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IN THIS short historical survey, I hope to give, to the best of my ability, the
early experimental evidence concerning plastic crystals, and I apologize in

advance if there remain some important gaps in my text, since I am a
specialist in the study of physical properties of organic compounds, but am

not so learned, either in inorganic chemistry or in theoretical physics.

— J. Timmermans [1]
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A B S T R A C T

Plastic crystals are a novel class of materials that exhibit excellent
piezoelectric and ferroelectric properties, in addition to being soft
and flexible due to rotational freedom of the molecules. This makes
them promising candidates for replacing lead-based ferroelectrics in
the metal oxide ceramics industry, being a sustainable, recyclable and
cheap alternative. In addition, plastic crystals can potentially be used
for thermal energy storage applications and to improve the ionic con-
ductivity in Li-ion batteries. However, plastic crystals are poorly un-
derstood on a microscopic level, and are challenging to model since
the rotational freedom of the molecules makes them highly disor-
dered.

The aim of this thesis was to predict the phase transitions and study
the rotational dynamics in the plastic crystals tetramethylammonium
irontetrachloride ([(CH3)4N][FeCl4]) and tetramethylammonium iron-
tetrabromide ([(CH3)4N][FeBr4]) through ab initio molecular dynam-
ics simulations using machine learned force fields. The phase transi-
tions were studied by investigating the change in lattice parameters,
unit cell volume and XRD spectra for the two compounds upon heat-
ing and cooling from 200K to 400K and back again, and the rotational
dynamics were studied by analysing the autocorrelation within each
structure.

The results showed that the heating process induced a phase transi-
tion from the Amm2 phase to the plastic mesophase for the [(CH3)4N]
[FeCl4] crystal, while the [(CH3)4N][FeBr4] crystal did not seem to
reach the high temperature plastic mesophase. This was likely due to
steric hindrance of the [(CH3)4N] molecules in the [(CH3)4N][FeBr4]
crystal, and that the transition to the mesophase in [(CH3)4N][FeBr4]
requires higher temperatures than in [(CH3)4N][FeCl4]. These find-
ings agreed well with the analysis of the rotational dynamics of the
two crystals, where the results demonstrated that there was more
rotational freedom within the [(CH3)4N][FeCl4] crystal than within
the [(CH3)4N] [FeBr4] crystal and that the rotational freedom of the
molecules increased with increasing temperature.
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S A M M E N D R A G

Plastiske krystaller er en ny materialklasse med glimrende piezoelekt-
riske og ferroelektriske egenskaper, i tillegg til å være myke og flek-
sible grunnet rotasjonsfriheten til molekylene. Dette gjør dem til lo-
vende kandidater for å erstatte bly-baserte ferroelektriske materialer i
metall-oksid-keramikkbransjen, som et bærekraftig, resirkulerbart og
billig alternativ. I tillegg kan plastiske krystaller potensielt brukes i
applikasjoner som termisk energilagring og til å forbedre den ioniske
ledningsevnen i Li-ionebatterier. Imidlertid er plastiske krystaller dår-
lig forstått på et mikroskopisk nivå, og de er vanskelige å modellere
siden rotasjonsfriheten til molekylene gjør dem svært uordnede.

Målet med denne oppgaven var å forutsi faseovergangene og stu-
dere rotasjonsdynamikken i de plastiske krystallene tetrametylammo-
nium-klorotetraferrat ([(CH3)4N][FeCl4]) og tetrametylammonium-br-
omotetraferrat ([(CH3)4N][FeBr4]) ved å bruke ab initio molekylærdyna-
mikksimuleringer med maskinlærte kraftfelt. Faseovergangene ble
studert ved å undersøke endringene i gitter-parametere, enhetscelle-
volum samt XRD-spektrene til de to forbindelsene ved oppvarming
fra 200K til 400K og tilbake igjen, og rotasjonsdynamikken ble stu-
dert ved å analysere autokorrelasjonen i hver krystall.

Resultatene viste at oppvarmingsprosessen induserte en faseover-
gang fra Amm2-fasen til den plastiske mesofasen for [(CH3)4N][FeCl4]-
krystallen, mens [(CH3)4N][FeBr4]-krystallen ikke så ut til å nå denne
plastiske mesofasen. Dette skyldes antageligvis sterisk hindring av
[(CH3)4N]-molekylene i [(CH3)4N][FeBr4]-krystallen, og at overgan-
gen til mesofasen i [(CH3)4N][FeBr4] krever høyere temperaturer enn
i [(CH3)4N][FeCl4]. Dette stemte bra overens med analysen av rota-
sjonsdynamikken i de to krystallene, hvor resultatene viste at det var
mer rotasjonsfrihet i [(CH3)4N][FeCl4]-krystallen enn i [(CH3)4N][FeBr4]-
krystallen, og at rotasjonsfriheten økte med økende temperatur.

v
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1
I N T R O D U C T I O N

Since the discovery of ferroelectric properties in the Rochelle salt by
Valasek in 1920, ferroelectrics have played a vital role in technolog-
ical advancements, becoming ubiquitous in electronic devices such
as sensors, actuators, and capacitors [3–5]. These materials are char-
acterised by their switchable and spontaneous polarisation, in addi-
tion to their dielectric and piezoelectric coefficients [4]. This unique
set of properties have positioned them as a subject of extensive re-
search, driven by the global interest in ferro- and piezoelectric appli-
cations. However, most of the ferroelectric materials dominating this
industry today are metal oxide ceramics discovered in the 1940’s and
1950’s, like barium titanate (BaTiO3, BTO) and lead zirconate titanate
(Pb[ZrxTi1 – x]O3, PZT) [5, 6]. Although these materials exhibit excep-
tional piezoelectric properties [7], the use of environmentally harmful
pollutants such as lead needs to be reduced.

Moreover, metal oxide ceramics are in general hard and brittle ma-
terials, requiring high processing temperatures in addition to contain
dopants such as rare-earth metals in order to improve their flexibility
and cover a wider range of functionality [6, 8]. This makes recycling
of the materials more difficult, in addition to increasing the elemen-
tal footprint, meaning the number of elements from the periodic table
added to a compound and their impact in terms of sustainability, re-
cyclability, toxicity, ethics etc [9]. Trying to reduce the elemental foot-
print and at the same time enhance the functionalities of electronic
devices, new and sustainable ferroelectric materials with properties
that can match those of BTO and PZT must be developed.

Plastic crystals emerge as a novel class of materials that potentially
can meet these requirements. In addition to their excellent ferroelec-
tric and piezoelectric properties, plastic crystals are soft and flexible,
and require lower processing temperatures compared to metal oxide
ceramics. Plastic crystals are also easier to recycle, consisting of rela-
tively cheap and nontoxic elements [10]. Furthermore, plastic crystals
have the ability of absorbing and releasing energy through solid-solid
phase transitions, making them promising candidates for thermal en-
ergy storage. Another exciting application is for ionic conductors,
particularly for Li or Na-ion batteries, due to the flexibility of these
materials [11, 12]. Also, an interesting research area for these mate-
rials is crystal engineering, where the properties of the crystals can
be modified by changing the composition or using variations of the
same chemical species, without introducing foreign elements.
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2 introduction

Plastic crystals are characterised by possessing a plastic mesophase
at a moderate temperature below their melting temperature. The
properties of this plastic mesophase are between those of a solid and
a liquid, and the molecules gain rotational freedom without breaking
the long-range crystallographic order. This makes the material flexi-
ble and enables plastic deformations of the crystal, thereby the name
plastic crystals.

Although plastic crystals have attracted considerable interest due
to their unique properties, the mechanisms behind their behaviour
are not yet fully understood on a microscopic level, both from an ex-
perimental and from a simulations perspective. These materials are
highly disordered and therefore difficult to model, and as a result
they have mostly been neglected when it comes to computational
modelling. Further research is therefore necessary to gain deeper in-
sights into the rotational dynamics, phase transitions, and functional
characteristics of these materials.

1.1 aim of the work

In this thesis, two different plastic crystals were investigated; tetra-
methylammonium irontetrachloride, [(CH3)4N][FeCl4], and tetrame-
thylammonium irontetrabromide, [(CH3)4N][FeBr4]. The overall goal
was to study and predict the phase transitions and rotational dynam-
ics of these materials through ab initio molecular dynamics (MD) sim-
ulations with machine learned force fields, to allow for longer length
scales than traditional ab initio MD whilst retaining the accuracy. The
machine learned force fields were trained on-the-fly, which means
that they were generated during an ab initio MD simulation. The fi-
nal force fields were then used to simulate phase transitions in the
two plastic crystals by heating them from 200K to 400K, followed
by a cooling process from 400K to 100K. This was done using a
Langevin thermostat (variable volume) over the course of 1600ps in
total. An analysis of the rotational dynamics was carried out at con-
stant volume, by using the Nosé-Hoover thermostat and calculating
the autocorrelation function for the tetramethylammonium molecules
at 200K, 300K and 400K.



2
T H E O R E T I C A L B A C K G R O U N D

This thesis details the mechanisms behind phase transitions in plas-
tic crystals and the properties of different crystal phases. The aim
of this chapter is to give a brief introduction to ferroelectricity and
piezoelectricity, phase transitions in plastic crystals as well as an in-
troduction to the compounds TMA[FeCl4] and TMA[FeBr4] studied
in this project.

2.1 ferroelectricity and piezoelectricity

Traditionally, solids have been divided into three different material
classes based on their electrical properties. Metals conducts electricity
well, semiconductors conducts poorly and insulators don’t conduct
electricity at all. Insulators are often referred to as dielectrics, and are
characterised by their dielectric constant, or relative permittivity ϵr.
When an external electric field is applied to a dielectric material, the
electrons in the material are displaced slightly from their positions,
but they do not move freely through the material like in a metal. The
external field will make the electron cloud asymmetrically distributed
around the positively charged nucleus, turning each atom into a small
dipole. This results in a polarisation of the material. The relative
permittivity ϵr is a measure of how easy the material can become
polarised in an electric field [13].

In some dielectric materials, there is an additional relationship be-
tween the mechanical and the electrical state of the material. This
behaviour is termed piezoelectricity. As figure 2.1a illustrates, the
electrical charge in the material will be evenly distributed in an un-
stressed state. However, when the solid is subjected to a mechanical
stress such as pressure, it becomes polarised, generating an electrical
potential. This is termed the direct piezoelectric effect. When a stress
σj induces a polarisation Pi in the material under a constant elec-
tric field E, the piezoelectric coefficients di,j can be described mathe-
matically by di,j = (dPi/dσj)

E. Piezoelectric materials also have the
converse effect, where an electrical field Ej can be used to induce a
mechanical strain ϵi in the material, di,j = (dϵi/dEj)

σ [14]. In other
words, an electric field can be used to make the material contract or
expand in a certain direction. This effect is utilised in e.g. quartz
oscillators [13].

Pyroelectric materials are a subset of piezoelectric materials. They
have the properties of piezoelectrics, but in addition they have a spon-
taneous, temperature dependent polarisation Ps even when no elec-

3



4 theoretical background
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Figure 2.1: Piezoelectric material (a) without and (b) with an applied me-
chanical stress. The stress induces a polarisation in the material,
generating a voltage.

tric field or mechanical stress is applied. This polarisation changes
when the material is subjected to a temperature change.

In some pyroelectrics, the natural, spontaneous polarisation Ps can
be switched when the material is exposed to an electric field. This
effect is known as ferroelectricity. Reversing the polarisation of the
material by changing the electric field yields a hysteresis loop, and
the polarisation of a ferroelectric material will therefore be history de-
pendent [4]. The relationship between piezoelectricity, pyroelectricity
and ferroelectricity is illustrated in figure 2.2.

2.1.1 Crystal symmetry and ferroelectric properties

Crystal symmetry plays an important role when it comes to the piezo-
electric and ferroelectric properties of the system. There are seven
crystal systems (triclinic, monoclinic, orthorhombic, tetragonal, trigo-
nal, hexagonal, and cubic), and these can be divided into 32 crystal
classes, or point groups, representing the 32 unique ways of combin-
ing symmetry elements in a crystal [13].

In a crystal where the unit cell has a center of symmetry, the over-
all polarisation will always be zero because any distortion of ions
causing a dipole will be canceled out by another dipole pointing in
opposite direction somewhere else in the crystal. Therefore, piezo-
electricity can only arise in the 21 non-centrosymmetric point groups.
All but one of these 21 groups display electric polarisation when ex-
posed to external stress, giving 20 piezoelectric point groups (see fig-
ure 2.2). In order to produce a spontaneous polarisation when no
external field is present, a unique polar axis is required. Of the 20
piezoelectric groups, 10 of them fulfil this criterion, giving 10 pyro-
electric classes. These can further be divided into ferroelectric and
non-ferroelectric ones, as illustrated in figure 2.2.
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Figure 2.2: Schematic showing the relation between piezoelectrics, pyro-
electrics and ferroelectrics. Figure inspired by [13].

2.2 phase transitions

Phase transitions are the physical processes by which a material un-
dergoes a change in its physical state or structure, such as changing
from a solid to a liquid. In ferroelectric materials, the spontaneous
polarisation Ps normally decreases with temperature and vanishes
completely at a critical temperature called the Curie temperature, TC.
By heating the material above TC, a phase transition from a ferroelec-
tric to a paraelectric phase will take place. Paraelectric materials are
a subgroup of dielectrics that do not have a permanent electric dipole
moment like pyroelectrics and ferroelectrics.

The ferroelectric to paraelectric transition at TC is an example of a
solid-solid phase transition. Solid-solid phase transitions are transi-
tions where the crystal structure changes while the material remains
in the solid state. As different crystal structures possess different
electrical properties, a phase transition may involve a change in the
dielectric, piezoelectric or ferroelectric properties of a crystal. The
transition from the ferroelectric phase to the paraelectric phase is nor-
mally characterised as a displacive phase transition. This means that
the high temperature phase far above TC is highly ordered and cen-
trosymmetric, but by cooling the material down below TC the cations
are collectively displaced from their mean positions, resulting in the
ferroelectric state. However, the ferroelectric phase transition could
also be described as an order-disorder transition, which is often the
case for ferroelectric plastic crystals. In order-disorder transitions the
degree of molecular ordering within the crystal lattice changes dur-
ing the phase transition. Well above TC the ions are in a disordered
state, and as the temperature decreases towards TC the local ordering
of cations starts to increase. Below TC the displacements of the ions
are perfectly ordered in the ferroelectric state.
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2.3 plastic crystals

Plastic crystals are materials that exhibit a cubic mesophase with
properties in between those of a liquid and a solid. Examples include
quinuclidinium perrhenate (HQRO4), adamantane (C10H16), succinon-
itrile (C2H4(CN)2) and tetrabromomethane (CBr4) [10, 12, 14–17]. Plas-
tic crystals were first recognised and named by Timmermanns in 1935
[18].

In the solid crystalline phase, the molecules are arranged in a peri-
odic lattice with long-range crystallographic order. Each lattice point
have vibrational freedom, but the molecules are fixed at their lattice
positions. By increasing the temperature, a transition to the plastic
mesophase will find place. Here, the molecules gain rotational free-
dom, as illustrated in figure 2.3. The rotation of the molecules around
their mass centre creates a local disorder, without breaking the long-
range crystallographic order. By further increasing the temperature,
a transition to the liquid phase will take place. In the liquid phase,
molecules have translational freedom in addition to vibrational and
rotational freedom, allowing them to move around freely. Figure 2.3
illustrates the difference between these three phases, and a summary
of the degrees of freedom for each phase can be found in table 2.1.

Plasticayslafase

Crystalline phase Plastic mesophase Liquid phase

Increasing temperature
Increasing degrees of freedom

Figure 2.3: Schematic showing the relation between the solid crystalline
phase, the plastic mesophase and the liquid phase. The
molecules in the solid phase only have vibrational freedom,
while the molecules in the plastic mesophase also have rotational
freedom. In the liquid phase, molecules gain translational free-
dom as well, indicated by the grey arrows. Figure retrieved from
[2].

Plastic crystals are characterised by having low entropies of melt-
ing and relatively high melting points. This can be seen in connection
with the rotational freedom in the plastic mesophase, as this rota-
tional disorder makes the energy barrier of going from the plastic
mesophase to the liquid phase lower compared to the energy barrier
of going directly from the crystalline phase to the liquid phase in non-
plastic crystals. Macroscopically, the transition from the crystalline
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Table 2.1: Degrees of freedom for the molecules in a crystalline, plastic and
liquid phase.

phase vibration rotation translation

Crystalline phase X - -

Plastic mesophase X X -

Liquid phase X X X

phase to the plastic mesophase in plastic crystals can be observed
in the high entropies following this transition. When the molecules
already have gained rotational freedom, the transition to the liquid
state is associated with a smaller change in entropy. In contrast, non-
plastic crystals exhibit a larger disparity between their solid and liq-
uid states, resulting in higher entropies of melting.

Plastic crystals normally consist of globular molecules. The rota-
tion of the molecules makes the effective volume occupied by each
molecule approximately spherical, allowing a dense cubic packing
structure with many available slip planes. The lattice spacing will
also be larger in a plastic crystal compared to a crystalline solid due
to the rotation of the molecules, resulting in weaker interactions be-
tween each lattice point. This in combination with the many possible
slip systems results in plastic deformations, which is the reason why
these materials are called plastic crystals.

2.3.1 TMAFeCl4 and TMAFeBr4

There are many different types of plastic crystals, e.g. quinuclidinium
perrhenate (HQReO4), which is a ferroelectric plastic crystal suitable
for energy harvesting applications [10, 14], and succinonitrile, which
is a promising candidate to improve the performance of Li-ion batter-
ies [19].

This project involved the investigation of two different plastic crys-
tals: tetramethylammonium irontetrachloride ([(CH3)4N][FeCl4]) and
tetramethylammonium irontetrabromide ([(CH3)4N][FeBr4]). They have
the organic globular tetramethylammonium [tetramethylammonium
(TMA)]+ cation in common, which consists of one nitrogen atom sur-
rounded by four methyl groups as illustrated in the schematic below.
The inorganic anions [FeCl4]− and [FeBr4]− have the same tetrago-
nal structure, with one iron atom surrounded by four chlorine or
bromine atoms. The halogen element differs in order to examine of
dissimilarities between chlorine and bromine.

Previous experiments have shown that the rotational disorder in
these plastic crystals mainly is due to the rotational freedom of the
TMA molecules, and the positions of the inorganic anions are rela-
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tively well defined. However, both the organic cations and the inor-
ganic anions play an important role when it comes to determining
the properties of the compounds, and previous work have shown
that the choice of halogen element (Cl or Br) affects both the lattice
parameters and the electronic properties of these crystals [2].


 N
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H3C CH3
CH3
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 Fe

Cl

Cl Cl
Cl
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 N

CH3

H3C CH3
CH3




+ 
 Fe

Br

Br Br
Br
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TMA[FeCl4] TMA[FeBr4]

Upon heating or cooling, there have been reported four different
solid-solid phase transitions for these plastic crystals, giving a total
of five different crystal structures as illustrated in figure 2.4. The dif-
ferent structures are labeled from I to V, where phase I is stable at the
highest temperature and phase V is stable at the lowest temperature.
Phase I (Pm3m) is cubic and paraelectric, and stable at temperatures
above 400K. By lowering the temperature, a transition to phase II
(Cmcm) will take place. Phase II is stable at around 360K, and is
orthorhombic and paraelectric. By further lowering the temperature,
phase III (Amm2) and IV (Pma2) will appear at 330K and 300K, re-
spectively. Both III and IV are ferroelectric structures. Finally, by low-
ering the temperature to about 250K, a transition to phase V (Pbcm)
will find place. Phase V is orthorhombic and paraelectric. These crys-
tal data are retrieved from a study of the plastic crystal TMA[FeCl4]
by Harada et al in 2018 [20], and are summarised in table 2.2.

Temperature

Pbcm Pma2 Amm2 Cmcm Pm!"m

Figure 2.4: Visual presentation of the five space groups of the TMA[FeCl4]
crystal. From left to right, the crystals are organised from the
lowest temperature phase to the highest temperature phase.

Plastic crystals are difficult to model due to the rotational freedom
of the molecules. The plastic mesophase is highly disordered as this
is the final intermediate state before the crystal melts to the liquid
phase, and although this mesophase have been assigned the cubic
Pm3m space group, it is important to keep in mind that there is a
lot of movement in the crystal structure at this point. Defining lattice
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Table 2.2: Overview of the five different space groups of the TMA[FeCl4] crys-
tal. Crystal data retrieved from [20].

phase temperature [k] crystal system space group

I 400 cubic Pm3m

II 360 orthorhombic Cmcm

III 330 orthorhombic Amm2

IV 300 orthorhombic Pma2

V 250 orthorhombic Pbcm

parameters and other crystal properties for this plastic mesophase is
therefore not straightforward, as most of the symmetry is broken at
this point due to the rotational disorder.





3
D E N S I T Y F U N C T I O N A L T H E O RY

Understanding the mechanisms underlying the molecular rotations
in plastic crystals is challenging through experimental studies due to
the vast number of potential crystal configurations resulting from the
rotational freedom of the molecules. Consequently, simulation-based
methods, such as density functional theory (DFT), are commonly em-
ployed as an approach to investigate these materials.

Density functional theory (DFT) is a powerful modelling method
utilizing quantum mechanical laws and principles. The calculations
are performed at the absolute zero temperature 0K limit, with the
objective of determining the ground state electron density of many-
body systems. The ground state electron density can then be used to
calculate other material properties.

The purpose of this chapter is to give a brief introduction to DFT.
The equations and theoretical background in sections 3.1 - 3.6 are pri-
marly based on [21]. This chapter also includes a brief introduction to
the Vienna ab initio Simulation Package (VASP)1 package, a powerful
tool extensively used for DFT simulations.

3.1 quantum mechanical background

The quantum mechanical state of a system can be described by the
wave function ψ, which can be found by solving the Schrödinger
equation, Hψ = Eψ. Here, H is the Hamiltonian operator and E is
the set of energies (eigenvalues) that corresponds to the solutions (ψ,
eigenfunctions) of the equation. Although the Schrödinger equation
can be solved analytically for a few simple systems, the equation be-
comes more complex for many-body systems like the plastic crystals
studied in this project. In the case of crystalline solids, the interac-
tions between nuclei and electrons, between each individual electron
and all other electrons, as well as the interactions between each in-
dividual nucleus and all other nuclei must be considered. Solving
the Schrödinger equation exactly is therefore almost impossible in
most cases, and various simplifications have been introduced in or-
der to approximate the wave function ψ. One of these is the Born-
Oppenheimer approximation, which involves a separation of the nu-
clei and electrons into different mathematical problems. Since the
nucleus is much heavier than the electrons, the nucleus appear fixed
from the electrons perspective, while the electrons seem to update
their position instantly from the nucleus’ perspective. The motion of

1 ab initio means that the method is based on first principles.

11
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the electrons can therefore be assumed to be independent of the mo-
tion of the nuclei. Ignoring the kinetic energy contribution from the
nuclei, the Schrödinger equation reduces to


−

 h2

2m

N∑
i=1

∇2
i +

N∑
i=1

V(ri) +
N∑
i=1

∑
j<i

U(rirj)


ψ = Eψ, (3.1)

where m is the electron mass and ψ is the total electron wave func-
tion. From left to right, the three terms in the brackets represents the
kinetic energy of each electron, the Coulomb interactions between the
electrons and the nuclei and the Coulomb interactions between pairs
of electrons.

The electron wave function ψ is a function of the three spatial coor-
dinates for each of the N electrons in the system, ψ = ψ(r1, . . . , rN).
This expression can be approximated to a product of the N individ-
ual wave functions, ψ = ψ(r1)ψ(r2) . . . ψ(rN), known as the Hartree
product. This equation has 3N dimensions, which means that even
for simple systems like the CO2 molecule, the wave equation will
have 66 dimensions (3 dimensions for each of the 22 electrons) [21].
Solving the Schrödinger equation explicitly for larger systems would
therefore be an expensive procedure.

3.2 the hohenberg-kohn theorems

Density functional theory (DFT) is a solution to this many-body-problem,
and rests on two fundamental theorems proved by Hohenberg and
Kohn, in addition to a set of equations derived by Kohn and Sham.
The first Hohenberg-Kohn theorem states that

The ground-state energy from Schrödinger’s equation is a unique func-
tional of the electron density. ([21])

The ground state energy can therefore be expressed as E = E[n(r)],
where the electron density n(r) is related to the individual electron
wave functions through

n(r) = 2
∑
i

ψ∗
i (r)ψi(r). (3.2)

The factor of 2 is to count for spin, since each individual wave func-
tion can be occupied by two electrons if they have opposite spins
according to the Pauli exclusion principle. This theorem implies that
by determining the ground state electron density, one can find the
ground state energy and therefore solve the Scrödinger equation, sim-
plifying the problem from 3N dimensions to only 3 spatial dimen-
sions.

The second Hohenberg-Kohn theorem states that
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The electron density that minimizes the energy of the overall func-
tional is the true electron density corresponding to the full solution of
the Schrödinger equation. ([21])

In other words, if the true functional was known, one could have de-
termined the ground state electron density by varying n(r) and found
the one that minimised E[n(r)]. Unfortunately, the energy functional
is unknown and needs to be approximated.

3.3 the kohn-sham equations

From equation 3.2, it is clear that the total electron density is defined
by the individual electron wave functions {ψi}. The energy functional
can therefore be written in terms of these,

E[{ψi}] = Eknown[{ψi}] + EXC[{ψi}], (3.3)

where the energy functional have been split into known and un-
known terms. Eknown[{ψi}] consists of a kinetic energy term, an electron-
nuclei attraction term and an electron-electron repulsion term. The
unknown part EXC[{ψi}] is called the exchange-correlation functional,
and includes all quantum mechanical effects not included in the known
terms.

Kohn and Sham showed that the task of determining the electron
density could be split into a set of single electron Schrödinger equa-
tions, where each equation only involved a single electron. These are
called the Kohn-Sham equations, and have the form

[
−

 h2

2m
∇2 + V(r) + VH(r) + VXC(r)

]
ψi(r) = ϵiψi(r). (3.4)

From left to right, the first term in the brackets represents the kinetic
energy of the electron and the second term represents the attractive
interaction between the electron and the collection of atomic nuclei.
The third term (VH(r)) is called the Hartree potential and represents
the repulsive interaction between the electron and the overall electron
density, and the fourth term (VXC(r)) is the exchange-correlation func-
tional. Since each electron in the system also contributes to the overall
electron density, the Hartree potential involves an unphysical interac-
tion between each electron in the system and itself. This is called the
self-interaction error (SIE), and the correction for this is included in
the exchange-correlation functional. The Hartree potential is defined
by

VH(r) = e2
∫
n(r ′)

| r − r ′ |
d3r ′. (3.5)
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The exchange correlation functional can be described by a functional
derivative of the exchange-correlation energy EXC(r),

VXC(r) =
δEXC(r)
δn(r)

, (3.6)

where δ have been used instead of d to emphasize that this is a func-
tional derivative.

3.4 the ionic and electronic loop

From equation 3.4, it is clear that in order to solve the Kohn-Sham
equations, the Hartree potential must be known. However, in order to
calculate the Hartree potential, one must first determine the electron
density (equation 3.5), and to calculate the electron density one must
know all the individual electron wave functions (equation 3.2). These,
in turn, can be found by solving the Kohn-Sham equations. To break
this circle of dependencies, the problem is normally treated in an
iterative way as shown below.

1. Guess an initial electron density n(r).

2. Solve the Kohn-Sham equations by using the trial electron den-
sity to find the individual electron wave functions, ψi.

3. Use equation 3.2 to calculate a new electron density, nnew(r).

4. Compare nnew(r) with the initial electron density. If they are
equal2, this is the ground state electron density. Otherwise, up-
date the trial electron density and continue from step 2.

This is called the electronic loop. When the loop has converged, the
final electron density is used to calculate the forces on all the atomic
nuclei, and the nuclei are then moved according to the calculated
forces. With the new ionic configuration, the electronic structure is
then relaxed again, followed by a new adjustment of the ionic posi-
tions. This process continues until both the inner electronic loop and
the outer ionic loop has converged.

3.5 the exchange-correlation functional

Although the calculation scheme presented above may appear rela-
tively simple, a critical complication factor is that the true exchange-
correlation functional is not known. To solve the Kohn-Sham equa-
tions, VXC(r) therefore needs to be approximated.

2 A convergence criterion is used to determine how close the two electron densities
needs to be before they are considered to be the same.
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One of the simplest approximations is the local density approxima-
tion (LDA), that utilizes the fact that the exchange-correlation func-
tional of a uniform electron gas is known. In this case, the elec-
tron density n(r) is constant, and it is assumed that for every posi-
tion r the exchange-correlation potential equals the known exchange-
correlation potential for the uniform electron gas at the local electron
density n(r) observed at that position,

VXC(r) = V
electron gas

XC (r)[n(r)]. (3.7)

Another common approximation to the exchange-correlation func-
tional is the generalized gradient approximation (GGA), using both
the local electron density and the local gradient in the electron density
to calculate VXC(r). The local gradient can be included in the calcula-
tion in several different ways, resulting in a large number of different
GGA functionals. Two of the most common ones are the Perdew-
Burke-Ernzerhof (PBE) functional and the Perdew-Burke-Ernzerhof
revised for solids (PBEsol) functional. In this project, the PBEsol func-
tional was used in all the DFT calculations.

3.5.1 The Hubbard ’U’ Parameter

As mentioned above, the Hartree potential involves a self-interaction
error (SIE) between each electron in the system and itself. The Hub-
bard ’U’ parameter is a correction for this error, corresponding to the
difference between the ionisation energy (I) and the electron affinity
(A) of an atom, U = I − A [13]. To get a better understanding of
this, suppose we have two isolated atoms in the ground state with
only a single valence electron each. The ionisation energy refers to
the amount of energy required to remove the valence electron from
one of the atoms, while the electron affinity is the energy gained by
giving the electron to the other atom. The Hubbard ’U’ factor can
therefore be interpreted as the extra energy due to electron-electron
repulsion between the two electrons now being on the same atomic
core.

The Hubbard ’U’ correction describes strongly correlated electrons
in the d and f orbitals, and results in a better localisation of these elec-
tronic states. Without the U parameter, the LDA and GGA functionals
tends to delocalise the d and f electrons resulting in an underestima-
tion of the electronic band gap. As a consequence, DFT sometimes
predicts metallic behaviour for semiconducting materials. To get a
better description of the electronic and magnetic properties of mate-
rials it is therefore important to include the Hubbard ’U’ factor.
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3.6 computational approaches to dft

To reduce the computational load of a DFT calculation, there are sev-
eral simplifications to make the task of solving the Schrödinger equa-
tion less exhausting.

3.6.1 Energy cutoff

In a periodic potential, the single electron solutions (eigenfunctions)
of equation 3.4 may be expressed as a product of a periodic function
and a plane wave,

ϕk(r) = exp(ik · r)uk(r), (3.8)

where uk(r) has the same periodicity as the supercell. This is known
as Bloch’s theorem. The periodic function uk(r) can further be ex-
panded as a Taylor series,

uk(r) =
∑

G

cG exp [iG · r] , (3.9)

which is a sum over reciprocal lattice vectors G = m1b1 +m2b2 +

m3b3 where mi are integers. From the definition of reciprocal lattice
vectors, this means that for any real lattice vector ai, bj · ai = 2πδij
and G · ai = 2πmi [21]. Combining equation 3.8 and 3.9 therefore
yields

ϕk(r) =
∑

G

ck+G exp [i(k + G)r] . (3.10)

This means that in order to solve the Schrödinger equation for even a
single point in k-space, a summation over infinitely many G-vectors
is required. This is not feasible in a numerical perspective, so in order
to reduce the number of summations, the energy of the plane wave
with wavevector k ′ = k + G is considered

E =
 h2

2m
| k + G |2 (3.11)

Because the system tends to minimise its energy, it is reasonable to as-
sume that the low energy solutions are more physical significant than
the high energy solutions. Therefore, the infinite sum is truncated to
only include reciprocal lattice vectors up to a certain Gcut,

ϕk(r) =
∑

|G+k|<Gcut

ck+G exp [i(k + G)r] , (3.12)
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which gives an energy cutoff of

Ecut =
 h2

2m
Gcut

2. (3.13)

In this project, the cutoff energy was determined by investigating the
convergence of the total energy with respect to different values of
Ecut.

3.6.2 K-point density

A consequence of Bloch’s theorem is that all unique reciprocal lattice
vectors k can be found within the 1st Brillouin zone (BZ). Since any
vector outside this zone can be translated back into the 1st BZ by
applying another appropriate reciprocal lattice vector, going outside
the 1st BZ doesn’t provide any new physical information about the
system. This reduces the problem to only solving the Schrödinger
equation within the 1st BZ. However, there are infinitely many k-
vectors within this zone, and the 1st BZ must therefore be discretised
into a k-point grid in order to solve the wave equation numerically.
The more k-points included, the higher accuracy of the calculation,
but more k-points also increases the computational demand. To find
the optimal k-point density, the convergence of the total energy with
respect to the k-point density can be investigated.

3.6.3 Pseudopotentials

Since shorter lattice vectors in real space corresponds to larger lattice
vectors in resiprocal space, a large energy cutoff must be used to in-
clude the plane waves oscillating on a short scale in real space. This
is the case for the tightly bound core electrons, however the core elec-
trons are usually not considered important from a physical point of
view. The physical properties of the material are more dependent of
the valence electrons. Therefore, pseudopotentials can be used to re-
place the electron density of the core electrons with a fixed, smoothed
density chosen to match the real properties of the atomic core. With
this frozen core approximation only the electrons in the outer shells
are free to move and needs to be calculated, which drastically reduces
the computational load. Pseudopotentials with low cutoff energies
are normally referred to as soft, while pseudopotentials requiring
high cutoff energies are hard. Typically, DFT codes provide a library
of pseudopotentials for each element in the periodic table.

3.7 the vienna ab initio simulation package

The Vienna ab initio Simulation Package (VASP) [22–24] is a power-
ful computer program used for DFT calculations. Descriptions of the
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main input and output files used in a VASP calculation are presented
below.

3.7.1 Input files

The four most important input files, required in any VASP calculation,
are the INCAR file, the KPOINTS file, the POSCAR file and the POTCAR file.

The INCAR file is the primary input file, and contains a list of various
parameters controlling the calculation. These settings are given on the
format TAG = value, and specify e.g. which algorithm to use, conver-
gence criteria, temperature, the number of ionic steps etc. Some of
the most important tags used in this project are presented in listing
3.1.

Listing 3.1: A short description of the most important INCAR parameters.

ENMAX % Plane-wave energy cutoff

EDIFF % Convergence criterion, electronic loop

EDIFFG % Convergence criterion, ionic loop

NSW % Maximum number of ionic steps

ISIF % Stress/relaxation

NBLOCK % Update XDATCAR every n steps

POTIM % Timestep in fs

MDALGO % MD algorithm; 2=Nose-Hoover; 3=Langevin

LANGEVIN_GAMMA % Friction

LANGEVIN_GAMMA_L % Lattice friction

PMASS % Lattice mass

TEBEG % Start temperature

TEEND % End temperature

ML_ISTART % Operation mode of MLFF method

The KPOINTS file defines the k-point grid used to map the 1st Bril-
louin zone. For cubic systems, the k-points are typically evenly dis-
tributed in the x, y, and z directions, and if M k-points are used in
each direction, it is referred to as an M×M×M k-grid.

The POSCAR file contains information about the lattice geometry and
all the ionic positions. This file can also be used to give the starting
velocities of the atoms.

The POTCAR file contains all the pseudopotentials for the different
atomic species used in the calculation.

3.7.2 Output files

Depending on the type of calculation, there are many possible output
files from a VASP calculation. Hereunder is given a brief explanation
of some of the most important ones for this project.
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The OUTCAR file is the main output file, and contains information
about e.g. the electronic steps, stress tensors, forces on the atoms as
well as a summary of the chosen INCAR parameters.

The CONTCAR file contains the final ionic positions, written on the
same format as the POSCAR file. Hence, the CONTCAR can be used to
continue a calculation by copying it over to the POSCAR.

The XDATCAR file contains information about each n’th ionic config-
uration, where n is the number specified by the NBLOCK tag in the
INCAR.

The OSZICAR file gives a summary of the results from the calcula-
tion, e.g. the free energies, temperatures and convergence of the total
energy.





4
M O L E C U L A R D Y N A M I C S

Molecular dynamics is a computational technique used to study the
behaviour of atoms and molecules over time. The transitions from
one microstate1 to another and the particular trajectories of each atom
are inconsequential, but the overall statistical distribution can be used
to calculate the macroscopic properties of the material. The aim of
this chapter is to give a brief introduction to classical molecular dy-
namics, as well as a introduction to ab initio molecular dynamics and
the difference between these methods. The theory and equations pre-
sented in section 4.1 are mainly based on [25].

4.1 classical molecular dynamics

In classical molecular dynamics (MD), each atom is approximated as
a hard sphere obeying the laws of classical mechanics, and the elec-
tronic structure is not taken into account. This means that the in-
teratomic potentials are generated from empirical observations and
experimental data, since the presence of electrons (being the origin of
interatomic potential) is neglected. A classical MD simulation gener-
ally proceeds as:

1. Input parameters specifying conditions like temperature, num-
ber of particles etc. are read in.

2. Initialisation of the system.

3. Calculation of the forces acting on all particles, given the initial
positions, velocities and the interatomic potential.

4. Newton’s equations of motion are numerically integrated, and
the positions and velocities of the particles are updated.

5. Step 3 and 4 are repeated until the system have reached equi-
librium and the system properties does no longer change with
time.

Typical system properties of interest could be energies, mechanical
properties, thermal expansion coefficient, heat capacity, thermal con-
ductivity, radial distribution function etc.

1 For each macroscopic thermodynamic state, the number of microstates is the number
of possible configurations of the system on a microscopic level.

21
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4.1.1 Initialisation

Before a MD simulation is started, the system needs to be initialized.
This is done by specifying several input parameters such as the num-
ber of atoms, their initial positions and velocities, the time step ∆t,
the total simulation time and the type of ensemble. The number of
atoms N should be kept as small as possible to save computational
time, but not too small because that would result in unreliable data.
Normally, at least 100 atoms are required in order to represent a real
system properly. The initial positions are normally specified accord-
ing to known lattice positions, and the initial velocities could either
be zero or chosen from e.g. a Maxwell-Boltzmann distribution. When
it comes to the timestep ∆t, there is also a trade-off between accuracy
and computational time. Normally, smaller time steps improves the
accuracy, but increases the computational load of the simulation. A
rule of thumb is that atoms should not travel longer than 1/30 of the
nearest neighbour distance during a time step ∆t. The total simu-
lation time should be longer than the relaxation time of the system,
but not be too long as this may cause error accumulation. Finally,
the type of ensemble needs to be chosen. Normally, the microcanon-
ical ensemble (NVE) is chosen for MD simulations, where the system
is assumed to be isolated and the number of atoms (N), volume (V)
and total energy (E) are kept constant. Other alternatives are e.g. the
canonical ensemble (NVT), where N, V and temperature (T) are kept
constant, or the isobaric-isothermal ensemble (NpT), where N, pres-
sure (p) and T are kept constant.

4.1.2 Potentials

When two atoms are close to each other, there is a balance between
the attractive Van der Waals forces due to dipole-dipole interaction
and repulsive Pauli forces due to overlapping electron orbitals. The
system will always try to minimise its potential energy, so the equi-
librium distance between the two atoms corresponds to the bottom of
the potential curve, where the attractive and repulsive forces cancel
each other out.

From Newton’s equations, the sum of forces acting on each atom,
F, can be expressed as

F = ma = m
dv
dt

= m
d2r
dt2

=
dp
dt

, (4.1)

where m, a, v, r and p are the mass, acceleration, velocity, position
and momentum of the atom, respectively, and t is time. Normally,
the system in MD simulations is isolated, which means that the total
energy is constant in time (dE/dt = 0). The total force can then
be expressed as the negative gradient of the potential with respect
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to position, F = −∇U. If the potential U is known as a function
of distance, the forces on the atoms can be calculated, and the time
evolution of the system can be found by using equation 4.1.

The calculation of the forces on all particles is usually the most time
consuming step in a MD calculation. By considering all pair-wise
interactions in a system of N atoms, it results in N(N− 1)/2 ∝ N2

pair distances. However, there are several simplifications that can be
made to make the computing time scale as N instead of N2.

Molecular dynamics uses periodic boundary conditions, meaning
that the simulation cell is surrounded by an infinite number of mirror
images in the x-, y- and z-directions, as shown in figure 4.1. This
is done to avoid surface effects and to approximate the behaviour
of bulk materials. The actual simulation is only performed on the
primary box, but if an atom k in the primary box moves out of the
box, one of it’s mirror atoms will reappear at the opposite side of the
box with the same velocity.














 k

k’ k
i

rcut

Figure 4.1: Schematic illustrating periodic boundary conditions, where the
primary simulation cell is surrounded by mirror images of itself
in all three directions. When atom k moves out of the cell, one of
its mirror images reappears at the opposite side of the cell. The
sphere around atom i illustrates the cutoff radius rcut, where the
force between atom i and atom k will be calculated by consid-
ering its mirror image k ′ instead of k, as the distance between
i and k is larger than rcut, but the distance between i and k ′ is
shorter than rcut. Figure inspired by [25].

One of the techniques that can be utilized in order to reduce the
computational load of MD simulation, is to use a cutoff radius rcut

in the calculation of the interatomic potentials. At large distances,
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the potential normally tails off and becomes negligible, which means
that the interactions between atoms separated by a larger distance
than rcut can be disregarded. In order to avoid that one atom in the
primary box interacts with both another atom in the primary box and
one of its mirror images in the neighbouring boxes, the cutoff radius
must me smaller than half of the primary box size. As illustrated in
figure 4.1, atom i has a neighbouring atom k in the primary box, but
the distance between i and k is larger than the distance between i
and the mirror atom k ′ in the box to the left, so only the interaction
between i and k ′ will be considered in the force calculation. This is
called the minimum image convention, and means that each atom in
the system interacts with the closest image of its neighbouring atoms.

4.1.3 Solutions to Newton’s equations

In a system of N atoms, the total force can be expressed as

F(r1, r2, ..., rN) =
∑
i

miai =
∑
i

mi
d2ri
dt2

. (4.2)

Since the total energy is conserved (dE/dt = 0), the negative deriva-
tive of the potential energy can be used to obtain the force on atom
i,

Fi = mi
d2ri
dt2

= −
dU(ri)
dri

. (4.3)

In MD simulations, this ordinary differential equation is solved trough
a numerical finite-difference scheme, where the differentials (dr ≡
d3r and dt) are replaced by finite differences, ∆r and ∆t. By doing a
Taylor expansion, the position at a time t+∆t can then be projected
from the position at time t,

r(t+∆t) = r(t) + v(t)∆t+
1

2!
a(t)∆t2 +

d3r(t)
3!dt3

∆t3 + ... (4.4)

where the velocity, acceleration and force on each atom are assumed
to remain constant during the small discretized time step ∆t. Nor-
mally, only terms up to third order are considered in a MD simula-
tion, but the accuracy of the calculation can be improved by including
higher order terms as well.

The numerical integration of Newton’s equations normally pro-
ceeds as follows:

1. Given the interatomic potential, the forces acting on all atoms
are calculated by using equation 4.3.
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2. The corresponding accelerations are calculated by using ai =

Fi/m.

3. The positions, velocities and accelerations ri, vi and ai at a later
time t+∆t are calculated numerically by using finite difference
algorithms such as equation 4.4.

4. The calculated properties are used as new input values, and this
process continues until equilibrium is reached.

4.1.4 Equilibration

The numerical integration of Newton’s equations brings the system
from the initial, unrelaxed state towards an equilibrium state. Even-
tually, the net forces on each atom will be zero, and the system prop-
erties no longer changes with time. During this process, the potential
energy is driven to its minimum value, while the total energy (sum of
potential and kinetic energy) normally is kept constant. To reach this
minimum potential energy state, the pressure and temperature of the
system can be controlled by rescaling the velocities of the particles.
The average kinetic energy ⟨Ekin⟩ is related to the average velocity of
each atom and to temperature through the following equation,

⟨Ekin⟩ =
〈
1

2

∑
i

miv
2
i

〉
=
3

2
NkBT (4.5)

where N is the total number of atoms and kB is the Boltzmann con-
stant. This means that the average velocity ⟨v⟩ is related to tempera-
ture as

⟨v⟩ =
(
3kBT

m

)1/2

∝ T1/2 (4.6)

The temperature of the system can therefore be changed from T to T ′

by multiplying the each component of the velocity by the same factor,

⟨vnew⟩ = ⟨vold⟩
(
T ′

T

)1/2

(4.7)

Equation 4.7 can be used to change the velocities of the atoms and
therefore also the kinetic energy of the system.

Temperature control algorithms are normally referred to as ther-
mostats, and can be divided into different categories based on how
the rescaling of particle velocities is implemented. In strong coupling
methods, the velocities of the particles are scaled to give the exact
temperature, while in weak coupling methods, the velocities are only
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modified in the direction of the desired temperature. In stochastic
methods, the velocities of the particles are changed stochastically to
match the velocity distribution function of the desired temperature,
and extended system methods introduce an extra degree of freedom to
include temperature. In this project, two different temperature con-
trol algorithms were used, the Langevin thermostat (stochastic) and
the Nosé-Hoover thermostat (extended system).

4.1.5 Langevin thermostat

The Langevin thermostat is an example of a stochastic temperature
control method, and can be implemented by using both the NVT and
the NpT ensembles. It controls the temperature through a modifi-
cation of Newton’s equations, where a friction force and a random
force is added to describe the viscous effect of a solvent [26]. This
can be thought of as adding a sea of much smaller fictional particles
surrounding the atoms being simulated. The friction force simulates
the drag force on the solute atoms from the solvent, and the random
force simulates the random collisions between the solvent particles
and the solute.

The velocity vi of each particle being simulated can be expressed
as the time derivative of its position ri,

dri
dt

=
pi
mi

, (4.8)

where the momentum pi is calculated from the following differential
equation:

dpi
dt

= Fi − γipi + fi. (4.9)

Here, Fi is the force on particle i due to interactions with other par-
ticles, γi is a friction coefficient and fi is a random force generated
from a Gaussian distribution with variance

σ2i = 2miγi
kBT

∆t
. (4.10)

The time step ∆t is the same time step used in the numerical inte-
gration of the equations of motion, and T is the goal temperature,
so the adjustment of particle velocities will drive the system to this
temperature over time.

4.1.6 Nosé-Hoover thermostat

The Nosé-Hoover thermostat is an example of a extended system
method, and uses the NVT ensemble. Here, a heat bath is introduced
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as an additional degree of freedom. This heat bath is regarded an in-
tegral part of the system, and is associated with a fictional “heat bath
mass" Q controlling the coupling between the system and the heat
bath [27]. In contrast to the Langevin thermostat, the temperature is
adjusted without involving random numbers.

4.2 ab initio molecular dynamics

Classical MD is typically extremely fast compared to first-principles
methods such as DFT, but less accurate because the interatomic poten-
tials are generated empirically. Typically, the force fields are parametri-
sations based on one specific experiment or scenario, and won’t nec-
essarily give an accurate description of the system in question. Also,
no electromagnetic properties can be derived from classical MD since
the electronic structure is not taken into account, and the time scale
is limited to nanoseconds.

In ab initio molecular dynamics, the forces on each particle in the
system are calculated by using first principles methods (quantum me-
chanics) instead of classical mechanics. This means that the electronic
structure is explicitly taken into account, and the accuracy of the cal-
culation is drastically increased compared to classical MD. However,
this accuracy comes at the cost of a more computationally expensive
simulation because the Schrödinger equation needs to be solved at
each time step. ab initio MD is therefore often limited to small simula-
tion cells and short time scales.

One way to speed up ab initio MD simulations is by using force
fields, which are parametrisations of the potential energy. Also, these
force fields can be generated by using machine learning, which will
reduce the computational cost even further.

4.3 machine learning

Machine learning is a branch of computer science with focus on im-
itating the way the human brain works [28]. By using algorithms to
build a model that learns from its experiences, one can make the com-
puter do decisions and predictions it’s not explicitly programmed to.
A more formal definition of this learning process is

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E. ([29])

Here, it is important to notice that the computer only learns from
experience E if that improves its performance. In other words, the
model is trained to become more and more accurate, as each adjust-
ment only makes its performance better. Machine learning can be
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used to solve a number of tasks, e.g. regression, classification and
denoising [29].

4.3.1 Machine learned force fields

When machine learning is used to train force fields used in molecular
dynamics simulations, this is a type of supervised machine learning.
Supervised machine learning means that the model is trained on la-
beled data sets, where some input data already is tagged with the
correct output [28]. The training data can be thought of as a supervi-
sor for the model, with the labeled input data "teaching" the machine
how to predict the correct output.

In this project, the machine learned force fields (MLFF) were gen-
erated by using an on-the-fly method, which means that they were
trained during an ab initio MD simulation. This method is imple-
mented in VASP, and has proven successful and efficient in the pre-
diction of thermodynamic properties of anharmonic materials [30].

Figure 4.2 illustrates how these MLFFs are generated. First, any ex-
isting MLFFs are read in, before the ab initio MD simulation begins.
Then, for each step in the simulation, the energy, forces and stress
tensor as well as the Bayesian error estimate of forces (BEEF) are calcu-
lated. The BEEFs are estimates of the out-of-sample error, which is the
average error occurring when the force fields trained so far are used
to consider a new configuration from the same ensemble [31]. These
error estimates are expected to become smaller and smaller during
the training process, as the force fields learns how to describe the
different configurations more and more accurately.

The Bayesian error estimate of forces are then used to determine
whether a first principle DFT calculation is necessary for that step or
not. If the error estimates are large, it means that the new config-
uration differs a lot from what VASP has learned so far, and a DFT

calculation is used to describe that step. In that case, the first princi-
ple calculation is performed, and the machine learning model are up-
dated with the resulting force fields. However, if the error estimates
are small, the already existing force fields can be used to describe that
step.

In the next step, the positions and velocities of all the particles
in the system are then updated, either by using the old or the up-
dated machine learning force fields. Then the simulation proceeds
to the next step with predicting the energy, forces, stress tensor and
Bayesian error estimate of forces of the new configuration. When
the total number of steps is reached, the system properties and final
machine learned force fields can be found in the output files.
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Get energy, forces and stress tensor and 
the Bayesian error estimate of forces  

Output properties and MLFF´s

Update FF´s 

Yes 

Reached total number of steps? 

Yes 

No 

No 

Yes 

Update positions and velocities of particles  

Read in existing MLFF´s if available

Start ab initio MD simulation

DFT calculation DFT calculation? 

Figure 4.2: Flowchart describing how the machine learned force fields are
trained on-the-fly, during a ab initio molecular dynamics simula-
tion. Figure inspired by [32].
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C O M P U TAT I O N A L M E T H O D S

In this project, the supercomputer Fram provided by UNINETT Sigma2
(the National Infrastructure for High Performance Computing and
Data Storage in Norway) was used for all the DFT calculations. All DFT

calculations were performed using VASP with the PBEsol functional
and the Hubbard ’U’ correction, with a ’U’ value of 5.5 and an energy
cutoff of 500 eV. Details about the convergence testing can be found
in Appendix section C. The PBEsol + U functional was chosen due to
successful results using this functional for prediction of the structural
and electronic properties of the TMA[FeCl4] and TMA[FeBr4] crystals
in previous work [2].

To predict the phase transitions and rotational dynamics of the two
plastic crystals TMA[FeCl4] and TMA[FeBr4], ab initio molecular dy-
namics simulations with machine learned force fields (MLFFs) were
performed. For the simulations of phase transitions, a Langevin ther-
mostat (NpT ensemble) was used, while the Nosé-Hoover thermostat
(NVT ensemble) was used for the analysis of the rotational dynamics
of the crystals. With the Langevin thermostat the volume is variable,
leading to displacements of atoms. When analysing the rotational
dynamics the volume needs to be constant, which is why the Nosé-
Hoover thermostat was chosen for this purpose. In both cases, the
MLFFs were first generated and trained on-the-fly on a 2×2×2 super-
cell by using a Γ -centered k-point grid. The final potentials were then
used in the phase transition- and rotational dynamics simulations.

5.1 generation of mlff

The machine learned force fields (MLFFs) were generated on-the-fly,
meaning that they were trained during an ab initio MD run. For each
plastic crystal, the force fields were generated using the Langevin
thermostat from 200K to 400K over a period of 40ps. The generated
machine learning force fields were then used for the production runs
and for the rotational analysis using the Nose-Hoover thermostat at
constant volume.

In previous work, it has been shown that different starting config-
urations of the two plastic crystals give similar results when it comes
to predicting the structural and electronic properties of these com-
pounds. This means that although the crystals theoretically have a
large number of possible configurations due to the rotational freedom
of the TMA molecules, the different configurations are equivalent as
a basis for predicting material properties trough DFT simulations [2].

31
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In this thesis, the same starting configuration was used for all force
field calculations.

Using the Langevin thermostat, the force fields were generated by
first equilibrating the structures at 200K, then heating them up from
200K - 400K, followed by a new equilibration at 400K. In this way, all
possible configurations between 200K and 400K would theoretically
be captured by the final force fields. The simulations were run for
20,000 steps with a time step of 2 fs per step, giving a total simulation
time of 40ps.

In calculations using the Langevin thermostat, an appropriate value
of the friction coefficient γi (see equations 4.9 and 4.10) also needs to
be determined. This friction coefficient represents the atomic degrees-
of-freedom (in units of ps−1) and is specified through the LANGEVIN_

GAMMA tag in the INCAR files. In addition, a friction coefficient LANGEVIN
_GAMMA_L (in ps−1) and a fictitious mass PMASS (in amu) for the lattice
degrees-of-freedom needs to be specified when a NpT ensemble is
used. In this project, the atomic friction coefficient LANGEVIN_GAMMA

was only set to non-zero for the hydrogen atoms, and four different
values were investigated (0, 1, 2 and 5). For each of these, four dif-
ferent values of the lattice friction coefficient LANGEVIN_GAMMA_L were
tested (0, 1, 5 and 10). Based on the performance of the different pa-
rameter combinations, the total run-time for the simulations and in-
spections of the final structures in VESTA [33], both LANGEVIN_GAMMA

and LANGEVIN_GAMMA_L were set to 5.
A complete overview of the INCAR parameters used for the genera-

tion of MLFFs can be found in Appendix section A (see listing A.1).

5.2 predicting phase transitions

With the final machine learned force fields, the two plastic crystals
were first slowly heated from 200K to 400K, then cooled down from
400K to 100K. The reason for this asymmetric temperature treatment
was to capture all phase transitions listed in table 2.2 during the cool-
ing process. The starting configuration for both plastic crystals was
the ferroelectric Amm2 phase, which corresponds to a temperature of
about 330K. During the heating process from 200K to 400K, a phase
transition to the plastic Pm3m mesophase via the Cmcm phase was
expected (see table 2.2). As mentioned in section 2.3.1, it is important
to remember that whilst this mesophase is assigned the Pm3m space
group, most of the symmetry is broken at this point due to the ex-
treme rotational disorder. During the cooling process from 400K to
100K, the goal was to observe phase transitions both from the Pm3m
phase back to the Amm2 phase (Pm3m → Cmcm → Amm2), but
also the further transitions down to the Pbcm phase (Amm2→ Pma2
→ Pbcm). As shown in table 2.2, the Pbcm phase corresponds to a
temperature of about 250K.
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The phase transitions, both during the heating and cooling sim-
ulations, were observed by tracking the lattice parameters (a, b, c),
the unit cell volume and the total energy of the TMA[FeCl4] and
TMA[FeBr4] crystals. These quantities can be retrieved from the XDATCAR
and OSZICAR output files.

The slow heating and cooling simulations were run for 400,000
steps with a time step of 2 fs per step, giving a total simulation time
of 800ps each (1600ps for both heating and cooling). The INCAR pa-
rameters for these calculations are presented in listing A.2.

5.2.1 Generation of Simulated XRD data

From the XDATCARs, the X-ray diffraction (XRD) spectra for the plas-
tic crystals were also generated, by using the Pymatgen package in
python [34]. By computing the XRD pattern for each structure at each
time step, one can see how the diffraction pattern changes upon heat-
ing and cooling, indicating where the phase transitions take place.
The XRDCalculator from the pymatgen.analysis.diffraction.xrd

module was used with a wavelength of 0.730 74Å, in order to match
the wavelength used in previous experiments conducted by Walker et
al [35]. Walker et al conducted the XRD experiments at the Swiss Nor-
wegian Beam Lines (SNBL), beam line BM01, European Synchrotron
Radiation Facility (ESRF). A Pilatus 2M detector was used with a
wavelength of 0.730 74Å [35]. Although Walker et al investigated the
plastic crystal TMA[FeBrCl3], the same wavelength was used in the
analysis of TMA[FeCl4] and TMA[FeBr4] in this project for comparison
reasons, as these crystals have the same structure and the only dif-
ference between them is the choice of halogens used in the inorganic
anions. The simulated XRD patterns were averaged every 100’th step
to smoothen the spectrum and to give the effect of an averaged struc-
ture.

5.3 rotational dynamics

The rotational dynamics of the two plastic crystals [TMA][FeCl4] and
[TMA][FeBr4] was studied at three different temperatures: 200K, 300K
and 400K. In these calculations a Nosé-Hoover thermostat was used,
and the calculations were run for 50,000 steps over a time period of
100ps.

From these calculations, an autocorrelation function was used to
analyse the rotations of the organic TMA cations in each crystal. The
autocorrelation function provides information about how much a
structure correlates with itself at a previous time step. Analysing
the correlation over time gives a good indication of the rotational
freedom of the molecules, as more rotational freedom is associated



34 computational methods

with less correlation between structures at different time steps in the
simulation.

As mentioned in section 2.3.1, the rotational disorder in the plastic
crystals TMA[FeCl4] and TMA[FeBr4] is mainly due to the rotations
of the globular TMA molecules, as the positions of the inorganic an-
ions [FeCl4]− and [FeBr4]− are relatively well defined. Therefore,
the rotational dynamics of the two crystals were only investigated
by analysing the rotations of the TMA molecules.

As figure 5.1 shows, the rotational autocorrelation C(t) is calcu-
lated by defining an "up" vector Pi for the initial configuration, and
then determining the angle θ of each subsequent structure N relative
to that initial configuration. The angle θ is found by taking the dot
product of the "up" vector at the initial time step t0, Pi(t0), and the ro-
tated "up" vector at a later time t, Pi(t). The autocorrelation function
C(t) can then be defined by

C(t) = ⟨Pi(t0) · Pi(t)⟩t0,i (5.1)

This method have previously been used with success by e.g. Yoneya
et al [10].
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Figure 5.1: Rotation of tetramethylammonium (TMA) molecule, where one
methyl group have been defined as "up" and the orientations of
the following structures relative to the initial one can be deter-
mined by tracking this "up" methyl group and calculating the
angle θ between them.

When calculating the correlation between structures in a dataset
that are k time periods apart, the autocorrelation is said to be a lag k
autocorrelation. Structures that are close in time will have a higher
correlation than structures far apart in the dataset, and determining
the optimal lag value is therefore important. In this project, four
different lag values were tested: 50, 100, 150 and 200. A lag value
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of 100 was chosen as this was the largest one with the whole curve
outside the cone representing the 95% confidence level. The results
from this testing can be found in Appendix section B.





6
R E S U LT S

This chapter presents the results from the DFT calculations, including
Bayesian error estimate of forces (BEEF) plots from the generation of
MLFFs, lattice parameters for the plastic crystals during the heating
and cooling simulations, XRD spectra and analysis of the rotational
dynamics of TMA[FeCl4] and TMA[FeBr4].

6.1 generation of machine learned force fields

Figure 6.1 shows the Bayesian error estimate of forces (BEEF) as a
function of time for the generation of the machine learned force fields
(MLFF) from 200K to 400K. This was the middle step of the force
field generation, after the 200K equilibration and before the 400K
equilibration. The BEEF plots for the 200K to 200K and the 400K to
400K calculations can be found in Appendix section D.

0.00

0.05

0.10

0.15

0.20 FeCl4 Langevin

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20 FeBr4 Langevin

Time Step (ps)Ba
ye

si
an

er
ro

r
es

ti
m

at
e

of
fo

rc
es

(m
ax

)(
eV

Å
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Figure 6.1: Bayesian error estimate of forces for the generation of MLFFs from
200K to 400K, for a) TMA[FeCl4] and b) TMA[FeBr4].

As described in section 4.3.1, the Bayesian error estimate of forces
are the uncertainties used to determine whether or not to do a first
principle calculation during the MD simulation used to train the ma-
chine learned force fields (MLFF). Any big spikes in the BEEF plot
indicates that the force fields meets a configuration that differs a lot
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from what VASP has learned so far, meaning that a first principle cal-
culation is necessary to describe that step. From figure 6.1, it is clear
that the error estimates are biggest in the beginning of the simulation,
which is as expected because the training process just have started
and the force fields have only learned to describe a small number of
configurations. As the simulation continues, the error estimates be-
comes smaller and smaller, meaning that the force fields gets better
and better at describing unknown configurations. An important note
is that the Bayesian error estimate of forces are only error estimates,
not a direct indication of the quality of the MLFFs [31]. However,
the BEEF plot gives a good indication of the progress of the training
process. Ideally, the errors should be smaller than 0.1 eV, which is
the case for both TMA[FeCl4] and TMA[FeBr4] at the end of the MLFF

generation.
The ultimate validation of these force fields is how well they can

predict the crystal properties described in literature from real experi-
ments.

Figure 6.2 and 6.3 shows the total energy and temperature as a
function of time for the generation of the machine learned force fields
(MLFF)s from 200K to 400K, respectively. The temperature increases
gradually from 200K to 400K as expected, and there is a strong cor-
relation between the total energy and the temperature. This can be
seen from the fact that the energy and temperature curves for each
crystal are almost identical in shape.
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Figure 6.2: Total energy for the generation of MLFFs from 200K to 400K for
a) TMA[FeCl4] and b) TMA[FeBr4].
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Figure 6.3: Temperature change during the generation of MLFFs from 200K
to 400K for a) TMA[FeCl4] and b) TMA[FeBr4].

6.2 predicting phase transitions

The phase transitions of the two plastic crystals were studied by track-
ing the lattice parameters, unit cell volume and total energy from the
slow heating (200K to 400K) and cooling (400K to 100K) simulations,
over a time frame of 1600ps in total. The XRD spectra for the two crys-
tals were also generated, and plotted as a function of time step.

6.2.1 Lattice parameters and total energy

Figure 6.4 shows the unit cell volume, lattice parameters and tem-
perature as a function of step number for the heating process of the
two plastic crystals. The column to the left are the results for the
TMA[FeCl4] crystal, while the column to the right gives the results for
TMA[FeBr4]. The two vertical black lines in each figure corresponds
to temperatures where phase transitions are expected, based on ex-
perimental results. In 2018, Harada et al reported the crystal data and
temperatures for five different phases of the TMA[FeCl4] compound
(see table 2.2), including the transition from the ferroelectric Amm2
phase to the Cmcm phase at 360K and the transition from the Cmcm
phase to the cubic Pb3m phase at 400K [20]. In figure 6.4, the vertical
black lines corresponds to the points in time where the temperature
exceeds 360K and 400K. The dark blue and dark red lines in each
plot are the smoothened curves over every 1000 steps.

Figure 6.5 shows the unit cell volume, lattice parameters and tem-
perature as a function of time step for the slow cooling of the two
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Figure 6.4: Change in lattice parameters during the heating process from
200K to 400K. The figures to the left correspond to TMA[FeCl4]
and the figures to the right correspond to TMA[FeBr4]. Figure a)
and b) shows the volume change for TMA[FeCl4] and TMA[FeBr],
respectively, and figure c) - h) shows the change in the individ-
ual lattice parameters a, b and c. Figure i) and j) shows the
temperature change during the simulation for TMA[FeCl4] and
TMA[FeBr], respectively. The dark blue and dark red lines are
the averaged values of the various properties, and the two verti-
cal black lines in each plot corresponds to temperatures of 360K
and 400K, which is where the phase transitions are expected to
occur according to literature [20].

plastic crystals. The column to the left gives the TMA[FeCl4] results
and the column to the right gives the TMA[FeBr4] results. As in figure
6.4, the black vertical lines corresponds to temperatures where phase
transitions are expected to happen in the TMA[FeCl4] crystal (see ta-
ble 2.2). From left to right, these four temperatures are 360K, 330K,
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Figure 6.5: Change in lattice parameters during the cooling process from
400K to 100K. The figures to the left correspond to TMA[FeCl4]
and the figures to the right correspond to TMA[FeBr4]. Figure a)
and b) shows the volume change for TMA[FeCl4] and TMA[FeBr],
respectively, and figure c) - h) shows the change in the individual
lattice parameters a, b and c. Figure i) and j) shows the tempera-
ture change during the simulation for TMA[FeCl4] and TMA[FeBr],
respectively. The dark blue and dark red lines are the averaged
values of the various properties, and the four vertical black lines
in each plot corresponds to temperatures of 360K, 330K, 300K
and 250K, which is where the phase transitions are expected to
occur according to literature [20].

300K and 250K corresponding to the transitions to the phases Cmcm,
Amm2, Pma2 and Pbcm, respectively.

For TMA[FeCl4], figure 6.4 a) and c) clearly shows that there is an
increase in the unit cell volume, accompanied by a decrease in the
lattice parameter a at 360K. Figure 6.4 e) and g) shows that both
the lattice parameters b and c increases at this temperature, but the
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change in the slope is most prominent for b. At 400K, there is a new
volume increase for the TMA[FeCl4] crystal. Here, lattice parameter
a starts to increase, together with a small increase of b and c. The
temperature curve in figure 6.4 i) increases gradually from 200K to
400K, as expected.

When it comes to the cooling process for TMA[FeCl4], figure 6.5
a) clearly shows that there is a volume change in the beginning of
the simulation, between 360K and 300K. This volume decrease is
accompanied by a decrease in the lattice parameters a, b and c. For
the rest of the simulation, the lattice parameters continues to decrease,
but with a slightly flatter slope. The temperature decreases gradually
from 400K to 100K, with no big spikes or deviations.

For the TMA[FeBr4] crystal, figure 6.4 shows that there is a change
in the unit cell volume and lattice parameters early in the heating
process, in contrast to the TMA[FeCl4] crystal. From figure 6.4 b), d),
f) and h), it is clear that the unit cell volume and lattice parameters b
and c decreases after only a couple of picoseconds, while the lattice
parameter a starts to increase. This is followed by a slight increase
in both the volume, a, b and c throughout the rest of the simulation,
with no significant changes around the 360K line. After the second
vertical line at 400K, there is a small increase in the slope of the lat-
tice parameter a, while the volume, b and c starts to decrease. The
temperature graph in figure 6.4 j) is similar to the temperature devel-
opment for the TMA[FeCl4] crystal, with only a minor bump around
the 300K line.

For the cooling process of the TMA[FeBr4] crystal, figure 6.5 b)
shows that the unit cell volume decreases gradually throughout the
simulation, with few fluctuations or pronounced variations. The lat-
tice parameters a, b, and c also have few significant changes, but
there are some interesting areas around the vertical black lines. Be-
tween the 400K and 360K line, lattice parameter a seems to increase
slightly, followed by a decreasing trend after 360K (figure 6.5 d)).
The lattice parameters b and c also have a small change in the slope
around the 360K, where the graph flattens out a bit before it stars
decreasing again between 300K and 250K. The temperature (figure
6.5 j)) show a small fluctuation around 300K, but besides that it de-
creases gradually from 400K to 100K as expected.

Figure 6.6 and 6.7 shows how the total energy per atom changes
during the heating and cooling process, respectively. The temper-
ature plots are also included, together with the vertical black lines
indicating where phase transitions are expected to happen. In figure
6.6, the two lines indicates where the temperature exceeds 360K and
400K (from left to right), and in figure 6.7 the four lines indicates
where the temperature drops below 360K, 330K, 300K and 250K
(from left to right).



6.2 predicting phase transitions 43

a) b)

c) d)

Figure 6.6: Temperature and energy per atom for the heating of the two
plastic crystals from 200K to 400K. The TMA[FeCl4] crystal is to
the left and the TMA[FeBr4] to the right.

For the TMA[FeCl4] crystal, figure 6.6 c) shows that the energy per
atom correlates well with the increasing temperature. However, there
are small energy fluctuations between 360K and 400K suggesting
that a phase transition occurrs in this region. For the cooling process,
figure 6.7 c) shows the same stable trend with decreasing energy, but
with small fluctuations around 360K and 330K.

a) b)

c) d)

Figure 6.7: Temperature and energy per atom for the cooling process from
400K to 100K. The TMA[FeCl4] crystal is to the left and the
TMA[FeBr4] to the right.
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For TMA[FeBr4], figure 6.6 d) shows that there is a small shift in
the energy after a few picoseconds, but besides from that the energy
per atom increases gradually with few fluctuations up to the 400K
line. However, after crossing this line, the energy per atom seems
to drastically decrease for the rest of the simulation, although the
temperature continues to increase. When it comes to the cooling of
TMA[FeBr4], figure 6.7 shows a better correlation between the energy
per atom and temperature, and the energy decreases steadily with
only minor fluctuations around 330K.

Determination of the space group symmetry in a highly mobile
finite size cell is difficult, and a reduced superstructure consisting
of only Fe atoms was therefore formed for the two plastic crystals
TMA[FeCl4] and TMA[FeBr4] in order to circumvent this. From these
structures, rough symmetry information was obtainable, presented
in figure 6.8 and 6.9. Here, the y-axes represent the lengths of the
lattice parameters a, b and c, where the largest values correspond
to the side lengths of the 2×2×2 supercell, and lower values (when
obtainable) corresponds to the lengths of the roughly constructed unit
cells by using symmetry elements. The x-axes gives the time step in
picoseconds for the combined heating and cooling processes.

Figure 6.8: Reconstructed lattice parameters for the TMA[FeCl4] crystal,
showing where symmetry elements can be used to construct the
lattice parameters for a single unit cell.

6.2.2 Simulated XRD Spectra

Figure 6.10 shows the XRD spectrum for the TMA[FeCl4] crystal and
how it changes during the heating and cooling processes. The equiv-
alent spectrum for TMA[FeBr4] is presented in figure 6.11. The y-axes
of these plots represent time in picoseconds (ps), enabling the ob-
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Figure 6.9: Reconstructed lattice parameters for the TMA[FeBr4] crystal,
showing where symmetry elements can be used to construct the
lattice parameters for a single unit cell.
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B
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D

Figure 6.10: Simulated XRD spectrum for the TMA[FeCl4] crystal. The y-axis
gives the time step in ps, showing how the XRD lines changes
during the heating and cooling processes. The plot to the right
shows the corresponding temperature change from 200K to
400K and from 400K to 100K.
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servation of the dynamic changes in the XRD lines throughout the
simulations. The color map intensity corresponds to the intensity of
the XRD peaks. The plots to the right of each figure shows the tem-
perature change throughout the heating and cooling processes, first
from 200K to 400K and then from 400K back to 100K.

For TMA[FeCl4], there are a splitting of lines in the beginning of
the heating process at about 6.2◦ 2θ and 6.4◦ 2θ, which merges into
one single line at a critical point denoted A (see figure 6.10). Point A
corresponds to a temperature of approximately 360K. Subsequently,
there is an observable bending of the XRD line in the high temperature
area, shifting towards a lower 2θ values. At point B, there is a re-
splitting of this line, accompanied by a bending back to higher 2θ
values. Point B corresponds to a temperature of about 360K, and
the splitting becomes more pronounced as the crystal cools down to
lower temperatures. During the cooling process, there also appears a
new spectrum line at point C. This line corresponds to about 8◦ 2θ,
and appears when the temperature have dropped below 250K.

A C

D

B

Figure 6.11: Simulated XRD spectrum for the TMA[FeBr4] crystal. The y-axis
gives the time step in ps, showing how the XRD lines changes
during the heating and cooling processes. The plot to the right
shows the corresponding temperature change from 200K to
400K and from 400K to 100K.
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In addition, the TMA[FeCl4] crystal have a peak around 9.0◦ 2θ (see
point D). This line doesn’t split up, but shows the same bending ten-
dency towards lower 2θ values in the high temperature area.

In the case of the TMA[FeBr4] crystal, there is a splitting of lines at
approximately 6.0◦ 2θ and 6.3◦ 2θ, similar to those observed in the
XRD plot for the TMA[FeCl4] crystal. The gap between the split lines
is slightly larger for the TMA[FeBr4] crystal than for the TMA[FeCl4]
crystal, in addition to being shifted to lower 2θ values. In the high
temperature area, there is a subtle bending of the lines as seen in
the TMA[FeCl4] crystal, but they does not merge together. On the
contrary, the spacing between the lines appears to increase slightly
during the cooling process, and at point B the two lines correspond
to about 6.0◦ 2θ and 6.4◦ 2θ. The TMA[FeBr4] crystal also have a XRD

line at about 8.8◦ 2θ (point C). This line bends slightly towards lower
2θ values in the high temperature area, before it splits up at point D.
This splitting of lines occurs almost in the end of the simulation, at a
temperature between 250K and 200K.

6.3 rotational dynamics

Figure 6.12 shows the lag 100 autocorrelation function for the two
plastic crystals at 200K, 300K and 400K. The autocorrelation function
was calculated by tracking one methyl group on each TMA molecule,
as indicated by the grey arrow in the figure. More correlation within
a crystal means that the structures at subsequent time steps are more
similar, indicating that the TMA molecules don’t rotate freely.
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Table 2.1: Degrees of freedom for the molecules in a crystalline, plastic and
liquid phase.

phase vibration rotation translation

Crystalline phase X - -

Plastic mesophase X X -

Liquid phase X X X

associated with a smaller entropy change, while non-plastic crystals
have a bigger difference between the solid and the liquid states and
therefore a higher entropy of melting.

Plastic crystals normally consist of globular molecules. The rota-
tion of the molecules makes the effective volume occupied by each
molecule approximately spherical, allowing a dense cubic packing
structure with many available slip planes. The lattice spacing will
also be larger in a plastic crystal compared to a crystalline solid due
to the rotation of the molecules, resulting in weaker interactions be-
tween each lattice point. This in combination with the many possible
slip systems results in plastic deformations, which is the reason why
these materials are called plastic crystals.

2.3.1 TMAFeCl4 and TMAFeBr4

Say something about common plastic crystals?
Two different plastic crystals were investigated in this project; tetram-

ethylammonium irontetrachloride ([(CH3)4N][FeCl4]) and tetramethy-
lammonium irontetrabromide ([(CH3)4N][FeBr4]). They have the glob-
ular tetramethyl-ammonium (TMA) cation in common, while the in-
organic tetragonal anions varies to study the difference between chlo-
rine ([FeCl4]-) and bromine ([FeBr4]-). The two plastic crystals are
illustrated below.

2
6664 N

CH3

H3C CH3
CH3

3
7775

+ 2
6664 Fe

Cl

Cl Cl
Cl

3
7775

- 2
6664 N

CH3

H3C CH3
CH3

3
7775

+ 2
6664 Fe

Br

Br Br
Br

3
7775

-

TMA[FeCl4] TMA[FeBr4]

Upon heating or cooling, these plastic crystals undergo four dif-
ferent solid-solid transitions, giving a total of five different crystal
structures as illustrated in figure 2.4. The different structures are la-
beled from I to V, where phase I is stable at the highest temperature
and phase V is stable at the lowest temperature. Phase I (Pm3m) is

Figure 6.12: Autocorrelation function for the two plastic crystals TMA[FeCl4]
and TMA[FeBr4] at three different temperatures, 200K, 300K
and 400K, with a lag value of 100. The grey arrow next to
one of the methyl groups on the TMA molecule defines the axis
for the calculation of the autocorrelation.
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For TMA[FeCl4], figure 6.12 shows that there is a higher correlation
between the structures in the 200K dataset within the time frame of
100ps than for the structures in the 300K and 400K datasets. Also,
the 300K and 400K phases appears to have almost the same degree
of rotational freedom.

From figure 6.12, it is also clear that the TMA[FeBr4] structure cor-
relates more than the TMA[FeCl4] structure, by doing a pairwise com-
parison of the 200K, 300K and 400K phases for the two crystals. In
the TMA[FeBr4] crystal, the autocorrelation is clearly highest for the
200K phase and lowest for the 400K phase.

Figure 6.13 and 6.14 shows the trajectories of the tracked methyl
groups used to calculate the rotational autocorrelation functions for
TMA[FeCl4] and TMA[FeBr4], respectively. For the TMA[FeCl4] crystal,
figure 6.13 shows that there is more movement of the methyl groups
in the 300K and 400K phases than in the 200K phase. There are
no significant differences between the 300K and 400K plot. For the
TMA[FeBr4] crystal, figure 6.14 shows a more gradually increase of
rotational freedom, where there clearly is most movement in the 400K
phase and least movement in the 200K phase.
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Figure 6.13: Trajectories of the tracked methyl groups used to calculate the
autocorrelation function for the TMA[FeCl4] crystal at 200K,
300K and 400K.
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Figure 6.14: Trajectories of the tracked methyl groups used to calculate the
autocorrelation function for the TMA[FeBr4] crystal at 200K,
300K and 400K.
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D I S C U S S I O N

In this thesis, the phase transitions and rotational dynamics of the
plastic crystals TMA[FeCl4] and TMA[FeBr4] were studied. The main
findings are discussed in the following section by first considering the
phase transitions and how these can be observed through changes in
lattice parameters and XRD spectra, followed by an analysis of the
rotational dynamics within each structure. Lastly, some suggestions
for further work are presented.

7.1 phase transitions in plastic crystals

The phase transitions in the plastic crystals TMA[FeCl4] and TMA[FeBr4]
were studied by looking at the change in lattice parameters, unit cell
volume, energy per atom and the XRD spectra upon heating and cool-
ing. The goal was to gain a deeper insight and understanding of how
these materials work on a microscopic level, and how the differences
in chemical composition affect the properties of the crystals.

7.1.1 Lattice parameters

In figures 6.4 – 6.7, the vertical black lines indicates where phase tran-
sitions were expected in two plastic crystals based on experimental
data. These reference temperatures were retrieved from a paper by
Harada et al in 2018, where the unit cell parameters a, b and c and
the unit cell volumes for the different phases of the TMA[FeCl4] crystal
also were reported [20]. These crystallographic data are summarised
in table 7.1. Although Harada et al studied the same plastic crystal
TMA[FeCl4] as investigated in this project, an important note here is
that the plastic crystals studied in this project were simulated by us-
ing a 2×2×2 supercell, while the experimental data in table 7.1 are
averaged values retrieved from bulk materials. Comparing the size
of the simulation cell used in this project with the defined literature
values in table 7.1 is therefore not straightforward. However, the data
in table 7.1 gives a good indication of the relative lengths of the lat-
tice parameters for the different space groups, and how the unit cell
volume can be expected to change upon heating and cooling.

Also, it is important to keep in mind that in real experiments, the
long-range order and disorder in plastic crystals is captured, while
DFT calculations captures the short-range behaviour of the crystals
by using relatively small simulation cells. Although this short-range
behaviour is extrapolated to imitate larger systems by the use of

49
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periodic boundary conditions (PBC), predicting the true long-range
behaviour and unordered nature of plastic crystals is a computational
demanding task. Nevertheless, this thesis aims for predicting the
phase transitions of these materials and get a better understanding of
the mechanisms behind the rotational dynamics.

Table 7.1: Overview of the lattice parameters and unit cell volume for the
five different space groups of TMAFeCl4. Retrieved from [20].

Phase v iv iii ii i

Temperature (K) 250 300 330 360 400

Space group Pbcm Pma2 Amm2 Cmcm Pm3m

a (Å) 6.44 14.27 7.22 8.96 6.81

b (Å) 13.07 6.44 9.02 9.62 6.81

c (Å) 14.00 6.45 9.36 14.16 6.81

V (Å3) 1179 593 609 1221 316

Figure 6.4 shows the change in lattice parameters and unit cell vol-
ume for the plastic crystals during the heating from 200K to 400K.
For the TMA[FeCl4] crystal, figure 6.4 shows that the unit cell volume
increased gradually during the heating process, with a steeper slope
towards the end of the simulation when the temperature reached
the 360K and 400K lines. This volume increase can be explained
by a larger spacing between each molecule in the lattice as a conse-
quence of more rotational freedom for the TMA molecules at higher
temperatures. From table 7.1, it is clear that a volume increase is
expected when going from the starting configuration Amm2 to the
Cmcm phase, however the unit cell volume is expected to decrease
upon the further transition to the plastic Pm3m mesophase. This high
temperature phase is highly disordered due to the rotational freedom
of the molecules, and almost all symmetry is broken at this point as
this is the final stage before the crystal melts to the liquid phase. A
possible explanation why a volume decrease is not seen in figure 6.4
may therefore be that it is hard to measure the unit cell parameters
accurately for such a disordered phase. Another possibility is that the
temperature in this project wasn’t high enough to facilitate the tran-
sition to the plastic mesophase, and the final structure after the slow
heating process could also be the Cmcm phase. However, figure 6.4
shows that there are two distinct volume increases around 360K and
400K, respectively, indicating that the starting configuration Amm2
undergoes two subsequent phase transitions, first to the Cmcm phase
and then to the Pm3m phase.

This agrees well with the symmetry analysis from the reconstructed
lattice parameters in figure 6.8. This figure shows that for lattice pa-
rameter a, there are two distinct lattice parameters in the beginning of
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the heating process; one at about 6.5Å and one at about 13.5Å, where
the one at 13.5Å corresponds to the supercell parameter. The a lat-
tice parameter at 6.5Å disappears once the high temperature phase is
reached, after about 700ps. This means that no symmetry elements
have been found in this phase, confirming that the TMA[FeCl4] crystal
undergoes a transition to the plastic Pm3m mesophase. Both lattice
parameters b and c show a similar disappearance of the lattice param-
eters around 7Å upon the transition to the high temperature phase,
which is probably due to the extreme rotational disorder of this phase.
This agrees well with the XRD spectrum of the TMA[FeCl4] crystal in
figure 6.10, as the XRD-lines becomes more blurred out in the high
temperature area, indicating a lot of disorder and lack of symmetry.

Figure 6.8 also shows that during the cooling process, the a lattice
parameter at about 6.5Å reappears after about 1000ps, indicating a
re-crystallisation from the high temperature mesophase to a more
ordered phase with symmetry. The b lattice parameter at about 7Å
that disappears after about 700ps reappears at 9Å after about 1000ps,
and the c lattice parameter at about 7Å that disappears after about
700ps doesn’t seem to reappear at all during the cooling process. Al-
though this is a very rough method to analyse the crystal symmetry,
these results indicate that the TMA[FeCl4] crystal recrystallises to the
Cmcm phase during the cooling process, by comparison with table
7.1. The Cmcm phase has a c lattice parameter that is considerably
larger than the a and b lattice parameters, and the b lattice parame-
ter is larger than the a lattice parameter, which qualitatively matches
well with the crystal data on Cmcm in table 7.1. This hypothesis is
also substantiated by the simulated XRD spectrum for the TMA[FeCl4]
crystal, where a new XRD line appears at point C in figure 6.10 during
the cooling process, indicating that the crystal relaxes to a different
structure than the initial Amm2 phase. By comparing figure 6.4 a)
and figure 6.5 a), it is also clear that the unit cell volume increases
in two steps during the heating process, while the volume decrease
during the cooling process happens in one single step. This agrees
well with the two phase transitions Amm2 → Cmcm → Pm3m for
the heating process, followed by a single phase transition Pm3m →
Cmcm for the cooling process. The absence of a transition back to the
original Amm2 phase indicates a lack of thermal hysteresis, which
has also been reported for ZrO2 between the monoclinic and tetrago-
nal phases by using ab initio MD simulations with on-the-fly trained
machine learned force fields [30].

For the TMA[FeBr4] crystal, figure 6.4 indicates that there might be
a phase transition in the beginning of the heating process, as the unit
cell volume and lattice parameters changes drastically after only a
couple of picoseconds. As the starting configuration Amm2 is a 330K
phase while the heating process starts at 200K, a possible explanation
for this behaviour could be that there is a phase transition to a lower
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temperature state, possibly Pma2. According to table 7.1, Pma2 has
a smaller unit cell volume, larger lattice parameter a, and smaller
lattice parameters b and c compared to the Amm2 phase. This agrees
well with the changes observed in figure 6.4, with decreasing unit cell
volume, decreasing lattice parameters b and c and increasing lattice
parameter a.

The reconstructed lattice parameters for TMA[FeBr4] in figure 6.9
also indicates that there is a phase transition in the beginning of the
heating process. Starting with two a lattice parameters at about 7Å
and 14Å in the beginning of the heating process, there appears a new
a lattice parameter at about 6.5Å after approximately 100ps. At the
same time, there appears a b lattice parameter at about 6.5Å and a
c lattice parameter at about 7Å. These changes in crystal symme-
try may indicate a phase transition to the Pma2 phase. Possible rea-
sons could be that this phase is more energetically favourable for the
TMA[FeBr4] crystal at low temperatures, or that the steric hindrance
of the TMA molecules results in a relaxation to this phase.

Figure 6.4 shows that there are few significant changes in the lat-
tice parameters for the TMA[FeBr4] crystal after the assumed transi-
tion to the Pma2 phase (after about 100ps). There is a continuous,
slight increase in a, b, c and the unit cell volume throughout the rest
of the heating process, but this is probably due to more movement
within the crystal and larger lattice spacing at higher temperatures.
After reaching 400K there is a final change in lattice parameters with
a small increase in a and decrease in b and c that may indicate a
new phase transition, possibly back to the initial Amm2 phase or the
Cmcm phase. However, these changes are small compared to the
initial ones, and they could also be a result of something else.

By comparing the observed changes in lattice parameters in the
TMA[FeBr4] crystal with the energy per atom in figure 6.6 after 700ps,
it is clear that the energy decreases drastically after reaching the 400K
line. This is unexpected, as the temperature is still increasing at this
point. This behaviour could either indicate that the system reaches
a phase transition, that melting of the crystal is about to occur or
that there is an error within the machine learned potentials at this
point. From the symmetry analysis in figure 6.9 and the XRD spec-
trum in figure 6.11, it does not seem to be any phase transitions for
the TMA[FeBr4] crystal in the high temperature area, indicating that
the last of these alternatives could be the case. However, to get a
better understanding of this, future work should aim for heating the
TMA[FeBr4] crystal to even higher temperatures over longer time pe-
riods, and validate the force fields up against pure ab initio runs in
order to improve their accuracy.

Although the results in this project indicates that the TMA[FeBr4]
crystal did not undergo a phase transition to the plastic mesophase,
this doesn’t mean that such a phase does not exist for the TMA[FeBr4]
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crystal. Since Br is below Cl in the periodic table, the ionic radii
of Br are larger than those of Cl [36], and the [FeBr4]− molecule is
therefore larger than the [FeCl4]− molecule. This means that the
steric hindrance of the TMA molecules in the TMA[FeBr4] crystal is
larger than within the TMA[FeCl4] crystal, and the TMA molecules
can therefore rotate more freely in TMA[FeCl4] than in TMA[FeBr4].
This also implies that the temperature needed to facilitate the tran-
sition to the plastic mesophase probably is lower for the TMA[FeCl4]
crystal than for the TMA[FeBr4] crystal. In other words, there could
exist a mesophase for the TMA[FeBr4] crystal at higher temperatures
than those investigated in this project.

When it comes to the cooling of the TMA[FeBr4] crystal, figure 6.5
shows few significant changes in the lattice parameters and unit cell
volume. However, from figure 6.9 there seems to be a change in sym-
metry after about 1100ps, where the a, b and c lattice parameters
around 6.5Å and 7Å suddenly disappears. This corresponds to a
time of approximately 300ps in figure 6.5, since the heating and cool-
ing processes were run for 800ps each. A possible explanation for
this symmetry change could be that there is a transition to a lower
temperature phase, but it could also be that the crystal stays in the
Pma2 phase throughout the simulation and the symmetry break in
figure 6.9 is a result of something else. Reconstructing the unit cell
lattice parameters based on the symmetry of the Fe atoms is a rough
way of analysing the crystal structure, and figure 6.5 gives a more ac-
curate picture of how the size of the 2×2×2 supercell changes during
the simulation than figure 6.9.

It is important to notice that the variation in both temperature,
lattice parameters and unit cell volume in figure 6.4 and 6.5 is big,
which can be seen from the broad distribution of dots in the scat-
ter plots. This means that one must be careful drawing conclusions
solely based on these plots, as they merely show the average trend
over a short amount of time for a small simulation cell. Larger simu-
lation cells and longer simulation times would probably give a better
description of a bulk material.

Another important aspect is that the accuracy of the calculations in
this project is highly dependent on the quality of the machine learned
force fields. In this project, the only validation of the force fields was
how accurately they succeeded in predicting the material properties
seen in experiments, but ideally it would have been better with a
more thorough validation of the force fields in advance of the pro-
duction calculations predicting the phase transitions.

7.1.2 Simulated XRD spectra

The XRD spectra for the two plastic crystals provides another way of
analysing the changes in crystal structure and identify possible phase



54 discussion

transitions. In figure 7.1, which is retrieved from Walker et al [35], the
XRD spectrum for the plastic crystal TMA[FeBrCl3] is presented. In
their work, Walker et al obtained this plot by heating the crystals up to
200 ◦C with a heating rate of 0.2 °C/s, holding this temperature for 30
minutes before cooling the crystals down to room temperature again
with a cooling rate of 0.4 °C/s [35]. The maximum temperature of
200 ◦C corresponds to 473K, which is higher than the maximum tem-
perature used in this project. Also, the plastic crystal TMA[FeBrCl3]
is not exactly the same as those investigated in this project, however
it has the same crystal structure and is a good reference for compar-
ing the XRD spectra of TMA[FeCl4] and TMA[FeBr4]. However, it is
important to notice that Walker et al investigated the long-range crys-
tallographic structure of the TMA[FeBrCl3] compound, while in this
thesis the plastic crystals were studied by using a relatively small su-
percell. The local structure of these 2×2×2 simulation cells was used
to project the long-range structure of the plastic crystals, but will
not have the true long-range behaviour of a bulk material as periodic
boundary conditions makes every mirror image of the simulation cell
look exactly the same.
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Figure 7.1: XRD spectrum for the plastic crystal TMA[FeBrCl3], retrieved with
permission from Walker [35].

For the TMA[FeCl4] crystal, the XRD spectrum in figure 6.10 clearly
shows a splitting of spectral lines around 6.3◦ 2θ that merges into
one single line at point A upon the transition to the high temperature
mesophase. This agrees well with the findings presented in figure
7.1, where the same splitting and merging tendency can be observed
around 6◦ 2θ. However, the gap between the lines in figure 7.1 is
larger than in figure 6.10, which might be due to the presence of a Br
atom in the TMA[FeBrCl3] crystal. Figure 6.10 also shows that there is
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a slight bending of spectral lines towards lower 2θ values in the high
temperature area, which agrees well with the bending tendency seen
in figure 7.1. At point B in figure 6.10 there is a re-spitting of lines
indicating that the structure recrystallises to the Cmcm phase after
about 1050ps. This agrees well with the splitting of lines in figure 7.1,
although the in situ XRD experiments were performed over a much
longer time frame. The appearance of a new spectral line at point
C in figure 6.10 can also be observed in figure 7.1 around 7.5◦ 2θ,
although this line seems to appear at slightly lower 2θ values in the
case of TMA[FeBrCl3] compared to the TMA[FeCl4] crystal studied in
this project. This might be due to the differences in composition for
the two crystals. The spectral line around 9◦ 2θ (point D) in figure
6.10 can also be found in the figure 7.1, but again the XRD line in the
TMA[FeBrCl3] spectrum appears to be shifted towards lower 2θ values
compared to TMA[FeCl4].

As discussed in the previous section, these results confirms that
there probably is a transition from the Amm2 phase to the plastic
mesophase via the Cmcm phase in the TMA[FeCl4] crystal during the
heating process from 200K to 400K. The emergence of a new spectral
line during the cooling process suggests that recrystallization from
the plastic mesophase led to a different space group than the initial
Amm2 phase, most likely the Cmcm phase. This agrees well with the
findings from the analysis of the lattice parameters for the TMA[FeCl4]
crystal.

For the TMA[FeBr4] crystal, figure 6.11 shows a similar splitting of
spectral lines around 6.3◦ 2θ (point A) as observed in the TMA[FeCl4]
crystal. The reason for the broader splitting in TMA[FeBr4] compared
to TMA[FeCl4] may be contextualized by considering the broader split-
ting in TMA[FeBrCl3] relative to TMA[FeCl4]. The crystals containing
Br have a wider splitting of spectral lines compared to TMA[FeCl4],
indicating that the presence of Br contributes to a broadening of spec-
tral line splitting in addition to inducing a downward shift in the
position of the spectral lines towards lower 2θ values. Also, figure
6.11 shows that the two lines doesn’t merge together in the high
temperature area, indicating that there is no transition to the plastic
mesophase in the case of TMA[FeBr4]. This agrees well with the ob-
served trend in lattice parameters for TMA[FeBr4] in figure 6.4 and 6.5.
As mentioned, the reason for this absence of a transition to the plastic
mesophase could be due to hindered rotation of the TMA molecules
due to larger inorganic anions compared to TMA[FeCl4]. For future
work, it would be interesting to investigate even higher temperatures
to see how much energy is required in order for the TMA[FeBr4] crys-
tal to enter the plastic mesophase, and how close to the melting tem-
perature this transition finds place.
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7.2 rotational dynamics

Figure 6.12 shows the rotational autocorrelation function for the two
plastic crystals with a lag value of 100. For the TMA[FeCl4] crystal,
there is a higher degree of correlation between the TMA molecules
within the relevant time frame at 200K than at 300K and 400K. In
other words, the angle of the tracked methyl group relative to its
starting configuration increases with increasing temperature and in-
creasing degrees of freedom. This is as expected, because higher
temperatures are associated with more rotational freedom and less
correlation between subsequent simulation steps. The 300K curve is
slightly below the 400K curve, indicating that there is more rotational
freedom within the 300K phase than within the 400K phase. This
agrees well with the trajectory plots of the tracked methyl groups
in figure 6.13. The reason why the 300K and 400K phases in the
TMA[FeCl4] crystal appears to have approximately the same amount
of rotational freedom might be that there is less steric hindrance for
TMA[FeCl4] compared to TMA[FeBr], meaning that there is less energy
required in order to make the TMA molecules rotate freely. If the TMA

molecules can rotate freely in the 300K phase, it is reasonable that
the extra energy in the 400K phase won’t contribute with much more
rotational freedom, resulting in almost the same degree of correlation
between simulation steps at 300K and 400K.

For the TMA[FeBr4] crystal, figure 6.12 shows that there is a clear
relationship between decreasing autocorrelation within the structure
and increasing temperature. This agrees well with figure 6.14, where
the trajectories of the tracked methyl groups occupy more space and
become more disordered with increasing temperature. Figure 6.12
also shows that the rotational autocorrelation is larger for the TMA[FeBr4]
crystal than for the TMA[FeCl4] crystal within a time frame of 100ps,
by pairwise comparing the 200K, 300K and 400K curves. This is
probably due to the steric hindrance of the TMA molecules in the
TMA[FeBr4] compound, restricting the rotations and therefore increas-
ing the correlation between subsequent steps.

It is important to remember that although the motion of the TMA

molecules have been discussed extensively in the previous sections,
both the inorganic anions and the organic cations play an impor-
tant role in determining the properties of the plastic crystals studied
in this project. For both these molecules, the size and the compo-
sition can be changed in order to engineer new materials, making
plastic crystals a versatile class of materials with a wide range of
possible applications. The results presented in the current work in-
dicates that the Curie temperature, TC, of the TMA[FeCl4] crystal is
lower than the Curie temperature of the TMA[FeBr4] crystal, as the
transition from the crystalline phase to the plastic mesophase found
place at lower temperatures for the TMA[FeCl4] crystal than for the
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TMA[FeBr4] crystal (although no transition to this mesophase was ob-
served for TMA[FeBr4] in this project). This is as expected since the
steric hindrance of the TMA cations within the TMA[FeBr4] crystal is
larger than within the TMA[FeCl4] crystal, due to Br being larger than
Cl. Changing the organic cation to e.g. tetraethylammonium (TEA)
would have increased the steric hindrance even further, and with
that the Curie temperature would probably have been increased even
more. In addition to affecting the rotational freedom of the organic
cations, the inorganic anions also plays an important role when it
comes to the electronic properties of these crystals, and changing the
composition of the anion will affect e.g. the dielectric and piezoelec-
tric coefficients of the crystal. In previous work, it has been shown
that e.g. the TMA[FeCl4] crystal have a larger band gap and smaller
dielectric constant than the TMA[FeBr4] crystal, as the electronic or-
bitals of Br overlap more than in Cl, and the valence electrons of Br
are more loosely bound to the nucleus than in Cl due to Br being
below Cl in the periodic table [2].

7.3 further work

In this project, the phase transitions and rotational dynamics of the
plastic crystals TMA[FeCl4] and TMA[FeBr4] were investigated. Al-
though the methods presented here gave a good pictures of how
these materials work on a microscopic level, there are several ways
to extend and improve the project.

First of all, a natural continuation of this project would be to simu-
late other low temperature plastic crystals using the same methods as
presented here, playing around with the composition of the structures
without introducing foreign elements. The organic tetramethylam-
monium (TMA) cation could be replaced by e.g. tetraethylammonium
(TEA), and the inorganic anions [FeCl4] and [FeBr4] could be replaced
by [FeBrCl3] or other combinations of Br and Cl.

Secondly, the plastic crystals investigated in this thesis could be
heated to even higher temperatures to see how much energy is re-
quired in order for the TMA[FeBr4] compound to enter the plastic
mesophase. Also, a slower heating and cooling rate could be used in
order to make the simulation conditions closer to those of real exper-
iments.

Another important aspect is validating the machine learning force
fields and making them more accurate. In this project, they were
only generated for a single starting configuration of the two plastic
crystals, so in order to increase their accuracy one could have trained
them on different crystal configurations and validated them towards
pure ab initio molecular dynamics runs. In previous work, 19 differ-
ent starting configurations of the TMA[FeCl4] and TMA[FeBr4] crys-
tals were investigated, corresponding to the 19 unique rotations of
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the TMA molecules in the x-, y- and z-directions within a unit cell [2].
These could have been used as starting points to train the force fields
on a wider range of molecular configurations.

Lastly, one could have investigated other functionals than the PBEsol

+ U functional for the DFT calculations. In previous studies of plastic
crystals such as HQReO4 and LiNbO3, van der Waals (vdW) density
functionals have been used to model and study the dielectric, piezo-
electric and elastic properties of these materials [14]. As a continu-
ation of this project, one could therefore have predicted the phase
transitions using the vdW functionals and compared the results with
those from the PBEsol + U functional.



8
C O N C L U S I O N

The aim of this project was to predict the phase transitions and study
the rotational dynamics in the plastic crystals TMA[FeCl4] and TMA[FeBr4]
by using ab initio molecular dynamics simulations with machine learned
force fields. This was achieved by investigating the change in lattice
parameters, unit cell volume and XRD spectra for the two compounds
upon heating and cooling from 200K to 400K and back again, in ad-
dition to analysing the autocorrelation within each structure at 200K,
300K and 400K.

For TMA[FeCl4], the results indicated that there was a phase tran-
sition from the initial Amm2 phase to the plastic mesophase via the
Cmcm phase during the heating process, and then a transition back
to the Cmcm phase during the cooling process. For TMA[FeBr4] on
the other hand, the results indicated that the crystal structure re-
laxed from the initial Amm2 phase to the lower temperature Pma2
phase in the beginning of the heating process, and didn’t seem to
reach the plastic mesophase at all. This is likely due to steric hin-
drance of the TMA molecules in TMA[FeBr4], as the inorganic anion
[FeBr4]− is larger than [FeCl4]− since Br is below Cl in the periodic
table. This indicates that more energy is required to get full rotational
freedom in the TMA[FeBr4] crystal, and the plastic mesophase could
exist at higher temperatures than those investigated in this project.
This agrees well with the results from the investigation of the ro-
tational dynamics, where the autocorrelation analysis showed that
there was more rotational freedom in the TMA[FeCl4] crystal than
in the TMA[FeBr4] crystal, and that the rotational freedom increased
with increasing temperature for both crystals.

As a continuation of this project, one could have investigated other
plastic crystals with the same composition and structure, such as
TEA[FeCl4], TEA[FeBr4] or TMA[FeBrCl3]. It is also necessary to in-
vestigate the TMA[FeBr4] crystal over wider temperature ranges and
longer time periods, in order to get a better understanding of the
rotational dynamics and phase transitions within this crystal on a mi-
croscopic level. Finally, investigating different functionals such as the
van der Waals functionals would provide an interesting comparison
for the PBEsol + U functional. This would give a deeper understanding
of how different approaches to the first principles calculations affects
the predicted crystal properties.
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A
VA S P I N C A R F I L E S

This section provides an overview of the different INCAR files used for
the VASP calculations in this project.

a.1 generation of mlff

Listing A.1 contains the INCAR tags used for the generation of the
MLFFs with the Langevin thermostat. The parameters TEBEG and
TEEND gives the starting and final temperature for the simulation, re-
spectively. The force fields were created by running simulations first
from 200K to 200K, then from 200K to 400K and finally from 400K
to 400K, where the only INCAR changes between these three calcula-
tions were the TEBEG and TEEND parameters. The file presented below
gives the tags for the 200K to 200K calculation. By changing the
TEBEG and TEEND parameters, the INCAR could be used for other two
calculations.

Listing A.1: INCAR parameters for the generation of MLFFs with the
Langevin thermostat at 200K.

SYSTEM = Generic Input

! start Parameters

NWRITE = 2 ! Medium-level information output

ISTART = 1 ! read existing wavefunction; if there

INIWAV = 1 ! Random initial wavefunction; otherwise

! parallelisation

NCORE = 16 ! No. cores per orbital

! electronic relaxation

PREC = Low ! Precision level

ALGO = Fast ! SCF minimisation algorithm; 38/48 combo

ENMAX = 500 ! Plane-wave cutoff

NELM = 1000 ! Max SCF steps

NELMIN = 2 ! Min SCF steps

EDIFF = 1E-06 ! SCF energy convergence

GGA = PS ! PBEsol exchange-correlation

LASPH = .TRUE. ! Non-spherical elements; d/f convergence

LREAL = Auto ! Projection operators: automatic

! ionic relaxation

EDIFFG = -0.01 ! Ionic convergence; eV/AA^3

NSW = 20000 ! Max ionic steps
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IBRION = 0 ! Algorithm: 0-MD; 1-Quasi -New; 2-CG

ISIF = 3 ! Stress/relaxation:2-Ions;3-Shape/Ions/V

ISYM = 0 ! Symmetry: 0-none; 2=GGA; 3=hybrids

NBLOCK = 1 ! Update XDATCAR every X steps

ISMEAR = -1 ! Gaussian smearing; metals:1

SIGMA = 0.0258 ! Smearing value in eV; metals:0.2

IWAVPR = 1 ! charge density extrapolation: 0-non 1-

charg 2-wave 3-comb

POTIM = 2 ! Timestep in fs

! molecular dynamics

LWAVE = F

LCHARG = F

LREAL = Auto

MDALGO = 3 ! Langevin thermostat

LANGEVIN_GAMMA = 0 5 0 0 0 ! friction

LANGEVIN_GAMMA_L = 5 ! lattice friction

PMASS = 10 ! lattice mass

TEBEG = 200 ! start temp

TEEND = 200 ! end temp

! machine learning

ML_LMLFF = T

ML_ISTART = 0

ML_WTSIF = 2

ML_LBASIS_DISCARD = .TRUE.

RANDOM_SEED = 688344966 0 0

! dft+u

LDAU = .TRUE. ! Activate DFT+U

LDATYPE = 2 ! Dudarev; only U-J matters

LDAUL = 2 -1 -1 -1 -1 ! Orbitals for each species

LDAUU = 5.5 0 0 0 0 ! U for each species

LDAUJ = 0 0 0 0 0 ! J for each species

LMAXMIX = 4 ! Mixing cut-off; 4-d, 6-f

a.2 phase transition calculations

Listing A.2 gives the INCAR parameters for the slow heating process
from 200K to 400K for the two plastic crystals. For the cooling pro-
cess, the TEBEG and TEEND parameters were changed to 400 and 100,
respectively.

Listing A.2: INCAR parameters for the slow heating of the plastic crystals
from 200K to 400K.

SYSTEM = Generic Input

! start Parameters

NWRITE = 2 ! Medium-level information output
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ISTART = 1 ! read existing wavefunction; if there

INIWAV = 1 ! Random initial wavefunction; otherwise

! parallelisation

NCORE = 16 ! No. cores per orbital

! electronic relaxation

PREC = Normal ! Precision level

ALGO = Fast ! SCF minimisation algorithm; 38/48 combo

ENMAX = 500

NELM = 1000 ! Max SCF steps

NELMIN = 2 ! Min SCF steps

EDIFF = 1E-06 ! SCF energy convergence

GGA = PS ! PBEsol exchange-correlation

LASPH = .TRUE. ! Non-spherical elements; d/f convergence

LREAL = Auto ! Projection operators: automatic

! ionic relaxation

EDIFFG = -0.01 ! Ionic convergence; eV/AA^3

NSW = 400000

IBRION = 0

ISIF = 3

ISYM = 0 ! Symmetry: 0-none; 2=GGA; 3=hybrids

NBLOCK = 50 ! Update XDATCAR every X steps

ISMEAR = -1 ! Gaussian smearing; metals:1

SIGMA = 0.0258 ! Smearing value in eV; metals:0.2

IWAVPR = 1 ! charge density extrapolation: 0-non 1-

charg 2-wave 3-comb

POTIM = 2 ! Timestep in fs

! molecular dynamics

LWAVE = F

LCHARG = F

LREAL = Auto

MDALGO = 3 ! Langevin thermostat

LANGEVIN_GAMMA = 0 5 0 0 0 ! friction

LANGEVIN_GAMMA_L = 5 ! lattice friction

PMASS = 200 ! lattice mass

TEBEG = 200 ! start temp

TEEND = 400 ! end temp

! machine learning

ML_LMLFF = T

ML_ISTART = 2

ML_WTSIF = 2

ML_LBASIS_DISCARD = .TRUE.

RANDOM_SEED = 688344966 0 0

! dft+u

LDAU = .TRUE. ! Activate DFT+U

LDATYPE = 2 ! Dudarev; only U-J matters

LDAUL = 2 -1 -1 -1 -1 ! Orbitals for each species
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LDAUU = 5.5 0 0 0 0 ! U for each species

LDAUJ = 0 0 0 0 0 ! J for each species

LMAXMIX = 4 ! Mixing cut-off; 4-d, 6-f

a.3 rotational dynamics calculations

Listing A.3 gives the INCAR parameters for the constant volume calcu-
lations using the Nosé-Hoover thermostat at 200K. For the analysis
of the rotational dynamics at 300K and 400K, the TEBEG and TEEND

tags were changed accordingly.

Listing A.3: INCAR parameters for the constant volume calculations using
the Nosé-Hoover thermostat from 200K to 200K.

SYSTEM = Generic Input

! start Parameters

NWRITE = 2 ! Medium-level information output

ISTART = 1 ! read existing wavefunction; if there

INIWAV = 1 ! Random initial wavefunction; otherwise

! parallelisation

NCORE = 16 ! No. cores per orbital

! electronic relaxation

PREC = Normal ! Precision level

ALGO = Fast ! SCF minimisation algorithm; 38/48 combo

ENMAX = 500

NELM = 1000 ! Max SCF steps

NELMIN = 2 ! Min SCF steps

EDIFF = 1E-06 ! SCF energy convergence

GGA = PS ! PBEsol exchange-correlation

LASPH = .TRUE. ! Non-spherical elements; d/f convergence

LREAL = Auto ! Projection operators: automatic

! ionic relaxation

EDIFFG = -0.01 ! Ionic convergence; eV/AA^3

NSW = 50000

IBRION = 0

ISIF = 2

ISYM = 0 ! Symmetry: 0-none; 2=GGA; 3=hybrids

NBLOCK = 10 ! Update XDATCAR every X steps

ISMEAR = -1 ! Gaussian smearing; metals:1

SIGMA = 0.0258 ! Smearing value in eV; metals:0.2

IWAVPR = 1 ! charge density extrapolation: 0-non 1-

charg 2-wave 3-comb

POTIM = 2 ! Timestep in fs

! molecular dynamics

LWAVE = F
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LCHARG = F

LREAL = Auto

MDALGO = 2 ! Nose-Hoover thermostat

LANGEVIN_GAMMA = 0 5 0 0 0 ! friction

LANGEVIN_GAMMA_L = 5 ! lattice friction

PMASS = 200 ! lattice mass

SMASS = 0

TEBEG = 200 ! start temp

TEEND = 200 ! end temp

! machine learning

ML_LMLFF = T

ML_ISTART = 2

ML_WTSIF = 2

ML_LBASIS_DISCARD = .TRUE.

RANDOM_SEED = 688344966 0 0

! dft+u

LDAU = .TRUE. ! Activate DFT+U

LDATYPE = 2 ! Dudarev; only U-J matters

LDAUL = 2 -1 -1 -1 -1 ! Orbitals for each species

LDAUU = 5.5 0 0 0 0 ! U for each species

LDAUJ = 0 0 0 0 0 ! J for each species

LMAXMIX = 4 ! Mixing cut-off; 4-d, 6-f





B
R O TAT I O N A L A U T O C O R R E L AT I O N F U N C T I O N

This section presents the plots of the autocorrelation function for the
two plastic crystals TMA[FeCl4] and TMA[FeBr4] at 200K, 300K and
400K by using four different lag values; 50, 100, 150 and 200. For
the rotational dynamics analysis, a lag value of 100 was chosen as
this was the highest one where the plot didn’t get inside the cone
representing the 95% confidence level.
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Figure B.1: Autocorrelation for the TMA[FeCl4] crystal at 200K with lags of
a) 50, b) 100, c) 150 and d) 200.
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Figure B.2: Autocorrelation for the TMA[FeCl4] crystal at 300K with lags of
a) 50, b) 100, c) 150 and d) 200.
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Figure B.3: Autocorrelation for the TMA[FeCl4] crystal at 400K with lags of
a) 50, b) 100, c) 150 and d) 200.
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Figure B.4: Autocorrelation for the TMA[FeBr4] crystal at 200K with lags of
a) 50, b) 100, c) 150 and d) 200.
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Figure B.5: Autocorrelation for the TMA[FeBr4] crystal at 300K with lags of
a) 50, b) 100, c) 150 and d) 200.
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Figure B.6: Autocorrelation for the TMA[FeBr4] crystal at 400K with lags of
a) 50, b) 100, c) 150 and d) 200.



C
C O N V E R G E N C E O F T H E C U T O F F E N E R G Y

Figure C.1 shows the results from the convergence tests of the cutoff
energy for the TMA[FeCl4] crystal. This plot is retrieved from pre-
vious project work [2]. The convergence test was performed on a
TMA[FeCl4] unit cell with a convergence criterion of < 1meV. The
cutoff energy was only tested on the TMA[FeCl4] crystal because it
mainly depends on the carbon and nitrogen atoms, and it is there-
fore reasonable to assume that changing a Cl atom with a Br atom (in
the case of TMA[FeBr4]) would have little effect on the energy cutoff.
In this project, a cutoff energy of 500 eV was used for both plastic
crystals.
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Figure C.1: Convergence test of the cutoff energy for the TMA[FeCl4] crystal.
Figure retrieved from [2].
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D
B E E F P L O T S F O R T H E M L F F G E N E R AT I O N

In figure D.1 and D.2, the Bayesian error estimate of forces (BEEF) for
the generation of the machine learned force fields from 200K to 200K
and from 400K to 400K are presented, respectively.
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Figure D.1: Bayesian error estimate of forces (BEEF) for the generation of ma-
chine learned force fields (MLFF) from 200K to 200K for the two
plastic crystals.
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Figure D.2: Bayesian error estimate of forces (BEEF) for the generation of ma-
chine learned force fields (MLFF) from 400K to 400K for the two
plastic crystals.



E
N O S É - H O O V E R T E M P E R AT U R E A N D T O TA L
E N E R G Y

Figure E.1, E.2 and E.3 gives the temperature and energy per atom for
the constant volume calculations using the Nosé-Hoover thermostat
at 200K, 300K and 400K.

Figure E.1: Energy and temperature for the Nosé-Hoover calculation from
200K to 200K.
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Figure E.2: Energy and temperature for the Nosé-Hoover calculation from
300K to 300K.

Figure E.3: Energy and temperature for the Nosé-Hoover calculation from
400K to 400K.
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