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Abstract 
The right to food is a crucial human right, ensuring that everyone has access to sufficient 

and safe nourishment. Fish and fishery products play a vital role in global food security. 

The fishing industry has been expanding due to rising demand for fish products. To meet 

future food demands, it is projected that food production needs to double by 2050. Norway, 

a major seafood exporter, achieved a record-breaking seafood export in 2022.However, 

the reliance on manual labor in fish processing factories has proven suboptimal and time-

consuming. In line with the prevailing trend of automation in various industries, integrating 

machine learning, machine vision, and robotics holds promise for enhancing work efficiency 

and product quality within the fish industry. Nonetheless, one challenge with implementing 

machine learning is the requirement for labeled data, which can be costly and time-

intensive to gather and annotate. To address this issue, the utilization of digital twins and 

3D models has emerged as a solution to generate synthetic yet precise labeled data. In 

this thesis, a 3D model of a salmon was employed to generate training data for a machine 

vision algorithm. This algorithm enables the prediction of the fish's location and orientation 

on a surface, facilitating the robotic arm's ability to pick and place the fish. A customized 

variant of the VGG16 model architecture was employed in the experiment. Two different 

camera positions were assessed, and the trained model utilizing the side camera position 

exhibited a lower MSE of 8.3x10-5 for location and 2.5x10-3 for orientation. Notably, the 

validation data yielded values of 1.5x10-4 for location and 5.8x10-2 for orientation, and for 

the test the values where 8.4x10-3 and 1.3x10-4.  
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Sammendrag 
Retten til mat er en avgjørende menneskerettighet som sikrer at alle har tilgang til 

tilstrekkelig og trygg ernæring. Fisk og fiskeriprodukter spiller en viktig rolle i global 

matsikkerhet. Fiskeindustrien har utvidet seg på grunn av økende etterspørsel etter 

fiskeprodukter. For å imøtekomme fremtidige matbehov er det anslått at matproduksjonen 

må dobles innen 2050. Norge, en stor eksportør av sjømat, oppnådde en rekordstor 

sjømateksport i 2022. Imidlertid har avhengigheten av manuelt arbeid i 

fiskeforedlingsfabrikker vist seg å være suboptimal og tidkrevende. I tråd med den 

gjeldende trenden med automatisering i ulike industrier, har integrering av maskinlæring, 

maskinsyn og robotikk potensial til å forbedre arbeidseffektiviteten og produktkvaliteten 

innen fiskeindustrien. Likevel er en utfordring ved implementering av maskinlæring kravet 

om merkede data, noe som kan være kostbart og tidkrevende å samle og merke. For å 

adressere dette problemet har bruken av digitale tvillinger og 3D-modeller dukket opp som 

en løsning for å generere syntetiske, men presise merkede data. I denne avhandlingen ble 

det brukt en 3D-modell av en laks for å generere treningsdata for en maskinsynsalgoritme. 

Denne algoritmen muliggjør forutsigelse av fiskens plassering og orientering på en 

overflate, noe som letter den robotiserte armen i å plukke opp og plassere fisken. En 

tilpasset variant av VGG16-modellarkitekturen ble brukt i eksperimentet. To forskjellige 

kameraposisjoner ble vurdert, og den trente modellen som brukte sidekameraposisjonen 

viste en lavere MSE (gjennomsnittlig kvadratisk feil) på 8,3x10-5 for plassering og 2,5x10-

3 for orientering. Bemerkelsesverdig ga valideringsdata verdiene 1,5x10-4 for plassering 

og 5,8x10-2 for orientering, og for testen var verdiene 8,4x10-3 og 1,3x10-4.  
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The right to food is a fundamental human right that ensures everyone has access to 

sufficient, safe, and nutritious food. Fish and fishery products are important for global food 

security and provide unique health benefits due to their high nutritional value, including 

essential nutrients and long-chain omega-3 fatty acids[1]. 

Fish are an irreplaceable source of long-chain omega-3 fatty acids, which are crucial for 

optimal brain and neurodevelopment, especially in children. Fish consumption is also 

known to reduce the risk of Coronary Heart Disease (CHD) mortality in adults due to the 

omega-3 fatty acids. With a growing global population, the demand for fish is expected to 

increase, and aquaculture is projected to be the primary source to meet this demand[1]. 

1.1 The state of fisheries  

In 2020, global fisheries and aquaculture production reached a record high of 214 million 

tons, with aquaculture continuing to grow (figure 1) while capture fisheries declined[2]. 

Asia was the main producer, accounting for 70% of total production, with China being the 

largest producer. Inland aquaculture accounted for 37% of total production and was 

important for food security in Asia and Africa [2]. 

Despite the growth of aquaculture, the FAO reports that marine fishery resources have 

continued to decline, with only 64.6% of fishery stocks being within biologically sustainable 

levels in 2019. However, biologically sustainable stocks accounted for 82.5% of landings 

of aquatic products. Rebuilding overfished stocks could increase marine capture fisheries 

production and contribute to the well-being of coastal communities. Successful policies and 

regulations in sustainable fisheries management need to be replicated and implemented 

globally. 

Inland fisheries, particularly in least developed and developing countries, face challenges 

in monitoring and managing their resources due to limited resources. The FAO has 

developed a global threat map for inland fisheries to provide a baseline for further research 

and investment in inland fisheries management [2]. 

1 Introduction 
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Figure 1: The State of World Fisheries and Aquaculture [2] 

FAO has developed a fish price index (FPI) that offers a fresh perspective on global seafood 

markets and serves as a valuable tool for informing global food policy (figure 2). It 

complements the FAO's food price information, widely utilized by governments, NGOs, and 

researchers worldwide.  

 

Figure 2: Global fish price index (FAO) 

1.2 The state of fisheries in Norway 

The Norwegian seafood industry has a rich history of harvesting, processing, and exporting 

due to the country's extensive marine resources[3]. In the 1970s, Norway became a world 

leader in marine aquaculture, and the industry continues to play a significant role in the 

country's economy. The seafood industry's impact is felt not only in the core industries of 

the value chain but also in supplier industries and other industries through ripple effects. 

The aquaculture sector is experiencing faster growth compared to fisheries, making it the 

dominant part of the Norwegian seafood value chain in terms of value-added and 

employment since 2010. Currently, having an export value of 1 billion NOK annually, the 

Aquaculture and Fisheries industry in Norway is significant (figure 3) [3]. Due to the 

growing global population and in order to meet the upcoming needs, it is anticipated that 

food production will need to be doubled by 2050 [4]. 
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Figure 3: Export of Norwegian seafood in total divided by fisheries and aquaculture [5] 

 

1.3 Manual labor in fish factories 

For many years, fishmeal and fish oil factories have used the same old production 

techniques, which have led to low-quality products that are not valued highly in the market. 

Therefore, there is a need to enhance and revise these production methods to improve the 

quality of the products [6]. 

The seafood industry has historically been labor-intensive, with a significant portion of the 

world's population being employed in primary production, processing, packaging, and 

distribution. However, finding workers willing to work in the cold, humid, and often 

dangerous environment is a significant challenge, particularly with the COVID-19 pandemic 

and restrictions on social distancing and border travel [7]. To address this, automation 

within fish production has become prevalent, making it one of the most high-tech 

automated sectors in the protein industry alongside poultry. Although significant advances 

have been made in automating fish processing, manual labor is still required for tasks such 

as trimming fillets and quality inspection, which can be challenging due to variations in fish 

size, weight, color, physical shape, and state of rigor mortis. Traceability from raw product 

intake to end consumable product is also necessary in many cases to validate the country 

of origin and ensure product quality and remaining shelf life. Despite the challenges, 

automation has enabled a considerable increase in line speed and throughput, with the 



4 

 

most automated fish factories estimated to have improved fish yield and utilization from 

60% to 80% in the past decade [8]. 

1.4 Digital twins 

A digital twin is a computer-generated replica that accurately represents a physical entity, 

such as a wind turbine. To achieve this, sensors are attached to key functional areas of the 

physical object to collect data on its performance, such as energy production, temperature, 

and weather conditions [9]. This data is sent to a processing system, which is used to 

update the digital twin model. With this data-driven model, simulations can be run to 

analyze performance issues and identify potential improvements. The insights gained from 

the digital twin can then be applied to the physical object, resulting in increased efficiency. 

While simulations and digital twins both employ digital models to replicate a system's 

processes, digital twins provide a more comprehensive virtual environment for study. In 

contrast, simulations are typically focused on a single process. Moreover, digital twins 

benefit from real-time data since object sensors feed relevant data to the system processor 

and insights are shared back with the physical object [9]. 

As a result of having access to continually updated data and the added computing power 

that comes with a virtual environment, digital twins can analyze a wider range of issues 

from multiple perspectives, giving them greater potential to enhance products and 

processes than standard simulations [9]. 

Digital twin technology is finding widespread application in manufacturing, where it has the 

potential to enable real-time monitoring and feedback on machine performance and 

production line activity. This technology also facilitates predictive maintenance and 

improves the reliability of devices by increasing connectivity between them. The use of 

artificial intelligence (AI) algorithms in conjunction with digital twins can enhance accuracy 

and enable detailed performance analysis. 

In addition to manufacturing, the automotive and construction industries are also 

employing digital twins for simulation, data analytics, and real-time prediction and 

monitoring. One common goal across all these industries is the use of real-time simulation 

enabled by digital twin technology, which allows for continuous learning and monitoring. 

This technology has the potential to significantly enhance performance and accuracy, 

making it a valuable asset in various fields [10]. 

The popularity of Digital Twin (DT) has been steadily increasing, attracting the attention of 

researchers who have started to focus their studies on this topic. Figure 4 illustrates the 

exponential growth in the number of publications related to DT found on Scopus and 

ScienceDirect (limited to English-language articles) from 2011 to 2020. The significant rise 

in publications primarily occurred from 2016 onwards, indicating a recent surge in research 

activity [11].  
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Figure 4: Increase in publications regarding digital twins [11] 

1.5 Digital twins in the fishing industry 

The requirements of intelligent fish farming, which aims to optimize and automate fish 

farm management using smart sensors, aquaculture machines, and AI processes through 

an AIoT (The Artificial Intelligence of Things) system [12]. The primary goals of fish farm 

management include reducing operation costs, maximizing profits, augmenting fish 

quality, and optimizing harvest efficiency. However, different environments for each stage 

of fish farming pose a challenge. The implementation of an AIoT system enables real-time, 

data-driven decision-making and provides automatic and higher-quality data collection 

[12].  

The utilization of artificial neural networks and machine learning-based digital twins has 

proved to be effective in identifying damages in structures. Therefore, it is crucial to find 

an automated and efficient method that can swiftly and precisely detect damage in fishing 

nets and aquaculture cages, to save time and effort [13]. 

Digital twins have been used mostly in studies concerning fish farming and involve sensors 

and AI to optimize fish health, growth, and economic return while reducing risk to the 

environment. Digital twins can enhance the efficiency of fish farming, maximize production, 

reduce costs, and optimize the decision-making process [14]. When it comes to fish 

processing plants, numerous possibilities exist for leveraging digital twins to enhance 

operational efficiency. 

1.6 Fish detection using machine vision 

The use of Artificial intelligence is essential for improving product quality and production 

efficiency in digital aquaculture. The implementation of automatic fish detection is crucial 

in achieving more precise and intelligent farming. With the widespread availability of 

modern information technology, computer vision techniques have emerged as a powerful 

tool for automatic fish detection. However, fish detection using computer vision models 

faces numerous challenges, including poor lighting, low contrast, high noise, fish 

deformation, occlusion, and dynamic backgrounds [15]. When using machine vision for 
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detection based on the images of the real world, it is best that the image is clear with good 

lighting and the object can be separated from the background and the surroundings, so 

that the machine vision algorithm can have good results. 

The same applies for the dead fish in the processing plants, though in the plants there are 

less challenges since the fish are usually on a conveyor belt or tables, and the lighting can 

be adjusted for better results. 

Machine vision technology has been created and applied in numerous fields. It can capture 

real-time images, examine them, and use the output to address specific queries. 

Additionally, machine vision is being increasingly utilized in aquaculture, including for tasks 

such as monitoring the health of aquatic organisms, identifying diseases, detecting 

behavior patterns, and determining species. The measurement of fish size using machine 

vision has been developed and adopted widely due to its excellent efficiency [16]. 

 

1.7 Combining digital twins and machine learning 

The manufacturing industry requires factories to be more flexible and adaptable to meet 

the demands of high product variety, uncertain demand, and strict delivery deadlines. The 

combination of Digital Twin (DT) and Artificial Intelligence (AI) technologies is seen as 

promising for addressing the emerging demands of customized production. DT models 

consist of the real world, virtual world, and the connections of information that connect the 

virtual with the real world. AI technology can support complex decision-making and 

business processes in production systems[17] .  

There are several applications of DT in manufacturing that aim to reduce costs and improve 

performance. These include DT-driven frameworks to optimize planning and 

commissioning of human-based production processes, process parameter optimization, 

and physical-virtual convergence. 

On the other hand, AI tools are also being used in manufacturing. Reinforcement learning 

has been utilized to enhance scheduling methods, and unsupervised learning algorithms, 

such as autoencoders, can extract features from input data without needing label 

information. Convolutional Neural Networks (CNNs) have been used for automated defect 

identification in surfaces and visual recognition of parts. However, two challenges faced by 

supervised ANN (Artificial neural network) are the availability of proper quality and quantity 

datasets and labelling the datasets for training.  

Therefore, digital Twin (DT) technology can support smart manufacturing by combining the 

physical and virtual environments. Although Artificial Intelligence (AI) and Machine 

Learning (ML) are promising in manufacturing, they require significant amounts of quality 

training data, which can be costly and time-consuming to label. DT models can help 

expedite the ML training process by generating appropriate training data and automatically 

labeling it through simulation tools, reducing user input. These synthetic datasets can be 

supplemented with real-world information and validated.  

The adoption and use of digital manufacturing and advanced technologies such as DT and 

AI are necessary for factories to become more flexible and adaptable to meet the emerging 

demands of customized production. The combination of DT and AI can address complex 

decision-making and business processes in production systems [17]. 
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1.8 Thesis outline 

The objective of this thesis is to employ a machine vision algorithm for identifying the 

position and orientation of fish placed on a surface, such as a table or conveyor belt. This 

prediction serves the purpose of guiding a robotic arm in the task of picking up and 

relocating the fish from the surface. Considering the laborious nature of gathering labeled 

data for machine vision, a digital twin of fish in Unity3D was used to generate synthetic 

yet dependable data, to train the machine vision algorithm. 

 The thesis structure is outlined as follows: 

Chapter 1: Introduction, this chapter explores the significance of fish and the fish industry, 

highlighting their importance in various contexts. It delves into the growing trend of 

automation and the emergence of digital twins, elucidating their potential to enhance the 

fish industry. 

Chapter 2: Theoretical background, provides a explanation of essential concepts in 

machine learning and machine vision algorithms. It explains the principles behind neural 

networks, deep learning, and convolutional neural networks (CNNs). Additionally, it 

presents a modified convolutional network specifically tailored to suit the objectives of this 

thesis. 

Chapter 3: Methods, which details the approaches employed to generate the fish model 

and gather labeled data from the digital twin, utilizing the tools offered by Unity 3D. 

Furthermore, the chapter provides an explanation of the model architecture and the 

training methodology employed in this study. 

Chapter 4: Results, this chapter presents the outcomes of the model training process, 

encompassing key metrics such as loss and accuracy for the various trained models.  

Chapter 5: Discussion, It provides a comprehensive analysis of the performance of each 

model, highlighting their strengths and weaknesses based on the achieved results. The 

chapter serves to offer a clear and detailed understanding of the effectiveness and 

efficiency of the trained models in addressing the objectives of this thesis. 
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2.1 Fish digital twin platform 

A 3D fish simulator was created using Unity3D, at Manulab in NTNU Ålesund. Its purpose 

was to replicate the movements of a dead fish when dropped or transported on a conveyor 

belt. A range of fish species such as pollock, bass, and salmon were precisely modeled. 

Real fish data was collected and employed to generate fish of various sizes, ensuring 

realistic proportions in the simulation [18]. 

2.1.1 Fish dimentions 

A dataset containing 61 fish data was collected. The dataset was completed on three 

different dates, each of which came from a different place. Two different kinds of fish were 

included in the dataset. The first one was Norwegian Sei (Pollock) with a total number of 

12, and the second kind was Salmon with a total number of 49. Simple measurements of 

the dimensions of the fish (Length (cm), Height (cm), Width (cm)) plus its Weight were 

taken. Additionally, for simulation purposes and to ensure adequate accuracy and 

precision, the fish were cut into five different slices as shown in the figure 5, and each part 

was weighed separately. The parts included Head weight, Front body weight, Back body 

weight, Tail weight, and Tail fin weight [18]. 

 

Figure 5: Positions of the slices [18] 

The length of the fish was considered as the base, and the rest of the dimensions were 

calculated relative to the length, as they were proportional to it. The relationship between 

the length of the fish and its width, height, and weight was obtained using polynomial 

regression (figures 6 and 7) [18]. 

2 Theoretical background 
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Figure 6: Relation between length, width, and height [18]. 

 

 

Figure 7: Relation between length and weight [18]. 

2.1.2 Fish structure and flexibility 

To simulate realistic reactions to forces, the movement of the skeletal structure needs to 

be constrained. To achieve this, constraints are applied to the "Character Joint" component 

of the model in Unity3D. The Character Joint component has many configurable values and 

is quite complex. The most important parts of it are the Connected Body, both Axis, and 

all the limits. These together control the dynamics of the joint, in figure 8 the limit of 

bending left and right for the joint between head and body can be seen. 

The Axis controls the twist axis of the joint, meaning its internal rotational axis. For a fish 

model, it must be set to the axis that is protruding from the sides of the model, since the 

model was positioned with Z as its forward axis. Left and right became the X axis. The 

Swing Axis controls the direction of joint movement. It must be set to the forward axis. In 

this case, the Z direction. By setting it to the Z axis, the joints are allowed to move about 

the 2D plane XY in accordance with the limits of swing 1 and swing 2 [18].  
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Figure 8: Bending left and right limit [18] 

2.1.3 The fish simulator 

By implementing the mentioned methods, a simulator of realistic fish was developed. In 

the simulator fish models were generated that move on a conveyor belt (figure 9). The 

product was primarily employed to aid in optimizing the design of conveyor belts in fish 

processing plants, with the aim of enhancing the efficiency of fish separation. It was tested 

and compered to actual fish behavior in the processing factory and yielded good 

results[18]. Additionally, the modeled fish and the simulator can be used to generate 

synthetic fish data for training machine vision algorithms. Since the data and the model 

proved to be good, in this thesis the salmon fish model and the parameters were used in 

that regard. 

 

Figure 9: The developed simulator [18] 
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2.2 Machine learning/Machine vision algorithms 

2.2.1 Machine learning 

Machine learning is a subfield of artificial intelligence (AI) that focuses on developing 

algorithms and models capable of learning from data to make predictions or decisions 

without explicit programming [19]. It has emerged as a powerful tool for solving complex 

problems and extracting valuable insights from vast amounts of information. 

In traditional programming, humans define explicit rules and instructions for computers to 

perform specific tasks, meaning the logic is formulated and turned into code. However, in 

machine learning, computers learn from examples and data patterns, enabling them to 

generalize and make accurate predictions on new, unseen data. Therefore, the logic of the 

problem that is being solved is not pre-defined. 

The fundamental idea behind machine learning is to build mathematical models that 

capture patterns and relationships within the data. These models are then trained using 

various algorithms to optimize their performance. The training process involves feeding 

the model with labeled data (that have been tagged with one or more labels identifying 

certain properties or characteristics), where each input is associated with a corresponding 

output. By analyzing this labeled data, the model learns to recognize patterns and make 

predictions or decisions based on new, unseen inputs. 

There are several types of machine learning algorithms, with the most common being 

supervised learning, unsupervised learning, and reinforcement learning. 

Supervised learning involves training a model using labeled data, where the desired output 

is known. The model learns to map inputs to outputs by generalizing from the provided 

examples. For instance, in image classification, the model learns to recognize and classify 

images into predefined categories, such as cats and dogs. Supervised learning is widely 

used in various domains, including natural language processing, computer vision, and fraud 

detection. 

Unsupervised learning deals with unlabeled data, where the model aims to find hidden 

patterns or structures within the data. The goal is to discover inherent relationships and 

groupings without predefined labels. Clustering algorithms, such as K-means and 

hierarchical clustering, are commonly used in unsupervised learning. This type of learning 

is valuable for tasks like customer segmentation, anomaly detection, and recommendation 

systems. 

Reinforcement learning involves training an agent to interact with an environment and 

learn optimal actions to maximize cumulative rewards. The agent receives feedback in the 

form of rewards or penalties based on its actions, allowing it to learn through trial and 

error. Reinforcement learning has been successful in applications such as playing games 

(such as chess, checkers and even video games lately), robotics (including robot 

navigation, object recognition and manipulation), and autonomous vehicle control. 

Machine learning algorithms employ various mathematical techniques to process and 

analyze data effectively. Decision trees, support vector machines, neural networks, and 

Bayesian networks are among the many algorithms used in machine learning. 

• Decision trees are hierarchical structures that make decisions based on a sequence 

of questions or conditions. Each node in the tree represents a question or condition, 
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leading to subsequent nodes until a final decision is reached. Decision trees are 

interpretable and widely used for classification and regression tasks. 

• Support vector machines (SVM) are algorithms used for both classification and 

regression. They find an optimal hyperplane that separates different classes or 

predicts continuous values. SVMs are effective when dealing with high-dimensional 

data and are known for their robustness. 

• Neural networks, inspired by the human brain, consist of interconnected nodes 

(neurons) organized in layers. They are capable of learning complex patterns and 

relationships in data. 

• Bayesian networks model probabilistic relationships among variables using directed 

acyclic graphs. They are valuable for modeling uncertainty and making probabilistic 

inferences. Bayesian networks have applications in medical diagnosis, gene 

expression analysis, and risk assessment. 

Machine learning enables computers to learn from data and make predictions or decisions 

without explicit programming. It has revolutionized various fields, ranging from healthcare 

and finance to transportation and entertainment. By employing different algorithms and 

techniques, machine learning has the potential to unlock valuable insights and drive 

innovation across industries [20]. 

2.2.2 Artificial neural networks 

Artificial neural networks (ANNs) consist of node layers, including input, hidden, and output 

layers. Each node can be imagined as an independent linear regression model, consisting 

of input data, weights, a bias (or threshold), and an output. The mathematical 

representation can be depicted as follows. 

𝑓(𝑥) = ∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖𝑎𝑠

𝑛

𝑖=1

 

In which n is the number of inputs, xi is the input, wi is the weight for each input. Therefore, 

the inputs are multiplied by their corresponding weights and added together. 

Subsequently, the output is fed into an activation function, which determines the final 

output. Activation function helps to introduce non-linear relationships and complex 

mappings between inputs and outputs, enabling neural networks to learn and represent 

more intricate patterns in data. 

There are several types of activation functions commonly used in neural networks, some 

of the popular ones including: 

• Sigmoid: This function maps the input to a value between 0 and 1, which can be 

interpreted as a probability. It is often used in the output layer of binary 

classification problems. 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

• Hyperbolic tangent (Tanh): Like the sigmoid function, it maps the input to a value 

between -1 and 1. It is commonly used in hidden layers of neural networks. 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

• Rectified Linear Unit (ReLU): It returns the input directly if it is positive, and zero 

otherwise. ReLU is one of the most widely used activation[21] functions due to its 

simplicity and effectiveness in deep neural networks. 
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𝑓(𝑥) = {
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 ≥ 0

 

 If this output surpasses a specified threshold, the node becomes "activated" and transmits 

data to the subsequent layer in the network. Consequently, the output of one node 

becomes the input for the succeeding node. The layer between the input and output layer 

is called a hidden layer. This sequential data transmission from one layer to another 

characterizes the neural network as a feedforward network, subsequently resulting in the 

predicted outputs (figure 10). 

 

 

Figure 10: Structure of an artificial neural network [22] 

A cost function, also known as a loss function or an objective function, is a mathematical 

function that measures the discrepancy between the predicted output of a machine learning 

model and the true output (or target) values in the training data. The cost function 

quantifies the error or the degree of mismatch between the predicted values and the actual 

values. Different machine learning tasks and algorithms may require different types of cost 

functions. The choice of a cost function depends on the nature of the problem being solved 

and the desired behavior of the model. Some common types of cost functions include Mean 

square error (MSE) which is common in regression problems, Binary Cross-Entropy and 

Categorical Cross-Entropy which are used in classification problems. 
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𝐶 = 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦 − �̂�)2 

In which y is the true value and �̂� is the predicted value. 

Backpropagation, or backward propagation of errors, is used to update the model's 

parameters based on the computed loss. The gradients of the loss with respect to the 

parameters are calculated, and the weights in the network are adjusted in a way that 

minimizes the loss. This iterative process of forward and backward propagation allows the 

network to learn from the data and improve its predictions over time. Since we want to 

update the weights with respect to the loss, we can calculate the derivate of the loss with 

the following formula: 

𝜕𝐶

𝜕𝑊𝑖𝑘

(𝑖)
 

Which is the derivative of loos based on the weight of the network going from node j in 

layer i - 1 to node k in layer i 

When we want to back propagate the error we use chain rule from the start of the network 

down to the output (loss). 

 

2.2.3 Deep learning 

Deep learning is a subfield of machine learning that focuses on training artificial neural 

networks with multiple layers to learn and make predictions or decisions. It has gained 

significant attention and achieved remarkable success in various domains, including 

computer vision, natural language processing, and speech recognition [23]. 

At its core, deep learning leverages neural networks, which are computational models 

inspired by the structure and function of the human brain. Neural networks consist of 

interconnected nodes called neurons, organized in layers. Each neuron receives input 

signals, performs a computation, and passes the output to the next layer of neurons. 

Deep learning networks differ from traditional neural networks in that they have multiple 

hidden layers between the input and output layers instead of only one or no hidden layer 

in traditional neural networks. These hidden layers allow the network to learn complex 

representations of the input data, enabling it to capture intricate patterns and relationships. 

The additional layers provide hierarchical abstractions, with each layer learning 

progressively more complex features. 

Deep learning has seen tremendous advancements due to the availability of large datasets 

and the computational power provided by modern hardware, such as graphics processing 

units (GPUs). Additionally, the implementation of optimization algorithms, such as 

stochastic gradient descent and its variants, has contributed to the deep learning being 

more popular and reliable [23]. 

Convolutional Neural Networks (CNNs) are a popular type of deep neural network widely 

used in computer vision tasks. CNNs are designed to automatically learn and extract 

hierarchical features from images, enabling tasks such as image classification, object 

detection, and image segmentation (CNN will be elaborated in chapter 2.2.4) 
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Recurrent Neural Networks (RNNs) are another type of deep neural network that can 

handle sequential data, such as text or speech. RNNs have memory cells that allow them 

to capture dependencies and patterns over time, making them suitable for tasks like 

language modeling, machine translation, and speech recognition. RNNs excel in tasks that 

involve sequential information processing, as they can retain contextual information across 

different time steps. 

In recent years, advancements in deep learning have also been driven by architectures 

such as Generative Adversarial Networks (GANs) and Transformers [23]. GANs are used 

for generating new data instances, such as realistic images, while Transformers have 

improved natural language processing tasks, including machine translation, text 

generation, and language understanding. Transformers, with their self-attention 

mechanism, can efficiently capture long-range dependencies in sequential data, making 

them highly effective for tasks involving large contextual understanding. 

2.2.4 Convolutional neural networks 

Convolutional Neural Networks (CNNs) are a specialized type of neural network designed 

for processing data with a grid-like structure, such as images or time-series data. They 

have revolutionized the field of computer vision and achieved remarkable success in 

various applications, including image classification, object detection, and image 

segmentation. 

At the core of CNNs is the convolution operation. Unlike traditional neural networks that 

use general matrix multiplication, CNNs employ convolution to extract meaningful features 

from the input data. Convolution involves sliding a small window called a filter or kernel 

over the input data and computing the dot product between the filter and the local 

receptive field at each position. This process captures local patterns and spatial 

relationships, allowing the network to learn hierarchical representations of the data. 

One of the key advantages of CNNs is their ability to detect and extract relevant features 

(such as horizontal or vertical lines, shapes, etc) from the input data. Using multiple 

convolutional layers, the network learns to detect simple features like edges and textures 

in the initial layers and progressively learns more complex and abstract features in the 

deeper layers. This hierarchical feature learning makes CNNs highly effective at capturing 

intricate patterns and improving classification performance. 

CNN architectures typically consist of several layers, including convolutional layers, pooling 

layers, and fully connected layers. Convolutional layers perform the convolution operation, 

applying various filters to extract features. Pooling layers reduce the spatial dimensions of 

the feature maps, reducing computation and providing translation invariance. Fully 

connected layers at the end of the network combine the extracted features and make 

predictions. 

2.2.4.1 Convolutional layer 

The convolutional layer in deep learning performs a dot product between a learnable matrix 

called a kernel and a restricted part of the input image known as the receptive field. The 

kernel is smaller in size spatially but extends in depth, matching the number of channels 

in the image (e.g., RGB channels). During the forward pass, the kernel slides across the 

image's height and width, generating an activation map that represents the response of 

the kernel at each spatial position. The size of the kernel's sliding movement is called the 

stride [24]. 
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If we have an input image of size W x W x D and Dout number of kernels, with a spatial 

size of F, a stride of S, and padding of P, the output volume's size can be calculated using 

the following formula: 

𝑊𝑜𝑢𝑡 =  
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 

The convolution process can be seen in figure 11. 

 

Figure 11: Convolution[23] 

2.2.4.2 Pooling layer 

The pooling layer in deep learning replaces certain locations in the network's output with 

a summary statistic of nearby outputs. This helps reduce the spatial size of the 

representation, resulting in less computation and weights required. The pooling operation 

is applied individually to each slice of the representation. There are different pooling 

functions available, such as average pooling, L2 norm pooling, weighted average pooling 

based on distance, but the most popular one is max pooling. Max pooling selects the 

maximum value from the neighborhood as the representative output, while average 

pooling selected the average value from the neighborhood [24]. The two methods are 

demonstrated in figure 12. 
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Figure 12: Average and max pooling [25]  

If we have an activation map of size W x W x D, a pooling kernel with spatial size F, and 

stride S, the size of the output volume can be calculated using the provided formula. 

𝑊𝑜𝑢𝑡 =  
𝑊 − 𝐹

𝑆
+ 1 

Pooling also provides some translation invariance, meaning that an object can be 

recognized regardless of its location within the frame. 

2.2.4.3 CNN implemetations 

One widely used CNN architecture is the LeNet-5 architecture proposed by Yann LeCun et 

al. in 1998 [26]. LeNet-5 consists of multiple convolutional and pooling layers followed by 

fully connected layers. It was designed for handwritten digit recognition and laid the 

foundation for modern CNNs. Since then, numerous CNN architectures have been 

developed, such as AlexNet [27], VGGNet [28] , GoogLeNet [29], and ResNet [30], each 

with its own innovations and improvements. 

The success of CNNs can be attributed to their ability to capture local patterns and spatial 

dependencies, mimicking the way the visual cortex processes information. The hierarchical 

nature of CNNs allows them to learn increasingly abstract representations, enabling them 

to recognize complex visual patterns and objects. 

In addition to image classification, CNNs have been extended to various computer vision 

tasks. Object detection algorithms, such as the region-based CNNs (R-CNN) family, utilize 

CNNs to detect and localize objects within images. CNNs have also been applied to image 

segmentation tasks, where the goal is to assign a class label to each pixel in an image, 

enabling detailed understanding and analysis of the image content. 

Furthermore, CNNs have found applications beyond computer vision. They have been 

successfully employed in natural language processing tasks, such as text classification and 

sentiment analysis. By treating textual data as a sequence of one-dimensional inputs, CNNs 

can learn meaningful representations and capture local dependencies in the text. 

Training CNNs typically involves large, labeled datasets and sophisticated optimization 

techniques. The backpropagation algorithm, combined with gradient descent optimization, 

is commonly used to update the network's parameters, and minimize the loss function. To 
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prevent overfitting, regularization techniques such as dropout and weight decay are 

employed. 

Moreover, pretraining and transfer learning techniques have been effective in leveraging 

pre-trained CNN models on large datasets and transferring knowledge to new tasks with 

limited labeled data. This approach has significantly reduced the amount of data required 

to train CNNs and improved performance on various tasks. 

In conclusion, Convolutional Neural Networks (CNNs) have revolutionized the field of 

computer vision and achieved outstanding results in image processing tasks. By employing 

the convolution operation, hierarchical feature learning, and sophisticated architectures, 

CNNs can automatically learn meaningful representations from grid-like data. With their 

ability to capture local patterns, spatial dependencies, and abstract visual features, CNNs 

continue to drive advancements in computer vision and find applications in diverse domains 

[23]. 

2.2.5 VGG16 model 

The used model is a modified version of VGG-16 architecture. VGG16 refers to the VGG 

model, also called VGGNet. It is a convolution neural network (CNN) model supporting 16 

layers as shown in figure 13. K. Simonyan and A. Zisserman from Oxford University 

proposed this model [28]. 

2.2.5.1 Model structure 

The VGG16 model demonstrates impressive performance, reaching a remarkable test 

accuracy of 92.7% on the extensive ImageNet dataset. ImageNet comprises over 14 

million training images, covering a wide range of 1000 object classes. VGG16 stands out 

as one of the prominent models recognized in the ILSVRC-2014 competition. 

Building upon the advancements of AlexNet, VGG16 introduces notable improvements by 

replacing the use of large filters with a series of smaller 3×3 filters. In comparison, AlexNet 

employs an 11-size kernel for the initial convolutional layer and a 5-size kernel for the 

second layer. To train the VGG model, the researchers dedicated several weeks of training 

utilizing NVIDIA Titan Black GPUs, which contributed to its exceptional performance. 
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Figure 13: VGG16 Architecture[31] 

VGG16, as indicated by its name, is a deep neural network consisting of 16 layers. With a 

staggering total of 138 million parameters, VGG16 stands out as a remarkably large 

network even by today's standards. However, the beauty of the VGGNet16 architecture 

lies in its simplicity. The VGGNet architecture effectively incorporates essential features of 

convolutional neural networks. A VGG network utilizes small convolution filters, and in the 

case of VGG16, it comprises three fully connected layers and 13 convolutional layers. 

Here's a brief overview of the VGG architecture: 

• Input: VGGNet takes a 224×224 image as input. During the ImageNet competition, 

the creators of the model maintained a consistent image input size by cropping a 

224×224 section from the center of each image. 

• Convolutional layers: VGG employs convolutional filters with the smallest receptive 

field of 3×3. Additionally, a 1×1 convolution filter is utilized as a linear 

transformation for the input. 

• ReLU activation: The next component is the Rectified Linear Unit Activation Function 

(ReLU), which was a major innovation in AlexNet for reducing training time. ReLU 

acts as a linear function, producing an output that matches positive inputs and 

yields zero for negative inputs. VGG uses a convolution stride of 1 pixel to preserve 

the spatial resolution after convolution. 

• Hidden layers: All hidden layers in the VGG network utilize ReLU activation instead 

of Local Response Normalization like AlexNet. This approach eliminates unnecessary 

increases in training time and memory consumption, with little impact on overall 

accuracy. 

• Pooling layers: Following multiple convolutional layers, pooling layers are employed 

to reduce the dimensionality and number of parameters in the feature maps 

generated by each convolution step. Pooling plays a crucial role, especially with the 

significant growth in the number of filters from 64 to 128, 256, and eventually 512 

in the final layers. 
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• Fully connected layers: VGGNet includes three fully connected layers. The first two 

layers consist of 4096 channels each, while the third layer comprises 1000 

channels, representing one channel for each class [32]. 
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3.1 Modified VGG16 for object detection 

In their study titled "Domain Randomization for Transferring Deep Neural Networks from 

Simulation to the Real World," Tobin et al. employed a customized variant of the VGG16 

model. The object detector employed by the researchers is parametrized with a deep 

convolutional neural network. Specifically, a modified version of the VGG-16 architecture 

(depicted in Figure 14) is utilized. This architecture was chosen due to its strong 

performance in various computer vision tasks and the availability of pretrained weights. 

 

Figure 14: Modified VGG16 for object detection[33] 

The convolutional layers of the standard VGG architecture are retained, while the fully 

connected layers are modified to smaller sizes of 256 and 64, without utilizing dropout. For 

most of the experiments, pretrained weights obtained from ImageNet are used to initialize 

the convolutional layers, as it is hypothesized to be crucial for achieving successful transfer. 

Interestingly, random weight initialization is found to work equally well in most cases. 

To train the detector, stochastic gradient descent is employed, utilizing the L2 loss between 

the estimated object positions from the network and the true object positions. The Adam 

optimizer is utilized for this purpose. The name "Adam" stands for "Adaptive Moment 

Estimation," which refers to the adaptive learning rates used by the optimizer. The 

algorithm keeps track of past gradients and squared gradients to adjust the learning rate 

for each parameter individually. This allows it to dynamically adapt the learning rate during 

training, making it well-suited for models with large and sparse datasets or when dealing 

with noisy gradients. It was discovered that using a learning rate of approximately 1e−4 

(compared to the standard 1e−3 for Adam) improved convergence and helped avoid a 

common local optimum where all objects are mapped to the center of the table [33]. 

  

3 Methods 
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3.1.1 The modified implemented model 

In the context of object detection using simulation, the modified model (shown in Figure 

14) is designed with only one output parameter. However, considering the requirement 

to predict both the position and rotation of the object, the model can be slightly adjusted 

to incorporate the desired outputs, as depicted in Figure 15. 

 

Figure 15: Modified VGG16 for multiple outputs [34] 

In previous applications, the method was employed for detection and pick-and-place tasks 

involving a single cube. However, in this project, the scope is expanded to include a fish 

model. The objective is to estimate the position and orientation of the fish using the model, 

allowing the robotic arm to successfully pick and place the fish. This capability holds 

potential for real-world scenarios, such as fish processing plants, where such automation 

can be beneficial. 

3.2 Data generation for machine vision 

This project focuses on training a model to predict an object's pose using images and 

ground-truth labels. The trained model can then estimate the pose of unseen objects in 

real-time. The project utilizes Unity Computer Vision [34] to generate synthetic data, 

providing an efficient solution for machine learning data requirements. In this project 

automatically labeled data is generated in Unity, allowing the training of a machine learning 

model. Subsequently, the model is deployed in a Unity simulation with a UR3 robotic arm 

using the Robot Operating System (ROS), enabling pick-and-place tasks with an object of 

unknown pose. 

In order to achieve this, we have the 3D model of the fish and the environment in unity 

(our fish digital twin), with a virtual camera and a light. The goal is for the virtual camera 

to capture images and label the fish, so the data can be used for training. This is done 

using the perception camera component. To diversify the dataset and simulate real-world 

scenarios, we introduce randomization to the environment. This involves varying the fish's 

position, rotation, and size, as well as adjusting lighting conditions and other relevant 

parameters. To facilitate this randomization process, we utilize a simulation scenario 

equipped with custom randomizers.  

In the following sections, each of these components will be elaborated upon in detail. 
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3.2.1 Perception camera 

Data collection utilizes the Unity perception package, with the virtual camera in Unity 3D 

configured as a perception camera. To enable object labeling, a labeling component is 

attached to the desired game object (in this case, the fish model). This facilitates object 

detection and labeling by the perception camera (figure 16). 

 

Figure 16: Labeling component for the fish object 

Next, a perception component is incorporated into the camera (figure 17), enabling it to 

capture an image of the scene and label the objects within. Various types of labelers, such 
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as bounding box 2D labeler, bounding box 3D labeler, and object count labeler, are 

available, each serving a specific purpose. 

 

Figure 17: Perception camera component 

Given that we have a 3D object, and our objective is to detect both its location and 

orientation, the most suitable labeler to use is the bounding box 3D labeler. This labeler 

captures the object by enclosing it within a 3D box as shown by the green box in figure 

18. 

 

Figure 18: Bounding box 3D labeler 



25 

 

3.2.2 Simulation scenario 

Scenario is a game object in unity that controls the execution flow of the simulation by 

coordinating all the randomizers that are added to it in figure 19 the scenario component 

and the added randomizers can be seen. 

 

Figure 19: Pose estimation scenario component. 

The perception camera component is responsible for generating various scenarios, with 

each scenario corresponding to a captured image. The size of the dataset can be controlled 

by specifying the number of frames in the total frames section. By configuring this setting, 

the component can be programmed to automatically execute the scenario and capture all 

the necessary pictures for the dataset. 

In the randomizers section, various types of randomizers can be incorporated, each 

specifying the modifications to be made in each frame. These randomizers are 

implemented as scripts that alter different parameters of the objects within the scene. To 

ensure proper manipulation, each relevant object is associated with a tag script that 

enables the randomizer to identify and manipulate the desired object. The following 

randomizers have been included in this context: 

• Rotation randomizer: This randomizer introduces rotational variations to the fish 

along the X and Y-axis, Y-axis representing the upward direction in Unity. By setting 

the minimum and maximum rotation values within the randomizer, the fish's 

orientation can be randomized within the specified range as can bee seen in the 

figure 21. The X-axis randomizer is either -90 or +90 that corresponds to the left 

or right side of the fish on the table. Therefore, our dataset has both sides of the 

fish. The Z-axis is set to 0 since the fish is on a flat surface and there is no need for 

this rotation (figure 20). 
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Figure 20: Rotation randomizer 

 

Figure 21: Results of the rotation randomizer 

• Robot arm object position randomizer: This randomizer is designed to randomize 

the position of the fish in a manner that ensures accessibility for the robotic arm. It 

considers the base location of the robotic arm and allows the specification of 

minimum and maximum reachability parameters within the randomizer. By 

configuring these parameters, the randomizer ensures that the fish's randomized 

position remains within a range that can be reached by the robotic arm (figure 22). 
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Figure 22: Robot arm object position randomizer 

As a result, the fish will be positioned in different places on the table as seen in figure 23, 

since it is only the position randomizer, there is no rotation. 

 

Figure 23: Location randomizer results 

• Light randomizer: The light randomizer is responsible for introducing random 

variations to different parameters of the light source, including intensity, rotation, 

and color. By incorporating this randomizer, the model becomes adaptable to 

different lighting conditions. It allows for the creation of diverse scenarios by 

randomizing the characteristics of the light source, thus enhancing the model's 
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ability to handle varying lighting conditions (figure 24). The results can be seen in 

figure 25. 

 

 

Figure 24: Light randomizer 

 

Figure 25: Light randomizer results 

• Size randomizer: To avoid uniformity in fish sizes, the size randomizer is 

implemented to introduce variations in the dimensions of the generated fish. This 

randomizer samples data from a Gaussian distribution, utilizing average and 
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standard deviation values derived from measurements of real fish. By incorporating 

this randomizer (figure 26), the digital fish exhibit diverse sizes (figure 27), 

resembling the natural distribution observed in real-world fish populations. 

 

 

Figure 26: Size randomizer 

 

Figure 27: Size randomizer results 

In all randomizers, except for the light randomizer, the fish object is associated with a tag 

component. And for the light randomizer it is associated with the directional light in the 

scene. 

With the setup complete, data collection for model training can be started. The scenario 

can be executed multiple times, generating different frames each time. This capability 

allows for the generation of distinct datasets for training, validation, and testing purposes. 

By running the scenario with varying frames, diverse sets of data can be generated to 

ensure robustness and generalization in the model's training process. A sample of the 

generated dataset can be seen in figure 28. 
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The training process involved a dataset of 30,000 images for training and 3,000 images 

for validation. The Adam optimizer was utilized, and the model was trained using mini 

batches with the batch size of 20, for a total of 120 epochs. The Adam randomizer was 

used, and the values were 0.0001 for alpha, 0.9 for beta1 and 0.999 for beta2. 

To analyze and compare the camera's orientation and viewport, two distinct camera 

positions were selected: one with a side view and the other with a top view. The subsequent 

sections present the outcomes of training for these two models. 

4.1 Side view  

The sample of generated synthetic data can be seen in the figure 28 below. 

 

Figure 28: Sample of generated data incorporating all the randomizers (side view) 

The change of loss by epoch for orientation and location for training and test data can be 

seen in the figures below (figures 29-32). 

 

4 Results 
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Figure 29: Orientation loss for training (side view) 

 

Figure 30: Location loss for training (side view) 

 

Figure 31: Location loss for validation (side view) 
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Figure 32: Orientation loss for validation (side view) 

Here is the result of implementing the model to detect the fish and robot trying to pick it 

up (figure 33) 

 

Figure 33: Robot arm detecting and trying to pick up the fish (side view) 
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4.2 Top View 

A sample of generated fish data with the top view camera can be observed in figure 34.  

 

Figure 34: Sample of generated fish data incorporating all the randomizers (top view) 

 

The change of loss by epoch for orientation and location for training and test data can be 

seen in the figures below (figures 35-38). 

 

 

Figure 35: Location loss for training (top view) 
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Figure 36: Orientation loss for training (top view) 

 

Figure 37: Orientation loss for validation (top view) 

 

 

Figure 38: Location loss for validation (top view) 
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A picture of the model prediction and guiding the robotic arm to pick up the fish is shown 

in figure 39. 

 

Figure 39: Robot arm detecting and trying to pick up the fish (top view) 

4.3 Comparison 

The comparison between the two camera positions for the training, validation and test 

data can be seen in the figures 40 and 41. 

 

Figure 40: Comparison of the orientation MSE between side and top view 
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Figure 41: Comparison of the location MSE between side and top view 
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The model demonstrates good performance in both location and position, as indicated by 

the low Mean Squared Error (MSE) values. It is evident that in both scenarios, the accuracy 

of predicting the fish's position is significantly higher compared to predicting its orientation. 

Which persists for training, validation, and test data. 

As it is expected, for the location, it is mostly the matter of detecting the object on the 

scene. Since the location is reported and the center of the fish, the model can estimate is 

better since it only needs to detect the general shape of the fish.  

But regarding the orientation of the fish, it should detect the different part of the fish (head, 

tail) to be able to predict the rotation, also the rotation along the x axis which determines 

which side of the fish is on the table, is much harder to predict. Since the model needs to 

consider more details. 

To assess the impact of camera positioning, two models were compared: one with the 

camera placed on the side of the table and the other with a top-down view. The model 

utilizing the side camera exhibited better results.  

This can be expected by comparing the generated data in figures 28 and 34. It can be 

observed that in the top view the robotic arm obscures a large portion of the picture and 

therefore there are many more situations where the fish is behind it. Therefore, in many 

situations this gives much less information to infer the position and orientation from what 

the camera sees. 

The side view camera has a better view of the table that is less obscured. Even though the 

perspective view makes it harder to determine the location and rotation, the less obscured 

fish makes up for this, thus the model yields better results. 

This is due to the position on the robotic arm, which is placed in middle to have more 

accessibility on the table, if the robotic arm is to be placed on the side of the table it loses 

half of its reachability which is another matter to be considered. 

In the implementation within the digital twin environment, the fish's location is 

randomized, and based on the image captured by the virtual camera, the model predicts 

both the position and orientation. These values are then transmitted to the robot's 

controller, enabling it to pick and place the fish. While the robot successfully detected the 

fish's location, it encountered difficulties in grasping the fish. This can be seen in figures 

33 and 39 in which the arm has moved to pick up the fish, but it wouldn’t be able to pick 

it up. This issue stems from the specific type and size of the robotic arm's gripper. 

The simulated UR3 robotic arm lacked a suitable gripper size and type for this task. The 

simulation and model, however, can be employed to select and optimize an appropriate 

gripper. Additionally, the speed at which the robotic arm performs the task holds 

significance, and the simulator and model can aid in optimizing this aspect by addressing 

real-world constraints and the required speed. 

5 Discussion 
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The proposed model structure demonstrates favorable outcomes for fish pose estimation 

problem. The side camera position proves to be superior in performance. By leveraging the 

trained model in conjunction with the simulator, it becomes possible to ascertain the 

optimal robotic arm type, gripper, or alternative mechanisms for fish retrieval based on 

the machine vision model. 

In future research endeavors, the model can be utilized to forecast the parameters of fish 

movement on a conveyor belt. This application holds potential for devising a solution to 

identify and remove damaged fish, which can be implemented in processing factories. 

6 Conclusion 



39 

 

 

1. Jogeir Toppe, F. The nutritional benefits of fish are unique. Available from: 

https://www.fao.org/in-action/globefish/fishery-information/resource-

detail/en/c/338772/. 

2. FAO, The State of World Fisheries and Aquaculture 2022. 2022: p. 266. 

3. Johansen, U., et al., The Norwegian seafood industry – Importance for the 

national economy. Marine Policy, 2019. 110: p. 103561. 

4. Skjøndal Bar, E., A case study of obstacles and enablers for green innovation 

within the fish processing equipment industry. Journal of Cleaner Production, 

2015. 90: p. 234-243. 
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