous way to determine
the bandgap. Thus, the Tauc-Lorentz seems a more relevant and reliable method for both
axes. Like rutile, the extraordinary axis of anatase processes a larger bangap than its ordin-
ary axis, which is thus the limiting bandgap.
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Table 9: Comparison table of the bandgap of anatase determined from the anisotropic
B-spline model (MSE = 5.97) and the isotropic B-spline model (MSE = 2.23) using the
Tauc-Lorentz dispersion low from the Gen-Osc model, the accuracy limit of the absorption
coefficient, and a visual estimation (i.e. slope break of α).

Anisotropic B-spline model Isotropic B-spline model

Method Ordinary axis Extraordinary axis Ordinary axis

Tauc-Lorentz model 3.246 ± 0.005 eV 3.630 ± 0.005 eV 3.259 ± 0.005 eV
Accuracy limit α < 3 × 102cm−1 not possible not possible 3.27 ± 0.05 eV
α slope break 3.20 ± 0.05 eV 3.30 ± 0.05 eV 3.19 ± 0.05 eV

Conclusion

Rutile and anatase dielectric functions present a larger absorption for the extraordinary axis,
in addition to a higher bandgap: 3.630 eV versus 3.246 eV for anatase and 3.130 eV versus
2.944 eV for rutile (determined via the Tauc-Lorentz Gen-Osc model). In both cases, the
ordinary bandgap corresponds to the literature values and is the limiting one. The close
bandgap values for the ordinary and extraordinary axis of rutile could be due respectively
to the direct and indirect transition. DFT calculations have shown that rutile possesses an
indirect transition near its direct transition. [16] This could be verified by connecting the
dielectric functions to the band structure of rutile if the critical points analysis is successful.
An interpretation of the anisotropy from the shape of the absorption curves of the ordinary
and extraordinary axes is difficult, however, the more pronounced amplitude difference in the
case of rutile may suggest a stronger anisotropy than anatase.
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5.2 Critical Points analysis – Initial study

In this section, an analysis of the critical points (CP) is performed on the dielectric function
modeled with the B-spline model and on the theoretical dielectric functions calculated by
DFT by Rasmus Hoholm during his master thesis. The ultimate purpose of such an analysis
is to label the critical points in the band structure, which corresponds to the allowed optical
transitions. To find the critical points in the band structure of TiO2, the second derivatives
of the dielectric functions are fitted with a CP line-shape:

ε(ω) = C −Aeiϕ(ℏω − E0 + iγ)n (55)

where n = d/2 − 1, ϕ is a multiple of π and accounts for the different kinds of CP giving its
symmetry [25], A the amplitude, E0 the energy of the transition at the CP, γ the lifetime
broadening and C a constant background. Thus, for each feature in the second derivative,
one or more critical points may be involved. As in every study involving data analysis with
modeling and fitting, often several solutions are possible and the most technical point of the
analysis is to select the most relevant one and find the correct assumptions. In the literat-
ure, the interpretation of the dimensionality of the CP (n = d/2 − 1) is subject to different
interpretations, without having a clear meaning.

This chapter focuses on the ordinary axis of rutile. The first section contains a comparison of
the theoretical and experimental dielectric functions. In the second section, the interpretation
of the dimensionality and type of critical point is summarized for the reader. In the third
section, an attempt to fit the critical points of the ordinary dielectric functions of rutile from
the B-spline model and from the theoretical (DFT) dielectric functions is presented. The
underestimated bandgap from the DFT calculations seems to be corrected with a blueshift
of 1.17 eV. The DFT dielectric functions were best fitted with seven excitonic CPs located
respectively at 3.98 eV,4.15 eV, 4.44 eV, 4.79 eV, 5.10 eV, 5.44 eV, and 5.90 eV. The SE
dielectric functions were best fitted with four excitonic CPs located at 3.89 eV, 4.01 eV, 4.42
eV, and 5.57 eV.

5.2.1 Comparison of the theoretical and experimental dielectric functions

One of the challenges of this analysis is to find agreements between the theoretical dielectric
functions and those based on the experimental model. DFT calculations are well known to
underestimate the bandgap (i.e. find bandgap values lower than the experimental bandgap).
This deviation is believed to result from the assumptions made in the calculation and the
calculation itself. However, it has not been established yet in the literature if the DFT gives
a wrong bandgap or not. For TiO2, the DFT calculations of Rasmus Hoholm conduct to a
bandgap of 1.81 eV for rutile and of 2.07 eV for anatase.

The first challenge is therefore to correct the DFT bandgap in order to find matches between
theoretical and experimental data. To do so, the most common solution is to use the ”scissor
operator” and to move the theoretical dielectric function to higher energies.[97] The main
disadvantage of this method is that it introduces an uncertainty in the calculation of the
energy positions of the optical transitions, because the shift cannot be performed in a foolproof
way. The choice of the energy shift will have a direct impact on the position of the critical
points, and thus of the optical transitions in the band structure. In addition to the shift,
narrowing/shrinking or extending the theoretical dielectric functions could also facilitate the
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comparison, while adding additional uncertainty to the energy determination of the CP. For
this reason, these additional tools were not used in this thesis. The shift also depends on
the method used to determine the bandgap, which is different in the DFT calculation and
in the Tauc-Lorentz model. In the model, the bandgap is one of the fitted parameters.
While in the DFT calculation, its value depends on the approximations employed and its
definition. However, the bandgap is originally defined as the difference of the ground states
energy of a N-particles system with systems of (N-1)-particles and (N+1)-particles:Eg =
(EN+1 − EN ) − (EN − EN−1). [98]

The DFT dielectric function were shifted to higher energies by the following shifts in order
to determine the optimum shift:

• 1.02 eV to match the bandgap of rutile, i.e. 3.00 eV;

• 0.964 eV to match the ordinary axis Tauc-Lorentz bandgap of rutile, i.e. 2.964 eV;

• 1.17 eV to to match the first minimum of
d2ε2,o
dE2 ;

• 1.19 eV to to align the first peak of ε2,o.

Figures 47, 48, 49, 50 show the comparison of the dielectric functions for the four shifts.
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Figure 47: Comparison of the DFT dielectric functions shifted of 1.02 eV with the B-
spline model (top graphs) and of their second derivative (lower graphs) for the ordinary and
extraordinary axis.
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Figure 48: Comparison of the DFT dielectric functions shifted of 0.964 eV with the B-
spline model (top graphs) and of their second derivative (lower graphs) for the ordinary and
extraordinary axis.
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Figure 49: Comparison of the DFT dielectric functions shifted of 1.19 eV with the B-
spline model (top graphs) and of their second derivative (lower graphs) for the ordinary and
extraordinary axis.
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Figure 50: Comparison of the DFT dielectric functions shifted of 1.17 eV with the B-
spline model (top graphs) and of their second derivative (lower graphs) for the ordinary and
extraordinary axis.
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When the theoretical functions are shifted by 1.02 eV to match the bandgap of rutile, they
overlap pretty well with the B-spline model for both axis, as illustrated in figure 47. Let us
consider the ordinary axis. The two first absorption peaks of the DFT calculations merged
together to form a high peak in the B-spline model. While the third DFT peak seems to
correspond to the shoulder of the B-spline. Finally, the last B-spline peak is more or less
aligned with the fourth DFT peak. When one looks at the second derivative, the curves do
not seem to overlap well anymore. The first oscillation, the most resonant, appears to be
shifted to higher energies in the B-spline. Nevertheless, the results are coherent with the
previous observation. A closer look at the second derivative shows that actually the b-spline
oscillation is wider and incorporates the two oscillations corresponding to the two first DFT
peaks. The six main oscillations (resonance shape) in the second derivative of the DFT data
suggest that at least six critical points are involved, which means that six transitions are
possibly associated with the absorption in the (3.00-6.00) eV range. For the extraordinary
axis, it seems that the two first DFT peaks merged also to form only one intense peak in
the B-spline model. About the second derivative, similar features are noticed than for the
ordinary axis, six CPs also seem to be involved.
When the theoretical curves are shifted by 0.964 eV to match the bandgap extracted from
the Tauc-Lorentz Gen-Osc model, as illustrated in figure 48, similar interpretations and con-
nections can be done between the curves, but the shift seems less optimal.
As the DFT dielectric functions are rather broad in the range of (3.00-6.00) eV and count
more CPs than the B-spline, the attempts to overlap the dielectric functions can be achieved
with many different shifts. Conversely, since the second derivatives strengthen the sharpest
features of the dielectric function, it is less easy to overlap them.

Afterward, shifts based on visual observations are tested to find optimal correlations. These
methods produced successful results although the shifts are less easy to justify. One strategy
is to choose the shift in order to align a maximum between the dielectric functions, which
corresponds to a zero of the second derivative. Thus, the correspondence between at least
one CP of the theoretical and B-spline curve is ensured. Shifting the DFT curve of 1.19 eV
allows the overlap of the first absorption peak, as illustrated in figure 49. A second strategy
is to directly choose the shift in order to overlap two features of the second derivative. This

is the case for the 1.17 eV shift, whose purpose is to overlap the first minimum of
d2ε2,o
dE2 , as

illustrated in figure 50. The shifts of 1.19 eV and 1.17 eV give a good correlation between
the dielectric function curves and the second derivatives. Considering the ordinary axis, for
both shifts, the first B-spline and DFT peak can be assimilated to each other, but with the
latter less intense for an unknown reason. Then, the second and third DFT peaks form the
shoulder in the B-spline, and the fourth peaks are aligned. About the second derivatives, the
first oscillation overlaps well, especially since they have the same amplitude, which would be
helpful for the CP analysis. Since these offsets are chosen in terms of the ordinary axis, the
correlation of the extraordinary axis is a little less optimal.

When attention is brought to the bandgap position, in the case of the 1.02 eV shift, the ab-
sorption onset is higher for the B-spline. This is at the opposite of what would be expected.
In practice, the experimental data, more likely to include the effect of defects or impurities,
should have logically a lower bandgap. To correct this, one solution would have been to shrink
the DFT curve so that the broadening of the B-spline first peak covers the DFT peaks.
In the case of the 1.19 eV and 1.17 eV shifts, the B-spline presents a sharper absorption than
the DFT curve which could suggest that its bandgap is above. However, it is clearly visible
that the absorption in the experimental data starts at lower energies, which is more logical
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and expected.

For the purpose of this analysis, that is to find correspondences of CPs between the B-spline
model and the DFT dielectric functions, their second derivatives must match each-other to
some extent. Shifting the DFT curve to the bandgap of rutile provides a low correlation
between the curves, which is not really optimal for performing the critical points analysis.
For this reason and the reason exposed previously regarding the bandgap, the 1.19 eV or
1.17 eV shifts are preferred in the further analysis, instead of the 1.02 shift which in the first
instance seemed the most legitimate. Furthermore, the two absorption ranges, discussed in
the next paragraph, of the DFT dielectric functions coincide better with Schubert dielectric
functions (which were measured up to 8.00 eV) for the 1.19 eV and 1.17 eV shifts than for
the 1.02 eV shift.

In the following, the 1.17 shift was selected with an uncertainty on the energies values is
±0.02 eV

The theoretical dielectric functions were calculated up to 30.00 eV. However, the major part
of the absorption ranges between 2.00 eV and 10.00 eV (if the functions are considered before
the ”scissor operator”), and between 3.00 eV and 11.00 eV if considered after. The absorption
of rutile can be divided into two parts: (3.50-6.50) eV region and above 6.5 eV. The DOS
was also calculated by Rasmus and highlighted the same regions. The dielectric functions
modelled with the B-spline model correspond to the first region. Because of the absence of
measurements after 6.00 eV, the existence of a second region cannot be certified. However,
the shape of the experimental dielectric functions, its decreasing trend, suggests the end of a
first absorbing region. In a paper by Jiang et al., see figure 14 b) in section 2.4.4, the density
of states of the different orbitals of TiO2 were calculated. It was demonstrated that the DOS
below the bandgap is mainly due to oxygen 2p-orbitals, while the 3d-orbitals of the titanium
are mainly involved above the bandgap. In particular, the first region (3.50-6.50 eV) appear
to be associated with 3dyz, 3dzx and 3dyy Ti orbitals, which all have a t2g symmetry, whereas
the second region involves 3dy2−x2 and 3dz2 Ti orbitals, which have an eg symmetry. The
correlations between the density of states and the imaginary part of the dielectric functions
demonstrates that the absorption peaks in the first region observed in the B-spline model
and in the DFT calculations are due to transitions of electrons from the valence band, so in
the 2p-orbitals of the oxygen, to 3dyz, 3dzx and 3dyy Ti orbitals. While the absorption peaks
above 6.50 eV in the DFT calculation correspond to transitions from oxygen 2p-orbitals to
3dy2−x2 and 3dz2 Ti orbitals.

5.2.2 Interpretation of the critical points

According to the theory, for a 3D critical point ϕ should take one of the following values:
0, π, π2 or 3π

2 . Only four types of CP are possible: a minimum (M0), a maximum (M3), and
two saddle points (M1,M2). The critical points correspond to the poles of 1

∇k(Ec(k)−Ev(k))
.

The type of CP is defined by the shape of the conduction bands in the reciprocal space. M0

occurs when the conduction band is a minimum for the three directions in k-space (kx, ky, kz),
where k is the momentum of the electron in the crystal, M3 when it is a maximum. The
saddle points M1 or M2 take place when the conduction band presents a minimum or a max-
imum for two directions and the opposite type of extremum for the last direction.
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Nevertheless, when the critical point analysis is performed and when it comes to fitting the
parameters in Eq.55, forcing ϕ to be an integer multiple of π does not allow the fit to converge
properly. As a matter of fact, its values listed above correspond to transitions between uncor-
related one-electron bands. This picture derives from the assumptions taken for computing
the Hamiltonian and does not consider, for example, interactions between electrons and holes
such as excitons. However, it is possible to take into account the many-body effects afterward
by allowing ϕ to vary and take non-integer multiples of π

2 . [21, 26]

The critical point line-shape in section 2.3.1 was calculated in the band model approximation
where the system is reduced to one-electron in this crystal potential. Interactions between
localized functions, such as Frenkel excitons, and delocalized wavefunctions (i.e. the band
continuum) are not a part of this model. However, in practice, both types of wave-functions,
localized and delocalized, participate in the energy levels of the crystal and affect the optical
absorption spectra. Depending on the type of material, the localized effects are more or less
significant.

In semiconductors with small bandgap and large dielectric constant (i.e. high polarizability
ability), band-to-band transitions predominate in the CP line-shape (i.e. n = −1

2 , 0 or 1
2 :

1D, 2D or 3D CP).[83] Their high polarizability ability leads to the screening of the Coulomb
interaction of the excitons, if any, which results in large radii and weakly bound excitons.
These excitons follow the Mott-Wannier model. Their energy levels can be assimilated to
the hydrogen atom, and are given by a modified Rydberg equation. In this case, the critical
points correspond to the Van Hove singularities, and the line-shape analysis can be treated
as mentioned in section 2.3.2. Then, the critical points are said to have a band character
according to Ref.[83]. Then, if the effect of the Wannier excitons is important, they can
induce metamorphism of Van Hove singularities, which results in allowing a mixture of CPs,
so ϕ to vary.

At the opposite, in semiconductors with large bandgap and small dielectric constant, Frenkel
excitons take over the absorption spectrum and the CP can be fitted with a 1D line-shape
(i.e. n = 0 and ϕ = 0). [83] The Coulomb interaction between the electron and hole is strong,
thus forming small and tightly bound excitons. Usually the electron and hole are located on
the same atom but can hop to neighboring atoms, similarly to the propagation of a wave. The
critical points are said to have a localized excitation character according to Ref.[83]. In this
case, if the exciton energy states interact with the bands, once again this can be described
by a metamorphism of Van Hove singularities. The line-shape now results from mixtures of
excitonic CP with band-to-band CP, which is simply done by allowing ϕ to vary.

5.2.3 CP line-shape analysis

Now the experimental data correspond to the B-spline or DFT dielectric functions and the
fitted data correspond to the dielectric functions fitted with the CP line-shapes. The analysis
focuses on the ordinary axis of rutile.

In this part, different configurations of critical point line-shapes are tested and compared.
The three variables that most influence the overall shape of the dielectric functions are the
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dimensionality embodied and associated with the parameter n, the type of CP ruled by ϕ and
the energy of the transition E0 at the CP. Depending on the initialization of these paramet-
ers, the amplitude A and the broadening Γ adjust themselves to fit the experimental curve.
The parameters after the fit vary a lot from one initialization to another, for example, if ϕ is
initialized to 180◦instead of 0◦will influence the final ϕ. However, the following comparison
of different CP line-shapes shows that the energy position of the CP in the band-structure is
nearly constant from one fit to another for the DFT dielectric functions. After the analysis,
the limitations of the fit will be discussed.

Here, six fits are compared, denoted with alphabetical letters and the critical points with
numbers. The first four fits are performed on the DFT dielectric functions shifted by 1.17
eV to match the B-spline dielectric functions, while the last two correspond to the B-spline
model (MSE = 3.8). Excitonic CPs (i.e. n = -1) are mostly used for all the fits, except
for CP1 and CP5 which are respectively 2D in fit b) (i.e n = 0) and 1D in fit a) (i.e n =
-0.5). According to the theory, if the CPs are purely excitonic, ϕ must be zero. For this
reason, all the excitonic CPs were initialized with ϕ = 0◦, but, ϕ was set unconstrained (i.e.
no bounds: [0, 360] ◦) to authorize possible interactions between the band continuum and
localized excitations, such exciton excitations.

The CP line-shape described as in Eq.(55) is valid only in an interval around E0, but not
for energies far from it. However, in the code the CPs are not restricted around their E0

values. Consequently, it appears that some line shapes can affect the amplitude and broad-
ening of the other CPs, as well as the overall shape of the functions. This is the case of the
1D, 2D, and 3D line-shapes whose dispersion is wider than for an excitonic CP (i.e. 0D).
For this reason, in most papers and also in this study, excitonic line-shapes are the ones
that best match the dielectric functions, even if from the theory a combination of CPs with
different dimensionality seems the most likely. Moreover, without further analysis of the
structure of the bands, it is impossible to say which CP has which dimensionality. Then
the initialization of the dimensionality in the code can only be done by guessing. In future
work, an analysis of the band structure in 4D (kx, ky, kz, E) could allow the estimation of the
CP positions by searching parallel tangents between the CB and the VB, and the estima-
tion of the dimensionality by analyzing the curvature of the CB in the three reciprocal space
directions. Then, these estimations could be used to initialize the CP parameters in the code.

The objective of fit c) and d) is to determine whether the fit may be made better with the
incorporation of 1D and 2D CPs despite the tails of these CPs, particularly the resnorm (i.e.,
the residual squared norm).

The critical points are located at maxima in ε2 which correspond to local minima in the second
derivative. A visual analysis of the double derivative of the DFT dielectric functions shows
that at least six critical points are involved in the absorption spectra, located respectively at
the energies E0: 3.99 eV, 4.41 eV, 4.77 eV, 5.07 eV, 5.43 eV, and 5.86 eV as illustrated in
figure 51. Thus, all critical points were initialized with six CPS, corresponding to these six
energy positions. For fit a) an additional CP was added at 4.17 eV (i.e. CP7) to match a
specific feature of the second derivative. The initialization parameters for each fit are available
in Section C.3 in the appendix. For the fits of the B-spline model, fit e) is initialized with
the same positions as the DFT data, while fit d) is initialized with the following positions:
3.30 eV, 3.99 eV, 4.59 eV, and 5.31 eV, corresponding to the four local minima in figure 51.
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Figure 51: Comparison of the second derivative of ε2 from the DFT dielectric functions
shifted by 1.17 eV, and from the anisotropic B-spline model for rutile ordinary axis. The red
crosses indicate the six possible CPs.

In the selection of the best fit, a particular attention was brought to:

• A squared norm of the residual as low as possible;

• ε2 positive and a minimal offset between εexp2 and εfit2 ;

• No or as few as possible parameters close to the bounds after the fit.

The analysis starts with a comparison of the different fits in terms of the parameters: n, ϕ,
and A, and then continues with a closer look at each fit. As already mentioned, the energies
of each CPs are pretty stable from one fit to another for the DFT dielectric functions, as
illustrated in figure 52. The DFT second derivative is indeed composed of well defined
oscillations facilitating the analysis. For the B-spline model, as different positions were used
for the initialization and a different number of CPs, E0 differs between the fit. However,
for fit e) which has the same initialization as the previous fits, the positions of the CPs are
slightly lower but follow the same trend as fit a) to d). The energy of CP1 is comprised of
[3.89, 3.98] eV.
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Figure 52: Comparison of the energy positions E0 at each CPs for different fits. Fits a) to
d) are performed on the DFT dielectric functions, while fits e) and f) are on the anisotropic
B-spline dielectric functions for the ordinary axis of rutile (MSE = 3.8). All the CPs are
excitonic (i.e. n = -1), except for CP1 and CP5 which are respectively 2D in fit c) and 1D
in fit d). CP7 corresponds to the additional CP at 4.19 eV, which is why it is apart.

For A and ϕ, the values are more dispersed. It is evident from figure 53 that the amplitude
depends on the dimensionality of the CPs: A is below 2.5 for most of the excitonic CPs (fit
e) is an exception) and jumps between 3.5 and 4.6 for the 1D and 2D CPs. So most of the
CPs have approximately the same weight in the fitted dielectric functions, except in fit e)
where CP5 takes the lead over the others, especially CP6.
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Figure 53: Comparison of the energy positions A at each CPs for different fits. Fits a) to
d) are performed on the DFT dielectric functions, while fits e) and f) are on the anisotropic
B-spline dielectric functions for the ordinary axis of rutile (MSE = 3.8). All the CPs are
excitonic (i.e. n = -1), except for CP1 and CP5 which are respectively 2D in fit c) and 1D
in fit d).

For ϕ, a majority of the values are dispersed around zero and 360 ◦), except fit e), as illustrated
in figure 54, so relatively close to the pure excitonic case. For the 0D CPs, ϕ is close to 90◦,
while for the 2D CPs, ϕ is rather large, but not close to any nominal value of ϕ (i.e. integer
multiple of π

2 ). The fit f) of the B-spline model follows quite well the fit b) of the DFT.
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Figure 54: Comparison of the energy positions ϕ at each CPs for different fits. Fits a) to
d) are performed on the DFT dielectric functions, while fits e) and f) are on the anisotropic
B-spline dielectric functions for the ordinary axis of rutile (MSE = 3.8). All the CPs are
excitonic (i.e. n = -1), except for CP1 and CP5 which are respectively 2D in fit c) and 1D
in fit d).
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For conciseness, only the fits a) and f), the fits that seemed the best for respectively the DFT
dielectric functions and the B-spline dielectric function, are presented here. The detailed
analysis of fits b), c), d) and e) can be found in the section C in the appendix.

• Fit a)

In this fit, ϕ is initialized to 0, and an additional CP was set at 4.17 eV. The fit has the
lowest squared norm of the residuals, 1.39× 104. In figure 55, each oscillation is fitted by one
critical point, which is the purpose of the second derivative: to isolate the CPs to fit them
separately. The deviations from the experimental curves are almost negligible.

Figure 55: Experimental and fitted double derivative of ε1 and ε2 in fit a).

On figure 56, ε1 and ε2 are plotted. Only CPs in the [3.00, 6.00] eV range are used in the
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fit. An offset is noticed between the experimental and the theoretical curves in ε1, but their
shapes are similar. This constant difference results from the fitting procedure. As the fit is
performed on the second derivative of the dielectric functions, the constant background C is
not directly included in the fit, and so must be adjusted after. The sum of the CPs reproduces
quite accurately the shape of the dielectric function in ε2, however, it seems that the weights
of the individual critical points do not match the experimental curve. For instance, CP5
and CP6 should have greater amplitudes. However, if that were the case, the tails of the
CPs would cause the sum of the CPs to rise at lower energies as well, deviating from the
experimental line. Last but not least, ε2,fit does not converge to zero below the bandgap,
3.00 eV, as quickly as it is predicted because of the tails. Nevertheless, the energy positions
E0 of the fit as well as the shape of the critical point around them seem correct. Because
the critical point line-shapes are valid only around E0, then if the dielectric functions do not
overlap completely but the second derivative is well fitted, it doesn’t mean that the fit is
necessarily bad.

Figure 56: Experimental and fitted ε1 (up) and ε2 (bottom) for fit a).
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The parameters of fit a) are presented in table 10. The energy positions of the CPS coincide
with the values noticed in the visual approach in figure51. ϕ is rather small for all the critical
points, suggesting that most of them correspond to pure excitonic CPs. Except for CP5 and
CP6, which ϕ value rather away from integers multiples of π

2 suggests that they derive from
the interaction of the exciton with the crystal lattice.

Table 10: Final parameters of the critical point line-shapes for fit a).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 0.89 0.16 3.98 0.42 -1 0D
CP2 0.82 0.19 4.44 0.01 -1 0D
CP3 1.48 0.31 4.79 2.46 -1 0D
CP4 0.38 0.23 5.10 0.00 -1 0D
CP5 1.20 0.24 5.44 14.17 -1 0D
CP6 1.44 0.39 5.90 35.26 -1 0D
CP7 0.80 0.26 4.15 0.29 -1 0D

Table 19 in the appendix summarizes the initial parameters for fit a).
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• Fit e)

Figure 57 shows the fitted and experimental second derivative of the dielectric functions.
The fit seems correct: the fitted and experimental curves overlap. The squared norm of the
residue is 2 times higher than fit a), which has the lowest value.

Figure 57: Experimental and fitted double derivative of ε1 and ε2 in fit e).

In figure 58, the dielectric functions are plotted. As before, the experimental and fitted ε1
are shifted by a constant. For ε2, the fitted curve, the sum of all the CPs, almost converges
to zero below 3.00 eV, the bandgap. At higher energies, the curves do not overlap anymore.
Due to the tails and width of CP3 and CP4, CP5 has to compensate by a large amplitude
and broadening as illustrated in table 11.
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Figure 58: Experimental and fitted ε1 (left) and ε2 (right) for fit e).

Table 11 shows the final parameters of fit e). The phase ϕ are dispersed, only CP5 has a ϕ
close to zero and could be considered as a pure excitonic CP. For all the other CPs, their ϕ
values suggest a mix of CPs resulting from the interaction of the excitonic excitation with
the band continuum.
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Table 11: Final parameters of the critical point line-shapes for fit e).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 3.41 0.28 3.92 319.42 -1 0D
CP2 3.42 0.54 4.37 229.38 -1 0D
CP3 4.11 0.56 4.70 126.12 -1 0D
CP4 2.98 0.58 5.00 89.66 -1 0D
CP5 7.00 0.81 5.35 0.71 -1 0D
CP6 0.25 0.42 5.89 152.42 -1 0D

Table 23 in the appendix summarizes the initial parameters for fit e).
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• Fit f)

In figure 59, the second derivative of the dielectric functions is plotted. The fitted and
experimental curves almost overlap perfectly. The squared norm of the residue is slightly
lower than for fit e), so slightly better, and only 1.5 times higher than fit a).

Figure 59: Experimental and fitted double derivative of ε1 and ε2 in fit f).

Figure 60 shows the dielectric function calculated from the fit, the fitted curves have similar
features in fit e). But, this time it is CP1 that cancels with its tail a little the contribution
of CP4.
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Figure 60: Experimental and fitted ε1 (left) and ε2 (right) for fit f).

Table 12 shows the final parameters of fit f). According to its ϕ, CP4 located at 4.61 eV is
a purely excitonic CP, while the others result from a mix.

Table 12: Final parameters of the critical point line-shapes for fit f).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 1.9 0.26 3.89 307.08 -1 0D
CP2 0.96 0.25 4.01 0.00 -1 0D
CP3 0.89 0.42 4.61 20.34 -1 0D
CP4 2.12 0.60 5.57 27.78 -1 0D
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Table 24 in the appendix summarizes the initial parameters for fit f).

5.2.4 Conclusion

All the fits presented here manage to model globally the optical properties of the ordinary
rutile axis, but the plausibility of each is questionable. Moreover, the code used is also sub-
ject to improvement, the limitations are described in the section C.2 in the appendix. In
this context, it is difficult to designate one fit to be completely right, which is why the most
correct fits were presented here.

Despite their differences, the fits of the DFT dielectric functions seem to agree on the energy
of the transitions. So even though the dimensionality (n) and type (ϕ) of the critical point
cannot be determined with certainty, the fits provide a first indication of the transitions
involved in the absorption spectrum of the rutile. Comparing these energies with possible
transitions in the rutile band structure, the critical points can maybe be associated with a
high symmetry point in the first Brillouin zone. Nevertheless, based on their lower squared
norm of the residue, fit a) seems to be the most relevant (followed by fit d)) for the analysis
of the DFT data. The DFT dielectric functions were best fitted with seven excitonic CPs
located respectively at 3.98 eV,4.15 eV, 4.44 eV, 4.79 eV, 5.10 eV, 5.44 eV, and 5.90 eV.

Fit e) shows that the B-spline dielectric functions can be fitted with almost the same number
of critical points as for the DFT fit a), but with different line-shapes (i.s the phase ϕ are
not the same in these fits). Nevertheless, fit f) with its four CPs appears to fit better the
B-spline dielectric functions. Indeed, the B-spline model is smoother and wider than the
DFT dielectric functions, thus, fewer CP line-shapes are necessary to reproduce its shape,
leading to a fit with a better squared norm of the residue. The B-spline dielectric functions
were best fitted with four excitonic CPs located at 3.89 eV, 4.01 eV, 4.42 eV and 5.57 eV.

On one hand, according to fit a) most of the CPs are purely excitonic, that is originating
from absorption between the exciton energy levels in the crystal. These localized excitations
are related to Frenkel excitons. On the other end, fits d), e), and f), present phases ϕ that
do not coincide with an integer multiple of π

2 . Thus according to the theory, the line-shape
can be described by a mix of CPs. The absorption results from the coupling between the
excitonic levels and the band continuum of the crystal lattice.

In general, the dielectric constant is inversely proportional to the square of the band gap
energy.[99] Thus, TiO2 as a large bandgap semiconductor would have a small dielectric con-
stant. Then, according to Toyozawa et al., its optical spectra would be expected to show a
localized excitation character (i.e. transition resulting mainly from excitons locally excited).
In this case, fit a) seems to be the most relevant to describe the optical properties of the
ordinary axis of rutile. On the other hand, TiO2 has a high dielectric constant, which means
that it mostly favors the formation of Wannier-Mott exciton, and thus its optical spectra
would have predominantly a band character. From this perspective, the fit d), e) and f)
would describe better the properties of rutile.
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5.3 PL Results

In this section, the PL spectra of anatase (110), rutile (001) and rutile (110) single crystals
and of the undoped TiO2 thin films on STO substrate (named A2, B3 and B5) are presented
and discussed. If the excitation wavelengths is not specified in the spectrum, λ = 300 nm
was used.

5.3.1 Anatase (110)

Figure 61 shows the PL spectrum of anatase (110) reference sample at RT and 7K. A unique
PL band in the emission range (2.20 - 3.90) eV is visible both at room and low temperatures.
Both peaks have Gaussian shapes. The room temperature (RT) spectrum shows a wide band
centered 2.82 eV with a full width half maximum (FWHM) of 1.05 eV. The 7K spectrum
presents a large band centered to 2.78 eV and the FWHM increases to 1.11 eV. The strong
peak at 2.07 eV is an artifact of the monochromator, the second-order peak of the source.
The increasing tail at low energy is an amplification of the constant noise level due to the
energy conversion. Indeed, the energy conversion transforms every constant function into a
parabolic function, as the formula is proportional to λ2.

Figure 61: PL spectrum of anatase (110) recorded at RT and 7K, showing emission in the
visible range.

Figure 62 shows the evolution of the PL intensity while varying the excitation wavelength. As
the excitation wavelength increases, the band shifts towards lower energies, and the intensity
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of the band decreases. The PL spectrum at λ = 300 nm was recorded earlier in the day
and does not follow the trend of the spectra at higher excitation wavelengths. Some light
processes affect the luminescence of the λ = 320 nm and λ = 340 nm spectra at 3.16 eV and
3.35 eV.

Figure 62: Anatase (110) PL intensity normalized by the reference detector intensity at
varying excitation wavelengths: 300 nm (4.13 eV), 320 nm (3.88 eV), 340 nm (3.65 eV), 360
nm (3.44 eV) and 380 nm (3.26 eV).

A curve fitting of the spectrum is performed in order to determine the possible origins of
the broadening and of the sub-bandgap emission. As the band does not show any obvious
peak which would have given an idea of how to deconvolute the spectrum, the strategy is to
achieve a comparative study. The PL band is fitted accordingly to the PL analysis in the
article Ref.[53], described in section 2.4.4. Four different types of defects are reported in the
article: self-trapped excitons (STE) at 2.86 eV (anatase bulk), oxygen defects at 2.30 eV and
2.67 eV, and charge transfer from Ti3+ to TiO2−

6 at 2.52 eV. Finally, the peak at 3.19 eV is
attributed to the phonon-assisted indirect transition from M to Γ in the first Brillouin zone
of anatase TiO2. Each contribution is fitted with a Gaussian distribution, whose area gives
an idea of the proportion of the defect type in the samples.

Figure 63 shows the results of the fit for the measurement at RT. The positions of the peaks
are fitted with five Gaussian functions and fixed at the positions used in Ref.[53]. The de-
tails of the fit parameters are in table 13. Figure 64 presents the results of the fit for the
measurement at 7K. The parameters of the fit are shown in table 14.
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Figure 63: Curve fitting of anatase (110) PL spectrum at RT using the same Gaussian
positions as in Ref.[53]. The red curve is attributed to indirect transitions, the green curve
to STE, the dark blue and pink to oxygen defects, and the light blue to the charger transfer
related emission.

Table 13: Fitting parameters for RT anatase (110) PL spectra curve fitting.

Origin of the emission Epeak (eV) Peak Area FWHM Intensity (CPS)

Indirect recombination 3.19 (32.9 ± 6.6) × 103 0.70 ± 0.14 (44.2 ± 8.8) × 103

Self-trapped excitons 2.86 (29.6 ± 5.9) × 103 0.59 ± 0.12 (47.4 ± 9.5) × 103

Oxygen defects (F or F2+) 2.67 (42.0 ± 8.4) × 103 0.82 ± 0.16 (48.3 ± 9.6) × 103

Charge transfer 2.51 216 ± 43 0.10 ± 0.02 (2.0 ± 0.4) × 103

Oxygen defects (F+) 2.30 (16.1 ± 3.2) × 103 0.26 ± 0.05 (24.1 ± 4.8) × 103
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Figure 64: Curve fitting of anatase (110) PL spectrum at 7K using the same Gaussian
positions as in Ref.[53]. The red curve is attributed to indirect transitions, the green curve
to STE, the dark blue and pink to oxygen defects, and the light blue to the charger transfer
related emission.

Table 14: Fitting parameters for 7K anatase (110) PL spectra curve fitting.

Origin of the emission Epeak(eV ) Peak Area FWHM Intensity (CPS)

Indirect recombination 3.19 (42.3 ± 4.2) × 103 0.75 ± 0.07 (53.0 ± 5.3) × 103

Self-trapped excitons 2.86 (63.0 ± 6.3) × 103 0.66 ± 0.07 (89.6 ± 9.0) × 103

Oxygen defects (F or F2+) 2.67 (15.9 ± 1.6) × 103 0.44 ± 0.04 (34.2 ± 3.4) × 103

Charge transfer 2.51 (1.2 ± 0.1) × 103 0.19 ± 0.02 (6.2 ± 0.6) × 103

Oxygen defects (F+) 2.30 (38.0 ± 3.8) × 103 0.56 ± 0.06 (63.6 ± 6.6) × 103

The curve fitting gives an idea of the proportion of different defects in the material and of the
main contribution of the PL. However, as the band is large and smooth this analysis is only
indicative. Based on it, for the RT spectrum, the indirect bandgap recombinations at 3.19
eV, the STE emission at 2.86 eV, and the oxygen defects emission at 2.67 eV are the main
contributions to anatase (110) PL, as illustrated in figure 63. Then comes the contribution
of the oxygen defects at 2.30 eV, while the charge transfer from Ti3+ to TiO2−

6 contribution
at 2.52 eV is very little. At 7K, the main contribution seems to be attributed to STE at 2.86
eV, then to oxygen defects at 2.30 eV, and to indirect recombination at 3.16 eV, as illustrated
in figure 64. Oxygen defects at 2.67 eV have a smaller contribution. Finally, as previously
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the charge transfer contribution is very little at 2.52 eV.

Discussion

The PL spectra show clearly that energy states below the bandgap (i.e. below 3.20 eV) are
involved in the recombination processes, either from defects or impurities that induce states
below the CB or above the VB. An optical broadening of a band is a sign of the non-perfect
uniformity of the sample. Indeed, the PL spectra are very sensitive to the environment where
is taken the measurement, but also the history and purity of the sample. Thus, PL spectro-
scopy often gives a lower bandgap (i.e. emission onset) than other bandgap determination
techniques. If the measurement conditions and the sample were ideal, a PL band starting at
the bandgap would be expected. A similar emission band is reported in the literature both at
RT and 7K, as described in section 2.4.4. The band is mainly attributed to STE and oxygen
defects emissions. The curve fitting agrees with the literature, at RT the emissions related
to the indirect band-t-band transition, to the STE and to the oxygen, defect have similar
contributions. This result corroborates the fact that TiO2 is known to have oxygen defects
and that its anatase polymorph favors the formation of STE. At 7K, the STE contribution
stands out more. The excitonic emission in anatase is expected to be more important than
in rutile, as the exciton binding energy in anatase is larger. [86]

At low temperatures, the non-radiative recombination is reduced because fewer phonons
are available and because the thermal energy in the material is too small compared to the
activation barriers of certain processes. This explains why the intensity of the band increases
at 7K compared to RT, as illustrated in figure 61. At the same time, from the curve fitting
it appears that the emission from STE increases at 7K (green curve in figure 63 and 64), and
the maximum of the emission undergoes a little red-sift.

Figure 62 shows the evolution of the PL intensity while varying the excitation wavelength.
As the excitation wavelength increases, the band shifts towards lower energies, highlighting
the contribution of lower energy states inside the conduction band and of sub-bandgap states.
These states and thus this emission are likely due STE and oxygen vacancies according to
the curve fitting. In particular, the PL spectrum at λexc = 380 nm (Eexc = 3.26 eV) shows
no bandgap emission at all (i.e. nothing above 3.2 eV). Measuring the PL spectrum at lower
excitation energy gives an insight into the proportion of the defects and impurities in the
sample.

Conclusion

In conclusion, as the width of the band is large and the sample is natural, and so its purity
and history are unknown, the possible origins of the sub-bandgap PL are difficult to determ-
ine accurately. However, from the curve fitting of the data and the literature review, STE
emissions seem to contribute the most to the sub-bandgap PL at 7K. Indeed, the STE form-
ation is favored by the octahedral geometry of the TiO6 complex which is the build unit of
the crystal. This emission occurs mainly just below the bandgap. For emissions even deeper
in the bandgap, oxygen defects and impurities in the bulk appear to be the plausible origin
of the PL, due to the natural crystal nature of the anatase (110) sample.

The curve fitting was a useful tool to investigate the origin of the PL, which moreover agrees
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with the literature. However, this curving fitting must be taken with some criticism, because
of the wide PL band of anatase, no specific features could be fitted. Moreover, the position
of the Gaussian was fixed to the values of Ref.[53], which influences hardly the results. The
fitted Gaussians are not necessarily completely representative of the recombination process
happening and are just indicative.
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5.3.2 Rutile (001) and (110)

Figures 68 and 67 show the PL spectra of rutile (001) and (110) samples at 7K and RT in
the short wavelength range, (310-620) nm. Figures 66 and 65 show the PL spectra of rutile
(001) and (110) samples at 7K and RT in the long wavelength range, (730-890) nm.

Figure 65: PL spectrum of rutile (110) sample at RT and 7K in the short wavelength range
in the long wavelength range; NIR band.
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Figure 66: PL spectrum of rutile (001) sample at RT and 7K in the long wavelength range;
NIR band.

Figure 67: PL spectrum of rutile (110) sample at RT and 7K in the short wavelength range;
VIS-UV band (left) and in the long wavelength range; NIR band (right). The high peak on
the left is the second-order peak of the source, an artifact.
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Figure 68: PL spectrum of rutile (001) sample at RT and 7K in the short wavelength range;
VIS-UV band. The high peak on the left is the second-order peak of the source, an artifact.

The samples have similar photoluminescence spectra, showing two distinct contributions: a
band in the VIS-UV, (2.20 - 4.00) eV, as for the anatase samples; asymmetric with respect to
the bandgap (3.00 eV) and a second band close to the NIR region, centered at 1.52 eV. The
NIR band shows a sharp fine structure, with five clear peaks located at 1.510 eV, 1.520 eV,
1.535 eV, 1.562 eV, and 1.557 eV. The VIS-UV band contains also three fairly clear peaks
even if they are noisy, located at 2.520 eV, 2.729 eV, and 2.922 eV.

Figures 69 and 70 show the evolution of the UV-VIS (short wavelength) band as a function
of the excitation wavelength for the rutile (110) and (001) samples, at 7K. Figures 71 and
72 show the evolution of the NIR (long wavelength) band as a function of the excitation
wavelength for the rutile (110) and (001) samples, at 7K. The spectra in figure 67, 65, 68,
and 66 were measured with an excitation at λexc = 300 nm (4.13 eV), which corresponds
to about 1.13 eV above the bandgap. In the following figures, the excitation energy has
been lowered by 20 nm steps, in order to probe the PL closer to the bandgap. From these
figures, one can find the excitation wavelength that maximizes the emission, and thus how to
optimize the parameters of the acquisition. This map gives also information about the origin
of the photoluminescence.

The intensity of the PL of the UV-VIS band (short wavelength) decreases globally with
increasing the excitation wavelengths for both single crystals, while for the NIR band (long
wavelength) it is the opposite trend. In figure 69, the rutile (001) PL spectrum has two
prominent peaks at 2.8 eV and 3.0 eV, especially visible at λexc = 360 nm, these two peaks
are barely visible in the rutile (110) spectrum in figure 70.

106



Figure 69: PL spectrum of rutile (001) sample at 7K for different excitation wavelengths
in the short wavelength range; VIS-UV band. The high peak on the left is the second-order
peak of the source, an artifact.

Figure 70: PL spectrum of rutile (110) sample at 7K for different excitation wavelengths in
the short wavelength range; VIS-UV band. The large and highly intense peak at 3.44 eV is
the first order of the source.
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Figure 71: PL spectrum of rutile (001) sample at 7K for different excitation wavelengths in
the long wavelength range; NIR band (right).

Figure 72: PL spectrum of rutile (110) sample at 7K for different excitation wavelengths in
the long wavelength range; NIR band.
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Discussion

First, the fact that rutile (001) and (110) samples have the same PL bands suggests that the
crystal orientation does not play an important role in photoluminescence in these experiments.
The UV-VIS band corresponds most likely to band-to-band radiative recombinations and to
recombination from defect states inside the bandgap, which was also found in the literature
in section 2.4.4. In the literature, this sub-bandgap PL of the UV-NIR band was attributed
to radiative recombination through oxygen defects or excitons, similar to anatase. The NIR
band corresponds to emission from states inside the bandgap.

The UV-VIS and NIR bands behave in opposite ways when increasing the excitation wavelengths;
the VIS-UV band decreases in intensity while the NIR band increases, as illustrated in figures
69, 70, 71 and 72. On one hand, as the wavelength increases, the photons penetrate more
into the bulk which reduces the effect of surface defects. This is the application of Beer-
Lambert law for a set of wavelengths close to the bandgap, where the absorption coefficient
is an increasing function of the excitation energy. From section 5.1.1 in the SE analysis, the
absorption coefficient is about 14 times higher at λexc = 300 nm, than at λexc = 380 nm.
On the other hand, if the PL intensity increases when varying the excitation wavelengths,
this means that more radiative recombination centers are generated or fewer non-radiative
recombination centers. From these two aspects, the UV-VIS PL seems to originate more from
the surface layers of the sample, as the intensity decreases with the excitation wavelength,
while the NIR band seems to originate more from the bulk as its intensity increases with the
excitation wavelength.

Therefore, as the composition of the bulk is most likely similar between the rutile (110) and
(001) sample, it is coherent that the line-shape of the NIR PL band looks identical for rutile
(110) and (001), as illustrated in figures 66 and 65. This PL were attributed later to possible
color centers. On the other side, the fact that the relative intensity of inner peaks in the VIS-
UV band changes between the samples is coherent with a PL originating from the surface
layers. The surface layers are more subject to defects. Thus, the differences between the
spectra in figure 68 and 67 could be explained by the different quality (purity, history,...) of
the surface of the samples. Similarly, the presence in the rutile (110) spectra at λexc = 360
nm (figure 69) of two peaks almost invisible for the rutile (001) sample can be also explained
by different surface defects in rutile (001) and (110).

The NIR band centered at 1.52 eV was associated to associate this NIR band to the presence of
color centers by Gallart et al.[45], Montoncello et al. [58] and Krivobok et al.[59]. For Gallart
et al. claimed that the line-shape of the band originates from self-trapped exciton related
to oxygen vacancies, while Montoncello et al. mentions the ionization of oxygen vacancies,
and Krivobok et al. suggests intra-center transitions (i.e. d-d orbitals transitions) between
vanadium impurities and titanium ions.[45, 58, 59] It should be noted that powder samples
favor contaminations from external chemicals, and could explain the presence of vanadium
impurities in that study, while in Gallart et al. paper the presence of vanadium is highly
unlikely. Thus, here the interpretation of Gallart et al. is preferred, as their samples are
single crystals like rutile (001) and (110) samples. Moreover, their spectra are very similar
to the NIR spectra measured in this thesis for rutile (001) and (110), as illustrated in figure
73.
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Figure 73: (a) PL spectrum of the rutile sample R100 for different temperatures. (b)
Analysis of the PL emission into two broad components and a set of narrow lines at higher
energies. (c) Simulation of the structured high-energy part of the PL emission by a Franck-
Condon emission spectrum. Taken from Ref. [45].

Therefore, it seems likely that the NIR rutile band results from a Franck-Condon emission
from color centers. First, the band is located around 1,52 eV, which is consistent with the
observation that the color centers introduce energy levels into the bandgap. In this case, the
color centers appear to be located in the middle of the rutile bandgap. Secondly, the shape
of the PL is also a sign of electronic transitions involving phonons. The peak at 1.57 eV has
the characteristics of the zero-phonon line (ZPL), as it is located at the edge of the band
that corresponds to the most energetic emission. In addition, the series of peaks around the
maximum at 1.52 eV represents well the phonon lines of the side-band.

Conclusion

In conclusion, the rutile samples show two distinct bands. The VIS-UV band is attributed
to band-to-band direct transitions, as well as possibly states close to the surface as the UV
light penetrates less in the bulk, such as oxygen defect or excitons states. The NIR band,
for its part, is attributed to the PL of color centers in the bulk, which introduces levels deep
in the bandgap. The small differences in the spectra of rutile (110) and (001) samples seem
more attributed to their different purity and history, than their different crystal orientations.

Figure 74 shows a schematic drawing of the optical transitions involved in the PL of rutile.
The light blue arrow corresponds to band-to-band recombination. As the UV-VIS band is
broad, the defect states responsible for the sub-bandgap part can be considered as a con-
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tinuous band. From this ”continuum”, recombination can occur either from the excitonic
states, close to the CB and originating from Ti defects, to the VB (cyan arrow), or from the
oxygen defects, forming states close to the VB, to the CB (green arrow). Finally, the color
center emits in the IR, and can occur either from the CB to the color defect state or from
the color defect state to the VB. These color center states are believed to originate from F
center (i.e. oxygen vacancy filled with one or two electrons which affects their surrounding)
which behave as single atoms and are spread over the sample.

Figure 74: Schematic drawing of the optical transition involved in the PL of rutile.
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5.3.3 TiO2 thin films on STO substrate (undoped A & B series)

This section presents the PL of three TiO2 thin films from the A and B series, grown on
SrTiO3 (STO) substrates. In the literature, it has been shown that using an STO substrate
favors the crystalline form of anatase, due to their similar lattice constants. The crystallinity
of the thin films was verified through XRD measurements by a former student of the group
and is coherent with the theory. A2, B3, and B5 are polycrystalline, mostly textured anatase
but A2 and B3 have in addition some rutile grains. Thus, the spectrum of A2, B3, and B5 is
expected to show similarities with the PL of the anatase single crystal measured previously.
The thin film A2 has a thinner thickness (i.e. 229 nm), than A3 (i.e. 667 nm) and A5 (i.e.
687 nm). Moreover, B3 is deposited with less oxygen present in the growth chamber.

In the following, it will be seen that the thin films have a PL band in the same energy range
as anatase. Unfortunately, the substrate, STO, has a bandgap of 3.25 eV, just slightly above
anatase (3.20 eV). Thus, the PL of the substrate is likely to interfere with the PL of the TiO2

thin film. This consideration is especially important since TiO2 is known to have a weak
PL, which is why samples were measured at low temperatures. The PL spectra of STO are
presented first, and then the PL spectra of the A2, B3, and B5 TiO2 thin films.

The spectra of STO and the anatase (110) are plotted in figure 75. The STO substrate shows
a broad blue-green PL band in the (2.0-4.0) eV range, only slightly shifted from the anatase
band. As for anatase (110), the main contribution to the intensity comes from sub-bandgap
states.

Figure 75: PL spectrum of the STO substrate and the anatase (110) single crystal, at room
temperature.
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Figure 76 shows the PL at 7K of STO together with the anatase (110) PL. As previously,
they both show a broad blue-green band. Their maxima are separated as before by about
0.10 eV.

Figure 76: PL spectrum of STO substrate and anatase (110) single crystal at 7K.

Figure 77 shows the evolution of the PL spectrum of STO with different excitation wavelengths.
The intensity of the band increases with decreasing the photon energy of the excitation, while
the peak maximum shifts towards the UV.
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Figure 77: Evolution of PL spectrum of STO substrate at 7K with varying excitation
wavelengths.

The PL of A2, B3, and B5 TiO2 thin films is presented in the following.

At room temperature, the spectra of the A2, B3, and B5 TiO2 thin films have a band in the
visible region: (2.0 - 4.0) eV as illustrated in figure 78. The samples, A2 and B5, show the
same green band centered at 2.81 eV, similar to the PL band of anatase, while B3 shows an
intense PL, slightly shifted to higher energies.
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Figure 78: PL spectrum of undoped A2, B3 and B5 thin films on STO substrate at room
temperature.

At 7K, the PL of A2, B3, and B5 TiO2 thin films undergoes a redshift, as illustrated in
figure 79, with the following new peak positions respectively at 2.42 eV, 2.38 eV, and 2.47
eV. Moreover, A2 and B5 PL present a shoulder at 2.18 eV. A2 seems to include in addition
two extra shoulders at 2.7 eV and 2.9 eV. The intensity increase also greatly: the peaks are
narrower and stronger than for STO and the anatase (110).
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Figure 79: PL spectrum of undoped A2, B3 and B5 thin films on STO substrate at 7K.

Figures 80, 81, and 82 show the evolution of the PL with increasing excitation wavelengths
(i.e. decreasing excitation energies). The globally same behavior is noticed for all the samples:
an increase in intensity with increasing λexc. Two exceptions of this trend are noticed: the
λexc = 300 nm spectrum in figure 81 and the λexc = 380 nm spectrum in figure 82. However,
no shift of the maximum is observed, unlike what was observed in the STO PL in figure 77
or in anatase (110) in figure 62.
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Figure 80: Evolution of PL spectrum of A2 TiO2 thin film grown on STO substrate at 7K
with varying excitation wavelengths.
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Figure 81: Evolution of PL spectrum of B3 TiO2 thin film grown on STO substrate at 7K
with varying excitation wavelengths.
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Figure 82: Evolution of PL spectrum of B5 TiO2 thin film grown on STO substrate at 7K
with varying excitation wavelengths.

Discussion

As expected, the PL of STO and anatase overlaps due to their close bandgap, 3.25 eV and
3.20 eV. In figures 75 and 76, the similarity is such that it will make it difficult to extract the
contribution of the TiO2 thin films from their PL spectrum, which are expected to resemble
the one of anatase. Due to the reduction of non-radiative recombination at low temperatures
as explained in the anatase discussion, the STO band undergoes a redshift of 0.10 eV at 7K.
Unexpectedly, the anatase sample seems to emit more near its bandgap than STO does: even
if the bandgap of STO is higher than the anatase one, its PL maximum is located at lower
energies than anatase. This may be due to a lower crystalline quality of the STO substrate.

An analysis of figure 77 shows that the contribution from the band-to-band emission of STO
at 7K seems to increase as the excitation energy is lowered. This could be due to the fact
that the conduction electrons are less likely to take other recombination paths than the band-
to-band emission when they are excited to states near the bottom of the conduction band.
From these states, the band-to-band might be favored.

The PL of STO, unlike what was found from the literature in section 2.4.4 seems to originate
mostly from sub-bandgap emission related to self-trapped holes (STH) by O- of the oxygen
vacancies or from STE originating from Ti interstitials according to Dadgostar et al.[63] The
band-to-band emission seems really weak in the sample measured here.
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Now the PL spectra of the A2, B3, and B5 TiO2 thin films will be discussed. The spectra
of A2, B3, and B5 do not show the characteristics of the band-to-band transition neither of
STO or anatase, maybe except for B3 at RT. At 7K, the PL of all the samples shifts towards
the NIR. This redshift shows the predominance of radiative recombination through states
inside the bandgap at 7K, from STE or oxygen defects. If the PL of the STO substrate is
predominant, the sub-bandgap part could originate from self-trapped holes (STH) by O- of
the oxygen vacancies or from STE originating from Ti interstitial.

In figures 80, 81, and 82, the PL spectra of the TiO2 thin films show globally an increase of the
intensity of the band with increasing λexc. This PL enhancement suggests that absorption of
photon energies closer to the bandgap of anatase leads to an overall increase of the emissions
from or to oxygen defects states. The PL spectrum at λexc = 300 in figure 81 and PL
spectrum at λexc = 380 nm in figure 77 are two exceptions of this trend, that are attributed
to the detector (e.g. saturation). It has been observed that sometimes the intensity increases
or decreases abruptly from one measurement to another without any apparent reason.

If the PL is mostly from the thin film, the curve fitting of anatase can be used to interpret
the PL. Unfortunately, by a lack of time, a curve fitting of the thin films was not performed.
From the curve fitting of the anatase (110), performed according to Ref.[53], the two main
contributions to the PL at 7K are oxygen defects emission at 2.30 eV and STE emission
at 2.86 eV. In addition, contributions at 2.52 eV and 2.67 eV were attributed respectively
to emissions related to charge transfers from Ti3+ to TiO2−

6 and oxygen defects emissions.
Thus, the PL of A2, B3, and B3 could be due to a majority of emissions from oxygen defect
states. The PL would result in the sum of two Gaussian functions centered at 2.30 eV and
2.67 eV. This is emphasized by the shoulders in A2 and B5 PL, both around 2.30 eV and
2.67 eV. However, due to the shape of the should, a contribution from the charge transfer
is also plausible, especially for B3 which does not show any shoulder. If it is the case, this
is a specific characteristic of TiO2 thin films. This contribution was almost negligible in the
anatase (110) spectrum.

The huge intensity of the peaks at 7K for the three thin films could suggest at first glance
that only the STO substrate is emitting, however, some indications suggest the opposite.
First, the respective intensity of the thin film peaks is coherent with the respective thickness
of the films (229 nm, 667 nm, and 687 nm for respectively A2, B3, and B5). The PL of A2
is less intense than B5, which in return is less intense than B3. Indeed, a thinner film is
expected to emit less, as fewer recombination centers are available. Secondly, introducing the
absorption coefficient of anatase calculated in section 5.1.2 in the Beer-Lambert law shows
that at λexc = 300 nm most photons are absorbed within the first 50 nm of the films, so
in the layers close to the surface. Finally, the thin films are polycrystalline meaning that
they are composed of grains. At each grain boundary, more defects are forming during the
deposition of the thin films. This could possibly explain why almost no band-to-band PL is
observed in the thin films. This is also coherent with the analysis performed above from the
curve fitting data of anatase: oxygen defects are the most contributing to the PL. Moreover,
B3 was deposited with less oxygen present in the growth chamber, which means that B3
contains more oxygen vacancies than B5 and A2. Thus, the strongest PL of B3 at 7K seems
directly linked to its higher proportion of oxygen vacancies. From the reason exposed above,
the PL of A2, B3, and B5 seems likely to not originate from the thin films rather than the
STO substrates.
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Conclusion

From the spectra, it is impossible to separate the PL on the STO substrate from the PL of
the TiO2 thin films, that are supposed to have mostly an anatase character. However, several
features indicate that the PL could come from the thin films. If the PL of the film is actually
detected, then the PL at 7K is mostly a sign of states in the bandgap from oxygen defects
with maybe a contribution of emission induced by charge transfers from Ti3+ to TiO2−

6 .
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6 Conclusion

TiO2 anatase and rutile single crystals were characterized optically, through spectroscopic
ellipsometry. This analysis was followed by an initial critical point line-shape analysis of the
dielectric functions of rutile ordinary axis, and the DFT calculations of Rasmus Hoholm were
compared to the anisotropic B-spline model of rutile. Finally, the single crystals: anatase
(110), rutile (110) and (001), as well as three undoped TiO2 thin films on STO substrate
(A2, B3, and B5) were characterized with photoluminescence spectroscopy.

An optical B-spline model was first built for the ordinary axis of the two TiO2 polymorphs
studied here, with the data of the rutile (001) and anatase (001) samples. Then, an aniso-
tropic uniaxial B-spline model was built for both the ordinary and extraordinary dielectric
function with the data from the anatase (110) and rutile (110) single crystals. Finally, the
anisotropic B-spline models was converted into a general-oscillator model and the absorption
peaks were fitted with Tauc-Lorentz oscillators. From this model, the extraordinary dielectric
function of rutile was fitted with a single Tauc-Lorentz centered at 4.02 eV, and a bandgap of
3.14 eV was founded. The ordinary dielectric functions were fitted with three Tauc-Lorentz,
at 3.97 eV, 4.47 eV, and 5.45 eV, and gave a bandgap of 2.98 eV. Thus, the experimental
bandgap, 3.00 eV, was found to originate from the ordinary axis. The ordinary dielectric
function of anatase was fitted with three Tauc-Lorentz as for rutile, centered respectively at
3.85 eV, 4.60 eV, and 5.88 eV, and gave a bandgap of 3.25 eV for the anisotropic B-spline
model. For the extraordinary axis, two Tauc-Lorentz were sufficient, at 4.16 eV and 4.99 eV,
and gave a bandgap of 3.63 eV. Similarly to rutile, the experimental band gap of anatase
corresponds to the ordinary bandgap. Anatase seems to present a larger anisotropy than
rutile.

The initial critical point study focused on the ordinary axis of rutile. The dielectric functions
were fitted with CP line-shapes. First, the interpretation of the dimensionality and of the
type of the CP were investigated through a literature review. The absorption spectra can
have either a band character, meaning that most of the transitions are from band-to-band
for narrow bandgap semiconductors with high dielectric constant, or a localized excitation
character (i.e. due to Frenkel excitons) for large bandgap semiconductors with low dielec-
tric constant. For TiO2, a large bandgap semiconductor with high dielectric constants, it
was unclear which character will be the most pronounced. The interpretation of Loughin
et al. seems the most relevant for the dimensionality. The dimensionality is associated to the
curvature of the conduction band, and so the the effect mass and the motions of a conduction
electron in k-space, a 0D CP corresponding to an infinite effective mass in all directions and
a 3D CP of a small effective mass in all the directions.

Excitonic CPs were used mostly to fit the dielectric functions and mix of CPs to account
for many-body effect were allowed by setting the phase ϕ as a free parameter. The analysis
showed that at least six CPs were involved in the DFT dielectric functions of the ordinary axis
of rutile, but that seven CPs are giving a better fit. Three of the critical points correspond
to the three positions of the Tauc-Lorentz oscillators. The experimental B-spline dielectric
functions were well fitted with four critical points. However, a six CPs fit gave also a fit.
The energy positions of the transitions were systematically a little lower than for the DFT,
but the trend was generally consistent. The excitonic CPs are believed to give the best fit
because of their narrower line-shape, while 1D, 2D and 3D are more likely to affect the CPs

122



around.

From the almost zero phases ϕ for the seven CPs of the DFT and from the ϕ taking non-
integer multiples of π2 values for four CPs of the B-spline model, it seems that TiO2 could have
predominantly a localized excitation character, and that its optical properties are governed
mostly by excitonic transitions.

The analysis of the PL spectra turned out to be complex, as it appears not only band-to-band
emissions were involved in the radiative recombination processes. The spectra of the anatase
(110) single crystal shows a PL band centered around 2.82 eV at RT and 2.78 eV at 7K.
The band can be decomposed in a band-to-band contribution centered around 3.20 eV, the
bandgap of anatase, and a sub-bandgap contribution. The sub-bandgap contribution was
attributed in the thesis mainly to two origins as was done in literature. The first one for the
region just below 3.0 eV, is associated with the recombination of self-trapped excitons. The
octahedral structure of the TiO6 in the lattice is believed to favor the formation of excitons.
The second origin concerns states even deeper in the bandgap and is suspected to be from
oxygen defects. The latter is in accordance with the brown-orange color and the natural
crystal nature of the anatase (110) sample.

The 7K and RT spectra of rutile (110) and (001) single crystals show two bands, one similar
to anatase PL: a broad band with a majority of sub-bandgap contributions, a second one
centered at 1.52 eV and constituted of well-resolved peaks. The first band at (2.0-3.5) eV
can probably be attributed to band-to-band emission around 3.00 eV, the bandgap of rutile,
and to self-trapped excitons and possibly oxygen defect states for the lower energy region of
the spectra. The band centered at 1.52 eV, due to its well-resolved structure, was attributed
to color center emission probably involving oxygen vacancies. The peaks result from the
couplings of the electronic states of the defect with the phonon modes of the crystal. The
peak at 1.57 eV has the characteristics of the zero-phonon line.

The 7K PL of the undoped TiO2 thin films on STO show a strong PL with a single band
centered at 2.38 eV for A2, 2.42 eV for B5, and 2.47 eV for B3. The growth of the thin film
on the STO substrate is believed to favor the anatase crystal structure, thus a similar PL was
expected. However, the STO substrate was found to have almost identical spectra to anatase,
due to its close band gap, 3.25 eV. From this observation, it was difficult to distinguish the
contribution of the substrate from that of the thin films. However, several features in the PL
of A2, B3, and B5 at 7K suggest that the PL could originate from the thin film. Then, the
main contribution would be from oxygen defects states.

In conclusion, from the PL and SE analysis, the optical properties of TiO2 seem dominated
by excitons. The PL results complement nicely the SE analysis, by showing the importance
of the sub-bandgap state, whereas in SE only the above bandgap states were present in the
spectra.
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Suggestion of future work

For a future PL analysis, the first thing that would seem interesting to try is to measure the
other undoped TiO2 thin films of the A and B series, but on different substrates. However,
from their bandgaps they are very likely to emit also at the energy range we are interested
in. So, the only thing that might be interesting could be to measure the doped TiO2 thin
films on STO substrate to see if they present a different PL.

An interesting analysis could be performed if the setup was modified to introduce a confocal
microscope together with the laser source. A confocal microscope allows the collection of the
photoluminescence at well resolved points of the sample on the surface (with a laser source,
the spot size can be of few manometers), but also inside the sample by adapting the depth
of field of the system with a piezoelectric stage. By scanning either the depth or the surface,
one can then get a map of the photoluminescence. This would be interesting to see how the
color centers in rutile single crystals are distributed for example, as well as if the surface PL
is different than from the bulk. Finally, it could be possible to record the PL of the thin
film without measuring the PL of the substrate. However, this idea for the future remains
hypothetical as it would be coasting and not straight forward to add a confocal microscope
to the actual PL setup.

Concerning the critical points analysis, first the CP analysis Matlab code would need to be
improved to fix the convergence problem. Secondly, it would be interesting to implement the
possibility to restrict the critical point to an energy range around the energy of the transitions
E0. Thus, the dielectric functions could maybe be fitted with higher dimensionality CPs than
excitonic CPs. One of the current problems is also the initialization of the parameters. The
dimensionality seems connected to the electron effective masses in the conduction band in the
three k directions. So, once the critical points are found in the band structure, an analysis
of the effective masses at this point could allow to estimate the dimensionality of the critical
point. Thus, the estimate value could be used to initialize n and ϕ in the code.
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[30] Juan Jiménez and Jens W. Tomm. ‘Spectroscopic Analysis of Optoelectronic Semi-
conductors’. In: (2016).

[31] Wei Lu and Ying Fu. ‘Photoluminescence’. In: Spectroscopy of Semiconductors: Nu-
merical Analysis Bridging Quantum Mechanics and Experiments (2018), pp. 107–
158.

[32] Ivan Pelant and Jan Valenta. ‘161Luminescence of excitons’. In: Luminescence
Spectroscopy of Semiconductors (2012), p. 0.

[33] R. T. Williams and K. S. Song. ‘The self-trapped exciton’. In: Journal of Physics
and Chemistry of Solids 51.7 (1990), pp. 679–716.

[34] H. Ikoma. ‘Semiconductors, Impurity and Defect States in’. In: Encyclopedia of
Condensed Matter Physics (2005), pp. 330–334.

[35] Wikipedia. ‘Frank-Condon principle’. In: ().

[36] Mathijs de Jong et al. ‘Resolving the ambiguity in the relation between Stokes
shift and Huang–Rhys parameter’. In: Physical Chemistry Chemical Physics 17.26
(2015), pp. 16959–16969.

[37] S. R. Meher. ‘6 - Transition metal oxide-based materials for visible-light-
photocatalysis’. In: Nanostructured Materials for Visible Light Photocatalysis
(2022), pp. 153–183.

126



[38] A. J. Moulson. ‘Transition Metal Oxides’. In: Concise Encyclopedia of Advanced
Ceramic Materials (1991), pp. 497–499.

[39] Mark Greiner and Zheng-Hong Lu. ‘Thin-film metal oxides in organic semicon-
ductor devices: Their electronic structures, work functions and interfaces’. In: NPG
Asia Materials 5 (2013).

[40] Masahiro Miyauchi et al. ‘Photoinduced Surface Reactions on TiO2 and SrTiO3
Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity’. In: Chemistry
of Materials 12.1 (2000), pp. 3–5.

[41] R. Asahi et al. ‘Electronic and optical properties of anatase TiO2’. In: Physical
Review B 61.11 (2000), pp. 7459–7465.

[42] B. Jiang et al. ‘Charge density and chemical bonding in rutile, TiO2’. In: Acta
Crystallographica Section A: Foundations of Crystallography 59.4 (2003), pp. 341–
350.

[43] Ye-Fei Li et al. ‘Adsorption and Reactions of O2 on Anatase TiO2’. In: Accounts
of Chemical Research 47.11 (2014), pp. 3361–3368.

[44] T. Sekiya et al. ‘Relaxation process in anatase TiO2 single crystals with different
colors’. In: Journal of Luminescence 108.1 (2004), pp. 69–73.

[45] Mathieu Gallart et al. ‘Temperature dependent photoluminescence of anatase and
rutile TiO2 single crystals: Polaron and self-trapped exciton formation’. In: Journal
of Applied Physics 124.13 (2018).

[46] H. Tang et al. ‘Photoluminescence in TiO2 anatase single crystals’. In: Solid State
Communications 87.9 (1993), pp. 847–850.

[47] M. Watanabe and T. Hayashi. ‘Time-resolved study of self-trapped exciton lumin-
escence in anatase TiO2 under two-photon excitation’. In: Journal of Luminescence
112.1 (2005), pp. 88–91.

[48] Yutaka Toyozawa. ‘Elementary processes in luminescence’. In: Journal of Lumin-
escence 12-13 (1976), pp. 13–21.

[49] Deborah K. Pallotti et al. ‘Photoluminescence Mechanisms in Anatase and Rutile
TiO2’. In: The Journal of Physical Chemistry C 121.16 (2017), pp. 9011–9021.

[50] Yutaka Toyozawa. ‘Dynamics of excitons in deformable lattice’. In: Journal of
Luminescence 24-25 (1981), pp. 23–30.

[51] Yasuhiro Yamada and Yoshihiko Kanemitsu. ‘Determination of electron and hole
lifetimes of rutile and anatase TiO 2 single crystals’. In: Applied Physics Letters
101.13 (2012).

[52] Chunyan Jin et al. ‘Structure and photoluminescence of the TiO2 films grown
by atomic layer deposition using tetrakis-dimethylamino titanium and ozone’. In:
Nanoscale Research Letters 10.1 (2015), p. 95.

[53] Biswajit Choudhury and Amarjyoti Choudhury. ‘Oxygen defect dependent vari-
ation of band gap, Urbach energy and luminescence property of anatase,
anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles’. In: Physica
E: Low-dimensional Systems and Nanostructures 56 (2014), pp. 364–371.

[54] Fawad Tariq et al. ‘Room temperature photoluminescence in plasma treated rutile
TiO2 (110) single crystals’. In: Vacuum 171 (2020), p. 108999.

[55] V. Melnyk et al. ‘Low-temperature luminescence of different TiO2 modifications’.
In: Journal of Molecular Structure 744-747 (2005), pp. 573–576.

127



[56] L. Kernazhitsky et al. ‘Room temperature photoluminescence of anatase and rutile
TiO2 powders’. In: Journal of Luminescence 146 (2014), pp. 199–204.

[57] Deniz Kadir Takci. ‘Synthesis, characterization and dielectric properties of rutile
TiO2 nanoflowers’. In: Journal of Crystal Growth 578 (2022), p. 126442.

[58] F. Montoncello et al. ‘Near-infrared photoluminescence in titania: Evidence for
phonon-replica effect’. In: Journal of Applied Physics 94.3 (2003), pp. 1501–1505.

[59] V. S. Krivobok et al. ‘Sharp luminescence system in titanium dioxide with zero-
phonon transition at 1.573 eV’. In: Journal of Luminescence 252 (2022), p. 119352.
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Appendix

A Ellipsometry analysis – Rutile

A.1 B-spline model for theordinary axis of rutile

The ordinary B-spline model for rutile is built from rutile (001) single crystal data (data file:
”tio2 rutile 001 55-70-5 20s MM.SE”). Rutile (001) is oriented in a way that the extraordin-
ary axis is normal to the sample surface. Thus, mainly the ordinary axis of the sample is
probed during the VASE measurements, allowing the extraction of the ordinary axis optical
properties separately from that of the extraordinary axis.

An isotropic B-spline model is built to fit the data. Figure 83 extracted from CompleteEase®
contains the parameters of the fit. The real part of the dielectric function is calculated from
the imaginary part through the Kramer-Kronig formula, ε2 is enforced positive to avoid non-
physical negative absorption. The B-spline resolution is set to 0.30 eV in the range of the
tail of ε2, i.e. [0.70, 3.00] eV, and to 0.05 eV in the range of the absorption peaks, i.e.[3.00,
5.90] eV. The sample shows almost no depolarization, as illustrated in figure 84, a sign that
thickness non-uniformity and instrument bandwidth are negligible for the sample. Thus,
the ideal model calculation is used. Because the incoming electromagnetic field interacts
mainly with the electric dipoles parallel to the sample surface, which in this case correspond
only to the ordinary axis, the dielectric functions are extracted from the isotropic form of
the Mueller matrix by setting the fit weight to N,C,S. As a reference, the ordinary dielec-
tric functions from Schubert et al.[92] are used as the starting material for the B-spline model.

The imaginary part ε2, which contains the absorption properties of the material, is expected
to vanish below the experimental bandgap of rutile of 3.0 eV. In order to determine the exper-
imental bandgap from VASE data, the bandgap in the model is assumed below the expected
bandgap. Moreover, the bandgap for the ordinary and extraordinary axis might be different
and could vary from the tabulated value. Simultaneously, the roughness is fitted to prevent
incorrect absorption coefficient near the bandgap as suggested in their paper in Ref.[72].

The Tie-Off function is used to account for absorption outside the measured spectral range, in
order to give the correct trend at the edge of the experimental data. The resulting absorption
can then be compared to Schubert et al. data.[92]
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Figure 83: Parameters of the B-spline model for rutile (001).

Figure 84: Depolarization data of Rutile (001) at various incidence angles, the dotted line
shows the results of the B-spline model.

The figures 85 and 86 show the ψ and ∆ data measured on rutile (001) single crystal with
VASE by Thomas Brakstad, a previous PhD student of the Solar Cell Physics group. The
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dotted line shows the results of the B-spline model, which follows well the experimental
data. The fit presents an MSE of 1.10 which confirms the goodness of the model, as an
MSE of 1 corresponds to the ideal case. The curves can be divided into two regions: the
transparent region (i.e. normal dispersion) and the absorbing region (i.e. anomalous dis-
persion). In the first region under 3.00 eV, ∆ is roughly constant, and is equal to 180◦ for
θi = 55.00◦, 60.00◦, 65.00◦, here ρ only depends on ψ. In the second region, after 3.00 eV, the
ψ curves show oscillations as an effect of the absorption. For θi = 70.00◦, ∆ switches from
0◦ to 180◦ in the transparent region, while it has a similar behavior to the other incidence
angles in the absorbing region.

As it was shown in Section 2.2.3 in equation 21, in the simple case where the optical prop-
erties can be directly extracted from the ρ = tan(ψ)ei∆, an analytic expression connects the
dielectric functions to the angles of incidence.
When multiple angles of incidence are measured, the location of the minimum of ψ can give
an insight into the Brewster angle θB of the material, if ∆ equals 90◦ or 270◦. The Brew-
ster angle corresponds to the incident angle where the p-polarization is totally transmitted
through the material. In the present case, ψ shows a minimum of at 2.81 eV while ∆ equals
90◦ for an incidence of 70◦. Thus, the Brewster angle of anatase can be estimated at around
70◦. Denser incident angle data are needed to determine more precisely the Brewster angle.
However, this observation is consistent with the expected range of θB for a semiconductor.
Usually, the Brewster angle ranges from 55◦ for a low-index dielectric material to 75◦ or 80◦

for a semiconductor or a metal.[100]

No interference modulates the curve in the transparent region because the sample is one side
polished. This is why only SE measurements in reflection were performed on the sample. A
two sides polished sample is necessary to measurements SE data in transmission, allowing for
example to extract the thickness of a layer from the interference fringes.

Figure 85: Rutile (001) ψ data for various incidence angles, the dotted line shows the results
of the B-spline model.
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Figure 86: Rutile (001) ∆ data for various incidence angles, the dotted line shows the results
of the B-spline model.

The dielectric functions calculated by the model are presented in figure 87 (dashed line),
the red and green curves depict the dielectric functions from Tiwald and Schubert.[92] The
analysis of ε2 gives an insight of the absorption of the rutile. As expected the sample presents
absorption only above 3.00 eV. Three oscillators seem to participate in the absorption, re-
spectively located at ∼ 3.98 eV, ∼ 4.60 eV, and ∼ 5.44 eV, suggesting at least the presence of
three critical points. The outer range oscillation at ∼ 7.14 eV is shifted by 1.40 eV compared
to Tiwald and Schubert data, but the Tie-Off function purpose is to shape the dielectric
functions at the edges rather than giving with accuracy the positions of the absorption peaks
outside the range. Differences between the B-spline model and the Schubert model are no-
ticed at the spectral range edge. The peak at ∼ 5.44 eV is sharper in the B-spline model.
The shape of the Schubert data suggests that the peaks at ∼ 4.60 eV and ∼ 5.44 eV have a
larger broadening and possibly merged together. The differences do not appear to be linked
to the quality of the fit, but rather to the condition of the experiment (type of measurement,
accuracy of the angle of incidence, broadening of the monochromator lines, etc... ) and to
the quality of the sample which differs from one to another.

Figure 87: Rutile (001) dielectric function from the B-spline model (MSE = 1.10) for the
dashed line, and respectively the imaginary and real part of dielectric functions from Schubert
et al.[92] in green and red. The dots represent the nodes of the B-spline.
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For further comparison, figure 88 shows in addition to the B-spline model the pseudo dielectric
function and Schubert model. The pseudo dielectric functions give a quantitative estimate of
the real dielectric function, which explains that the amplitude of the curve differs from the
B-spline model. However, the resemblance between the curves suggests that the sample is
close to the ideal case described in Section 2.2.3 in Eq.21. Moreover, this is consistent with
the small fitted roughness, only 2.21 nm.

Figure 88: Comparison of the dielectric function from the B-spline model for rutile (001),
the pseudo dielectric function extracted for the experimental ψ and ∆, and the dielectric
functions modeled by Schubert et al.[92].

A.2 Determination of the ordinary and extraordinary orientation

When the sample is measured at several angles of rotation, the shapes of the pseudo-dielectric
functions can give the orientation of the ordinary and extraordinary axis regarding the ori-
entation of the crystal in the measurement frame. At azimuth angles where the incident light
wave vector aligns with one of the axes of the sample, thus the dielectric function of this axis
predominates in the data. This can be observed with the rutile (110) sample.

At 75.00◦, the pseudo dielectric functions look greatly like the modeled dielectric functions for
the ordinary axis. While at 165◦, the pseudo dielectric function shapes reassemble effectively
the extraordinary axis dielectric functions (as illustrated in figures ??, ??, and 89). These
orientations are perfectly orthogonal like the ordinary and extraordinary axis are. As the
data are measured every 5◦, the incertitude of the determination is ±5◦. At the same time,
the elements of the Mueller matrix belonging to the off-diagonal blocks are small (≪ 1),
noisy, and not well fitted at these angles, where the Mueller matrix is supposed to be almost
isotropic, because mainly one axis contributes to the dielectric functions. These elements
are not completely zero, because even when the sample the ordinary axis is perpendicular
to the sample surface, a small interaction between the light beam and the extra-ordinary
axis electric dipoles remains. This only exception is when the light beam arrives at normal
incidence with the sample surface but then there is no reflection so no ellipsometry data.
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Figure 89: Pseudo dielectric function and off-diagonal blocks elements of the Mueller Matrix
at different azimuth angles, allowing the determination of orientation in rutile (110) single
crystal of the ordinary and extraordinary axis: 90◦ corresponds to the ordinary axis while
180.00◦ correspond to the extraordinary axis.
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B Ellipsometry analysis – Anatase

B.1 B-Spline model for the ordinary axis of anatase

The dielectric functions of the ordinary axis are calculated from the anatase reference sample
oriented in the (001) direction (data file: ”anatase ref001 fp 55-75-5 20sec MM”). In this
case, the extraordinary axis is perpendicular to the sample surface and the incoming light
beam cannot interact with it, allowing the isolation of the ordinary optical properties.

The model follows the same procedure as presented for the ordinary axis of rutile. The
bandgap of anatase is expected at 3.20 eV, thus in order to let this parameter free but to
include in the model that the sample is a semiconductor, a bandgap is assumed at 2.00 eV.
In return, the model fitted 1.51±0.052 nm roughness. If not fitted, the roughness can add an
absorption tail at the bandgap. As the purpose of the analysis is to retrieve the bulk optical
properties of TiO2, the surface effect on the dielectric functions is not studied here.

The anatase ordinary axis B-spline model possesses a good MSE of 2.23. No obvious devi-
ation from the ψ and ∆ is noticed in figure 90. The sample presents a transparent region
from 1.00 eV to ∼ 3.20 eV, and an absorbing region above 3.20 eV, identifiable with the
ψ and ∆ oscillations. These are not signs of interference but of the variation in phase and
amplitude of the polarization during reflection. Before 3.20 eV, the polarization of light does
not change during the reflection because there is no absorption, for each angle of incidence,
the s and p polarization remain in phase (i.e. an integer multiple of π).

Each incidence angle corresponds to a different pathway in the material, and the interac-
tion/projection (scalar product) between the wave vector of the incoming light and the po-
larization vector of the material varies with θi, thus probing each time a part of the dielectric
functions of the sample. By gathering all the information from all the θi, one can get a good
estimation of the optical properties of the sample.
In the two lower ∆ curves (θi = 70.00° and 75.00° respectively) a phase change occurs around
the bandgap of ∼ π for the 70.00° curve, which is just a result of the measurement due to the
periodicity of ∆, and of 90° for 75.00° curve which corresponds to a phase opposition between
the s and p polarization.

As for the rutile ordinary axis, ψ displays a minimum of around 2.81 eV while ∆ equals 90◦

for an incident angle of 70◦. Thus, supporting a Brewster angle around 70◦for both anatase
and rutile. Their Brewster angles are not necessarily the same, however, it seems coherent
that the values do not differ much, as for a semiconductor, θB should lies around 75◦. [100]
The lower value could be the effect of the large bandgap of TiO2, which is sometimes referred
to as a dielectric material with high dielectric constants, because of its bandgap above 3.00 eV.
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Figure 90: Anatase (001) reference sample ψ and ∆ curves (MSE = 2.23).

The resulting dielectric function for the ordinary axis is presented in figure 91. A transparent
region below 3.20 eV and an absorbing region above is indeed remarkable. The imaginary part
ε2 includes two obvious critical points at 3.90 eV and 4.72 eV approximately, and probably
one outside the spectral range between 6.00 eV and 7.00 eV. The corresponding resonances
of ε1 are particularly visible and sharp.

Figure 91: Dielectric function of the ordinary axis, B-spline model from anatase (001) data
(MSE=2.23).

B.2 Determination of the ordinary and extraordinary orientation

Similarly to the study performed for the rutile (110) sample, the orientation of the ordinary
and extraordinary axis of anatase can be determined by comparing the pseudo dielectric
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functions at different rotation angles to the modeled dielectric functions from the anisotropic
B-spline model. At 75.00◦, the pseudo dielectric function reassembles greatly to the modeled
dielectric functions for the ordinary axis. While at 165◦, the pseudo dielectric function shape
reassembles effectively the extraordinary axis dielectric functions (as illustrated in figure 42
and 92). At the same time, one can notice that for these angles the elements of the Mueller
matrix belonging to the off-diagonal blocks are small (≪ 1), noisy, and less well-fitted. This
observation can be explained by the fact that at those angles the Mueller matrix should be
almost isotropic and these elements should tend towards zero.
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Figure 92: Pseudo dielectric function and off-diagonal blocks elements of the Mueller Matrix
at different azimuth angles, allowing the determination of orientation in anatase (110) single
crystal of the ordinary and extraordinary axis: 75.00◦ corresponds to the ordinary axis while
165.00◦ correspond to the extraordinary axis.
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C Critical point analysis

C.1 Additional fits of the DFT dielectric functions

Here, is detailed the analysis of the CPs for fit b), c), and d).

• Fit b)

Fit b) is similar to fit a) with the exception that the CPs 4.17 eV is removed. Table 20
summarizes the initial parameters for fit b). As a result, the residual squared norm is slightly
higher than in fit a): 4.52×104 and the fitted second derivative is smoother between CP1 and
CP2. Nevertheless, all the other features in the second derivative are well-fitted, as illustrated
in figure 93.

Figure 93: Experimental and fitted double derivative of ε1 and ε2 in fit b).

Similarly to fit a), the ε1,exp and ε1,fit only defers by a constant, as illustrated in figure 94. For
ε2, as mentioned before only the position of the CPs, and their shape around E0 are relevant
to be evaluated. In this case, all the fitted CPs seem to correspond to the experimental curve.
Moreover, CP1 and CP5 appear to contribute the most to the shape of ε2. The sub-bandgap
part of the spectrum reassembles more what is expected than in fit a), due to the lower
amplitude of all the CPs in this fit.

Figure 94: Experimental and fitted ε1 (left) and ε2 (right) for fit b).
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Table 15 shows the final parameters of fit b). Unlike fit a), the phase ϕ varies a lot from
one CP to the others. Only CP1 is close to zero and could result from purely excitonic
absorption. For the other CPs, the value of ϕ suggests a mix of higher dimensionality critical
points with excitonic CPs. So according to fit b), the many-body effect seems to be strong
for the absorption along the ordinary of rutile.

Table 15: Final parameters of the critical point line-shapes for fit b).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 0.88 0.16 3.96 336.92 -1 0D
CP2 0.42 0.17 4.44 1.32 -1 0D
CP3 0.38 0.22 4.80 10.12 -1 0D
CP4 0.24 0.23 5.12 37.60 -1 0D
CP5 0.91 0.22 5.44 13.96 -1 0D
CP6 0.48 0.29 5.90 49.25 -1 0D

• Fit c)

Converting CP1 and CP5 to 2D CPs could help to fill the amplitude gap between the experi-
mental and fitted ε2 curves. Table 21 summarizes the initial parameters for fit c). This fit has
a resnorm value of 7.88 × 104, so around 5.5 times higher than fit a). As a consequence, the
fitted derivative deviates from the experimental one, especially in amplitude, as illustrated
in figure 95. In figure 95, the large amplitudes and tails of the CP1 and CP5 affect greatly
the sum of the critical points.

Figure 95: Experimental and fitted double derivative of ε1 and ε2 in fit c).
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Figure 96: Experimental and fitted ε1 (left) and ε2 (right) for fit c).

Table 16 shows the final parameters of fit c). As in fit a), most of the CPs seem to be purely
excitonic as they have near 0 ϕ values, except for CP1 and CP5. CP5 is close to 90◦, so likely
to be a saddle point in the band structure according to Loughin et al. [91] CP1 seems for its
part to result from a mix of CPs, and thus from the interaction of the band continuum with
the localized excitations.

Table 16: Final parameters of the critical point line-shapes for fit c).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 4.58 0.10 3.96 66.92 0 2D
CP2 0.66 0.19 4.45 0.68 -1 0D
CP3 1.25 0.30 4.79 0.00 -1 0D
CP4 0.28 0.22 5.08 1.31 -1 0D
CP5 4.13 0.15 5.43 94.26 0 2D
CP6 0.87 0.33 5.88 0.00 -1 0D

• Fit d)

Table 22 summarizes the initial parameters for fit d). In fit d), CP1 and CP5 are converted
into 1D critical points. The 1D CP has a slightly narrower shape than the 2D CP, leading
to a lower resnorm than fit c) and b): 2.81 × 104. As previously, the fitting of the second
derivative agrees well with the experimental data as illustrated in figure 97. The main
deviation is around 4.17 eV. In the corresponding dielectric functions in figure 98, as before
an offset is observed in ε1. This could be corrected by adding a constant C. For ε2, the
1D critical points allow retrieving almost the DFT dielectric functions, its narrow shape fits
well CP1 and CP5, even if its long tail act as a constant offset over all the energy range,
preventing the dielectric function to converge to zero below the bandgap.

143



Figure 97: Experimental and fitted double derivative of ε1 and ε2 in fit d).

Figure 98: Experimental and fitted ε1 (left) and ε2 (right) for fit d).

Table 17 shows the final parameters of fit d). This time CP1 and CP5 were initialized to
180◦. Only CP2 appears to be a purely excitonic peak according to its almost zero ϕ. CP6
maybe also be an excitonic peak as ϕ = 10.73◦. For all the other CPs, ϕ is a non-integer
multiple of π

2 , thus the CPs seem to result from the interaction either of localized excitation
with the band continuum for CP3, CP4, and CP6, or the reverse, leading to a mix of 1D CPs
with excitonic CPs for CP1 and CP5.

Table 17: Final parameters of the critical point line-shapes for fit d).

Name A Γ E0 (eV) ϕ (◦) n CP type

CP1 3.62 0.13 3.96 290.73 -0.5 1D
CP2 0.51 0.17 4.44 0.73 -1 0D
CP3 0.71 0.25 4.82 18.98 -1 0D
CP4 0.33 0.23 5.12 35.09 -1 0D
CP5 4.02 0.20 5.44 327.62 -0.5 1D
CP6 0.69 0.32 5.86 10.73 -1 0D
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C.2 Limitations of the fits

The main limitation of the CP model for the dielectric function is the number of parameters.
For each CP, four parameters describe the line-shape, and for three of them, a lower and an
upper bound are selected. Thus, to perform the fit one need a powerful algorithm able to
deal with multiple parameters. In this case, the nonlinear least-squares solver (i.e. lsqcurvefit
function in Matlab) was not able to reach the global minimum as all the previous fits stopped
because the maximum function evaluation was reached. As a result, the squared 2-norm of
the residual is abnormally high as illustrated in table 18, a sign that the fits did not converge.
Nevertheless, if the relative quality of the fit is considered, fit a) is the most correct of the
DFT fits, and fit f) of the B-spline fits. Fit d) has a resnorm 2 times higher than fit a), fit
b) 3.2 higher, and c) 5.6 times higher.

Table 18: Squared norm of the residuals (resnorm) of the different fits.

Fit a) b) c) d) e) f)

Resnorm 1.3959 × 104 4.5239 × 104 7.8834 × 104 2.8128 × 104 2.8522 × 104 2.1543 × 104

Another limitation of the fit is the tails of the CPs that affect the overall shape of the dielectric
functions, especially 1D, 2D, and 3D as observed in fit c) and d). For future analysis, the
energy range should be restricted to the energy around each CP, so on this range only one CP
contributes to dielectric functions. This could be performed similarly to how the Tauc-Lorentz
model suppresses the Lorentzian tail below the bandgap. A consequence of this limitation
is that principally excitonic CPs among the others model accurately the dielectric functions,
due to their narrower shape, then comes the 1D CPs, as seen in fit d), and after 2D CPs
and 3D CPS. This limitation impacts directly the quality of the fit. Despite the convergence
problem of the fit, the excitonic and 1D CPs give a lower square norm of residual as they
approach closer the experimental data.

C.3 Initialisation parameters of the CP analysis

Table 19: Initial parameters of the critical points for fit a), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 0.8 [0,10] 0.3 [0.01, 1] 3.99 [3.94,4.04] 0 [0,360] -1 0D
CP2 0.4 [0,10] 0.3 [0.01, 0.5] 4.41 [4.36,4.46] 0 [0,360] -1 0D
CP3 0.2 [0,10] 0.3 [0.01, 0.5] 4.77 [4.72,4.82] 0 [0,360] -1 0D
CP4 0.1 [0,10] 0.3 [0.01, 0.3] 5.07 [5.02,5.12] 0 [0,360] -1 0D
CP5 0.4 [0,10] 0.3 [0.01, 0.5] 5.43 [5.38,5.48] 0 [0,360] -1 0D
CP6 0.1 [0,10] 0.3 [0.01, 0.5] 5.86 [5.81,5.91] 0 [0,360] -1 0D
CP7 0.1 [0,10] 0.3 [0.01, 1] 4.17 [4.12,4.22] 0 [0,360] -1 0D
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Table 20: Initial parameters of the critical points for fit b), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 0.8 [0,10] 0.16 [0.01, 1] 3.99 [3.94,4.04] 180 [0,360] -1 0D
CP2 0.51 [0,10] 0.17 [0.01, 0.5] 4.41 [4.36,4.46] 0 [0,360] -1 0D
CP3 0.70 [0,10] 0.2 [0.01, 0.5] 4.77 [4.72,4.82] 0 [0,360] -1 0D
CP4 0.32 [0,10] 0.23 [0.01, 0.3] 5.07 [5.02,5.12] 0 [0,360] -1 0D
CP5 1.24 [0,10] 0.24 [0.01, 0.5] 5.43 [5.38,5.48] 180 [0,360] -1 0D
CP6 0.68 [0,10] 0.31 [0.01, 0.5] 5.86 [5.81,5.91] 0 [0,360] -1 0D

Table 21: Initial parameters of the critical points for fit c), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 0.8 [0,10] 0.16 [0.01, 1] 3.99 [3.94,4.04] 0 [0,360] 0 2D
CP2 0.8 [0,10] 0.19 [0.01, 0.5] 4.41 [4.36,4.46] 0 [0,360] -1 0D
CP3 1.44 [0,10] 0.3 [0.01, 0.5] 4.77 [4.72,4.82] 0 [0,360] -1 0D
CP4 0.66 [0,10] 0.27 [0.01, 0.3] 5.07 [5.02,5.12] 0 [0,360] -1 0D
CP5 1.24 [0,10] 0.24 [0.01, 0.5] 5.43 [5.38,5.48] 0 [0,360] 0 2D
CP6 1.37 [0,10] 0.37 [0.01, 0.5] 5.86 [5.81,5.91] 0 [0,360] -1 0D

Table 22: Initial parameters of the critical points for fit d), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 0.8 [0,10] 0.16 [0.01, 1] 3.99 [3.94,4.04] 180 [0,360] -0.5 1D
CP2 0.8 [0,10] 0.19 [0.01, 0.5] 4.41 [4.36,4.46] 0 [0,360] -1 0D
CP3 1.44 [0,10] 0.3 [0.01, 0.5] 4.77 [4.72,4.82] 0 [0,360] -1 0D
CP4 0.66 [0,10] 0.27 [0.01, 0.3] 5.07 [5.02,5.12] 0 [0,360] -1 0D
CP5 1.24 [0,10] 0.24 [0.01, 0.5] 5.43 [5.38,5.48] 180 [0,360] -0.5 1D
CP6 1.37 [0,10] 0.37 [0.01, 0.5] 5.86 [5.81,5.91] 0 [0,360] -1 0D

Table 23: Initial parameters of the critical points for fit e), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 7 [0,15] 0.3 [0.01, 1] 3.99 [3.9,4.05] 180 [0,360] -1 0D
CP2 4 [0,15] 0.3 [0.01, 1] 4.41 [4.35,4.46] 180 [0,360] -1 0D
CP3 2 [0,15] 0.3 [0.01, 1] 4.77 [4.7,4.85] 180 [0,360] -1 0D
CP4 2 [0,15] 0.3 [0.01, 1] 5.07 [5.0,5.15] 180 [0,360] -1 0D
CP5 2 [0,15] 0.3 [0.01, 1] 5.43 [5.35,5.55] 180 [0,360] -1 0D
CP6 2 [0,15] 0.3 [0.01, 1] 5.86 [5.8,5.95] 180 [0,360] -1 0D
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Table 24: Initial parameters of the critical points for fit f), the bounds are in parenthesis.

Name Aini Γini E0,ini (eV) ϕini (
◦) n CP type

CP1 0.2 [0,10] 0.3 [0.01, 1] 3.30 [3.2,4.09] 0 [0,360] -1 0D
CP2 0.8 [0,10] 0.3 [0.01, 1] 3.99 [3.89,4.09] 0 [0,360] -1 0D
CP3 0.4 [0,10] 0.3 [0.01, 1] 4.59 [4.4,4.85] 0 [0,360] -1 0D
CP4 0.2 [0,10] 0.3 [0.01, 1] 5.31 [5.21,6] 0 [0,360] -1 0D

D PL analysis

Figure 99: Comparison of the long wavelengths range PL spectra of rutile for experiments
a), b) which has wider excitation slit, and c) which has wider emission slits.

Table 25: Parameters of the PL spectra of rutile for experiments a), b) which has wider
excitation slit, and c) which has wider emission slits.

Integration time: 2 s a) b) wider excitation slit c) wider emission slit

Excitation λ [slit] in nm 300 [1] 300 [5] 300 [1]

Emission λ (Inc.) [slit] in nm 315-900 (1) [1] 315-900 (1) [1] 315-900 (1) [5]
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Figure 100: Comparison of the long wavelengths range PL spectra of rutile for experiments
a) and c). a) has smaller increments and a shorter acquisition time than c).

Table 26: Parameters of the long wavelengths range PL spectra of rutile for experiments a)
and c).

a) smaller increment (tint = 1s) b) (tint = 2s)

Excitation λ [slit] in nm 300 [10] 300 [10]

Emission λ (Inc.) [slit] in nm 315-900 (0.5) [0.2] 315-900 (1) [0.2]

Figure 101: Description of the Gaussian functions used to fit the PL of anatase in Origin®
software

.
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