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Abstract  

Northern Norway’s abundant hydro and wind-based power resources, in combination with its 

historically low and stable power prices, have made it an attractive location for power intensive 

industries. Meanwhile the price and volatility have increased the last two years, causing 

problems with predictability and concerns about profitability for corporations highly dependent 

on the power price. This thesis suggests a way to combat this unpredictability with the usage of 

power predictive models as model guided optimization for green hydrogen production.  

This thesis compares two prominent methods for power price forecasting: traditional statistical 

approaches, represented by the ARMA-family of models, and machine learning techniques, 

specifically LSTM neural networks. The thesis’ most effective statistical method, ARMAX-

GARCH, achieved an RMSE and MAE of 14.56 and 6.46 øre/kWh, respectively, while the best 

machine learning method found, Seq2Seq-LSTM, demonstrated significantly improved 

performance with an RMSE of 6.43 and an MAE of 2.1 øre/kWh. This was tested on a period 

from 2016 to 2023 with five day predictions. Furthermore, the study revealed that applying the 

Seq2Seq architecture to an LSTM structure surpasses the performance of a conventional LSTM 

model, resulting in a 53% reduction in RMSE for five-day forecasting in the NO4 price area.  

To translate these predictive models into practical financial implications for power intensive 

industries, a hydrogen production case was created using Mixed Integer Programming. Herein, 

the financial impacts of the forecasting models were compared against a baseline scenario that 

assumes a constant daily production of hydrogen. The model guided optimization aimed to shift 

hydrogen production, based on the predictive models identifying the most cost-effective 

production days within a work week. The results revealed that the Seq2Seq-LSTM guided 

optimization led to savings of 9.44%, while the ARMAX-GARCH model resulted in savings 

of 1.81% for a production period of eight weeks. In conclusion, we propose a hybrid AI solution 

that combines a Seq2Seq-LSTM neural network with a MIP-algorithm to increase predictability 

and enhance profitability for spot-price-based hydrogen production in the NO4 region.  
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Sammendrag 

Nord-Norges rike ressurser på vann- og vindkraft, i kombinasjon med historisk sett lave og 

stabile kraftpriser har gjort det til et attraktivt område for kraftkrevende industri. Til tross for 

dette, har prisen og volatiliteten økt de siste par årene, noe som har skapt problemer for 

forutsigbarhet og lønnsomhet tilknyttet industrier sterkt avhengig av kraftprisen. Denne 

masteravhandlingen foreslår måter å imøtekomme denne uforutsigbarheten på, ved bruk av 

kraftpris-prediktive modeller og modellassistert optimering for produksjon av grønt hydrogen.  

Oppgaven sammenligner to fremstående metoder for prediksjon av kraftpriser: tradisjonelle 

statistiske metoder, representert av ARMA-modeller, og maskinlæringsteknikker, spesifikt 

LSTM rekurrente nevrale nettverk. Oppgavens mest effektive statistiske metode, ARMAX-

GARCH, oppnådde en RMSE og MAE på 14,56 og 6,46 øre/kWt. Av de undersøkte 

maskinlæringsteknikkene, oppnådde Seq2Seq-LSTM sterkt forbedret resultater med RMSE og 

MAE på 6,43 og 2,1 øre/kWt. Dette ble observert i løpet av en testperiode fra 2016 til 2023, 

ved bruk av femdagersprediksjoner. I tillegg til dette, viser studien en reduksjon i RMSE på 

53%, ved å legge til Seq2Seq-arkitektur til en LSTM-struktur for femdagersprediksjoner i 

kraftprisområdet NO4.  

For å overføre disse modellene inn i en praktisk økonomisk kontekst for kraftkrevende 

industrier, ble en produksjonscase for hydrogen skapt ved bruk av Mixed Integer Programming. 

Her ble modellenes økonomiske påvirkninger sammenlignet med et baseline-scenario som 

antar konstant daglig produksjon av hydrogen. Den modelassisterte optimeringen søker etter å 

flytte hydrogenproduksjon, basert på de prediktive modellenes evne til å identifisere de mest 

kostnadseffektive produksjonsdagene innenfor en arbeidsuke. Studien viser at en Seq2Seq-

LSTM assistert optimering resulterte i besparelser på 9,44%, mens ARMAX-GARCH 

modellen resulterte i besparelser på 1,81% for en produksjonsperiode på åtte uker. 

Konkluderende foreslår vi en hybrid KI-løsning som kombinerer et Seq2Seq-LSTM nevralt 

nettverk med en MIP-algoritme, for å øke forutsigbarheten og lønnsomheten for spotprisbasert 

hydrogenproduksjon i NO4 området.  
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1 INTRODUCTION  

Northern Norway has emerged as a hotbed for investment in power intensive industries such as 

hydrogen, steel, ammonia and battery production. The region’s rich hydro and wind-based 

power resources, in combination with historically low and stable power prices have made it an 

attractive location for corporations seeking to harness the power of renewable energy (Brembo 

& Olaisen, 2021). Despite this, geopolitical events have caused prices and volatility to rise. 

Unpredictability in power prices can lead to problems with optimal production planning, higher 

levels of uncertainty in profitability and poorer decision making. This is specifically the case 

for green hydrogen production, as power expenses can account for as much as 90% of total 

variable production costs (anonymous, personal communication, January 2023). Therefore, 

increasing predictability to make informed decisions is crucial for maintaining the profitability 

of green production in the region.  

This chapter aims to provide a brief overview of the European and Norwegian power markets, 

focusing on its price development and the potential for heightened prices and volatility. 

Furthermore, the chapter clarifies the concept of green hydrogen production as it pertains to 

this thesis. Following this, the chapter introduces the thesis’ research questions and outlines the 

structure of the work ahead.  

1.1 Actualization  

1.1.1 The European power market 

Over the last few years, the Norwegian power market has been more integrated with the 

European market (Energifakta Norge, 2022). The main argument for this integration is to move 

power from areas with power surpluses to areas with power shortfalls throughout Europe. 

The power market in Europe has been exposed to different impact factors, which have affected 

the Norwegian power market. In 2008, Norway had 14 power cables exchanging power with 

neighbouring countries. A power cable between Norway and Germany was opened in 2020, 

and about a year later, a cable between Norway and Great Britain opened. This contributed to 

integrating the southern parts of Norway closer to the European market (Kampevoll & Lorch-

Falck, 2022). A couple of months after the opening of the latest power cable, the Russian war 

on Ukraine broke out. With the sanctions on Russia due to the war, Europe stopped importing 

Russian gas to the union. The shortage of gas contributed to driving the power prices up on the 

continent, which also influenced the power price in Norway as a consequence of the integrated 
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market (Bugge, 2022). Another factor affecting the power price is the European Union’s 

decision to cut the union’s climate emissions (Øvrebø, 2023). This implies that the union needs 

to start producing power from renewable energy sources and phasing out non-renewable 

sources. According to Cevik and Ninomiya (2022), this is a source of significant uncertainty on 

the intermittent and volatile production of renewable assets that cause supply-demand 

imbalances, greater instability in the electricity grid, and more volatile pricing behaviour.  

1.1.2 The Norwegian power market 

The Norwegian power market is organized into five price areas (Statnett, 2022). This 

segmentation stems from the fact that most of the Norwegian power is generated from weather-

dependent sources. In 2021, 88 % of Norwegian power came from hydroelectric power and 9 

% from wind power (Norges vassdrags- og energidirektorat, 2022). Due to varying weather in 

different parts of the country and limitations in the transfer capacity between the different areas, 

the power price is not identical for the entire country. The transfer capacity from Northern 

Norway to Sweden and the Southern part of Norway is limited. This in combination with high 

power production capacity in the Northern part of Norway, are two of the main reasons for 

lower power prices in the region (Skagerak Energi, n.d.). The following table shows the 

different price areas in Norway.  

Price area Region 

NO1 Eastern Norway 

NO2 Southern Norway 

NO3 Central Norway 

NO4 Northern Norway 

NO5 Western Norway 

  
Figure 1 - Norwegian power price regions 

The power price in Norway usually includes both value added tax (VAT) and electricity tax. 

However, in the Northern parts of the country, private consumers are exempted from these taxes 

(The Norwegian Ministry of Finance, 2019). Therefore, the following graph illustrates the 

power prices in the five different price areas, excluding VAT and electricity tax. 
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Figure 2 - Norwegian power prices 2020-2022. Source: Montel 

1.1.3 Green hydrogen production 

The increasing interest in green hydrogen production in recent years can be attributed to its 

potential to mitigate climate change by reducing greenhouse gas emissions. Green hydrogen is 

typically produced using renewable energy sources like wind and hydro power in a process that 

involves electrolysis – splitting water molecules into hydrogen and oxygen (Engie, 2021). 

However, this sustainable process is not without its challenges, mainly due to its high costs. 

Power expenses can constitute as much as 90% of total variable production costs (anonymous, 

personal communication, January 2023). With the profitability heavily relying on the power 

price, creating methods for optimizing decision-making with regards to the power price are 

essential for achieving sustainable and cost-effective production. Thus, we will focus 

specifically on ways to increase predictability and reduce costs in green hydrogen production.  

1.2 Research questions 

In this thesis, we delve into the NO4 price area of Northern Norway to explore the performances 

of two branches of predictive models for power price forecasting. Statistical models, which play 

a major part in price prediction and modelling in the power market, are compared with machine 

learning methods. ARMA-models, a family of statistical predictive models and artificial neural 

networks are trained and tested to predict the power price, using datasets for historical power 

prices, weather conditions and hydroelectric reservoir statuses. The models are fine-tuned 

specifically for the NO4 price area. However, the goal for this study is not just to compare the 

performance of these models. Rather, we aim to forge the forecasted outputs in a hydrogen 

production optimization case that accounts for production targets, constraints, and aims to 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

2020-
01

2020-
04

2020-
07

2020-
09

2020-
12

2021-
03

2021-
06

2021-
09

2021-
12

2022-
03

2022-
06

2022-
09

2022-
12p

o
w

er
 p

ri
ce

 i
n
 n

o
rw

eg
ia

n
 ø

re

Date

Norwegian power prices 2020-2022

NO1 NO2 NO3 NO4 NO5



 
 

4 
 

minimize costs by shifting production based on the outputs from the predictive models using 

Mixed Integer Programming (MIP). Ultimately, the thesis seeks to address two fundamental 

questions:  

How effective are ARMA models and LSTM neural networks in boosting predictability 

with power price forecasting in the NO4 region, and which model type exhibits superior 

performance? 

To what extent can increased predictability in the power market increase profitability 

in green hydrogen production, and which model type will yield the greatest financial 

benefit? 

By adjusting and planning hydrogen production based on the forecasted prices, the thesis’ 

findings can help stakeholders navigate a future where volatile and high energy prices cause 

concern for spot-price-based production. We believe that the research could shed light on 

possible strategies for businesses that are significantly dependent on power prices. Additionally, 

the study investigates the comparative profitability of employing statistical methods versus 

artificial intelligence in optimizing spot-based production. The thesis also offers a 

comprehensive comparison of the predictive accuracy of state-of-the-art machine learning 

against traditional statistical models for power prices in the NO4 region.  

1.3 Thesis structure  

Chapter 2 of the thesis reviews previous literature on power price forecasting using both ARMA 

models and LSTM networks. Chapter 3 gives a thorough explanation of the theoretical 

foundations of statistical methods such as ARMA models and offers a comprehensive overview 

of neural networks such as LSTM and sequence to sequence structures. The chapter also gives 

insights into hyperparameters, training neural networks and mixed integer programming. In 

chapter 4, we detail the methodology used to address the research questions. This includes data 

processing, the development of the forecasting models, and the creation of a hydrogen 

production case. The case will serve insights into the profitability of relying on the predictive 

models, compared to a baseline scenario where the production is based on average daily 

production. Chapter 5 presents an overview of the performance, evaluation and results of the 

forecasting models developed independently, before presenting the results from the production 

optimization case. The chapter provides an assessment of the forecasting models’ effectiveness 

in predicting power prices and their impact on hydrogen production planning. Chapter 6 offers 

in-depth discussions about the performance of the models, the models’ implications on the MIP-
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optimization, real world application, limitations and critique. Finally, our conclusion and our 

proposal on how to increase predictability and enhance profitability for green hydrogen 

production in the NO4 area are presented in chapter 7.  
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2 LITERATURE REVIEW 

Since the liberalization of the power markets in the 90s in both Norway and Europe, the 

importance of power price forecasting has motivated researchers for testing and creating new 

methods and models for this purpose (Cerjan et al., 2013). Through the next decades, different 

models for power price predictions were tested, such as Autoregressive Moving Average 

(ARMA) models and machine learning techniques like artificial neural networks. The ARIMA 

(autoregressive integrated moving average) model and its extensions, is a widely used group of 

statistical models for time series modelling, when basing the forecast on historical data from 

the target variable being forecasted. We have found several papers forecasting single step with 

ARMA models, but noticeably fewer on multistep forecasting. Power price forecasting with 

neural networks is still an ongoing field of research, however in recent years multiple articles 

surrounding the subject have been published, especially related to the usage of Long Short-

Term Memory recurrent neural networks (LSTM). In addition to that, new techniques for time 

series forecasting with LSTMs has also emerged. The following section contains an overview 

of relevant research papers which position this thesis with existing literature. 

2.1 Forecasting with ARMA/ARIMA models 

Studies regarding power price forecasting from the Nord pool area using ARMA models have 

been conducted to some extent. Hipolit Torro (2007) wrote a paper on weekly power price 

prediction with daily observations from the Nordic Power Exchange area using ARIMAX 

(ARIMA with exogenous variables). He used temperature, precipitation, reservoir levels, and a 

basis (futures price less the spot-price) to reflect the seasonal patterns and found the ARIMAX 

model to have a significantly lower MSE (mean squared error) than the Myopic method. This 

method takes the present spot-price as the forecasted price, and the Futures method which takes 

present futures prices as forecasted price.  

Swider and Weber (2007) used the ARMA model with and without GARCH (generalized 

autoregressive conditional heteroskedasticity) for power price forecasting developments in two 

price areas in Germany on the day-ahead market. They found that applying the GARCH 

approach on one of the areas slightly improved the MAPE (mean absolute percentage error) 

compared with an ARMA model without GARCH. Furthermore, the paper notes that there are 

indications that the GARCH approach improved the representation of the price distribution on 

all the considered markets. 
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Chang et al. (2010) used a rolling window approach on their VARMA-GARCH (vector ARMA-

GARCH) and VARMA-AGARCH (vector ARMA-asymmetric GARCH) models to forecast 

the conditional correlation in the crude oil price one day ahead. The approach was added to the 

models to explore the time-varying nature of the target variable. The paper explains the rough 

features of the rolling window technique. 

In 2009, a study of the main methodologies, including different ARMA models, used in power 

price forecasting was released by Aggarwal et al. (2009). The paper was not able to point out 

any systematic evidence that one of the models outperformed the other, but the writers believed 

this was because of short power price history, due to the liberalization of the market in the 90s, 

and large differences in price developments in the distinctive power markets. 

2.2 Forecasting with neural networks 

In a 2021 study, Memarzadeh and Keynia aimed to forecast the electricity market for load and 

price in Spain and Pennsylvania-New Jersey-Maryland, USA. Their power price forecast 

achieved a mean absolute percentage error (MAPE) of 0.93 for Spain and 2.2 for Pennsylvania, 

demonstrating the effectiveness of their approach. The study specifically utilized an LSTM 

recurrent neural network and concluded that it had strong capabilities for accurate power price 

forecasting. 

Despite being relatively few studies on the use of LSTM for power price prediction in Norway, 

and especially northern parts of Norway, a group of researchers from NTNU did conduct a 

study on the topic in 2022. The researchers compared the use of a simple ANN and a LSTM 

model for day ahead power price forecasting in different price regions (Vamathevan et al., 

2022). They found that their LSTM network performed better in the more volatile areas like 

NO1 and NO2 compared to NO4. However, they used the same model for each price area and 

did not tune them specifically to each region (Ü, Cali, personal communication, February 13, 

2023). 

Aranguren, Fragoso, and Aguilera’s 2022 study proposes a new approach for forecasting oil 

production in the Eagle Ford Shale (Texas, USA) using a Seq2Seq-LSTM (sequence to 

sequence) based learning framework. This methodology utilizes an encoder-decoder 

architecture to generate future declining production rates, incorporating recurrent neural 

networks and Seq2Seq-architectures that are commonly used for language processing in 

translation tasks. The model achieves this by utilizing historical data sequences to predict future 

oil rates. The study demonstrates that the Seq2Seq architecture outperforms a regular LSTM 
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architecture and suggests that it can be a reliable and efficient technique for time series 

forecasting, in this specific example, within the oil sector. 

In their 2019 study, Gong et al. developed a short-term load prediction model based on a 

Seq2Seq architecture. The model utilizes a LSTM neural network to address the time and non-

linear characteristics of power system load data and analyse the periodic fluctuation 

characteristics of users’ load data. The study compared the predictive performance of the model 

under different types of attention mechanisms and ultimately adopted the Seq2Seq-LSTM 

model. The results demonstrated the potential of Seq2Seq models in short-term prediction and 

its ability to improve prediction accuracy. The study also provided a thorough explanation of 

how the Seq2Seq and LSTM structure works. The proposed model has the potential to aid 

power-related departments in developing more effective power utilization plans. 
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3 THEORETICAL FRAMEWORK 

This chapter aims to provide a comprehensive understanding of the key theories and models 

that constitute the core of this research. First, the chapter provides theory on forecasting models 

such as ARMA, LSTM recurrent neural networks, and sequence to sequence structures. The 

chapter then highlights hyperparameters, training, and evaluation metrics used in these models. 

Lastly, the chapter introduces the theory of Mixed Integer Programming (MIP), which is the 

algorithm used for the hydrogen production case in this thesis.  

3.1 The ARMA family of models 

There are several different types of models with the base of an autoregressive moving average 

model. The ARMA models are widely used to predict time series forecasting as they aim to 

describe the autocorrelation in the data (Athanasopoulos & Hyndman, 2018).  

3.1.1 The ARMA model 

A simple ARMA model is based on two components, the autoregressive model (AR) and the 

moving average model (MA). The autoregressive models are based on the idea that past values 

of a variable can explain the current and future values of the same variable (Shumway & Stoffer, 

2017, p. 75). The model is often referred to as an AR(p) model, which is an autoregressive 

model of order p (Athanasopoulos & Hyndman, 2018). At which order of p the model will be 

optimal, depends on the autocorrelation between the lagged variables. The model can be written 

as followed (Athanasopoulos & Hyndman, 2018). 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

The model can almost be interpreted as an ordinary regression, but contains p number of lagged 

variables of the same variable instead of different exogenous variables. The 𝜀𝑡 present 

uncertainty in the data that is not accounted for in the model, also called the white noise. The ∅ 

equals the coefficient of the relationship between the lagged variables (Turing, n.d.). 

The moving average model referred to as the MA(q) model, is based on the same principle as 

an AR(p) model but uses past errors in the forecast to make future predictions (Athanasopoulos 

& Hyndman, 2018). When combining the AR(p) and the MA(q) model, the ARMA model 

shows.  

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 
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For the ARMA model to be functional, there are parameters that need to be appropriately 

specified (Makridakis & Hibon, 1997). The observed data in the time series needs to be 

stationary, the number of AR(p) and MA(q) need to be in an appropriate order and the values 

of the parameters in the model must be estimated with an appropriate loss function. For the 

dataset to be stationary, the mean and the autocorrelation of the observations at any given time 

must be constant (Shumway & Stoffer, 2017, p. 20). To achieve stationarity in the time series, 

a common approach is to use differencing (d) which implies to calculate the difference between 

one observation to the next (Athanasopoulos & Rob, 2018). The combination of an ARMA 

model and a reversing of the differenced time series gives an ARIMA(p,d,q) model. A common 

approach to determine whether the data is stationary is to use an Augmented Dicky Fuller test 

(Prabhakaran, 2019). The selection of the parameters for the model can be challenging 

(Athanasopoulos & Rob, 2018). Languages such as Python or R may help select the parameters 

automatically. If the time series contains non-stationary data, the algorithm first determines the 

order of differencing necessary to get the data stationary, and then predicts the order of p and 

q. When selecting the orders of AR(p) and MA(q), the algorithm minimizes the AIC, Akaike’s 

Information Corrected Criterion (Akaike, 1974).  

The ARIMA(p,d,q) model is widely used to forecast time series, however, a simple ARIMA 

will not account for seasonal correlations (Athanasopoulos & Rob, 2018). When adding the 

seasonal compound to the ARIMA, the models are capable of calculating seasonal time series. 

To get the time series stationary, it might be necessary to do both a seasonal difference and an 

ordinary difference. While the idea behind the seasonal difference is the same as the ordinary, 

the seasonal difference computes the differences between an observation and the same 

observation in a previous period. These types of models are called SARIMA (seasonal 

ARIMA). These models also have a seasonal component which makes the model capable of 

modelling seasonal data (Athanasopoulos & Rob, 2018). For further information regarding this 

model, see Athanasopoulos and Rob (2018).  

3.1.2 ARMA with exogenous variables 

So far, the chapter has focused on the ARMA and the ARIMA models with purely one 

dependent variable predicted by the historical observations of the same variable. An ARMA 

model can be expanded to accommodate exogenous variables, which is often referred to as an 

ARMAX or ARIMAX model. These models predict future values of the target variable by using 

both past values from the target and exogenous variables (Cools et al., 2009). The ARMAX can 

use several different series of data input to predict the target variable (Changtzeng et al., 2019). 
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The model uses impulse response weights, where the values of the weights represent the 

response on the target variable, depending on the changes in the exogenous variable from one 

observation to the next. When predicting with an ARMAX, the model is not able to predict the 

values of the exogenous variables, only the target variable. 

3.1.3 ARMAX with GARCH 

A common issue when modelling ARMAX models is heteroskedasticity, which occurs when 

the residuals in the model are not constant. One way to deal with this issue is to combine the 

ARMAX model with an ARCH or GARCH model (Chen et al., 2011). The presence of 

heteroscedasticity in the model indicates that the GARCH model is appropriate to combine with 

the ARMA model (Chen & Yu, 2013). The GARCH model measures and predicts the variance 

of each error term (Engle, n.d.). A weighted average of squared residuals of the past is used 

with a declining weight to predict future values.  

When applying the residuals of the fitted ARMAX into the GARCH model, the model predicts 

the future residuals from the model. When forecasting using both ARMAX and GARCH, the 

forecast has accounted for both the future estimate from the ARMAX and the predicted 

residuals from the GARCH model. The ARMAX(p,q)-GARCH(r,m) model can be presented 

mathematically as followed where the first model is the ARMAX and the second is the 

GARCH.  The 𝑅𝑡 term in the first model is the daily observation of the dependent variable and 

the 𝐸(𝑅𝑡|𝐹𝑡−1) term is the conditional mean of the daily observation from the ARMAX model. 

The 𝜎𝑡 presents the volatility and 𝜂𝑡 represents an error term distributed according to a given 

distribution 𝑓 with parameter set 𝜃 in the GARCH model (Porshnev et al., 2016). 

𝑦𝑡 = 𝑅𝑡 − 𝐸(𝑅𝑡|𝐹𝑡−1) 

𝑦𝑡 = 𝜎𝑡 ∗ 𝜂𝑡  , 𝜂𝑡~𝑓(𝜃) 

3.1.4 Sliding window approach  

To understand the model’s performance when predicting five timesteps ahead, several different 

methods can be applied to the model. A standard ARMA forecast with a test set containing 

numerous predictions ahead will not be presentable for the model’s performance on five-time 

steps ahead. The approach, also called a rolling window approach, involves calculating the 

model on a fixed contiguous block (window) of prior observations and then predicting a number 

of given timesteps ahead of the window (Brownlee, 2017b). The algorithm then repeats this 

process until the model has iterated through the dataset. The approach is commonly used to 

backtest a statistical model on historical data to evaluate the model (Zivot & Wang, 2006). 
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3.2 Neural networks  

Neural Networks, also referred to as Artificial Neural Networks (ANNs) or Simulated Neural 

Networks (SNNs), is a branch of machine learning that form the backbone of deep learning 

algorithms (IBM, 2019). Inspired by the structure and functioning of the human brain, without 

being an accurate representation, these networks consist of a series of artificial neurons, often 

called nodes, arranged in layers: an input layer, one or more hidden layers, and an output layer 

(IBM, 2019). The nodes in the network are connected, each with its own weight and bias value. 

When a node receives an input, it applies a non-linear activation function to the weighted sum 

of the inputs and the biases and produces an output that is passed to the next layer. Neural 

networks are a diverse set of machine learning models, each with its strength and limitations, 

used for a wide range of tasks. Feedforward neural networks, convolutional networks (CNNs), 

recurrent neural networks (RNNs), and generative adversarial networks (GANs) are commonly 

used for language translation, image recognition, time series prediction and text generation. 

Neural networks offer powerful tools for machine learning with many applications across 

various fields (IBM, 2019).   

 

Figure 3 - Basic ANN architecture 

One of the core building blocks of neural networks are the layers. Francois Chollet (2018, p. 

28) argues that the layers in neural networks best can be described as data-processing filters. 

Some data goes in (input), and some data goes out (output), with the goal of filtering the data 

into a more useful form. Usually what defines deep learning models from typical machine 

learning is two or more hidden layers, however many state-of-the-art deep learning models tend 

to be much deeper, with tens or even hundreds of hidden layers within the neural network 

(Chollet, 2018, p.8).  
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3.2.1 Recurrent neural networks  

One type of neural network that excels at time series forecasting is recurrent neural networks. 

The reason why RNNs is a type of neural networks that tends to perform well on time series 

forecasting is due its ability to remember (Chollet, 2018, p.196). Biological intelligence uses 

an incremental approach in processing information and continually updates its internal 

representation, constructed from previous experiences and newly acquired information 

(Chollet, 2018, p.196). This is essentially, although simplified, the same way RNNs process 

sequences of information, by iterating through the sequence of elements and preserving a state 

containing information that is relative to what the model has seen so far.  

 

Figure 4 - Basic RNN architecture 

In general, the aim of RNNs is to detect dependencies in sequential data by finding correlations 

between different points within a sequence. There are essentially two kinds of dependencies. 

Short-term, which describes a dependence in the recent past, and long-term, which shows 

dependencies between points that are further away from each other (Weller, 2018). Finding and 

understanding these dependencies are crucial for the neural network to work and predict 

accurate results and forecasting future trends. This is where standard RNNs have an issue. The 

problem with a standard RNN is that they are only able to detect short term dependencies, and 

the reason for this is called the vanishing gradient problem (Arbel, 2018). In order to understand 

the vanishing gradient problem, understanding how RNNs are trained is beneficial. 

When training RNNs the inputs are fed into a recurrent unit that undergoes weighting, where 

they are multiplied by weight matrices. These weights reflect the significance assigned to each 

value by the model. The network improves its predictions by modifying the weight matrices to 

values that lead to better predictions (Weller, 2018). After processing a complete sequence, the 
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network evaluates the accuracy of its predictions (compared to the actual values known as the 

labels) by calculating the error. The network then backpropagates through the entire sequence, 

adjusting the individual weight matrices to minimize the error. This method is known as 

backpropagation. However, because of the additional time dimension, RNNs need to use a 

backpropagation that not only goes back through the different hidden layers where an optimizer 

function adjusts the weight matrices, but also goes back in time adjusting all the weights of 

previous time steps. Training and backpropagation can become a problem if the sequence is 

long, and the network must go back after every prediction. Truncated backpropagation training 

(TBPTT) solves this issue by splitting up the sequence (Brownlee, 2017a). Backpropagation is 

only applied to the length of the truncated subsequence at each instance. However, this means 

that the network can only learn dependencies within those subsequences, so it is important to 

consider the length when defining and optimizing the RNN. This is when the so-called 

vanishing gradient problem can appear. The further the model goes back the sequence, the less 

importance the learned values can have on the current predictions, and it prevents the model 

from learning long term dependencies (Weller, 2018). When forecasting with long time series 

data, this problem can easily appear, therefore it is essential to find a way around it.  

3.2.2 Long short-term memory  

When doing time series forecasting one can expect the data to have some degree of long-term 

dependency. A plausible assumption is that the price is influenced by a wide range of factors 

such as previous prices, weather patterns, and the amount of water in the hydroelectric 

reservoirs. All these factors can have long-term dependencies, which can lead to the vanishing 

gradient problem. This means that the standard RNN can be a poor choice for the purpose of 

predicting power prices. A more complex form of RNNs is called Long Short-Term Memory 

(LSTM). LSTM is a type of RNN that solves the vanishing gradient problem, and it solves it 

by introducing memory cells (Chollet, 2018, p.202). Memory cells are like small units that store 

information for an extended period of time, as well as gates that control when information is 

allowed to enter or leave memory cells. All recurrent neural networks have the form of a chain 

of repeating modules. In a standard RNN, this repeating module will have a simple structure, 

such as a single hyperbolic tangent layer (tanh) (Olah, 2015), as seen in figure 5. 
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Figure 5 - RNN and LSTM cell structure 

LSTMs also have a chain like structure, however instead of a single layer, there are four. The 

LSTM forget gate determines which information is relevant and which can be disregarded. It 

takes the current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1, and passes them through a sigmoid 

function, producing values between 0 and 1. A value closer to 1 indicates that the old output is 

necessary, and this value is later used for point-by-point multiplication by the cell (Olah, 2015). 

The LSTM input gate updates the cell status by first passing the current state 𝑥𝑡 and the 

previous hidden state ℎ𝑡−1, through a sigmoid function, then passing the same information 

through a tanh function to create a vector of values between -1 and 1. The outputs from both 

activation functions are used for point-by-point multiplication (Olah, 2015).  

Once the network has enough information from the forget gate and the input gate, it decides 

which information to store in the new state of the cell. The previous cell state 𝐶𝑡−1,  is multiplied 

by the forget vector, and any values that results in 0 are dropped from the cell state. The output 

value of the input vector is then added point-by-point, resulting in a new cell state 𝐶𝑡. The output 

gate determines the value of the next hidden state, which contains information on previous 

inputs. It passes the current state and previous hidden state through a tanh function, and the 

outputs are multiplied point-by-point. Based on the final value, the network decides which 

information the hidden state should carry. This hidden state is used for prediction, and both the 

new cell state and the new hidden state are carried over to the next step (Olah, 2015).  

3.2.3 Sequence to sequence models  

Sequence to sequence (Seq2Seq) structured models, a type of neural network structure that has 

gained popularity in recent years, first introduced in the relatively recent 2014 paper, “Sequence 

to Sequence Learning with Neural Networks” by Sutskever et al. The paper proposed an 
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encoder-decoder architecture based on recurrent neural networks (RNNs), specifically LSTM 

networks, to model input and output sequences of data. The encoder and the decoder are two 

independent neural networks jointly trained together.  

In this architecture, the encoder LSTM processes the input sequence one element at a time and 

generates a fixed-length context vector that summarizes the input sequence. The decoder then 

uses this context vector as a starting point to generate the output sequence one element at a 

time. This approach allows the model to handle variable-length input and output sequences, 

making it suitable for tasks such as machine translation, text summarization and speech 

recognition, typically where the output can be of a different length than the input (Wu et al., 

2016). 

 

While Seq2Seq models were originally developed for natural language processing tasks, they 

have also been applied to time series forecasting. These structures have shown to be especially 

effective for multi-step forecasting (Gong et al., 2019). By taking a desired sequence of past 

data points as input, the model can generate a single predicted value for the next step in the 

sequence. This means that the network can be trained to predict an arbitrarily future sequence 

of data points, called timesteps, given an arbitrarily past sequence of data points often called 

window size (Gong et al., 2019; Aranguren et al., 2022). In simple terms the model uses a 

window size together with the learnt weights of the model to generate a desired sequence.  

 

 

Figure 6 - Seq2Seq codec 

The figure above (figure 6) shows a Seq2Seq codec, and the figure is heavily inspired by the 

one created by Gong et al. (2019). The codec is composed of an encoder, an intermediate vector 

𝐶, and a decoder. Usually, codecs are made up of multi-layer RNN or LSTM structures, where 

the intermediate vector 𝐶 incorporates the sequence of the 𝑥1, 𝑥2 … 𝑥𝑚 encoding data. At time 

𝑡, the input to the decoder is the output of the previous moment 𝑦𝑡−1, the hidden layer state of 

the previous moments 𝑠𝑡−1 and 𝐶. Subsequently, the decoder produces the hidden layer state 𝑠𝑡 

which predict the output value at time 𝑡 (Gong et al., 2019). For further enlightenment on the 

general workings of the structure, see Sutskever et al. (2014).  
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3.2.4 Optimizer 

The fundamental function of optimizations algorithms is to find the optimization values to the 

appropriate neural network weights to minimize the objective function (loss function) (Llugsi 

et al., 2021). Some common optimizers are stochastic gradient descent (SGD), Adam, Adagrad, 

RMSProp and Newton’s method. However, this thesis will focus on the Adam optimizer. Adam 

is an algorithm for first-order gradient-based optimization of stochastic functions. The 

algorithm is easy to implement with computationally efficient features with little memory 

requirements. Like other gradient-based optimization algorithms, Adam is used to update the 

weights of a model based on the gradient of the loss function with respect to the weights. 

However, Adam differs from other optimization algorithms in that it uses an adaptive learning 

rate, which helps it converge more quickly and avoid getting stuck in local optima (Kingma & 

Ba, 2017).  

3.2.5 Activation functions  

Activation functions are essential components of neural networks that introduce non-linearity 

to the output of neurons. The primary purpose of activation functions is to transform the 

weighted sum of inputs and biases into an output that can be fed to the next layer of the network. 

Without the ability to model non-linear relationships, neural networks would not be much more 

than an unnecessary complex linear classifier or regression (Goled, 2021). Some of the most 

common activations functions are sigmoid, hyperbolic tangent (tanh) and rectified linear unit 

(ReLU) (Nielsen, 2018). The sigmoid function is a smooth differentiable approximation of a 

threshold unit and compresses the inputs into the range between 0 or 1, and it is therefore widely 

used as an activation function for classification tasks (Nielsen, 2018, p.8). However, for 

regression problems the sigmoid function is often not a suitable activation function because of 

the output values it produces (0,1).  

The tanh function is a mathematical function similar to the sigmoid function (Nielsen, 2018, 

p.121). It is a non-linear function that maps input values to a range between -1 and 1, which 

makes it useful for certain types of problems, particularly in output layers where the output 

values need to be in the range of -1 to 1.  

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

The ReLU function is a popular activation function used in neural networks. It is a non-linear 

function that has been found to perform well in many applications (Nielsen, 2018, p.123). The 
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ReLU function sets any negative input to 0 and any positive input to itself, resulting in an output 

that is always non-negative. The ReLU function is described as: 

𝑓(𝑥) = max (0, 𝑥) 

Where the 𝑥 is the input value of the function, and max (0, 𝑥) returns the maximum value 

between 0 and x. The function is computationally efficient, as it only involves a simple 

thresholding operation, which makes it particularly useful in large neural networks. One of the 

advantages of the ReLU function over other activation functions such as the sigmoid or tanh is 

that it does not suffer from the vanishing gradient problem (Brownlee, 2020). This can make it 

easier to train deep neural networks. The vanishing gradient problem occurs when the gradients 

of the activation function become very small, making it difficult for the network to learn and 

update weights properly. However as pointed out by Michael Nielsen (2018, p.124), we do not 

have a clear understanding of when, exactly, rectified linear units are preferable, nor why. 

Choosing the right activation function is not obvious, and in most cases trial and error is the 

best strategy.   

3.2.6 Training, overfitting and regularization  

Neural networks are in general known to be difficult to train, and recurrent neural networks is 

no exception. This is especially true when it comes to deep neural networks (Nielsen, 2018, 

p.152). Adding more layers to the network might improve how the network figures out complex 

pattern in the data, but it can also cause problems. Different layers in the deep neural network 

can learn at vastly different speeds. In particular, when later layers in the network are learning 

well, early layers often get stuck during training, and learns almost nothing at all (Nielsen, 2018, 

p.154). The opposite can also occur: the early layers may be learning well, but the later layers 

can become stuck. A lot of these issues boils down to the vanishing gradient problem, as already 

discussed. Another common problem is overfitting, which is related to the issue of training 

neural networks.  

Overfitting occurs when the model is struggling to generalize on new data (Nielsen, 2018, p.74). 

For instance, the loss function indicates that the model is performing quite well on training data, 

but when evaluating the model on test data, the loss function skyrockets. This is happening 

because the model is overfitted to the training data, in such a matter that instead of learning, it 

starts remembering the patterns of the data, thus not being able to generalize. There are ways to 

combat overfitting. Reducing or increasing complexity of the architecture, adding more training 

data, hyperparameter tuning or regularization techniques.  
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Regularization is a way of compromising between finding small weights and minimizing the 

original cost function (Nielsen, 2018, p.79). The main aim of regularization is to reduce the 

over-complexity of the model and help the model learn a simpler function to promote better 

generalization on the test data. Two common types of regularization techniques are L1 and L2 

regularization (Neumann, 2014). L1, also called Least Absolute Shrinkage and Selection 

Operator (LASSO) can be formulated:  

𝐿𝑜𝑠𝑠(𝐿1) =  ∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝑗)2 + 𝜆 ∑ ∣ 𝑊𝒋 ∣

𝑀

𝑗=0

𝑀

𝑗=0

𝑁

𝑖=0

 

L1 regularization adds a penalty term to the loss function that is proportional to the absolute 

value of the weights in the model. This encourages the model to use fewer features and select 

only the most important ones.  

L2, also called Ridge regularization can be formulated:  

𝐿𝑜𝑠𝑠(𝐿2) =  ∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝑗)2 + 𝜆 ∑ 𝑊𝑗
2

𝑀

𝑗=0

𝑀

𝑗=0

𝑁

𝑖=0

 

L2 regularization adds a penalty term that is proportional to the square of the weights in the 

model. This encourages the model to have smaller weights and reduces the impact of outliers 

in the data. 

Adding dropout layers is another way to combat overfitting. Dropout involves randomly 

dropping out, or “turning off”, some of the neurons in a layer during training (Srivastava et al., 

2014). This helps to prevent the network from relying too heavily on any one particular feature 

or neuron and encourages the network to learn more robust and generalizable representations 

of the input. During training, each neuron in the layer is assigned a probability p of being 

dropped out. At each iteration of training, each neuron is either kept with probability p, or 

dropped out with probability 1-p. The neurons that are kept are then scaled by a factor of 1/(1-

p) to compensate for the fact that fewer neurons are active (Srivastava et al., 2014).  

During inference, all neurons are used, and no scaling is applied. Typically, dropout layers are 

added to the network’s architecture after the activation function of a fully connected layer. 

Moreover, the performance of deep neural networks is highly dependent on the type of 

hyperparameters chosen for the model (Nielsen, 2018, p.168). This includes activation 

functions, optimizer algorithms, loss function, general architecture of the network as well as 
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batch size and epoch settings for training. Additionally, in machine learning, it is common to 

split the data into three subsets: training, validation and test. The training set is used to train the 

models into learning the weights and relationships of the data using a chosen algorithm. The 

validation set is used to fine-tune the models hyperparameters, and to perform model selection. 

Finally, the test set is used for a final unbiased evaluation of the models’ abilities to generalize 

to new, unseen data. The test set is meant to work as a simulation on how the model would 

perform when applied in practice (Toisoul, 2020). 

3.2.7 The Black Box Phenomenon  

Black box models are machine learning systems that are characterized by their opacity: they do 

not reveal their internal mechanisms, and their parameters cannot be understood through 

inspection (Molnar, 2019). This lack of transparency is the heart of the black box phenomenon, 

a problem heavily discussed within the community of artificial intelligence.  

Despite superior performance in a variety of domains, the lack of interpretability in deep neural 

networks is believed to be hurting their adaptation. Users may not trust systems whose decisions 

processes, they do not understand (Ahn et al., 2021). The lack of interpretability arises from 

several factors such as the complexity of the architecture. Deep neural networks can contain 

numerous layers and neurons, leading to the creation of thousands, or even millions of 

parameters. For example, the highly discussed ChatGPT, is a neural network that consists of 

175 billion parameters (Hughes, 2023), and although this is a complexity far exceeding most 

deep neural networks, even thousands of parameters can cause challenges with interpretability. 

As previously discussed, the activation functions in neural networks are non-linear. The outputs 

are a complex combination of the inputs, and it can be challenging to understand how the 

network arrives at its final predictions. The surge in performance has often been achieved 

through this non-linear complexity, turning such systems into black box approaches and causing 

uncertainty in the way they operate and, ultimately, the way they come to decisions (Linardatos 

et al., 2020). In general, while scientists know how individual artificial neurons and layers in a 

deep neural network function in a mathematical sense, it can be difficult to fully understand 

how they work together to produce a specific output. Each neuron takes in a set of inputs and 

performs a mathematical operation to produce an output, which is then passed on to the next 

layer of neurons (Nielsen, 2018, p.3). However, as the number of neurons and layers increases 

it becomes difficult to fully interpret them, as the relationship between the input and outputs 

might cause a high level of complexity.  
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3.3 Loss functions and evaluation metrices for the models  

A loss function is a crucial component of training a neural network. The loss function measures 

the difference between the network's predicted output and the true target output. The goal of 

training and validating is to minimize the loss function. In other words, the loss function acts 

as a feedback mechanism for the network, allowing it to learn from its mistakes and make better 

predictions over time. The loss function gives crucial information regarding how well the neural 

network performs at its given task (Chollet, 2018, p.60). There are many different loss functions 

that can be used depending on the type of problem being solved and the type of network being 

used. For example, mean squared error is a commonly used loss function for regression 

problems, while cross-entropy is often used for classification problems (Chollet, 2018, p.60). 

The choice of loss function will affect the network's training process, as well as the final 

predictions that the network produces. Since the problem at hand is a regression problem, it 

makes sense to look at two commonly used loss functions for these types of tasks, MSE and 

RMSE.  

𝑀𝑆𝐸 =  ∑
(𝑦𝑖 − ŷ

𝑖
)2

𝑛

𝑛

𝑖=1

 

Mean Squared Error (MSE) evaluates the model performance based on how much the 

prediction (ŷ) deviates from the actual observation (𝑦), divided by total observations (𝑛). 

Squaring the difference penalizes larger errors more harshly than smaller ones, which is 

desirable in this case. While MSE is a useful loss function, it can be challenging to interpret as 

an evaluation metric since its value is not in the same units as the value being predicted. This 

is however easily solved by introducing Root Mean Square Error (RMSE), which is simply the 

square root of the MSE, as this produces a metric that is measured in the same unit as the unit 

we want to predict (Singh, 2022). Since the RMSE value is given in the predicted unit, there is 

no universal threshold for what constitutes an acceptable RMSE value, as the value’s 

interpretation is highly context dependent.  

𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑖 − ŷ

𝑖
)2

𝑛

𝑛

𝑖=1

 

The evaluation of the ARMA-model in this thesis will utilize RMSE as a metric to enable a 

comparison between statistical approaches and neural networks. However, RMSE will not be 

the sole determinant in selecting the most appropriate statistical model. Akaike’s Information 
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Criterion (AIC) (Akaike, 1974) is a frequently used measure for model selection in statistical 

modelling, including ARMA-based models. AIC is a relative measure that compares the quality 

of fit of different statistical models to the same dataset. Another selection metric is the Bayesian 

Information Criterium (BIC) (Stone, 1979). BIC measures the trade-off between complexity 

and model fit and penalizes the model for increased complexity. In general, a lower AIC or BIC 

relative to the other compared values indicates a better fit. 

𝐴𝐼𝐶 =  −2 ∗ ln(𝐿) + 2 ∗ 𝑘 

𝐵𝐼𝐶 = −2 ∗ ln(𝐿) + 2 ∗ ln(𝑛) ∗ 𝑘 

Where 𝐿 is the value of the likelihood, 𝑛 is the number of recorded measurements, and 𝑘 is the 

number of estimated parameters. Additionally, as an added evaluation metric of the model 

performances, the Mean Absolute Error (MAE) is also used for both the statistical and machine 

learning approaches. As with the RMSE, the error value units match the predicted target value 

units. The score is linear, and not weighted like the RMSE, which can be particularly helpful if 

the error distribution is not Gaussian (Chai & Draxler, 2014). 

𝑀𝐴𝐸 =  ∑
|𝑦𝑖 − ŷ|

𝑛

𝑛

𝑖=1

 

3.4 Mixed-integer programming  

In order to make a production plan and illustrate the financial impact by applying the models’ 

predicted power prices, an optimization problem is created. The most common associations 

when dealing with optimization and linear programming (LP) are limited resources and 

competing activities (Hiller & Lieberman, 2021, p. 32). The motivation behind LP is to 

calculate the optimal solution, based on different types of restrictions. The optimal quantity 

(object function) may be minimizing cost or maximizing profit. When applying integer solution 

and binary variables to the problem, the problem becomes a mixed-integer optimization 

problem (MIP).  

When calculating a mixed-integer problem in Microsoft Excel, the software uses the branch-

and-bound technique (Frontline Systems, n.d.). The principle behind the branch-and-bound 

technique is to divide and conquer (Hiller & Lieberman, 2021, pp. 478-481). Since mixed-

integer problems can be difficult to solve, the algorithm divides the main problem into different 

smaller sub-problems with different values for the binary restriction. This step of the algorithm 

is called branching. The algorithm then calculates the optimal solutions for each subset and 
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discards the subset if the solution is not clearly optimal, called bounding. The algorithm uses 

an LP relaxation, which relaxes, or deletes a set of constraints that could make the problem 

difficult to solve. At this point, a common approach for the algorithm is to a apply a common 

LP method called simplex. The simplex method starts at one of the points, determining whether 

the point is optimal. If the calculated point is not optimal, the algorithm continues along one of 

the restrictions to the next point, and the iteration continues until the optimal point is identified. 

For all the created subsets, fathoming tests are run on the set to determent whether the subset is 

being dismissed or kept running the algorithm again on new subsets. For further read on the 

algorithm, see Hiller and Liberman’s “Introduction to Operations Research” from 2021.  
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4 Methodology   

This chapter outlines the components of our research methodology. Firstly, we present the data, 

target and exogenous variables, along with key assumptions about the data. The chapter then 

proceeds to showcase the specific methods employed in finding and creating the best suited 

ARMA model. This is followed by a comprehensive explanation of the procedures used in 

training, validating, and testing the Seq2Seq-LSTM model, along with its machine learning 

baseline, a conventional LSTM. Lastly, the chapter presents the hydrogen production case, 

along with its mathematical principles and production assumptions.  

4.1 The dataset, target- and exogenous variables  

The dataset used in this thesis contains daily observations of the power price in Northern 

Norway and several meteorological exogenous variables from the region. The data is 

observations from the time period between January 1st 1999 and January 1st 2023. The dataset 

has been created by collecting data from online sources like NVE, Klimaservicesenter, and 

Montel.  

The target variable for forecasting is the price area NO4, measured in mean daily øre/kWh, 

collected from Montel. Furthermore, the exogenous variables in the time series are the 

percentage of water levels in hydroelectric reservoirs (NVE), temperature, wind and rainfall 

(Klimaservicessenter). Hydroelectric reservoirs and rainfall are included to give information on 

hydroelectric capacity. 90% of the Norwegian power in a normal year is produced by 

hydroelectric power (Energifakta Norge, 2022). The reason for including wind is due to the 

increasing wind power development in the Northern parts of the country. According to 

Nordkraft AS (Tore Schjelderup, personal communication, January 2023), the temperature 

influences the power usage, which influences the power price. Other variables also influence 

the power price in NO4, such as the power price in the northern part of Sweden and the transfer 

capacity between the two regions. However, incorporation of these variables into the models 

used in this thesis proves challenging, as these variables emerge concurrently with the target 

variable.  

All the variables used in the time series were obtainable with daily observations, except for the 

amount of water in the hydroelectric reservoirs. Information regarding this variable was only 

available to contract with weekly observations, therefore, this thesis has used one week’s 

observation for all the days in the same week. Moreover, there were no missing values in the 
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observations for the price variable. Because the time series only contained a few missing 

observations in the meteorological variables, approximately 10 missing observations in each 

accounting for about 0.1% of the time series, the missing variables have been set to 0. 

4.1.1 Key assumptions  

This thesis has made some assumptions about the collected data. We assume that the reported 

power price in NO4 as well as the meteorological variables are correct. The power prices are 

not corrected for inflation, are without VAT and electricity tax. Other macroeconomic 

assumptions have not been made in the dataset. Because this thesis has collected data from 

different sources, we assume further that all the observations are in fact collected from the same 

day.  

4.2 Determining the number of time steps to forecast 

For the forecasting models to be practically useful in optimizing and planning hydrogen 

production, they must be capable of accurately predicting beyond just one time step. The 

accuracy of the models’ predictions generally decreases the further into the future they are 

programmed to forecast, unless there is a significant issue with the models’ interpretation of 

seasonal patterns. To strike a balance between accuracy, the number of forecasted time steps, 

and its practical use, a trade-off must be considered. In addition to this, forecasting too far into 

the future might be problematic, as the models use weather data as exogenous variables. 

Weather forecasts are typically 90% accurate when predicting five days ahead, but accuracies 

of weather forecasts beyond this point decreases substantially. For instance, weather forecasts 

for 10 days are typically only accurate half of the time (National Oceanic and Atmospheric 

Administration, n.d.). 

An (S)ARMAX model requires a continuous supply of exogenous variables to generate power 

price forecasts for each time step. However, LSTM networks can be trained to predict both the 

exogenous variables and the target variable, thereby overcoming this limitation. To ensure a 

fair comparison between the two models, we will evaluate their performance in predicting five 

timesteps ahead. A forecast of five days ahead would be sufficient for planning hydrogen 

production for one work week while still being based on accurate weather forecasts. However, 

we will also view the LSTMs general ability to forecast beyond five timesteps to test its 

flexibility, as potentially accurate further ahead forecast would allow for long-term planning, 

which leaves more room for the MIP-algorithm to shift production to the least costly days.  
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4.3 Creating the ARMA model 

The programming language Python has been used for the creation of the ARMA models. The 

autoarima function from the pmdarima packages was used in order to help navigate the correct 

order of the AR(p) and MA(q). The target of the function is to minimize the AIC value to 

achieve the order of a model with the best performance. The models were fitted on 70% of the 

time series and tested on the remaining 30%. The AIC values as shown in Appendix A03, are 

calculated on the first part of the time series. 

4.3.1 Stationarity and heteroskedasticity  

The ARMA model presupposes stationarity in the variables. A common test for stationarity in 

the variables is the Augmented Dickey-Fuller test. The test was conducted on both the target 

variable and all the potential exogenous variables, where all the variables turn out to be 

stationary (see Appendix A01). Hence, no differencing of the variables was necessary to run 

the model. 

The models were tested for heteroskedasticity using a Breusch-Pagan test which showed 

significant heteroscedasticity in the models (see Appendix A02). Hence, the GARCH model as 

presented in Chapter 3.1.3 was applied to counteract this issue. To find the order of 

GARCH(r,m) which achieved the lowest AIC value, a for loop in Python was used where r and 

the m order of the model was restricted to take any value between 1 and 10.  

4.3.2 ARMAX-GARCH with exogenous variables 

A rule of thumb when creating models is to keep the model as simple as possible. Hence, an 

ARMA model without exogenous variables was the first model created. In order to decide 

which exogenous variables to include in the model, the ARMA was tested with different 

combinations of the variables available in the time series. To capture any potential seasonal 

trends in the time series, a SARMA model was also fitted the same way as the ARMA model.  

An issue when forecasting with (S)ARMAX is that the models need the future values of the 

exogenous variables to make predictions on the price as described in Chapter 3.1.2. Hence, the 

time series needed to be updated every week to generate predictions for the upcoming week. 

Due to our assumption that a weather forecast five timesteps ahead is comparable with the 

actual weather, the model was given these variables as exogenous variables.   
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4.3.3 Applying sliding window  

In order to evaluate the models’ performance, a sliding window approach was conducted on the 

models as described in Chapter 3.1.4. The approach is illustrated in the following chart. 

 

Figure 7 - The sliding window approach 

The architecture achieving the lowest RMSE was with a window size of 150, meaning the 

algorithm uses the last 150 observations from the time series to predict the next five timesteps 

from the ARMAX-GARCH and SARMAX-GARCH models. This algorithm was applied on 

the last 30% of the time series, meaning the model was refitted every loop due to changes in 

the training time series, which means that the model adapted to the changes over time.  

The ARMAX- and the SARMAX-GARCH models were ran in Python on a computer with an 

Intel(R) i5 CPU. The duration of running the model-script with the sliding window approach 

was about 10 minutes. Running the ARMAX, ARMAX-GARCH and SARMAX-GARCH 

models without the sliding window had a calculation time on approximately 1-3 minutes.   

4.3.4 Interpretation of the ARMAX-GARCH model  

The ARMAX-GARCH model with order (2,2) (3,7) can be interpreted as followed: The first 

number describes the order of the autoregressive model (AR). Because the order of this thesis’ 

model is 2, the model uses the two previous observations from the time series to predict a new 

observation. The model weights the previous observation depending on the coefficients in the 

ARMAX model. The coefficients are the effect of the previous observations on the current 

observation. These weights determine the effects of previous observations on the current 

observation. Because the previous observations are calculated the same way as the current, all 

the observations in the time series will affect the current observation with decreasing weights.  

The moving average (MA) has the same order as the AR model, order 2, which determent the 

number of previous observations the model uses. Unlike the AR model, the MA model observes 

the error between the estimated and actual observations and models a linear combination of the 

observed errors. Because the MA model is an order of 2, the errors from the two previous 
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observations are multiplied by the coefficients, creating a linear combination which results in 

the prediction of the current variable. The exogenous variables impact the prediction of the 

target variable. The coefficients of the exogenous variables indicate the effect on the target 

variable. When combining the AR, MA and exogenous variables, the model predicts the power 

price based on the past values from the AR, the part errors from the MA, and the effects of the 

exogenous variables. The reason for combining the GARCH model with the ARMAX is due to 

the significant heteroskedasticity in the ARMAX model. The seasonal ARMAX-GARCH can 

be interpret the same way with one additional component. The SARMAX also take an 

observation m, or in this thesis’ case seven timesteps back, as a lagged variable which affects 

the seasonal component in the model. The interpretation of the models is the same for all the 

windows in the sliding window approach.  

4.4 Creating the LSTM models  

For creating the LSTM models, TensorFlow and Keras packages were used. These packages 

are one of the most common deep learning packages for programming languages such as Python 

and R. The two LSTM networks in this thesis was created with the R programming language. 

4.4.1 Hold out validation – training, validating and testing the models 

Since hyperparameter tuning and model selection was needed to map out the best LSTM model, 

we chose to split all available data into a 50-20-30 split, with 50% used for training, 20% for 

validation and 30% for test. This is not a very common approach to splitting the dataset, but the 

choice is based around wanting a large test set. The choice to use a larger test set was made in 

order to evaluate the model’s performance on different statistical distributions. Since the dataset 

had areas with varying levels of volatility. The chosen approach involved training on 50% of 

the dataset and performing hyperparameter tuning and model evaluation on the 20% validation 

set. It is crucial to evaluate the performance of models on a designated validation set during the 

parameter tuning process, instead of relying on the test set. Tuning models based on the 

feedback from the test set can lead to overfitting, as the models may be too specialized to the 

test set and lose their ability to generalize to new, unseen data (Toisoul, 2020).  

Once the models with the lowest RMSE score on the validation set was identified, the models 

were retrained by adding the validation set to the training set, resulting in a 70/30 training/test 

split. Adding the validation set to the training data for retraining allowed for the use of more 

data for training but keeping the test unseen to the models, an approach like this is often desired 
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as it allows for more training (Toisoul, 2020). When they were done training, the models were 

finally evaluated on the unbiased test set.  

4.4.2 Hyperparameter tuning and model selection – Conventional LSTM 

As discussed in chapter 3.2.1 due to the vanishing gradient problem, an LSTM was preferred 

over a standard RNN. The complexity of the LSTM model might improve forecasting ability, 

and it has proven to work quite well on numerous time series regression problems, including 

power price forecasting in previous literature. As previously discussed, the performance of 

neural networks greatly depends on the architecture of the model. Hyperparameters, tuning and 

architecture were inspired by a combination of multiple sources, including Chollet (2018), 

Sutskever et al. (2014), Nielsen (2018) and Olah (2015). In addition to that, previous literature 

such as Aranguren et al. (2022) and Gong et.al (2019) have also been a great inspiration.  

To map which architecture performed the best, a shallow standard LSTM network was created. 

The performance of the shallow network was not satisfying, however, it served as a foundation 

for building a more complex model. Layers and the number of neurons were then increased and 

validated on a validation set, in order to choose a model with the lowest RMSE score. As the 

model increased in complexity, the network showed signs of overfitting to the training data, as 

the generalization to the validation set was poor. In order to reduce the chance of overfitting, 

different regularization techniques were implemented. As discussed in chapter 3.2.6, overfitting 

can easily occur. Experimenting with different regularization techniques found that adding 

LASSO regularization (L1) on the first hidden layer was beneficial, with a penalty value of 

0.01. A penalty of 0.01 for the regularization parameter means that the penalty applied to the 

weights is relatively small, but in this case, still significant enough to encourage the model to 

learn sparse weights and prevent overfitting. Moreover, the model responded better to L1 

regularization than L2. Furthermore, dropout layers were added between the second and third 

hidden layer with a value of 0.2. The regularization technique drops out (setting to zero) 20% 

of the neurons in a layer during training, and it forces the model to learn multiple independent 

representations of the same data and helps the model from relying too heavily on any one feature 

or set of features. This, in addition to the reduction of the model’s overall complexity and the 

careful surveillance of the model’s loss function to the number of epochs in training, helped 

remove any issues with overfitting. Experimentation showed that a batch size of two with 

number of epochs defined to 50 gave decent results without causing overfitting.  
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The activation function chosen for the LSTM layers is tanh, however, the dense layers in the 

model (fully connected layers) are activated using ReLU. During experimenting, it was found 

that the combination of these activation functions was optimal. The model seemed to especially 

benefit from the ReLU activation functions in the dense layers. The standard default activation 

settings for LSTM layers in Keras is the tanh function, and it was found no improvements in 

altering the default setting to ReLU. However, based on literature, a combination of activation 

functions is common. The optimizer used for the model was Adam. For further explanation, see 

chapter 3.2.4. 

 

Figure 8 - Conventional LSTM topology 

4.4.3 Applying sequence to sequence  

So far, the model created is an LSTM model without a sequence-to-sequence architecture. The 

created model as shown in figure 8 served as a baseline for power price forecasting using neural 

networks in this thesis, and the structure is similar to what typically have been used for power 

price prediction using recurrent neural networks in previous literature. A sequence to sequence 

structure was used by Gong et al. (2019) when forecasting power load, and the method was 

found by them to be superior compared to LSTM models without the structure.  

To create a sequence to sequence architecture, the structure and code needed to be heavily 

altered. Firstly, we created a structure that consists of two LSTMs: an encoder and a decoder 

LSTM, connected in a sequence. The encoder LSTM takes in the input sequence and generates 

a context vector that summarizes the input sequence. The second LSTM, the decoder, is then 

programmed to take the context vector and generate the output sequence. The output sequence 

is a sequence of desired timesteps. This is a methodically substantial difference from the 
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conventional LSTM created in the first instance. The standard LSTM (figure 8) is used for 

single sequence prediction, where the model takes in a sequence of inputs and generates a single 

output until it has reached the desired timesteps. Despite the structural changes, it was found 

reasonable to keep the regularization techniques the same to prevent overfitting, as well as the 

activation functions. However, the overall topology of the network was changed.  

 

Figure 9 - Seq2Seq-LSTM topology 

For the Seq2Seq-LSTM model, experimentation showed that the best results were achieved 

with a network structure that consists of two hidden layers in each network. This adds up to 

four hidden layers in total with the number of nodes consistently set to 75 for each hidden layer. 

It is also worth noting that in the architecture of the standard LSTM, it was discovered that a 

combination of LSTM layers and dense layers was appropriate, whereas with the Seq2Seq-

LSTM, it was decided to only use LSTM layers.  

In order to map out the best combination of window size and forecasted time step, different 

combinations were tried. Firstly, the number of time steps was set to 5, 14 and 30, and different 

window sizes between 30 and 150 were also tried. The complexity of the model was shown to 

be heavily influenced by the number of observations used for the window size, which did 

noticeably impact the duration of the training process. It was found no noticeable upside using 

a larger window size than 50, thus setting the window size to 50.  

After discovering the optimal architecture and hyperparameters as described, the model was 

selected based on its performance on the validation set. Subsequently, the model was retrained 
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with an increased training set using the selected architecture and hyperparameters, and finally 

evaluated on the test set. The same approach as with the conventional LSTM.  

Training duration was only about 35 minutes for the Seq2Seq-LSTM and about one hour for 

the conventional LSTM. The models were trained on a computer with an intel core i5 CPU. 

The training time for these models is not necessarily very time-consuming in the world of deep 

learning, however, due to the amount of experimenting with different architectural structures 

and hyperparameter tuning, it can lead to a very time-consuming project. Therefore, due to the 

time constraints of the thesis, it is possible that there exist other model combinations and 

architectural structures that could potentially perform better than the ones discovered by us. 

4.4.4 Interpretation of the LSTM models 

During training, the Seq2Seq-LSTM was trained to forecast the desired number of timesteps 

ahead based on the specifications given in the encoder/decoder structure of the model. The 

model forecasts the next timesteps of the target and exogenous variables by taking in the 

historical data of all the variables, processes them through the encoder and decoder networks 

of the model, and outputs the predicted values for the next timesteps. This process is repeated 

for each new time step.  

One of the key differences between the two LSTM models presented above, is how the two 

models are programmed to work based on their architecture. In the conventional LSTM, the 

model predicts one future value at a time, and the predicted value is then fed back into the model 

as input for the next prediction. In theory, this can lead to accumulated errors and a lower 

accuracy as the number of predicted time step increases to the desired number. In contrast, the 

Seq2Seq-LSTM is explicitly designed to handle multiple future predictions by generating the 

entire output sequence at once based on the input sequence and the learned weights. As 

discussed in Chapter 3.2.3 however, this have mostly been a success for language models, and 

the amount of Seq2Seq-modelling for time series forecasting is not as widespread as regular 

LSTMs, despite being quite successful for Aranguren et al. (2022) and Gong et.al (2019).  

During the testing phase of the Seq2Seq-LSTM, the model was programmed to generate the 

desired number of predictions using the learned weights from the data, and a fixed window size 

with available information up to the point of prediction and compares them to the actual values 

in the test set. This process was repeated until all data in the test set had been used. This type 

of forecasting is quite similar to the sliding window method used in the (S)ARMAX-GARCH. 

The (S)ARMAX-GARCH forecasts uses a fixed size window to forecast the next timesteps, 
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whereas the Seq2Seq-LSTM model uses the entire available learned data and a fixed window 

to forecast the next timesteps. The similarity, however, revolves around the model only 

forecasting a fixed sliding time step multiple times, instead of forecasting the entire test set in 

one go. Additionally, both LSTM models have also been programmed to forecast the exogenous 

variables for timesteps above five days.  

4.5 Hydrogen production case   

In this chapter, we have created a cost-minimization case to analyze the financial value of the 

forecasting models. The models have been programmed to forecast five timesteps (days) ahead, 

to provide input for cost minimization in hydrogen production for one work week. In this case, 

the models are used to forecast on five days interval, Monday to Friday, for eight weeks, starting 

from Monday January 2nd 2023. The data-inputs used for this case are data points beyond what 

the models were trained, validated and tested for. The outputs of the models were then used as 

inputs for the production period in the optimization problem explained below. The creation of 

the case is done in collaboration with a Norwegian hydrogen production corporation 

(anonymous, personal communication, 2023). 

The corporation owns a factory with a power capacity of 100 MWh (Megawatt hour) which 

makes the total production capacity 2400 MWh throughout one day of production. This 

corporation operates an electrolyser for hydrogen production, which has a stack efficiency of 

60%. This means the electrolyser can effectively convert 60% of supplied power into a 

measurable quantity of hydrogen (metric tons), quantified in MWh (units of power-equivalent 

hydrogen). To convert MWh of hydrogen into tons, the MWh is divided by the constant 33.3 

which gives the produced quantity. The factory needs to produce 170 tons of hydrogen each 

week to reach the corporation’s production target. Due to the calculation described above, the 

factory has a maximum capacity for production each day of 43.24 tons. 

 

Figure 10 - Power to hydrogen conversion 

The transportation of produced hydrogen from the plant incurs a cost. However, this expense 

only applies on the days when production occurs. This cost is added to the optimization problem 

Hour Day

Megawatt hour 100.00 2400.00

Stack efficiency (%) 0.60 0.60

MWh available for production 60.00 1440.00

MWh hydrogen conversion factor 33.30 33.30

Hydrogen in tons 1.80 43.24
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to illustrate the impact of a hypothetical storage cost or a transportation cost. Since the hydrogen 

production case illustrates issues with variable production costs, and to create a better 

understanding of the power price influence on hydrogen production, fixed costs are deemed 

irrelevant. The optimization problem has the following mathematical expression. 

𝑀𝐼𝑁 Σ(𝐷𝑖 ∗ 𝑇𝑖) + Σ(𝑃𝑃𝑖 ∗ 𝑃𝑄𝑖)         𝑖 ∈ 1,5 

Subject to 

𝑃𝑄𝑖 ≤ 43.24 

Σ𝑃𝑄𝑖 ≥ 170 

𝑇𝑖 = 150000 

𝐷𝑖 = 𝐵𝐼𝑁 

𝐷𝑖 = 𝐷𝑢𝑚𝑚𝑦 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑑𝑎𝑦 𝑖 

𝑇𝑖 = 𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑛 𝑑𝑎𝑦 𝑖 

𝑃𝑃𝑖 = 𝑇ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 𝑜𝑛 𝑑𝑎𝑦 𝑖 

𝑃𝑄𝑖 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑛 𝑑𝑎𝑦 𝑖 

 

The solver function in Excel which has a MIP calculation function, is used to minimize the cost 

for the corporation. Because this thesis is forecasting the power price with two different models, 

the optimization was done 16 times, every week in the production period for both models. A 

maximization and a minimization with respect to the actual power price was also conducted to 

analyse a cost-feasible area if the models missed on the weekly trends in the power price. This 

is conducted in chapter 5.3.3.  

The total costs when optimizing with the predicted power price will only be accurate if the 

models manage to predict the actual power price with 100% accuracy. It is reasonable to think 

that this might not actually occur. Hence, two different scenarios were created to illustrate the 

different financial impacts the models may have.  

Scenario 1 – The baseline  

Given no knowledge of future power prices, a reasonable assumption revolves around the 

corporation producing the same quantity of hydrogen each day with no respect to the actual 

power price.  Hence, this scenario accounts for an average production quantity each day and 

the actual power price for each week. The scenario can be seen as a baseline model of what the 

cost will be if the company does not actively guide the production with the use of power 

predictive models.  
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Scenario 2 – The actual cost  

The second scenario presupposes that the company produces according to the ARMA model or 

the LSTM model. The scenario contains actual observations of the power price for each week 

and will illustrate the actual cost each week when producing according to this thesis’ models. 

Scenario 2 must outperform Scenario 1 for the models to be useful cost saving tools.   

The same optimization has been created for all eight weeks in January and February 2023, 

hereby called the production period. Both the predicted power prices from the ARMA model 

and the LSTM have been applied in the optimization. The technical calculations for the eight 

weeks for both models are visualized in Appendix A05.   
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5 Results  

This chapter is structured to present our research results, divided into two main areas. The initial 

sections disclose the outcomes of the forecasting models on the test set. The chapter begins with 

the results from the ARMAX-GARCH and SARMAX-GARCH models, before moving on to 

reveal the findings from the baseline LSTM and Seq2Seq-LSTM. The final section delves into 

the models’ forecasting performance during the production period and the optimization results, 

with particular emphasis on the financial impacts of the models. Lastly, a risk analysis of the 

optimization results was conducted. 

5.1 ARMAX and SARMAX model performance  

To determine the optimal model for the time series, the model with the lowest AIC was used in 

the forecast conducted in this thesis. The two models achieving the lowest AIC values were 

ARMAX-GARCH and SARMAX-GARCH models as shown in Appendix A03. Applying all 

the exogenous variables from the time series, fyllingsgrad, temperatur, vind and nedbør, both 

models decreased the AIC values and increase the models’ fit to the time series. As shown in 

the appendix, the ARMAX-GARCH model managed to get an AIC of 31 751 and a BIC of 

31 831. The SARMAX-GARCH model was tested with different seasonal intervals but 

achieved the best AIC and BIC values with seven as the seasonal component. The achieved 

AIC and BIC values were 30 301 and 30 375. The order of these models are for the ARMAX-

GARCH(2,2)(3,7) and for the SARMAX-GARCH(2,2)(1,0,1,7)(4,6). Because all the variables 

in the time series were stationary, no differencing were needed, hence the models are ARMA, 

not ARIMA models.  

 

Figure 11 - AIC and BIC values of the ARMA models 

Both models were evaluated using the sliding window approach as mentioned previously. The 

ARMAX-GARCH model, when forecasting five timesteps ahead, achieved an RMSE of 14.56 

øre/kWh and an MAE of 6.46 øre/kWh. With the same evaluation criteria, the SARMAX-

GARCH achieved an RMSE of 15.00 and an MAE of 6.41. The plot of the models’ predictions 

and the actual observations show that the models also were capable of predicting some trend in 

the power price. The following graph shows a five-timestep prediction of the ARMAX-

Model AIC BIC RMSE MAE

ARMAX-GARCH(2,2)(3,7) 31 751     31 831     14.56       6.46         

SARMAX-GARCH(2,2)(1,0,1,7)(4,6) 30 301     30 375     15.00       6.41         
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GARCH and the SARMAX-GARCH. The actual power price is colored with blue, and the 

predicted power price is colored with red. 

 

Figure 12 - ARMAX-GARCH with sliding windows, test results 

 

Figure 13 - SARMAX-GARCH with sliding windows, test results 

The ARMAX-GARCH and SARMAX-GARCH models achieved almost the same results 

during the test period. The Appendix A03 also shows small differences between the ARMA 

models when comparing the AIC and BIC from the models. Because the ARMAX-GARCH 

model is a less complex model and achieved a slightly better RMSE value than the SARMAX-

GARCH, the ARMAX was used in the optimization problem. Further experimenting with the 

seasonal component up to a year might increase the SARMAX-GARCH performance and 

lowering the RMSE/MAE. To gain a better understanding of how well the ARMAX-GARCH 

model will perform when predicting the power price during this thesis’ production period, the 



 
 

38 
 

RMSE and MAE were calculated for the same predictions as over, but for the end of the time 

series (from 2022).  

 

Figure 14 - ARMAX-GARCH with sliding windows from 2022, test results 

Due to high volatility in the power price at the end of the time series, the model struggles to 

predict the power price in this period accurately. In the last two years of the time series, the 

model has an RMSE of 33.29 øre/kWh and an MAE of 19.25 øre/kWh, which is substantially 

higher than the RMSE for the entire period. The model seems to be disturbed by the sudden 

spikes, and as a result it leads to delays in the predicted prices.  

5.2 The LSTM model performances  

In line with the methodology described in the previous chapter, two LSTM models were trained, 

validated and tested. The results in this chapter give an overview of the models’ performance 

on the test set. Three different timesteps were tested, and each of the two models were trained 

to forecast five, fourteen and thirty timesteps ahead.  

5.2.1 Conventional LSTM model performance 

As described in the methodology, a conventional LSTM model was created to establish a 

baseline for the machine learning models. We experimented with different timestep values, and 

it was discovered that the best practical result was achieved with a timestep of five. The results 

showed an RMSE of 13.75 øre/kWh and an MAE of 6.27 øre/kWh, indicating the degree of the 

model’s forecasted values deviates from the actual values.  
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Figure 15 - Five-day forecast with conventional LSTM, test results 

The conventional LSTM was able to capture the underlying trend of power prices, resulting in 

reasonably accurate predictions during the initial stages of the test set. However, as the test set 

progressed and the periods became more volatile, the model’s accuracy decreased, particularly 

when predicting extreme values. The model struggled to capture the highest and lowest prices 

in the data, with the highest price recorded being 305.38 øre/kWh, while the highest price 

captured by the model was only 95 øre/kWh. Similarly, the lowest price recorded was 0.7 

øre/kWh, while the lowest price predicted by the model was 10.10 øre/kWh. These difficulties 

are illustrated in figure 15, which depicts the challenges of predicting extreme values. Value 

within the range of 10.10 and 95 are however well depicted by the model, resulting in 

reasonably accurate forecasts.  

Due to the LSTMs ability to forecast its own exogenous variables, the LSTM network was also 

tested on further ahead timesteps. The further into the future the model was programmed to 

predict, the lower the accuracy. In figure 16, the different timesteps and evaluation metrics are 

shown. This indicates that the model is not able to accurately predict power prices at longer 

timesteps with the architecture chosen for the conventional LSTM in this thesis, with especially 

high RMSE and MAE values.  
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Figure 16 - Different timesteps conventional LSTM 

5.2.2 Seq2Seq-LSTM model performance 

When forecasting with five timesteps ahead as the baseline, the Seq2Seq-LSTM yielded an 

RMSE of 6.43 øre/kWh, almost half of the RMSE obtained by the conventional LSTM model. 

This indicated significantly reduced degree of deviation from the actual values. Additionally, 

the model displayed an MAE value of 2.1. Specifically, this suggests that, on average the model 

only missed each prediction by 2.1 øre/kWh, highlighting high accuracy in forecasting the 

power price five days ahead.  

 

Figure 17 - Five-day forecast with Seq2Seq-LSTM, test results 

The Seq2Seq-LSTM model demonstrated satisfactory performance in predicting the power 

prices, accurately capturing the underlying trend with high precision. In comparison to the 

conventional LSTM, the Seq2Seq-LSTM model demonstrated better performance in handling 

extreme values, being able to predict prices as low as 3.54 øre/kWh and as high as 121.97 

øre/kWh. Despite its ability to handle extreme value better than the conventional LSTM, the 

model still struggled to accurately forecast the extremes. The model’s limitations in predicting 

values outside of this range indicate that it may not fully account for the underlying factors 

contributing to extreme values. This is not too surprising, given that the model was trained and 
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validated on a less volatile portion of the dataset that included fewer extreme values than the 

test portion.  

Due to the relatively high accuracy of the Seq2Seq-LSTM model’s performance when 

forecasting power prices five days ahead, we also tested the model’s ability to predict prices for 

a timestep of 14. This could potentially lead to further ahead planning for the optimization 

problem.  

 

Figure 18 - Fourteen-day forecast with Seq2Seq-LSTM, test results 

We found that the model had the ability to accurately capture a considerable portion of the 

underlying trend within the data, although the overall level of accuracy was not particularly 

high. While the RMSE of 16.73 and MAE of 9.48 were slightly better than the conventional 

LSTM with a timestep of 14, the results were not deemed satisfactory, as the model operates 

with too much uncertainty. However, it is worth noting that the model’s relatively accurate 

depiction of the underlying trend still holds some promise for practical applications.  

As described in the methodology, we also tested for the possibility of forecasting 30 days ahead. 

Given the inaccurate results of forecasting 14 days ahead, satisfying results were not expected, 

but the experimenting with different timesteps could potentially provide valuable information 

about the model’s overall ability and limitations. As shown in the figure below, the results of 

the 30-day prediction were unsatisfactory. The model struggled to accurately capture the 

underlying trend, although some tendencies were apparent. The overall RMSE and MAE scores 
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were high, indicating that the model’s practical value was limited for this level of forecasting 

horizon. Despite these limitations, it is important to acknowledge that this specific Seq2Seq-

LSTM model may not be the optimal architecture for long-term forecasting. Other model 

architectures or techniques may be more effective in accurately predicting the NO4 power price 

for extended periods.  

 

Figure 19 - Thirty-day forecast with Seq2Seq-LSTM, test results 

 

Figure 20 - Different timesteps with Seq2Seq-LSTM 

The results above demonstrate that the Seq2Seq-LSTM model exhibits superior forecasting 

performance when predicting power prices with a timestep of five, in comparison to the 

conventional LSTM model. While the Seq2Seq-LSTM model maintains a slightly better 

performance as the timestep increases, this improvement is not linear. 

The results of the model performance evaluation emphasize the importance of selecting an 

appropriate number of timesteps ahead for the specific forecasting task. While the Seq2Seq-

LSTM model performed quite well when forecasting five timesteps ahead, it struggled with 

further ahead forecasts. Although its accuracy was better than the conventional LSTM, this was 
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especially true when forecasting five timesteps ahead. The visualizations and error metrics 

indicates that as the number of timesteps increases, the uncertainty also increases, and the model 

predictions tend to fluctuate more, and trends may be missed. This suggests that the model 

struggles to capture the nuances of the power price data when forecasting further ahead, and 

additional factors beyond the inputs used in the model may be needed to improve its 

performance. This is unsurprising, but it highlights the need to consider the specific purpose 

and constraints for the application when selecting an appropriate number of timesteps for the 

forecasting task.  

For instance, when using the Seq2Seq-LSTM model for forecasting power prices for hydrogen 

production optimization, a timestep long enough to serve the practical purpose of planning the 

production was needed. Therefore, a trade-off between predictability and practicality was 

evaluated, thus choosing the model that can forecast five timesteps ahead with an RMSE of 

6.43 and a MAE of 2.1 for further analysis. This allows the model to predict a workweek 

interval before being updated and run to forecast again every Sunday with updated data. The 

findings suggest that the Seq2Seq-LSTM model with a timestep of five is particularly effective 

at capturing the underlying trend within the data, resulting in higher accuracy. However, it is 

essential to note that the decision to choose this model may not be optimal for all applications, 

and it is crucial to consider the specific needs and constraints of each individual case. This also 

puts it in easy comparison to the ARMAX-GARCH model.  

5.3 Model-assisted hydrogen production   

5.3.1 Comparing the power price predictions during the production period 

The potential savings for the factory is illustrated in the optimization example described in 

Chapter 4.5. Both the ARMAX-GARCH model and the Seq2Seq-LSTM network are capable 

of capturing tendencies in the weekly power prices. The meaning of trend in this chapter is how 

well the models can rank the days in a week from the lowest to the highest power prices. The 

following table illustrates the weekly trends in the predicted power prices from the models. The 

lowest prices each week are colored in green, while the highest prices are colored in red.  
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Figure 21 - Trend plot 

Although both models are able to capture some trends in the weekly power prices, the Seq2Seq-

LSTM network clearly outperforms the ARMAX-GARCH model. The network is able to 

capture a trend identical to the actual power price, which is not the case for the ARMAX-

GARCH model. This is an important observation regarding the optimization problem, as the 

factory does not need to produce on the most expensive day of the week, because the production 

target is possible to achieve with only four production days.  

Another key finding pertains to the differences between the predicted and the actual power 

prices in the production period. In this regard, the LSTM network yields an RMSE of 3.01, 

while the ARMAX model has an RMSE of 30.06 for the same timeframe. The graph presented 

below displays the deviations between the predicted and actual power prices for all days 

forecasted out of frame. Notably, the ARMAX-GARCH model exhibits significantly more 

volatile deviation compared to the network, indicating that it is associated with a higher degree 

of uncertainty in its predictions. It is important to highlight that the RMSE values for the 

Lowest

Second-lowest

Middle

Second-highest

Highest 

Actual Seq2Seq-LSTM ARMAX-GARCH Actual Seq2Seq-LSTM ARMAX-GARCH

02.01.2023 80.72 89.79 61.54 09.01.2023 47.35 48.02 50.03

03.01.2023 75.71 85.34 76.04 10.01.2023 39.07 39.88 69.70

04.01.2023 51.79 52.95 91.47 11.01.2023 37.10 38.22 64.74

05.01.2023 45.15 45.78 104.58 12.01.2023 36.65 37.86 61.87

06.01.2023 47.51 48.18 112.98 13.01.2023 48.47 49.19 56.19

Actual Seq2Seq-LSTM ARMAX-GARCH Actual Seq2Seq-LSTM ARMAX-GARCH

16.01.2023 63.04 69.79 52.54 23.01.2023 43.40 44.02 62.28

17.01.2023 45.88 46.52 51.48 24.01.2023 34.50 36.21 69.03

18.01.2023 45.38 46.02 60.99 25.01.2023 24.33 27.04 71.90

19.01.2023 50.56 51.49 55.57 26.01.2023 39.71 40.45 74.79

20.01.2023 52.26 53.54 53.16 27.01.2023 40.23 40.93 69.50

Actual Seq2Seq-LSTM ARMAX-GARCH Actual Seq2Seq-LSTM ARMAX-GARCH

30.01.2023 26.65 29.55 78.21 06.02.2023 27.80 30.72 49.88

31.01.2023 48.81 49.55 62.30 07.02.2023 24.56 27.31 55.94

01.02.2023 44.44 45.07 69.33 08.02.2023 21.31 23.28 53.38

02.02.2023 56.52 59.53 71.97 09.02.2023 19.14 20.78 63.77

03.02.2023 54.07 55.93 81.62 10.02.2023 21.78 23.87 68.86

Actual Seq2Seq-LSTM ARMAX-GARCH Actual Seq2Seq-LSTM ARMAX-GARCH

13.02.2023 23.91 26.53 60.18 20.02.2023 26.62 29.56 46.61

14.02.2023 23.36 25.85 57.96 21.02.2023 55.50 57.99 53.63

15.02.2023 22.59 24.89 47.05 22.02.2023 24.22 26.91 59.13

16.02.2023 23.75 26.34 56.23 23.02.2023 24.02 26.67 51.36

17.02.2023 26.73 29.67 53.96 24.02.2023 25.76 28.66 54.58

Week 7 Week 8

Week 1 Week 2

Week 3 Week 4

Week 5 Week 6
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production period and the test period cannot easily be compared due to the significant difference 

in their respective lengths. The test set was considerably longer and subject to more extreme 

observations and higher volatility, particularly towards the end of the test timeframe. 

 

Figure 22 - Deviation from the actual power price during the production period 

The graph above showcases deviations in the models, where results compared to the red line 

(zero) indicates the models’ accuracy to actual power prices. These disparities between the 

models can influence the extent to which they contribute towards reducing costs. The 

differences between the two forecasted results will influence how the MIP-algorithm finds the 

optimal solution in each of the two cases, and thus, potentially provide different production 

plans. The graph below illustrates the predictions from both the ARMAX-GARCH model and 

the Se2Seq-LSTM network, as well as the actual power price during the production period. 

 

Figure 23 - Predicted power prices during the production period 
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5.3.2 Cost minimization with the predicted prices  

Drawing upon the optimization problem presented in chapter 4.5 and utilizing forecasted prices 

as input for the optimization problem, scenarios can be generated that highlight the financial 

benefits and potential drawbacks of utilizing the models. The tables presented below 

demonstrate the extent to which the models’ impact and differentiates cost minimization, as 

well as how they deviate from the actual cost of production. This is achieved by examining how 

each model influences the distribution of produced hydrogen. It is important to note that the 

quantity of production for each day is not consistent between the two models. They make 

distinct predictions on power prices, thus influencing the optimization problem to make 

different choices. For instance, the MIP-algorithm will either reduce or avoid production on the 

day with the highest predicted power price. This is an important observation, as it emphasizes 

the importance of not only accurate day-to-day power price predictions, but the importance of 

the models’ comprehension of trends. The degree to which the models deviate from the actual 

power price may not be as crucial as its ability to accurately identify the trend, and correctly 

point out the most expensive day. 

 

Figure 24 - Production results 

The key figure Deviation illustrates how much the models deviate from the actual production 

expenses when producing the quantity according to the predicted power prices. This figure is 

the models’ predicted expenses subtracted Scenario 2 as described in chapter 4.4. The 

optimization based on the ARMAX-GARCH-predicted power prices overestimates the total 

production costs by 47% while the optimization based on predictions from the Seq2Seq-LSTM 

only overestimates by 4%. This discrepancy indicates a deviation from the actual production 

cost. 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Total Key figures

Model 8 434 715        6 081 146        5 614 327        7 026 432        7 234 449          5 846 117        5 669 196        5 458 285        51 364 667        

Scenario 2 6 606 252        4 608 427        5 598 319        3 978 814        4 789 982          2 795 830        2 875 771        3 723 044        34 976 438        

Deviation 1 828 463         1 472 719         16 008              3 047 618         2 444 467         3 050 287         2 793 425         1 735 241         16 388 229        46.86 %

Scenario 2 6 606 252        4 608 427        5 598 319        3 978 814        4 789 982        2 795 830        2 875 771        3 723 044        34 976 438        

Scenario 1 6 427 606        4 687 037        5 601 854        4 187 548        5 099 346        2 912 313        3 020 816        3 695 984        35 632 505        

Savings 178 646            78 610-              3 536-                208 734-            309 364-            116 484-            145 045-            27 060              656 066-             -1.84 %

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Total Key figures

Model 6 033 385        4 456 338        5 253 369        4 003 620        4 830 194          2 840 724        3 042 870        3 234 438        33 694 938        

Scenario 2 5 759 057        4 366 005        5 171 718        3 864 140        4 686 141          2 642 457        2 807 192        2 970 968        32 267 678        

Deviation 274 328            90 333              81 651              139 480            144 053            198 267            235 678            263 470            1 427 260          4.42 %

Scenario 2 5 759 057        4 366 005        5 171 718        3 864 140        4 686 141        2 642 457        2 807 192        2 970 968        32 267 678        

Scenario 1 6 427 606        4 687 037        5 601 854        4 187 548        5 099 346          2 912 313          3 020 816        3 695 984        35 632 505        

Savings 668 549-            321 032-            430 136-            323 408-            413 205-            269 856-            213 624-            725 016-            3 364 827-          -9.44 %

ARMAX-GARCH

Seq2Seq-LSTM
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Despite the models’ relatively high deviations, it is important to recognize the noteworthy 

figures on cost savings. The Savings figures are based on producing the optimal quantity of 

hydrogen, based on each model over eight weeks, but using the actual power prices. This is 

compared with an average production quantity through the week, illustrated with Scenario 1. 

These savings illustrate the potential benefits of utilizing these models for cost minimization 

for hydrogen production. The ARMAX-GARCH model produces cost savings for factory in six 

of the eight production weeks, while incurring additional expenses in the first and the last week 

of the production period. As a result, the total cost savings at the end of the period amount to 

NOK 656 066, which is equivalent to a saving of 1.84% through the production period with 

respect to the ARMAX-GARCH-influenced optimization. Furthermore, if the model was 

required to adhere to the same weekly transportation cost as Scenario 1, the actual cost 

reduction achieved through production according to the model would amount to NOK 506 066.  

In contrast the Seq2Seq-LSTM network consistently reduces costs every week during the 

production period, resulting in total cost savings of NOK 3 364 827 for the production period. 

This translates to 9.44% savings when producing according to the neural network with actual 

power prices, as opposed to equally distributed production – Scenario 1. A noteworthy 

observation is that the models generate vastly different savings in the most expensive weeks 

(week 1 and 8). This is because the power prices in the other weeks are lower and relatively 

more stable, resulting in the optimization and decision based on the models having less impact 

compared to Scenario 1. The following charts illustrates the weekly and accumulated weekly 

savings when producing according to the quantity suggested, based on the predicted power 

prices from the predictive models. 

 

Figure 25 - Weekly savings during the production period 
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Figure 26 - Accumulated savings during the production period 

5.3.3 Risk analysis  

Given the relatively short duration of the production period, it presents a challenge to draw 

conclusions about the potential for long-term savings, and the general risks with model-guided 

production. Given that each week entails unique production circumstances, there lies a 

challenge with quantifying the precise risk associated with each model. However, to illustrate 

the potential risk during the production period, and to illustrate a potential general risk of 

combining these models with the MIP-algorithm, we have created following plots.  

 

Figure 27 - ARMAX-GARCH risk analysis 
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Figure 28 - Seq2Seq-LSTM risk analysis 

The Y-axis illustrates the financial impacts of the models, based on how the models 

theoretically could perform. The red line marks the models’ actual performance during the 

production period. The area below the red line but within the feasible area, indicates the 

potential areas where the model could have performed, assuming improved trend accuracy. 

Conversely, areas above the red line illustrate potential performance levels if the models had 

poorer trend depiction.  

The feasible area is bounded by two lines. The upper boundary represents a pessimistic scenario 

where the model entirely misses the trend. This boundary is created by maximizing costs based 

on the actual power prices, reflecting what the models would have done if they completely 

missed the trend. The lower boundary illustrates an optimistic scenario where the models 

perfectly capture the trend. This boundary is formed by minimizing costs based on the actual 

power prices.  

In a theoretical scenario where the ARMAX-GARCH model more accurately captured the 

trend, its performance could have improved by 12% in week 1 and 20% in week 8. However, 

the model could also have performed 20% and 4% worse in the same weeks, indicating that the 

models do not miss trends completely. In contrast, the Seq2Seq-LSTM model displayed a 

perfect trend alignment during the production week, leading to an optimal performance when 

combined with the MIP-algorithm. It is important to note that this does not imply a 100% 

accurate day-to-day price prediction, but rather a 100% accurate day-to-day depiction of the 

trend, which has optimal effect on the optimization.  
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6 Discussion 

6.1 The superior performance of the Seq2Seq-LSTM 

The choice to use a conventional LSTM network as the baseline machine learning model, is 

due to the model’s extent use in recent time series research. Conventional LSTM models have 

been effectively utilized in power price forecasting in previous literature, especially regarding 

single time step forecasting. However, this thesis found a Seq2Seq-LSTM model to be superior 

to a conventional LSTM model. This is in line with previous research done by Aranguren et. al 

(2022) and Gong et. al (2019). The proposed structure showed a reduction in RMSE of 53% 

compared to the thesis’ baseline model. The structure seems to be especially well suited for 

multi-step forecasting. Due to the black box nature of the model, it can be difficult to fully 

comprehend the reasons behind the high accuracy, but we have some hypothesis as to why.  

In a conventional LSTM model, the input sequence is mapped to a sequence of hidden states, 

and the final hidden state is then used to generate the output sequence (see figure 5). This has 

the potential to result in fewer dependencies captured. The encoder-decoder architecture of the 

Seq2Seq-LSTM may allow the model to learn the input-output mapping in a more structured 

way. The encoder maps the input sequence to a fixed-length internal representation, which tries 

to capture the most important information about the input sequence. The decoder then uses this 

internal representation to generate the output. For instance, the encoder-LSTM might focus on 

capturing trends and dependencies in the data while the decoder-LSTM focuses on generating 

the forecast based on these trends and dependencies. Additionally, the Seq2Seq-LSTM model’s 

ability to handle variable length input and output sequences might make it specifically suited 

for the forecasting task in this thesis. The encoder-decoder architecture allows the model to 

handle a variable length input, in this case a window of the last fifty days, to predict a sequence 

of five days. Due to the autoregressive nature of time series forecasting, the overall flexibility 

of the Seq2Seq-LSTM might be the main reason for the increased accuracy. It is also important 

to note that the Seq2Seq-LSTM model converged faster during training compared to the 

conventional LSTM. Pinpointing the exact reason is challenging, but one possible explanation 

could be the increased complexity of the model, which may have led to a better fit with the data.  

In comparison to the ARMAX-GARCH model, deep learning techniques such as Seq2Seq-

LSTM benefits from effective capturing of non-linear relationships in data. Weather conditions 

are typically non-linear (see Appendix A04). Demand for electricity might increase or decrease 

with temperature, but not at a constant rate. For instance, on cold days, demand might rise 
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sharply due to increased usage of heating. Due to the Seq2Seq-LSTM-networks gating and 

memory mechanisms (see figure 5), the model can handle long-term dependencies in data far 

more effectively than the ARMAX-GARCH model. The gates can learn which data in a 

sequence is important to keep or discard, thereby reducing the impact of irrelevant inputs. The 

ARMAX-GARCH model assumes that the current value of the time series depends on the fixed 

values of past values. Additionally, the weight given to past observations decreases as the model 

go further back in time. This is because the model assumes that more recent data points are 

more relevant for predicting the current value, which restricts the model’s ability to capture 

long-term dependencies. Furthermore, the ARMAX-GARCH model assume stationarity, and 

even though the ADF-test (see Appendix A01) showed the data was stationary, the time series 

heavily changes its underlying characteristics towards the end of the time series. Therefore, 

because statistical models such as ARMAX-GARCH assumes that incidents that have occurred 

in the past will continue, the model were not able to capture the volatility at the end of the time 

series as well as the Seq2Seq-LSTM. This is also one of the reasons why the ARMAX-GARCH 

model performs poorly during the production period in the hydrogen case. The high volatility 

and price spikes that happened towards the end of the test set is added to the window size, and 

the ARMAX-GARCH assumes such high price spikes and volatility to happen during the 

production period.  

Even though the daily forecasts during the production period were not perfectly depicted by the 

Seq2Seq-LSTM, with two deviations as high as 10 øre/kWh, the model is perfectly able to rank 

the days in terms of lowest to highest price. Despite this, the model is not able to generalize on 

extreme values as seen in figure 17. Some of this can probably be related to the lack of such 

extreme values in the training set. Due to the time series structures of the model, the training, 

validation and test needs to be split in a time series manner, meaning techniques such as k-fold 

cross validation in a random split is not suited. The model can be, and should be, retrained to 

cope for this; however, evaluating the model’s ability to generalize to unseen instances of high 

prices can prove challenging. This is primarily because real-time instances of extreme values 

are required to truly assess the model’s capabilities. Another possible assumption is that there 

are other architectural structures and hyperparameters which would increase the model’s 

performance on handling extreme values.  

Despite the high performance of the Seq2Seq-LSTM, the ARMAX-GARCH model are much 

more interpretable. This can be a major advantage for insights, scenario simulations and a 

broader understanding of the underlying factors’ implications of the power price. Generally, 
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they are also easier to implement than more complex models. Therefore, even though complex 

machine learning methods may be better at accurately depicting the power price and its usage 

in this thesis, statistical methods can be much better suited for other tasks.  

6.2 Critique of the optimization case  

We needed to create a realistic case of hydrogen production to illustrate the financial impact of 

the models. The production target and the daily production of the case factory mirrored that of 

a real-world hydrogen production facility, according to the anonymous hydrogen corporation. 

The inclusion of a transportation cost, which illustrates a transportation, storage- or start-up 

cost is also what to expect in a real-world factory. Despite including the transportation cost, the 

optimization case neglects to some extent the storage cost of the produced hydrogen. This is 

because the cost varies depending on the locations and the production quantity of the factories, 

which makes it difficult to quantify. It is reasonable to believe that the cost of storage, 

transportation and start-up could exceed the amount of NOK 150 000 used in this thesis’ 

production case.  

A factor affecting the savings figures presented in this thesis is when producing according to 

an average daily quantity (Scenario 1), the transportation cost will apply for all days. Unlike 

producing according to the models, because the model can achieve the production target with 

only four production days each week. Calculating for this issue, the ARMAX-GARCH and the 

Seq2Seq-LSTM network achieve savings of -1.5% and 6.3% which implies that producing 

according to the statistical model will gain higher costs during the production period than 

weekly average production. 

The case does not include hourly changes in the power price, which will affect the production 

cost throughout the day. The case also assumes the hydrogen is produced at 100% spot-price to 

highlight the importance of future power price predictions. According to the corporation who 

provided details for the optimization case, a split of 70% fixed and 30% spot-price are realistic. 

This is not accounted for in the case as we highlight the spot-price’s impact on the production 

costs. With these factors in mind, the actual savings of applying this thesis’ methods might not 

be as high as illustrated.  

The models’ usage for cost minimization during low-volatility periods with low electricity 

prices, such as the summer, is likely to result in less significant savings compared to using the 

model during high-price and high volatile periods. This is because stable or constant prices 

throughout the week can lead to greater indifference in terms of which day production is 
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planned, thereby reducing the benefits of the models’ predictive capabilities. Conversely, even 

higher prices and volatility than seen during the production period could result in higher 

percentage savings than presented in this thesis.  

6.3 Model implication on the optimization  

When applying the models to the hydrogen production case, the complexity of model evaluation 

increases. Predicting power prices with as close to perfect accuracy as possible is not as 

important as the models’ ability to depict the trend accurately and rank the days in terms of 

costliness. Theoretically, the models could miss the actual power price by a large margin, but 

if it correctly identifies the costliest days, this deviation will not affect the MIP-algorithm’s 

production decision. Thus, contribute to cost reduction despite high deviation from the actual 

price. Because of this, merely evaluating the models’ performance based on loss metrics like 

RMSE and MAE may not be a sufficient indicator of how the models will perform in practice. 

This is especially true when combining the models with a MIP-algorithm, which priorities 

shifting production to the least costly days and places larger importance on trend than simply 

accurate price predictions. While RMSE and MAE (see chapter 3.3) measures the deviation of 

predicted price from the actual price, they do not account for trend. It can be assumed that there 

is coherence between low RMSE/MAE and the models’ ability to accurately depict the trend, 

but it is not the exact same thing. Therefore, models that may have a higher RMSE/MAE 

compared to other models might work better when used in combination with optimization 

algorithms such as MIP.  

Due to the Seq2Seq-LSTMs flexibility, the model can forecast its own exogenous variables, 

and this makes it suitable for further ahead forecasts. In chapter 5 (figure 18), it can be viewed 

that the Seq2Seq-LSTM model is capable of forecasting 14 days ahead with an RMSE/MAE of 

16.73 and 9.48, respectively. Moreover, the model seems to be able to capture some trend based 

on the figure. Planning with 14 days could potentially leave more room for the MIP-algorithm 

to make better decisions, and greater options for the algorithm to shift production to the least 

costly days. Therefore, it is not obvious that the five-step model chosen is the best suited model 

for this practical purpose.  

6.4 Real-world application 

For a real-world application of these models, it would be crucial to keep the models updated 

with the most recent data. To achieve this, we propose a weekly update cycle where in every 

Sunday, the models are provided with the actual values from the preceding week. This approach 
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ensures that the models are always informed by the latest data before they are used to forecast 

the sequence for the upcoming five production days. Integrating the forecasting with the 

production optimization can be seamlessly achieved in the same environment, where the 

forecasted outputs are automatically used as input in the optimization. The Seq2Seq-LSTM 

model offers quick and computationally efficient retraining. Its relatively short training time, 

which does not necessitate substantial CPU power, makes it possible to retrain the model 

frequently. This regular retraining can help the model adapt to any ongoing changes in the 

power market.  

As discussed in chapter 3.2.7, the Seq2Seq-LSTM is a black box algorithm. It is difficult to 

interpret its result and back trace its reasoning from input to output. In the case of this model, 

this is particularly relevant, because the ultimate intention is to use the forecasted values as 

input in an optimization for cost minimization. The forecasted prices serve as the main input of 

the optimization algorithm, and if the forecasted prices miss the trend, and wrongly indicate the 

most expensive production day as the cheapest, the production could lose a significant amount 

of money. Because of this, it would have been a major advantage to thoroughly understand how 

the model works. This is important to better understand why the model makes accurate 

predictions, and perhaps even more importantly, understand why it sometimes struggles with 

inaccurate predictions. This is especially true with regards to extreme values. The lack of 

interpretability might be hurting the adaptation and real-world applications, as users may not 

trust the system if they do not thoroughly understand it (Ahn et al., 2021). To address this 

challenge, researchers have developed various methods to interpreting the inner workings of 

deep neural networks, such as visualizing the activations of the individual neurons (Zeiler & 

Fergus, 2013) or identifying important features for a particular prediction (Ribeiro et al., 2016). 

In addition, the widely used SHAP-framework (Lundberg & Lee, 2017) could also help increase 

the interpretability. While these methods can provide some insights in how deep neural 

networks make their decisions, they may not fully capture the complexity of the network’s 

internal operations.  

The risk analysis carried out in this thesis helps to depict the potential outcomes in both 

optimistic and pessimistic scenarios. Assuming the predictive models deliver perfect accuracy 

or complete inaccuracy in forecasting the weekly power price trends during the production 

period. Because the production period in the case only extends over eight weeks, quantifying 

the risk associated with applying these models to the real world cannot be easily generalized. 

However, the risk analysis gives an idea on how the models theoretically could impact the 
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production cost. The risk analysis implies that the Seq2Seq-LSTM is overall associated with 

less risk than the ARMAX-GARCH model, due to its ability to accurately depict the trend 

during the production period.  

While the application of these models has been demonstrated in the context of hydrogen 

production, they can be applied to other specific industries. Other sectors where electricity 

constitutes a significant input in the production process may also yield similar benefits from the 

application of these models. Thus, these forecasting tools may hold potential for wide ranging 

impact across various industries, wherever managing and forecasting power costs are critical to 

operations.  

6.5 Regarding previous literature  

Finding literature on power price forecasting in NO4 and cost optimization was not an easy 

task. In general, previous studies mainly conduct forecasting with one timestep ahead, which 

makes it difficult to evaluate the models’ performance compared to other findings. There have 

been studies regarding power price forecasting in the Nordic countries and Norway as 

previously mentioned, but we have not succeeded in finding studies with models specifically 

trained to forecast in the price area NO4. Nor have we been able to find studies containing 

power price forecasting combined with an optimization case. This is although a minor issue, as 

the project-specificness of the optimization case makes it hard to compare this part of the thesis 

with previous literature. To the best of our knowledge, studies combining power price 

forecasting with production optimization has not been conducted before.  
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7 Conclusion  

The main objective of this thesis has been to investigate ways to increase predictability and 

profitability for green hydrogen production in the NO4 price region. The thesis has divided the 

task into two primary research questions. The first question focuses on examining the 

forecasting accuracy and performance of statistical and machine learning techniques to the NO4 

power market. The Seq2Seq-LSTM model significantly outperformed the best-suited statistical 

approach, ARMAX-GARCH, and further reduced the RMSE by 53% compared to the baseline 

LSTM-model. As a result, we conclude that the Seq2Seq-LSTM model holds considerable 

potential in enhancing predictability in the power market over a five-day horizon, and exhibits 

promising capabilities for longer-term forecasting.  

The primary motivation and sole purpose for developing these models is to explore their 

practical applicability and value in a power intensive industry. The second research question 

investigates how this increased predictability can contribute to improving the profitability of 

green hydrogen production. The Seq2Seq-LSTM guided optimization led to savings of 9.44% 

and reduced costs by NOK 3 364 827 over an eight-week production period compared to the 

average production scenario (Scenario 1). Additionally, this outperformed the ARMAX-

GARCH influenced optimization that led to cost savings of NOK 656 066. 

The Seq2Seq-LSTM guided optimization, with its proficiency in capturing trends and 

accurately identifying the most cost-effective days for production, directed production planning 

with far greater accuracy than the statistical approach. This ultimately demonstrated its effect 

in increasing both predictability and profitability for green hydrogen production compared to 

the ARMAX-GARCH model. A cost reduction of 9.44% throughout the production period, 

illustrates that there are major possibilities for increased financial sustainability for spot-price-

based production. Furthermore, this shows the promising ability of including machine learning 

techniques as a major part of production planning, which can achieve important competitive 

advantages. Thus, in conclusion, we propose a hybrid AI solution that combines a Seq2Seq-

LSTM recurrent neural network with a MIP-algorithm, for increased predictability and 

profitability for green hydrogen production in the NO4 price area.   
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7.1 Future work  

As previously mentioned, gathering literature on power price forecasting in Norway and the 

NO4 price area proved quite difficult. More research on future power prices in Norway may 

contribute to a competitive advantage for power intensive industries and other power 

demanding services such as electric ferries and shipping. Due to the prerequisites in the 

exogenous variables in the ARMAX-GARCH model, this thesis is primarily focused on 

forecasting five timesteps ahead. In order to gain more predictability for the power consumers, 

expanding the time horizon further in combination with short time forecast might help 

increasing the predictability.  

Examining the models’ performances with more and less volatile power prices is important to 

gain a better understanding of how robust the models are, and how well they perform during 

different conditions. Extending the production period will also be helpful to gain more 

significant results on whether the models actually are able to gain any savings for the power 

consumers. Further research on both the statistical model and the neural networks used in this 

thesis, might increase the accuracy of the power price predictions. Different techniques, such 

as combining the linearity of the ARMAX-GARCH model with the Seq2Seq-LSTM, or trying 

different machine learning techniques, such as transformer neural networks can further help 

increase the predictive accuracy. Furthermore, applying similar Seq2Seq-LSTM structures into 

modelling hydrogen demand, and including this into similar optimization problems connected 

to production, can also aid the overall decision making of green hydrogen production.   
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Appendix  

A01 Augmented Dickey-Fuller test  

 

 

A02 Breusch-Pagan test for heteroscedasticity  
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A03 AIC and BIC values ARMAX-GARCH/SARMAX-GARCH 

 

 

 

 

 

 

 

 

 

 

AIC BIC

ARMA 43 112             43 145             

ARMAX fyllingsgrad 43 110             43 150             

ARMAX temp 43 111             43 152             

ARMAX nedbør 43 114             43 154             

ARMAX vind 43 114             43 154             

ARMAX fyllingsgrad & temp 43 110             43 157             

ARMAX fyllingsgrad & nedbør 43 110             43 157             

ARMAX fyllingsgrad & vind 43 111             43 158             

ARMAX temp & nedbør 43 113             43 160             

ARMAX temp & vind 43 114             43 161             

ARMAX nedbør & vind 43 116             43 163             

ARMAX fyllingsgrad, temp & nedbør 43 121             43 175             

ARMAX fyllingsgrad, temp & vind 43 112             43 166             

ARMAX fyllingsgrad, nedbør & vind 43 130             43 184             

ARMAX temp, nedbør & fyllingsgrad 43 115             43 169             

ARMAX Fyllingsgrad, temp, nedbør, vind 43 134             43 195             

ARMAX temp, fyllingsgrad, nedbør & vind 43 147             43 207             

ARMA-GARCH(4,6) 31 905             31 987             

ARMAX-GARCH(4,6) fyllingsgrad 32 033             32 113             

ARMAX-GARCH(4,6) temp 31 922             32 003             

ARMAX-GARCH(4,6) nedbør 31 912             31 992             

ARMAX-GARCH(4,6) vind 31 906             31 986             

ARMAX-GARCH(4,6) fyllingsgrad & temp 32 031             32 112             

ARMAX-GARCH(4,6) fyllingsgrad & nedbør 32 001             32 082             

ARMAX-GARCH(4,6) fyllingsgrad & vind 32 036             32 117             

ARMAX-GARCH(4,6) temp & nedbør 31 926             32 006             

ARMAX-GARCH(4,6) temp & vind 31 917             31 997             

ARMAX-GARCH(4,6) nedbør & vind 31 900             31 980             

ARMAX-GARCH(4,6) fyllingsgrad, temp & nedbør 31 872             31 952             

ARMAX-GARCH(4,6) fyllingsgrad, temp & vind 32 047             32 128             

ARMAX-GARCH(4,6) fyllingsgrad, nedbør & vind 31 995             32 036             

ARMAX-GARCH(4,6) temp, nedbør & vind 31 935             32 016             

ARMAX-GARCH(4,6) temp, fyllingsgrad, nedbør & vind 31 751             31 831             

SARMAX(1,0,1,7) 42 943             43 017             

SARMAX-GARCH(2,2)(1,0,1,7)(3,6) temp, fyllingsgrad, nedbør & vind 30 301             30 375             
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A04 Scatter plot of the variables  
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A05 Optimization using ARMAX-GARCH and Seq2Seq-LSTM 

Optimization week 1 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

Week 1 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

40.28 <= 43.24 TON 33.3 MWH to Ton 33.3

0 <= 0 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.62 1 476 849kr       150 000kr         1 150 000kr         

03.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.76 1 824 823kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.91 2 195 115kr       150 000kr         1 150 000kr         

05.jan Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 1.05 2 337 928kr       150 000kr         1 150 000kr         

06.jan Friday 43.24 0 33.3 -                       60 % -                       -                   0 1.13 -kr                150 000kr         0 -kr                

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.81 1 523 186kr       150 000kr         1 150 000kr         

03.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.76 1 428 648kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.52 977 277kr         150 000kr         1 150 000kr         

05.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.45 851 981kr         150 000kr         1 150 000kr         

06.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.48 896 514kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.81 1 937 135kr       150 000kr         1 150 000kr         

03.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.76 1 816 904kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.52 1 242 867kr       150 000kr         1 150 000kr         

05.jan Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.45 1 009 346kr       150 000kr         1 150 000kr         

06.jan Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.48 -kr                150 000kr         0 -kr                

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

7 834 715.44kr                             

600 000.00kr                                

8 434 715.44kr                          6 427 605.60kr                          

6 006 251.51kr                             

600 000.00kr                                

6 606 251.51kr                          

MODEL

SCENARIO 1 

SCENARIO 2

5 677 605.60kr                             

750 000.00kr                                

Week 1 Capacity restrictions Hour Day

Seq2Seq 0 <= 0 TON 100 MWH 2400

40.28 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.90 -kr                150 000kr         0 -kr                

03.jan Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.85 1 907 810kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.53 1 270 705kr       150 000kr         1 150 000kr         

05.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.46 1 098 638kr       150 000kr         1 150 000kr         

06.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.48 1 156 233kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.81 1 523 186kr       150 000kr         1 150 000kr         

03.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.76 1 428 648kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.52 977 277kr         150 000kr         1 150 000kr         

05.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.45 851 981kr         150 000kr         1 150 000kr         

06.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.48 896 514kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

02.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.81 -kr                150 000kr         0 -kr                

03.jan Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.76 1 692 527kr       150 000kr         1 150 000kr         

04.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.52 1 242 867kr       150 000kr         1 150 000kr         

05.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.45 1 083 519kr       150 000kr         1 150 000kr         

06.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.48 1 140 154kr       150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

5 433 385.40kr                             

600 000.00kr                                

6 033 385.40kr                          6 427 605.60kr                          

5 159 067.32kr                             

600 000.00kr                                

5 759 067.32kr                          

MODEL

SCENARIO 1 

SCENARIO 2

5 677 605.60kr                             

750 000.00kr                                
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Optimization week 2 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 2 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

0 <= 0 TON 40 % Power reduction 40 %

40.28 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.50 1 200 630kr       150 000kr         1 150 000kr         

10.jan Tuesday 43.24 0 33.3 -                       60 % -                       -                   0 0.70 -kr                150 000kr         0 -kr                

11.jan Wednesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.65 1 447 289kr       150 000kr         1 150 000kr         

12.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.62 1 484 769kr       150 000kr         1 150 000kr         

13.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.56 1 348 459kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.47 893 495kr         150 000kr         1 150 000kr         

10.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.39 737 251kr         150 000kr         1 150 000kr         

11.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.37 700 077kr         150 000kr         1 150 000kr         

12.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.37 691 586kr         150 000kr         1 150 000kr         

13.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.48 914 629kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.47 1 136 315kr       150 000kr         1 150 000kr         

10.jan Tuesday 43.24 0 33.3 -                       60 % -                       -                   0 0.39 -kr                150 000kr         0 -kr                

11.jan Wednesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.37 829 385kr         150 000kr         1 150 000kr         

12.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.37 879 534kr         150 000kr         1 150 000kr         

13.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.48 1 163 193kr       150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

5 481 146.03kr                             

600 000.00kr                                

6 081 146.03kr                          4 687 036.80kr                          

4 008 426.89kr                             

600 000.00kr                                

4 608 426.89kr                          

MODEL

SCENARIO 1 

SCENARIO 2

3 937 036.80kr                             

750 000.00kr                                

Week 2 Capacity restrictions Hour Day

Seq2Seq 40.28 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

0 <= 0 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.48 1 073 506kr       150 000kr         1 150 000kr         

10.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.40 957 048kr         150 000kr         1 150 000kr         

11.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.38 917 211kr         150 000kr         1 150 000kr         

12.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.38 908 572kr         150 000kr         1 150 000kr         

13.jan Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.49 -kr                150 000kr         0 -kr                

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.47 893 495kr         150 000kr         1 150 000kr         

10.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.39 737 251kr         150 000kr         1 150 000kr         

11.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.37 700 077kr         150 000kr         1 150 000kr         

12.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.37 691 586kr         150 000kr         1 150 000kr         

13.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.48 914 629kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

09.jan Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.47 1 058 528kr       150 000kr         1 150 000kr         

10.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.39 937 610kr         150 000kr         1 150 000kr         

11.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.37 890 333kr         150 000kr         1 150 000kr         

12.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.37 879 534kr         150 000kr         1 150 000kr         

13.jan Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.48 -kr                150 000kr         0 -kr                

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

3 856 337.58kr                             

600 000.00kr                                

4 456 337.58kr                          4 687 036.80kr                          

3 766 005.11kr                             

600 000.00kr                                

4 366 005.11kr                          

MODEL

SCENARIO 1 

SCENARIO 2

3 937 036.80kr                             

750 000.00kr                                
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Optimization week 3 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 3 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

0 <= 0 TON 60 MWH of hydrogen 1440

40.28 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.53 1 260 865kr       150 000kr         1 150 000kr         

17.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.51 1 235 427kr       150 000kr         1 150 000kr         

18.jan Wednesday 43.24 0 33.3 -                       60 % -                       -                   0 0.61 -kr                150 000kr         0 -kr                

19.jan Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.56 1 242 290kr       150 000kr         1 150 000kr         

20.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.53 1 275 744kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.63 1 189 565kr       150 000kr         1 150 000kr         

17.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.46 865 756kr         150 000kr         1 150 000kr         

18.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.45 856 321kr         150 000kr         1 150 000kr         

19.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.51 954 067kr         150 000kr         1 150 000kr         

20.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.52 986 146kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.63 1 512 847kr       150 000kr         1 150 000kr         

17.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.46 1 101 037kr       150 000kr         1 150 000kr         

18.jan Wednesday 43.24 0 33.3 -                       60 % -                       -                   0 0.45 -kr                150 000kr         0 -kr                

19.jan Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.51 1 130 289kr       150 000kr         1 150 000kr         

20.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.52 1 254 146kr       150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

5 014 326.65kr                             

600 000.00kr                                

5 614 326.65kr                          5 601 854.40kr                          

4 998 318.90kr                             

600 000.00kr                                

5 598 318.90kr                          

MODEL

SCENARIO 1 

SCENARIO 2

4 851 854.40kr                             

750 000.00kr                                

Week 3 Capacity restrictions Hour Day

Seq2Seq 0 <= 0 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

40.28 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.70 -kr                150 000kr         0 -kr                

17.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.47 1 116 396kr       150 000kr         1 150 000kr         

18.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.46 1 104 397kr       150 000kr         1 150 000kr         

19.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.51 1 235 667kr       150 000kr         1 150 000kr         

20.jan Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.54 1 196 908kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.63 1 189 565kr       150 000kr         1 150 000kr         

17.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.46 865 756kr         150 000kr         1 150 000kr         

18.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.45 856 321kr         150 000kr         1 150 000kr         

19.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.51 954 067kr         150 000kr         1 150 000kr         

20.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.52 986 146kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

16.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.63 -kr                150 000kr         0 -kr                

17.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.46 1 101 037kr       150 000kr         1 150 000kr         

18.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.45 1 089 038kr       150 000kr         1 150 000kr         

19.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.51 1 213 349kr       150 000kr         1 150 000kr         

20.jan Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.52 1 168 293kr       150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

4 653 368.86kr                             

600 000.00kr                                

5 253 368.86kr                          5 601 854.40kr                          

4 571 717.93kr                             

600 000.00kr                                

5 171 717.93kr                          

MODEL

SCENARIO 1 

SCENARIO 2

4 851 854.40kr                             

750 000.00kr                                
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Optimization week 4 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 4 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

40.28 <= 43.24 TON 60 MWH of hydrogen 1440

0 <= 0 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.62 1 494 608kr       150 000kr         1 150 000kr         

24.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.69 1 656 596kr       150 000kr         1 150 000kr         

25.jan Wednesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.72 1 607 353kr       150 000kr         1 150 000kr         

26.jan Thursday 43.24 0 33.3 -                       60 % -                       -                   0 0.75 -kr                150 000kr         0 -kr                

27.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.70 1 667 875kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.43 818 958kr         150 000kr         1 150 000kr         

24.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.35 651 015kr         150 000kr         1 150 000kr         

25.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 459 107kr         150 000kr         1 150 000kr         

26.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.40 749 328kr         150 000kr         1 150 000kr         

27.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.40 759 140kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.43 1 041 522kr       150 000kr         1 150 000kr         

24.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.35 827 938kr         150 000kr         1 150 000kr         

25.jan Wednesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.24 543 907kr         150 000kr         1 150 000kr         

26.jan Thursday 43.24 0 33.3 -                       60 % -                       -                   0 0.40 -kr                150 000kr         0 -kr                

27.jan Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.40 965 448kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

6 426 431.80kr                             

600 000.00kr                                

7 026 431.80kr                          4 187 547.90kr                          

3 378 814.25kr                             

600 000.00kr                                

3 978 814.25kr                          

MODEL

SCENARIO 1 

SCENARIO 2

3 437 547.90kr                             

750 000.00kr                                

Week 4 Capacity restrictions Hour Day

Seq2Seq 0 <= 0 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

40.28 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.44 -kr                150 000kr         0 -kr                

24.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.36 868 975kr         150 000kr         1 150 000kr         

25.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 648 911kr         150 000kr         1 150 000kr         

26.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.40 970 727kr         150 000kr         1 150 000kr         

27.jan Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.41 915 007kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.43 818 958kr         150 000kr         1 150 000kr         

24.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.35 651 015kr         150 000kr         1 150 000kr         

25.jan Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 459 107kr         150 000kr         1 150 000kr         

26.jan Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.40 749 328kr         150 000kr         1 150 000kr         

27.jan Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.40 759 140kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

23.jan Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.43 -kr                150 000kr         0 -kr                

24.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.35 827 938kr         150 000kr         1 150 000kr         

25.jan Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 583 876kr         150 000kr         1 150 000kr         

26.jan Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.40 952 969kr         150 000kr         1 150 000kr         

27.jan Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.40 899 358kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

3 403 619.86kr                             

600 000.00kr                                

4 003 619.86kr                          4 187 547.90kr                          

3 264 140.37kr                             

600 000.00kr                                

3 864 140.37kr                          

MODEL

SCENARIO 1 

SCENARIO 2

3 437 547.90kr                             

750 000.00kr                                
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Optimization week 5 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 5 Capacity restrictions Hour Day

ARMAX-GARCH 40.28 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

0 <= 0 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.78 1 748 416kr       150 000kr         1 150 000kr         

31.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.62 1 495 088kr       150 000kr         1 150 000kr         

01.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.69 1 663 795kr       150 000kr         1 150 000kr         

02.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.72 1 727 150kr       150 000kr         1 150 000kr         

03.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.82 -kr                150 000kr         0 -kr                

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 502 886kr         150 000kr         1 150 000kr         

31.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.49 921 045kr         150 000kr         1 150 000kr         

01.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.44 838 583kr         150 000kr         1 150 000kr         

02.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.57 1 066 532kr       150 000kr         1 150 000kr         

03.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.54 1 020 301kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.27 595 771kr         150 000kr         1 150 000kr         

31.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.49 1 171 352kr       150 000kr         1 150 000kr         

01.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.44 1 066 480kr       150 000kr         1 150 000kr         

02.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.57 1 356 378kr       150 000kr         1 150 000kr         

03.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.54 -kr                150 000kr         0 -kr                

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

6 634 449.35kr                             

600 000.00kr                                

7 234 449.35kr                          5 099 346.30kr                          

4 189 981.82kr                             

600 000.00kr                                

4 789 981.82kr                          

MODEL

SCENARIO 1 

SCENARIO 2

4 349 346.30kr                             

750 000.00kr                                

Week 5 Capacity restrictions Hour Day

Seq2Seq 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

0 <= 0 TON 33.3 MWH to Ton 33.3

40.28 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.30 709 147kr         150 000kr         1 150 000kr         

31.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.50 1 189 111kr       150 000kr         1 150 000kr         

01.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.45 1 081 599kr       150 000kr         1 150 000kr         

02.feb Thursday 43.24 0 33.3 -                       60 % -                       -                   0 0.60 -kr                150 000kr         0 -kr                

03.feb Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.56 1 250 338kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 502 886kr         150 000kr         1 150 000kr         

31.jan Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.49 921 045kr         150 000kr         1 150 000kr         

01.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.44 838 583kr         150 000kr         1 150 000kr         

02.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.57 1 066 532kr       150 000kr         1 150 000kr         

03.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.54 1 020 301kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

30.jan Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 639 552kr         150 000kr         1 150 000kr         

31.jan Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.49 1 171 352kr       150 000kr         1 150 000kr         

01.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.44 1 066 480kr       150 000kr         1 150 000kr         

02.feb Thursday 43.24 0 33.3 -                       60 % -                       -                   0 0.57 -kr                150 000kr         0 -kr                

03.feb Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.54 1 208 756kr       150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

4 230 194.02kr                             

600 000.00kr                                

4 830 194.02kr                          5 099 346.30kr                          

4 086 140.66kr                             

600 000.00kr                                

4 686 140.66kr                          

MODEL

SCENARIO 1 

SCENARIO 2

4 349 346.30kr                             

750 000.00kr                                



 
 

71 
 

Optimization week 6 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 6 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

40.28 <= 43.24 TON 33.3 MWH to Ton 33.3

0 <= 0 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.50 1 197 030kr       150 000kr         1 150 000kr         

07.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.56 1 342 459kr       150 000kr         1 150 000kr         

08.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.53 1 281 024kr       150 000kr         1 150 000kr         

09.feb Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.64 1 425 604kr       150 000kr         1 150 000kr         

10.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.69 -kr                150 000kr         0 -kr                

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.28 524 586kr         150 000kr         1 150 000kr         

07.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.25 463 447kr         150 000kr         1 150 000kr         

08.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.21 402 120kr         150 000kr         1 150 000kr         

09.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.19 361 172kr         150 000kr         1 150 000kr         

10.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.22 410 989kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.28 667 150kr         150 000kr         1 150 000kr         

07.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.25 589 396kr         150 000kr         1 150 000kr         

08.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.21 511 402kr         150 000kr         1 150 000kr         

09.feb Thursday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.19 427 882kr         150 000kr         1 150 000kr         

10.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.22 -kr                150 000kr         0 -kr                

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

5 246 117.30kr                             

600 000.00kr                                

5 846 117.30kr                          2 912 313.30kr                          

2 195 829.75kr                             

600 000.00kr                                

2 795 829.75kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 162 313.30kr                             

750 000.00kr                                

Week 6 Capacity restrictions Hour Day

Seq2Seq 0 <= 0 TON 100 MWH 2400

40.28 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.31 -kr                150 000kr         0 -kr                

07.feb Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.27 610 526kr         150 000kr         1 150 000kr         

08.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.23 558 678kr         150 000kr         1 150 000kr         

09.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.21 498 683kr         150 000kr         1 150 000kr         

10.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 572 837kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.28 524 586kr         150 000kr         1 150 000kr         

07.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.25 463 447kr         150 000kr         1 150 000kr         

08.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.21 402 120kr         150 000kr         1 150 000kr         

09.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.19 361 172kr         150 000kr         1 150 000kr         

10.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.22 410 989kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

06.feb Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.28 -kr                150 000kr         0 -kr                

07.feb Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.25 549 049kr         150 000kr         1 150 000kr         

08.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.21 511 402kr         150 000kr         1 150 000kr         

09.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.19 459 326kr         150 000kr         1 150 000kr         

10.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.22 522 681kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

2 240 723.70kr                             

600 000.00kr                                

2 840 723.70kr                          2 912 313.30kr                          

2 042 456.61kr                             

600 000.00kr                                

2 642 456.61kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 162 313.30kr                             

750 000.00kr                                
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Optimization week 7 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 7 Capacity restrictions Hour Day

ARMAX-GARCH 0 <= 0 TON 100 MWH 2400

40.28 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.60 -kr                150 000kr         0 -kr                

14.feb Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.58 1 295 719kr       150 000kr         1 150 000kr         

15.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.47 1 129 115kr       150 000kr         1 150 000kr         

16.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.56 1 349 419kr       150 000kr         1 150 000kr         

17.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.54 1 294 943kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 451 182kr         150 000kr         1 150 000kr         

14.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.23 440 803kr         150 000kr         1 150 000kr         

15.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.23 426 273kr         150 000kr         1 150 000kr         

16.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 448 163kr         150 000kr         1 150 000kr         

17.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 504 395kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 0 33.3 -                       60 % -                       -                   0 0.24 -kr                150 000kr         0 -kr                

14.feb Tuesday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.23 522 222kr         150 000kr         1 150 000kr         

15.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.23 542 119kr         150 000kr         1 150 000kr         

16.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 569 957kr         150 000kr         1 150 000kr         

17.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 641 472kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

5 069 195.95kr                             

600 000.00kr                                

5 669 195.95kr                          3 020 815.80kr                          

2 275 770.62kr                             

600 000.00kr                                

2 875 770.62kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 270 815.80kr                             

750 000.00kr                                

Week 7 Capacity restrictions Hour Day

Seq2Seq 40.28 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

0 <= 0 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.27 593 089kr         150 000kr         1 150 000kr         

14.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.26 620 353kr         150 000kr         1 150 000kr         

15.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.25 597 315kr         150 000kr         1 150 000kr         

16.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.26 632 113kr         150 000kr         1 150 000kr         

17.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.30 -kr                150 000kr         0 -kr                

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 451 182kr         150 000kr         1 150 000kr         

14.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.23 440 803kr         150 000kr         1 150 000kr         

15.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.23 426 273kr         150 000kr         1 150 000kr         

16.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 448 163kr         150 000kr         1 150 000kr         

17.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 504 395kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

13.feb Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.24 534 518kr         150 000kr         1 150 000kr         

14.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.23 560 598kr         150 000kr         1 150 000kr         

15.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.23 542 119kr         150 000kr         1 150 000kr         

16.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 569 957kr         150 000kr         1 150 000kr         

17.feb Friday 43.24 0 33.3 -                       60 % -                       -                   0 0.27 -kr                150 000kr         0 -kr                

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

2 442 870.02kr                             

600 000.00kr                                

3 042 870.02kr                          3 020 815.80kr                          

2 207 192.15kr                             

600 000.00kr                                

2 807 192.15kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 270 815.80kr                             

750 000.00kr                                
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Optimization week 8 ARMAX-GARCH and Seq2Seq-LSTM 

 

 

 

 

 

 

 

 

 

 

Week 8 Capacity restrictions Hour Day

ARMAX-GARCH 43.24 <= 43.24 TON 100 MWH 2400

43.24 <= 43.24 TON 40 % Power reduction 40 %

0 <= 0 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

40.28 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.47 1 118 556kr       150 000kr         1 150 000kr         

21.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.54 1 287 023kr       150 000kr         1 150 000kr         

22.feb Wednesday 43.24 0 33.3 -                       60 % -                       -                   0 0.59 -kr                150 000kr         0 -kr                

23.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.51 1 232 548kr       150 000kr         1 150 000kr         

24.feb Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.55 1 220 158kr       150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 502 319kr         150 000kr         1 150 000kr         

21.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.56 1 047 285kr       150 000kr         1 150 000kr         

22.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 457 031kr         150 000kr         1 150 000kr         

23.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 453 257kr         150 000kr         1 150 000kr         

24.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.26 486 091kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 638 832kr         150 000kr         1 150 000kr         

21.feb Tuesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.56 1 331 900kr       150 000kr         1 150 000kr         

22.feb Wednesday 43.24 0 33.3 -                       60 % -                       -                   0 0.24 -kr                150 000kr         0 -kr                

23.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 576 437kr         150 000kr         1 150 000kr         

24.feb Friday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.26 575 875kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

4 858 284.85kr                             

600 000.00kr                                

5 458 284.85kr                          3 695 984.40kr                          

3 123 044.05kr                             

600 000.00kr                                

3 723 044.05kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 945 984.40kr                             

750 000.00kr                                

Week 8 Capacity restrictions Hour Day

Seq2Seq 40.28 <= 43.24 TON 100 MWH 2400

0 <= 0 TON 40 % Power reduction 40 %

43.24 <= 43.24 TON 60 MWH of hydrogen 1440

43.24 <= 43.24 TON 33.3 MWH to Ton 33.3

43.24 <= 43.24 TON 1.8 Ton pr unit 43.24

Production target 

170 >= 170 TON

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Predicted powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.30 660 826kr         150 000kr         1 150 000kr         

21.feb Tuesday 43.24 0 33.3 -                       60 % -                       -                   0 0.58 -kr                150 000kr         0 -kr                

22.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 645 792kr         150 000kr         1 150 000kr         

23.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.27 640 032kr         150 000kr         1 150 000kr         

24.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.29 687 788kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.27 502 319kr         150 000kr         1 150 000kr         

21.feb Tuesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.56 1 047 285kr       150 000kr         1 150 000kr         

22.feb Wednesday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 457 031kr         150 000kr         1 150 000kr         

23.feb Thursday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.24 453 257kr         150 000kr         1 150 000kr         

24.feb Friday 43.24 34 33.3 1 132                60 % 1 887                1 887 000          1 0.26 486 091kr         150 000kr         1 150 000kr         

Max. cap. TON Prod. in TON TON to MWH H2 in MWH Stack efficiency Required MWH Required KWH Production-day Acutal powerp. Power ex. Transport ex Dummy if transp. Varible trans ex

20.feb Monday 43.24 40.28 33.3 1 341                60 % 2 236                2 235 540          1 0.27 595 101kr         150 000kr         1 150 000kr         

21.feb Tuesday 43.24 0 33.3 -                       60 % -                       -                   0 0.56 -kr                150 000kr         0 -kr                

22.feb Wednesday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 581 236kr         150 000kr         1 150 000kr         

23.feb Thursday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.24 576 437kr         150 000kr         1 150 000kr         

24.feb Friday 43.24 43.24 33.3 1 440                60 % 2 400                2 399 820          1 0.26 618 194kr         150 000kr         1 150 000kr         

THE MODEL SCENARIO 1 SCENARIO 2

Power expenses Power expenses Power expenses

Transportation expenses Transportation ex Transportation ex

Production target Production cost Production cost

2 634 437.59kr                             

600 000.00kr                                

3 234 437.59kr                          3 695 984.40kr                          

2 370 967.55kr                             

600 000.00kr                                

2 970 967.55kr                          

MODEL

SCENARIO 1 

SCENARIO 2

2 945 984.40kr                             

750 000.00kr                                




